]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprCXX.cpp
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24
25 using namespace clang;
26 using namespace CodeGen;
27
28 namespace {
29 struct MemberCallInfo {
30   RequiredArgs ReqArgs;
31   // Number of prefix arguments for the call. Ignores the `this` pointer.
32   unsigned PrefixSize;
33 };
34 }
35
36 static MemberCallInfo
37 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
38                                   llvm::Value *This, llvm::Value *ImplicitParam,
39                                   QualType ImplicitParamTy, const CallExpr *CE,
40                                   CallArgList &Args, CallArgList *RtlArgs) {
41   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42          isa<CXXOperatorCallExpr>(CE));
43   assert(MD->isInstance() &&
44          "Trying to emit a member or operator call expr on a static method!");
45   ASTContext &C = CGF.getContext();
46
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
50   Args.add(RValue::get(This),
51            RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52
53   // If there is an implicit parameter (e.g. VTT), emit it.
54   if (ImplicitParam) {
55     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56   }
57
58   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60   unsigned PrefixSize = Args.size() - 1;
61
62   // And the rest of the call args.
63   if (RtlArgs) {
64     // Special case: if the caller emitted the arguments right-to-left already
65     // (prior to emitting the *this argument), we're done. This happens for
66     // assignment operators.
67     Args.addFrom(*RtlArgs);
68   } else if (CE) {
69     // Special case: skip first argument of CXXOperatorCall (it is "this").
70     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72                      CE->getDirectCallee());
73   } else {
74     assert(
75         FPT->getNumParams() == 0 &&
76         "No CallExpr specified for function with non-zero number of arguments");
77   }
78   return {required, PrefixSize};
79 }
80
81 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
82     const CXXMethodDecl *MD, const CGCallee &Callee,
83     ReturnValueSlot ReturnValue,
84     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85     const CallExpr *CE, CallArgList *RtlArgs) {
86   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87   CallArgList Args;
88   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93                   CE ? CE->getExprLoc() : SourceLocation());
94 }
95
96 RValue CodeGenFunction::EmitCXXDestructorCall(
97     const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
99     StructorType Type) {
100   CallArgList Args;
101   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102                                     ImplicitParamTy, CE, Args, nullptr);
103   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104                   Callee, ReturnValueSlot(), Args);
105 }
106
107 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
108                                             const CXXPseudoDestructorExpr *E) {
109   QualType DestroyedType = E->getDestroyedType();
110   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111     // Automatic Reference Counting:
112     //   If the pseudo-expression names a retainable object with weak or
113     //   strong lifetime, the object shall be released.
114     Expr *BaseExpr = E->getBase();
115     Address BaseValue = Address::invalid();
116     Qualifiers BaseQuals;
117
118     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119     if (E->isArrow()) {
120       BaseValue = EmitPointerWithAlignment(BaseExpr);
121       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122       BaseQuals = PTy->getPointeeType().getQualifiers();
123     } else {
124       LValue BaseLV = EmitLValue(BaseExpr);
125       BaseValue = BaseLV.getAddress();
126       QualType BaseTy = BaseExpr->getType();
127       BaseQuals = BaseTy.getQualifiers();
128     }
129
130     switch (DestroyedType.getObjCLifetime()) {
131     case Qualifiers::OCL_None:
132     case Qualifiers::OCL_ExplicitNone:
133     case Qualifiers::OCL_Autoreleasing:
134       break;
135
136     case Qualifiers::OCL_Strong:
137       EmitARCRelease(Builder.CreateLoad(BaseValue,
138                         DestroyedType.isVolatileQualified()),
139                      ARCPreciseLifetime);
140       break;
141
142     case Qualifiers::OCL_Weak:
143       EmitARCDestroyWeak(BaseValue);
144       break;
145     }
146   } else {
147     // C++ [expr.pseudo]p1:
148     //   The result shall only be used as the operand for the function call
149     //   operator (), and the result of such a call has type void. The only
150     //   effect is the evaluation of the postfix-expression before the dot or
151     //   arrow.
152     EmitIgnoredExpr(E->getBase());
153   }
154
155   return RValue::get(nullptr);
156 }
157
158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
159   QualType T = E->getType();
160   if (const PointerType *PTy = T->getAs<PointerType>())
161     T = PTy->getPointeeType();
162   const RecordType *Ty = T->castAs<RecordType>();
163   return cast<CXXRecordDecl>(Ty->getDecl());
164 }
165
166 // Note: This function also emit constructor calls to support a MSVC
167 // extensions allowing explicit constructor function call.
168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
169                                               ReturnValueSlot ReturnValue) {
170   const Expr *callee = CE->getCallee()->IgnoreParens();
171
172   if (isa<BinaryOperator>(callee))
173     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174
175   const MemberExpr *ME = cast<MemberExpr>(callee);
176   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177
178   if (MD->isStatic()) {
179     // The method is static, emit it as we would a regular call.
180     CGCallee callee =
181         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
182     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
183                     ReturnValue);
184   }
185
186   bool HasQualifier = ME->hasQualifier();
187   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
188   bool IsArrow = ME->isArrow();
189   const Expr *Base = ME->getBase();
190
191   return EmitCXXMemberOrOperatorMemberCallExpr(
192       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
193 }
194
195 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
196     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
197     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
198     const Expr *Base) {
199   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
200
201   // Compute the object pointer.
202   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
203
204   const CXXMethodDecl *DevirtualizedMethod = nullptr;
205   if (CanUseVirtualCall &&
206       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
207     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
208     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
209     assert(DevirtualizedMethod);
210     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
211     const Expr *Inner = Base->ignoreParenBaseCasts();
212     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
213         MD->getReturnType().getCanonicalType())
214       // If the return types are not the same, this might be a case where more
215       // code needs to run to compensate for it. For example, the derived
216       // method might return a type that inherits form from the return
217       // type of MD and has a prefix.
218       // For now we just avoid devirtualizing these covariant cases.
219       DevirtualizedMethod = nullptr;
220     else if (getCXXRecord(Inner) == DevirtualizedClass)
221       // If the class of the Inner expression is where the dynamic method
222       // is defined, build the this pointer from it.
223       Base = Inner;
224     else if (getCXXRecord(Base) != DevirtualizedClass) {
225       // If the method is defined in a class that is not the best dynamic
226       // one or the one of the full expression, we would have to build
227       // a derived-to-base cast to compute the correct this pointer, but
228       // we don't have support for that yet, so do a virtual call.
229       DevirtualizedMethod = nullptr;
230     }
231   }
232
233   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
234   // operator before the LHS.
235   CallArgList RtlArgStorage;
236   CallArgList *RtlArgs = nullptr;
237   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
238     if (OCE->isAssignmentOp()) {
239       RtlArgs = &RtlArgStorage;
240       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
241                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
242                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
243     }
244   }
245
246   LValue This;
247   if (IsArrow) {
248     LValueBaseInfo BaseInfo;
249     TBAAAccessInfo TBAAInfo;
250     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
251     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
252   } else {
253     This = EmitLValue(Base);
254   }
255
256
257   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
258     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
259     if (isa<CXXConstructorDecl>(MD) &&
260         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
261       return RValue::get(nullptr);
262
263     if (!MD->getParent()->mayInsertExtraPadding()) {
264       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
265         // We don't like to generate the trivial copy/move assignment operator
266         // when it isn't necessary; just produce the proper effect here.
267         LValue RHS = isa<CXXOperatorCallExpr>(CE)
268                          ? MakeNaturalAlignAddrLValue(
269                                (*RtlArgs)[0].getRValue(*this).getScalarVal(),
270                                (*(CE->arg_begin() + 1))->getType())
271                          : EmitLValue(*CE->arg_begin());
272         EmitAggregateAssign(This, RHS, CE->getType());
273         return RValue::get(This.getPointer());
274       }
275
276       if (isa<CXXConstructorDecl>(MD) &&
277           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
278         // Trivial move and copy ctor are the same.
279         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
280         const Expr *Arg = *CE->arg_begin();
281         LValue RHS = EmitLValue(Arg);
282         LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
283         // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
284         // constructing a new complete object of type Ctor.
285         EmitAggregateCopy(Dest, RHS, Arg->getType(),
286                           AggValueSlot::DoesNotOverlap);
287         return RValue::get(This.getPointer());
288       }
289       llvm_unreachable("unknown trivial member function");
290     }
291   }
292
293   // Compute the function type we're calling.
294   const CXXMethodDecl *CalleeDecl =
295       DevirtualizedMethod ? DevirtualizedMethod : MD;
296   const CGFunctionInfo *FInfo = nullptr;
297   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
298     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
299         Dtor, StructorType::Complete);
300   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
301     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
302         Ctor, StructorType::Complete);
303   else
304     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
305
306   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
307
308   // C++11 [class.mfct.non-static]p2:
309   //   If a non-static member function of a class X is called for an object that
310   //   is not of type X, or of a type derived from X, the behavior is undefined.
311   SourceLocation CallLoc;
312   ASTContext &C = getContext();
313   if (CE)
314     CallLoc = CE->getExprLoc();
315
316   SanitizerSet SkippedChecks;
317   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
318     auto *IOA = CMCE->getImplicitObjectArgument();
319     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
320     if (IsImplicitObjectCXXThis)
321       SkippedChecks.set(SanitizerKind::Alignment, true);
322     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
323       SkippedChecks.set(SanitizerKind::Null, true);
324   }
325   EmitTypeCheck(
326       isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
327                                           : CodeGenFunction::TCK_MemberCall,
328       CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
329       /*Alignment=*/CharUnits::Zero(), SkippedChecks);
330
331   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
332   // 'CalleeDecl' instead.
333
334   // C++ [class.virtual]p12:
335   //   Explicit qualification with the scope operator (5.1) suppresses the
336   //   virtual call mechanism.
337   //
338   // We also don't emit a virtual call if the base expression has a record type
339   // because then we know what the type is.
340   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
341
342   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
343     assert(CE->arg_begin() == CE->arg_end() &&
344            "Destructor shouldn't have explicit parameters");
345     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
346     if (UseVirtualCall) {
347       CGM.getCXXABI().EmitVirtualDestructorCall(
348           *this, Dtor, Dtor_Complete, This.getAddress(),
349           cast<CXXMemberCallExpr>(CE));
350     } else {
351       CGCallee Callee;
352       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
353         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
354       else if (!DevirtualizedMethod)
355         Callee = CGCallee::forDirect(
356             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
357             GlobalDecl(Dtor, Dtor_Complete));
358       else {
359         const CXXDestructorDecl *DDtor =
360           cast<CXXDestructorDecl>(DevirtualizedMethod);
361         Callee = CGCallee::forDirect(
362             CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
363             GlobalDecl(DDtor, Dtor_Complete));
364       }
365       EmitCXXMemberOrOperatorCall(
366           CalleeDecl, Callee, ReturnValue, This.getPointer(),
367           /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
368     }
369     return RValue::get(nullptr);
370   }
371
372   CGCallee Callee;
373   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
374     Callee = CGCallee::forDirect(
375         CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
376         GlobalDecl(Ctor, Ctor_Complete));
377   } else if (UseVirtualCall) {
378     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
379   } else {
380     if (SanOpts.has(SanitizerKind::CFINVCall) &&
381         MD->getParent()->isDynamicClass()) {
382       llvm::Value *VTable;
383       const CXXRecordDecl *RD;
384       std::tie(VTable, RD) =
385           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
386                                         MD->getParent());
387       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
388     }
389
390     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
391       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
392     else if (!DevirtualizedMethod)
393       Callee =
394           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
395     else {
396       Callee =
397           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
398                               GlobalDecl(DevirtualizedMethod));
399     }
400   }
401
402   if (MD->isVirtual()) {
403     Address NewThisAddr =
404         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
405             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
406     This.setAddress(NewThisAddr);
407   }
408
409   return EmitCXXMemberOrOperatorCall(
410       CalleeDecl, Callee, ReturnValue, This.getPointer(),
411       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
412 }
413
414 RValue
415 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
416                                               ReturnValueSlot ReturnValue) {
417   const BinaryOperator *BO =
418       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
419   const Expr *BaseExpr = BO->getLHS();
420   const Expr *MemFnExpr = BO->getRHS();
421
422   const MemberPointerType *MPT =
423     MemFnExpr->getType()->castAs<MemberPointerType>();
424
425   const FunctionProtoType *FPT =
426     MPT->getPointeeType()->castAs<FunctionProtoType>();
427   const CXXRecordDecl *RD =
428     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
429
430   // Emit the 'this' pointer.
431   Address This = Address::invalid();
432   if (BO->getOpcode() == BO_PtrMemI)
433     This = EmitPointerWithAlignment(BaseExpr);
434   else
435     This = EmitLValue(BaseExpr).getAddress();
436
437   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
438                 QualType(MPT->getClass(), 0));
439
440   // Get the member function pointer.
441   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
442
443   // Ask the ABI to load the callee.  Note that This is modified.
444   llvm::Value *ThisPtrForCall = nullptr;
445   CGCallee Callee =
446     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
447                                              ThisPtrForCall, MemFnPtr, MPT);
448
449   CallArgList Args;
450
451   QualType ThisType =
452     getContext().getPointerType(getContext().getTagDeclType(RD));
453
454   // Push the this ptr.
455   Args.add(RValue::get(ThisPtrForCall), ThisType);
456
457   RequiredArgs required =
458       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
459
460   // And the rest of the call args
461   EmitCallArgs(Args, FPT, E->arguments());
462   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
463                                                       /*PrefixSize=*/0),
464                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
465 }
466
467 RValue
468 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
469                                                const CXXMethodDecl *MD,
470                                                ReturnValueSlot ReturnValue) {
471   assert(MD->isInstance() &&
472          "Trying to emit a member call expr on a static method!");
473   return EmitCXXMemberOrOperatorMemberCallExpr(
474       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
475       /*IsArrow=*/false, E->getArg(0));
476 }
477
478 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
479                                                ReturnValueSlot ReturnValue) {
480   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
481 }
482
483 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
484                                             Address DestPtr,
485                                             const CXXRecordDecl *Base) {
486   if (Base->isEmpty())
487     return;
488
489   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
490
491   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
492   CharUnits NVSize = Layout.getNonVirtualSize();
493
494   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
495   // present, they are initialized by the most derived class before calling the
496   // constructor.
497   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
498   Stores.emplace_back(CharUnits::Zero(), NVSize);
499
500   // Each store is split by the existence of a vbptr.
501   CharUnits VBPtrWidth = CGF.getPointerSize();
502   std::vector<CharUnits> VBPtrOffsets =
503       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
504   for (CharUnits VBPtrOffset : VBPtrOffsets) {
505     // Stop before we hit any virtual base pointers located in virtual bases.
506     if (VBPtrOffset >= NVSize)
507       break;
508     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
509     CharUnits LastStoreOffset = LastStore.first;
510     CharUnits LastStoreSize = LastStore.second;
511
512     CharUnits SplitBeforeOffset = LastStoreOffset;
513     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
514     assert(!SplitBeforeSize.isNegative() && "negative store size!");
515     if (!SplitBeforeSize.isZero())
516       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
517
518     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
519     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
520     assert(!SplitAfterSize.isNegative() && "negative store size!");
521     if (!SplitAfterSize.isZero())
522       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
523   }
524
525   // If the type contains a pointer to data member we can't memset it to zero.
526   // Instead, create a null constant and copy it to the destination.
527   // TODO: there are other patterns besides zero that we can usefully memset,
528   // like -1, which happens to be the pattern used by member-pointers.
529   // TODO: isZeroInitializable can be over-conservative in the case where a
530   // virtual base contains a member pointer.
531   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
532   if (!NullConstantForBase->isNullValue()) {
533     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
534         CGF.CGM.getModule(), NullConstantForBase->getType(),
535         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
536         NullConstantForBase, Twine());
537
538     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
539                                DestPtr.getAlignment());
540     NullVariable->setAlignment(Align.getQuantity());
541
542     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
543
544     // Get and call the appropriate llvm.memcpy overload.
545     for (std::pair<CharUnits, CharUnits> Store : Stores) {
546       CharUnits StoreOffset = Store.first;
547       CharUnits StoreSize = Store.second;
548       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
549       CGF.Builder.CreateMemCpy(
550           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
551           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
552           StoreSizeVal);
553     }
554
555   // Otherwise, just memset the whole thing to zero.  This is legal
556   // because in LLVM, all default initializers (other than the ones we just
557   // handled above) are guaranteed to have a bit pattern of all zeros.
558   } else {
559     for (std::pair<CharUnits, CharUnits> Store : Stores) {
560       CharUnits StoreOffset = Store.first;
561       CharUnits StoreSize = Store.second;
562       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
563       CGF.Builder.CreateMemSet(
564           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
565           CGF.Builder.getInt8(0), StoreSizeVal);
566     }
567   }
568 }
569
570 void
571 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
572                                       AggValueSlot Dest) {
573   assert(!Dest.isIgnored() && "Must have a destination!");
574   const CXXConstructorDecl *CD = E->getConstructor();
575
576   // If we require zero initialization before (or instead of) calling the
577   // constructor, as can be the case with a non-user-provided default
578   // constructor, emit the zero initialization now, unless destination is
579   // already zeroed.
580   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
581     switch (E->getConstructionKind()) {
582     case CXXConstructExpr::CK_Delegating:
583     case CXXConstructExpr::CK_Complete:
584       EmitNullInitialization(Dest.getAddress(), E->getType());
585       break;
586     case CXXConstructExpr::CK_VirtualBase:
587     case CXXConstructExpr::CK_NonVirtualBase:
588       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
589                                       CD->getParent());
590       break;
591     }
592   }
593
594   // If this is a call to a trivial default constructor, do nothing.
595   if (CD->isTrivial() && CD->isDefaultConstructor())
596     return;
597
598   // Elide the constructor if we're constructing from a temporary.
599   // The temporary check is required because Sema sets this on NRVO
600   // returns.
601   if (getLangOpts().ElideConstructors && E->isElidable()) {
602     assert(getContext().hasSameUnqualifiedType(E->getType(),
603                                                E->getArg(0)->getType()));
604     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
605       EmitAggExpr(E->getArg(0), Dest);
606       return;
607     }
608   }
609
610   if (const ArrayType *arrayType
611         = getContext().getAsArrayType(E->getType())) {
612     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
613                                Dest.isSanitizerChecked());
614   } else {
615     CXXCtorType Type = Ctor_Complete;
616     bool ForVirtualBase = false;
617     bool Delegating = false;
618
619     switch (E->getConstructionKind()) {
620      case CXXConstructExpr::CK_Delegating:
621       // We should be emitting a constructor; GlobalDecl will assert this
622       Type = CurGD.getCtorType();
623       Delegating = true;
624       break;
625
626      case CXXConstructExpr::CK_Complete:
627       Type = Ctor_Complete;
628       break;
629
630      case CXXConstructExpr::CK_VirtualBase:
631       ForVirtualBase = true;
632       LLVM_FALLTHROUGH;
633
634      case CXXConstructExpr::CK_NonVirtualBase:
635       Type = Ctor_Base;
636     }
637
638     // Call the constructor.
639     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
640                            Dest.getAddress(), E, Dest.mayOverlap(),
641                            Dest.isSanitizerChecked());
642   }
643 }
644
645 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
646                                                  const Expr *Exp) {
647   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
648     Exp = E->getSubExpr();
649   assert(isa<CXXConstructExpr>(Exp) &&
650          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
651   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
652   const CXXConstructorDecl *CD = E->getConstructor();
653   RunCleanupsScope Scope(*this);
654
655   // If we require zero initialization before (or instead of) calling the
656   // constructor, as can be the case with a non-user-provided default
657   // constructor, emit the zero initialization now.
658   // FIXME. Do I still need this for a copy ctor synthesis?
659   if (E->requiresZeroInitialization())
660     EmitNullInitialization(Dest, E->getType());
661
662   assert(!getContext().getAsConstantArrayType(E->getType())
663          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
664   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
665 }
666
667 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
668                                         const CXXNewExpr *E) {
669   if (!E->isArray())
670     return CharUnits::Zero();
671
672   // No cookie is required if the operator new[] being used is the
673   // reserved placement operator new[].
674   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
675     return CharUnits::Zero();
676
677   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
678 }
679
680 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
681                                         const CXXNewExpr *e,
682                                         unsigned minElements,
683                                         llvm::Value *&numElements,
684                                         llvm::Value *&sizeWithoutCookie) {
685   QualType type = e->getAllocatedType();
686
687   if (!e->isArray()) {
688     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
689     sizeWithoutCookie
690       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
691     return sizeWithoutCookie;
692   }
693
694   // The width of size_t.
695   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
696
697   // Figure out the cookie size.
698   llvm::APInt cookieSize(sizeWidth,
699                          CalculateCookiePadding(CGF, e).getQuantity());
700
701   // Emit the array size expression.
702   // We multiply the size of all dimensions for NumElements.
703   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
704   numElements =
705     ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
706   if (!numElements)
707     numElements = CGF.EmitScalarExpr(e->getArraySize());
708   assert(isa<llvm::IntegerType>(numElements->getType()));
709
710   // The number of elements can be have an arbitrary integer type;
711   // essentially, we need to multiply it by a constant factor, add a
712   // cookie size, and verify that the result is representable as a
713   // size_t.  That's just a gloss, though, and it's wrong in one
714   // important way: if the count is negative, it's an error even if
715   // the cookie size would bring the total size >= 0.
716   bool isSigned
717     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
718   llvm::IntegerType *numElementsType
719     = cast<llvm::IntegerType>(numElements->getType());
720   unsigned numElementsWidth = numElementsType->getBitWidth();
721
722   // Compute the constant factor.
723   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
724   while (const ConstantArrayType *CAT
725              = CGF.getContext().getAsConstantArrayType(type)) {
726     type = CAT->getElementType();
727     arraySizeMultiplier *= CAT->getSize();
728   }
729
730   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
731   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
732   typeSizeMultiplier *= arraySizeMultiplier;
733
734   // This will be a size_t.
735   llvm::Value *size;
736
737   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
738   // Don't bloat the -O0 code.
739   if (llvm::ConstantInt *numElementsC =
740         dyn_cast<llvm::ConstantInt>(numElements)) {
741     const llvm::APInt &count = numElementsC->getValue();
742
743     bool hasAnyOverflow = false;
744
745     // If 'count' was a negative number, it's an overflow.
746     if (isSigned && count.isNegative())
747       hasAnyOverflow = true;
748
749     // We want to do all this arithmetic in size_t.  If numElements is
750     // wider than that, check whether it's already too big, and if so,
751     // overflow.
752     else if (numElementsWidth > sizeWidth &&
753              numElementsWidth - sizeWidth > count.countLeadingZeros())
754       hasAnyOverflow = true;
755
756     // Okay, compute a count at the right width.
757     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
758
759     // If there is a brace-initializer, we cannot allocate fewer elements than
760     // there are initializers. If we do, that's treated like an overflow.
761     if (adjustedCount.ult(minElements))
762       hasAnyOverflow = true;
763
764     // Scale numElements by that.  This might overflow, but we don't
765     // care because it only overflows if allocationSize does, too, and
766     // if that overflows then we shouldn't use this.
767     numElements = llvm::ConstantInt::get(CGF.SizeTy,
768                                          adjustedCount * arraySizeMultiplier);
769
770     // Compute the size before cookie, and track whether it overflowed.
771     bool overflow;
772     llvm::APInt allocationSize
773       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
774     hasAnyOverflow |= overflow;
775
776     // Add in the cookie, and check whether it's overflowed.
777     if (cookieSize != 0) {
778       // Save the current size without a cookie.  This shouldn't be
779       // used if there was overflow.
780       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
781
782       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
783       hasAnyOverflow |= overflow;
784     }
785
786     // On overflow, produce a -1 so operator new will fail.
787     if (hasAnyOverflow) {
788       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
789     } else {
790       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
791     }
792
793   // Otherwise, we might need to use the overflow intrinsics.
794   } else {
795     // There are up to five conditions we need to test for:
796     // 1) if isSigned, we need to check whether numElements is negative;
797     // 2) if numElementsWidth > sizeWidth, we need to check whether
798     //   numElements is larger than something representable in size_t;
799     // 3) if minElements > 0, we need to check whether numElements is smaller
800     //    than that.
801     // 4) we need to compute
802     //      sizeWithoutCookie := numElements * typeSizeMultiplier
803     //    and check whether it overflows; and
804     // 5) if we need a cookie, we need to compute
805     //      size := sizeWithoutCookie + cookieSize
806     //    and check whether it overflows.
807
808     llvm::Value *hasOverflow = nullptr;
809
810     // If numElementsWidth > sizeWidth, then one way or another, we're
811     // going to have to do a comparison for (2), and this happens to
812     // take care of (1), too.
813     if (numElementsWidth > sizeWidth) {
814       llvm::APInt threshold(numElementsWidth, 1);
815       threshold <<= sizeWidth;
816
817       llvm::Value *thresholdV
818         = llvm::ConstantInt::get(numElementsType, threshold);
819
820       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
821       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
822
823     // Otherwise, if we're signed, we want to sext up to size_t.
824     } else if (isSigned) {
825       if (numElementsWidth < sizeWidth)
826         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
827
828       // If there's a non-1 type size multiplier, then we can do the
829       // signedness check at the same time as we do the multiply
830       // because a negative number times anything will cause an
831       // unsigned overflow.  Otherwise, we have to do it here. But at least
832       // in this case, we can subsume the >= minElements check.
833       if (typeSizeMultiplier == 1)
834         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
835                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
836
837     // Otherwise, zext up to size_t if necessary.
838     } else if (numElementsWidth < sizeWidth) {
839       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
840     }
841
842     assert(numElements->getType() == CGF.SizeTy);
843
844     if (minElements) {
845       // Don't allow allocation of fewer elements than we have initializers.
846       if (!hasOverflow) {
847         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
848                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
849       } else if (numElementsWidth > sizeWidth) {
850         // The other existing overflow subsumes this check.
851         // We do an unsigned comparison, since any signed value < -1 is
852         // taken care of either above or below.
853         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
854                           CGF.Builder.CreateICmpULT(numElements,
855                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
856       }
857     }
858
859     size = numElements;
860
861     // Multiply by the type size if necessary.  This multiplier
862     // includes all the factors for nested arrays.
863     //
864     // This step also causes numElements to be scaled up by the
865     // nested-array factor if necessary.  Overflow on this computation
866     // can be ignored because the result shouldn't be used if
867     // allocation fails.
868     if (typeSizeMultiplier != 1) {
869       llvm::Value *umul_with_overflow
870         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
871
872       llvm::Value *tsmV =
873         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
874       llvm::Value *result =
875           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
876
877       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
878       if (hasOverflow)
879         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
880       else
881         hasOverflow = overflowed;
882
883       size = CGF.Builder.CreateExtractValue(result, 0);
884
885       // Also scale up numElements by the array size multiplier.
886       if (arraySizeMultiplier != 1) {
887         // If the base element type size is 1, then we can re-use the
888         // multiply we just did.
889         if (typeSize.isOne()) {
890           assert(arraySizeMultiplier == typeSizeMultiplier);
891           numElements = size;
892
893         // Otherwise we need a separate multiply.
894         } else {
895           llvm::Value *asmV =
896             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
897           numElements = CGF.Builder.CreateMul(numElements, asmV);
898         }
899       }
900     } else {
901       // numElements doesn't need to be scaled.
902       assert(arraySizeMultiplier == 1);
903     }
904
905     // Add in the cookie size if necessary.
906     if (cookieSize != 0) {
907       sizeWithoutCookie = size;
908
909       llvm::Value *uadd_with_overflow
910         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
911
912       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
913       llvm::Value *result =
914           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
915
916       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
917       if (hasOverflow)
918         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
919       else
920         hasOverflow = overflowed;
921
922       size = CGF.Builder.CreateExtractValue(result, 0);
923     }
924
925     // If we had any possibility of dynamic overflow, make a select to
926     // overwrite 'size' with an all-ones value, which should cause
927     // operator new to throw.
928     if (hasOverflow)
929       size = CGF.Builder.CreateSelect(hasOverflow,
930                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
931                                       size);
932   }
933
934   if (cookieSize == 0)
935     sizeWithoutCookie = size;
936   else
937     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
938
939   return size;
940 }
941
942 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
943                                     QualType AllocType, Address NewPtr,
944                                     AggValueSlot::Overlap_t MayOverlap) {
945   // FIXME: Refactor with EmitExprAsInit.
946   switch (CGF.getEvaluationKind(AllocType)) {
947   case TEK_Scalar:
948     CGF.EmitScalarInit(Init, nullptr,
949                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
950     return;
951   case TEK_Complex:
952     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
953                                   /*isInit*/ true);
954     return;
955   case TEK_Aggregate: {
956     AggValueSlot Slot
957       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
958                               AggValueSlot::IsDestructed,
959                               AggValueSlot::DoesNotNeedGCBarriers,
960                               AggValueSlot::IsNotAliased,
961                               MayOverlap, AggValueSlot::IsNotZeroed,
962                               AggValueSlot::IsSanitizerChecked);
963     CGF.EmitAggExpr(Init, Slot);
964     return;
965   }
966   }
967   llvm_unreachable("bad evaluation kind");
968 }
969
970 void CodeGenFunction::EmitNewArrayInitializer(
971     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
972     Address BeginPtr, llvm::Value *NumElements,
973     llvm::Value *AllocSizeWithoutCookie) {
974   // If we have a type with trivial initialization and no initializer,
975   // there's nothing to do.
976   if (!E->hasInitializer())
977     return;
978
979   Address CurPtr = BeginPtr;
980
981   unsigned InitListElements = 0;
982
983   const Expr *Init = E->getInitializer();
984   Address EndOfInit = Address::invalid();
985   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
986   EHScopeStack::stable_iterator Cleanup;
987   llvm::Instruction *CleanupDominator = nullptr;
988
989   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
990   CharUnits ElementAlign =
991     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
992
993   // Attempt to perform zero-initialization using memset.
994   auto TryMemsetInitialization = [&]() -> bool {
995     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
996     // we can initialize with a memset to -1.
997     if (!CGM.getTypes().isZeroInitializable(ElementType))
998       return false;
999
1000     // Optimization: since zero initialization will just set the memory
1001     // to all zeroes, generate a single memset to do it in one shot.
1002
1003     // Subtract out the size of any elements we've already initialized.
1004     auto *RemainingSize = AllocSizeWithoutCookie;
1005     if (InitListElements) {
1006       // We know this can't overflow; we check this when doing the allocation.
1007       auto *InitializedSize = llvm::ConstantInt::get(
1008           RemainingSize->getType(),
1009           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1010               InitListElements);
1011       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1012     }
1013
1014     // Create the memset.
1015     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1016     return true;
1017   };
1018
1019   // If the initializer is an initializer list, first do the explicit elements.
1020   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1021     // Initializing from a (braced) string literal is a special case; the init
1022     // list element does not initialize a (single) array element.
1023     if (ILE->isStringLiteralInit()) {
1024       // Initialize the initial portion of length equal to that of the string
1025       // literal. The allocation must be for at least this much; we emitted a
1026       // check for that earlier.
1027       AggValueSlot Slot =
1028           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1029                                 AggValueSlot::IsDestructed,
1030                                 AggValueSlot::DoesNotNeedGCBarriers,
1031                                 AggValueSlot::IsNotAliased,
1032                                 AggValueSlot::DoesNotOverlap,
1033                                 AggValueSlot::IsNotZeroed,
1034                                 AggValueSlot::IsSanitizerChecked);
1035       EmitAggExpr(ILE->getInit(0), Slot);
1036
1037       // Move past these elements.
1038       InitListElements =
1039           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1040               ->getSize().getZExtValue();
1041       CurPtr =
1042           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1043                                             Builder.getSize(InitListElements),
1044                                             "string.init.end"),
1045                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1046                                                           ElementSize));
1047
1048       // Zero out the rest, if any remain.
1049       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1050       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1051         bool OK = TryMemsetInitialization();
1052         (void)OK;
1053         assert(OK && "couldn't memset character type?");
1054       }
1055       return;
1056     }
1057
1058     InitListElements = ILE->getNumInits();
1059
1060     // If this is a multi-dimensional array new, we will initialize multiple
1061     // elements with each init list element.
1062     QualType AllocType = E->getAllocatedType();
1063     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1064             AllocType->getAsArrayTypeUnsafe())) {
1065       ElementTy = ConvertTypeForMem(AllocType);
1066       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1067       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1068     }
1069
1070     // Enter a partial-destruction Cleanup if necessary.
1071     if (needsEHCleanup(DtorKind)) {
1072       // In principle we could tell the Cleanup where we are more
1073       // directly, but the control flow can get so varied here that it
1074       // would actually be quite complex.  Therefore we go through an
1075       // alloca.
1076       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1077                                    "array.init.end");
1078       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1079       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1080                                        ElementType, ElementAlign,
1081                                        getDestroyer(DtorKind));
1082       Cleanup = EHStack.stable_begin();
1083     }
1084
1085     CharUnits StartAlign = CurPtr.getAlignment();
1086     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1087       // Tell the cleanup that it needs to destroy up to this
1088       // element.  TODO: some of these stores can be trivially
1089       // observed to be unnecessary.
1090       if (EndOfInit.isValid()) {
1091         auto FinishedPtr =
1092           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1093         Builder.CreateStore(FinishedPtr, EndOfInit);
1094       }
1095       // FIXME: If the last initializer is an incomplete initializer list for
1096       // an array, and we have an array filler, we can fold together the two
1097       // initialization loops.
1098       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1099                               ILE->getInit(i)->getType(), CurPtr,
1100                               AggValueSlot::DoesNotOverlap);
1101       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1102                                                  Builder.getSize(1),
1103                                                  "array.exp.next"),
1104                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1105     }
1106
1107     // The remaining elements are filled with the array filler expression.
1108     Init = ILE->getArrayFiller();
1109
1110     // Extract the initializer for the individual array elements by pulling
1111     // out the array filler from all the nested initializer lists. This avoids
1112     // generating a nested loop for the initialization.
1113     while (Init && Init->getType()->isConstantArrayType()) {
1114       auto *SubILE = dyn_cast<InitListExpr>(Init);
1115       if (!SubILE)
1116         break;
1117       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1118       Init = SubILE->getArrayFiller();
1119     }
1120
1121     // Switch back to initializing one base element at a time.
1122     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1123   }
1124
1125   // If all elements have already been initialized, skip any further
1126   // initialization.
1127   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1128   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1129     // If there was a Cleanup, deactivate it.
1130     if (CleanupDominator)
1131       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1132     return;
1133   }
1134
1135   assert(Init && "have trailing elements to initialize but no initializer");
1136
1137   // If this is a constructor call, try to optimize it out, and failing that
1138   // emit a single loop to initialize all remaining elements.
1139   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1140     CXXConstructorDecl *Ctor = CCE->getConstructor();
1141     if (Ctor->isTrivial()) {
1142       // If new expression did not specify value-initialization, then there
1143       // is no initialization.
1144       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1145         return;
1146
1147       if (TryMemsetInitialization())
1148         return;
1149     }
1150
1151     // Store the new Cleanup position for irregular Cleanups.
1152     //
1153     // FIXME: Share this cleanup with the constructor call emission rather than
1154     // having it create a cleanup of its own.
1155     if (EndOfInit.isValid())
1156       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1157
1158     // Emit a constructor call loop to initialize the remaining elements.
1159     if (InitListElements)
1160       NumElements = Builder.CreateSub(
1161           NumElements,
1162           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1163     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1164                                /*NewPointerIsChecked*/true,
1165                                CCE->requiresZeroInitialization());
1166     return;
1167   }
1168
1169   // If this is value-initialization, we can usually use memset.
1170   ImplicitValueInitExpr IVIE(ElementType);
1171   if (isa<ImplicitValueInitExpr>(Init)) {
1172     if (TryMemsetInitialization())
1173       return;
1174
1175     // Switch to an ImplicitValueInitExpr for the element type. This handles
1176     // only one case: multidimensional array new of pointers to members. In
1177     // all other cases, we already have an initializer for the array element.
1178     Init = &IVIE;
1179   }
1180
1181   // At this point we should have found an initializer for the individual
1182   // elements of the array.
1183   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1184          "got wrong type of element to initialize");
1185
1186   // If we have an empty initializer list, we can usually use memset.
1187   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1188     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1189       return;
1190
1191   // If we have a struct whose every field is value-initialized, we can
1192   // usually use memset.
1193   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1194     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1195       if (RType->getDecl()->isStruct()) {
1196         unsigned NumElements = 0;
1197         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1198           NumElements = CXXRD->getNumBases();
1199         for (auto *Field : RType->getDecl()->fields())
1200           if (!Field->isUnnamedBitfield())
1201             ++NumElements;
1202         // FIXME: Recurse into nested InitListExprs.
1203         if (ILE->getNumInits() == NumElements)
1204           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1205             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1206               --NumElements;
1207         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1208           return;
1209       }
1210     }
1211   }
1212
1213   // Create the loop blocks.
1214   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1215   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1216   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1217
1218   // Find the end of the array, hoisted out of the loop.
1219   llvm::Value *EndPtr =
1220     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1221
1222   // If the number of elements isn't constant, we have to now check if there is
1223   // anything left to initialize.
1224   if (!ConstNum) {
1225     llvm::Value *IsEmpty =
1226       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1227     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1228   }
1229
1230   // Enter the loop.
1231   EmitBlock(LoopBB);
1232
1233   // Set up the current-element phi.
1234   llvm::PHINode *CurPtrPhi =
1235     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1236   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1237
1238   CurPtr = Address(CurPtrPhi, ElementAlign);
1239
1240   // Store the new Cleanup position for irregular Cleanups.
1241   if (EndOfInit.isValid())
1242     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1243
1244   // Enter a partial-destruction Cleanup if necessary.
1245   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1246     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1247                                    ElementType, ElementAlign,
1248                                    getDestroyer(DtorKind));
1249     Cleanup = EHStack.stable_begin();
1250     CleanupDominator = Builder.CreateUnreachable();
1251   }
1252
1253   // Emit the initializer into this element.
1254   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1255                           AggValueSlot::DoesNotOverlap);
1256
1257   // Leave the Cleanup if we entered one.
1258   if (CleanupDominator) {
1259     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1260     CleanupDominator->eraseFromParent();
1261   }
1262
1263   // Advance to the next element by adjusting the pointer type as necessary.
1264   llvm::Value *NextPtr =
1265     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1266                                        "array.next");
1267
1268   // Check whether we've gotten to the end of the array and, if so,
1269   // exit the loop.
1270   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1271   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1272   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1273
1274   EmitBlock(ContBB);
1275 }
1276
1277 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1278                                QualType ElementType, llvm::Type *ElementTy,
1279                                Address NewPtr, llvm::Value *NumElements,
1280                                llvm::Value *AllocSizeWithoutCookie) {
1281   ApplyDebugLocation DL(CGF, E);
1282   if (E->isArray())
1283     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1284                                 AllocSizeWithoutCookie);
1285   else if (const Expr *Init = E->getInitializer())
1286     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1287                             AggValueSlot::DoesNotOverlap);
1288 }
1289
1290 /// Emit a call to an operator new or operator delete function, as implicitly
1291 /// created by new-expressions and delete-expressions.
1292 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1293                                 const FunctionDecl *CalleeDecl,
1294                                 const FunctionProtoType *CalleeType,
1295                                 const CallArgList &Args) {
1296   llvm::Instruction *CallOrInvoke;
1297   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1298   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1299   RValue RV =
1300       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1301                        Args, CalleeType, /*chainCall=*/false),
1302                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1303
1304   /// C++1y [expr.new]p10:
1305   ///   [In a new-expression,] an implementation is allowed to omit a call
1306   ///   to a replaceable global allocation function.
1307   ///
1308   /// We model such elidable calls with the 'builtin' attribute.
1309   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1310   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1311       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1312     // FIXME: Add addAttribute to CallSite.
1313     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1314       CI->addAttribute(llvm::AttributeList::FunctionIndex,
1315                        llvm::Attribute::Builtin);
1316     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1317       II->addAttribute(llvm::AttributeList::FunctionIndex,
1318                        llvm::Attribute::Builtin);
1319     else
1320       llvm_unreachable("unexpected kind of call instruction");
1321   }
1322
1323   return RV;
1324 }
1325
1326 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1327                                                  const CallExpr *TheCall,
1328                                                  bool IsDelete) {
1329   CallArgList Args;
1330   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1331   // Find the allocation or deallocation function that we're calling.
1332   ASTContext &Ctx = getContext();
1333   DeclarationName Name = Ctx.DeclarationNames
1334       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1335
1336   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1337     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1338       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1339         return EmitNewDeleteCall(*this, FD, Type, Args);
1340   llvm_unreachable("predeclared global operator new/delete is missing");
1341 }
1342
1343 namespace {
1344 /// The parameters to pass to a usual operator delete.
1345 struct UsualDeleteParams {
1346   bool DestroyingDelete = false;
1347   bool Size = false;
1348   bool Alignment = false;
1349 };
1350 }
1351
1352 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1353   UsualDeleteParams Params;
1354
1355   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1356   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1357
1358   // The first argument is always a void*.
1359   ++AI;
1360
1361   // The next parameter may be a std::destroying_delete_t.
1362   if (FD->isDestroyingOperatorDelete()) {
1363     Params.DestroyingDelete = true;
1364     assert(AI != AE);
1365     ++AI;
1366   }
1367
1368   // Figure out what other parameters we should be implicitly passing.
1369   if (AI != AE && (*AI)->isIntegerType()) {
1370     Params.Size = true;
1371     ++AI;
1372   }
1373
1374   if (AI != AE && (*AI)->isAlignValT()) {
1375     Params.Alignment = true;
1376     ++AI;
1377   }
1378
1379   assert(AI == AE && "unexpected usual deallocation function parameter");
1380   return Params;
1381 }
1382
1383 namespace {
1384   /// A cleanup to call the given 'operator delete' function upon abnormal
1385   /// exit from a new expression. Templated on a traits type that deals with
1386   /// ensuring that the arguments dominate the cleanup if necessary.
1387   template<typename Traits>
1388   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1389     /// Type used to hold llvm::Value*s.
1390     typedef typename Traits::ValueTy ValueTy;
1391     /// Type used to hold RValues.
1392     typedef typename Traits::RValueTy RValueTy;
1393     struct PlacementArg {
1394       RValueTy ArgValue;
1395       QualType ArgType;
1396     };
1397
1398     unsigned NumPlacementArgs : 31;
1399     unsigned PassAlignmentToPlacementDelete : 1;
1400     const FunctionDecl *OperatorDelete;
1401     ValueTy Ptr;
1402     ValueTy AllocSize;
1403     CharUnits AllocAlign;
1404
1405     PlacementArg *getPlacementArgs() {
1406       return reinterpret_cast<PlacementArg *>(this + 1);
1407     }
1408
1409   public:
1410     static size_t getExtraSize(size_t NumPlacementArgs) {
1411       return NumPlacementArgs * sizeof(PlacementArg);
1412     }
1413
1414     CallDeleteDuringNew(size_t NumPlacementArgs,
1415                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1416                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1417                         CharUnits AllocAlign)
1418       : NumPlacementArgs(NumPlacementArgs),
1419         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1420         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1421         AllocAlign(AllocAlign) {}
1422
1423     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1424       assert(I < NumPlacementArgs && "index out of range");
1425       getPlacementArgs()[I] = {Arg, Type};
1426     }
1427
1428     void Emit(CodeGenFunction &CGF, Flags flags) override {
1429       const FunctionProtoType *FPT =
1430           OperatorDelete->getType()->getAs<FunctionProtoType>();
1431       CallArgList DeleteArgs;
1432
1433       // The first argument is always a void* (or C* for a destroying operator
1434       // delete for class type C).
1435       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1436
1437       // Figure out what other parameters we should be implicitly passing.
1438       UsualDeleteParams Params;
1439       if (NumPlacementArgs) {
1440         // A placement deallocation function is implicitly passed an alignment
1441         // if the placement allocation function was, but is never passed a size.
1442         Params.Alignment = PassAlignmentToPlacementDelete;
1443       } else {
1444         // For a non-placement new-expression, 'operator delete' can take a
1445         // size and/or an alignment if it has the right parameters.
1446         Params = getUsualDeleteParams(OperatorDelete);
1447       }
1448
1449       assert(!Params.DestroyingDelete &&
1450              "should not call destroying delete in a new-expression");
1451
1452       // The second argument can be a std::size_t (for non-placement delete).
1453       if (Params.Size)
1454         DeleteArgs.add(Traits::get(CGF, AllocSize),
1455                        CGF.getContext().getSizeType());
1456
1457       // The next (second or third) argument can be a std::align_val_t, which
1458       // is an enum whose underlying type is std::size_t.
1459       // FIXME: Use the right type as the parameter type. Note that in a call
1460       // to operator delete(size_t, ...), we may not have it available.
1461       if (Params.Alignment)
1462         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1463                            CGF.SizeTy, AllocAlign.getQuantity())),
1464                        CGF.getContext().getSizeType());
1465
1466       // Pass the rest of the arguments, which must match exactly.
1467       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1468         auto Arg = getPlacementArgs()[I];
1469         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1470       }
1471
1472       // Call 'operator delete'.
1473       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1474     }
1475   };
1476 }
1477
1478 /// Enter a cleanup to call 'operator delete' if the initializer in a
1479 /// new-expression throws.
1480 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1481                                   const CXXNewExpr *E,
1482                                   Address NewPtr,
1483                                   llvm::Value *AllocSize,
1484                                   CharUnits AllocAlign,
1485                                   const CallArgList &NewArgs) {
1486   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1487
1488   // If we're not inside a conditional branch, then the cleanup will
1489   // dominate and we can do the easier (and more efficient) thing.
1490   if (!CGF.isInConditionalBranch()) {
1491     struct DirectCleanupTraits {
1492       typedef llvm::Value *ValueTy;
1493       typedef RValue RValueTy;
1494       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1495       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1496     };
1497
1498     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1499
1500     DirectCleanup *Cleanup = CGF.EHStack
1501       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1502                                            E->getNumPlacementArgs(),
1503                                            E->getOperatorDelete(),
1504                                            NewPtr.getPointer(),
1505                                            AllocSize,
1506                                            E->passAlignment(),
1507                                            AllocAlign);
1508     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1509       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1510       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1511     }
1512
1513     return;
1514   }
1515
1516   // Otherwise, we need to save all this stuff.
1517   DominatingValue<RValue>::saved_type SavedNewPtr =
1518     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1519   DominatingValue<RValue>::saved_type SavedAllocSize =
1520     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1521
1522   struct ConditionalCleanupTraits {
1523     typedef DominatingValue<RValue>::saved_type ValueTy;
1524     typedef DominatingValue<RValue>::saved_type RValueTy;
1525     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1526       return V.restore(CGF);
1527     }
1528   };
1529   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1530
1531   ConditionalCleanup *Cleanup = CGF.EHStack
1532     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1533                                               E->getNumPlacementArgs(),
1534                                               E->getOperatorDelete(),
1535                                               SavedNewPtr,
1536                                               SavedAllocSize,
1537                                               E->passAlignment(),
1538                                               AllocAlign);
1539   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1540     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1541     Cleanup->setPlacementArg(
1542         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1543   }
1544
1545   CGF.initFullExprCleanup();
1546 }
1547
1548 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1549   // The element type being allocated.
1550   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1551
1552   // 1. Build a call to the allocation function.
1553   FunctionDecl *allocator = E->getOperatorNew();
1554
1555   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1556   unsigned minElements = 0;
1557   if (E->isArray() && E->hasInitializer()) {
1558     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1559     if (ILE && ILE->isStringLiteralInit())
1560       minElements =
1561           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1562               ->getSize().getZExtValue();
1563     else if (ILE)
1564       minElements = ILE->getNumInits();
1565   }
1566
1567   llvm::Value *numElements = nullptr;
1568   llvm::Value *allocSizeWithoutCookie = nullptr;
1569   llvm::Value *allocSize =
1570     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1571                         allocSizeWithoutCookie);
1572   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1573
1574   // Emit the allocation call.  If the allocator is a global placement
1575   // operator, just "inline" it directly.
1576   Address allocation = Address::invalid();
1577   CallArgList allocatorArgs;
1578   if (allocator->isReservedGlobalPlacementOperator()) {
1579     assert(E->getNumPlacementArgs() == 1);
1580     const Expr *arg = *E->placement_arguments().begin();
1581
1582     LValueBaseInfo BaseInfo;
1583     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1584
1585     // The pointer expression will, in many cases, be an opaque void*.
1586     // In these cases, discard the computed alignment and use the
1587     // formal alignment of the allocated type.
1588     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1589       allocation = Address(allocation.getPointer(), allocAlign);
1590
1591     // Set up allocatorArgs for the call to operator delete if it's not
1592     // the reserved global operator.
1593     if (E->getOperatorDelete() &&
1594         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1595       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1596       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1597     }
1598
1599   } else {
1600     const FunctionProtoType *allocatorType =
1601       allocator->getType()->castAs<FunctionProtoType>();
1602     unsigned ParamsToSkip = 0;
1603
1604     // The allocation size is the first argument.
1605     QualType sizeType = getContext().getSizeType();
1606     allocatorArgs.add(RValue::get(allocSize), sizeType);
1607     ++ParamsToSkip;
1608
1609     if (allocSize != allocSizeWithoutCookie) {
1610       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1611       allocAlign = std::max(allocAlign, cookieAlign);
1612     }
1613
1614     // The allocation alignment may be passed as the second argument.
1615     if (E->passAlignment()) {
1616       QualType AlignValT = sizeType;
1617       if (allocatorType->getNumParams() > 1) {
1618         AlignValT = allocatorType->getParamType(1);
1619         assert(getContext().hasSameUnqualifiedType(
1620                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1621                    sizeType) &&
1622                "wrong type for alignment parameter");
1623         ++ParamsToSkip;
1624       } else {
1625         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1626         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1627       }
1628       allocatorArgs.add(
1629           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1630           AlignValT);
1631     }
1632
1633     // FIXME: Why do we not pass a CalleeDecl here?
1634     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1635                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1636
1637     RValue RV =
1638       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1639
1640     // If this was a call to a global replaceable allocation function that does
1641     // not take an alignment argument, the allocator is known to produce
1642     // storage that's suitably aligned for any object that fits, up to a known
1643     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1644     CharUnits allocationAlign = allocAlign;
1645     if (!E->passAlignment() &&
1646         allocator->isReplaceableGlobalAllocationFunction()) {
1647       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1648           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1649       allocationAlign = std::max(
1650           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1651     }
1652
1653     allocation = Address(RV.getScalarVal(), allocationAlign);
1654   }
1655
1656   // Emit a null check on the allocation result if the allocation
1657   // function is allowed to return null (because it has a non-throwing
1658   // exception spec or is the reserved placement new) and we have an
1659   // interesting initializer will be running sanitizers on the initialization.
1660   bool nullCheck = E->shouldNullCheckAllocation() &&
1661                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1662                     sanitizePerformTypeCheck());
1663
1664   llvm::BasicBlock *nullCheckBB = nullptr;
1665   llvm::BasicBlock *contBB = nullptr;
1666
1667   // The null-check means that the initializer is conditionally
1668   // evaluated.
1669   ConditionalEvaluation conditional(*this);
1670
1671   if (nullCheck) {
1672     conditional.begin(*this);
1673
1674     nullCheckBB = Builder.GetInsertBlock();
1675     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1676     contBB = createBasicBlock("new.cont");
1677
1678     llvm::Value *isNull =
1679       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1680     Builder.CreateCondBr(isNull, contBB, notNullBB);
1681     EmitBlock(notNullBB);
1682   }
1683
1684   // If there's an operator delete, enter a cleanup to call it if an
1685   // exception is thrown.
1686   EHScopeStack::stable_iterator operatorDeleteCleanup;
1687   llvm::Instruction *cleanupDominator = nullptr;
1688   if (E->getOperatorDelete() &&
1689       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1690     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1691                           allocatorArgs);
1692     operatorDeleteCleanup = EHStack.stable_begin();
1693     cleanupDominator = Builder.CreateUnreachable();
1694   }
1695
1696   assert((allocSize == allocSizeWithoutCookie) ==
1697          CalculateCookiePadding(*this, E).isZero());
1698   if (allocSize != allocSizeWithoutCookie) {
1699     assert(E->isArray());
1700     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1701                                                        numElements,
1702                                                        E, allocType);
1703   }
1704
1705   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1706   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1707
1708   // Passing pointer through launder.invariant.group to avoid propagation of
1709   // vptrs information which may be included in previous type.
1710   // To not break LTO with different optimizations levels, we do it regardless
1711   // of optimization level.
1712   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1713       allocator->isReservedGlobalPlacementOperator())
1714     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1715                      result.getAlignment());
1716
1717   // Emit sanitizer checks for pointer value now, so that in the case of an
1718   // array it was checked only once and not at each constructor call.
1719   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1720       E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1721       result.getPointer(), allocType);
1722
1723   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1724                      allocSizeWithoutCookie);
1725   if (E->isArray()) {
1726     // NewPtr is a pointer to the base element type.  If we're
1727     // allocating an array of arrays, we'll need to cast back to the
1728     // array pointer type.
1729     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1730     if (result.getType() != resultType)
1731       result = Builder.CreateBitCast(result, resultType);
1732   }
1733
1734   // Deactivate the 'operator delete' cleanup if we finished
1735   // initialization.
1736   if (operatorDeleteCleanup.isValid()) {
1737     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1738     cleanupDominator->eraseFromParent();
1739   }
1740
1741   llvm::Value *resultPtr = result.getPointer();
1742   if (nullCheck) {
1743     conditional.end(*this);
1744
1745     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1746     EmitBlock(contBB);
1747
1748     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1749     PHI->addIncoming(resultPtr, notNullBB);
1750     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1751                      nullCheckBB);
1752
1753     resultPtr = PHI;
1754   }
1755
1756   return resultPtr;
1757 }
1758
1759 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1760                                      llvm::Value *Ptr, QualType DeleteTy,
1761                                      llvm::Value *NumElements,
1762                                      CharUnits CookieSize) {
1763   assert((!NumElements && CookieSize.isZero()) ||
1764          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1765
1766   const FunctionProtoType *DeleteFTy =
1767     DeleteFD->getType()->getAs<FunctionProtoType>();
1768
1769   CallArgList DeleteArgs;
1770
1771   auto Params = getUsualDeleteParams(DeleteFD);
1772   auto ParamTypeIt = DeleteFTy->param_type_begin();
1773
1774   // Pass the pointer itself.
1775   QualType ArgTy = *ParamTypeIt++;
1776   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1777   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1778
1779   // Pass the std::destroying_delete tag if present.
1780   if (Params.DestroyingDelete) {
1781     QualType DDTag = *ParamTypeIt++;
1782     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1783     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1784     DeleteArgs.add(RValue::get(V), DDTag);
1785   }
1786
1787   // Pass the size if the delete function has a size_t parameter.
1788   if (Params.Size) {
1789     QualType SizeType = *ParamTypeIt++;
1790     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1791     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1792                                                DeleteTypeSize.getQuantity());
1793
1794     // For array new, multiply by the number of elements.
1795     if (NumElements)
1796       Size = Builder.CreateMul(Size, NumElements);
1797
1798     // If there is a cookie, add the cookie size.
1799     if (!CookieSize.isZero())
1800       Size = Builder.CreateAdd(
1801           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1802
1803     DeleteArgs.add(RValue::get(Size), SizeType);
1804   }
1805
1806   // Pass the alignment if the delete function has an align_val_t parameter.
1807   if (Params.Alignment) {
1808     QualType AlignValType = *ParamTypeIt++;
1809     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1810         getContext().getTypeAlignIfKnown(DeleteTy));
1811     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1812                                                 DeleteTypeAlign.getQuantity());
1813     DeleteArgs.add(RValue::get(Align), AlignValType);
1814   }
1815
1816   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1817          "unknown parameter to usual delete function");
1818
1819   // Emit the call to delete.
1820   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1821 }
1822
1823 namespace {
1824   /// Calls the given 'operator delete' on a single object.
1825   struct CallObjectDelete final : EHScopeStack::Cleanup {
1826     llvm::Value *Ptr;
1827     const FunctionDecl *OperatorDelete;
1828     QualType ElementType;
1829
1830     CallObjectDelete(llvm::Value *Ptr,
1831                      const FunctionDecl *OperatorDelete,
1832                      QualType ElementType)
1833       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1834
1835     void Emit(CodeGenFunction &CGF, Flags flags) override {
1836       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1837     }
1838   };
1839 }
1840
1841 void
1842 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1843                                              llvm::Value *CompletePtr,
1844                                              QualType ElementType) {
1845   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1846                                         OperatorDelete, ElementType);
1847 }
1848
1849 /// Emit the code for deleting a single object with a destroying operator
1850 /// delete. If the element type has a non-virtual destructor, Ptr has already
1851 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1852 /// Ptr points to an object of the static type.
1853 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1854                                        const CXXDeleteExpr *DE, Address Ptr,
1855                                        QualType ElementType) {
1856   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1857   if (Dtor && Dtor->isVirtual())
1858     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1859                                                 Dtor);
1860   else
1861     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1862 }
1863
1864 /// Emit the code for deleting a single object.
1865 static void EmitObjectDelete(CodeGenFunction &CGF,
1866                              const CXXDeleteExpr *DE,
1867                              Address Ptr,
1868                              QualType ElementType) {
1869   // C++11 [expr.delete]p3:
1870   //   If the static type of the object to be deleted is different from its
1871   //   dynamic type, the static type shall be a base class of the dynamic type
1872   //   of the object to be deleted and the static type shall have a virtual
1873   //   destructor or the behavior is undefined.
1874   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1875                     DE->getExprLoc(), Ptr.getPointer(),
1876                     ElementType);
1877
1878   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1879   assert(!OperatorDelete->isDestroyingOperatorDelete());
1880
1881   // Find the destructor for the type, if applicable.  If the
1882   // destructor is virtual, we'll just emit the vcall and return.
1883   const CXXDestructorDecl *Dtor = nullptr;
1884   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1885     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1886     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1887       Dtor = RD->getDestructor();
1888
1889       if (Dtor->isVirtual()) {
1890         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1891                                                     Dtor);
1892         return;
1893       }
1894     }
1895   }
1896
1897   // Make sure that we call delete even if the dtor throws.
1898   // This doesn't have to a conditional cleanup because we're going
1899   // to pop it off in a second.
1900   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1901                                             Ptr.getPointer(),
1902                                             OperatorDelete, ElementType);
1903
1904   if (Dtor)
1905     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1906                               /*ForVirtualBase=*/false,
1907                               /*Delegating=*/false,
1908                               Ptr);
1909   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1910     switch (Lifetime) {
1911     case Qualifiers::OCL_None:
1912     case Qualifiers::OCL_ExplicitNone:
1913     case Qualifiers::OCL_Autoreleasing:
1914       break;
1915
1916     case Qualifiers::OCL_Strong:
1917       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1918       break;
1919
1920     case Qualifiers::OCL_Weak:
1921       CGF.EmitARCDestroyWeak(Ptr);
1922       break;
1923     }
1924   }
1925
1926   CGF.PopCleanupBlock();
1927 }
1928
1929 namespace {
1930   /// Calls the given 'operator delete' on an array of objects.
1931   struct CallArrayDelete final : EHScopeStack::Cleanup {
1932     llvm::Value *Ptr;
1933     const FunctionDecl *OperatorDelete;
1934     llvm::Value *NumElements;
1935     QualType ElementType;
1936     CharUnits CookieSize;
1937
1938     CallArrayDelete(llvm::Value *Ptr,
1939                     const FunctionDecl *OperatorDelete,
1940                     llvm::Value *NumElements,
1941                     QualType ElementType,
1942                     CharUnits CookieSize)
1943       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1944         ElementType(ElementType), CookieSize(CookieSize) {}
1945
1946     void Emit(CodeGenFunction &CGF, Flags flags) override {
1947       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1948                          CookieSize);
1949     }
1950   };
1951 }
1952
1953 /// Emit the code for deleting an array of objects.
1954 static void EmitArrayDelete(CodeGenFunction &CGF,
1955                             const CXXDeleteExpr *E,
1956                             Address deletedPtr,
1957                             QualType elementType) {
1958   llvm::Value *numElements = nullptr;
1959   llvm::Value *allocatedPtr = nullptr;
1960   CharUnits cookieSize;
1961   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1962                                       numElements, allocatedPtr, cookieSize);
1963
1964   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1965
1966   // Make sure that we call delete even if one of the dtors throws.
1967   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1968   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1969                                            allocatedPtr, operatorDelete,
1970                                            numElements, elementType,
1971                                            cookieSize);
1972
1973   // Destroy the elements.
1974   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1975     assert(numElements && "no element count for a type with a destructor!");
1976
1977     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1978     CharUnits elementAlign =
1979       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1980
1981     llvm::Value *arrayBegin = deletedPtr.getPointer();
1982     llvm::Value *arrayEnd =
1983       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1984
1985     // Note that it is legal to allocate a zero-length array, and we
1986     // can never fold the check away because the length should always
1987     // come from a cookie.
1988     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1989                          CGF.getDestroyer(dtorKind),
1990                          /*checkZeroLength*/ true,
1991                          CGF.needsEHCleanup(dtorKind));
1992   }
1993
1994   // Pop the cleanup block.
1995   CGF.PopCleanupBlock();
1996 }
1997
1998 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1999   const Expr *Arg = E->getArgument();
2000   Address Ptr = EmitPointerWithAlignment(Arg);
2001
2002   // Null check the pointer.
2003   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2004   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2005
2006   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2007
2008   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2009   EmitBlock(DeleteNotNull);
2010
2011   QualType DeleteTy = E->getDestroyedType();
2012
2013   // A destroying operator delete overrides the entire operation of the
2014   // delete expression.
2015   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2016     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2017     EmitBlock(DeleteEnd);
2018     return;
2019   }
2020
2021   // We might be deleting a pointer to array.  If so, GEP down to the
2022   // first non-array element.
2023   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2024   if (DeleteTy->isConstantArrayType()) {
2025     llvm::Value *Zero = Builder.getInt32(0);
2026     SmallVector<llvm::Value*,8> GEP;
2027
2028     GEP.push_back(Zero); // point at the outermost array
2029
2030     // For each layer of array type we're pointing at:
2031     while (const ConstantArrayType *Arr
2032              = getContext().getAsConstantArrayType(DeleteTy)) {
2033       // 1. Unpeel the array type.
2034       DeleteTy = Arr->getElementType();
2035
2036       // 2. GEP to the first element of the array.
2037       GEP.push_back(Zero);
2038     }
2039
2040     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2041                   Ptr.getAlignment());
2042   }
2043
2044   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2045
2046   if (E->isArrayForm()) {
2047     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2048   } else {
2049     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2050   }
2051
2052   EmitBlock(DeleteEnd);
2053 }
2054
2055 static bool isGLValueFromPointerDeref(const Expr *E) {
2056   E = E->IgnoreParens();
2057
2058   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2059     if (!CE->getSubExpr()->isGLValue())
2060       return false;
2061     return isGLValueFromPointerDeref(CE->getSubExpr());
2062   }
2063
2064   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2065     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2066
2067   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2068     if (BO->getOpcode() == BO_Comma)
2069       return isGLValueFromPointerDeref(BO->getRHS());
2070
2071   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2072     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2073            isGLValueFromPointerDeref(ACO->getFalseExpr());
2074
2075   // C++11 [expr.sub]p1:
2076   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2077   if (isa<ArraySubscriptExpr>(E))
2078     return true;
2079
2080   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2081     if (UO->getOpcode() == UO_Deref)
2082       return true;
2083
2084   return false;
2085 }
2086
2087 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2088                                          llvm::Type *StdTypeInfoPtrTy) {
2089   // Get the vtable pointer.
2090   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2091
2092   QualType SrcRecordTy = E->getType();
2093
2094   // C++ [class.cdtor]p4:
2095   //   If the operand of typeid refers to the object under construction or
2096   //   destruction and the static type of the operand is neither the constructor
2097   //   or destructor’s class nor one of its bases, the behavior is undefined.
2098   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2099                     ThisPtr.getPointer(), SrcRecordTy);
2100
2101   // C++ [expr.typeid]p2:
2102   //   If the glvalue expression is obtained by applying the unary * operator to
2103   //   a pointer and the pointer is a null pointer value, the typeid expression
2104   //   throws the std::bad_typeid exception.
2105   //
2106   // However, this paragraph's intent is not clear.  We choose a very generous
2107   // interpretation which implores us to consider comma operators, conditional
2108   // operators, parentheses and other such constructs.
2109   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2110           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2111     llvm::BasicBlock *BadTypeidBlock =
2112         CGF.createBasicBlock("typeid.bad_typeid");
2113     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2114
2115     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2116     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2117
2118     CGF.EmitBlock(BadTypeidBlock);
2119     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2120     CGF.EmitBlock(EndBlock);
2121   }
2122
2123   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2124                                         StdTypeInfoPtrTy);
2125 }
2126
2127 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2128   llvm::Type *StdTypeInfoPtrTy =
2129     ConvertType(E->getType())->getPointerTo();
2130
2131   if (E->isTypeOperand()) {
2132     llvm::Constant *TypeInfo =
2133         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2134     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2135   }
2136
2137   // C++ [expr.typeid]p2:
2138   //   When typeid is applied to a glvalue expression whose type is a
2139   //   polymorphic class type, the result refers to a std::type_info object
2140   //   representing the type of the most derived object (that is, the dynamic
2141   //   type) to which the glvalue refers.
2142   if (E->isPotentiallyEvaluated())
2143     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2144                                 StdTypeInfoPtrTy);
2145
2146   QualType OperandTy = E->getExprOperand()->getType();
2147   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2148                                StdTypeInfoPtrTy);
2149 }
2150
2151 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2152                                           QualType DestTy) {
2153   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2154   if (DestTy->isPointerType())
2155     return llvm::Constant::getNullValue(DestLTy);
2156
2157   /// C++ [expr.dynamic.cast]p9:
2158   ///   A failed cast to reference type throws std::bad_cast
2159   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2160     return nullptr;
2161
2162   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2163   return llvm::UndefValue::get(DestLTy);
2164 }
2165
2166 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2167                                               const CXXDynamicCastExpr *DCE) {
2168   CGM.EmitExplicitCastExprType(DCE, this);
2169   QualType DestTy = DCE->getTypeAsWritten();
2170
2171   QualType SrcTy = DCE->getSubExpr()->getType();
2172
2173   // C++ [expr.dynamic.cast]p7:
2174   //   If T is "pointer to cv void," then the result is a pointer to the most
2175   //   derived object pointed to by v.
2176   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2177
2178   bool isDynamicCastToVoid;
2179   QualType SrcRecordTy;
2180   QualType DestRecordTy;
2181   if (DestPTy) {
2182     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2183     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2184     DestRecordTy = DestPTy->getPointeeType();
2185   } else {
2186     isDynamicCastToVoid = false;
2187     SrcRecordTy = SrcTy;
2188     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2189   }
2190
2191   // C++ [class.cdtor]p5:
2192   //   If the operand of the dynamic_cast refers to the object under
2193   //   construction or destruction and the static type of the operand is not a
2194   //   pointer to or object of the constructor or destructor’s own class or one
2195   //   of its bases, the dynamic_cast results in undefined behavior.
2196   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2197                 SrcRecordTy);
2198
2199   if (DCE->isAlwaysNull())
2200     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2201       return T;
2202
2203   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2204
2205   // C++ [expr.dynamic.cast]p4:
2206   //   If the value of v is a null pointer value in the pointer case, the result
2207   //   is the null pointer value of type T.
2208   bool ShouldNullCheckSrcValue =
2209       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2210                                                          SrcRecordTy);
2211
2212   llvm::BasicBlock *CastNull = nullptr;
2213   llvm::BasicBlock *CastNotNull = nullptr;
2214   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2215
2216   if (ShouldNullCheckSrcValue) {
2217     CastNull = createBasicBlock("dynamic_cast.null");
2218     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2219
2220     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2221     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2222     EmitBlock(CastNotNull);
2223   }
2224
2225   llvm::Value *Value;
2226   if (isDynamicCastToVoid) {
2227     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2228                                                   DestTy);
2229   } else {
2230     assert(DestRecordTy->isRecordType() &&
2231            "destination type must be a record type!");
2232     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2233                                                 DestTy, DestRecordTy, CastEnd);
2234     CastNotNull = Builder.GetInsertBlock();
2235   }
2236
2237   if (ShouldNullCheckSrcValue) {
2238     EmitBranch(CastEnd);
2239
2240     EmitBlock(CastNull);
2241     EmitBranch(CastEnd);
2242   }
2243
2244   EmitBlock(CastEnd);
2245
2246   if (ShouldNullCheckSrcValue) {
2247     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2248     PHI->addIncoming(Value, CastNotNull);
2249     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2250
2251     Value = PHI;
2252   }
2253
2254   return Value;
2255 }
2256
2257 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
2258   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2259
2260   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
2261   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
2262                                                e = E->capture_init_end();
2263        i != e; ++i, ++CurField) {
2264     // Emit initialization
2265     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2266     if (CurField->hasCapturedVLAType()) {
2267       auto VAT = CurField->getCapturedVLAType();
2268       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2269     } else {
2270       EmitInitializerForField(*CurField, LV, *i);
2271     }
2272   }
2273 }