]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
Merge clang trunk r238337 from ^/vendor/clang/dist, resolve conflicts,
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprCXX.cpp
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23
24 using namespace clang;
25 using namespace CodeGen;
26
27 static RequiredArgs commonEmitCXXMemberOrOperatorCall(
28     CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee,
29     ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
30     QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) {
31   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
32          isa<CXXOperatorCallExpr>(CE));
33   assert(MD->isInstance() &&
34          "Trying to emit a member or operator call expr on a static method!");
35
36   // C++11 [class.mfct.non-static]p2:
37   //   If a non-static member function of a class X is called for an object that
38   //   is not of type X, or of a type derived from X, the behavior is undefined.
39   SourceLocation CallLoc;
40   if (CE)
41     CallLoc = CE->getExprLoc();
42   CGF.EmitTypeCheck(
43       isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
44                                   : CodeGenFunction::TCK_MemberCall,
45       CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
46
47   // Push the this ptr.
48   Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
49
50   // If there is an implicit parameter (e.g. VTT), emit it.
51   if (ImplicitParam) {
52     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53   }
54
55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57
58   // And the rest of the call args.
59   if (CE) {
60     // Special case: skip first argument of CXXOperatorCall (it is "this").
61     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
62     CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(),
63                      CE->getDirectCallee());
64   } else {
65     assert(
66         FPT->getNumParams() == 0 &&
67         "No CallExpr specified for function with non-zero number of arguments");
68   }
69   return required;
70 }
71
72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
73     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
74     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
75     const CallExpr *CE) {
76   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
77   CallArgList Args;
78   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
79       *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE,
80       Args);
81   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
82                   Callee, ReturnValue, Args, MD);
83 }
84
85 RValue CodeGenFunction::EmitCXXStructorCall(
86     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
87     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
88     const CallExpr *CE, StructorType Type) {
89   CallArgList Args;
90   commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This,
91                                     ImplicitParam, ImplicitParamTy, CE, Args);
92   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type),
93                   Callee, ReturnValue, Args, MD);
94 }
95
96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
97   QualType T = E->getType();
98   if (const PointerType *PTy = T->getAs<PointerType>())
99     T = PTy->getPointeeType();
100   const RecordType *Ty = T->castAs<RecordType>();
101   return cast<CXXRecordDecl>(Ty->getDecl());
102 }
103
104 // Note: This function also emit constructor calls to support a MSVC
105 // extensions allowing explicit constructor function call.
106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
107                                               ReturnValueSlot ReturnValue) {
108   const Expr *callee = CE->getCallee()->IgnoreParens();
109
110   if (isa<BinaryOperator>(callee))
111     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
112
113   const MemberExpr *ME = cast<MemberExpr>(callee);
114   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
115
116   if (MD->isStatic()) {
117     // The method is static, emit it as we would a regular call.
118     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
119     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
120                     ReturnValue);
121   }
122
123   bool HasQualifier = ME->hasQualifier();
124   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
125   bool IsArrow = ME->isArrow();
126   const Expr *Base = ME->getBase();
127
128   return EmitCXXMemberOrOperatorMemberCallExpr(
129       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
130 }
131
132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
133     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
134     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
135     const Expr *Base) {
136   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
137
138   // Compute the object pointer.
139   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
140
141   const CXXMethodDecl *DevirtualizedMethod = nullptr;
142   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
143     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
144     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
145     assert(DevirtualizedMethod);
146     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
147     const Expr *Inner = Base->ignoreParenBaseCasts();
148     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
149         MD->getReturnType().getCanonicalType())
150       // If the return types are not the same, this might be a case where more
151       // code needs to run to compensate for it. For example, the derived
152       // method might return a type that inherits form from the return
153       // type of MD and has a prefix.
154       // For now we just avoid devirtualizing these covariant cases.
155       DevirtualizedMethod = nullptr;
156     else if (getCXXRecord(Inner) == DevirtualizedClass)
157       // If the class of the Inner expression is where the dynamic method
158       // is defined, build the this pointer from it.
159       Base = Inner;
160     else if (getCXXRecord(Base) != DevirtualizedClass) {
161       // If the method is defined in a class that is not the best dynamic
162       // one or the one of the full expression, we would have to build
163       // a derived-to-base cast to compute the correct this pointer, but
164       // we don't have support for that yet, so do a virtual call.
165       DevirtualizedMethod = nullptr;
166     }
167   }
168
169   llvm::Value *This;
170   if (IsArrow)
171     This = EmitScalarExpr(Base);
172   else
173     This = EmitLValue(Base).getAddress();
174
175
176   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
177     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
178     if (isa<CXXConstructorDecl>(MD) && 
179         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
180       return RValue::get(nullptr);
181
182     if (!MD->getParent()->mayInsertExtraPadding()) {
183       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
184         // We don't like to generate the trivial copy/move assignment operator
185         // when it isn't necessary; just produce the proper effect here.
186         // Special case: skip first argument of CXXOperatorCall (it is "this").
187         unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
188         llvm::Value *RHS =
189             EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
190         EmitAggregateAssign(This, RHS, CE->getType());
191         return RValue::get(This);
192       }
193
194       if (isa<CXXConstructorDecl>(MD) &&
195           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
196         // Trivial move and copy ctor are the same.
197         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
198         llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
199         EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
200         return RValue::get(This);
201       }
202       llvm_unreachable("unknown trivial member function");
203     }
204   }
205
206   // Compute the function type we're calling.
207   const CXXMethodDecl *CalleeDecl =
208       DevirtualizedMethod ? DevirtualizedMethod : MD;
209   const CGFunctionInfo *FInfo = nullptr;
210   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
211     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
212         Dtor, StructorType::Complete);
213   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
214     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
215         Ctor, StructorType::Complete);
216   else
217     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
218
219   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
220
221   // C++ [class.virtual]p12:
222   //   Explicit qualification with the scope operator (5.1) suppresses the
223   //   virtual call mechanism.
224   //
225   // We also don't emit a virtual call if the base expression has a record type
226   // because then we know what the type is.
227   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
228   llvm::Value *Callee;
229
230   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
231     assert(CE->arg_begin() == CE->arg_end() &&
232            "Destructor shouldn't have explicit parameters");
233     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
234     if (UseVirtualCall) {
235       CGM.getCXXABI().EmitVirtualDestructorCall(
236           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
237     } else {
238       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
239         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
240       else if (!DevirtualizedMethod)
241         Callee =
242             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
243       else {
244         const CXXDestructorDecl *DDtor =
245           cast<CXXDestructorDecl>(DevirtualizedMethod);
246         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
247       }
248       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
249                                   /*ImplicitParam=*/nullptr, QualType(), CE);
250     }
251     return RValue::get(nullptr);
252   }
253   
254   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
255     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
256   } else if (UseVirtualCall) {
257     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
258   } else {
259     if (SanOpts.has(SanitizerKind::CFINVCall) &&
260         MD->getParent()->isDynamicClass()) {
261       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy);
262       EmitVTablePtrCheckForCall(MD, VTable);
263     }
264
265     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
266       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
267     else if (!DevirtualizedMethod)
268       Callee = CGM.GetAddrOfFunction(MD, Ty);
269     else {
270       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
271     }
272   }
273
274   if (MD->isVirtual()) {
275     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
276         *this, MD, This, UseVirtualCall);
277   }
278
279   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
280                                      /*ImplicitParam=*/nullptr, QualType(), CE);
281 }
282
283 RValue
284 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
285                                               ReturnValueSlot ReturnValue) {
286   const BinaryOperator *BO =
287       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
288   const Expr *BaseExpr = BO->getLHS();
289   const Expr *MemFnExpr = BO->getRHS();
290   
291   const MemberPointerType *MPT = 
292     MemFnExpr->getType()->castAs<MemberPointerType>();
293
294   const FunctionProtoType *FPT = 
295     MPT->getPointeeType()->castAs<FunctionProtoType>();
296   const CXXRecordDecl *RD = 
297     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
298
299   // Get the member function pointer.
300   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
301
302   // Emit the 'this' pointer.
303   llvm::Value *This;
304   
305   if (BO->getOpcode() == BO_PtrMemI)
306     This = EmitScalarExpr(BaseExpr);
307   else 
308     This = EmitLValue(BaseExpr).getAddress();
309
310   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
311                 QualType(MPT->getClass(), 0));
312
313   // Ask the ABI to load the callee.  Note that This is modified.
314   llvm::Value *Callee =
315     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
316   
317   CallArgList Args;
318
319   QualType ThisType = 
320     getContext().getPointerType(getContext().getTagDeclType(RD));
321
322   // Push the this ptr.
323   Args.add(RValue::get(This), ThisType);
324
325   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
326   
327   // And the rest of the call args
328   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee());
329   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
330                   Callee, ReturnValue, Args);
331 }
332
333 RValue
334 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
335                                                const CXXMethodDecl *MD,
336                                                ReturnValueSlot ReturnValue) {
337   assert(MD->isInstance() &&
338          "Trying to emit a member call expr on a static method!");
339   return EmitCXXMemberOrOperatorMemberCallExpr(
340       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
341       /*IsArrow=*/false, E->getArg(0));
342 }
343
344 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
345                                                ReturnValueSlot ReturnValue) {
346   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
347 }
348
349 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
350                                             llvm::Value *DestPtr,
351                                             const CXXRecordDecl *Base) {
352   if (Base->isEmpty())
353     return;
354
355   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
356
357   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
358   CharUnits Size = Layout.getNonVirtualSize();
359   CharUnits Align = Layout.getNonVirtualAlignment();
360
361   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
362
363   // If the type contains a pointer to data member we can't memset it to zero.
364   // Instead, create a null constant and copy it to the destination.
365   // TODO: there are other patterns besides zero that we can usefully memset,
366   // like -1, which happens to be the pattern used by member-pointers.
367   // TODO: isZeroInitializable can be over-conservative in the case where a
368   // virtual base contains a member pointer.
369   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
370     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
371
372     llvm::GlobalVariable *NullVariable = 
373       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
374                                /*isConstant=*/true, 
375                                llvm::GlobalVariable::PrivateLinkage,
376                                NullConstant, Twine());
377     NullVariable->setAlignment(Align.getQuantity());
378     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
379
380     // Get and call the appropriate llvm.memcpy overload.
381     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
382     return;
383   } 
384   
385   // Otherwise, just memset the whole thing to zero.  This is legal
386   // because in LLVM, all default initializers (other than the ones we just
387   // handled above) are guaranteed to have a bit pattern of all zeros.
388   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
389                            Align.getQuantity());
390 }
391
392 void
393 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
394                                       AggValueSlot Dest) {
395   assert(!Dest.isIgnored() && "Must have a destination!");
396   const CXXConstructorDecl *CD = E->getConstructor();
397   
398   // If we require zero initialization before (or instead of) calling the
399   // constructor, as can be the case with a non-user-provided default
400   // constructor, emit the zero initialization now, unless destination is
401   // already zeroed.
402   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
403     switch (E->getConstructionKind()) {
404     case CXXConstructExpr::CK_Delegating:
405     case CXXConstructExpr::CK_Complete:
406       EmitNullInitialization(Dest.getAddr(), E->getType());
407       break;
408     case CXXConstructExpr::CK_VirtualBase:
409     case CXXConstructExpr::CK_NonVirtualBase:
410       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
411       break;
412     }
413   }
414   
415   // If this is a call to a trivial default constructor, do nothing.
416   if (CD->isTrivial() && CD->isDefaultConstructor())
417     return;
418   
419   // Elide the constructor if we're constructing from a temporary.
420   // The temporary check is required because Sema sets this on NRVO
421   // returns.
422   if (getLangOpts().ElideConstructors && E->isElidable()) {
423     assert(getContext().hasSameUnqualifiedType(E->getType(),
424                                                E->getArg(0)->getType()));
425     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
426       EmitAggExpr(E->getArg(0), Dest);
427       return;
428     }
429   }
430   
431   if (const ConstantArrayType *arrayType 
432         = getContext().getAsConstantArrayType(E->getType())) {
433     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
434   } else {
435     CXXCtorType Type = Ctor_Complete;
436     bool ForVirtualBase = false;
437     bool Delegating = false;
438     
439     switch (E->getConstructionKind()) {
440      case CXXConstructExpr::CK_Delegating:
441       // We should be emitting a constructor; GlobalDecl will assert this
442       Type = CurGD.getCtorType();
443       Delegating = true;
444       break;
445
446      case CXXConstructExpr::CK_Complete:
447       Type = Ctor_Complete;
448       break;
449
450      case CXXConstructExpr::CK_VirtualBase:
451       ForVirtualBase = true;
452       // fall-through
453
454      case CXXConstructExpr::CK_NonVirtualBase:
455       Type = Ctor_Base;
456     }
457     
458     // Call the constructor.
459     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
460                            E);
461   }
462 }
463
464 void
465 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 
466                                             llvm::Value *Src,
467                                             const Expr *Exp) {
468   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
469     Exp = E->getSubExpr();
470   assert(isa<CXXConstructExpr>(Exp) && 
471          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
472   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
473   const CXXConstructorDecl *CD = E->getConstructor();
474   RunCleanupsScope Scope(*this);
475   
476   // If we require zero initialization before (or instead of) calling the
477   // constructor, as can be the case with a non-user-provided default
478   // constructor, emit the zero initialization now.
479   // FIXME. Do I still need this for a copy ctor synthesis?
480   if (E->requiresZeroInitialization())
481     EmitNullInitialization(Dest, E->getType());
482   
483   assert(!getContext().getAsConstantArrayType(E->getType())
484          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
485   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
486 }
487
488 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
489                                         const CXXNewExpr *E) {
490   if (!E->isArray())
491     return CharUnits::Zero();
492
493   // No cookie is required if the operator new[] being used is the
494   // reserved placement operator new[].
495   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
496     return CharUnits::Zero();
497
498   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
499 }
500
501 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
502                                         const CXXNewExpr *e,
503                                         unsigned minElements,
504                                         llvm::Value *&numElements,
505                                         llvm::Value *&sizeWithoutCookie) {
506   QualType type = e->getAllocatedType();
507
508   if (!e->isArray()) {
509     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
510     sizeWithoutCookie
511       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
512     return sizeWithoutCookie;
513   }
514
515   // The width of size_t.
516   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
517
518   // Figure out the cookie size.
519   llvm::APInt cookieSize(sizeWidth,
520                          CalculateCookiePadding(CGF, e).getQuantity());
521
522   // Emit the array size expression.
523   // We multiply the size of all dimensions for NumElements.
524   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
525   numElements = CGF.EmitScalarExpr(e->getArraySize());
526   assert(isa<llvm::IntegerType>(numElements->getType()));
527
528   // The number of elements can be have an arbitrary integer type;
529   // essentially, we need to multiply it by a constant factor, add a
530   // cookie size, and verify that the result is representable as a
531   // size_t.  That's just a gloss, though, and it's wrong in one
532   // important way: if the count is negative, it's an error even if
533   // the cookie size would bring the total size >= 0.
534   bool isSigned 
535     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
536   llvm::IntegerType *numElementsType
537     = cast<llvm::IntegerType>(numElements->getType());
538   unsigned numElementsWidth = numElementsType->getBitWidth();
539
540   // Compute the constant factor.
541   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
542   while (const ConstantArrayType *CAT
543              = CGF.getContext().getAsConstantArrayType(type)) {
544     type = CAT->getElementType();
545     arraySizeMultiplier *= CAT->getSize();
546   }
547
548   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
549   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
550   typeSizeMultiplier *= arraySizeMultiplier;
551
552   // This will be a size_t.
553   llvm::Value *size;
554   
555   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
556   // Don't bloat the -O0 code.
557   if (llvm::ConstantInt *numElementsC =
558         dyn_cast<llvm::ConstantInt>(numElements)) {
559     const llvm::APInt &count = numElementsC->getValue();
560
561     bool hasAnyOverflow = false;
562
563     // If 'count' was a negative number, it's an overflow.
564     if (isSigned && count.isNegative())
565       hasAnyOverflow = true;
566
567     // We want to do all this arithmetic in size_t.  If numElements is
568     // wider than that, check whether it's already too big, and if so,
569     // overflow.
570     else if (numElementsWidth > sizeWidth &&
571              numElementsWidth - sizeWidth > count.countLeadingZeros())
572       hasAnyOverflow = true;
573
574     // Okay, compute a count at the right width.
575     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
576
577     // If there is a brace-initializer, we cannot allocate fewer elements than
578     // there are initializers. If we do, that's treated like an overflow.
579     if (adjustedCount.ult(minElements))
580       hasAnyOverflow = true;
581
582     // Scale numElements by that.  This might overflow, but we don't
583     // care because it only overflows if allocationSize does, too, and
584     // if that overflows then we shouldn't use this.
585     numElements = llvm::ConstantInt::get(CGF.SizeTy,
586                                          adjustedCount * arraySizeMultiplier);
587
588     // Compute the size before cookie, and track whether it overflowed.
589     bool overflow;
590     llvm::APInt allocationSize
591       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
592     hasAnyOverflow |= overflow;
593
594     // Add in the cookie, and check whether it's overflowed.
595     if (cookieSize != 0) {
596       // Save the current size without a cookie.  This shouldn't be
597       // used if there was overflow.
598       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
599
600       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
601       hasAnyOverflow |= overflow;
602     }
603
604     // On overflow, produce a -1 so operator new will fail.
605     if (hasAnyOverflow) {
606       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
607     } else {
608       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
609     }
610
611   // Otherwise, we might need to use the overflow intrinsics.
612   } else {
613     // There are up to five conditions we need to test for:
614     // 1) if isSigned, we need to check whether numElements is negative;
615     // 2) if numElementsWidth > sizeWidth, we need to check whether
616     //   numElements is larger than something representable in size_t;
617     // 3) if minElements > 0, we need to check whether numElements is smaller
618     //    than that.
619     // 4) we need to compute
620     //      sizeWithoutCookie := numElements * typeSizeMultiplier
621     //    and check whether it overflows; and
622     // 5) if we need a cookie, we need to compute
623     //      size := sizeWithoutCookie + cookieSize
624     //    and check whether it overflows.
625
626     llvm::Value *hasOverflow = nullptr;
627
628     // If numElementsWidth > sizeWidth, then one way or another, we're
629     // going to have to do a comparison for (2), and this happens to
630     // take care of (1), too.
631     if (numElementsWidth > sizeWidth) {
632       llvm::APInt threshold(numElementsWidth, 1);
633       threshold <<= sizeWidth;
634
635       llvm::Value *thresholdV
636         = llvm::ConstantInt::get(numElementsType, threshold);
637
638       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
639       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
640
641     // Otherwise, if we're signed, we want to sext up to size_t.
642     } else if (isSigned) {
643       if (numElementsWidth < sizeWidth)
644         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
645       
646       // If there's a non-1 type size multiplier, then we can do the
647       // signedness check at the same time as we do the multiply
648       // because a negative number times anything will cause an
649       // unsigned overflow.  Otherwise, we have to do it here. But at least
650       // in this case, we can subsume the >= minElements check.
651       if (typeSizeMultiplier == 1)
652         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
653                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
654
655     // Otherwise, zext up to size_t if necessary.
656     } else if (numElementsWidth < sizeWidth) {
657       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
658     }
659
660     assert(numElements->getType() == CGF.SizeTy);
661
662     if (minElements) {
663       // Don't allow allocation of fewer elements than we have initializers.
664       if (!hasOverflow) {
665         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
666                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
667       } else if (numElementsWidth > sizeWidth) {
668         // The other existing overflow subsumes this check.
669         // We do an unsigned comparison, since any signed value < -1 is
670         // taken care of either above or below.
671         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
672                           CGF.Builder.CreateICmpULT(numElements,
673                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
674       }
675     }
676
677     size = numElements;
678
679     // Multiply by the type size if necessary.  This multiplier
680     // includes all the factors for nested arrays.
681     //
682     // This step also causes numElements to be scaled up by the
683     // nested-array factor if necessary.  Overflow on this computation
684     // can be ignored because the result shouldn't be used if
685     // allocation fails.
686     if (typeSizeMultiplier != 1) {
687       llvm::Value *umul_with_overflow
688         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
689
690       llvm::Value *tsmV =
691         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
692       llvm::Value *result =
693           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
694
695       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
696       if (hasOverflow)
697         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
698       else
699         hasOverflow = overflowed;
700
701       size = CGF.Builder.CreateExtractValue(result, 0);
702
703       // Also scale up numElements by the array size multiplier.
704       if (arraySizeMultiplier != 1) {
705         // If the base element type size is 1, then we can re-use the
706         // multiply we just did.
707         if (typeSize.isOne()) {
708           assert(arraySizeMultiplier == typeSizeMultiplier);
709           numElements = size;
710
711         // Otherwise we need a separate multiply.
712         } else {
713           llvm::Value *asmV =
714             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
715           numElements = CGF.Builder.CreateMul(numElements, asmV);
716         }
717       }
718     } else {
719       // numElements doesn't need to be scaled.
720       assert(arraySizeMultiplier == 1);
721     }
722     
723     // Add in the cookie size if necessary.
724     if (cookieSize != 0) {
725       sizeWithoutCookie = size;
726
727       llvm::Value *uadd_with_overflow
728         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
729
730       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
731       llvm::Value *result =
732           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
733
734       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
735       if (hasOverflow)
736         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
737       else
738         hasOverflow = overflowed;
739
740       size = CGF.Builder.CreateExtractValue(result, 0);
741     }
742
743     // If we had any possibility of dynamic overflow, make a select to
744     // overwrite 'size' with an all-ones value, which should cause
745     // operator new to throw.
746     if (hasOverflow)
747       size = CGF.Builder.CreateSelect(hasOverflow,
748                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
749                                       size);
750   }
751
752   if (cookieSize == 0)
753     sizeWithoutCookie = size;
754   else
755     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
756
757   return size;
758 }
759
760 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
761                                     QualType AllocType, llvm::Value *NewPtr) {
762   // FIXME: Refactor with EmitExprAsInit.
763   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
764   switch (CGF.getEvaluationKind(AllocType)) {
765   case TEK_Scalar:
766     CGF.EmitScalarInit(Init, nullptr,
767                        CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false);
768     return;
769   case TEK_Complex:
770     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
771                                                            Alignment),
772                                   /*isInit*/ true);
773     return;
774   case TEK_Aggregate: {
775     AggValueSlot Slot
776       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
777                               AggValueSlot::IsDestructed,
778                               AggValueSlot::DoesNotNeedGCBarriers,
779                               AggValueSlot::IsNotAliased);
780     CGF.EmitAggExpr(Init, Slot);
781     return;
782   }
783   }
784   llvm_unreachable("bad evaluation kind");
785 }
786
787 void CodeGenFunction::EmitNewArrayInitializer(
788     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
789     llvm::Value *BeginPtr, llvm::Value *NumElements,
790     llvm::Value *AllocSizeWithoutCookie) {
791   // If we have a type with trivial initialization and no initializer,
792   // there's nothing to do.
793   if (!E->hasInitializer())
794     return;
795
796   llvm::Value *CurPtr = BeginPtr;
797
798   unsigned InitListElements = 0;
799
800   const Expr *Init = E->getInitializer();
801   llvm::AllocaInst *EndOfInit = nullptr;
802   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
803   EHScopeStack::stable_iterator Cleanup;
804   llvm::Instruction *CleanupDominator = nullptr;
805
806   // If the initializer is an initializer list, first do the explicit elements.
807   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
808     InitListElements = ILE->getNumInits();
809
810     // If this is a multi-dimensional array new, we will initialize multiple
811     // elements with each init list element.
812     QualType AllocType = E->getAllocatedType();
813     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
814             AllocType->getAsArrayTypeUnsafe())) {
815       unsigned AS = CurPtr->getType()->getPointerAddressSpace();
816       ElementTy = ConvertTypeForMem(AllocType);
817       llvm::Type *AllocPtrTy = ElementTy->getPointerTo(AS);
818       CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
819       InitListElements *= getContext().getConstantArrayElementCount(CAT);
820     }
821
822     // Enter a partial-destruction Cleanup if necessary.
823     if (needsEHCleanup(DtorKind)) {
824       // In principle we could tell the Cleanup where we are more
825       // directly, but the control flow can get so varied here that it
826       // would actually be quite complex.  Therefore we go through an
827       // alloca.
828       EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
829       CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
830       pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
831                                        getDestroyer(DtorKind));
832       Cleanup = EHStack.stable_begin();
833     }
834
835     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
836       // Tell the cleanup that it needs to destroy up to this
837       // element.  TODO: some of these stores can be trivially
838       // observed to be unnecessary.
839       if (EndOfInit)
840         Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
841                             EndOfInit);
842       // FIXME: If the last initializer is an incomplete initializer list for
843       // an array, and we have an array filler, we can fold together the two
844       // initialization loops.
845       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
846                               ILE->getInit(i)->getType(), CurPtr);
847       CurPtr = Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1,
848                                                   "array.exp.next");
849     }
850
851     // The remaining elements are filled with the array filler expression.
852     Init = ILE->getArrayFiller();
853
854     // Extract the initializer for the individual array elements by pulling
855     // out the array filler from all the nested initializer lists. This avoids
856     // generating a nested loop for the initialization.
857     while (Init && Init->getType()->isConstantArrayType()) {
858       auto *SubILE = dyn_cast<InitListExpr>(Init);
859       if (!SubILE)
860         break;
861       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
862       Init = SubILE->getArrayFiller();
863     }
864
865     // Switch back to initializing one base element at a time.
866     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
867   }
868
869   // Attempt to perform zero-initialization using memset.
870   auto TryMemsetInitialization = [&]() -> bool {
871     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
872     // we can initialize with a memset to -1.
873     if (!CGM.getTypes().isZeroInitializable(ElementType))
874       return false;
875
876     // Optimization: since zero initialization will just set the memory
877     // to all zeroes, generate a single memset to do it in one shot.
878
879     // Subtract out the size of any elements we've already initialized.
880     auto *RemainingSize = AllocSizeWithoutCookie;
881     if (InitListElements) {
882       // We know this can't overflow; we check this when doing the allocation.
883       auto *InitializedSize = llvm::ConstantInt::get(
884           RemainingSize->getType(),
885           getContext().getTypeSizeInChars(ElementType).getQuantity() *
886               InitListElements);
887       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
888     }
889
890     // Create the memset.
891     CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
892     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
893                          Alignment.getQuantity(), false);
894     return true;
895   };
896
897   // If all elements have already been initialized, skip any further
898   // initialization.
899   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
900   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
901     // If there was a Cleanup, deactivate it.
902     if (CleanupDominator)
903       DeactivateCleanupBlock(Cleanup, CleanupDominator);
904     return;
905   }
906
907   assert(Init && "have trailing elements to initialize but no initializer");
908
909   // If this is a constructor call, try to optimize it out, and failing that
910   // emit a single loop to initialize all remaining elements.
911   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
912     CXXConstructorDecl *Ctor = CCE->getConstructor();
913     if (Ctor->isTrivial()) {
914       // If new expression did not specify value-initialization, then there
915       // is no initialization.
916       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
917         return;
918
919       if (TryMemsetInitialization())
920         return;
921     }
922
923     // Store the new Cleanup position for irregular Cleanups.
924     //
925     // FIXME: Share this cleanup with the constructor call emission rather than
926     // having it create a cleanup of its own.
927     if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
928
929     // Emit a constructor call loop to initialize the remaining elements.
930     if (InitListElements)
931       NumElements = Builder.CreateSub(
932           NumElements,
933           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
934     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
935                                CCE->requiresZeroInitialization());
936     return;
937   }
938
939   // If this is value-initialization, we can usually use memset.
940   ImplicitValueInitExpr IVIE(ElementType);
941   if (isa<ImplicitValueInitExpr>(Init)) {
942     if (TryMemsetInitialization())
943       return;
944
945     // Switch to an ImplicitValueInitExpr for the element type. This handles
946     // only one case: multidimensional array new of pointers to members. In
947     // all other cases, we already have an initializer for the array element.
948     Init = &IVIE;
949   }
950
951   // At this point we should have found an initializer for the individual
952   // elements of the array.
953   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
954          "got wrong type of element to initialize");
955
956   // If we have an empty initializer list, we can usually use memset.
957   if (auto *ILE = dyn_cast<InitListExpr>(Init))
958     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
959       return;
960
961   // Create the loop blocks.
962   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
963   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
964   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
965
966   // Find the end of the array, hoisted out of the loop.
967   llvm::Value *EndPtr =
968     Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
969
970   // If the number of elements isn't constant, we have to now check if there is
971   // anything left to initialize.
972   if (!ConstNum) {
973     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
974                                                 "array.isempty");
975     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
976   }
977
978   // Enter the loop.
979   EmitBlock(LoopBB);
980
981   // Set up the current-element phi.
982   llvm::PHINode *CurPtrPhi =
983     Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
984   CurPtrPhi->addIncoming(CurPtr, EntryBB);
985   CurPtr = CurPtrPhi;
986
987   // Store the new Cleanup position for irregular Cleanups.
988   if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
989
990   // Enter a partial-destruction Cleanup if necessary.
991   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
992     pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
993                                    getDestroyer(DtorKind));
994     Cleanup = EHStack.stable_begin();
995     CleanupDominator = Builder.CreateUnreachable();
996   }
997
998   // Emit the initializer into this element.
999   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1000
1001   // Leave the Cleanup if we entered one.
1002   if (CleanupDominator) {
1003     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1004     CleanupDominator->eraseFromParent();
1005   }
1006
1007   // Advance to the next element by adjusting the pointer type as necessary.
1008   llvm::Value *NextPtr =
1009       Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1, "array.next");
1010
1011   // Check whether we've gotten to the end of the array and, if so,
1012   // exit the loop.
1013   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1014   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1015   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1016
1017   EmitBlock(ContBB);
1018 }
1019
1020 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1021                                QualType ElementType, llvm::Type *ElementTy,
1022                                llvm::Value *NewPtr, llvm::Value *NumElements,
1023                                llvm::Value *AllocSizeWithoutCookie) {
1024   ApplyDebugLocation DL(CGF, E);
1025   if (E->isArray())
1026     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1027                                 AllocSizeWithoutCookie);
1028   else if (const Expr *Init = E->getInitializer())
1029     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1030 }
1031
1032 /// Emit a call to an operator new or operator delete function, as implicitly
1033 /// created by new-expressions and delete-expressions.
1034 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1035                                 const FunctionDecl *Callee,
1036                                 const FunctionProtoType *CalleeType,
1037                                 const CallArgList &Args) {
1038   llvm::Instruction *CallOrInvoke;
1039   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1040   RValue RV =
1041       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1042                        Args, CalleeType, /*chainCall=*/false),
1043                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1044
1045   /// C++1y [expr.new]p10:
1046   ///   [In a new-expression,] an implementation is allowed to omit a call
1047   ///   to a replaceable global allocation function.
1048   ///
1049   /// We model such elidable calls with the 'builtin' attribute.
1050   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1051   if (Callee->isReplaceableGlobalAllocationFunction() &&
1052       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1053     // FIXME: Add addAttribute to CallSite.
1054     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1055       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1056                        llvm::Attribute::Builtin);
1057     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1058       II->addAttribute(llvm::AttributeSet::FunctionIndex,
1059                        llvm::Attribute::Builtin);
1060     else
1061       llvm_unreachable("unexpected kind of call instruction");
1062   }
1063
1064   return RV;
1065 }
1066
1067 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1068                                                  const Expr *Arg,
1069                                                  bool IsDelete) {
1070   CallArgList Args;
1071   const Stmt *ArgS = Arg;
1072   EmitCallArgs(Args, *Type->param_type_begin(),
1073                ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
1074   // Find the allocation or deallocation function that we're calling.
1075   ASTContext &Ctx = getContext();
1076   DeclarationName Name = Ctx.DeclarationNames
1077       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1078   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1079     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1080       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1081         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1082   llvm_unreachable("predeclared global operator new/delete is missing");
1083 }
1084
1085 namespace {
1086   /// A cleanup to call the given 'operator delete' function upon
1087   /// abnormal exit from a new expression.
1088   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1089     size_t NumPlacementArgs;
1090     const FunctionDecl *OperatorDelete;
1091     llvm::Value *Ptr;
1092     llvm::Value *AllocSize;
1093
1094     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1095
1096   public:
1097     static size_t getExtraSize(size_t NumPlacementArgs) {
1098       return NumPlacementArgs * sizeof(RValue);
1099     }
1100
1101     CallDeleteDuringNew(size_t NumPlacementArgs,
1102                         const FunctionDecl *OperatorDelete,
1103                         llvm::Value *Ptr,
1104                         llvm::Value *AllocSize) 
1105       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1106         Ptr(Ptr), AllocSize(AllocSize) {}
1107
1108     void setPlacementArg(unsigned I, RValue Arg) {
1109       assert(I < NumPlacementArgs && "index out of range");
1110       getPlacementArgs()[I] = Arg;
1111     }
1112
1113     void Emit(CodeGenFunction &CGF, Flags flags) override {
1114       const FunctionProtoType *FPT
1115         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1116       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1117              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1118
1119       CallArgList DeleteArgs;
1120
1121       // The first argument is always a void*.
1122       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1123       DeleteArgs.add(RValue::get(Ptr), *AI++);
1124
1125       // A member 'operator delete' can take an extra 'size_t' argument.
1126       if (FPT->getNumParams() == NumPlacementArgs + 2)
1127         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1128
1129       // Pass the rest of the arguments, which must match exactly.
1130       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1131         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1132
1133       // Call 'operator delete'.
1134       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1135     }
1136   };
1137
1138   /// A cleanup to call the given 'operator delete' function upon
1139   /// abnormal exit from a new expression when the new expression is
1140   /// conditional.
1141   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1142     size_t NumPlacementArgs;
1143     const FunctionDecl *OperatorDelete;
1144     DominatingValue<RValue>::saved_type Ptr;
1145     DominatingValue<RValue>::saved_type AllocSize;
1146
1147     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1148       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1149     }
1150
1151   public:
1152     static size_t getExtraSize(size_t NumPlacementArgs) {
1153       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1154     }
1155
1156     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1157                                    const FunctionDecl *OperatorDelete,
1158                                    DominatingValue<RValue>::saved_type Ptr,
1159                               DominatingValue<RValue>::saved_type AllocSize)
1160       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1161         Ptr(Ptr), AllocSize(AllocSize) {}
1162
1163     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1164       assert(I < NumPlacementArgs && "index out of range");
1165       getPlacementArgs()[I] = Arg;
1166     }
1167
1168     void Emit(CodeGenFunction &CGF, Flags flags) override {
1169       const FunctionProtoType *FPT
1170         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1171       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1172              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1173
1174       CallArgList DeleteArgs;
1175
1176       // The first argument is always a void*.
1177       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1178       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1179
1180       // A member 'operator delete' can take an extra 'size_t' argument.
1181       if (FPT->getNumParams() == NumPlacementArgs + 2) {
1182         RValue RV = AllocSize.restore(CGF);
1183         DeleteArgs.add(RV, *AI++);
1184       }
1185
1186       // Pass the rest of the arguments, which must match exactly.
1187       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1188         RValue RV = getPlacementArgs()[I].restore(CGF);
1189         DeleteArgs.add(RV, *AI++);
1190       }
1191
1192       // Call 'operator delete'.
1193       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1194     }
1195   };
1196 }
1197
1198 /// Enter a cleanup to call 'operator delete' if the initializer in a
1199 /// new-expression throws.
1200 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1201                                   const CXXNewExpr *E,
1202                                   llvm::Value *NewPtr,
1203                                   llvm::Value *AllocSize,
1204                                   const CallArgList &NewArgs) {
1205   // If we're not inside a conditional branch, then the cleanup will
1206   // dominate and we can do the easier (and more efficient) thing.
1207   if (!CGF.isInConditionalBranch()) {
1208     CallDeleteDuringNew *Cleanup = CGF.EHStack
1209       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1210                                                  E->getNumPlacementArgs(),
1211                                                  E->getOperatorDelete(),
1212                                                  NewPtr, AllocSize);
1213     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1214       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1215
1216     return;
1217   }
1218
1219   // Otherwise, we need to save all this stuff.
1220   DominatingValue<RValue>::saved_type SavedNewPtr =
1221     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1222   DominatingValue<RValue>::saved_type SavedAllocSize =
1223     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1224
1225   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1226     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1227                                                  E->getNumPlacementArgs(),
1228                                                  E->getOperatorDelete(),
1229                                                  SavedNewPtr,
1230                                                  SavedAllocSize);
1231   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1232     Cleanup->setPlacementArg(I,
1233                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1234
1235   CGF.initFullExprCleanup();
1236 }
1237
1238 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1239   // The element type being allocated.
1240   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1241
1242   // 1. Build a call to the allocation function.
1243   FunctionDecl *allocator = E->getOperatorNew();
1244   const FunctionProtoType *allocatorType =
1245     allocator->getType()->castAs<FunctionProtoType>();
1246
1247   CallArgList allocatorArgs;
1248
1249   // The allocation size is the first argument.
1250   QualType sizeType = getContext().getSizeType();
1251
1252   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1253   unsigned minElements = 0;
1254   if (E->isArray() && E->hasInitializer()) {
1255     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1256       minElements = ILE->getNumInits();
1257   }
1258
1259   llvm::Value *numElements = nullptr;
1260   llvm::Value *allocSizeWithoutCookie = nullptr;
1261   llvm::Value *allocSize =
1262     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1263                         allocSizeWithoutCookie);
1264
1265   allocatorArgs.add(RValue::get(allocSize), sizeType);
1266
1267   // We start at 1 here because the first argument (the allocation size)
1268   // has already been emitted.
1269   EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
1270                E->placement_arg_end(), /* CalleeDecl */ nullptr,
1271                /*ParamsToSkip*/ 1);
1272
1273   // Emit the allocation call.  If the allocator is a global placement
1274   // operator, just "inline" it directly.
1275   RValue RV;
1276   if (allocator->isReservedGlobalPlacementOperator()) {
1277     assert(allocatorArgs.size() == 2);
1278     RV = allocatorArgs[1].RV;
1279     // TODO: kill any unnecessary computations done for the size
1280     // argument.
1281   } else {
1282     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1283   }
1284
1285   // Emit a null check on the allocation result if the allocation
1286   // function is allowed to return null (because it has a non-throwing
1287   // exception spec or is the reserved placement new) and we have an
1288   // interesting initializer.
1289   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1290     (!allocType.isPODType(getContext()) || E->hasInitializer());
1291
1292   llvm::BasicBlock *nullCheckBB = nullptr;
1293   llvm::BasicBlock *contBB = nullptr;
1294
1295   llvm::Value *allocation = RV.getScalarVal();
1296   unsigned AS = allocation->getType()->getPointerAddressSpace();
1297
1298   // The null-check means that the initializer is conditionally
1299   // evaluated.
1300   ConditionalEvaluation conditional(*this);
1301
1302   if (nullCheck) {
1303     conditional.begin(*this);
1304
1305     nullCheckBB = Builder.GetInsertBlock();
1306     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1307     contBB = createBasicBlock("new.cont");
1308
1309     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1310     Builder.CreateCondBr(isNull, contBB, notNullBB);
1311     EmitBlock(notNullBB);
1312   }
1313
1314   // If there's an operator delete, enter a cleanup to call it if an
1315   // exception is thrown.
1316   EHScopeStack::stable_iterator operatorDeleteCleanup;
1317   llvm::Instruction *cleanupDominator = nullptr;
1318   if (E->getOperatorDelete() &&
1319       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1320     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1321     operatorDeleteCleanup = EHStack.stable_begin();
1322     cleanupDominator = Builder.CreateUnreachable();
1323   }
1324
1325   assert((allocSize == allocSizeWithoutCookie) ==
1326          CalculateCookiePadding(*this, E).isZero());
1327   if (allocSize != allocSizeWithoutCookie) {
1328     assert(E->isArray());
1329     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1330                                                        numElements,
1331                                                        E, allocType);
1332   }
1333
1334   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1335   llvm::Type *elementPtrTy = elementTy->getPointerTo(AS);
1336   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1337
1338   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1339                      allocSizeWithoutCookie);
1340   if (E->isArray()) {
1341     // NewPtr is a pointer to the base element type.  If we're
1342     // allocating an array of arrays, we'll need to cast back to the
1343     // array pointer type.
1344     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1345     if (result->getType() != resultType)
1346       result = Builder.CreateBitCast(result, resultType);
1347   }
1348
1349   // Deactivate the 'operator delete' cleanup if we finished
1350   // initialization.
1351   if (operatorDeleteCleanup.isValid()) {
1352     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1353     cleanupDominator->eraseFromParent();
1354   }
1355
1356   if (nullCheck) {
1357     conditional.end(*this);
1358
1359     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1360     EmitBlock(contBB);
1361
1362     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1363     PHI->addIncoming(result, notNullBB);
1364     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1365                      nullCheckBB);
1366
1367     result = PHI;
1368   }
1369   
1370   return result;
1371 }
1372
1373 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1374                                      llvm::Value *Ptr,
1375                                      QualType DeleteTy) {
1376   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1377
1378   const FunctionProtoType *DeleteFTy =
1379     DeleteFD->getType()->getAs<FunctionProtoType>();
1380
1381   CallArgList DeleteArgs;
1382
1383   // Check if we need to pass the size to the delete operator.
1384   llvm::Value *Size = nullptr;
1385   QualType SizeTy;
1386   if (DeleteFTy->getNumParams() == 2) {
1387     SizeTy = DeleteFTy->getParamType(1);
1388     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1389     Size = llvm::ConstantInt::get(ConvertType(SizeTy), 
1390                                   DeleteTypeSize.getQuantity());
1391   }
1392
1393   QualType ArgTy = DeleteFTy->getParamType(0);
1394   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1395   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1396
1397   if (Size)
1398     DeleteArgs.add(RValue::get(Size), SizeTy);
1399
1400   // Emit the call to delete.
1401   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1402 }
1403
1404 namespace {
1405   /// Calls the given 'operator delete' on a single object.
1406   struct CallObjectDelete : EHScopeStack::Cleanup {
1407     llvm::Value *Ptr;
1408     const FunctionDecl *OperatorDelete;
1409     QualType ElementType;
1410
1411     CallObjectDelete(llvm::Value *Ptr,
1412                      const FunctionDecl *OperatorDelete,
1413                      QualType ElementType)
1414       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1415
1416     void Emit(CodeGenFunction &CGF, Flags flags) override {
1417       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1418     }
1419   };
1420 }
1421
1422 void
1423 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1424                                              llvm::Value *CompletePtr,
1425                                              QualType ElementType) {
1426   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1427                                         OperatorDelete, ElementType);
1428 }
1429
1430 /// Emit the code for deleting a single object.
1431 static void EmitObjectDelete(CodeGenFunction &CGF,
1432                              const CXXDeleteExpr *DE,
1433                              llvm::Value *Ptr,
1434                              QualType ElementType) {
1435   // Find the destructor for the type, if applicable.  If the
1436   // destructor is virtual, we'll just emit the vcall and return.
1437   const CXXDestructorDecl *Dtor = nullptr;
1438   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1439     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1440     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1441       Dtor = RD->getDestructor();
1442
1443       if (Dtor->isVirtual()) {
1444         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1445                                                     Dtor);
1446         return;
1447       }
1448     }
1449   }
1450
1451   // Make sure that we call delete even if the dtor throws.
1452   // This doesn't have to a conditional cleanup because we're going
1453   // to pop it off in a second.
1454   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1455   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1456                                             Ptr, OperatorDelete, ElementType);
1457
1458   if (Dtor)
1459     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1460                               /*ForVirtualBase=*/false,
1461                               /*Delegating=*/false,
1462                               Ptr);
1463   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1464            ElementType->isObjCLifetimeType()) {
1465     switch (ElementType.getObjCLifetime()) {
1466     case Qualifiers::OCL_None:
1467     case Qualifiers::OCL_ExplicitNone:
1468     case Qualifiers::OCL_Autoreleasing:
1469       break;
1470
1471     case Qualifiers::OCL_Strong: {
1472       // Load the pointer value.
1473       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 
1474                                              ElementType.isVolatileQualified());
1475         
1476       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1477       break;
1478     }
1479         
1480     case Qualifiers::OCL_Weak:
1481       CGF.EmitARCDestroyWeak(Ptr);
1482       break;
1483     }
1484   }
1485            
1486   CGF.PopCleanupBlock();
1487 }
1488
1489 namespace {
1490   /// Calls the given 'operator delete' on an array of objects.
1491   struct CallArrayDelete : EHScopeStack::Cleanup {
1492     llvm::Value *Ptr;
1493     const FunctionDecl *OperatorDelete;
1494     llvm::Value *NumElements;
1495     QualType ElementType;
1496     CharUnits CookieSize;
1497
1498     CallArrayDelete(llvm::Value *Ptr,
1499                     const FunctionDecl *OperatorDelete,
1500                     llvm::Value *NumElements,
1501                     QualType ElementType,
1502                     CharUnits CookieSize)
1503       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1504         ElementType(ElementType), CookieSize(CookieSize) {}
1505
1506     void Emit(CodeGenFunction &CGF, Flags flags) override {
1507       const FunctionProtoType *DeleteFTy =
1508         OperatorDelete->getType()->getAs<FunctionProtoType>();
1509       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1510
1511       CallArgList Args;
1512       
1513       // Pass the pointer as the first argument.
1514       QualType VoidPtrTy = DeleteFTy->getParamType(0);
1515       llvm::Value *DeletePtr
1516         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1517       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1518
1519       // Pass the original requested size as the second argument.
1520       if (DeleteFTy->getNumParams() == 2) {
1521         QualType size_t = DeleteFTy->getParamType(1);
1522         llvm::IntegerType *SizeTy
1523           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1524         
1525         CharUnits ElementTypeSize =
1526           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1527
1528         // The size of an element, multiplied by the number of elements.
1529         llvm::Value *Size
1530           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1531         Size = CGF.Builder.CreateMul(Size, NumElements);
1532
1533         // Plus the size of the cookie if applicable.
1534         if (!CookieSize.isZero()) {
1535           llvm::Value *CookieSizeV
1536             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1537           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1538         }
1539
1540         Args.add(RValue::get(Size), size_t);
1541       }
1542
1543       // Emit the call to delete.
1544       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1545     }
1546   };
1547 }
1548
1549 /// Emit the code for deleting an array of objects.
1550 static void EmitArrayDelete(CodeGenFunction &CGF,
1551                             const CXXDeleteExpr *E,
1552                             llvm::Value *deletedPtr,
1553                             QualType elementType) {
1554   llvm::Value *numElements = nullptr;
1555   llvm::Value *allocatedPtr = nullptr;
1556   CharUnits cookieSize;
1557   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1558                                       numElements, allocatedPtr, cookieSize);
1559
1560   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1561
1562   // Make sure that we call delete even if one of the dtors throws.
1563   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1564   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1565                                            allocatedPtr, operatorDelete,
1566                                            numElements, elementType,
1567                                            cookieSize);
1568
1569   // Destroy the elements.
1570   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1571     assert(numElements && "no element count for a type with a destructor!");
1572
1573     llvm::Value *arrayEnd =
1574       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1575
1576     // Note that it is legal to allocate a zero-length array, and we
1577     // can never fold the check away because the length should always
1578     // come from a cookie.
1579     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1580                          CGF.getDestroyer(dtorKind),
1581                          /*checkZeroLength*/ true,
1582                          CGF.needsEHCleanup(dtorKind));
1583   }
1584
1585   // Pop the cleanup block.
1586   CGF.PopCleanupBlock();
1587 }
1588
1589 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1590   const Expr *Arg = E->getArgument();
1591   llvm::Value *Ptr = EmitScalarExpr(Arg);
1592
1593   // Null check the pointer.
1594   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1595   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1596
1597   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1598
1599   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1600   EmitBlock(DeleteNotNull);
1601
1602   // We might be deleting a pointer to array.  If so, GEP down to the
1603   // first non-array element.
1604   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1605   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1606   if (DeleteTy->isConstantArrayType()) {
1607     llvm::Value *Zero = Builder.getInt32(0);
1608     SmallVector<llvm::Value*,8> GEP;
1609
1610     GEP.push_back(Zero); // point at the outermost array
1611
1612     // For each layer of array type we're pointing at:
1613     while (const ConstantArrayType *Arr
1614              = getContext().getAsConstantArrayType(DeleteTy)) {
1615       // 1. Unpeel the array type.
1616       DeleteTy = Arr->getElementType();
1617
1618       // 2. GEP to the first element of the array.
1619       GEP.push_back(Zero);
1620     }
1621
1622     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1623   }
1624
1625   assert(ConvertTypeForMem(DeleteTy) ==
1626          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1627
1628   if (E->isArrayForm()) {
1629     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1630   } else {
1631     EmitObjectDelete(*this, E, Ptr, DeleteTy);
1632   }
1633
1634   EmitBlock(DeleteEnd);
1635 }
1636
1637 static bool isGLValueFromPointerDeref(const Expr *E) {
1638   E = E->IgnoreParens();
1639
1640   if (const auto *CE = dyn_cast<CastExpr>(E)) {
1641     if (!CE->getSubExpr()->isGLValue())
1642       return false;
1643     return isGLValueFromPointerDeref(CE->getSubExpr());
1644   }
1645
1646   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1647     return isGLValueFromPointerDeref(OVE->getSourceExpr());
1648
1649   if (const auto *BO = dyn_cast<BinaryOperator>(E))
1650     if (BO->getOpcode() == BO_Comma)
1651       return isGLValueFromPointerDeref(BO->getRHS());
1652
1653   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1654     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1655            isGLValueFromPointerDeref(ACO->getFalseExpr());
1656
1657   // C++11 [expr.sub]p1:
1658   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1659   if (isa<ArraySubscriptExpr>(E))
1660     return true;
1661
1662   if (const auto *UO = dyn_cast<UnaryOperator>(E))
1663     if (UO->getOpcode() == UO_Deref)
1664       return true;
1665
1666   return false;
1667 }
1668
1669 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1670                                          llvm::Type *StdTypeInfoPtrTy) {
1671   // Get the vtable pointer.
1672   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1673
1674   // C++ [expr.typeid]p2:
1675   //   If the glvalue expression is obtained by applying the unary * operator to
1676   //   a pointer and the pointer is a null pointer value, the typeid expression
1677   //   throws the std::bad_typeid exception.
1678   //
1679   // However, this paragraph's intent is not clear.  We choose a very generous
1680   // interpretation which implores us to consider comma operators, conditional
1681   // operators, parentheses and other such constructs.
1682   QualType SrcRecordTy = E->getType();
1683   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1684           isGLValueFromPointerDeref(E), SrcRecordTy)) {
1685     llvm::BasicBlock *BadTypeidBlock =
1686         CGF.createBasicBlock("typeid.bad_typeid");
1687     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1688
1689     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1690     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1691
1692     CGF.EmitBlock(BadTypeidBlock);
1693     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1694     CGF.EmitBlock(EndBlock);
1695   }
1696
1697   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1698                                         StdTypeInfoPtrTy);
1699 }
1700
1701 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1702   llvm::Type *StdTypeInfoPtrTy = 
1703     ConvertType(E->getType())->getPointerTo();
1704   
1705   if (E->isTypeOperand()) {
1706     llvm::Constant *TypeInfo =
1707         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1708     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1709   }
1710
1711   // C++ [expr.typeid]p2:
1712   //   When typeid is applied to a glvalue expression whose type is a
1713   //   polymorphic class type, the result refers to a std::type_info object
1714   //   representing the type of the most derived object (that is, the dynamic
1715   //   type) to which the glvalue refers.
1716   if (E->isPotentiallyEvaluated())
1717     return EmitTypeidFromVTable(*this, E->getExprOperand(), 
1718                                 StdTypeInfoPtrTy);
1719
1720   QualType OperandTy = E->getExprOperand()->getType();
1721   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1722                                StdTypeInfoPtrTy);
1723 }
1724
1725 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1726                                           QualType DestTy) {
1727   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1728   if (DestTy->isPointerType())
1729     return llvm::Constant::getNullValue(DestLTy);
1730
1731   /// C++ [expr.dynamic.cast]p9:
1732   ///   A failed cast to reference type throws std::bad_cast
1733   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1734     return nullptr;
1735
1736   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1737   return llvm::UndefValue::get(DestLTy);
1738 }
1739
1740 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1741                                               const CXXDynamicCastExpr *DCE) {
1742   QualType DestTy = DCE->getTypeAsWritten();
1743
1744   if (DCE->isAlwaysNull())
1745     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1746       return T;
1747
1748   QualType SrcTy = DCE->getSubExpr()->getType();
1749
1750   // C++ [expr.dynamic.cast]p7:
1751   //   If T is "pointer to cv void," then the result is a pointer to the most
1752   //   derived object pointed to by v.
1753   const PointerType *DestPTy = DestTy->getAs<PointerType>();
1754
1755   bool isDynamicCastToVoid;
1756   QualType SrcRecordTy;
1757   QualType DestRecordTy;
1758   if (DestPTy) {
1759     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1760     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1761     DestRecordTy = DestPTy->getPointeeType();
1762   } else {
1763     isDynamicCastToVoid = false;
1764     SrcRecordTy = SrcTy;
1765     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1766   }
1767
1768   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1769
1770   // C++ [expr.dynamic.cast]p4: 
1771   //   If the value of v is a null pointer value in the pointer case, the result
1772   //   is the null pointer value of type T.
1773   bool ShouldNullCheckSrcValue =
1774       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1775                                                          SrcRecordTy);
1776
1777   llvm::BasicBlock *CastNull = nullptr;
1778   llvm::BasicBlock *CastNotNull = nullptr;
1779   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1780   
1781   if (ShouldNullCheckSrcValue) {
1782     CastNull = createBasicBlock("dynamic_cast.null");
1783     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1784
1785     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1786     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1787     EmitBlock(CastNotNull);
1788   }
1789
1790   if (isDynamicCastToVoid) {
1791     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
1792                                                   DestTy);
1793   } else {
1794     assert(DestRecordTy->isRecordType() &&
1795            "destination type must be a record type!");
1796     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
1797                                                 DestTy, DestRecordTy, CastEnd);
1798   }
1799
1800   if (ShouldNullCheckSrcValue) {
1801     EmitBranch(CastEnd);
1802
1803     EmitBlock(CastNull);
1804     EmitBranch(CastEnd);
1805   }
1806
1807   EmitBlock(CastEnd);
1808
1809   if (ShouldNullCheckSrcValue) {
1810     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1811     PHI->addIncoming(Value, CastNotNull);
1812     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1813
1814     Value = PHI;
1815   }
1816
1817   return Value;
1818 }
1819
1820 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1821   RunCleanupsScope Scope(*this);
1822   LValue SlotLV =
1823       MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
1824
1825   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1826   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1827                                          e = E->capture_init_end();
1828        i != e; ++i, ++CurField) {
1829     // Emit initialization
1830     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1831     if (CurField->hasCapturedVLAType()) {
1832       auto VAT = CurField->getCapturedVLAType();
1833       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1834     } else {
1835       ArrayRef<VarDecl *> ArrayIndexes;
1836       if (CurField->getType()->isArrayType())
1837         ArrayIndexes = E->getCaptureInitIndexVars(i);
1838       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1839     }
1840   }
1841 }