]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprComplex.cpp
Merge clang trunk r238337 from ^/vendor/clang/dist, resolve conflicts,
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprComplex.cpp
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/Metadata.h"
25 #include <algorithm>
26 using namespace clang;
27 using namespace CodeGen;
28
29 //===----------------------------------------------------------------------===//
30 //                        Complex Expression Emitter
31 //===----------------------------------------------------------------------===//
32
33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
34
35 /// Return the complex type that we are meant to emit.
36 static const ComplexType *getComplexType(QualType type) {
37   type = type.getCanonicalType();
38   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39     return comp;
40   } else {
41     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42   }
43 }
44
45 namespace  {
46 class ComplexExprEmitter
47   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48   CodeGenFunction &CGF;
49   CGBuilderTy &Builder;
50   bool IgnoreReal;
51   bool IgnoreImag;
52 public:
53   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
54     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
55   }
56
57
58   //===--------------------------------------------------------------------===//
59   //                               Utilities
60   //===--------------------------------------------------------------------===//
61
62   bool TestAndClearIgnoreReal() {
63     bool I = IgnoreReal;
64     IgnoreReal = false;
65     return I;
66   }
67   bool TestAndClearIgnoreImag() {
68     bool I = IgnoreImag;
69     IgnoreImag = false;
70     return I;
71   }
72
73   /// EmitLoadOfLValue - Given an expression with complex type that represents a
74   /// value l-value, this method emits the address of the l-value, then loads
75   /// and returns the result.
76   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
77     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78   }
79
80   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
81
82   /// EmitStoreOfComplex - Store the specified real/imag parts into the
83   /// specified value pointer.
84   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
85
86   /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
87   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
88                                          QualType DestType);
89   /// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType.
90   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
91                                         QualType DestType);
92
93   //===--------------------------------------------------------------------===//
94   //                            Visitor Methods
95   //===--------------------------------------------------------------------===//
96
97   ComplexPairTy Visit(Expr *E) {
98     ApplyDebugLocation DL(CGF, E);
99     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
100   }
101
102   ComplexPairTy VisitStmt(Stmt *S) {
103     S->dump(CGF.getContext().getSourceManager());
104     llvm_unreachable("Stmt can't have complex result type!");
105   }
106   ComplexPairTy VisitExpr(Expr *S);
107   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
108   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109     return Visit(GE->getResultExpr());
110   }
111   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112   ComplexPairTy
113   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114     return Visit(PE->getReplacement());
115   }
116
117   // l-values.
118   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
119     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
120       if (result.isReference())
121         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
122                                 E->getExprLoc());
123
124       llvm::Constant *pair = result.getValue();
125       return ComplexPairTy(pair->getAggregateElement(0U),
126                            pair->getAggregateElement(1U));
127     }
128     return EmitLoadOfLValue(E);
129   }
130   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
131     return EmitLoadOfLValue(E);
132   }
133   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
134     return CGF.EmitObjCMessageExpr(E).getComplexVal();
135   }
136   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
137   ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
138   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
139     if (E->isGLValue())
140       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
141     return CGF.getOpaqueRValueMapping(E).getComplexVal();
142   }
143
144   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
145     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
146   }
147
148   // FIXME: CompoundLiteralExpr
149
150   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
151   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
152     // Unlike for scalars, we don't have to worry about function->ptr demotion
153     // here.
154     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
155   }
156   ComplexPairTy VisitCastExpr(CastExpr *E) {
157     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
158   }
159   ComplexPairTy VisitCallExpr(const CallExpr *E);
160   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
161
162   // Operators.
163   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
164                                    bool isInc, bool isPre) {
165     LValue LV = CGF.EmitLValue(E->getSubExpr());
166     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
167   }
168   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
169     return VisitPrePostIncDec(E, false, false);
170   }
171   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
172     return VisitPrePostIncDec(E, true, false);
173   }
174   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
175     return VisitPrePostIncDec(E, false, true);
176   }
177   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
178     return VisitPrePostIncDec(E, true, true);
179   }
180   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
181   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
182     TestAndClearIgnoreReal();
183     TestAndClearIgnoreImag();
184     return Visit(E->getSubExpr());
185   }
186   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
187   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
188   // LNot,Real,Imag never return complex.
189   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
190     return Visit(E->getSubExpr());
191   }
192   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
193     return Visit(DAE->getExpr());
194   }
195   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
196     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
197     return Visit(DIE->getExpr());
198   }
199   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
200     CGF.enterFullExpression(E);
201     CodeGenFunction::RunCleanupsScope Scope(CGF);
202     return Visit(E->getSubExpr());
203   }
204   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
205     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
206     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
207     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
208     return ComplexPairTy(Null, Null);
209   }
210   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
211     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
212     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
213     llvm::Constant *Null =
214                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
215     return ComplexPairTy(Null, Null);
216   }
217
218   struct BinOpInfo {
219     ComplexPairTy LHS;
220     ComplexPairTy RHS;
221     QualType Ty;  // Computation Type.
222   };
223
224   BinOpInfo EmitBinOps(const BinaryOperator *E);
225   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
226                                   ComplexPairTy (ComplexExprEmitter::*Func)
227                                   (const BinOpInfo &),
228                                   RValue &Val);
229   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
230                                    ComplexPairTy (ComplexExprEmitter::*Func)
231                                    (const BinOpInfo &));
232
233   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
234   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
235   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
236   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
237
238   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
239                                         const BinOpInfo &Op);
240
241   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
242     return EmitBinAdd(EmitBinOps(E));
243   }
244   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
245     return EmitBinSub(EmitBinOps(E));
246   }
247   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
248     return EmitBinMul(EmitBinOps(E));
249   }
250   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
251     return EmitBinDiv(EmitBinOps(E));
252   }
253
254   // Compound assignments.
255   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
256     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
257   }
258   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
259     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
260   }
261   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
262     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
263   }
264   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
265     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
266   }
267
268   // GCC rejects rem/and/or/xor for integer complex.
269   // Logical and/or always return int, never complex.
270
271   // No comparisons produce a complex result.
272
273   LValue EmitBinAssignLValue(const BinaryOperator *E,
274                              ComplexPairTy &Val);
275   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
276   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
277
278
279   ComplexPairTy
280   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
281   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
282
283   ComplexPairTy VisitInitListExpr(InitListExpr *E);
284
285   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
286     return EmitLoadOfLValue(E);
287   }
288
289   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
290
291   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
292     return CGF.EmitAtomicExpr(E).getComplexVal();
293   }
294 };
295 }  // end anonymous namespace.
296
297 //===----------------------------------------------------------------------===//
298 //                                Utilities
299 //===----------------------------------------------------------------------===//
300
301 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
302 /// load the real and imaginary pieces, returning them as Real/Imag.
303 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
304                                                    SourceLocation loc) {
305   assert(lvalue.isSimple() && "non-simple complex l-value?");
306   if (lvalue.getType()->isAtomicType())
307     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
308
309   llvm::Value *SrcPtr = lvalue.getAddress();
310   bool isVolatile = lvalue.isVolatileQualified();
311   unsigned AlignR = lvalue.getAlignment().getQuantity();
312   ASTContext &C = CGF.getContext();
313   QualType ComplexTy = lvalue.getType();
314   unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
315   unsigned AlignI = std::min(AlignR, ComplexAlign);
316
317   llvm::Value *Real=nullptr, *Imag=nullptr;
318
319   if (!IgnoreReal || isVolatile) {
320     llvm::Value *RealP = Builder.CreateStructGEP(nullptr, SrcPtr, 0,
321                                                  SrcPtr->getName() + ".realp");
322     Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile,
323                                      SrcPtr->getName() + ".real");
324   }
325
326   if (!IgnoreImag || isVolatile) {
327     llvm::Value *ImagP = Builder.CreateStructGEP(nullptr, SrcPtr, 1,
328                                                  SrcPtr->getName() + ".imagp");
329     Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile,
330                                      SrcPtr->getName() + ".imag");
331   }
332   return ComplexPairTy(Real, Imag);
333 }
334
335 /// EmitStoreOfComplex - Store the specified real/imag parts into the
336 /// specified value pointer.
337 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
338                                             bool isInit) {
339   if (lvalue.getType()->isAtomicType() ||
340       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
341     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
342
343   llvm::Value *Ptr = lvalue.getAddress();
344   llvm::Value *RealPtr = Builder.CreateStructGEP(nullptr, Ptr, 0, "real");
345   llvm::Value *ImagPtr = Builder.CreateStructGEP(nullptr, Ptr, 1, "imag");
346   unsigned AlignR = lvalue.getAlignment().getQuantity();
347   ASTContext &C = CGF.getContext();
348   QualType ComplexTy = lvalue.getType();
349   unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
350   unsigned AlignI = std::min(AlignR, ComplexAlign);
351
352   Builder.CreateAlignedStore(Val.first, RealPtr, AlignR,
353                              lvalue.isVolatileQualified());
354   Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI,
355                              lvalue.isVolatileQualified());
356 }
357
358
359
360 //===----------------------------------------------------------------------===//
361 //                            Visitor Methods
362 //===----------------------------------------------------------------------===//
363
364 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
365   CGF.ErrorUnsupported(E, "complex expression");
366   llvm::Type *EltTy =
367     CGF.ConvertType(getComplexType(E->getType())->getElementType());
368   llvm::Value *U = llvm::UndefValue::get(EltTy);
369   return ComplexPairTy(U, U);
370 }
371
372 ComplexPairTy ComplexExprEmitter::
373 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
374   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
375   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
376 }
377
378
379 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
380   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
381     return EmitLoadOfLValue(E);
382
383   return CGF.EmitCallExpr(E).getComplexVal();
384 }
385
386 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
387   CodeGenFunction::StmtExprEvaluation eval(CGF);
388   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
389   assert(RetAlloca && "Expected complex return value");
390   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
391                           E->getExprLoc());
392 }
393
394 /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
395 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
396                                                            QualType SrcType,
397                                                            QualType DestType) {
398   // Get the src/dest element type.
399   SrcType = SrcType->castAs<ComplexType>()->getElementType();
400   DestType = DestType->castAs<ComplexType>()->getElementType();
401
402   // C99 6.3.1.6: When a value of complex type is converted to another
403   // complex type, both the real and imaginary parts follow the conversion
404   // rules for the corresponding real types.
405   Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType);
406   Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType);
407   return Val;
408 }
409
410 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
411                                                           QualType SrcType,
412                                                           QualType DestType) {
413   // Convert the input element to the element type of the complex.
414   DestType = DestType->castAs<ComplexType>()->getElementType();
415   Val = CGF.EmitScalarConversion(Val, SrcType, DestType);
416
417   // Return (realval, 0).
418   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
419 }
420
421 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
422                                            QualType DestTy) {
423   switch (CK) {
424   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
425
426   // Atomic to non-atomic casts may be more than a no-op for some platforms and
427   // for some types.
428   case CK_AtomicToNonAtomic:
429   case CK_NonAtomicToAtomic:
430   case CK_NoOp:
431   case CK_LValueToRValue:
432   case CK_UserDefinedConversion:
433     return Visit(Op);
434
435   case CK_LValueBitCast: {
436     LValue origLV = CGF.EmitLValue(Op);
437     llvm::Value *V = origLV.getAddress();
438     V = Builder.CreateBitCast(V,
439                     CGF.ConvertType(CGF.getContext().getPointerType(DestTy)));
440     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy,
441                                                origLV.getAlignment()),
442                             Op->getExprLoc());
443   }
444
445   case CK_BitCast:
446   case CK_BaseToDerived:
447   case CK_DerivedToBase:
448   case CK_UncheckedDerivedToBase:
449   case CK_Dynamic:
450   case CK_ToUnion:
451   case CK_ArrayToPointerDecay:
452   case CK_FunctionToPointerDecay:
453   case CK_NullToPointer:
454   case CK_NullToMemberPointer:
455   case CK_BaseToDerivedMemberPointer:
456   case CK_DerivedToBaseMemberPointer:
457   case CK_MemberPointerToBoolean:
458   case CK_ReinterpretMemberPointer:
459   case CK_ConstructorConversion:
460   case CK_IntegralToPointer:
461   case CK_PointerToIntegral:
462   case CK_PointerToBoolean:
463   case CK_ToVoid:
464   case CK_VectorSplat:
465   case CK_IntegralCast:
466   case CK_IntegralToBoolean:
467   case CK_IntegralToFloating:
468   case CK_FloatingToIntegral:
469   case CK_FloatingToBoolean:
470   case CK_FloatingCast:
471   case CK_CPointerToObjCPointerCast:
472   case CK_BlockPointerToObjCPointerCast:
473   case CK_AnyPointerToBlockPointerCast:
474   case CK_ObjCObjectLValueCast:
475   case CK_FloatingComplexToReal:
476   case CK_FloatingComplexToBoolean:
477   case CK_IntegralComplexToReal:
478   case CK_IntegralComplexToBoolean:
479   case CK_ARCProduceObject:
480   case CK_ARCConsumeObject:
481   case CK_ARCReclaimReturnedObject:
482   case CK_ARCExtendBlockObject:
483   case CK_CopyAndAutoreleaseBlockObject:
484   case CK_BuiltinFnToFnPtr:
485   case CK_ZeroToOCLEvent:
486   case CK_AddressSpaceConversion:
487     llvm_unreachable("invalid cast kind for complex value");
488
489   case CK_FloatingRealToComplex:
490   case CK_IntegralRealToComplex:
491     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op),
492                                    Op->getType(), DestTy);
493
494   case CK_FloatingComplexCast:
495   case CK_FloatingComplexToIntegralComplex:
496   case CK_IntegralComplexCast:
497   case CK_IntegralComplexToFloatingComplex:
498     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy);
499   }
500
501   llvm_unreachable("unknown cast resulting in complex value");
502 }
503
504 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
505   TestAndClearIgnoreReal();
506   TestAndClearIgnoreImag();
507   ComplexPairTy Op = Visit(E->getSubExpr());
508
509   llvm::Value *ResR, *ResI;
510   if (Op.first->getType()->isFloatingPointTy()) {
511     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
512     ResI = Builder.CreateFNeg(Op.second, "neg.i");
513   } else {
514     ResR = Builder.CreateNeg(Op.first,  "neg.r");
515     ResI = Builder.CreateNeg(Op.second, "neg.i");
516   }
517   return ComplexPairTy(ResR, ResI);
518 }
519
520 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
521   TestAndClearIgnoreReal();
522   TestAndClearIgnoreImag();
523   // ~(a+ib) = a + i*-b
524   ComplexPairTy Op = Visit(E->getSubExpr());
525   llvm::Value *ResI;
526   if (Op.second->getType()->isFloatingPointTy())
527     ResI = Builder.CreateFNeg(Op.second, "conj.i");
528   else
529     ResI = Builder.CreateNeg(Op.second, "conj.i");
530
531   return ComplexPairTy(Op.first, ResI);
532 }
533
534 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
535   llvm::Value *ResR, *ResI;
536
537   if (Op.LHS.first->getType()->isFloatingPointTy()) {
538     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
539     if (Op.LHS.second && Op.RHS.second)
540       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
541     else
542       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
543     assert(ResI && "Only one operand may be real!");
544   } else {
545     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
546     assert(Op.LHS.second && Op.RHS.second &&
547            "Both operands of integer complex operators must be complex!");
548     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
549   }
550   return ComplexPairTy(ResR, ResI);
551 }
552
553 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
554   llvm::Value *ResR, *ResI;
555   if (Op.LHS.first->getType()->isFloatingPointTy()) {
556     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
557     if (Op.LHS.second && Op.RHS.second)
558       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
559     else
560       ResI = Op.LHS.second ? Op.LHS.second
561                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
562     assert(ResI && "Only one operand may be real!");
563   } else {
564     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
565     assert(Op.LHS.second && Op.RHS.second &&
566            "Both operands of integer complex operators must be complex!");
567     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
568   }
569   return ComplexPairTy(ResR, ResI);
570 }
571
572 /// \brief Emit a libcall for a binary operation on complex types.
573 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
574                                                           const BinOpInfo &Op) {
575   CallArgList Args;
576   Args.add(RValue::get(Op.LHS.first),
577            Op.Ty->castAs<ComplexType>()->getElementType());
578   Args.add(RValue::get(Op.LHS.second),
579            Op.Ty->castAs<ComplexType>()->getElementType());
580   Args.add(RValue::get(Op.RHS.first),
581            Op.Ty->castAs<ComplexType>()->getElementType());
582   Args.add(RValue::get(Op.RHS.second),
583            Op.Ty->castAs<ComplexType>()->getElementType());
584
585   // We *must* use the full CG function call building logic here because the
586   // complex type has special ABI handling. We also should not forget about
587   // special calling convention which may be used for compiler builtins.
588   const CGFunctionInfo &FuncInfo =
589     CGF.CGM.getTypes().arrangeFreeFunctionCall(
590       Op.Ty, Args, FunctionType::ExtInfo(/* No CC here - will be added later */),
591       RequiredArgs::All);
592   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
593   llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
594   llvm::Instruction *Call;
595
596   RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
597                             nullptr, &Call);
598   cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
599   cast<llvm::CallInst>(Call)->setDoesNotThrow();
600
601   return Res.getComplexVal();
602 }
603
604 /// \brief Lookup the libcall name for a given floating point type complex
605 /// multiply.
606 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
607   switch (Ty->getTypeID()) {
608   default:
609     llvm_unreachable("Unsupported floating point type!");
610   case llvm::Type::HalfTyID:
611     return "__mulhc3";
612   case llvm::Type::FloatTyID:
613     return "__mulsc3";
614   case llvm::Type::DoubleTyID:
615     return "__muldc3";
616   case llvm::Type::PPC_FP128TyID:
617     return "__multc3";
618   case llvm::Type::X86_FP80TyID:
619     return "__mulxc3";
620   case llvm::Type::FP128TyID:
621     return "__multc3";
622   }
623 }
624
625 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
626 // typed values.
627 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
628   using llvm::Value;
629   Value *ResR, *ResI;
630   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
631
632   if (Op.LHS.first->getType()->isFloatingPointTy()) {
633     // The general formulation is:
634     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
635     //
636     // But we can fold away components which would be zero due to a real
637     // operand according to C11 Annex G.5.1p2.
638     // FIXME: C11 also provides for imaginary types which would allow folding
639     // still more of this within the type system.
640
641     if (Op.LHS.second && Op.RHS.second) {
642       // If both operands are complex, emit the core math directly, and then
643       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
644       // to carefully re-compute the correct infinity representation if
645       // possible. The expectation is that the presence of NaNs here is
646       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
647       // This is good, because the libcall re-computes the core multiplication
648       // exactly the same as we do here and re-tests for NaNs in order to be
649       // a generic complex*complex libcall.
650
651       // First compute the four products.
652       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
653       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
654       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
655       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
656
657       // The real part is the difference of the first two, the imaginary part is
658       // the sum of the second.
659       ResR = Builder.CreateFSub(AC, BD, "mul_r");
660       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
661
662       // Emit the test for the real part becoming NaN and create a branch to
663       // handle it. We test for NaN by comparing the number to itself.
664       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
665       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
666       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
667       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
668       llvm::BasicBlock *OrigBB = Branch->getParent();
669
670       // Give hint that we very much don't expect to see NaNs.
671       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
672       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
673       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
674
675       // Now test the imaginary part and create its branch.
676       CGF.EmitBlock(INaNBB);
677       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
678       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
679       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
680       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
681
682       // Now emit the libcall on this slowest of the slow paths.
683       CGF.EmitBlock(LibCallBB);
684       Value *LibCallR, *LibCallI;
685       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
686           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
687       Builder.CreateBr(ContBB);
688
689       // Finally continue execution by phi-ing together the different
690       // computation paths.
691       CGF.EmitBlock(ContBB);
692       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
693       RealPHI->addIncoming(ResR, OrigBB);
694       RealPHI->addIncoming(ResR, INaNBB);
695       RealPHI->addIncoming(LibCallR, LibCallBB);
696       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
697       ImagPHI->addIncoming(ResI, OrigBB);
698       ImagPHI->addIncoming(ResI, INaNBB);
699       ImagPHI->addIncoming(LibCallI, LibCallBB);
700       return ComplexPairTy(RealPHI, ImagPHI);
701     }
702     assert((Op.LHS.second || Op.RHS.second) &&
703            "At least one operand must be complex!");
704
705     // If either of the operands is a real rather than a complex, the
706     // imaginary component is ignored when computing the real component of the
707     // result.
708     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
709
710     ResI = Op.LHS.second
711                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
712                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
713   } else {
714     assert(Op.LHS.second && Op.RHS.second &&
715            "Both operands of integer complex operators must be complex!");
716     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
717     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
718     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
719
720     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
721     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
722     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
723   }
724   return ComplexPairTy(ResR, ResI);
725 }
726
727 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
728 // typed values.
729 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
730   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
731   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
732
733
734   llvm::Value *DSTr, *DSTi;
735   if (LHSr->getType()->isFloatingPointTy()) {
736     // If we have a complex operand on the RHS, we delegate to a libcall to
737     // handle all of the complexities and minimize underflow/overflow cases.
738     //
739     // FIXME: We would be able to avoid the libcall in many places if we
740     // supported imaginary types in addition to complex types.
741     if (RHSi) {
742       BinOpInfo LibCallOp = Op;
743       // If LHS was a real, supply a null imaginary part.
744       if (!LHSi)
745         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
746
747       StringRef LibCallName;
748       switch (LHSr->getType()->getTypeID()) {
749       default:
750         llvm_unreachable("Unsupported floating point type!");
751       case llvm::Type::HalfTyID:
752         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
753       case llvm::Type::FloatTyID:
754         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
755       case llvm::Type::DoubleTyID:
756         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
757       case llvm::Type::PPC_FP128TyID:
758         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
759       case llvm::Type::X86_FP80TyID:
760         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
761       case llvm::Type::FP128TyID:
762         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
763       }
764     }
765     assert(LHSi && "Can have at most one non-complex operand!");
766
767     DSTr = Builder.CreateFDiv(LHSr, RHSr);
768     DSTi = Builder.CreateFDiv(LHSi, RHSr);
769   } else {
770     assert(Op.LHS.second && Op.RHS.second &&
771            "Both operands of integer complex operators must be complex!");
772     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
773     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
774     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
775     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
776
777     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
778     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
779     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
780
781     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
782     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
783     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
784
785     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
786       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
787       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
788     } else {
789       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
790       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
791     }
792   }
793
794   return ComplexPairTy(DSTr, DSTi);
795 }
796
797 ComplexExprEmitter::BinOpInfo
798 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
799   TestAndClearIgnoreReal();
800   TestAndClearIgnoreImag();
801   BinOpInfo Ops;
802   if (E->getLHS()->getType()->isRealFloatingType())
803     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
804   else
805     Ops.LHS = Visit(E->getLHS());
806   if (E->getRHS()->getType()->isRealFloatingType())
807     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
808   else
809     Ops.RHS = Visit(E->getRHS());
810
811   Ops.Ty = E->getType();
812   return Ops;
813 }
814
815
816 LValue ComplexExprEmitter::
817 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
818           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
819                          RValue &Val) {
820   TestAndClearIgnoreReal();
821   TestAndClearIgnoreImag();
822   QualType LHSTy = E->getLHS()->getType();
823   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
824     LHSTy = AT->getValueType();
825
826   BinOpInfo OpInfo;
827
828   // Load the RHS and LHS operands.
829   // __block variables need to have the rhs evaluated first, plus this should
830   // improve codegen a little.
831   OpInfo.Ty = E->getComputationResultType();
832   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
833
834   // The RHS should have been converted to the computation type.
835   if (E->getRHS()->getType()->isRealFloatingType()) {
836     assert(
837         CGF.getContext()
838             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
839     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
840   } else {
841     assert(CGF.getContext()
842                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
843     OpInfo.RHS = Visit(E->getRHS());
844   }
845
846   LValue LHS = CGF.EmitLValue(E->getLHS());
847
848   // Load from the l-value and convert it.
849   if (LHSTy->isAnyComplexType()) {
850     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc());
851     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
852   } else {
853     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc());
854     // For floating point real operands we can directly pass the scalar form
855     // to the binary operator emission and potentially get more efficient code.
856     if (LHSTy->isRealFloatingType()) {
857       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
858         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy);
859       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
860     } else {
861       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
862     }
863   }
864
865   // Expand the binary operator.
866   ComplexPairTy Result = (this->*Func)(OpInfo);
867
868   // Truncate the result and store it into the LHS lvalue.
869   if (LHSTy->isAnyComplexType()) {
870     ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy);
871     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
872     Val = RValue::getComplex(ResVal);
873   } else {
874     llvm::Value *ResVal =
875         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy);
876     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
877     Val = RValue::get(ResVal);
878   }
879
880   return LHS;
881 }
882
883 // Compound assignments.
884 ComplexPairTy ComplexExprEmitter::
885 EmitCompoundAssign(const CompoundAssignOperator *E,
886                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
887   RValue Val;
888   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
889
890   // The result of an assignment in C is the assigned r-value.
891   if (!CGF.getLangOpts().CPlusPlus)
892     return Val.getComplexVal();
893
894   // If the lvalue is non-volatile, return the computed value of the assignment.
895   if (!LV.isVolatileQualified())
896     return Val.getComplexVal();
897
898   return EmitLoadOfLValue(LV, E->getExprLoc());
899 }
900
901 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
902                                                ComplexPairTy &Val) {
903   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
904                                                  E->getRHS()->getType()) &&
905          "Invalid assignment");
906   TestAndClearIgnoreReal();
907   TestAndClearIgnoreImag();
908
909   // Emit the RHS.  __block variables need the RHS evaluated first.
910   Val = Visit(E->getRHS());
911
912   // Compute the address to store into.
913   LValue LHS = CGF.EmitLValue(E->getLHS());
914
915   // Store the result value into the LHS lvalue.
916   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
917
918   return LHS;
919 }
920
921 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
922   ComplexPairTy Val;
923   LValue LV = EmitBinAssignLValue(E, Val);
924
925   // The result of an assignment in C is the assigned r-value.
926   if (!CGF.getLangOpts().CPlusPlus)
927     return Val;
928
929   // If the lvalue is non-volatile, return the computed value of the assignment.
930   if (!LV.isVolatileQualified())
931     return Val;
932
933   return EmitLoadOfLValue(LV, E->getExprLoc());
934 }
935
936 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
937   CGF.EmitIgnoredExpr(E->getLHS());
938   return Visit(E->getRHS());
939 }
940
941 ComplexPairTy ComplexExprEmitter::
942 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
943   TestAndClearIgnoreReal();
944   TestAndClearIgnoreImag();
945   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
946   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
947   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
948
949   // Bind the common expression if necessary.
950   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
951
952
953   CodeGenFunction::ConditionalEvaluation eval(CGF);
954   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
955                            CGF.getProfileCount(E));
956
957   eval.begin(CGF);
958   CGF.EmitBlock(LHSBlock);
959   CGF.incrementProfileCounter(E);
960   ComplexPairTy LHS = Visit(E->getTrueExpr());
961   LHSBlock = Builder.GetInsertBlock();
962   CGF.EmitBranch(ContBlock);
963   eval.end(CGF);
964
965   eval.begin(CGF);
966   CGF.EmitBlock(RHSBlock);
967   ComplexPairTy RHS = Visit(E->getFalseExpr());
968   RHSBlock = Builder.GetInsertBlock();
969   CGF.EmitBlock(ContBlock);
970   eval.end(CGF);
971
972   // Create a PHI node for the real part.
973   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
974   RealPN->addIncoming(LHS.first, LHSBlock);
975   RealPN->addIncoming(RHS.first, RHSBlock);
976
977   // Create a PHI node for the imaginary part.
978   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
979   ImagPN->addIncoming(LHS.second, LHSBlock);
980   ImagPN->addIncoming(RHS.second, RHSBlock);
981
982   return ComplexPairTy(RealPN, ImagPN);
983 }
984
985 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
986   return Visit(E->getChosenSubExpr());
987 }
988
989 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
990     bool Ignore = TestAndClearIgnoreReal();
991     (void)Ignore;
992     assert (Ignore == false && "init list ignored");
993     Ignore = TestAndClearIgnoreImag();
994     (void)Ignore;
995     assert (Ignore == false && "init list ignored");
996
997   if (E->getNumInits() == 2) {
998     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
999     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1000     return ComplexPairTy(Real, Imag);
1001   } else if (E->getNumInits() == 1) {
1002     return Visit(E->getInit(0));
1003   }
1004
1005   // Empty init list intializes to null
1006   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1007   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1008   llvm::Type* LTy = CGF.ConvertType(Ty);
1009   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1010   return ComplexPairTy(zeroConstant, zeroConstant);
1011 }
1012
1013 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1014   llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr());
1015   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType());
1016
1017   if (!ArgPtr) {
1018     CGF.ErrorUnsupported(E, "complex va_arg expression");
1019     llvm::Type *EltTy =
1020       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1021     llvm::Value *U = llvm::UndefValue::get(EltTy);
1022     return ComplexPairTy(U, U);
1023   }
1024
1025   return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()),
1026                           E->getExprLoc());
1027 }
1028
1029 //===----------------------------------------------------------------------===//
1030 //                         Entry Point into this File
1031 //===----------------------------------------------------------------------===//
1032
1033 /// EmitComplexExpr - Emit the computation of the specified expression of
1034 /// complex type, ignoring the result.
1035 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1036                                                bool IgnoreImag) {
1037   assert(E && getComplexType(E->getType()) &&
1038          "Invalid complex expression to emit");
1039
1040   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1041       .Visit(const_cast<Expr *>(E));
1042 }
1043
1044 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1045                                                 bool isInit) {
1046   assert(E && getComplexType(E->getType()) &&
1047          "Invalid complex expression to emit");
1048   ComplexExprEmitter Emitter(*this);
1049   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1050   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1051 }
1052
1053 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1054 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1055                                          bool isInit) {
1056   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1057 }
1058
1059 /// EmitLoadOfComplex - Load a complex number from the specified address.
1060 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1061                                                  SourceLocation loc) {
1062   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1063 }
1064
1065 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1066   assert(E->getOpcode() == BO_Assign);
1067   ComplexPairTy Val; // ignored
1068   return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1069 }
1070
1071 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1072     const ComplexExprEmitter::BinOpInfo &);
1073
1074 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1075   switch (Op) {
1076   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1077   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1078   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1079   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1080   default:
1081     llvm_unreachable("unexpected complex compound assignment");
1082   }
1083 }
1084
1085 LValue CodeGenFunction::
1086 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1087   CompoundFunc Op = getComplexOp(E->getOpcode());
1088   RValue Val;
1089   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1090 }
1091
1092 LValue CodeGenFunction::
1093 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1094                                     llvm::Value *&Result) {
1095   CompoundFunc Op = getComplexOp(E->getOpcode());
1096   RValue Val;
1097   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1098   Result = Val.getScalarVal();
1099   return Ret;
1100 }