]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
Upgrade to OpenPAM Tabebuia.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprScalar.cpp
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42
43 //===----------------------------------------------------------------------===//
44 //                         Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46
47 namespace {
48
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55                              BinaryOperator::Opcode Opcode, bool Signed,
56                              llvm::APInt &Result) {
57   // Assume overflow is possible, unless we can prove otherwise.
58   bool Overflow = true;
59   const auto &LHSAP = LHS->getValue();
60   const auto &RHSAP = RHS->getValue();
61   if (Opcode == BO_Add) {
62     if (Signed)
63       Result = LHSAP.sadd_ov(RHSAP, Overflow);
64     else
65       Result = LHSAP.uadd_ov(RHSAP, Overflow);
66   } else if (Opcode == BO_Sub) {
67     if (Signed)
68       Result = LHSAP.ssub_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.usub_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Mul) {
72     if (Signed)
73       Result = LHSAP.smul_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.umul_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77     if (Signed && !RHS->isZero())
78       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79     else
80       return false;
81   }
82   return Overflow;
83 }
84
85 struct BinOpInfo {
86   Value *LHS;
87   Value *RHS;
88   QualType Ty;  // Computation Type.
89   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90   FPOptions FPFeatures;
91   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
92
93   /// Check if the binop can result in integer overflow.
94   bool mayHaveIntegerOverflow() const {
95     // Without constant input, we can't rule out overflow.
96     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98     if (!LHSCI || !RHSCI)
99       return true;
100
101     llvm::APInt Result;
102     return ::mayHaveIntegerOverflow(
103         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104   }
105
106   /// Check if the binop computes a division or a remainder.
107   bool isDivremOp() const {
108     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109            Opcode == BO_RemAssign;
110   }
111
112   /// Check if the binop can result in an integer division by zero.
113   bool mayHaveIntegerDivisionByZero() const {
114     if (isDivremOp())
115       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116         return CI->isZero();
117     return true;
118   }
119
120   /// Check if the binop can result in a float division by zero.
121   bool mayHaveFloatDivisionByZero() const {
122     if (isDivremOp())
123       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124         return CFP->isZero();
125     return true;
126   }
127 };
128
129 static bool MustVisitNullValue(const Expr *E) {
130   // If a null pointer expression's type is the C++0x nullptr_t, then
131   // it's not necessarily a simple constant and it must be evaluated
132   // for its potential side effects.
133   return E->getType()->isNullPtrType();
134 }
135
136 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138                                                         const Expr *E) {
139   const Expr *Base = E->IgnoreImpCasts();
140   if (E == Base)
141     return llvm::None;
142
143   QualType BaseTy = Base->getType();
144   if (!BaseTy->isPromotableIntegerType() ||
145       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146     return llvm::None;
147
148   return BaseTy;
149 }
150
151 /// Check if \p E is a widened promoted integer.
152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153   return getUnwidenedIntegerType(Ctx, E).hasValue();
154 }
155
156 /// Check if we can skip the overflow check for \p Op.
157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
159          "Expected a unary or binary operator");
160
161   // If the binop has constant inputs and we can prove there is no overflow,
162   // we can elide the overflow check.
163   if (!Op.mayHaveIntegerOverflow())
164     return true;
165
166   // If a unary op has a widened operand, the op cannot overflow.
167   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168     return !UO->canOverflow();
169
170   // We usually don't need overflow checks for binops with widened operands.
171   // Multiplication with promoted unsigned operands is a special case.
172   const auto *BO = cast<BinaryOperator>(Op.E);
173   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174   if (!OptionalLHSTy)
175     return false;
176
177   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178   if (!OptionalRHSTy)
179     return false;
180
181   QualType LHSTy = *OptionalLHSTy;
182   QualType RHSTy = *OptionalRHSTy;
183
184   // This is the simple case: binops without unsigned multiplication, and with
185   // widened operands. No overflow check is needed here.
186   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188     return true;
189
190   // For unsigned multiplication the overflow check can be elided if either one
191   // of the unpromoted types are less than half the size of the promoted type.
192   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195 }
196
197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199                                 FPOptions FPFeatures) {
200   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201 }
202
203 /// Propagate fast-math flags from \p Op to the instruction in \p V.
204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206     llvm::FastMathFlags FMF = I->getFastMathFlags();
207     updateFastMathFlags(FMF, Op.FPFeatures);
208     I->setFastMathFlags(FMF);
209   }
210   return V;
211 }
212
213 class ScalarExprEmitter
214   : public StmtVisitor<ScalarExprEmitter, Value*> {
215   CodeGenFunction &CGF;
216   CGBuilderTy &Builder;
217   bool IgnoreResultAssign;
218   llvm::LLVMContext &VMContext;
219 public:
220
221   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223       VMContext(cgf.getLLVMContext()) {
224   }
225
226   //===--------------------------------------------------------------------===//
227   //                               Utilities
228   //===--------------------------------------------------------------------===//
229
230   bool TestAndClearIgnoreResultAssign() {
231     bool I = IgnoreResultAssign;
232     IgnoreResultAssign = false;
233     return I;
234   }
235
236   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239     return CGF.EmitCheckedLValue(E, TCK);
240   }
241
242   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243                       const BinOpInfo &Info);
244
245   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247   }
248
249   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250     const AlignValueAttr *AVAttr = nullptr;
251     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252       const ValueDecl *VD = DRE->getDecl();
253
254       if (VD->getType()->isReferenceType()) {
255         if (const auto *TTy =
256             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258       } else {
259         // Assumptions for function parameters are emitted at the start of the
260         // function, so there is no need to repeat that here.
261         if (isa<ParmVarDecl>(VD))
262           return;
263
264         AVAttr = VD->getAttr<AlignValueAttr>();
265       }
266     }
267
268     if (!AVAttr)
269       if (const auto *TTy =
270           dyn_cast<TypedefType>(E->getType()))
271         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272
273     if (!AVAttr)
274       return;
275
276     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279   }
280
281   /// EmitLoadOfLValue - Given an expression with complex type that represents a
282   /// value l-value, this method emits the address of the l-value, then loads
283   /// and returns the result.
284   Value *EmitLoadOfLValue(const Expr *E) {
285     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286                                 E->getExprLoc());
287
288     EmitLValueAlignmentAssumption(E, V);
289     return V;
290   }
291
292   /// EmitConversionToBool - Convert the specified expression value to a
293   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
294   Value *EmitConversionToBool(Value *Src, QualType DstTy);
295
296   /// Emit a check that a conversion to or from a floating-point type does not
297   /// overflow.
298   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299                                 Value *Src, QualType SrcType, QualType DstType,
300                                 llvm::Type *DstTy, SourceLocation Loc);
301
302   /// Known implicit conversion check kinds.
303   /// Keep in sync with the enum of the same name in ubsan_handlers.h
304   enum ImplicitConversionCheckKind : unsigned char {
305     ICCK_IntegerTruncation = 0,
306   };
307
308   /// Emit a check that an [implicit] truncation of an integer  does not
309   /// discard any bits. It is not UB, so we use the value after truncation.
310   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
311                                   QualType DstType, SourceLocation Loc);
312
313   /// Emit a conversion from the specified type to the specified destination
314   /// type, both of which are LLVM scalar types.
315   struct ScalarConversionOpts {
316     bool TreatBooleanAsSigned;
317     bool EmitImplicitIntegerTruncationChecks;
318
319     ScalarConversionOpts()
320         : TreatBooleanAsSigned(false),
321           EmitImplicitIntegerTruncationChecks(false) {}
322   };
323   Value *
324   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
325                        SourceLocation Loc,
326                        ScalarConversionOpts Opts = ScalarConversionOpts());
327
328   /// Emit a conversion from the specified complex type to the specified
329   /// destination type, where the destination type is an LLVM scalar type.
330   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
331                                        QualType SrcTy, QualType DstTy,
332                                        SourceLocation Loc);
333
334   /// EmitNullValue - Emit a value that corresponds to null for the given type.
335   Value *EmitNullValue(QualType Ty);
336
337   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
338   Value *EmitFloatToBoolConversion(Value *V) {
339     // Compare against 0.0 for fp scalars.
340     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
341     return Builder.CreateFCmpUNE(V, Zero, "tobool");
342   }
343
344   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
345   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
346     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
347
348     return Builder.CreateICmpNE(V, Zero, "tobool");
349   }
350
351   Value *EmitIntToBoolConversion(Value *V) {
352     // Because of the type rules of C, we often end up computing a
353     // logical value, then zero extending it to int, then wanting it
354     // as a logical value again.  Optimize this common case.
355     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
356       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
357         Value *Result = ZI->getOperand(0);
358         // If there aren't any more uses, zap the instruction to save space.
359         // Note that there can be more uses, for example if this
360         // is the result of an assignment.
361         if (ZI->use_empty())
362           ZI->eraseFromParent();
363         return Result;
364       }
365     }
366
367     return Builder.CreateIsNotNull(V, "tobool");
368   }
369
370   //===--------------------------------------------------------------------===//
371   //                            Visitor Methods
372   //===--------------------------------------------------------------------===//
373
374   Value *Visit(Expr *E) {
375     ApplyDebugLocation DL(CGF, E);
376     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
377   }
378
379   Value *VisitStmt(Stmt *S) {
380     S->dump(CGF.getContext().getSourceManager());
381     llvm_unreachable("Stmt can't have complex result type!");
382   }
383   Value *VisitExpr(Expr *S);
384
385   Value *VisitParenExpr(ParenExpr *PE) {
386     return Visit(PE->getSubExpr());
387   }
388   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
389     return Visit(E->getReplacement());
390   }
391   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
392     return Visit(GE->getResultExpr());
393   }
394   Value *VisitCoawaitExpr(CoawaitExpr *S) {
395     return CGF.EmitCoawaitExpr(*S).getScalarVal();
396   }
397   Value *VisitCoyieldExpr(CoyieldExpr *S) {
398     return CGF.EmitCoyieldExpr(*S).getScalarVal();
399   }
400   Value *VisitUnaryCoawait(const UnaryOperator *E) {
401     return Visit(E->getSubExpr());
402   }
403
404   // Leaves.
405   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
406     return Builder.getInt(E->getValue());
407   }
408   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
409     return Builder.getInt(E->getValue());
410   }
411   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
412     return llvm::ConstantFP::get(VMContext, E->getValue());
413   }
414   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416   }
417   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
418     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
419   }
420   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
421     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
422   }
423   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
424     return EmitNullValue(E->getType());
425   }
426   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
427     return EmitNullValue(E->getType());
428   }
429   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
430   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
431   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
432     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
433     return Builder.CreateBitCast(V, ConvertType(E->getType()));
434   }
435
436   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
437     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
438   }
439
440   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
441     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
442   }
443
444   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
445     if (E->isGLValue())
446       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
447                               E->getExprLoc());
448
449     // Otherwise, assume the mapping is the scalar directly.
450     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
451   }
452
453   Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant,
454                       Expr *E) {
455     assert(Constant && "not a constant");
456     if (Constant.isReference())
457       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
458                               E->getExprLoc());
459     return Constant.getValue();
460   }
461
462   // l-values.
463   Value *VisitDeclRefExpr(DeclRefExpr *E) {
464     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
465       return emitConstant(Constant, E);
466     return EmitLoadOfLValue(E);
467   }
468
469   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
470     return CGF.EmitObjCSelectorExpr(E);
471   }
472   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
473     return CGF.EmitObjCProtocolExpr(E);
474   }
475   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
476     return EmitLoadOfLValue(E);
477   }
478   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
479     if (E->getMethodDecl() &&
480         E->getMethodDecl()->getReturnType()->isReferenceType())
481       return EmitLoadOfLValue(E);
482     return CGF.EmitObjCMessageExpr(E).getScalarVal();
483   }
484
485   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
486     LValue LV = CGF.EmitObjCIsaExpr(E);
487     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
488     return V;
489   }
490
491   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
492     VersionTuple Version = E->getVersion();
493
494     // If we're checking for a platform older than our minimum deployment
495     // target, we can fold the check away.
496     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
497       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
498
499     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
500     llvm::Value *Args[] = {
501         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
502         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
503         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
504     };
505
506     return CGF.EmitBuiltinAvailable(Args);
507   }
508
509   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
510   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
511   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
512   Value *VisitMemberExpr(MemberExpr *E);
513   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
514   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
515     return EmitLoadOfLValue(E);
516   }
517
518   Value *VisitInitListExpr(InitListExpr *E);
519
520   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
521     assert(CGF.getArrayInitIndex() &&
522            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
523     return CGF.getArrayInitIndex();
524   }
525
526   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
527     return EmitNullValue(E->getType());
528   }
529   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
530     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
531     return VisitCastExpr(E);
532   }
533   Value *VisitCastExpr(CastExpr *E);
534
535   Value *VisitCallExpr(const CallExpr *E) {
536     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
537       return EmitLoadOfLValue(E);
538
539     Value *V = CGF.EmitCallExpr(E).getScalarVal();
540
541     EmitLValueAlignmentAssumption(E, V);
542     return V;
543   }
544
545   Value *VisitStmtExpr(const StmtExpr *E);
546
547   // Unary Operators.
548   Value *VisitUnaryPostDec(const UnaryOperator *E) {
549     LValue LV = EmitLValue(E->getSubExpr());
550     return EmitScalarPrePostIncDec(E, LV, false, false);
551   }
552   Value *VisitUnaryPostInc(const UnaryOperator *E) {
553     LValue LV = EmitLValue(E->getSubExpr());
554     return EmitScalarPrePostIncDec(E, LV, true, false);
555   }
556   Value *VisitUnaryPreDec(const UnaryOperator *E) {
557     LValue LV = EmitLValue(E->getSubExpr());
558     return EmitScalarPrePostIncDec(E, LV, false, true);
559   }
560   Value *VisitUnaryPreInc(const UnaryOperator *E) {
561     LValue LV = EmitLValue(E->getSubExpr());
562     return EmitScalarPrePostIncDec(E, LV, true, true);
563   }
564
565   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
566                                                   llvm::Value *InVal,
567                                                   bool IsInc);
568
569   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
570                                        bool isInc, bool isPre);
571
572
573   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
574     if (isa<MemberPointerType>(E->getType())) // never sugared
575       return CGF.CGM.getMemberPointerConstant(E);
576
577     return EmitLValue(E->getSubExpr()).getPointer();
578   }
579   Value *VisitUnaryDeref(const UnaryOperator *E) {
580     if (E->getType()->isVoidType())
581       return Visit(E->getSubExpr()); // the actual value should be unused
582     return EmitLoadOfLValue(E);
583   }
584   Value *VisitUnaryPlus(const UnaryOperator *E) {
585     // This differs from gcc, though, most likely due to a bug in gcc.
586     TestAndClearIgnoreResultAssign();
587     return Visit(E->getSubExpr());
588   }
589   Value *VisitUnaryMinus    (const UnaryOperator *E);
590   Value *VisitUnaryNot      (const UnaryOperator *E);
591   Value *VisitUnaryLNot     (const UnaryOperator *E);
592   Value *VisitUnaryReal     (const UnaryOperator *E);
593   Value *VisitUnaryImag     (const UnaryOperator *E);
594   Value *VisitUnaryExtension(const UnaryOperator *E) {
595     return Visit(E->getSubExpr());
596   }
597
598   // C++
599   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
600     return EmitLoadOfLValue(E);
601   }
602
603   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
604     return Visit(DAE->getExpr());
605   }
606   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
607     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
608     return Visit(DIE->getExpr());
609   }
610   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
611     return CGF.LoadCXXThis();
612   }
613
614   Value *VisitExprWithCleanups(ExprWithCleanups *E);
615   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
616     return CGF.EmitCXXNewExpr(E);
617   }
618   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
619     CGF.EmitCXXDeleteExpr(E);
620     return nullptr;
621   }
622
623   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
624     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
625   }
626
627   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
628     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
629   }
630
631   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
632     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
633   }
634
635   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
636     // C++ [expr.pseudo]p1:
637     //   The result shall only be used as the operand for the function call
638     //   operator (), and the result of such a call has type void. The only
639     //   effect is the evaluation of the postfix-expression before the dot or
640     //   arrow.
641     CGF.EmitScalarExpr(E->getBase());
642     return nullptr;
643   }
644
645   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
646     return EmitNullValue(E->getType());
647   }
648
649   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
650     CGF.EmitCXXThrowExpr(E);
651     return nullptr;
652   }
653
654   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
655     return Builder.getInt1(E->getValue());
656   }
657
658   // Binary Operators.
659   Value *EmitMul(const BinOpInfo &Ops) {
660     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
661       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
662       case LangOptions::SOB_Defined:
663         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
664       case LangOptions::SOB_Undefined:
665         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
666           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
667         // Fall through.
668       case LangOptions::SOB_Trapping:
669         if (CanElideOverflowCheck(CGF.getContext(), Ops))
670           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
671         return EmitOverflowCheckedBinOp(Ops);
672       }
673     }
674
675     if (Ops.Ty->isUnsignedIntegerType() &&
676         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
677         !CanElideOverflowCheck(CGF.getContext(), Ops))
678       return EmitOverflowCheckedBinOp(Ops);
679
680     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
681       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
682       return propagateFMFlags(V, Ops);
683     }
684     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
685   }
686   /// Create a binary op that checks for overflow.
687   /// Currently only supports +, - and *.
688   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
689
690   // Check for undefined division and modulus behaviors.
691   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
692                                                   llvm::Value *Zero,bool isDiv);
693   // Common helper for getting how wide LHS of shift is.
694   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
695   Value *EmitDiv(const BinOpInfo &Ops);
696   Value *EmitRem(const BinOpInfo &Ops);
697   Value *EmitAdd(const BinOpInfo &Ops);
698   Value *EmitSub(const BinOpInfo &Ops);
699   Value *EmitShl(const BinOpInfo &Ops);
700   Value *EmitShr(const BinOpInfo &Ops);
701   Value *EmitAnd(const BinOpInfo &Ops) {
702     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
703   }
704   Value *EmitXor(const BinOpInfo &Ops) {
705     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
706   }
707   Value *EmitOr (const BinOpInfo &Ops) {
708     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
709   }
710
711   BinOpInfo EmitBinOps(const BinaryOperator *E);
712   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
713                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
714                                   Value *&Result);
715
716   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
717                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
718
719   // Binary operators and binary compound assignment operators.
720 #define HANDLEBINOP(OP) \
721   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
722     return Emit ## OP(EmitBinOps(E));                                      \
723   }                                                                        \
724   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
725     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
726   }
727   HANDLEBINOP(Mul)
728   HANDLEBINOP(Div)
729   HANDLEBINOP(Rem)
730   HANDLEBINOP(Add)
731   HANDLEBINOP(Sub)
732   HANDLEBINOP(Shl)
733   HANDLEBINOP(Shr)
734   HANDLEBINOP(And)
735   HANDLEBINOP(Xor)
736   HANDLEBINOP(Or)
737 #undef HANDLEBINOP
738
739   // Comparisons.
740   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
741                      llvm::CmpInst::Predicate SICmpOpc,
742                      llvm::CmpInst::Predicate FCmpOpc);
743 #define VISITCOMP(CODE, UI, SI, FP) \
744     Value *VisitBin##CODE(const BinaryOperator *E) { \
745       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
746                          llvm::FCmpInst::FP); }
747   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
748   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
749   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
750   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
751   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
752   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
753 #undef VISITCOMP
754
755   Value *VisitBinAssign     (const BinaryOperator *E);
756
757   Value *VisitBinLAnd       (const BinaryOperator *E);
758   Value *VisitBinLOr        (const BinaryOperator *E);
759   Value *VisitBinComma      (const BinaryOperator *E);
760
761   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
762   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
763
764   // Other Operators.
765   Value *VisitBlockExpr(const BlockExpr *BE);
766   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
767   Value *VisitChooseExpr(ChooseExpr *CE);
768   Value *VisitVAArgExpr(VAArgExpr *VE);
769   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
770     return CGF.EmitObjCStringLiteral(E);
771   }
772   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
773     return CGF.EmitObjCBoxedExpr(E);
774   }
775   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
776     return CGF.EmitObjCArrayLiteral(E);
777   }
778   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
779     return CGF.EmitObjCDictionaryLiteral(E);
780   }
781   Value *VisitAsTypeExpr(AsTypeExpr *CE);
782   Value *VisitAtomicExpr(AtomicExpr *AE);
783 };
784 }  // end anonymous namespace.
785
786 //===----------------------------------------------------------------------===//
787 //                                Utilities
788 //===----------------------------------------------------------------------===//
789
790 /// EmitConversionToBool - Convert the specified expression value to a
791 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
792 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
793   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
794
795   if (SrcType->isRealFloatingType())
796     return EmitFloatToBoolConversion(Src);
797
798   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
799     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
800
801   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
802          "Unknown scalar type to convert");
803
804   if (isa<llvm::IntegerType>(Src->getType()))
805     return EmitIntToBoolConversion(Src);
806
807   assert(isa<llvm::PointerType>(Src->getType()));
808   return EmitPointerToBoolConversion(Src, SrcType);
809 }
810
811 void ScalarExprEmitter::EmitFloatConversionCheck(
812     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
813     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
814   CodeGenFunction::SanitizerScope SanScope(&CGF);
815   using llvm::APFloat;
816   using llvm::APSInt;
817
818   llvm::Type *SrcTy = Src->getType();
819
820   llvm::Value *Check = nullptr;
821   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
822     // Integer to floating-point. This can fail for unsigned short -> __half
823     // or unsigned __int128 -> float.
824     assert(DstType->isFloatingType());
825     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
826
827     APFloat LargestFloat =
828       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
829     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
830
831     bool IsExact;
832     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
833                                       &IsExact) != APFloat::opOK)
834       // The range of representable values of this floating point type includes
835       // all values of this integer type. Don't need an overflow check.
836       return;
837
838     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
839     if (SrcIsUnsigned)
840       Check = Builder.CreateICmpULE(Src, Max);
841     else {
842       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
843       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
844       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
845       Check = Builder.CreateAnd(GE, LE);
846     }
847   } else {
848     const llvm::fltSemantics &SrcSema =
849       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
850     if (isa<llvm::IntegerType>(DstTy)) {
851       // Floating-point to integer. This has undefined behavior if the source is
852       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
853       // to an integer).
854       unsigned Width = CGF.getContext().getIntWidth(DstType);
855       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
856
857       APSInt Min = APSInt::getMinValue(Width, Unsigned);
858       APFloat MinSrc(SrcSema, APFloat::uninitialized);
859       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
860           APFloat::opOverflow)
861         // Don't need an overflow check for lower bound. Just check for
862         // -Inf/NaN.
863         MinSrc = APFloat::getInf(SrcSema, true);
864       else
865         // Find the largest value which is too small to represent (before
866         // truncation toward zero).
867         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
868
869       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
870       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
871       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
872           APFloat::opOverflow)
873         // Don't need an overflow check for upper bound. Just check for
874         // +Inf/NaN.
875         MaxSrc = APFloat::getInf(SrcSema, false);
876       else
877         // Find the smallest value which is too large to represent (before
878         // truncation toward zero).
879         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
880
881       // If we're converting from __half, convert the range to float to match
882       // the type of src.
883       if (OrigSrcType->isHalfType()) {
884         const llvm::fltSemantics &Sema =
885           CGF.getContext().getFloatTypeSemantics(SrcType);
886         bool IsInexact;
887         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
888         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
889       }
890
891       llvm::Value *GE =
892         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
893       llvm::Value *LE =
894         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
895       Check = Builder.CreateAnd(GE, LE);
896     } else {
897       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
898       //
899       // Floating-point to floating-point. This has undefined behavior if the
900       // source is not in the range of representable values of the destination
901       // type. The C and C++ standards are spectacularly unclear here. We
902       // diagnose finite out-of-range conversions, but allow infinities and NaNs
903       // to convert to the corresponding value in the smaller type.
904       //
905       // C11 Annex F gives all such conversions defined behavior for IEC 60559
906       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
907       // does not.
908
909       // Converting from a lower rank to a higher rank can never have
910       // undefined behavior, since higher-rank types must have a superset
911       // of values of lower-rank types.
912       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
913         return;
914
915       assert(!OrigSrcType->isHalfType() &&
916              "should not check conversion from __half, it has the lowest rank");
917
918       const llvm::fltSemantics &DstSema =
919         CGF.getContext().getFloatTypeSemantics(DstType);
920       APFloat MinBad = APFloat::getLargest(DstSema, false);
921       APFloat MaxBad = APFloat::getInf(DstSema, false);
922
923       bool IsInexact;
924       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
925       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
926
927       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
928         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
929       llvm::Value *GE =
930         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
931       llvm::Value *LE =
932         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
933       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
934     }
935   }
936
937   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
938                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
939                                   CGF.EmitCheckTypeDescriptor(DstType)};
940   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
941                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
942 }
943
944 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
945                                                    Value *Dst, QualType DstType,
946                                                    SourceLocation Loc) {
947   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation))
948     return;
949
950   llvm::Type *SrcTy = Src->getType();
951   llvm::Type *DstTy = Dst->getType();
952
953   // We only care about int->int conversions here.
954   // We ignore conversions to/from pointer and/or bool.
955   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
956     return;
957
958   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
959          "clang integer type lowered to non-integer llvm type");
960
961   unsigned SrcBits = SrcTy->getScalarSizeInBits();
962   unsigned DstBits = DstTy->getScalarSizeInBits();
963   // This must be truncation. Else we do not care.
964   if (SrcBits <= DstBits)
965     return;
966
967   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
968
969   CodeGenFunction::SanitizerScope SanScope(&CGF);
970
971   llvm::Value *Check = nullptr;
972
973   // 1. Extend the truncated value back to the same width as the Src.
974   bool InputSigned = DstType->isSignedIntegerOrEnumerationType();
975   Check = Builder.CreateIntCast(Dst, SrcTy, InputSigned, "anyext");
976   // 2. Equality-compare with the original source value
977   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
978   // If the comparison result is 'i1 false', then the truncation was lossy.
979
980   llvm::Constant *StaticArgs[] = {
981       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
982       CGF.EmitCheckTypeDescriptor(DstType),
983       llvm::ConstantInt::get(Builder.getInt8Ty(), ICCK_IntegerTruncation)};
984   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::ImplicitIntegerTruncation),
985                 SanitizerHandler::ImplicitConversion, StaticArgs, {Src, Dst});
986 }
987
988 /// Emit a conversion from the specified type to the specified destination type,
989 /// both of which are LLVM scalar types.
990 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
991                                                QualType DstType,
992                                                SourceLocation Loc,
993                                                ScalarConversionOpts Opts) {
994   QualType NoncanonicalSrcType = SrcType;
995   QualType NoncanonicalDstType = DstType;
996
997   SrcType = CGF.getContext().getCanonicalType(SrcType);
998   DstType = CGF.getContext().getCanonicalType(DstType);
999   if (SrcType == DstType) return Src;
1000
1001   if (DstType->isVoidType()) return nullptr;
1002
1003   llvm::Value *OrigSrc = Src;
1004   QualType OrigSrcType = SrcType;
1005   llvm::Type *SrcTy = Src->getType();
1006
1007   // Handle conversions to bool first, they are special: comparisons against 0.
1008   if (DstType->isBooleanType())
1009     return EmitConversionToBool(Src, SrcType);
1010
1011   llvm::Type *DstTy = ConvertType(DstType);
1012
1013   // Cast from half through float if half isn't a native type.
1014   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1015     // Cast to FP using the intrinsic if the half type itself isn't supported.
1016     if (DstTy->isFloatingPointTy()) {
1017       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1018         return Builder.CreateCall(
1019             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1020             Src);
1021     } else {
1022       // Cast to other types through float, using either the intrinsic or FPExt,
1023       // depending on whether the half type itself is supported
1024       // (as opposed to operations on half, available with NativeHalfType).
1025       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1026         Src = Builder.CreateCall(
1027             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1028                                  CGF.CGM.FloatTy),
1029             Src);
1030       } else {
1031         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1032       }
1033       SrcType = CGF.getContext().FloatTy;
1034       SrcTy = CGF.FloatTy;
1035     }
1036   }
1037
1038   // Ignore conversions like int -> uint.
1039   if (SrcTy == DstTy)
1040     return Src;
1041
1042   // Handle pointer conversions next: pointers can only be converted to/from
1043   // other pointers and integers. Check for pointer types in terms of LLVM, as
1044   // some native types (like Obj-C id) may map to a pointer type.
1045   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1046     // The source value may be an integer, or a pointer.
1047     if (isa<llvm::PointerType>(SrcTy))
1048       return Builder.CreateBitCast(Src, DstTy, "conv");
1049
1050     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1051     // First, convert to the correct width so that we control the kind of
1052     // extension.
1053     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1054     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1055     llvm::Value* IntResult =
1056         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1057     // Then, cast to pointer.
1058     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1059   }
1060
1061   if (isa<llvm::PointerType>(SrcTy)) {
1062     // Must be an ptr to int cast.
1063     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1064     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1065   }
1066
1067   // A scalar can be splatted to an extended vector of the same element type
1068   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1069     // Sema should add casts to make sure that the source expression's type is
1070     // the same as the vector's element type (sans qualifiers)
1071     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1072                SrcType.getTypePtr() &&
1073            "Splatted expr doesn't match with vector element type?");
1074
1075     // Splat the element across to all elements
1076     unsigned NumElements = DstTy->getVectorNumElements();
1077     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1078   }
1079
1080   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1081     // Allow bitcast from vector to integer/fp of the same size.
1082     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1083     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1084     if (SrcSize == DstSize)
1085       return Builder.CreateBitCast(Src, DstTy, "conv");
1086
1087     // Conversions between vectors of different sizes are not allowed except
1088     // when vectors of half are involved. Operations on storage-only half
1089     // vectors require promoting half vector operands to float vectors and
1090     // truncating the result, which is either an int or float vector, to a
1091     // short or half vector.
1092
1093     // Source and destination are both expected to be vectors.
1094     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1095     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1096     (void)DstElementTy;
1097
1098     assert(((SrcElementTy->isIntegerTy() &&
1099              DstElementTy->isIntegerTy()) ||
1100             (SrcElementTy->isFloatingPointTy() &&
1101              DstElementTy->isFloatingPointTy())) &&
1102            "unexpected conversion between a floating-point vector and an "
1103            "integer vector");
1104
1105     // Truncate an i32 vector to an i16 vector.
1106     if (SrcElementTy->isIntegerTy())
1107       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1108
1109     // Truncate a float vector to a half vector.
1110     if (SrcSize > DstSize)
1111       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1112
1113     // Promote a half vector to a float vector.
1114     return Builder.CreateFPExt(Src, DstTy, "conv");
1115   }
1116
1117   // Finally, we have the arithmetic types: real int/float.
1118   Value *Res = nullptr;
1119   llvm::Type *ResTy = DstTy;
1120
1121   // An overflowing conversion has undefined behavior if either the source type
1122   // or the destination type is a floating-point type.
1123   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1124       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1125     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1126                              Loc);
1127
1128   // Cast to half through float if half isn't a native type.
1129   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1130     // Make sure we cast in a single step if from another FP type.
1131     if (SrcTy->isFloatingPointTy()) {
1132       // Use the intrinsic if the half type itself isn't supported
1133       // (as opposed to operations on half, available with NativeHalfType).
1134       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1135         return Builder.CreateCall(
1136             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1137       // If the half type is supported, just use an fptrunc.
1138       return Builder.CreateFPTrunc(Src, DstTy);
1139     }
1140     DstTy = CGF.FloatTy;
1141   }
1142
1143   if (isa<llvm::IntegerType>(SrcTy)) {
1144     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1145     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1146       InputSigned = true;
1147     }
1148     if (isa<llvm::IntegerType>(DstTy))
1149       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1150     else if (InputSigned)
1151       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1152     else
1153       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1154   } else if (isa<llvm::IntegerType>(DstTy)) {
1155     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1156     if (DstType->isSignedIntegerOrEnumerationType())
1157       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1158     else
1159       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1160   } else {
1161     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1162            "Unknown real conversion");
1163     if (DstTy->getTypeID() < SrcTy->getTypeID())
1164       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1165     else
1166       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1167   }
1168
1169   if (DstTy != ResTy) {
1170     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1171       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1172       Res = Builder.CreateCall(
1173         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1174         Res);
1175     } else {
1176       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1177     }
1178   }
1179
1180   if (Opts.EmitImplicitIntegerTruncationChecks)
1181     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1182                                NoncanonicalDstType, Loc);
1183
1184   return Res;
1185 }
1186
1187 /// Emit a conversion from the specified complex type to the specified
1188 /// destination type, where the destination type is an LLVM scalar type.
1189 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1190     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1191     SourceLocation Loc) {
1192   // Get the source element type.
1193   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1194
1195   // Handle conversions to bool first, they are special: comparisons against 0.
1196   if (DstTy->isBooleanType()) {
1197     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1198     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1199     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1200     return Builder.CreateOr(Src.first, Src.second, "tobool");
1201   }
1202
1203   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1204   // the imaginary part of the complex value is discarded and the value of the
1205   // real part is converted according to the conversion rules for the
1206   // corresponding real type.
1207   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1208 }
1209
1210 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1211   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1212 }
1213
1214 /// Emit a sanitization check for the given "binary" operation (which
1215 /// might actually be a unary increment which has been lowered to a binary
1216 /// operation). The check passes if all values in \p Checks (which are \c i1),
1217 /// are \c true.
1218 void ScalarExprEmitter::EmitBinOpCheck(
1219     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1220   assert(CGF.IsSanitizerScope);
1221   SanitizerHandler Check;
1222   SmallVector<llvm::Constant *, 4> StaticData;
1223   SmallVector<llvm::Value *, 2> DynamicData;
1224
1225   BinaryOperatorKind Opcode = Info.Opcode;
1226   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1227     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1228
1229   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1230   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1231   if (UO && UO->getOpcode() == UO_Minus) {
1232     Check = SanitizerHandler::NegateOverflow;
1233     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1234     DynamicData.push_back(Info.RHS);
1235   } else {
1236     if (BinaryOperator::isShiftOp(Opcode)) {
1237       // Shift LHS negative or too large, or RHS out of bounds.
1238       Check = SanitizerHandler::ShiftOutOfBounds;
1239       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1240       StaticData.push_back(
1241         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1242       StaticData.push_back(
1243         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1244     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1245       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1246       Check = SanitizerHandler::DivremOverflow;
1247       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1248     } else {
1249       // Arithmetic overflow (+, -, *).
1250       switch (Opcode) {
1251       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1252       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1253       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1254       default: llvm_unreachable("unexpected opcode for bin op check");
1255       }
1256       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1257     }
1258     DynamicData.push_back(Info.LHS);
1259     DynamicData.push_back(Info.RHS);
1260   }
1261
1262   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1263 }
1264
1265 //===----------------------------------------------------------------------===//
1266 //                            Visitor Methods
1267 //===----------------------------------------------------------------------===//
1268
1269 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1270   CGF.ErrorUnsupported(E, "scalar expression");
1271   if (E->getType()->isVoidType())
1272     return nullptr;
1273   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1274 }
1275
1276 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1277   // Vector Mask Case
1278   if (E->getNumSubExprs() == 2) {
1279     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1280     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1281     Value *Mask;
1282
1283     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1284     unsigned LHSElts = LTy->getNumElements();
1285
1286     Mask = RHS;
1287
1288     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1289
1290     // Mask off the high bits of each shuffle index.
1291     Value *MaskBits =
1292         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1293     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1294
1295     // newv = undef
1296     // mask = mask & maskbits
1297     // for each elt
1298     //   n = extract mask i
1299     //   x = extract val n
1300     //   newv = insert newv, x, i
1301     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1302                                                   MTy->getNumElements());
1303     Value* NewV = llvm::UndefValue::get(RTy);
1304     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1305       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1306       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1307
1308       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1309       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1310     }
1311     return NewV;
1312   }
1313
1314   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1315   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1316
1317   SmallVector<llvm::Constant*, 32> indices;
1318   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1319     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1320     // Check for -1 and output it as undef in the IR.
1321     if (Idx.isSigned() && Idx.isAllOnesValue())
1322       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1323     else
1324       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1325   }
1326
1327   Value *SV = llvm::ConstantVector::get(indices);
1328   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1329 }
1330
1331 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1332   QualType SrcType = E->getSrcExpr()->getType(),
1333            DstType = E->getType();
1334
1335   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1336
1337   SrcType = CGF.getContext().getCanonicalType(SrcType);
1338   DstType = CGF.getContext().getCanonicalType(DstType);
1339   if (SrcType == DstType) return Src;
1340
1341   assert(SrcType->isVectorType() &&
1342          "ConvertVector source type must be a vector");
1343   assert(DstType->isVectorType() &&
1344          "ConvertVector destination type must be a vector");
1345
1346   llvm::Type *SrcTy = Src->getType();
1347   llvm::Type *DstTy = ConvertType(DstType);
1348
1349   // Ignore conversions like int -> uint.
1350   if (SrcTy == DstTy)
1351     return Src;
1352
1353   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1354            DstEltType = DstType->getAs<VectorType>()->getElementType();
1355
1356   assert(SrcTy->isVectorTy() &&
1357          "ConvertVector source IR type must be a vector");
1358   assert(DstTy->isVectorTy() &&
1359          "ConvertVector destination IR type must be a vector");
1360
1361   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1362              *DstEltTy = DstTy->getVectorElementType();
1363
1364   if (DstEltType->isBooleanType()) {
1365     assert((SrcEltTy->isFloatingPointTy() ||
1366             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1367
1368     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1369     if (SrcEltTy->isFloatingPointTy()) {
1370       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1371     } else {
1372       return Builder.CreateICmpNE(Src, Zero, "tobool");
1373     }
1374   }
1375
1376   // We have the arithmetic types: real int/float.
1377   Value *Res = nullptr;
1378
1379   if (isa<llvm::IntegerType>(SrcEltTy)) {
1380     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1381     if (isa<llvm::IntegerType>(DstEltTy))
1382       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1383     else if (InputSigned)
1384       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1385     else
1386       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1387   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1388     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1389     if (DstEltType->isSignedIntegerOrEnumerationType())
1390       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1391     else
1392       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1393   } else {
1394     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1395            "Unknown real conversion");
1396     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1397       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1398     else
1399       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1400   }
1401
1402   return Res;
1403 }
1404
1405 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1406   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1407     CGF.EmitIgnoredExpr(E->getBase());
1408     return emitConstant(Constant, E);
1409   } else {
1410     llvm::APSInt Value;
1411     if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1412       CGF.EmitIgnoredExpr(E->getBase());
1413       return Builder.getInt(Value);
1414     }
1415   }
1416
1417   return EmitLoadOfLValue(E);
1418 }
1419
1420 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1421   TestAndClearIgnoreResultAssign();
1422
1423   // Emit subscript expressions in rvalue context's.  For most cases, this just
1424   // loads the lvalue formed by the subscript expr.  However, we have to be
1425   // careful, because the base of a vector subscript is occasionally an rvalue,
1426   // so we can't get it as an lvalue.
1427   if (!E->getBase()->getType()->isVectorType())
1428     return EmitLoadOfLValue(E);
1429
1430   // Handle the vector case.  The base must be a vector, the index must be an
1431   // integer value.
1432   Value *Base = Visit(E->getBase());
1433   Value *Idx  = Visit(E->getIdx());
1434   QualType IdxTy = E->getIdx()->getType();
1435
1436   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1437     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1438
1439   return Builder.CreateExtractElement(Base, Idx, "vecext");
1440 }
1441
1442 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1443                                   unsigned Off, llvm::Type *I32Ty) {
1444   int MV = SVI->getMaskValue(Idx);
1445   if (MV == -1)
1446     return llvm::UndefValue::get(I32Ty);
1447   return llvm::ConstantInt::get(I32Ty, Off+MV);
1448 }
1449
1450 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1451   if (C->getBitWidth() != 32) {
1452       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1453                                                     C->getZExtValue()) &&
1454              "Index operand too large for shufflevector mask!");
1455       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1456   }
1457   return C;
1458 }
1459
1460 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1461   bool Ignore = TestAndClearIgnoreResultAssign();
1462   (void)Ignore;
1463   assert (Ignore == false && "init list ignored");
1464   unsigned NumInitElements = E->getNumInits();
1465
1466   if (E->hadArrayRangeDesignator())
1467     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1468
1469   llvm::VectorType *VType =
1470     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1471
1472   if (!VType) {
1473     if (NumInitElements == 0) {
1474       // C++11 value-initialization for the scalar.
1475       return EmitNullValue(E->getType());
1476     }
1477     // We have a scalar in braces. Just use the first element.
1478     return Visit(E->getInit(0));
1479   }
1480
1481   unsigned ResElts = VType->getNumElements();
1482
1483   // Loop over initializers collecting the Value for each, and remembering
1484   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1485   // us to fold the shuffle for the swizzle into the shuffle for the vector
1486   // initializer, since LLVM optimizers generally do not want to touch
1487   // shuffles.
1488   unsigned CurIdx = 0;
1489   bool VIsUndefShuffle = false;
1490   llvm::Value *V = llvm::UndefValue::get(VType);
1491   for (unsigned i = 0; i != NumInitElements; ++i) {
1492     Expr *IE = E->getInit(i);
1493     Value *Init = Visit(IE);
1494     SmallVector<llvm::Constant*, 16> Args;
1495
1496     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1497
1498     // Handle scalar elements.  If the scalar initializer is actually one
1499     // element of a different vector of the same width, use shuffle instead of
1500     // extract+insert.
1501     if (!VVT) {
1502       if (isa<ExtVectorElementExpr>(IE)) {
1503         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1504
1505         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1506           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1507           Value *LHS = nullptr, *RHS = nullptr;
1508           if (CurIdx == 0) {
1509             // insert into undef -> shuffle (src, undef)
1510             // shufflemask must use an i32
1511             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1512             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1513
1514             LHS = EI->getVectorOperand();
1515             RHS = V;
1516             VIsUndefShuffle = true;
1517           } else if (VIsUndefShuffle) {
1518             // insert into undefshuffle && size match -> shuffle (v, src)
1519             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1520             for (unsigned j = 0; j != CurIdx; ++j)
1521               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1522             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1523             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1524
1525             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1526             RHS = EI->getVectorOperand();
1527             VIsUndefShuffle = false;
1528           }
1529           if (!Args.empty()) {
1530             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1531             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1532             ++CurIdx;
1533             continue;
1534           }
1535         }
1536       }
1537       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1538                                       "vecinit");
1539       VIsUndefShuffle = false;
1540       ++CurIdx;
1541       continue;
1542     }
1543
1544     unsigned InitElts = VVT->getNumElements();
1545
1546     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1547     // input is the same width as the vector being constructed, generate an
1548     // optimized shuffle of the swizzle input into the result.
1549     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1550     if (isa<ExtVectorElementExpr>(IE)) {
1551       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1552       Value *SVOp = SVI->getOperand(0);
1553       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1554
1555       if (OpTy->getNumElements() == ResElts) {
1556         for (unsigned j = 0; j != CurIdx; ++j) {
1557           // If the current vector initializer is a shuffle with undef, merge
1558           // this shuffle directly into it.
1559           if (VIsUndefShuffle) {
1560             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1561                                       CGF.Int32Ty));
1562           } else {
1563             Args.push_back(Builder.getInt32(j));
1564           }
1565         }
1566         for (unsigned j = 0, je = InitElts; j != je; ++j)
1567           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1568         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1569
1570         if (VIsUndefShuffle)
1571           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1572
1573         Init = SVOp;
1574       }
1575     }
1576
1577     // Extend init to result vector length, and then shuffle its contribution
1578     // to the vector initializer into V.
1579     if (Args.empty()) {
1580       for (unsigned j = 0; j != InitElts; ++j)
1581         Args.push_back(Builder.getInt32(j));
1582       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1583       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1584       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1585                                          Mask, "vext");
1586
1587       Args.clear();
1588       for (unsigned j = 0; j != CurIdx; ++j)
1589         Args.push_back(Builder.getInt32(j));
1590       for (unsigned j = 0; j != InitElts; ++j)
1591         Args.push_back(Builder.getInt32(j+Offset));
1592       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1593     }
1594
1595     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1596     // merging subsequent shuffles into this one.
1597     if (CurIdx == 0)
1598       std::swap(V, Init);
1599     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1600     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1601     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1602     CurIdx += InitElts;
1603   }
1604
1605   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1606   // Emit remaining default initializers.
1607   llvm::Type *EltTy = VType->getElementType();
1608
1609   // Emit remaining default initializers
1610   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1611     Value *Idx = Builder.getInt32(CurIdx);
1612     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1613     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1614   }
1615   return V;
1616 }
1617
1618 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1619   const Expr *E = CE->getSubExpr();
1620
1621   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1622     return false;
1623
1624   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1625     // We always assume that 'this' is never null.
1626     return false;
1627   }
1628
1629   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1630     // And that glvalue casts are never null.
1631     if (ICE->getValueKind() != VK_RValue)
1632       return false;
1633   }
1634
1635   return true;
1636 }
1637
1638 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1639 // have to handle a more broad range of conversions than explicit casts, as they
1640 // handle things like function to ptr-to-function decay etc.
1641 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1642   Expr *E = CE->getSubExpr();
1643   QualType DestTy = CE->getType();
1644   CastKind Kind = CE->getCastKind();
1645
1646   // These cases are generally not written to ignore the result of
1647   // evaluating their sub-expressions, so we clear this now.
1648   bool Ignored = TestAndClearIgnoreResultAssign();
1649
1650   // Since almost all cast kinds apply to scalars, this switch doesn't have
1651   // a default case, so the compiler will warn on a missing case.  The cases
1652   // are in the same order as in the CastKind enum.
1653   switch (Kind) {
1654   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1655   case CK_BuiltinFnToFnPtr:
1656     llvm_unreachable("builtin functions are handled elsewhere");
1657
1658   case CK_LValueBitCast:
1659   case CK_ObjCObjectLValueCast: {
1660     Address Addr = EmitLValue(E).getAddress();
1661     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1662     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1663     return EmitLoadOfLValue(LV, CE->getExprLoc());
1664   }
1665
1666   case CK_CPointerToObjCPointerCast:
1667   case CK_BlockPointerToObjCPointerCast:
1668   case CK_AnyPointerToBlockPointerCast:
1669   case CK_BitCast: {
1670     Value *Src = Visit(const_cast<Expr*>(E));
1671     llvm::Type *SrcTy = Src->getType();
1672     llvm::Type *DstTy = ConvertType(DestTy);
1673     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1674         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1675       llvm_unreachable("wrong cast for pointers in different address spaces"
1676                        "(must be an address space cast)!");
1677     }
1678
1679     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1680       if (auto PT = DestTy->getAs<PointerType>())
1681         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1682                                       /*MayBeNull=*/true,
1683                                       CodeGenFunction::CFITCK_UnrelatedCast,
1684                                       CE->getLocStart());
1685     }
1686
1687     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1688       const QualType SrcType = E->getType();
1689
1690       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1691         // Casting to pointer that could carry dynamic information (provided by
1692         // invariant.group) requires launder.
1693         Src = Builder.CreateLaunderInvariantGroup(Src);
1694       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1695         // Casting to pointer that does not carry dynamic information (provided
1696         // by invariant.group) requires stripping it.  Note that we don't do it
1697         // if the source could not be dynamic type and destination could be
1698         // dynamic because dynamic information is already laundered.  It is
1699         // because launder(strip(src)) == launder(src), so there is no need to
1700         // add extra strip before launder.
1701         Src = Builder.CreateStripInvariantGroup(Src);
1702       }
1703     }
1704
1705     return Builder.CreateBitCast(Src, DstTy);
1706   }
1707   case CK_AddressSpaceConversion: {
1708     Expr::EvalResult Result;
1709     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1710         Result.Val.isNullPointer()) {
1711       // If E has side effect, it is emitted even if its final result is a
1712       // null pointer. In that case, a DCE pass should be able to
1713       // eliminate the useless instructions emitted during translating E.
1714       if (Result.HasSideEffects)
1715         Visit(E);
1716       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1717           ConvertType(DestTy)), DestTy);
1718     }
1719     // Since target may map different address spaces in AST to the same address
1720     // space, an address space conversion may end up as a bitcast.
1721     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
1722         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1723         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1724   }
1725   case CK_AtomicToNonAtomic:
1726   case CK_NonAtomicToAtomic:
1727   case CK_NoOp:
1728   case CK_UserDefinedConversion:
1729     return Visit(const_cast<Expr*>(E));
1730
1731   case CK_BaseToDerived: {
1732     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1733     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1734
1735     Address Base = CGF.EmitPointerWithAlignment(E);
1736     Address Derived =
1737       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1738                                    CE->path_begin(), CE->path_end(),
1739                                    CGF.ShouldNullCheckClassCastValue(CE));
1740
1741     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1742     // performed and the object is not of the derived type.
1743     if (CGF.sanitizePerformTypeCheck())
1744       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1745                         Derived.getPointer(), DestTy->getPointeeType());
1746
1747     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1748       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1749                                     Derived.getPointer(),
1750                                     /*MayBeNull=*/true,
1751                                     CodeGenFunction::CFITCK_DerivedCast,
1752                                     CE->getLocStart());
1753
1754     return Derived.getPointer();
1755   }
1756   case CK_UncheckedDerivedToBase:
1757   case CK_DerivedToBase: {
1758     // The EmitPointerWithAlignment path does this fine; just discard
1759     // the alignment.
1760     return CGF.EmitPointerWithAlignment(CE).getPointer();
1761   }
1762
1763   case CK_Dynamic: {
1764     Address V = CGF.EmitPointerWithAlignment(E);
1765     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1766     return CGF.EmitDynamicCast(V, DCE);
1767   }
1768
1769   case CK_ArrayToPointerDecay:
1770     return CGF.EmitArrayToPointerDecay(E).getPointer();
1771   case CK_FunctionToPointerDecay:
1772     return EmitLValue(E).getPointer();
1773
1774   case CK_NullToPointer:
1775     if (MustVisitNullValue(E))
1776       (void) Visit(E);
1777
1778     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1779                               DestTy);
1780
1781   case CK_NullToMemberPointer: {
1782     if (MustVisitNullValue(E))
1783       (void) Visit(E);
1784
1785     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1786     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1787   }
1788
1789   case CK_ReinterpretMemberPointer:
1790   case CK_BaseToDerivedMemberPointer:
1791   case CK_DerivedToBaseMemberPointer: {
1792     Value *Src = Visit(E);
1793
1794     // Note that the AST doesn't distinguish between checked and
1795     // unchecked member pointer conversions, so we always have to
1796     // implement checked conversions here.  This is inefficient when
1797     // actual control flow may be required in order to perform the
1798     // check, which it is for data member pointers (but not member
1799     // function pointers on Itanium and ARM).
1800     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1801   }
1802
1803   case CK_ARCProduceObject:
1804     return CGF.EmitARCRetainScalarExpr(E);
1805   case CK_ARCConsumeObject:
1806     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1807   case CK_ARCReclaimReturnedObject:
1808     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1809   case CK_ARCExtendBlockObject:
1810     return CGF.EmitARCExtendBlockObject(E);
1811
1812   case CK_CopyAndAutoreleaseBlockObject:
1813     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1814
1815   case CK_FloatingRealToComplex:
1816   case CK_FloatingComplexCast:
1817   case CK_IntegralRealToComplex:
1818   case CK_IntegralComplexCast:
1819   case CK_IntegralComplexToFloatingComplex:
1820   case CK_FloatingComplexToIntegralComplex:
1821   case CK_ConstructorConversion:
1822   case CK_ToUnion:
1823     llvm_unreachable("scalar cast to non-scalar value");
1824
1825   case CK_LValueToRValue:
1826     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1827     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1828     return Visit(const_cast<Expr*>(E));
1829
1830   case CK_IntegralToPointer: {
1831     Value *Src = Visit(const_cast<Expr*>(E));
1832
1833     // First, convert to the correct width so that we control the kind of
1834     // extension.
1835     auto DestLLVMTy = ConvertType(DestTy);
1836     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1837     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1838     llvm::Value* IntResult =
1839       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1840
1841     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1842
1843     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1844       // Going from integer to pointer that could be dynamic requires reloading
1845       // dynamic information from invariant.group.
1846       if (DestTy.mayBeDynamicClass())
1847         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
1848     }
1849     return IntToPtr;
1850   }
1851   case CK_PointerToIntegral: {
1852     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1853     auto *PtrExpr = Visit(E);
1854
1855     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1856       const QualType SrcType = E->getType();
1857
1858       // Casting to integer requires stripping dynamic information as it does
1859       // not carries it.
1860       if (SrcType.mayBeDynamicClass())
1861         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
1862     }
1863
1864     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
1865   }
1866   case CK_ToVoid: {
1867     CGF.EmitIgnoredExpr(E);
1868     return nullptr;
1869   }
1870   case CK_VectorSplat: {
1871     llvm::Type *DstTy = ConvertType(DestTy);
1872     Value *Elt = Visit(const_cast<Expr*>(E));
1873     // Splat the element across to all elements
1874     unsigned NumElements = DstTy->getVectorNumElements();
1875     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1876   }
1877
1878   case CK_IntegralCast: {
1879     ScalarConversionOpts Opts;
1880     if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation)) {
1881       if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE))
1882         Opts.EmitImplicitIntegerTruncationChecks = !ICE->isPartOfExplicitCast();
1883     }
1884     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1885                                 CE->getExprLoc(), Opts);
1886   }
1887   case CK_IntegralToFloating:
1888   case CK_FloatingToIntegral:
1889   case CK_FloatingCast:
1890     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1891                                 CE->getExprLoc());
1892   case CK_BooleanToSignedIntegral: {
1893     ScalarConversionOpts Opts;
1894     Opts.TreatBooleanAsSigned = true;
1895     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1896                                 CE->getExprLoc(), Opts);
1897   }
1898   case CK_IntegralToBoolean:
1899     return EmitIntToBoolConversion(Visit(E));
1900   case CK_PointerToBoolean:
1901     return EmitPointerToBoolConversion(Visit(E), E->getType());
1902   case CK_FloatingToBoolean:
1903     return EmitFloatToBoolConversion(Visit(E));
1904   case CK_MemberPointerToBoolean: {
1905     llvm::Value *MemPtr = Visit(E);
1906     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1907     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1908   }
1909
1910   case CK_FloatingComplexToReal:
1911   case CK_IntegralComplexToReal:
1912     return CGF.EmitComplexExpr(E, false, true).first;
1913
1914   case CK_FloatingComplexToBoolean:
1915   case CK_IntegralComplexToBoolean: {
1916     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1917
1918     // TODO: kill this function off, inline appropriate case here
1919     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1920                                          CE->getExprLoc());
1921   }
1922
1923   case CK_ZeroToOCLEvent: {
1924     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1925     return llvm::Constant::getNullValue(ConvertType(DestTy));
1926   }
1927
1928   case CK_ZeroToOCLQueue: {
1929     assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1930     return llvm::Constant::getNullValue(ConvertType(DestTy));
1931   }
1932
1933   case CK_IntToOCLSampler:
1934     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1935
1936   } // end of switch
1937
1938   llvm_unreachable("unknown scalar cast");
1939 }
1940
1941 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1942   CodeGenFunction::StmtExprEvaluation eval(CGF);
1943   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1944                                            !E->getType()->isVoidType());
1945   if (!RetAlloca.isValid())
1946     return nullptr;
1947   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1948                               E->getExprLoc());
1949 }
1950
1951 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1952   CGF.enterFullExpression(E);
1953   CodeGenFunction::RunCleanupsScope Scope(CGF);
1954   Value *V = Visit(E->getSubExpr());
1955   // Defend against dominance problems caused by jumps out of expression
1956   // evaluation through the shared cleanup block.
1957   Scope.ForceCleanup({&V});
1958   return V;
1959 }
1960
1961 //===----------------------------------------------------------------------===//
1962 //                             Unary Operators
1963 //===----------------------------------------------------------------------===//
1964
1965 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1966                                            llvm::Value *InVal, bool IsInc) {
1967   BinOpInfo BinOp;
1968   BinOp.LHS = InVal;
1969   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1970   BinOp.Ty = E->getType();
1971   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1972   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1973   BinOp.E = E;
1974   return BinOp;
1975 }
1976
1977 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1978     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1979   llvm::Value *Amount =
1980       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1981   StringRef Name = IsInc ? "inc" : "dec";
1982   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1983   case LangOptions::SOB_Defined:
1984     return Builder.CreateAdd(InVal, Amount, Name);
1985   case LangOptions::SOB_Undefined:
1986     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1987       return Builder.CreateNSWAdd(InVal, Amount, Name);
1988     // Fall through.
1989   case LangOptions::SOB_Trapping:
1990     if (!E->canOverflow())
1991       return Builder.CreateNSWAdd(InVal, Amount, Name);
1992     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1993   }
1994   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1995 }
1996
1997 llvm::Value *
1998 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1999                                            bool isInc, bool isPre) {
2000
2001   QualType type = E->getSubExpr()->getType();
2002   llvm::PHINode *atomicPHI = nullptr;
2003   llvm::Value *value;
2004   llvm::Value *input;
2005
2006   int amount = (isInc ? 1 : -1);
2007   bool isSubtraction = !isInc;
2008
2009   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2010     type = atomicTy->getValueType();
2011     if (isInc && type->isBooleanType()) {
2012       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2013       if (isPre) {
2014         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2015           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2016         return Builder.getTrue();
2017       }
2018       // For atomic bool increment, we just store true and return it for
2019       // preincrement, do an atomic swap with true for postincrement
2020       return Builder.CreateAtomicRMW(
2021           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2022           llvm::AtomicOrdering::SequentiallyConsistent);
2023     }
2024     // Special case for atomic increment / decrement on integers, emit
2025     // atomicrmw instructions.  We skip this if we want to be doing overflow
2026     // checking, and fall into the slow path with the atomic cmpxchg loop.
2027     if (!type->isBooleanType() && type->isIntegerType() &&
2028         !(type->isUnsignedIntegerType() &&
2029           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2030         CGF.getLangOpts().getSignedOverflowBehavior() !=
2031             LangOptions::SOB_Trapping) {
2032       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2033         llvm::AtomicRMWInst::Sub;
2034       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2035         llvm::Instruction::Sub;
2036       llvm::Value *amt = CGF.EmitToMemory(
2037           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2038       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2039           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2040       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2041     }
2042     value = EmitLoadOfLValue(LV, E->getExprLoc());
2043     input = value;
2044     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2045     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2046     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2047     value = CGF.EmitToMemory(value, type);
2048     Builder.CreateBr(opBB);
2049     Builder.SetInsertPoint(opBB);
2050     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2051     atomicPHI->addIncoming(value, startBB);
2052     value = atomicPHI;
2053   } else {
2054     value = EmitLoadOfLValue(LV, E->getExprLoc());
2055     input = value;
2056   }
2057
2058   // Special case of integer increment that we have to check first: bool++.
2059   // Due to promotion rules, we get:
2060   //   bool++ -> bool = bool + 1
2061   //          -> bool = (int)bool + 1
2062   //          -> bool = ((int)bool + 1 != 0)
2063   // An interesting aspect of this is that increment is always true.
2064   // Decrement does not have this property.
2065   if (isInc && type->isBooleanType()) {
2066     value = Builder.getTrue();
2067
2068   // Most common case by far: integer increment.
2069   } else if (type->isIntegerType()) {
2070     // Note that signed integer inc/dec with width less than int can't
2071     // overflow because of promotion rules; we're just eliding a few steps here.
2072     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2073       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2074     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2075                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2076       value =
2077           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2078     } else {
2079       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2080       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2081     }
2082
2083   // Next most common: pointer increment.
2084   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2085     QualType type = ptr->getPointeeType();
2086
2087     // VLA types don't have constant size.
2088     if (const VariableArrayType *vla
2089           = CGF.getContext().getAsVariableArrayType(type)) {
2090       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2091       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2092       if (CGF.getLangOpts().isSignedOverflowDefined())
2093         value = Builder.CreateGEP(value, numElts, "vla.inc");
2094       else
2095         value = CGF.EmitCheckedInBoundsGEP(
2096             value, numElts, /*SignedIndices=*/false, isSubtraction,
2097             E->getExprLoc(), "vla.inc");
2098
2099     // Arithmetic on function pointers (!) is just +-1.
2100     } else if (type->isFunctionType()) {
2101       llvm::Value *amt = Builder.getInt32(amount);
2102
2103       value = CGF.EmitCastToVoidPtr(value);
2104       if (CGF.getLangOpts().isSignedOverflowDefined())
2105         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2106       else
2107         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2108                                            isSubtraction, E->getExprLoc(),
2109                                            "incdec.funcptr");
2110       value = Builder.CreateBitCast(value, input->getType());
2111
2112     // For everything else, we can just do a simple increment.
2113     } else {
2114       llvm::Value *amt = Builder.getInt32(amount);
2115       if (CGF.getLangOpts().isSignedOverflowDefined())
2116         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2117       else
2118         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2119                                            isSubtraction, E->getExprLoc(),
2120                                            "incdec.ptr");
2121     }
2122
2123   // Vector increment/decrement.
2124   } else if (type->isVectorType()) {
2125     if (type->hasIntegerRepresentation()) {
2126       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2127
2128       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2129     } else {
2130       value = Builder.CreateFAdd(
2131                   value,
2132                   llvm::ConstantFP::get(value->getType(), amount),
2133                   isInc ? "inc" : "dec");
2134     }
2135
2136   // Floating point.
2137   } else if (type->isRealFloatingType()) {
2138     // Add the inc/dec to the real part.
2139     llvm::Value *amt;
2140
2141     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2142       // Another special case: half FP increment should be done via float
2143       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2144         value = Builder.CreateCall(
2145             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2146                                  CGF.CGM.FloatTy),
2147             input, "incdec.conv");
2148       } else {
2149         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2150       }
2151     }
2152
2153     if (value->getType()->isFloatTy())
2154       amt = llvm::ConstantFP::get(VMContext,
2155                                   llvm::APFloat(static_cast<float>(amount)));
2156     else if (value->getType()->isDoubleTy())
2157       amt = llvm::ConstantFP::get(VMContext,
2158                                   llvm::APFloat(static_cast<double>(amount)));
2159     else {
2160       // Remaining types are Half, LongDouble or __float128. Convert from float.
2161       llvm::APFloat F(static_cast<float>(amount));
2162       bool ignored;
2163       const llvm::fltSemantics *FS;
2164       // Don't use getFloatTypeSemantics because Half isn't
2165       // necessarily represented using the "half" LLVM type.
2166       if (value->getType()->isFP128Ty())
2167         FS = &CGF.getTarget().getFloat128Format();
2168       else if (value->getType()->isHalfTy())
2169         FS = &CGF.getTarget().getHalfFormat();
2170       else
2171         FS = &CGF.getTarget().getLongDoubleFormat();
2172       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2173       amt = llvm::ConstantFP::get(VMContext, F);
2174     }
2175     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2176
2177     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2178       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2179         value = Builder.CreateCall(
2180             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2181                                  CGF.CGM.FloatTy),
2182             value, "incdec.conv");
2183       } else {
2184         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2185       }
2186     }
2187
2188   // Objective-C pointer types.
2189   } else {
2190     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2191     value = CGF.EmitCastToVoidPtr(value);
2192
2193     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2194     if (!isInc) size = -size;
2195     llvm::Value *sizeValue =
2196       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2197
2198     if (CGF.getLangOpts().isSignedOverflowDefined())
2199       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2200     else
2201       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2202                                          /*SignedIndices=*/false, isSubtraction,
2203                                          E->getExprLoc(), "incdec.objptr");
2204     value = Builder.CreateBitCast(value, input->getType());
2205   }
2206
2207   if (atomicPHI) {
2208     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2209     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2210     auto Pair = CGF.EmitAtomicCompareExchange(
2211         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2212     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2213     llvm::Value *success = Pair.second;
2214     atomicPHI->addIncoming(old, opBB);
2215     Builder.CreateCondBr(success, contBB, opBB);
2216     Builder.SetInsertPoint(contBB);
2217     return isPre ? value : input;
2218   }
2219
2220   // Store the updated result through the lvalue.
2221   if (LV.isBitField())
2222     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2223   else
2224     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2225
2226   // If this is a postinc, return the value read from memory, otherwise use the
2227   // updated value.
2228   return isPre ? value : input;
2229 }
2230
2231
2232
2233 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2234   TestAndClearIgnoreResultAssign();
2235   // Emit unary minus with EmitSub so we handle overflow cases etc.
2236   BinOpInfo BinOp;
2237   BinOp.RHS = Visit(E->getSubExpr());
2238
2239   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2240     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2241   else
2242     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2243   BinOp.Ty = E->getType();
2244   BinOp.Opcode = BO_Sub;
2245   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2246   BinOp.E = E;
2247   return EmitSub(BinOp);
2248 }
2249
2250 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2251   TestAndClearIgnoreResultAssign();
2252   Value *Op = Visit(E->getSubExpr());
2253   return Builder.CreateNot(Op, "neg");
2254 }
2255
2256 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2257   // Perform vector logical not on comparison with zero vector.
2258   if (E->getType()->isExtVectorType()) {
2259     Value *Oper = Visit(E->getSubExpr());
2260     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2261     Value *Result;
2262     if (Oper->getType()->isFPOrFPVectorTy())
2263       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2264     else
2265       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2266     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2267   }
2268
2269   // Compare operand to zero.
2270   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2271
2272   // Invert value.
2273   // TODO: Could dynamically modify easy computations here.  For example, if
2274   // the operand is an icmp ne, turn into icmp eq.
2275   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2276
2277   // ZExt result to the expr type.
2278   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2279 }
2280
2281 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2282   // Try folding the offsetof to a constant.
2283   llvm::APSInt Value;
2284   if (E->EvaluateAsInt(Value, CGF.getContext()))
2285     return Builder.getInt(Value);
2286
2287   // Loop over the components of the offsetof to compute the value.
2288   unsigned n = E->getNumComponents();
2289   llvm::Type* ResultType = ConvertType(E->getType());
2290   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2291   QualType CurrentType = E->getTypeSourceInfo()->getType();
2292   for (unsigned i = 0; i != n; ++i) {
2293     OffsetOfNode ON = E->getComponent(i);
2294     llvm::Value *Offset = nullptr;
2295     switch (ON.getKind()) {
2296     case OffsetOfNode::Array: {
2297       // Compute the index
2298       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2299       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2300       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2301       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2302
2303       // Save the element type
2304       CurrentType =
2305           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2306
2307       // Compute the element size
2308       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2309           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2310
2311       // Multiply out to compute the result
2312       Offset = Builder.CreateMul(Idx, ElemSize);
2313       break;
2314     }
2315
2316     case OffsetOfNode::Field: {
2317       FieldDecl *MemberDecl = ON.getField();
2318       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2319       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2320
2321       // Compute the index of the field in its parent.
2322       unsigned i = 0;
2323       // FIXME: It would be nice if we didn't have to loop here!
2324       for (RecordDecl::field_iterator Field = RD->field_begin(),
2325                                       FieldEnd = RD->field_end();
2326            Field != FieldEnd; ++Field, ++i) {
2327         if (*Field == MemberDecl)
2328           break;
2329       }
2330       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2331
2332       // Compute the offset to the field
2333       int64_t OffsetInt = RL.getFieldOffset(i) /
2334                           CGF.getContext().getCharWidth();
2335       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2336
2337       // Save the element type.
2338       CurrentType = MemberDecl->getType();
2339       break;
2340     }
2341
2342     case OffsetOfNode::Identifier:
2343       llvm_unreachable("dependent __builtin_offsetof");
2344
2345     case OffsetOfNode::Base: {
2346       if (ON.getBase()->isVirtual()) {
2347         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2348         continue;
2349       }
2350
2351       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2352       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2353
2354       // Save the element type.
2355       CurrentType = ON.getBase()->getType();
2356
2357       // Compute the offset to the base.
2358       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2359       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2360       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2361       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2362       break;
2363     }
2364     }
2365     Result = Builder.CreateAdd(Result, Offset);
2366   }
2367   return Result;
2368 }
2369
2370 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2371 /// argument of the sizeof expression as an integer.
2372 Value *
2373 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2374                               const UnaryExprOrTypeTraitExpr *E) {
2375   QualType TypeToSize = E->getTypeOfArgument();
2376   if (E->getKind() == UETT_SizeOf) {
2377     if (const VariableArrayType *VAT =
2378           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2379       if (E->isArgumentType()) {
2380         // sizeof(type) - make sure to emit the VLA size.
2381         CGF.EmitVariablyModifiedType(TypeToSize);
2382       } else {
2383         // C99 6.5.3.4p2: If the argument is an expression of type
2384         // VLA, it is evaluated.
2385         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2386       }
2387
2388       auto VlaSize = CGF.getVLASize(VAT);
2389       llvm::Value *size = VlaSize.NumElts;
2390
2391       // Scale the number of non-VLA elements by the non-VLA element size.
2392       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2393       if (!eltSize.isOne())
2394         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2395
2396       return size;
2397     }
2398   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2399     auto Alignment =
2400         CGF.getContext()
2401             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2402                 E->getTypeOfArgument()->getPointeeType()))
2403             .getQuantity();
2404     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2405   }
2406
2407   // If this isn't sizeof(vla), the result must be constant; use the constant
2408   // folding logic so we don't have to duplicate it here.
2409   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2410 }
2411
2412 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2413   Expr *Op = E->getSubExpr();
2414   if (Op->getType()->isAnyComplexType()) {
2415     // If it's an l-value, load through the appropriate subobject l-value.
2416     // Note that we have to ask E because Op might be an l-value that
2417     // this won't work for, e.g. an Obj-C property.
2418     if (E->isGLValue())
2419       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2420                                   E->getExprLoc()).getScalarVal();
2421
2422     // Otherwise, calculate and project.
2423     return CGF.EmitComplexExpr(Op, false, true).first;
2424   }
2425
2426   return Visit(Op);
2427 }
2428
2429 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2430   Expr *Op = E->getSubExpr();
2431   if (Op->getType()->isAnyComplexType()) {
2432     // If it's an l-value, load through the appropriate subobject l-value.
2433     // Note that we have to ask E because Op might be an l-value that
2434     // this won't work for, e.g. an Obj-C property.
2435     if (Op->isGLValue())
2436       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2437                                   E->getExprLoc()).getScalarVal();
2438
2439     // Otherwise, calculate and project.
2440     return CGF.EmitComplexExpr(Op, true, false).second;
2441   }
2442
2443   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2444   // effects are evaluated, but not the actual value.
2445   if (Op->isGLValue())
2446     CGF.EmitLValue(Op);
2447   else
2448     CGF.EmitScalarExpr(Op, true);
2449   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2450 }
2451
2452 //===----------------------------------------------------------------------===//
2453 //                           Binary Operators
2454 //===----------------------------------------------------------------------===//
2455
2456 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2457   TestAndClearIgnoreResultAssign();
2458   BinOpInfo Result;
2459   Result.LHS = Visit(E->getLHS());
2460   Result.RHS = Visit(E->getRHS());
2461   Result.Ty  = E->getType();
2462   Result.Opcode = E->getOpcode();
2463   Result.FPFeatures = E->getFPFeatures();
2464   Result.E = E;
2465   return Result;
2466 }
2467
2468 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2469                                               const CompoundAssignOperator *E,
2470                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2471                                                    Value *&Result) {
2472   QualType LHSTy = E->getLHS()->getType();
2473   BinOpInfo OpInfo;
2474
2475   if (E->getComputationResultType()->isAnyComplexType())
2476     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2477
2478   // Emit the RHS first.  __block variables need to have the rhs evaluated
2479   // first, plus this should improve codegen a little.
2480   OpInfo.RHS = Visit(E->getRHS());
2481   OpInfo.Ty = E->getComputationResultType();
2482   OpInfo.Opcode = E->getOpcode();
2483   OpInfo.FPFeatures = E->getFPFeatures();
2484   OpInfo.E = E;
2485   // Load/convert the LHS.
2486   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2487
2488   llvm::PHINode *atomicPHI = nullptr;
2489   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2490     QualType type = atomicTy->getValueType();
2491     if (!type->isBooleanType() && type->isIntegerType() &&
2492         !(type->isUnsignedIntegerType() &&
2493           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2494         CGF.getLangOpts().getSignedOverflowBehavior() !=
2495             LangOptions::SOB_Trapping) {
2496       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2497       switch (OpInfo.Opcode) {
2498         // We don't have atomicrmw operands for *, %, /, <<, >>
2499         case BO_MulAssign: case BO_DivAssign:
2500         case BO_RemAssign:
2501         case BO_ShlAssign:
2502         case BO_ShrAssign:
2503           break;
2504         case BO_AddAssign:
2505           aop = llvm::AtomicRMWInst::Add;
2506           break;
2507         case BO_SubAssign:
2508           aop = llvm::AtomicRMWInst::Sub;
2509           break;
2510         case BO_AndAssign:
2511           aop = llvm::AtomicRMWInst::And;
2512           break;
2513         case BO_XorAssign:
2514           aop = llvm::AtomicRMWInst::Xor;
2515           break;
2516         case BO_OrAssign:
2517           aop = llvm::AtomicRMWInst::Or;
2518           break;
2519         default:
2520           llvm_unreachable("Invalid compound assignment type");
2521       }
2522       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2523         llvm::Value *amt = CGF.EmitToMemory(
2524             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2525                                  E->getExprLoc()),
2526             LHSTy);
2527         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2528             llvm::AtomicOrdering::SequentiallyConsistent);
2529         return LHSLV;
2530       }
2531     }
2532     // FIXME: For floating point types, we should be saving and restoring the
2533     // floating point environment in the loop.
2534     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2535     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2536     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2537     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2538     Builder.CreateBr(opBB);
2539     Builder.SetInsertPoint(opBB);
2540     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2541     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2542     OpInfo.LHS = atomicPHI;
2543   }
2544   else
2545     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2546
2547   SourceLocation Loc = E->getExprLoc();
2548   OpInfo.LHS =
2549       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2550
2551   // Expand the binary operator.
2552   Result = (this->*Func)(OpInfo);
2553
2554   // Convert the result back to the LHS type.
2555   Result =
2556       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2557
2558   if (atomicPHI) {
2559     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2560     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2561     auto Pair = CGF.EmitAtomicCompareExchange(
2562         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2563     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2564     llvm::Value *success = Pair.second;
2565     atomicPHI->addIncoming(old, opBB);
2566     Builder.CreateCondBr(success, contBB, opBB);
2567     Builder.SetInsertPoint(contBB);
2568     return LHSLV;
2569   }
2570
2571   // Store the result value into the LHS lvalue. Bit-fields are handled
2572   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2573   // 'An assignment expression has the value of the left operand after the
2574   // assignment...'.
2575   if (LHSLV.isBitField())
2576     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2577   else
2578     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2579
2580   return LHSLV;
2581 }
2582
2583 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2584                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2585   bool Ignore = TestAndClearIgnoreResultAssign();
2586   Value *RHS;
2587   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2588
2589   // If the result is clearly ignored, return now.
2590   if (Ignore)
2591     return nullptr;
2592
2593   // The result of an assignment in C is the assigned r-value.
2594   if (!CGF.getLangOpts().CPlusPlus)
2595     return RHS;
2596
2597   // If the lvalue is non-volatile, return the computed value of the assignment.
2598   if (!LHS.isVolatileQualified())
2599     return RHS;
2600
2601   // Otherwise, reload the value.
2602   return EmitLoadOfLValue(LHS, E->getExprLoc());
2603 }
2604
2605 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2606     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2607   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2608
2609   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2610     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2611                                     SanitizerKind::IntegerDivideByZero));
2612   }
2613
2614   const auto *BO = cast<BinaryOperator>(Ops.E);
2615   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2616       Ops.Ty->hasSignedIntegerRepresentation() &&
2617       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2618       Ops.mayHaveIntegerOverflow()) {
2619     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2620
2621     llvm::Value *IntMin =
2622       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2623     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2624
2625     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2626     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2627     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2628     Checks.push_back(
2629         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2630   }
2631
2632   if (Checks.size() > 0)
2633     EmitBinOpCheck(Checks, Ops);
2634 }
2635
2636 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2637   {
2638     CodeGenFunction::SanitizerScope SanScope(&CGF);
2639     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2640          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2641         Ops.Ty->isIntegerType() &&
2642         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2643       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2644       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2645     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2646                Ops.Ty->isRealFloatingType() &&
2647                Ops.mayHaveFloatDivisionByZero()) {
2648       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2649       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2650       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2651                      Ops);
2652     }
2653   }
2654
2655   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2656     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2657     if (CGF.getLangOpts().OpenCL &&
2658         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2659       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2660       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2661       // build option allows an application to specify that single precision
2662       // floating-point divide (x/y and 1/x) and sqrt used in the program
2663       // source are correctly rounded.
2664       llvm::Type *ValTy = Val->getType();
2665       if (ValTy->isFloatTy() ||
2666           (isa<llvm::VectorType>(ValTy) &&
2667            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2668         CGF.SetFPAccuracy(Val, 2.5);
2669     }
2670     return Val;
2671   }
2672   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2673     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2674   else
2675     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2676 }
2677
2678 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2679   // Rem in C can't be a floating point type: C99 6.5.5p2.
2680   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2681        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2682       Ops.Ty->isIntegerType() &&
2683       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2684     CodeGenFunction::SanitizerScope SanScope(&CGF);
2685     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2686     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2687   }
2688
2689   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2690     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2691   else
2692     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2693 }
2694
2695 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2696   unsigned IID;
2697   unsigned OpID = 0;
2698
2699   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2700   switch (Ops.Opcode) {
2701   case BO_Add:
2702   case BO_AddAssign:
2703     OpID = 1;
2704     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2705                      llvm::Intrinsic::uadd_with_overflow;
2706     break;
2707   case BO_Sub:
2708   case BO_SubAssign:
2709     OpID = 2;
2710     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2711                      llvm::Intrinsic::usub_with_overflow;
2712     break;
2713   case BO_Mul:
2714   case BO_MulAssign:
2715     OpID = 3;
2716     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2717                      llvm::Intrinsic::umul_with_overflow;
2718     break;
2719   default:
2720     llvm_unreachable("Unsupported operation for overflow detection");
2721   }
2722   OpID <<= 1;
2723   if (isSigned)
2724     OpID |= 1;
2725
2726   CodeGenFunction::SanitizerScope SanScope(&CGF);
2727   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2728
2729   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2730
2731   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2732   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2733   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2734
2735   // Handle overflow with llvm.trap if no custom handler has been specified.
2736   const std::string *handlerName =
2737     &CGF.getLangOpts().OverflowHandler;
2738   if (handlerName->empty()) {
2739     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2740     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2741     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2742       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2743       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2744                               : SanitizerKind::UnsignedIntegerOverflow;
2745       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2746     } else
2747       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2748     return result;
2749   }
2750
2751   // Branch in case of overflow.
2752   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2753   llvm::BasicBlock *continueBB =
2754       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2755   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2756
2757   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2758
2759   // If an overflow handler is set, then we want to call it and then use its
2760   // result, if it returns.
2761   Builder.SetInsertPoint(overflowBB);
2762
2763   // Get the overflow handler.
2764   llvm::Type *Int8Ty = CGF.Int8Ty;
2765   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2766   llvm::FunctionType *handlerTy =
2767       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2768   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2769
2770   // Sign extend the args to 64-bit, so that we can use the same handler for
2771   // all types of overflow.
2772   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2773   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2774
2775   // Call the handler with the two arguments, the operation, and the size of
2776   // the result.
2777   llvm::Value *handlerArgs[] = {
2778     lhs,
2779     rhs,
2780     Builder.getInt8(OpID),
2781     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2782   };
2783   llvm::Value *handlerResult =
2784     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2785
2786   // Truncate the result back to the desired size.
2787   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2788   Builder.CreateBr(continueBB);
2789
2790   Builder.SetInsertPoint(continueBB);
2791   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2792   phi->addIncoming(result, initialBB);
2793   phi->addIncoming(handlerResult, overflowBB);
2794
2795   return phi;
2796 }
2797
2798 /// Emit pointer + index arithmetic.
2799 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2800                                     const BinOpInfo &op,
2801                                     bool isSubtraction) {
2802   // Must have binary (not unary) expr here.  Unary pointer
2803   // increment/decrement doesn't use this path.
2804   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2805
2806   Value *pointer = op.LHS;
2807   Expr *pointerOperand = expr->getLHS();
2808   Value *index = op.RHS;
2809   Expr *indexOperand = expr->getRHS();
2810
2811   // In a subtraction, the LHS is always the pointer.
2812   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2813     std::swap(pointer, index);
2814     std::swap(pointerOperand, indexOperand);
2815   }
2816
2817   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2818
2819   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2820   auto &DL = CGF.CGM.getDataLayout();
2821   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2822
2823   // Some versions of glibc and gcc use idioms (particularly in their malloc
2824   // routines) that add a pointer-sized integer (known to be a pointer value)
2825   // to a null pointer in order to cast the value back to an integer or as
2826   // part of a pointer alignment algorithm.  This is undefined behavior, but
2827   // we'd like to be able to compile programs that use it.
2828   //
2829   // Normally, we'd generate a GEP with a null-pointer base here in response
2830   // to that code, but it's also UB to dereference a pointer created that
2831   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
2832   // generate a direct cast of the integer value to a pointer.
2833   //
2834   // The idiom (p = nullptr + N) is not met if any of the following are true:
2835   //
2836   //   The operation is subtraction.
2837   //   The index is not pointer-sized.
2838   //   The pointer type is not byte-sized.
2839   //
2840   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
2841                                                        op.Opcode,
2842                                                        expr->getLHS(),
2843                                                        expr->getRHS()))
2844     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
2845
2846   if (width != DL.getTypeSizeInBits(PtrTy)) {
2847     // Zero-extend or sign-extend the pointer value according to
2848     // whether the index is signed or not.
2849     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2850                                       "idx.ext");
2851   }
2852
2853   // If this is subtraction, negate the index.
2854   if (isSubtraction)
2855     index = CGF.Builder.CreateNeg(index, "idx.neg");
2856
2857   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2858     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2859                         /*Accessed*/ false);
2860
2861   const PointerType *pointerType
2862     = pointerOperand->getType()->getAs<PointerType>();
2863   if (!pointerType) {
2864     QualType objectType = pointerOperand->getType()
2865                                         ->castAs<ObjCObjectPointerType>()
2866                                         ->getPointeeType();
2867     llvm::Value *objectSize
2868       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2869
2870     index = CGF.Builder.CreateMul(index, objectSize);
2871
2872     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2873     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2874     return CGF.Builder.CreateBitCast(result, pointer->getType());
2875   }
2876
2877   QualType elementType = pointerType->getPointeeType();
2878   if (const VariableArrayType *vla
2879         = CGF.getContext().getAsVariableArrayType(elementType)) {
2880     // The element count here is the total number of non-VLA elements.
2881     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
2882
2883     // Effectively, the multiply by the VLA size is part of the GEP.
2884     // GEP indexes are signed, and scaling an index isn't permitted to
2885     // signed-overflow, so we use the same semantics for our explicit
2886     // multiply.  We suppress this if overflow is not undefined behavior.
2887     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2888       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2889       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2890     } else {
2891       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2892       pointer =
2893           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2894                                      op.E->getExprLoc(), "add.ptr");
2895     }
2896     return pointer;
2897   }
2898
2899   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2900   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2901   // future proof.
2902   if (elementType->isVoidType() || elementType->isFunctionType()) {
2903     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2904     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2905     return CGF.Builder.CreateBitCast(result, pointer->getType());
2906   }
2907
2908   if (CGF.getLangOpts().isSignedOverflowDefined())
2909     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2910
2911   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2912                                     op.E->getExprLoc(), "add.ptr");
2913 }
2914
2915 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2916 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2917 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2918 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2919 // efficient operations.
2920 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2921                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2922                            bool negMul, bool negAdd) {
2923   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2924
2925   Value *MulOp0 = MulOp->getOperand(0);
2926   Value *MulOp1 = MulOp->getOperand(1);
2927   if (negMul) {
2928     MulOp0 =
2929       Builder.CreateFSub(
2930         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2931         "neg");
2932   } else if (negAdd) {
2933     Addend =
2934       Builder.CreateFSub(
2935         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2936         "neg");
2937   }
2938
2939   Value *FMulAdd = Builder.CreateCall(
2940       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2941       {MulOp0, MulOp1, Addend});
2942    MulOp->eraseFromParent();
2943
2944    return FMulAdd;
2945 }
2946
2947 // Check whether it would be legal to emit an fmuladd intrinsic call to
2948 // represent op and if so, build the fmuladd.
2949 //
2950 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2951 // Does NOT check the type of the operation - it's assumed that this function
2952 // will be called from contexts where it's known that the type is contractable.
2953 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2954                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2955                          bool isSub=false) {
2956
2957   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2958           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2959          "Only fadd/fsub can be the root of an fmuladd.");
2960
2961   // Check whether this op is marked as fusable.
2962   if (!op.FPFeatures.allowFPContractWithinStatement())
2963     return nullptr;
2964
2965   // We have a potentially fusable op. Look for a mul on one of the operands.
2966   // Also, make sure that the mul result isn't used directly. In that case,
2967   // there's no point creating a muladd operation.
2968   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2969     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2970         LHSBinOp->use_empty())
2971       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2972   }
2973   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2974     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2975         RHSBinOp->use_empty())
2976       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2977   }
2978
2979   return nullptr;
2980 }
2981
2982 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2983   if (op.LHS->getType()->isPointerTy() ||
2984       op.RHS->getType()->isPointerTy())
2985     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
2986
2987   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2988     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2989     case LangOptions::SOB_Defined:
2990       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2991     case LangOptions::SOB_Undefined:
2992       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2993         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2994       // Fall through.
2995     case LangOptions::SOB_Trapping:
2996       if (CanElideOverflowCheck(CGF.getContext(), op))
2997         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2998       return EmitOverflowCheckedBinOp(op);
2999     }
3000   }
3001
3002   if (op.Ty->isUnsignedIntegerType() &&
3003       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3004       !CanElideOverflowCheck(CGF.getContext(), op))
3005     return EmitOverflowCheckedBinOp(op);
3006
3007   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3008     // Try to form an fmuladd.
3009     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3010       return FMulAdd;
3011
3012     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3013     return propagateFMFlags(V, op);
3014   }
3015
3016   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3017 }
3018
3019 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3020   // The LHS is always a pointer if either side is.
3021   if (!op.LHS->getType()->isPointerTy()) {
3022     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3023       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3024       case LangOptions::SOB_Defined:
3025         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3026       case LangOptions::SOB_Undefined:
3027         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3028           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3029         // Fall through.
3030       case LangOptions::SOB_Trapping:
3031         if (CanElideOverflowCheck(CGF.getContext(), op))
3032           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3033         return EmitOverflowCheckedBinOp(op);
3034       }
3035     }
3036
3037     if (op.Ty->isUnsignedIntegerType() &&
3038         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3039         !CanElideOverflowCheck(CGF.getContext(), op))
3040       return EmitOverflowCheckedBinOp(op);
3041
3042     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3043       // Try to form an fmuladd.
3044       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3045         return FMulAdd;
3046       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3047       return propagateFMFlags(V, op);
3048     }
3049
3050     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3051   }
3052
3053   // If the RHS is not a pointer, then we have normal pointer
3054   // arithmetic.
3055   if (!op.RHS->getType()->isPointerTy())
3056     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3057
3058   // Otherwise, this is a pointer subtraction.
3059
3060   // Do the raw subtraction part.
3061   llvm::Value *LHS
3062     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3063   llvm::Value *RHS
3064     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3065   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3066
3067   // Okay, figure out the element size.
3068   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3069   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3070
3071   llvm::Value *divisor = nullptr;
3072
3073   // For a variable-length array, this is going to be non-constant.
3074   if (const VariableArrayType *vla
3075         = CGF.getContext().getAsVariableArrayType(elementType)) {
3076     auto VlaSize = CGF.getVLASize(vla);
3077     elementType = VlaSize.Type;
3078     divisor = VlaSize.NumElts;
3079
3080     // Scale the number of non-VLA elements by the non-VLA element size.
3081     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3082     if (!eltSize.isOne())
3083       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3084
3085   // For everything elese, we can just compute it, safe in the
3086   // assumption that Sema won't let anything through that we can't
3087   // safely compute the size of.
3088   } else {
3089     CharUnits elementSize;
3090     // Handle GCC extension for pointer arithmetic on void* and
3091     // function pointer types.
3092     if (elementType->isVoidType() || elementType->isFunctionType())
3093       elementSize = CharUnits::One();
3094     else
3095       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3096
3097     // Don't even emit the divide for element size of 1.
3098     if (elementSize.isOne())
3099       return diffInChars;
3100
3101     divisor = CGF.CGM.getSize(elementSize);
3102   }
3103
3104   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3105   // pointer difference in C is only defined in the case where both operands
3106   // are pointing to elements of an array.
3107   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3108 }
3109
3110 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3111   llvm::IntegerType *Ty;
3112   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3113     Ty = cast<llvm::IntegerType>(VT->getElementType());
3114   else
3115     Ty = cast<llvm::IntegerType>(LHS->getType());
3116   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3117 }
3118
3119 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3120   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3121   // RHS to the same size as the LHS.
3122   Value *RHS = Ops.RHS;
3123   if (Ops.LHS->getType() != RHS->getType())
3124     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3125
3126   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3127                       Ops.Ty->hasSignedIntegerRepresentation() &&
3128                       !CGF.getLangOpts().isSignedOverflowDefined();
3129   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3130   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3131   if (CGF.getLangOpts().OpenCL)
3132     RHS =
3133         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3134   else if ((SanitizeBase || SanitizeExponent) &&
3135            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3136     CodeGenFunction::SanitizerScope SanScope(&CGF);
3137     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3138     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3139     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3140
3141     if (SanitizeExponent) {
3142       Checks.push_back(
3143           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3144     }
3145
3146     if (SanitizeBase) {
3147       // Check whether we are shifting any non-zero bits off the top of the
3148       // integer. We only emit this check if exponent is valid - otherwise
3149       // instructions below will have undefined behavior themselves.
3150       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3151       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3152       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3153       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3154       llvm::Value *PromotedWidthMinusOne =
3155           (RHS == Ops.RHS) ? WidthMinusOne
3156                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3157       CGF.EmitBlock(CheckShiftBase);
3158       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3159           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3160                                      /*NUW*/ true, /*NSW*/ true),
3161           "shl.check");
3162       if (CGF.getLangOpts().CPlusPlus) {
3163         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3164         // Under C++11's rules, shifting a 1 bit into the sign bit is
3165         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3166         // define signed left shifts, so we use the C99 and C++11 rules there).
3167         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3168         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3169       }
3170       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3171       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3172       CGF.EmitBlock(Cont);
3173       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3174       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3175       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3176       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3177     }
3178
3179     assert(!Checks.empty());
3180     EmitBinOpCheck(Checks, Ops);
3181   }
3182
3183   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3184 }
3185
3186 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3187   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3188   // RHS to the same size as the LHS.
3189   Value *RHS = Ops.RHS;
3190   if (Ops.LHS->getType() != RHS->getType())
3191     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3192
3193   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3194   if (CGF.getLangOpts().OpenCL)
3195     RHS =
3196         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3197   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3198            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3199     CodeGenFunction::SanitizerScope SanScope(&CGF);
3200     llvm::Value *Valid =
3201         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3202     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3203   }
3204
3205   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3206     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3207   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3208 }
3209
3210 enum IntrinsicType { VCMPEQ, VCMPGT };
3211 // return corresponding comparison intrinsic for given vector type
3212 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3213                                         BuiltinType::Kind ElemKind) {
3214   switch (ElemKind) {
3215   default: llvm_unreachable("unexpected element type");
3216   case BuiltinType::Char_U:
3217   case BuiltinType::UChar:
3218     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3219                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3220   case BuiltinType::Char_S:
3221   case BuiltinType::SChar:
3222     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3223                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3224   case BuiltinType::UShort:
3225     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3226                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3227   case BuiltinType::Short:
3228     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3229                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3230   case BuiltinType::UInt:
3231     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3232                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3233   case BuiltinType::Int:
3234     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3235                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3236   case BuiltinType::ULong:
3237   case BuiltinType::ULongLong:
3238     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3239                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3240   case BuiltinType::Long:
3241   case BuiltinType::LongLong:
3242     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3243                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3244   case BuiltinType::Float:
3245     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3246                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3247   case BuiltinType::Double:
3248     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3249                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3250   }
3251 }
3252
3253 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3254                                       llvm::CmpInst::Predicate UICmpOpc,
3255                                       llvm::CmpInst::Predicate SICmpOpc,
3256                                       llvm::CmpInst::Predicate FCmpOpc) {
3257   TestAndClearIgnoreResultAssign();
3258   Value *Result;
3259   QualType LHSTy = E->getLHS()->getType();
3260   QualType RHSTy = E->getRHS()->getType();
3261   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3262     assert(E->getOpcode() == BO_EQ ||
3263            E->getOpcode() == BO_NE);
3264     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3265     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3266     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3267                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3268   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3269     Value *LHS = Visit(E->getLHS());
3270     Value *RHS = Visit(E->getRHS());
3271
3272     // If AltiVec, the comparison results in a numeric type, so we use
3273     // intrinsics comparing vectors and giving 0 or 1 as a result
3274     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3275       // constants for mapping CR6 register bits to predicate result
3276       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3277
3278       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3279
3280       // in several cases vector arguments order will be reversed
3281       Value *FirstVecArg = LHS,
3282             *SecondVecArg = RHS;
3283
3284       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3285       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3286       BuiltinType::Kind ElementKind = BTy->getKind();
3287
3288       switch(E->getOpcode()) {
3289       default: llvm_unreachable("is not a comparison operation");
3290       case BO_EQ:
3291         CR6 = CR6_LT;
3292         ID = GetIntrinsic(VCMPEQ, ElementKind);
3293         break;
3294       case BO_NE:
3295         CR6 = CR6_EQ;
3296         ID = GetIntrinsic(VCMPEQ, ElementKind);
3297         break;
3298       case BO_LT:
3299         CR6 = CR6_LT;
3300         ID = GetIntrinsic(VCMPGT, ElementKind);
3301         std::swap(FirstVecArg, SecondVecArg);
3302         break;
3303       case BO_GT:
3304         CR6 = CR6_LT;
3305         ID = GetIntrinsic(VCMPGT, ElementKind);
3306         break;
3307       case BO_LE:
3308         if (ElementKind == BuiltinType::Float) {
3309           CR6 = CR6_LT;
3310           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3311           std::swap(FirstVecArg, SecondVecArg);
3312         }
3313         else {
3314           CR6 = CR6_EQ;
3315           ID = GetIntrinsic(VCMPGT, ElementKind);
3316         }
3317         break;
3318       case BO_GE:
3319         if (ElementKind == BuiltinType::Float) {
3320           CR6 = CR6_LT;
3321           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3322         }
3323         else {
3324           CR6 = CR6_EQ;
3325           ID = GetIntrinsic(VCMPGT, ElementKind);
3326           std::swap(FirstVecArg, SecondVecArg);
3327         }
3328         break;
3329       }
3330
3331       Value *CR6Param = Builder.getInt32(CR6);
3332       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3333       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3334
3335       // The result type of intrinsic may not be same as E->getType().
3336       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3337       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3338       // do nothing, if ResultTy is not i1 at the same time, it will cause
3339       // crash later.
3340       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3341       if (ResultTy->getBitWidth() > 1 &&
3342           E->getType() == CGF.getContext().BoolTy)
3343         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3344       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3345                                   E->getExprLoc());
3346     }
3347
3348     if (LHS->getType()->isFPOrFPVectorTy()) {
3349       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3350     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3351       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3352     } else {
3353       // Unsigned integers and pointers.
3354
3355       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3356           !isa<llvm::ConstantPointerNull>(LHS) &&
3357           !isa<llvm::ConstantPointerNull>(RHS)) {
3358
3359         // Dynamic information is required to be stripped for comparisons,
3360         // because it could leak the dynamic information.  Based on comparisons
3361         // of pointers to dynamic objects, the optimizer can replace one pointer
3362         // with another, which might be incorrect in presence of invariant
3363         // groups. Comparison with null is safe because null does not carry any
3364         // dynamic information.
3365         if (LHSTy.mayBeDynamicClass())
3366           LHS = Builder.CreateStripInvariantGroup(LHS);
3367         if (RHSTy.mayBeDynamicClass())
3368           RHS = Builder.CreateStripInvariantGroup(RHS);
3369       }
3370
3371       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3372     }
3373
3374     // If this is a vector comparison, sign extend the result to the appropriate
3375     // vector integer type and return it (don't convert to bool).
3376     if (LHSTy->isVectorType())
3377       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3378
3379   } else {
3380     // Complex Comparison: can only be an equality comparison.
3381     CodeGenFunction::ComplexPairTy LHS, RHS;
3382     QualType CETy;
3383     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3384       LHS = CGF.EmitComplexExpr(E->getLHS());
3385       CETy = CTy->getElementType();
3386     } else {
3387       LHS.first = Visit(E->getLHS());
3388       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3389       CETy = LHSTy;
3390     }
3391     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3392       RHS = CGF.EmitComplexExpr(E->getRHS());
3393       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3394                                                      CTy->getElementType()) &&
3395              "The element types must always match.");
3396       (void)CTy;
3397     } else {
3398       RHS.first = Visit(E->getRHS());
3399       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3400       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3401              "The element types must always match.");
3402     }
3403
3404     Value *ResultR, *ResultI;
3405     if (CETy->isRealFloatingType()) {
3406       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3407       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3408     } else {
3409       // Complex comparisons can only be equality comparisons.  As such, signed
3410       // and unsigned opcodes are the same.
3411       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3412       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3413     }
3414
3415     if (E->getOpcode() == BO_EQ) {
3416       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3417     } else {
3418       assert(E->getOpcode() == BO_NE &&
3419              "Complex comparison other than == or != ?");
3420       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3421     }
3422   }
3423
3424   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3425                               E->getExprLoc());
3426 }
3427
3428 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3429   bool Ignore = TestAndClearIgnoreResultAssign();
3430
3431   Value *RHS;
3432   LValue LHS;
3433
3434   switch (E->getLHS()->getType().getObjCLifetime()) {
3435   case Qualifiers::OCL_Strong:
3436     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3437     break;
3438
3439   case Qualifiers::OCL_Autoreleasing:
3440     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3441     break;
3442
3443   case Qualifiers::OCL_ExplicitNone:
3444     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3445     break;
3446
3447   case Qualifiers::OCL_Weak:
3448     RHS = Visit(E->getRHS());
3449     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3450     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3451     break;
3452
3453   case Qualifiers::OCL_None:
3454     // __block variables need to have the rhs evaluated first, plus
3455     // this should improve codegen just a little.
3456     RHS = Visit(E->getRHS());
3457     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3458
3459     // Store the value into the LHS.  Bit-fields are handled specially
3460     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3461     // 'An assignment expression has the value of the left operand after
3462     // the assignment...'.
3463     if (LHS.isBitField()) {
3464       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3465     } else {
3466       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3467       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3468     }
3469   }
3470
3471   // If the result is clearly ignored, return now.
3472   if (Ignore)
3473     return nullptr;
3474
3475   // The result of an assignment in C is the assigned r-value.
3476   if (!CGF.getLangOpts().CPlusPlus)
3477     return RHS;
3478
3479   // If the lvalue is non-volatile, return the computed value of the assignment.
3480   if (!LHS.isVolatileQualified())
3481     return RHS;
3482
3483   // Otherwise, reload the value.
3484   return EmitLoadOfLValue(LHS, E->getExprLoc());
3485 }
3486
3487 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3488   // Perform vector logical and on comparisons with zero vectors.
3489   if (E->getType()->isVectorType()) {
3490     CGF.incrementProfileCounter(E);
3491
3492     Value *LHS = Visit(E->getLHS());
3493     Value *RHS = Visit(E->getRHS());
3494     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3495     if (LHS->getType()->isFPOrFPVectorTy()) {
3496       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3497       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3498     } else {
3499       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3500       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3501     }
3502     Value *And = Builder.CreateAnd(LHS, RHS);
3503     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3504   }
3505
3506   llvm::Type *ResTy = ConvertType(E->getType());
3507
3508   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3509   // If we have 1 && X, just emit X without inserting the control flow.
3510   bool LHSCondVal;
3511   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3512     if (LHSCondVal) { // If we have 1 && X, just emit X.
3513       CGF.incrementProfileCounter(E);
3514
3515       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3516       // ZExt result to int or bool.
3517       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3518     }
3519
3520     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3521     if (!CGF.ContainsLabel(E->getRHS()))
3522       return llvm::Constant::getNullValue(ResTy);
3523   }
3524
3525   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3526   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3527
3528   CodeGenFunction::ConditionalEvaluation eval(CGF);
3529
3530   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3531   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3532                            CGF.getProfileCount(E->getRHS()));
3533
3534   // Any edges into the ContBlock are now from an (indeterminate number of)
3535   // edges from this first condition.  All of these values will be false.  Start
3536   // setting up the PHI node in the Cont Block for this.
3537   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3538                                             "", ContBlock);
3539   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3540        PI != PE; ++PI)
3541     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3542
3543   eval.begin(CGF);
3544   CGF.EmitBlock(RHSBlock);
3545   CGF.incrementProfileCounter(E);
3546   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3547   eval.end(CGF);
3548
3549   // Reaquire the RHS block, as there may be subblocks inserted.
3550   RHSBlock = Builder.GetInsertBlock();
3551
3552   // Emit an unconditional branch from this block to ContBlock.
3553   {
3554     // There is no need to emit line number for unconditional branch.
3555     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3556     CGF.EmitBlock(ContBlock);
3557   }
3558   // Insert an entry into the phi node for the edge with the value of RHSCond.
3559   PN->addIncoming(RHSCond, RHSBlock);
3560
3561   // Artificial location to preserve the scope information
3562   {
3563     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
3564     PN->setDebugLoc(Builder.getCurrentDebugLocation());
3565   }
3566
3567   // ZExt result to int.
3568   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3569 }
3570
3571 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3572   // Perform vector logical or on comparisons with zero vectors.
3573   if (E->getType()->isVectorType()) {
3574     CGF.incrementProfileCounter(E);
3575
3576     Value *LHS = Visit(E->getLHS());
3577     Value *RHS = Visit(E->getRHS());
3578     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3579     if (LHS->getType()->isFPOrFPVectorTy()) {
3580       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3581       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3582     } else {
3583       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3584       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3585     }
3586     Value *Or = Builder.CreateOr(LHS, RHS);
3587     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3588   }
3589
3590   llvm::Type *ResTy = ConvertType(E->getType());
3591
3592   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3593   // If we have 0 || X, just emit X without inserting the control flow.
3594   bool LHSCondVal;
3595   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3596     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3597       CGF.incrementProfileCounter(E);
3598
3599       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3600       // ZExt result to int or bool.
3601       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3602     }
3603
3604     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3605     if (!CGF.ContainsLabel(E->getRHS()))
3606       return llvm::ConstantInt::get(ResTy, 1);
3607   }
3608
3609   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3610   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3611
3612   CodeGenFunction::ConditionalEvaluation eval(CGF);
3613
3614   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3615   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3616                            CGF.getCurrentProfileCount() -
3617                                CGF.getProfileCount(E->getRHS()));
3618
3619   // Any edges into the ContBlock are now from an (indeterminate number of)
3620   // edges from this first condition.  All of these values will be true.  Start
3621   // setting up the PHI node in the Cont Block for this.
3622   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3623                                             "", ContBlock);
3624   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3625        PI != PE; ++PI)
3626     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3627
3628   eval.begin(CGF);
3629
3630   // Emit the RHS condition as a bool value.
3631   CGF.EmitBlock(RHSBlock);
3632   CGF.incrementProfileCounter(E);
3633   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3634
3635   eval.end(CGF);
3636
3637   // Reaquire the RHS block, as there may be subblocks inserted.
3638   RHSBlock = Builder.GetInsertBlock();
3639
3640   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3641   // into the phi node for the edge with the value of RHSCond.
3642   CGF.EmitBlock(ContBlock);
3643   PN->addIncoming(RHSCond, RHSBlock);
3644
3645   // ZExt result to int.
3646   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3647 }
3648
3649 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3650   CGF.EmitIgnoredExpr(E->getLHS());
3651   CGF.EnsureInsertPoint();
3652   return Visit(E->getRHS());
3653 }
3654
3655 //===----------------------------------------------------------------------===//
3656 //                             Other Operators
3657 //===----------------------------------------------------------------------===//
3658
3659 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3660 /// expression is cheap enough and side-effect-free enough to evaluate
3661 /// unconditionally instead of conditionally.  This is used to convert control
3662 /// flow into selects in some cases.
3663 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3664                                                    CodeGenFunction &CGF) {
3665   // Anything that is an integer or floating point constant is fine.
3666   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3667
3668   // Even non-volatile automatic variables can't be evaluated unconditionally.
3669   // Referencing a thread_local may cause non-trivial initialization work to
3670   // occur. If we're inside a lambda and one of the variables is from the scope
3671   // outside the lambda, that function may have returned already. Reading its
3672   // locals is a bad idea. Also, these reads may introduce races there didn't
3673   // exist in the source-level program.
3674 }
3675
3676
3677 Value *ScalarExprEmitter::
3678 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3679   TestAndClearIgnoreResultAssign();
3680
3681   // Bind the common expression if necessary.
3682   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3683
3684   Expr *condExpr = E->getCond();
3685   Expr *lhsExpr = E->getTrueExpr();
3686   Expr *rhsExpr = E->getFalseExpr();
3687
3688   // If the condition constant folds and can be elided, try to avoid emitting
3689   // the condition and the dead arm.
3690   bool CondExprBool;
3691   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3692     Expr *live = lhsExpr, *dead = rhsExpr;
3693     if (!CondExprBool) std::swap(live, dead);
3694
3695     // If the dead side doesn't have labels we need, just emit the Live part.
3696     if (!CGF.ContainsLabel(dead)) {
3697       if (CondExprBool)
3698         CGF.incrementProfileCounter(E);
3699       Value *Result = Visit(live);
3700
3701       // If the live part is a throw expression, it acts like it has a void
3702       // type, so evaluating it returns a null Value*.  However, a conditional
3703       // with non-void type must return a non-null Value*.
3704       if (!Result && !E->getType()->isVoidType())
3705         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3706
3707       return Result;
3708     }
3709   }
3710
3711   // OpenCL: If the condition is a vector, we can treat this condition like
3712   // the select function.
3713   if (CGF.getLangOpts().OpenCL
3714       && condExpr->getType()->isVectorType()) {
3715     CGF.incrementProfileCounter(E);
3716
3717     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3718     llvm::Value *LHS = Visit(lhsExpr);
3719     llvm::Value *RHS = Visit(rhsExpr);
3720
3721     llvm::Type *condType = ConvertType(condExpr->getType());
3722     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3723
3724     unsigned numElem = vecTy->getNumElements();
3725     llvm::Type *elemType = vecTy->getElementType();
3726
3727     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3728     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3729     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3730                                           llvm::VectorType::get(elemType,
3731                                                                 numElem),
3732                                           "sext");
3733     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3734
3735     // Cast float to int to perform ANDs if necessary.
3736     llvm::Value *RHSTmp = RHS;
3737     llvm::Value *LHSTmp = LHS;
3738     bool wasCast = false;
3739     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3740     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3741       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3742       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3743       wasCast = true;
3744     }
3745
3746     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3747     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3748     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3749     if (wasCast)
3750       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3751
3752     return tmp5;
3753   }
3754
3755   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3756   // select instead of as control flow.  We can only do this if it is cheap and
3757   // safe to evaluate the LHS and RHS unconditionally.
3758   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3759       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3760     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3761     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3762
3763     CGF.incrementProfileCounter(E, StepV);
3764
3765     llvm::Value *LHS = Visit(lhsExpr);
3766     llvm::Value *RHS = Visit(rhsExpr);
3767     if (!LHS) {
3768       // If the conditional has void type, make sure we return a null Value*.
3769       assert(!RHS && "LHS and RHS types must match");
3770       return nullptr;
3771     }
3772     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3773   }
3774
3775   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3776   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3777   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3778
3779   CodeGenFunction::ConditionalEvaluation eval(CGF);
3780   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3781                            CGF.getProfileCount(lhsExpr));
3782
3783   CGF.EmitBlock(LHSBlock);
3784   CGF.incrementProfileCounter(E);
3785   eval.begin(CGF);
3786   Value *LHS = Visit(lhsExpr);
3787   eval.end(CGF);
3788
3789   LHSBlock = Builder.GetInsertBlock();
3790   Builder.CreateBr(ContBlock);
3791
3792   CGF.EmitBlock(RHSBlock);
3793   eval.begin(CGF);
3794   Value *RHS = Visit(rhsExpr);
3795   eval.end(CGF);
3796
3797   RHSBlock = Builder.GetInsertBlock();
3798   CGF.EmitBlock(ContBlock);
3799
3800   // If the LHS or RHS is a throw expression, it will be legitimately null.
3801   if (!LHS)
3802     return RHS;
3803   if (!RHS)
3804     return LHS;
3805
3806   // Create a PHI node for the real part.
3807   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3808   PN->addIncoming(LHS, LHSBlock);
3809   PN->addIncoming(RHS, RHSBlock);
3810   return PN;
3811 }
3812
3813 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3814   return Visit(E->getChosenSubExpr());
3815 }
3816
3817 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3818   QualType Ty = VE->getType();
3819
3820   if (Ty->isVariablyModifiedType())
3821     CGF.EmitVariablyModifiedType(Ty);
3822
3823   Address ArgValue = Address::invalid();
3824   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3825
3826   llvm::Type *ArgTy = ConvertType(VE->getType());
3827
3828   // If EmitVAArg fails, emit an error.
3829   if (!ArgPtr.isValid()) {
3830     CGF.ErrorUnsupported(VE, "va_arg expression");
3831     return llvm::UndefValue::get(ArgTy);
3832   }
3833
3834   // FIXME Volatility.
3835   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3836
3837   // If EmitVAArg promoted the type, we must truncate it.
3838   if (ArgTy != Val->getType()) {
3839     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3840       Val = Builder.CreateIntToPtr(Val, ArgTy);
3841     else
3842       Val = Builder.CreateTrunc(Val, ArgTy);
3843   }
3844
3845   return Val;
3846 }
3847
3848 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3849   return CGF.EmitBlockLiteral(block);
3850 }
3851
3852 // Convert a vec3 to vec4, or vice versa.
3853 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3854                                  Value *Src, unsigned NumElementsDst) {
3855   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3856   SmallVector<llvm::Constant*, 4> Args;
3857   Args.push_back(Builder.getInt32(0));
3858   Args.push_back(Builder.getInt32(1));
3859   Args.push_back(Builder.getInt32(2));
3860   if (NumElementsDst == 4)
3861     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3862   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3863   return Builder.CreateShuffleVector(Src, UnV, Mask);
3864 }
3865
3866 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3867 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3868 // but could be scalar or vectors of different lengths, and either can be
3869 // pointer.
3870 // There are 4 cases:
3871 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3872 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3873 // 3. pointer -> non-pointer
3874 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3875 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3876 // 4. non-pointer -> pointer
3877 //   a) intptr_t -> pointer       : needs 1 inttoptr
3878 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3879 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3880 // allow casting directly between pointer types and non-integer non-pointer
3881 // types.
3882 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3883                                            const llvm::DataLayout &DL,
3884                                            Value *Src, llvm::Type *DstTy,
3885                                            StringRef Name = "") {
3886   auto SrcTy = Src->getType();
3887
3888   // Case 1.
3889   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3890     return Builder.CreateBitCast(Src, DstTy, Name);
3891
3892   // Case 2.
3893   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3894     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3895
3896   // Case 3.
3897   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3898     // Case 3b.
3899     if (!DstTy->isIntegerTy())
3900       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3901     // Cases 3a and 3b.
3902     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3903   }
3904
3905   // Case 4b.
3906   if (!SrcTy->isIntegerTy())
3907     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3908   // Cases 4a and 4b.
3909   return Builder.CreateIntToPtr(Src, DstTy, Name);
3910 }
3911
3912 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3913   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3914   llvm::Type *DstTy = ConvertType(E->getType());
3915
3916   llvm::Type *SrcTy = Src->getType();
3917   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3918     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3919   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3920     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3921
3922   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3923   // vector to get a vec4, then a bitcast if the target type is different.
3924   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3925     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3926
3927     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3928       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3929                                          DstTy);
3930     }
3931
3932     Src->setName("astype");
3933     return Src;
3934   }
3935
3936   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3937   // to vec4 if the original type is not vec4, then a shuffle vector to
3938   // get a vec3.
3939   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3940     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3941       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3942       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3943                                          Vec4Ty);
3944     }
3945
3946     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3947     Src->setName("astype");
3948     return Src;
3949   }
3950
3951   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3952                                             Src, DstTy, "astype");
3953 }
3954
3955 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3956   return CGF.EmitAtomicExpr(E).getScalarVal();
3957 }
3958
3959 //===----------------------------------------------------------------------===//
3960 //                         Entry Point into this File
3961 //===----------------------------------------------------------------------===//
3962
3963 /// Emit the computation of the specified expression of scalar type, ignoring
3964 /// the result.
3965 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3966   assert(E && hasScalarEvaluationKind(E->getType()) &&
3967          "Invalid scalar expression to emit");
3968
3969   return ScalarExprEmitter(*this, IgnoreResultAssign)
3970       .Visit(const_cast<Expr *>(E));
3971 }
3972
3973 /// Emit a conversion from the specified type to the specified destination type,
3974 /// both of which are LLVM scalar types.
3975 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3976                                              QualType DstTy,
3977                                              SourceLocation Loc) {
3978   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3979          "Invalid scalar expression to emit");
3980   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3981 }
3982
3983 /// Emit a conversion from the specified complex type to the specified
3984 /// destination type, where the destination type is an LLVM scalar type.
3985 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3986                                                       QualType SrcTy,
3987                                                       QualType DstTy,
3988                                                       SourceLocation Loc) {
3989   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3990          "Invalid complex -> scalar conversion");
3991   return ScalarExprEmitter(*this)
3992       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3993 }
3994
3995
3996 llvm::Value *CodeGenFunction::
3997 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3998                         bool isInc, bool isPre) {
3999   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4000 }
4001
4002 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4003   // object->isa or (*object).isa
4004   // Generate code as for: *(Class*)object
4005
4006   Expr *BaseExpr = E->getBase();
4007   Address Addr = Address::invalid();
4008   if (BaseExpr->isRValue()) {
4009     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4010   } else {
4011     Addr = EmitLValue(BaseExpr).getAddress();
4012   }
4013
4014   // Cast the address to Class*.
4015   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4016   return MakeAddrLValue(Addr, E->getType());
4017 }
4018
4019
4020 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4021                                             const CompoundAssignOperator *E) {
4022   ScalarExprEmitter Scalar(*this);
4023   Value *Result = nullptr;
4024   switch (E->getOpcode()) {
4025 #define COMPOUND_OP(Op)                                                       \
4026     case BO_##Op##Assign:                                                     \
4027       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4028                                              Result)
4029   COMPOUND_OP(Mul);
4030   COMPOUND_OP(Div);
4031   COMPOUND_OP(Rem);
4032   COMPOUND_OP(Add);
4033   COMPOUND_OP(Sub);
4034   COMPOUND_OP(Shl);
4035   COMPOUND_OP(Shr);
4036   COMPOUND_OP(And);
4037   COMPOUND_OP(Xor);
4038   COMPOUND_OP(Or);
4039 #undef COMPOUND_OP
4040
4041   case BO_PtrMemD:
4042   case BO_PtrMemI:
4043   case BO_Mul:
4044   case BO_Div:
4045   case BO_Rem:
4046   case BO_Add:
4047   case BO_Sub:
4048   case BO_Shl:
4049   case BO_Shr:
4050   case BO_LT:
4051   case BO_GT:
4052   case BO_LE:
4053   case BO_GE:
4054   case BO_EQ:
4055   case BO_NE:
4056   case BO_Cmp:
4057   case BO_And:
4058   case BO_Xor:
4059   case BO_Or:
4060   case BO_LAnd:
4061   case BO_LOr:
4062   case BO_Assign:
4063   case BO_Comma:
4064     llvm_unreachable("Not valid compound assignment operators");
4065   }
4066
4067   llvm_unreachable("Unhandled compound assignment operator");
4068 }
4069
4070 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4071                                                ArrayRef<Value *> IdxList,
4072                                                bool SignedIndices,
4073                                                bool IsSubtraction,
4074                                                SourceLocation Loc,
4075                                                const Twine &Name) {
4076   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4077
4078   // If the pointer overflow sanitizer isn't enabled, do nothing.
4079   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4080     return GEPVal;
4081
4082   // If the GEP has already been reduced to a constant, leave it be.
4083   if (isa<llvm::Constant>(GEPVal))
4084     return GEPVal;
4085
4086   // Only check for overflows in the default address space.
4087   if (GEPVal->getType()->getPointerAddressSpace())
4088     return GEPVal;
4089
4090   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4091   assert(GEP->isInBounds() && "Expected inbounds GEP");
4092
4093   SanitizerScope SanScope(this);
4094   auto &VMContext = getLLVMContext();
4095   const auto &DL = CGM.getDataLayout();
4096   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4097
4098   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4099   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4100   auto *SAddIntrinsic =
4101       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4102   auto *SMulIntrinsic =
4103       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4104
4105   // The total (signed) byte offset for the GEP.
4106   llvm::Value *TotalOffset = nullptr;
4107   // The offset overflow flag - true if the total offset overflows.
4108   llvm::Value *OffsetOverflows = Builder.getFalse();
4109
4110   /// Return the result of the given binary operation.
4111   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4112                   llvm::Value *RHS) -> llvm::Value * {
4113     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4114
4115     // If the operands are constants, return a constant result.
4116     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4117       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4118         llvm::APInt N;
4119         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4120                                                   /*Signed=*/true, N);
4121         if (HasOverflow)
4122           OffsetOverflows = Builder.getTrue();
4123         return llvm::ConstantInt::get(VMContext, N);
4124       }
4125     }
4126
4127     // Otherwise, compute the result with checked arithmetic.
4128     auto *ResultAndOverflow = Builder.CreateCall(
4129         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4130     OffsetOverflows = Builder.CreateOr(
4131         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4132     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4133   };
4134
4135   // Determine the total byte offset by looking at each GEP operand.
4136   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4137        GTI != GTE; ++GTI) {
4138     llvm::Value *LocalOffset;
4139     auto *Index = GTI.getOperand();
4140     // Compute the local offset contributed by this indexing step:
4141     if (auto *STy = GTI.getStructTypeOrNull()) {
4142       // For struct indexing, the local offset is the byte position of the
4143       // specified field.
4144       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4145       LocalOffset = llvm::ConstantInt::get(
4146           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4147     } else {
4148       // Otherwise this is array-like indexing. The local offset is the index
4149       // multiplied by the element size.
4150       auto *ElementSize = llvm::ConstantInt::get(
4151           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4152       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4153       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4154     }
4155
4156     // If this is the first offset, set it as the total offset. Otherwise, add
4157     // the local offset into the running total.
4158     if (!TotalOffset || TotalOffset == Zero)
4159       TotalOffset = LocalOffset;
4160     else
4161       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4162   }
4163
4164   // Common case: if the total offset is zero, don't emit a check.
4165   if (TotalOffset == Zero)
4166     return GEPVal;
4167
4168   // Now that we've computed the total offset, add it to the base pointer (with
4169   // wrapping semantics).
4170   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4171   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4172
4173   // The GEP is valid if:
4174   // 1) The total offset doesn't overflow, and
4175   // 2) The sign of the difference between the computed address and the base
4176   // pointer matches the sign of the total offset.
4177   llvm::Value *ValidGEP;
4178   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4179   if (SignedIndices) {
4180     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4181     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4182     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4183     ValidGEP = Builder.CreateAnd(
4184         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4185         NoOffsetOverflow);
4186   } else if (!SignedIndices && !IsSubtraction) {
4187     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4188     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4189   } else {
4190     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4191     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4192   }
4193
4194   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4195   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4196   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4197   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4198             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4199
4200   return GEPVal;
4201 }