]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprComplex.cpp
Upgrade to OpenSSH 7.2p2.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprComplex.cpp
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/Metadata.h"
25 #include <algorithm>
26 using namespace clang;
27 using namespace CodeGen;
28
29 //===----------------------------------------------------------------------===//
30 //                        Complex Expression Emitter
31 //===----------------------------------------------------------------------===//
32
33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
34
35 /// Return the complex type that we are meant to emit.
36 static const ComplexType *getComplexType(QualType type) {
37   type = type.getCanonicalType();
38   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39     return comp;
40   } else {
41     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42   }
43 }
44
45 namespace  {
46 class ComplexExprEmitter
47   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48   CodeGenFunction &CGF;
49   CGBuilderTy &Builder;
50   bool IgnoreReal;
51   bool IgnoreImag;
52 public:
53   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
54     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
55   }
56
57
58   //===--------------------------------------------------------------------===//
59   //                               Utilities
60   //===--------------------------------------------------------------------===//
61
62   bool TestAndClearIgnoreReal() {
63     bool I = IgnoreReal;
64     IgnoreReal = false;
65     return I;
66   }
67   bool TestAndClearIgnoreImag() {
68     bool I = IgnoreImag;
69     IgnoreImag = false;
70     return I;
71   }
72
73   /// EmitLoadOfLValue - Given an expression with complex type that represents a
74   /// value l-value, this method emits the address of the l-value, then loads
75   /// and returns the result.
76   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
77     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78   }
79
80   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
81
82   /// EmitStoreOfComplex - Store the specified real/imag parts into the
83   /// specified value pointer.
84   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
85
86   /// Emit a cast from complex value Val to DestType.
87   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
88                                          QualType DestType, SourceLocation Loc);
89   /// Emit a cast from scalar value Val to DestType.
90   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
91                                         QualType DestType, SourceLocation Loc);
92
93   //===--------------------------------------------------------------------===//
94   //                            Visitor Methods
95   //===--------------------------------------------------------------------===//
96
97   ComplexPairTy Visit(Expr *E) {
98     ApplyDebugLocation DL(CGF, E);
99     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
100   }
101
102   ComplexPairTy VisitStmt(Stmt *S) {
103     S->dump(CGF.getContext().getSourceManager());
104     llvm_unreachable("Stmt can't have complex result type!");
105   }
106   ComplexPairTy VisitExpr(Expr *S);
107   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
108   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109     return Visit(GE->getResultExpr());
110   }
111   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112   ComplexPairTy
113   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114     return Visit(PE->getReplacement());
115   }
116
117   // l-values.
118   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
119     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
120       if (result.isReference())
121         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
122                                 E->getExprLoc());
123
124       llvm::Constant *pair = result.getValue();
125       return ComplexPairTy(pair->getAggregateElement(0U),
126                            pair->getAggregateElement(1U));
127     }
128     return EmitLoadOfLValue(E);
129   }
130   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
131     return EmitLoadOfLValue(E);
132   }
133   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
134     return CGF.EmitObjCMessageExpr(E).getComplexVal();
135   }
136   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
137   ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
138   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
139     if (E->isGLValue())
140       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
141     return CGF.getOpaqueRValueMapping(E).getComplexVal();
142   }
143
144   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
145     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
146   }
147
148   // FIXME: CompoundLiteralExpr
149
150   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
151   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
152     // Unlike for scalars, we don't have to worry about function->ptr demotion
153     // here.
154     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
155   }
156   ComplexPairTy VisitCastExpr(CastExpr *E) {
157     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
158       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
159     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
160   }
161   ComplexPairTy VisitCallExpr(const CallExpr *E);
162   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
163
164   // Operators.
165   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
166                                    bool isInc, bool isPre) {
167     LValue LV = CGF.EmitLValue(E->getSubExpr());
168     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
169   }
170   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
171     return VisitPrePostIncDec(E, false, false);
172   }
173   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
174     return VisitPrePostIncDec(E, true, false);
175   }
176   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
177     return VisitPrePostIncDec(E, false, true);
178   }
179   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
180     return VisitPrePostIncDec(E, true, true);
181   }
182   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
183   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
184     TestAndClearIgnoreReal();
185     TestAndClearIgnoreImag();
186     return Visit(E->getSubExpr());
187   }
188   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
189   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
190   // LNot,Real,Imag never return complex.
191   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
192     return Visit(E->getSubExpr());
193   }
194   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
195     return Visit(DAE->getExpr());
196   }
197   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
198     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
199     return Visit(DIE->getExpr());
200   }
201   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
202     CGF.enterFullExpression(E);
203     CodeGenFunction::RunCleanupsScope Scope(CGF);
204     return Visit(E->getSubExpr());
205   }
206   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
207     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
208     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
209     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
210     return ComplexPairTy(Null, Null);
211   }
212   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
213     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
214     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
215     llvm::Constant *Null =
216                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
217     return ComplexPairTy(Null, Null);
218   }
219
220   struct BinOpInfo {
221     ComplexPairTy LHS;
222     ComplexPairTy RHS;
223     QualType Ty;  // Computation Type.
224   };
225
226   BinOpInfo EmitBinOps(const BinaryOperator *E);
227   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
228                                   ComplexPairTy (ComplexExprEmitter::*Func)
229                                   (const BinOpInfo &),
230                                   RValue &Val);
231   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
232                                    ComplexPairTy (ComplexExprEmitter::*Func)
233                                    (const BinOpInfo &));
234
235   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
236   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
237   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
238   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
239
240   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
241                                         const BinOpInfo &Op);
242
243   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
244     return EmitBinAdd(EmitBinOps(E));
245   }
246   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
247     return EmitBinSub(EmitBinOps(E));
248   }
249   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
250     return EmitBinMul(EmitBinOps(E));
251   }
252   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
253     return EmitBinDiv(EmitBinOps(E));
254   }
255
256   // Compound assignments.
257   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
258     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
259   }
260   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
261     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
262   }
263   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
264     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
265   }
266   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
267     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
268   }
269
270   // GCC rejects rem/and/or/xor for integer complex.
271   // Logical and/or always return int, never complex.
272
273   // No comparisons produce a complex result.
274
275   LValue EmitBinAssignLValue(const BinaryOperator *E,
276                              ComplexPairTy &Val);
277   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
278   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
279
280
281   ComplexPairTy
282   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
283   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
284
285   ComplexPairTy VisitInitListExpr(InitListExpr *E);
286
287   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
288     return EmitLoadOfLValue(E);
289   }
290
291   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
292
293   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
294     return CGF.EmitAtomicExpr(E).getComplexVal();
295   }
296 };
297 }  // end anonymous namespace.
298
299 //===----------------------------------------------------------------------===//
300 //                                Utilities
301 //===----------------------------------------------------------------------===//
302
303 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
304                                                  QualType complexType) {
305   CharUnits offset = CharUnits::Zero();
306   return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
307 }
308
309 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
310                                                  QualType complexType) {
311   QualType eltType = complexType->castAs<ComplexType>()->getElementType();
312   CharUnits offset = getContext().getTypeSizeInChars(eltType);
313   return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
314 }
315
316 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
317 /// load the real and imaginary pieces, returning them as Real/Imag.
318 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
319                                                    SourceLocation loc) {
320   assert(lvalue.isSimple() && "non-simple complex l-value?");
321   if (lvalue.getType()->isAtomicType())
322     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
323
324   Address SrcPtr = lvalue.getAddress();
325   bool isVolatile = lvalue.isVolatileQualified();
326
327   llvm::Value *Real = nullptr, *Imag = nullptr;
328
329   if (!IgnoreReal || isVolatile) {
330     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
331     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
332   }
333
334   if (!IgnoreImag || isVolatile) {
335     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
336     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
337   }
338
339   return ComplexPairTy(Real, Imag);
340 }
341
342 /// EmitStoreOfComplex - Store the specified real/imag parts into the
343 /// specified value pointer.
344 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
345                                             bool isInit) {
346   if (lvalue.getType()->isAtomicType() ||
347       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
348     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
349
350   Address Ptr = lvalue.getAddress();
351   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
352   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
353
354   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
355   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
356 }
357
358
359
360 //===----------------------------------------------------------------------===//
361 //                            Visitor Methods
362 //===----------------------------------------------------------------------===//
363
364 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
365   CGF.ErrorUnsupported(E, "complex expression");
366   llvm::Type *EltTy =
367     CGF.ConvertType(getComplexType(E->getType())->getElementType());
368   llvm::Value *U = llvm::UndefValue::get(EltTy);
369   return ComplexPairTy(U, U);
370 }
371
372 ComplexPairTy ComplexExprEmitter::
373 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
374   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
375   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
376 }
377
378
379 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
380   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
381     return EmitLoadOfLValue(E);
382
383   return CGF.EmitCallExpr(E).getComplexVal();
384 }
385
386 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
387   CodeGenFunction::StmtExprEvaluation eval(CGF);
388   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
389   assert(RetAlloca.isValid() && "Expected complex return value");
390   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
391                           E->getExprLoc());
392 }
393
394 /// Emit a cast from complex value Val to DestType.
395 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
396                                                            QualType SrcType,
397                                                            QualType DestType,
398                                                            SourceLocation Loc) {
399   // Get the src/dest element type.
400   SrcType = SrcType->castAs<ComplexType>()->getElementType();
401   DestType = DestType->castAs<ComplexType>()->getElementType();
402
403   // C99 6.3.1.6: When a value of complex type is converted to another
404   // complex type, both the real and imaginary parts follow the conversion
405   // rules for the corresponding real types.
406   Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
407   Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
408   return Val;
409 }
410
411 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
412                                                           QualType SrcType,
413                                                           QualType DestType,
414                                                           SourceLocation Loc) {
415   // Convert the input element to the element type of the complex.
416   DestType = DestType->castAs<ComplexType>()->getElementType();
417   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
418
419   // Return (realval, 0).
420   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
421 }
422
423 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
424                                            QualType DestTy) {
425   switch (CK) {
426   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
427
428   // Atomic to non-atomic casts may be more than a no-op for some platforms and
429   // for some types.
430   case CK_AtomicToNonAtomic:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_LValueToRValue:
434   case CK_UserDefinedConversion:
435     return Visit(Op);
436
437   case CK_LValueBitCast: {
438     LValue origLV = CGF.EmitLValue(Op);
439     Address V = origLV.getAddress();
440     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
441     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
442   }
443
444   case CK_BitCast:
445   case CK_BaseToDerived:
446   case CK_DerivedToBase:
447   case CK_UncheckedDerivedToBase:
448   case CK_Dynamic:
449   case CK_ToUnion:
450   case CK_ArrayToPointerDecay:
451   case CK_FunctionToPointerDecay:
452   case CK_NullToPointer:
453   case CK_NullToMemberPointer:
454   case CK_BaseToDerivedMemberPointer:
455   case CK_DerivedToBaseMemberPointer:
456   case CK_MemberPointerToBoolean:
457   case CK_ReinterpretMemberPointer:
458   case CK_ConstructorConversion:
459   case CK_IntegralToPointer:
460   case CK_PointerToIntegral:
461   case CK_PointerToBoolean:
462   case CK_ToVoid:
463   case CK_VectorSplat:
464   case CK_IntegralCast:
465   case CK_BooleanToSignedIntegral:
466   case CK_IntegralToBoolean:
467   case CK_IntegralToFloating:
468   case CK_FloatingToIntegral:
469   case CK_FloatingToBoolean:
470   case CK_FloatingCast:
471   case CK_CPointerToObjCPointerCast:
472   case CK_BlockPointerToObjCPointerCast:
473   case CK_AnyPointerToBlockPointerCast:
474   case CK_ObjCObjectLValueCast:
475   case CK_FloatingComplexToReal:
476   case CK_FloatingComplexToBoolean:
477   case CK_IntegralComplexToReal:
478   case CK_IntegralComplexToBoolean:
479   case CK_ARCProduceObject:
480   case CK_ARCConsumeObject:
481   case CK_ARCReclaimReturnedObject:
482   case CK_ARCExtendBlockObject:
483   case CK_CopyAndAutoreleaseBlockObject:
484   case CK_BuiltinFnToFnPtr:
485   case CK_ZeroToOCLEvent:
486   case CK_AddressSpaceConversion:
487     llvm_unreachable("invalid cast kind for complex value");
488
489   case CK_FloatingRealToComplex:
490   case CK_IntegralRealToComplex:
491     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
492                                    DestTy, Op->getExprLoc());
493
494   case CK_FloatingComplexCast:
495   case CK_FloatingComplexToIntegralComplex:
496   case CK_IntegralComplexCast:
497   case CK_IntegralComplexToFloatingComplex:
498     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
499                                     Op->getExprLoc());
500   }
501
502   llvm_unreachable("unknown cast resulting in complex value");
503 }
504
505 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
506   TestAndClearIgnoreReal();
507   TestAndClearIgnoreImag();
508   ComplexPairTy Op = Visit(E->getSubExpr());
509
510   llvm::Value *ResR, *ResI;
511   if (Op.first->getType()->isFloatingPointTy()) {
512     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
513     ResI = Builder.CreateFNeg(Op.second, "neg.i");
514   } else {
515     ResR = Builder.CreateNeg(Op.first,  "neg.r");
516     ResI = Builder.CreateNeg(Op.second, "neg.i");
517   }
518   return ComplexPairTy(ResR, ResI);
519 }
520
521 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
522   TestAndClearIgnoreReal();
523   TestAndClearIgnoreImag();
524   // ~(a+ib) = a + i*-b
525   ComplexPairTy Op = Visit(E->getSubExpr());
526   llvm::Value *ResI;
527   if (Op.second->getType()->isFloatingPointTy())
528     ResI = Builder.CreateFNeg(Op.second, "conj.i");
529   else
530     ResI = Builder.CreateNeg(Op.second, "conj.i");
531
532   return ComplexPairTy(Op.first, ResI);
533 }
534
535 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
536   llvm::Value *ResR, *ResI;
537
538   if (Op.LHS.first->getType()->isFloatingPointTy()) {
539     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
540     if (Op.LHS.second && Op.RHS.second)
541       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
542     else
543       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
544     assert(ResI && "Only one operand may be real!");
545   } else {
546     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
547     assert(Op.LHS.second && Op.RHS.second &&
548            "Both operands of integer complex operators must be complex!");
549     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
550   }
551   return ComplexPairTy(ResR, ResI);
552 }
553
554 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
555   llvm::Value *ResR, *ResI;
556   if (Op.LHS.first->getType()->isFloatingPointTy()) {
557     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
558     if (Op.LHS.second && Op.RHS.second)
559       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
560     else
561       ResI = Op.LHS.second ? Op.LHS.second
562                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
563     assert(ResI && "Only one operand may be real!");
564   } else {
565     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
566     assert(Op.LHS.second && Op.RHS.second &&
567            "Both operands of integer complex operators must be complex!");
568     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
569   }
570   return ComplexPairTy(ResR, ResI);
571 }
572
573 /// \brief Emit a libcall for a binary operation on complex types.
574 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
575                                                           const BinOpInfo &Op) {
576   CallArgList Args;
577   Args.add(RValue::get(Op.LHS.first),
578            Op.Ty->castAs<ComplexType>()->getElementType());
579   Args.add(RValue::get(Op.LHS.second),
580            Op.Ty->castAs<ComplexType>()->getElementType());
581   Args.add(RValue::get(Op.RHS.first),
582            Op.Ty->castAs<ComplexType>()->getElementType());
583   Args.add(RValue::get(Op.RHS.second),
584            Op.Ty->castAs<ComplexType>()->getElementType());
585
586   // We *must* use the full CG function call building logic here because the
587   // complex type has special ABI handling. We also should not forget about
588   // special calling convention which may be used for compiler builtins.
589
590   // We create a function qualified type to state that this call does not have
591   // any exceptions.
592   FunctionProtoType::ExtProtoInfo EPI;
593   EPI = EPI.withExceptionSpec(
594       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
595   SmallVector<QualType, 4> ArgsQTys(
596       4, Op.Ty->castAs<ComplexType>()->getElementType());
597   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
598   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
599       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
600
601   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
602   llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
603   llvm::Instruction *Call;
604
605   RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
606                             FQTy->getAs<FunctionProtoType>(), &Call);
607   cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
608   return Res.getComplexVal();
609 }
610
611 /// \brief Lookup the libcall name for a given floating point type complex
612 /// multiply.
613 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
614   switch (Ty->getTypeID()) {
615   default:
616     llvm_unreachable("Unsupported floating point type!");
617   case llvm::Type::HalfTyID:
618     return "__mulhc3";
619   case llvm::Type::FloatTyID:
620     return "__mulsc3";
621   case llvm::Type::DoubleTyID:
622     return "__muldc3";
623   case llvm::Type::PPC_FP128TyID:
624     return "__multc3";
625   case llvm::Type::X86_FP80TyID:
626     return "__mulxc3";
627   case llvm::Type::FP128TyID:
628     return "__multc3";
629   }
630 }
631
632 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
633 // typed values.
634 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
635   using llvm::Value;
636   Value *ResR, *ResI;
637   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
638
639   if (Op.LHS.first->getType()->isFloatingPointTy()) {
640     // The general formulation is:
641     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
642     //
643     // But we can fold away components which would be zero due to a real
644     // operand according to C11 Annex G.5.1p2.
645     // FIXME: C11 also provides for imaginary types which would allow folding
646     // still more of this within the type system.
647
648     if (Op.LHS.second && Op.RHS.second) {
649       // If both operands are complex, emit the core math directly, and then
650       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
651       // to carefully re-compute the correct infinity representation if
652       // possible. The expectation is that the presence of NaNs here is
653       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
654       // This is good, because the libcall re-computes the core multiplication
655       // exactly the same as we do here and re-tests for NaNs in order to be
656       // a generic complex*complex libcall.
657
658       // First compute the four products.
659       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
660       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
661       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
662       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
663
664       // The real part is the difference of the first two, the imaginary part is
665       // the sum of the second.
666       ResR = Builder.CreateFSub(AC, BD, "mul_r");
667       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
668
669       // Emit the test for the real part becoming NaN and create a branch to
670       // handle it. We test for NaN by comparing the number to itself.
671       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
672       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
673       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
674       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
675       llvm::BasicBlock *OrigBB = Branch->getParent();
676
677       // Give hint that we very much don't expect to see NaNs.
678       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
679       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
680       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
681
682       // Now test the imaginary part and create its branch.
683       CGF.EmitBlock(INaNBB);
684       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
685       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
686       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
687       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
688
689       // Now emit the libcall on this slowest of the slow paths.
690       CGF.EmitBlock(LibCallBB);
691       Value *LibCallR, *LibCallI;
692       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
693           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
694       Builder.CreateBr(ContBB);
695
696       // Finally continue execution by phi-ing together the different
697       // computation paths.
698       CGF.EmitBlock(ContBB);
699       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
700       RealPHI->addIncoming(ResR, OrigBB);
701       RealPHI->addIncoming(ResR, INaNBB);
702       RealPHI->addIncoming(LibCallR, LibCallBB);
703       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
704       ImagPHI->addIncoming(ResI, OrigBB);
705       ImagPHI->addIncoming(ResI, INaNBB);
706       ImagPHI->addIncoming(LibCallI, LibCallBB);
707       return ComplexPairTy(RealPHI, ImagPHI);
708     }
709     assert((Op.LHS.second || Op.RHS.second) &&
710            "At least one operand must be complex!");
711
712     // If either of the operands is a real rather than a complex, the
713     // imaginary component is ignored when computing the real component of the
714     // result.
715     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
716
717     ResI = Op.LHS.second
718                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
719                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
720   } else {
721     assert(Op.LHS.second && Op.RHS.second &&
722            "Both operands of integer complex operators must be complex!");
723     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
724     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
725     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
726
727     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
728     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
729     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
730   }
731   return ComplexPairTy(ResR, ResI);
732 }
733
734 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
735 // typed values.
736 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
737   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
738   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
739
740
741   llvm::Value *DSTr, *DSTi;
742   if (LHSr->getType()->isFloatingPointTy()) {
743     // If we have a complex operand on the RHS, we delegate to a libcall to
744     // handle all of the complexities and minimize underflow/overflow cases.
745     //
746     // FIXME: We would be able to avoid the libcall in many places if we
747     // supported imaginary types in addition to complex types.
748     if (RHSi) {
749       BinOpInfo LibCallOp = Op;
750       // If LHS was a real, supply a null imaginary part.
751       if (!LHSi)
752         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
753
754       StringRef LibCallName;
755       switch (LHSr->getType()->getTypeID()) {
756       default:
757         llvm_unreachable("Unsupported floating point type!");
758       case llvm::Type::HalfTyID:
759         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
760       case llvm::Type::FloatTyID:
761         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
762       case llvm::Type::DoubleTyID:
763         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
764       case llvm::Type::PPC_FP128TyID:
765         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
766       case llvm::Type::X86_FP80TyID:
767         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
768       case llvm::Type::FP128TyID:
769         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
770       }
771     }
772     assert(LHSi && "Can have at most one non-complex operand!");
773
774     DSTr = Builder.CreateFDiv(LHSr, RHSr);
775     DSTi = Builder.CreateFDiv(LHSi, RHSr);
776   } else {
777     assert(Op.LHS.second && Op.RHS.second &&
778            "Both operands of integer complex operators must be complex!");
779     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
780     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
781     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
782     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
783
784     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
785     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
786     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
787
788     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
789     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
790     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
791
792     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
793       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
794       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
795     } else {
796       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
797       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
798     }
799   }
800
801   return ComplexPairTy(DSTr, DSTi);
802 }
803
804 ComplexExprEmitter::BinOpInfo
805 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
806   TestAndClearIgnoreReal();
807   TestAndClearIgnoreImag();
808   BinOpInfo Ops;
809   if (E->getLHS()->getType()->isRealFloatingType())
810     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
811   else
812     Ops.LHS = Visit(E->getLHS());
813   if (E->getRHS()->getType()->isRealFloatingType())
814     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
815   else
816     Ops.RHS = Visit(E->getRHS());
817
818   Ops.Ty = E->getType();
819   return Ops;
820 }
821
822
823 LValue ComplexExprEmitter::
824 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
825           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
826                          RValue &Val) {
827   TestAndClearIgnoreReal();
828   TestAndClearIgnoreImag();
829   QualType LHSTy = E->getLHS()->getType();
830   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
831     LHSTy = AT->getValueType();
832
833   BinOpInfo OpInfo;
834
835   // Load the RHS and LHS operands.
836   // __block variables need to have the rhs evaluated first, plus this should
837   // improve codegen a little.
838   OpInfo.Ty = E->getComputationResultType();
839   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
840
841   // The RHS should have been converted to the computation type.
842   if (E->getRHS()->getType()->isRealFloatingType()) {
843     assert(
844         CGF.getContext()
845             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
846     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
847   } else {
848     assert(CGF.getContext()
849                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
850     OpInfo.RHS = Visit(E->getRHS());
851   }
852
853   LValue LHS = CGF.EmitLValue(E->getLHS());
854
855   // Load from the l-value and convert it.
856   SourceLocation Loc = E->getExprLoc();
857   if (LHSTy->isAnyComplexType()) {
858     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
859     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
860   } else {
861     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
862     // For floating point real operands we can directly pass the scalar form
863     // to the binary operator emission and potentially get more efficient code.
864     if (LHSTy->isRealFloatingType()) {
865       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
866         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
867       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
868     } else {
869       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
870     }
871   }
872
873   // Expand the binary operator.
874   ComplexPairTy Result = (this->*Func)(OpInfo);
875
876   // Truncate the result and store it into the LHS lvalue.
877   if (LHSTy->isAnyComplexType()) {
878     ComplexPairTy ResVal =
879         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
880     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
881     Val = RValue::getComplex(ResVal);
882   } else {
883     llvm::Value *ResVal =
884         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
885     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
886     Val = RValue::get(ResVal);
887   }
888
889   return LHS;
890 }
891
892 // Compound assignments.
893 ComplexPairTy ComplexExprEmitter::
894 EmitCompoundAssign(const CompoundAssignOperator *E,
895                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
896   RValue Val;
897   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
898
899   // The result of an assignment in C is the assigned r-value.
900   if (!CGF.getLangOpts().CPlusPlus)
901     return Val.getComplexVal();
902
903   // If the lvalue is non-volatile, return the computed value of the assignment.
904   if (!LV.isVolatileQualified())
905     return Val.getComplexVal();
906
907   return EmitLoadOfLValue(LV, E->getExprLoc());
908 }
909
910 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
911                                                ComplexPairTy &Val) {
912   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
913                                                  E->getRHS()->getType()) &&
914          "Invalid assignment");
915   TestAndClearIgnoreReal();
916   TestAndClearIgnoreImag();
917
918   // Emit the RHS.  __block variables need the RHS evaluated first.
919   Val = Visit(E->getRHS());
920
921   // Compute the address to store into.
922   LValue LHS = CGF.EmitLValue(E->getLHS());
923
924   // Store the result value into the LHS lvalue.
925   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
926
927   return LHS;
928 }
929
930 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
931   ComplexPairTy Val;
932   LValue LV = EmitBinAssignLValue(E, Val);
933
934   // The result of an assignment in C is the assigned r-value.
935   if (!CGF.getLangOpts().CPlusPlus)
936     return Val;
937
938   // If the lvalue is non-volatile, return the computed value of the assignment.
939   if (!LV.isVolatileQualified())
940     return Val;
941
942   return EmitLoadOfLValue(LV, E->getExprLoc());
943 }
944
945 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
946   CGF.EmitIgnoredExpr(E->getLHS());
947   return Visit(E->getRHS());
948 }
949
950 ComplexPairTy ComplexExprEmitter::
951 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
952   TestAndClearIgnoreReal();
953   TestAndClearIgnoreImag();
954   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
955   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
956   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
957
958   // Bind the common expression if necessary.
959   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
960
961
962   CodeGenFunction::ConditionalEvaluation eval(CGF);
963   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
964                            CGF.getProfileCount(E));
965
966   eval.begin(CGF);
967   CGF.EmitBlock(LHSBlock);
968   CGF.incrementProfileCounter(E);
969   ComplexPairTy LHS = Visit(E->getTrueExpr());
970   LHSBlock = Builder.GetInsertBlock();
971   CGF.EmitBranch(ContBlock);
972   eval.end(CGF);
973
974   eval.begin(CGF);
975   CGF.EmitBlock(RHSBlock);
976   ComplexPairTy RHS = Visit(E->getFalseExpr());
977   RHSBlock = Builder.GetInsertBlock();
978   CGF.EmitBlock(ContBlock);
979   eval.end(CGF);
980
981   // Create a PHI node for the real part.
982   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
983   RealPN->addIncoming(LHS.first, LHSBlock);
984   RealPN->addIncoming(RHS.first, RHSBlock);
985
986   // Create a PHI node for the imaginary part.
987   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
988   ImagPN->addIncoming(LHS.second, LHSBlock);
989   ImagPN->addIncoming(RHS.second, RHSBlock);
990
991   return ComplexPairTy(RealPN, ImagPN);
992 }
993
994 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
995   return Visit(E->getChosenSubExpr());
996 }
997
998 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
999     bool Ignore = TestAndClearIgnoreReal();
1000     (void)Ignore;
1001     assert (Ignore == false && "init list ignored");
1002     Ignore = TestAndClearIgnoreImag();
1003     (void)Ignore;
1004     assert (Ignore == false && "init list ignored");
1005
1006   if (E->getNumInits() == 2) {
1007     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1008     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1009     return ComplexPairTy(Real, Imag);
1010   } else if (E->getNumInits() == 1) {
1011     return Visit(E->getInit(0));
1012   }
1013
1014   // Empty init list intializes to null
1015   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1016   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1017   llvm::Type* LTy = CGF.ConvertType(Ty);
1018   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1019   return ComplexPairTy(zeroConstant, zeroConstant);
1020 }
1021
1022 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1023   Address ArgValue = Address::invalid();
1024   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1025
1026   if (!ArgPtr.isValid()) {
1027     CGF.ErrorUnsupported(E, "complex va_arg expression");
1028     llvm::Type *EltTy =
1029       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1030     llvm::Value *U = llvm::UndefValue::get(EltTy);
1031     return ComplexPairTy(U, U);
1032   }
1033
1034   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1035                           E->getExprLoc());
1036 }
1037
1038 //===----------------------------------------------------------------------===//
1039 //                         Entry Point into this File
1040 //===----------------------------------------------------------------------===//
1041
1042 /// EmitComplexExpr - Emit the computation of the specified expression of
1043 /// complex type, ignoring the result.
1044 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1045                                                bool IgnoreImag) {
1046   assert(E && getComplexType(E->getType()) &&
1047          "Invalid complex expression to emit");
1048
1049   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1050       .Visit(const_cast<Expr *>(E));
1051 }
1052
1053 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1054                                                 bool isInit) {
1055   assert(E && getComplexType(E->getType()) &&
1056          "Invalid complex expression to emit");
1057   ComplexExprEmitter Emitter(*this);
1058   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1059   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1060 }
1061
1062 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1063 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1064                                          bool isInit) {
1065   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1066 }
1067
1068 /// EmitLoadOfComplex - Load a complex number from the specified address.
1069 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1070                                                  SourceLocation loc) {
1071   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1072 }
1073
1074 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1075   assert(E->getOpcode() == BO_Assign);
1076   ComplexPairTy Val; // ignored
1077   return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1078 }
1079
1080 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1081     const ComplexExprEmitter::BinOpInfo &);
1082
1083 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1084   switch (Op) {
1085   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1086   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1087   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1088   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1089   default:
1090     llvm_unreachable("unexpected complex compound assignment");
1091   }
1092 }
1093
1094 LValue CodeGenFunction::
1095 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1096   CompoundFunc Op = getComplexOp(E->getOpcode());
1097   RValue Val;
1098   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1099 }
1100
1101 LValue CodeGenFunction::
1102 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1103                                     llvm::Value *&Result) {
1104   CompoundFunc Op = getComplexOp(E->getOpcode());
1105   RValue Val;
1106   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1107   Result = Val.getScalarVal();
1108   return Ret;
1109 }