]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
Merge OpenSSL 1.0.1p.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprAgg.cpp
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58   void EnsureDest(QualType T) {
59     if (!Dest.isIgnored()) return;
60     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
61   }
62
63 public:
64   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
65     : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
66   }
67
68   //===--------------------------------------------------------------------===//
69   //                               Utilities
70   //===--------------------------------------------------------------------===//
71
72   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
73   /// represents a value lvalue, this method emits the address of the lvalue,
74   /// then loads the result into DestPtr.
75   void EmitAggLoadOfLValue(const Expr *E);
76
77   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
78   void EmitFinalDestCopy(QualType type, const LValue &src);
79   void EmitFinalDestCopy(QualType type, RValue src,
80                          CharUnits srcAlignment = CharUnits::Zero());
81   void EmitCopy(QualType type, const AggValueSlot &dest,
82                 const AggValueSlot &src);
83
84   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
85
86   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
87                      QualType elementType, InitListExpr *E);
88
89   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
90     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
91       return AggValueSlot::NeedsGCBarriers;
92     return AggValueSlot::DoesNotNeedGCBarriers;
93   }
94
95   bool TypeRequiresGCollection(QualType T);
96
97   //===--------------------------------------------------------------------===//
98   //                            Visitor Methods
99   //===--------------------------------------------------------------------===//
100
101   void VisitStmt(Stmt *S) {
102     CGF.ErrorUnsupported(S, "aggregate expression");
103   }
104   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
105   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
106     Visit(GE->getResultExpr());
107   }
108   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
109   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
110     return Visit(E->getReplacement());
111   }
112
113   // l-values.
114   void VisitDeclRefExpr(DeclRefExpr *E) {
115     // For aggregates, we should always be able to emit the variable
116     // as an l-value unless it's a reference.  This is due to the fact
117     // that we can't actually ever see a normal l2r conversion on an
118     // aggregate in C++, and in C there's no language standard
119     // actively preventing us from listing variables in the captures
120     // list of a block.
121     if (E->getDecl()->getType()->isReferenceType()) {
122       if (CodeGenFunction::ConstantEmission result
123             = CGF.tryEmitAsConstant(E)) {
124         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
125         return;
126       }
127     }
128
129     EmitAggLoadOfLValue(E);
130   }
131
132   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
133   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
134   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
135   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
136   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
137     EmitAggLoadOfLValue(E);
138   }
139   void VisitPredefinedExpr(const PredefinedExpr *E) {
140     EmitAggLoadOfLValue(E);
141   }
142
143   // Operators.
144   void VisitCastExpr(CastExpr *E);
145   void VisitCallExpr(const CallExpr *E);
146   void VisitStmtExpr(const StmtExpr *E);
147   void VisitBinaryOperator(const BinaryOperator *BO);
148   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
149   void VisitBinAssign(const BinaryOperator *E);
150   void VisitBinComma(const BinaryOperator *E);
151
152   void VisitObjCMessageExpr(ObjCMessageExpr *E);
153   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
154     EmitAggLoadOfLValue(E);
155   }
156
157   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
158   void VisitChooseExpr(const ChooseExpr *CE);
159   void VisitInitListExpr(InitListExpr *E);
160   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
161   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
162     Visit(DAE->getExpr());
163   }
164   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
165     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
166     Visit(DIE->getExpr());
167   }
168   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
169   void VisitCXXConstructExpr(const CXXConstructExpr *E);
170   void VisitLambdaExpr(LambdaExpr *E);
171   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
172   void VisitExprWithCleanups(ExprWithCleanups *E);
173   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
174   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
175   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
176   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
177
178   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
179     if (E->isGLValue()) {
180       LValue LV = CGF.EmitPseudoObjectLValue(E);
181       return EmitFinalDestCopy(E->getType(), LV);
182     }
183
184     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
185   }
186
187   void VisitVAArgExpr(VAArgExpr *E);
188
189   void EmitInitializationToLValue(Expr *E, LValue Address);
190   void EmitNullInitializationToLValue(LValue Address);
191   //  case Expr::ChooseExprClass:
192   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
193   void VisitAtomicExpr(AtomicExpr *E) {
194     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
195   }
196 };
197 }  // end anonymous namespace.
198
199 //===----------------------------------------------------------------------===//
200 //                                Utilities
201 //===----------------------------------------------------------------------===//
202
203 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
204 /// represents a value lvalue, this method emits the address of the lvalue,
205 /// then loads the result into DestPtr.
206 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
207   LValue LV = CGF.EmitLValue(E);
208
209   // If the type of the l-value is atomic, then do an atomic load.
210   if (LV.getType()->isAtomicType()) {
211     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
212     return;
213   }
214
215   EmitFinalDestCopy(E->getType(), LV);
216 }
217
218 /// \brief True if the given aggregate type requires special GC API calls.
219 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
220   // Only record types have members that might require garbage collection.
221   const RecordType *RecordTy = T->getAs<RecordType>();
222   if (!RecordTy) return false;
223
224   // Don't mess with non-trivial C++ types.
225   RecordDecl *Record = RecordTy->getDecl();
226   if (isa<CXXRecordDecl>(Record) &&
227       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
228        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
229     return false;
230
231   // Check whether the type has an object member.
232   return Record->hasObjectMember();
233 }
234
235 /// \brief Perform the final move to DestPtr if for some reason
236 /// getReturnValueSlot() didn't use it directly.
237 ///
238 /// The idea is that you do something like this:
239 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
240 ///   EmitMoveFromReturnSlot(E, Result);
241 ///
242 /// If nothing interferes, this will cause the result to be emitted
243 /// directly into the return value slot.  Otherwise, a final move
244 /// will be performed.
245 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
246   if (shouldUseDestForReturnSlot()) {
247     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
248     // The possibility of undef rvalues complicates that a lot,
249     // though, so we can't really assert.
250     return;
251   }
252
253   // Otherwise, copy from there to the destination.
254   assert(Dest.getAddr() != src.getAggregateAddr());
255   std::pair<CharUnits, CharUnits> typeInfo = 
256     CGF.getContext().getTypeInfoInChars(E->getType());
257   EmitFinalDestCopy(E->getType(), src, typeInfo.second);
258 }
259
260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
262                                        CharUnits srcAlign) {
263   assert(src.isAggregate() && "value must be aggregate value!");
264   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
265   EmitFinalDestCopy(type, srcLV);
266 }
267
268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
270   // If Dest is ignored, then we're evaluating an aggregate expression
271   // in a context that doesn't care about the result.  Note that loads
272   // from volatile l-values force the existence of a non-ignored
273   // destination.
274   if (Dest.isIgnored())
275     return;
276
277   AggValueSlot srcAgg =
278     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
279                             needsGC(type), AggValueSlot::IsAliased);
280   EmitCopy(type, Dest, srcAgg);
281 }
282
283 /// Perform a copy from the source into the destination.
284 ///
285 /// \param type - the type of the aggregate being copied; qualifiers are
286 ///   ignored
287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
288                               const AggValueSlot &src) {
289   if (dest.requiresGCollection()) {
290     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
291     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
292     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
293                                                       dest.getAddr(),
294                                                       src.getAddr(),
295                                                       size);
296     return;
297   }
298
299   // If the result of the assignment is used, copy the LHS there also.
300   // It's volatile if either side is.  Use the minimum alignment of
301   // the two sides.
302   CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
303                         dest.isVolatile() || src.isVolatile(),
304                         std::min(dest.getAlignment(), src.getAlignment()));
305 }
306
307 /// \brief Emit the initializer for a std::initializer_list initialized with a
308 /// real initializer list.
309 void
310 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
311   // Emit an array containing the elements.  The array is externally destructed
312   // if the std::initializer_list object is.
313   ASTContext &Ctx = CGF.getContext();
314   LValue Array = CGF.EmitLValue(E->getSubExpr());
315   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
316   llvm::Value *ArrayPtr = Array.getAddress();
317
318   const ConstantArrayType *ArrayType =
319       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
320   assert(ArrayType && "std::initializer_list constructed from non-array");
321
322   // FIXME: Perform the checks on the field types in SemaInit.
323   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
324   RecordDecl::field_iterator Field = Record->field_begin();
325   if (Field == Record->field_end()) {
326     CGF.ErrorUnsupported(E, "weird std::initializer_list");
327     return;
328   }
329
330   // Start pointer.
331   if (!Field->getType()->isPointerType() ||
332       !Ctx.hasSameType(Field->getType()->getPointeeType(),
333                        ArrayType->getElementType())) {
334     CGF.ErrorUnsupported(E, "weird std::initializer_list");
335     return;
336   }
337
338   AggValueSlot Dest = EnsureSlot(E->getType());
339   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
340                                      Dest.getAlignment());
341   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
342   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
343   llvm::Value *IdxStart[] = { Zero, Zero };
344   llvm::Value *ArrayStart =
345       Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart");
346   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
347   ++Field;
348
349   if (Field == Record->field_end()) {
350     CGF.ErrorUnsupported(E, "weird std::initializer_list");
351     return;
352   }
353
354   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
355   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
356   if (Field->getType()->isPointerType() &&
357       Ctx.hasSameType(Field->getType()->getPointeeType(),
358                       ArrayType->getElementType())) {
359     // End pointer.
360     llvm::Value *IdxEnd[] = { Zero, Size };
361     llvm::Value *ArrayEnd =
362         Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend");
363     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
364   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
365     // Length.
366     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
367   } else {
368     CGF.ErrorUnsupported(E, "weird std::initializer_list");
369     return;
370   }
371 }
372
373 /// \brief Determine if E is a trivial array filler, that is, one that is
374 /// equivalent to zero-initialization.
375 static bool isTrivialFiller(Expr *E) {
376   if (!E)
377     return true;
378
379   if (isa<ImplicitValueInitExpr>(E))
380     return true;
381
382   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
383     if (ILE->getNumInits())
384       return false;
385     return isTrivialFiller(ILE->getArrayFiller());
386   }
387
388   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
389     return Cons->getConstructor()->isDefaultConstructor() &&
390            Cons->getConstructor()->isTrivial();
391
392   // FIXME: Are there other cases where we can avoid emitting an initializer?
393   return false;
394 }
395
396 /// \brief Emit initialization of an array from an initializer list.
397 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
398                                    QualType elementType, InitListExpr *E) {
399   uint64_t NumInitElements = E->getNumInits();
400
401   uint64_t NumArrayElements = AType->getNumElements();
402   assert(NumInitElements <= NumArrayElements);
403
404   // DestPtr is an array*.  Construct an elementType* by drilling
405   // down a level.
406   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
407   llvm::Value *indices[] = { zero, zero };
408   llvm::Value *begin =
409     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
410
411   // Exception safety requires us to destroy all the
412   // already-constructed members if an initializer throws.
413   // For that, we'll need an EH cleanup.
414   QualType::DestructionKind dtorKind = elementType.isDestructedType();
415   llvm::AllocaInst *endOfInit = nullptr;
416   EHScopeStack::stable_iterator cleanup;
417   llvm::Instruction *cleanupDominator = nullptr;
418   if (CGF.needsEHCleanup(dtorKind)) {
419     // In principle we could tell the cleanup where we are more
420     // directly, but the control flow can get so varied here that it
421     // would actually be quite complex.  Therefore we go through an
422     // alloca.
423     endOfInit = CGF.CreateTempAlloca(begin->getType(),
424                                      "arrayinit.endOfInit");
425     cleanupDominator = Builder.CreateStore(begin, endOfInit);
426     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
427                                          CGF.getDestroyer(dtorKind));
428     cleanup = CGF.EHStack.stable_begin();
429
430   // Otherwise, remember that we didn't need a cleanup.
431   } else {
432     dtorKind = QualType::DK_none;
433   }
434
435   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
436
437   // The 'current element to initialize'.  The invariants on this
438   // variable are complicated.  Essentially, after each iteration of
439   // the loop, it points to the last initialized element, except
440   // that it points to the beginning of the array before any
441   // elements have been initialized.
442   llvm::Value *element = begin;
443
444   // Emit the explicit initializers.
445   for (uint64_t i = 0; i != NumInitElements; ++i) {
446     // Advance to the next element.
447     if (i > 0) {
448       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
449
450       // Tell the cleanup that it needs to destroy up to this
451       // element.  TODO: some of these stores can be trivially
452       // observed to be unnecessary.
453       if (endOfInit) Builder.CreateStore(element, endOfInit);
454     }
455
456     LValue elementLV = CGF.MakeAddrLValue(element, elementType);
457     EmitInitializationToLValue(E->getInit(i), elementLV);
458   }
459
460   // Check whether there's a non-trivial array-fill expression.
461   Expr *filler = E->getArrayFiller();
462   bool hasTrivialFiller = isTrivialFiller(filler);
463
464   // Any remaining elements need to be zero-initialized, possibly
465   // using the filler expression.  We can skip this if the we're
466   // emitting to zeroed memory.
467   if (NumInitElements != NumArrayElements &&
468       !(Dest.isZeroed() && hasTrivialFiller &&
469         CGF.getTypes().isZeroInitializable(elementType))) {
470
471     // Use an actual loop.  This is basically
472     //   do { *array++ = filler; } while (array != end);
473
474     // Advance to the start of the rest of the array.
475     if (NumInitElements) {
476       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
477       if (endOfInit) Builder.CreateStore(element, endOfInit);
478     }
479
480     // Compute the end of the array.
481     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
482                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
483                                                  "arrayinit.end");
484
485     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
486     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
487
488     // Jump into the body.
489     CGF.EmitBlock(bodyBB);
490     llvm::PHINode *currentElement =
491       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
492     currentElement->addIncoming(element, entryBB);
493
494     // Emit the actual filler expression.
495     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
496     if (filler)
497       EmitInitializationToLValue(filler, elementLV);
498     else
499       EmitNullInitializationToLValue(elementLV);
500
501     // Move on to the next element.
502     llvm::Value *nextElement =
503       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
504
505     // Tell the EH cleanup that we finished with the last element.
506     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
507
508     // Leave the loop if we're done.
509     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
510                                              "arrayinit.done");
511     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
512     Builder.CreateCondBr(done, endBB, bodyBB);
513     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
514
515     CGF.EmitBlock(endBB);
516   }
517
518   // Leave the partial-array cleanup if we entered one.
519   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
520 }
521
522 //===----------------------------------------------------------------------===//
523 //                            Visitor Methods
524 //===----------------------------------------------------------------------===//
525
526 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
527   Visit(E->GetTemporaryExpr());
528 }
529
530 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
531   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
532 }
533
534 void
535 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
536   if (Dest.isPotentiallyAliased() &&
537       E->getType().isPODType(CGF.getContext())) {
538     // For a POD type, just emit a load of the lvalue + a copy, because our
539     // compound literal might alias the destination.
540     EmitAggLoadOfLValue(E);
541     return;
542   }
543   
544   AggValueSlot Slot = EnsureSlot(E->getType());
545   CGF.EmitAggExpr(E->getInitializer(), Slot);
546 }
547
548 /// Attempt to look through various unimportant expressions to find a
549 /// cast of the given kind.
550 static Expr *findPeephole(Expr *op, CastKind kind) {
551   while (true) {
552     op = op->IgnoreParens();
553     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
554       if (castE->getCastKind() == kind)
555         return castE->getSubExpr();
556       if (castE->getCastKind() == CK_NoOp)
557         continue;
558     }
559     return nullptr;
560   }
561 }
562
563 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
564   switch (E->getCastKind()) {
565   case CK_Dynamic: {
566     // FIXME: Can this actually happen? We have no test coverage for it.
567     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
568     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
569                                       CodeGenFunction::TCK_Load);
570     // FIXME: Do we also need to handle property references here?
571     if (LV.isSimple())
572       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
573     else
574       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
575     
576     if (!Dest.isIgnored())
577       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
578     break;
579   }
580       
581   case CK_ToUnion: {
582     if (Dest.isIgnored()) break;
583
584     // GCC union extension
585     QualType Ty = E->getSubExpr()->getType();
586     QualType PtrTy = CGF.getContext().getPointerType(Ty);
587     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
588                                                  CGF.ConvertType(PtrTy));
589     EmitInitializationToLValue(E->getSubExpr(),
590                                CGF.MakeAddrLValue(CastPtr, Ty));
591     break;
592   }
593
594   case CK_DerivedToBase:
595   case CK_BaseToDerived:
596   case CK_UncheckedDerivedToBase: {
597     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
598                 "should have been unpacked before we got here");
599   }
600
601   case CK_NonAtomicToAtomic:
602   case CK_AtomicToNonAtomic: {
603     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
604
605     // Determine the atomic and value types.
606     QualType atomicType = E->getSubExpr()->getType();
607     QualType valueType = E->getType();
608     if (isToAtomic) std::swap(atomicType, valueType);
609
610     assert(atomicType->isAtomicType());
611     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
612                           atomicType->castAs<AtomicType>()->getValueType()));
613
614     // Just recurse normally if we're ignoring the result or the
615     // atomic type doesn't change representation.
616     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
617       return Visit(E->getSubExpr());
618     }
619
620     CastKind peepholeTarget =
621       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
622
623     // These two cases are reverses of each other; try to peephole them.
624     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
625       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
626                                                      E->getType()) &&
627            "peephole significantly changed types?");
628       return Visit(op);
629     }
630
631     // If we're converting an r-value of non-atomic type to an r-value
632     // of atomic type, just emit directly into the relevant sub-object.
633     if (isToAtomic) {
634       AggValueSlot valueDest = Dest;
635       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
636         // Zero-initialize.  (Strictly speaking, we only need to intialize
637         // the padding at the end, but this is simpler.)
638         if (!Dest.isZeroed())
639           CGF.EmitNullInitialization(Dest.getAddr(), atomicType);
640
641         // Build a GEP to refer to the subobject.
642         llvm::Value *valueAddr =
643             CGF.Builder.CreateStructGEP(valueDest.getAddr(), 0);
644         valueDest = AggValueSlot::forAddr(valueAddr,
645                                           valueDest.getAlignment(),
646                                           valueDest.getQualifiers(),
647                                           valueDest.isExternallyDestructed(),
648                                           valueDest.requiresGCollection(),
649                                           valueDest.isPotentiallyAliased(),
650                                           AggValueSlot::IsZeroed);
651       }
652       
653       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
654       return;
655     }
656
657     // Otherwise, we're converting an atomic type to a non-atomic type.
658     // Make an atomic temporary, emit into that, and then copy the value out.
659     AggValueSlot atomicSlot =
660       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
661     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
662
663     llvm::Value *valueAddr =
664       Builder.CreateStructGEP(atomicSlot.getAddr(), 0);
665     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
666     return EmitFinalDestCopy(valueType, rvalue);
667   }
668
669   case CK_LValueToRValue:
670     // If we're loading from a volatile type, force the destination
671     // into existence.
672     if (E->getSubExpr()->getType().isVolatileQualified()) {
673       EnsureDest(E->getType());
674       return Visit(E->getSubExpr());
675     }
676
677     // fallthrough
678
679   case CK_NoOp:
680   case CK_UserDefinedConversion:
681   case CK_ConstructorConversion:
682     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
683                                                    E->getType()) &&
684            "Implicit cast types must be compatible");
685     Visit(E->getSubExpr());
686     break;
687       
688   case CK_LValueBitCast:
689     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
690
691   case CK_Dependent:
692   case CK_BitCast:
693   case CK_ArrayToPointerDecay:
694   case CK_FunctionToPointerDecay:
695   case CK_NullToPointer:
696   case CK_NullToMemberPointer:
697   case CK_BaseToDerivedMemberPointer:
698   case CK_DerivedToBaseMemberPointer:
699   case CK_MemberPointerToBoolean:
700   case CK_ReinterpretMemberPointer:
701   case CK_IntegralToPointer:
702   case CK_PointerToIntegral:
703   case CK_PointerToBoolean:
704   case CK_ToVoid:
705   case CK_VectorSplat:
706   case CK_IntegralCast:
707   case CK_IntegralToBoolean:
708   case CK_IntegralToFloating:
709   case CK_FloatingToIntegral:
710   case CK_FloatingToBoolean:
711   case CK_FloatingCast:
712   case CK_CPointerToObjCPointerCast:
713   case CK_BlockPointerToObjCPointerCast:
714   case CK_AnyPointerToBlockPointerCast:
715   case CK_ObjCObjectLValueCast:
716   case CK_FloatingRealToComplex:
717   case CK_FloatingComplexToReal:
718   case CK_FloatingComplexToBoolean:
719   case CK_FloatingComplexCast:
720   case CK_FloatingComplexToIntegralComplex:
721   case CK_IntegralRealToComplex:
722   case CK_IntegralComplexToReal:
723   case CK_IntegralComplexToBoolean:
724   case CK_IntegralComplexCast:
725   case CK_IntegralComplexToFloatingComplex:
726   case CK_ARCProduceObject:
727   case CK_ARCConsumeObject:
728   case CK_ARCReclaimReturnedObject:
729   case CK_ARCExtendBlockObject:
730   case CK_CopyAndAutoreleaseBlockObject:
731   case CK_BuiltinFnToFnPtr:
732   case CK_ZeroToOCLEvent:
733   case CK_AddressSpaceConversion:
734     llvm_unreachable("cast kind invalid for aggregate types");
735   }
736 }
737
738 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
739   if (E->getCallReturnType()->isReferenceType()) {
740     EmitAggLoadOfLValue(E);
741     return;
742   }
743
744   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
745   EmitMoveFromReturnSlot(E, RV);
746 }
747
748 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
749   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
750   EmitMoveFromReturnSlot(E, RV);
751 }
752
753 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
754   CGF.EmitIgnoredExpr(E->getLHS());
755   Visit(E->getRHS());
756 }
757
758 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
759   CodeGenFunction::StmtExprEvaluation eval(CGF);
760   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
761 }
762
763 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
764   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
765     VisitPointerToDataMemberBinaryOperator(E);
766   else
767     CGF.ErrorUnsupported(E, "aggregate binary expression");
768 }
769
770 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
771                                                     const BinaryOperator *E) {
772   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
773   EmitFinalDestCopy(E->getType(), LV);
774 }
775
776 /// Is the value of the given expression possibly a reference to or
777 /// into a __block variable?
778 static bool isBlockVarRef(const Expr *E) {
779   // Make sure we look through parens.
780   E = E->IgnoreParens();
781
782   // Check for a direct reference to a __block variable.
783   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
784     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
785     return (var && var->hasAttr<BlocksAttr>());
786   }
787
788   // More complicated stuff.
789
790   // Binary operators.
791   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
792     // For an assignment or pointer-to-member operation, just care
793     // about the LHS.
794     if (op->isAssignmentOp() || op->isPtrMemOp())
795       return isBlockVarRef(op->getLHS());
796
797     // For a comma, just care about the RHS.
798     if (op->getOpcode() == BO_Comma)
799       return isBlockVarRef(op->getRHS());
800
801     // FIXME: pointer arithmetic?
802     return false;
803
804   // Check both sides of a conditional operator.
805   } else if (const AbstractConditionalOperator *op
806                = dyn_cast<AbstractConditionalOperator>(E)) {
807     return isBlockVarRef(op->getTrueExpr())
808         || isBlockVarRef(op->getFalseExpr());
809
810   // OVEs are required to support BinaryConditionalOperators.
811   } else if (const OpaqueValueExpr *op
812                = dyn_cast<OpaqueValueExpr>(E)) {
813     if (const Expr *src = op->getSourceExpr())
814       return isBlockVarRef(src);
815
816   // Casts are necessary to get things like (*(int*)&var) = foo().
817   // We don't really care about the kind of cast here, except
818   // we don't want to look through l2r casts, because it's okay
819   // to get the *value* in a __block variable.
820   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
821     if (cast->getCastKind() == CK_LValueToRValue)
822       return false;
823     return isBlockVarRef(cast->getSubExpr());
824
825   // Handle unary operators.  Again, just aggressively look through
826   // it, ignoring the operation.
827   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
828     return isBlockVarRef(uop->getSubExpr());
829
830   // Look into the base of a field access.
831   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
832     return isBlockVarRef(mem->getBase());
833
834   // Look into the base of a subscript.
835   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
836     return isBlockVarRef(sub->getBase());
837   }
838
839   return false;
840 }
841
842 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
843   // For an assignment to work, the value on the right has
844   // to be compatible with the value on the left.
845   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
846                                                  E->getRHS()->getType())
847          && "Invalid assignment");
848
849   // If the LHS might be a __block variable, and the RHS can
850   // potentially cause a block copy, we need to evaluate the RHS first
851   // so that the assignment goes the right place.
852   // This is pretty semantically fragile.
853   if (isBlockVarRef(E->getLHS()) &&
854       E->getRHS()->HasSideEffects(CGF.getContext())) {
855     // Ensure that we have a destination, and evaluate the RHS into that.
856     EnsureDest(E->getRHS()->getType());
857     Visit(E->getRHS());
858
859     // Now emit the LHS and copy into it.
860     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
861
862     // That copy is an atomic copy if the LHS is atomic.
863     if (LHS.getType()->isAtomicType()) {
864       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
865       return;
866     }
867
868     EmitCopy(E->getLHS()->getType(),
869              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
870                                      needsGC(E->getLHS()->getType()),
871                                      AggValueSlot::IsAliased),
872              Dest);
873     return;
874   }
875   
876   LValue LHS = CGF.EmitLValue(E->getLHS());
877
878   // If we have an atomic type, evaluate into the destination and then
879   // do an atomic copy.
880   if (LHS.getType()->isAtomicType()) {
881     EnsureDest(E->getRHS()->getType());
882     Visit(E->getRHS());
883     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
884     return;
885   }
886
887   // Codegen the RHS so that it stores directly into the LHS.
888   AggValueSlot LHSSlot =
889     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 
890                             needsGC(E->getLHS()->getType()),
891                             AggValueSlot::IsAliased);
892   // A non-volatile aggregate destination might have volatile member.
893   if (!LHSSlot.isVolatile() &&
894       CGF.hasVolatileMember(E->getLHS()->getType()))
895     LHSSlot.setVolatile(true);
896       
897   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
898
899   // Copy into the destination if the assignment isn't ignored.
900   EmitFinalDestCopy(E->getType(), LHS);
901 }
902
903 void AggExprEmitter::
904 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
905   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
906   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
907   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
908
909   // Bind the common expression if necessary.
910   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
911
912   RegionCounter Cnt = CGF.getPGORegionCounter(E);
913   CodeGenFunction::ConditionalEvaluation eval(CGF);
914   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
915
916   // Save whether the destination's lifetime is externally managed.
917   bool isExternallyDestructed = Dest.isExternallyDestructed();
918
919   eval.begin(CGF);
920   CGF.EmitBlock(LHSBlock);
921   Cnt.beginRegion(Builder);
922   Visit(E->getTrueExpr());
923   eval.end(CGF);
924
925   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
926   CGF.Builder.CreateBr(ContBlock);
927
928   // If the result of an agg expression is unused, then the emission
929   // of the LHS might need to create a destination slot.  That's fine
930   // with us, and we can safely emit the RHS into the same slot, but
931   // we shouldn't claim that it's already being destructed.
932   Dest.setExternallyDestructed(isExternallyDestructed);
933
934   eval.begin(CGF);
935   CGF.EmitBlock(RHSBlock);
936   Visit(E->getFalseExpr());
937   eval.end(CGF);
938
939   CGF.EmitBlock(ContBlock);
940 }
941
942 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
943   Visit(CE->getChosenSubExpr());
944 }
945
946 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
947   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
948   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
949
950   if (!ArgPtr) {
951     // If EmitVAArg fails, we fall back to the LLVM instruction.
952     llvm::Value *Val =
953         Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType()));
954     if (!Dest.isIgnored())
955       Builder.CreateStore(Val, Dest.getAddr());
956     return;
957   }
958
959   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
960 }
961
962 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
963   // Ensure that we have a slot, but if we already do, remember
964   // whether it was externally destructed.
965   bool wasExternallyDestructed = Dest.isExternallyDestructed();
966   EnsureDest(E->getType());
967
968   // We're going to push a destructor if there isn't already one.
969   Dest.setExternallyDestructed();
970
971   Visit(E->getSubExpr());
972
973   // Push that destructor we promised.
974   if (!wasExternallyDestructed)
975     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
976 }
977
978 void
979 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
980   AggValueSlot Slot = EnsureSlot(E->getType());
981   CGF.EmitCXXConstructExpr(E, Slot);
982 }
983
984 void
985 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
986   AggValueSlot Slot = EnsureSlot(E->getType());
987   CGF.EmitLambdaExpr(E, Slot);
988 }
989
990 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
991   CGF.enterFullExpression(E);
992   CodeGenFunction::RunCleanupsScope cleanups(CGF);
993   Visit(E->getSubExpr());
994 }
995
996 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
997   QualType T = E->getType();
998   AggValueSlot Slot = EnsureSlot(T);
999   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1000 }
1001
1002 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1003   QualType T = E->getType();
1004   AggValueSlot Slot = EnsureSlot(T);
1005   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1006 }
1007
1008 /// isSimpleZero - If emitting this value will obviously just cause a store of
1009 /// zero to memory, return true.  This can return false if uncertain, so it just
1010 /// handles simple cases.
1011 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1012   E = E->IgnoreParens();
1013
1014   // 0
1015   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1016     return IL->getValue() == 0;
1017   // +0.0
1018   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1019     return FL->getValue().isPosZero();
1020   // int()
1021   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1022       CGF.getTypes().isZeroInitializable(E->getType()))
1023     return true;
1024   // (int*)0 - Null pointer expressions.
1025   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1026     return ICE->getCastKind() == CK_NullToPointer;
1027   // '\0'
1028   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1029     return CL->getValue() == 0;
1030   
1031   // Otherwise, hard case: conservatively return false.
1032   return false;
1033 }
1034
1035
1036 void 
1037 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1038   QualType type = LV.getType();
1039   // FIXME: Ignore result?
1040   // FIXME: Are initializers affected by volatile?
1041   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1042     // Storing "i32 0" to a zero'd memory location is a noop.
1043     return;
1044   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1045     return EmitNullInitializationToLValue(LV);
1046   } else if (type->isReferenceType()) {
1047     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1048     return CGF.EmitStoreThroughLValue(RV, LV);
1049   }
1050   
1051   switch (CGF.getEvaluationKind(type)) {
1052   case TEK_Complex:
1053     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1054     return;
1055   case TEK_Aggregate:
1056     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1057                                                AggValueSlot::IsDestructed,
1058                                       AggValueSlot::DoesNotNeedGCBarriers,
1059                                                AggValueSlot::IsNotAliased,
1060                                                Dest.isZeroed()));
1061     return;
1062   case TEK_Scalar:
1063     if (LV.isSimple()) {
1064       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1065     } else {
1066       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1067     }
1068     return;
1069   }
1070   llvm_unreachable("bad evaluation kind");
1071 }
1072
1073 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1074   QualType type = lv.getType();
1075
1076   // If the destination slot is already zeroed out before the aggregate is
1077   // copied into it, we don't have to emit any zeros here.
1078   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1079     return;
1080   
1081   if (CGF.hasScalarEvaluationKind(type)) {
1082     // For non-aggregates, we can store the appropriate null constant.
1083     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1084     // Note that the following is not equivalent to
1085     // EmitStoreThroughBitfieldLValue for ARC types.
1086     if (lv.isBitField()) {
1087       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1088     } else {
1089       assert(lv.isSimple());
1090       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1091     }
1092   } else {
1093     // There's a potential optimization opportunity in combining
1094     // memsets; that would be easy for arrays, but relatively
1095     // difficult for structures with the current code.
1096     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1097   }
1098 }
1099
1100 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1101 #if 0
1102   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1103   // (Length of globals? Chunks of zeroed-out space?).
1104   //
1105   // If we can, prefer a copy from a global; this is a lot less code for long
1106   // globals, and it's easier for the current optimizers to analyze.
1107   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1108     llvm::GlobalVariable* GV =
1109     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1110                              llvm::GlobalValue::InternalLinkage, C, "");
1111     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1112     return;
1113   }
1114 #endif
1115   if (E->hadArrayRangeDesignator())
1116     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1117
1118   AggValueSlot Dest = EnsureSlot(E->getType());
1119
1120   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
1121                                      Dest.getAlignment());
1122
1123   // Handle initialization of an array.
1124   if (E->getType()->isArrayType()) {
1125     if (E->isStringLiteralInit())
1126       return Visit(E->getInit(0));
1127
1128     QualType elementType =
1129         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1130
1131     llvm::PointerType *APType =
1132       cast<llvm::PointerType>(Dest.getAddr()->getType());
1133     llvm::ArrayType *AType =
1134       cast<llvm::ArrayType>(APType->getElementType());
1135
1136     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
1137     return;
1138   }
1139
1140   if (E->getType()->isAtomicType()) {
1141     // An _Atomic(T) object can be list-initialized from an expression
1142     // of the same type.
1143     assert(E->getNumInits() == 1 &&
1144            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1145                                                    E->getType()) &&
1146            "unexpected list initialization for atomic object");
1147     return Visit(E->getInit(0));
1148   }
1149
1150   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1151
1152   // Do struct initialization; this code just sets each individual member
1153   // to the approprate value.  This makes bitfield support automatic;
1154   // the disadvantage is that the generated code is more difficult for
1155   // the optimizer, especially with bitfields.
1156   unsigned NumInitElements = E->getNumInits();
1157   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1158
1159   // Prepare a 'this' for CXXDefaultInitExprs.
1160   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr());
1161
1162   if (record->isUnion()) {
1163     // Only initialize one field of a union. The field itself is
1164     // specified by the initializer list.
1165     if (!E->getInitializedFieldInUnion()) {
1166       // Empty union; we have nothing to do.
1167
1168 #ifndef NDEBUG
1169       // Make sure that it's really an empty and not a failure of
1170       // semantic analysis.
1171       for (const auto *Field : record->fields())
1172         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1173 #endif
1174       return;
1175     }
1176
1177     // FIXME: volatility
1178     FieldDecl *Field = E->getInitializedFieldInUnion();
1179
1180     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1181     if (NumInitElements) {
1182       // Store the initializer into the field
1183       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1184     } else {
1185       // Default-initialize to null.
1186       EmitNullInitializationToLValue(FieldLoc);
1187     }
1188
1189     return;
1190   }
1191
1192   // We'll need to enter cleanup scopes in case any of the member
1193   // initializers throw an exception.
1194   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1195   llvm::Instruction *cleanupDominator = nullptr;
1196
1197   // Here we iterate over the fields; this makes it simpler to both
1198   // default-initialize fields and skip over unnamed fields.
1199   unsigned curInitIndex = 0;
1200   for (const auto *field : record->fields()) {
1201     // We're done once we hit the flexible array member.
1202     if (field->getType()->isIncompleteArrayType())
1203       break;
1204
1205     // Always skip anonymous bitfields.
1206     if (field->isUnnamedBitfield())
1207       continue;
1208
1209     // We're done if we reach the end of the explicit initializers, we
1210     // have a zeroed object, and the rest of the fields are
1211     // zero-initializable.
1212     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1213         CGF.getTypes().isZeroInitializable(E->getType()))
1214       break;
1215     
1216
1217     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1218     // We never generate write-barries for initialized fields.
1219     LV.setNonGC(true);
1220     
1221     if (curInitIndex < NumInitElements) {
1222       // Store the initializer into the field.
1223       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1224     } else {
1225       // We're out of initalizers; default-initialize to null
1226       EmitNullInitializationToLValue(LV);
1227     }
1228
1229     // Push a destructor if necessary.
1230     // FIXME: if we have an array of structures, all explicitly
1231     // initialized, we can end up pushing a linear number of cleanups.
1232     bool pushedCleanup = false;
1233     if (QualType::DestructionKind dtorKind
1234           = field->getType().isDestructedType()) {
1235       assert(LV.isSimple());
1236       if (CGF.needsEHCleanup(dtorKind)) {
1237         if (!cleanupDominator)
1238           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1239
1240         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1241                         CGF.getDestroyer(dtorKind), false);
1242         cleanups.push_back(CGF.EHStack.stable_begin());
1243         pushedCleanup = true;
1244       }
1245     }
1246     
1247     // If the GEP didn't get used because of a dead zero init or something
1248     // else, clean it up for -O0 builds and general tidiness.
1249     if (!pushedCleanup && LV.isSimple()) 
1250       if (llvm::GetElementPtrInst *GEP =
1251             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1252         if (GEP->use_empty())
1253           GEP->eraseFromParent();
1254   }
1255
1256   // Deactivate all the partial cleanups in reverse order, which
1257   // generally means popping them.
1258   for (unsigned i = cleanups.size(); i != 0; --i)
1259     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1260
1261   // Destroy the placeholder if we made one.
1262   if (cleanupDominator)
1263     cleanupDominator->eraseFromParent();
1264 }
1265
1266 //===----------------------------------------------------------------------===//
1267 //                        Entry Points into this File
1268 //===----------------------------------------------------------------------===//
1269
1270 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1271 /// non-zero bytes that will be stored when outputting the initializer for the
1272 /// specified initializer expression.
1273 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1274   E = E->IgnoreParens();
1275
1276   // 0 and 0.0 won't require any non-zero stores!
1277   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1278
1279   // If this is an initlist expr, sum up the size of sizes of the (present)
1280   // elements.  If this is something weird, assume the whole thing is non-zero.
1281   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1282   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1283     return CGF.getContext().getTypeSizeInChars(E->getType());
1284   
1285   // InitListExprs for structs have to be handled carefully.  If there are
1286   // reference members, we need to consider the size of the reference, not the
1287   // referencee.  InitListExprs for unions and arrays can't have references.
1288   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1289     if (!RT->isUnionType()) {
1290       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1291       CharUnits NumNonZeroBytes = CharUnits::Zero();
1292       
1293       unsigned ILEElement = 0;
1294       for (const auto *Field : SD->fields()) {
1295         // We're done once we hit the flexible array member or run out of
1296         // InitListExpr elements.
1297         if (Field->getType()->isIncompleteArrayType() ||
1298             ILEElement == ILE->getNumInits())
1299           break;
1300         if (Field->isUnnamedBitfield())
1301           continue;
1302
1303         const Expr *E = ILE->getInit(ILEElement++);
1304         
1305         // Reference values are always non-null and have the width of a pointer.
1306         if (Field->getType()->isReferenceType())
1307           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1308               CGF.getTarget().getPointerWidth(0));
1309         else
1310           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1311       }
1312       
1313       return NumNonZeroBytes;
1314     }
1315   }
1316   
1317   
1318   CharUnits NumNonZeroBytes = CharUnits::Zero();
1319   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1320     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1321   return NumNonZeroBytes;
1322 }
1323
1324 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1325 /// zeros in it, emit a memset and avoid storing the individual zeros.
1326 ///
1327 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1328                                      CodeGenFunction &CGF) {
1329   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1330   // volatile stores.
1331   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == nullptr)
1332     return;
1333
1334   // C++ objects with a user-declared constructor don't need zero'ing.
1335   if (CGF.getLangOpts().CPlusPlus)
1336     if (const RecordType *RT = CGF.getContext()
1337                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1338       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1339       if (RD->hasUserDeclaredConstructor())
1340         return;
1341     }
1342
1343   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1344   std::pair<CharUnits, CharUnits> TypeInfo =
1345     CGF.getContext().getTypeInfoInChars(E->getType());
1346   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1347     return;
1348
1349   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1350   // we prefer to emit memset + individual stores for the rest.
1351   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1352   if (NumNonZeroBytes*4 > TypeInfo.first)
1353     return;
1354   
1355   // Okay, it seems like a good idea to use an initial memset, emit the call.
1356   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1357   CharUnits Align = TypeInfo.second;
1358
1359   llvm::Value *Loc = Slot.getAddr();
1360   
1361   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1362   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 
1363                            Align.getQuantity(), false);
1364   
1365   // Tell the AggExprEmitter that the slot is known zero.
1366   Slot.setZeroed();
1367 }
1368
1369
1370
1371
1372 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1373 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1374 /// the value of the aggregate expression is not needed.  If VolatileDest is
1375 /// true, DestPtr cannot be 0.
1376 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1377   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1378          "Invalid aggregate expression to emit");
1379   assert((Slot.getAddr() != nullptr || Slot.isIgnored()) &&
1380          "slot has bits but no address");
1381
1382   // Optimize the slot if possible.
1383   CheckAggExprForMemSetUse(Slot, E, *this);
1384  
1385   AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
1386 }
1387
1388 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1389   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1390   llvm::Value *Temp = CreateMemTemp(E->getType());
1391   LValue LV = MakeAddrLValue(Temp, E->getType());
1392   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1393                                          AggValueSlot::DoesNotNeedGCBarriers,
1394                                          AggValueSlot::IsNotAliased));
1395   return LV;
1396 }
1397
1398 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1399                                         llvm::Value *SrcPtr, QualType Ty,
1400                                         bool isVolatile,
1401                                         CharUnits alignment,
1402                                         bool isAssignment) {
1403   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1404
1405   if (getLangOpts().CPlusPlus) {
1406     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1407       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1408       assert((Record->hasTrivialCopyConstructor() || 
1409               Record->hasTrivialCopyAssignment() ||
1410               Record->hasTrivialMoveConstructor() ||
1411               Record->hasTrivialMoveAssignment()) &&
1412              "Trying to aggregate-copy a type without a trivial copy/move "
1413              "constructor or assignment operator");
1414       // Ignore empty classes in C++.
1415       if (Record->isEmpty())
1416         return;
1417     }
1418   }
1419   
1420   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1421   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1422   // read from another object that overlaps in anyway the storage of the first
1423   // object, then the overlap shall be exact and the two objects shall have
1424   // qualified or unqualified versions of a compatible type."
1425   //
1426   // memcpy is not defined if the source and destination pointers are exactly
1427   // equal, but other compilers do this optimization, and almost every memcpy
1428   // implementation handles this case safely.  If there is a libc that does not
1429   // safely handle this, we can add a target hook.
1430
1431   // Get data size and alignment info for this aggregate. If this is an
1432   // assignment don't copy the tail padding. Otherwise copying it is fine.
1433   std::pair<CharUnits, CharUnits> TypeInfo;
1434   if (isAssignment)
1435     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1436   else
1437     TypeInfo = getContext().getTypeInfoInChars(Ty);
1438
1439   if (alignment.isZero())
1440     alignment = TypeInfo.second;
1441
1442   // FIXME: Handle variable sized types.
1443
1444   // FIXME: If we have a volatile struct, the optimizer can remove what might
1445   // appear to be `extra' memory ops:
1446   //
1447   // volatile struct { int i; } a, b;
1448   //
1449   // int main() {
1450   //   a = b;
1451   //   a = b;
1452   // }
1453   //
1454   // we need to use a different call here.  We use isVolatile to indicate when
1455   // either the source or the destination is volatile.
1456
1457   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1458   llvm::Type *DBP =
1459     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1460   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1461
1462   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1463   llvm::Type *SBP =
1464     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1465   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1466
1467   // Don't do any of the memmove_collectable tests if GC isn't set.
1468   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1469     // fall through
1470   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1471     RecordDecl *Record = RecordTy->getDecl();
1472     if (Record->hasObjectMember()) {
1473       CharUnits size = TypeInfo.first;
1474       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1475       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1476       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
1477                                                     SizeVal);
1478       return;
1479     }
1480   } else if (Ty->isArrayType()) {
1481     QualType BaseType = getContext().getBaseElementType(Ty);
1482     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1483       if (RecordTy->getDecl()->hasObjectMember()) {
1484         CharUnits size = TypeInfo.first;
1485         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1486         llvm::Value *SizeVal = 
1487           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1488         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
1489                                                       SizeVal);
1490         return;
1491       }
1492     }
1493   }
1494
1495   // Determine the metadata to describe the position of any padding in this
1496   // memcpy, as well as the TBAA tags for the members of the struct, in case
1497   // the optimizer wishes to expand it in to scalar memory operations.
1498   llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
1499
1500   Builder.CreateMemCpy(DestPtr, SrcPtr,
1501                        llvm::ConstantInt::get(IntPtrTy, 
1502                                               TypeInfo.first.getQuantity()),
1503                        alignment.getQuantity(), isVolatile,
1504                        /*TBAATag=*/nullptr, TBAAStructTag);
1505 }