]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp
Merge ^/head r293175 through r293279.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprScalar.cpp
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119
120     if (!AVAttr)
121       return;
122
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153
154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                               SourceLocation Loc, bool TreatBooleanAsSigned);
156
157   /// Emit a conversion from the specified complex type to the specified
158   /// destination type, where the destination type is an LLVM scalar type.
159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                        QualType SrcTy, QualType DstTy,
161                                        SourceLocation Loc);
162
163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164   Value *EmitNullValue(QualType Ty);
165
166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167   Value *EmitFloatToBoolConversion(Value *V) {
168     // Compare against 0.0 for fp scalars.
169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171   }
172
173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174   Value *EmitPointerToBoolConversion(Value *V) {
175     Value *Zero = llvm::ConstantPointerNull::get(
176                                       cast<llvm::PointerType>(V->getType()));
177     return Builder.CreateICmpNE(V, Zero, "tobool");
178   }
179
180   Value *EmitIntToBoolConversion(Value *V) {
181     // Because of the type rules of C, we often end up computing a
182     // logical value, then zero extending it to int, then wanting it
183     // as a logical value again.  Optimize this common case.
184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186         Value *Result = ZI->getOperand(0);
187         // If there aren't any more uses, zap the instruction to save space.
188         // Note that there can be more uses, for example if this
189         // is the result of an assignment.
190         if (ZI->use_empty())
191           ZI->eraseFromParent();
192         return Result;
193       }
194     }
195
196     return Builder.CreateIsNotNull(V, "tobool");
197   }
198
199   //===--------------------------------------------------------------------===//
200   //                            Visitor Methods
201   //===--------------------------------------------------------------------===//
202
203   Value *Visit(Expr *E) {
204     ApplyDebugLocation DL(CGF, E);
205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206   }
207
208   Value *VisitStmt(Stmt *S) {
209     S->dump(CGF.getContext().getSourceManager());
210     llvm_unreachable("Stmt can't have complex result type!");
211   }
212   Value *VisitExpr(Expr *S);
213
214   Value *VisitParenExpr(ParenExpr *PE) {
215     return Visit(PE->getSubExpr());
216   }
217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218     return Visit(E->getReplacement());
219   }
220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221     return Visit(GE->getResultExpr());
222   }
223
224   // Leaves.
225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226     return Builder.getInt(E->getValue());
227   }
228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229     return llvm::ConstantFP::get(VMContext, E->getValue());
230   }
231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239   }
240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244     return EmitNullValue(E->getType());
245   }
246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251   }
252
253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255   }
256
257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259   }
260
261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262     if (E->isGLValue())
263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264
265     // Otherwise, assume the mapping is the scalar directly.
266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267   }
268
269   // l-values.
270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272       if (result.isReference())
273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                 E->getExprLoc());
275       return result.getValue();
276     }
277     return EmitLoadOfLValue(E);
278   }
279
280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281     return CGF.EmitObjCSelectorExpr(E);
282   }
283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284     return CGF.EmitObjCProtocolExpr(E);
285   }
286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287     return EmitLoadOfLValue(E);
288   }
289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290     if (E->getMethodDecl() &&
291         E->getMethodDecl()->getReturnType()->isReferenceType())
292       return EmitLoadOfLValue(E);
293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294   }
295
296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297     LValue LV = CGF.EmitObjCIsaExpr(E);
298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299     return V;
300   }
301
302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305   Value *VisitMemberExpr(MemberExpr *E);
306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308     return EmitLoadOfLValue(E);
309   }
310
311   Value *VisitInitListExpr(InitListExpr *E);
312
313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314     return EmitNullValue(E->getType());
315   }
316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318     return VisitCastExpr(E);
319   }
320   Value *VisitCastExpr(CastExpr *E);
321
322   Value *VisitCallExpr(const CallExpr *E) {
323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324       return EmitLoadOfLValue(E);
325
326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327
328     EmitLValueAlignmentAssumption(E, V);
329     return V;
330   }
331
332   Value *VisitStmtExpr(const StmtExpr *E);
333
334   // Unary Operators.
335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336     LValue LV = EmitLValue(E->getSubExpr());
337     return EmitScalarPrePostIncDec(E, LV, false, false);
338   }
339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340     LValue LV = EmitLValue(E->getSubExpr());
341     return EmitScalarPrePostIncDec(E, LV, true, false);
342   }
343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344     LValue LV = EmitLValue(E->getSubExpr());
345     return EmitScalarPrePostIncDec(E, LV, false, true);
346   }
347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348     LValue LV = EmitLValue(E->getSubExpr());
349     return EmitScalarPrePostIncDec(E, LV, true, true);
350   }
351
352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353                                                   llvm::Value *InVal,
354                                                   bool IsInc);
355
356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357                                        bool isInc, bool isPre);
358
359
360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361     if (isa<MemberPointerType>(E->getType())) // never sugared
362       return CGF.CGM.getMemberPointerConstant(E);
363
364     return EmitLValue(E->getSubExpr()).getPointer();
365   }
366   Value *VisitUnaryDeref(const UnaryOperator *E) {
367     if (E->getType()->isVoidType())
368       return Visit(E->getSubExpr()); // the actual value should be unused
369     return EmitLoadOfLValue(E);
370   }
371   Value *VisitUnaryPlus(const UnaryOperator *E) {
372     // This differs from gcc, though, most likely due to a bug in gcc.
373     TestAndClearIgnoreResultAssign();
374     return Visit(E->getSubExpr());
375   }
376   Value *VisitUnaryMinus    (const UnaryOperator *E);
377   Value *VisitUnaryNot      (const UnaryOperator *E);
378   Value *VisitUnaryLNot     (const UnaryOperator *E);
379   Value *VisitUnaryReal     (const UnaryOperator *E);
380   Value *VisitUnaryImag     (const UnaryOperator *E);
381   Value *VisitUnaryExtension(const UnaryOperator *E) {
382     return Visit(E->getSubExpr());
383   }
384
385   // C++
386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387     return EmitLoadOfLValue(E);
388   }
389
390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391     return Visit(DAE->getExpr());
392   }
393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395     return Visit(DIE->getExpr());
396   }
397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398     return CGF.LoadCXXThis();
399   }
400
401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402     CGF.enterFullExpression(E);
403     CodeGenFunction::RunCleanupsScope Scope(CGF);
404     return Visit(E->getSubExpr());
405   }
406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407     return CGF.EmitCXXNewExpr(E);
408   }
409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410     CGF.EmitCXXDeleteExpr(E);
411     return nullptr;
412   }
413
414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416   }
417
418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420   }
421
422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424   }
425
426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427     // C++ [expr.pseudo]p1:
428     //   The result shall only be used as the operand for the function call
429     //   operator (), and the result of such a call has type void. The only
430     //   effect is the evaluation of the postfix-expression before the dot or
431     //   arrow.
432     CGF.EmitScalarExpr(E->getBase());
433     return nullptr;
434   }
435
436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437     return EmitNullValue(E->getType());
438   }
439
440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441     CGF.EmitCXXThrowExpr(E);
442     return nullptr;
443   }
444
445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446     return Builder.getInt1(E->getValue());
447   }
448
449   // Binary Operators.
450   Value *EmitMul(const BinOpInfo &Ops) {
451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453       case LangOptions::SOB_Defined:
454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455       case LangOptions::SOB_Undefined:
456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458         // Fall through.
459       case LangOptions::SOB_Trapping:
460         return EmitOverflowCheckedBinOp(Ops);
461       }
462     }
463
464     if (Ops.Ty->isUnsignedIntegerType() &&
465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466       return EmitOverflowCheckedBinOp(Ops);
467
468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471   }
472   /// Create a binary op that checks for overflow.
473   /// Currently only supports +, - and *.
474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475
476   // Check for undefined division and modulus behaviors.
477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478                                                   llvm::Value *Zero,bool isDiv);
479   // Common helper for getting how wide LHS of shift is.
480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481   Value *EmitDiv(const BinOpInfo &Ops);
482   Value *EmitRem(const BinOpInfo &Ops);
483   Value *EmitAdd(const BinOpInfo &Ops);
484   Value *EmitSub(const BinOpInfo &Ops);
485   Value *EmitShl(const BinOpInfo &Ops);
486   Value *EmitShr(const BinOpInfo &Ops);
487   Value *EmitAnd(const BinOpInfo &Ops) {
488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489   }
490   Value *EmitXor(const BinOpInfo &Ops) {
491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492   }
493   Value *EmitOr (const BinOpInfo &Ops) {
494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495   }
496
497   BinOpInfo EmitBinOps(const BinaryOperator *E);
498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500                                   Value *&Result);
501
502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504
505   // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508     return Emit ## OP(EmitBinOps(E));                                      \
509   }                                                                        \
510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512   }
513   HANDLEBINOP(Mul)
514   HANDLEBINOP(Div)
515   HANDLEBINOP(Rem)
516   HANDLEBINOP(Add)
517   HANDLEBINOP(Sub)
518   HANDLEBINOP(Shl)
519   HANDLEBINOP(Shr)
520   HANDLEBINOP(And)
521   HANDLEBINOP(Xor)
522   HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524
525   // Comparisons.
526   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527                      llvm::CmpInst::Predicate SICmpOpc,
528                      llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530     Value *VisitBin##CODE(const BinaryOperator *E) { \
531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                          llvm::FCmpInst::FP); }
533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540
541   Value *VisitBinAssign     (const BinaryOperator *E);
542
543   Value *VisitBinLAnd       (const BinaryOperator *E);
544   Value *VisitBinLOr        (const BinaryOperator *E);
545   Value *VisitBinComma      (const BinaryOperator *E);
546
547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549
550   // Other Operators.
551   Value *VisitBlockExpr(const BlockExpr *BE);
552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553   Value *VisitChooseExpr(ChooseExpr *CE);
554   Value *VisitVAArgExpr(VAArgExpr *VE);
555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556     return CGF.EmitObjCStringLiteral(E);
557   }
558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559     return CGF.EmitObjCBoxedExpr(E);
560   }
561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562     return CGF.EmitObjCArrayLiteral(E);
563   }
564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565     return CGF.EmitObjCDictionaryLiteral(E);
566   }
567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568   Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 }  // end anonymous namespace.
571
572 //===----------------------------------------------------------------------===//
573 //                                Utilities
574 //===----------------------------------------------------------------------===//
575
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580
581   if (SrcType->isRealFloatingType())
582     return EmitFloatToBoolConversion(Src);
583
584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586
587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588          "Unknown scalar type to convert");
589
590   if (isa<llvm::IntegerType>(Src->getType()))
591     return EmitIntToBoolConversion(Src);
592
593   assert(isa<llvm::PointerType>(Src->getType()));
594   return EmitPointerToBoolConversion(Src);
595 }
596
597 void ScalarExprEmitter::EmitFloatConversionCheck(
598     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600   CodeGenFunction::SanitizerScope SanScope(&CGF);
601   using llvm::APFloat;
602   using llvm::APSInt;
603
604   llvm::Type *SrcTy = Src->getType();
605
606   llvm::Value *Check = nullptr;
607   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608     // Integer to floating-point. This can fail for unsigned short -> __half
609     // or unsigned __int128 -> float.
610     assert(DstType->isFloatingType());
611     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612
613     APFloat LargestFloat =
614       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616
617     bool IsExact;
618     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619                                       &IsExact) != APFloat::opOK)
620       // The range of representable values of this floating point type includes
621       // all values of this integer type. Don't need an overflow check.
622       return;
623
624     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625     if (SrcIsUnsigned)
626       Check = Builder.CreateICmpULE(Src, Max);
627     else {
628       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631       Check = Builder.CreateAnd(GE, LE);
632     }
633   } else {
634     const llvm::fltSemantics &SrcSema =
635       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636     if (isa<llvm::IntegerType>(DstTy)) {
637       // Floating-point to integer. This has undefined behavior if the source is
638       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639       // to an integer).
640       unsigned Width = CGF.getContext().getIntWidth(DstType);
641       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642
643       APSInt Min = APSInt::getMinValue(Width, Unsigned);
644       APFloat MinSrc(SrcSema, APFloat::uninitialized);
645       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646           APFloat::opOverflow)
647         // Don't need an overflow check for lower bound. Just check for
648         // -Inf/NaN.
649         MinSrc = APFloat::getInf(SrcSema, true);
650       else
651         // Find the largest value which is too small to represent (before
652         // truncation toward zero).
653         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654
655       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658           APFloat::opOverflow)
659         // Don't need an overflow check for upper bound. Just check for
660         // +Inf/NaN.
661         MaxSrc = APFloat::getInf(SrcSema, false);
662       else
663         // Find the smallest value which is too large to represent (before
664         // truncation toward zero).
665         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666
667       // If we're converting from __half, convert the range to float to match
668       // the type of src.
669       if (OrigSrcType->isHalfType()) {
670         const llvm::fltSemantics &Sema =
671           CGF.getContext().getFloatTypeSemantics(SrcType);
672         bool IsInexact;
673         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675       }
676
677       llvm::Value *GE =
678         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679       llvm::Value *LE =
680         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681       Check = Builder.CreateAnd(GE, LE);
682     } else {
683       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684       //
685       // Floating-point to floating-point. This has undefined behavior if the
686       // source is not in the range of representable values of the destination
687       // type. The C and C++ standards are spectacularly unclear here. We
688       // diagnose finite out-of-range conversions, but allow infinities and NaNs
689       // to convert to the corresponding value in the smaller type.
690       //
691       // C11 Annex F gives all such conversions defined behavior for IEC 60559
692       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693       // does not.
694
695       // Converting from a lower rank to a higher rank can never have
696       // undefined behavior, since higher-rank types must have a superset
697       // of values of lower-rank types.
698       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699         return;
700
701       assert(!OrigSrcType->isHalfType() &&
702              "should not check conversion from __half, it has the lowest rank");
703
704       const llvm::fltSemantics &DstSema =
705         CGF.getContext().getFloatTypeSemantics(DstType);
706       APFloat MinBad = APFloat::getLargest(DstSema, false);
707       APFloat MaxBad = APFloat::getInf(DstSema, false);
708
709       bool IsInexact;
710       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712
713       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715       llvm::Value *GE =
716         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717       llvm::Value *LE =
718         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720     }
721   }
722
723   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
725                                   CGF.EmitCheckTypeDescriptor(DstType)};
726   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727                 "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733                                                QualType DstType,
734                                                SourceLocation Loc) {
735   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737
738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739                                                QualType DstType,
740                                                SourceLocation Loc,
741                                                bool TreatBooleanAsSigned) {
742   SrcType = CGF.getContext().getCanonicalType(SrcType);
743   DstType = CGF.getContext().getCanonicalType(DstType);
744   if (SrcType == DstType) return Src;
745
746   if (DstType->isVoidType()) return nullptr;
747
748   llvm::Value *OrigSrc = Src;
749   QualType OrigSrcType = SrcType;
750   llvm::Type *SrcTy = Src->getType();
751
752   // Handle conversions to bool first, they are special: comparisons against 0.
753   if (DstType->isBooleanType())
754     return EmitConversionToBool(Src, SrcType);
755
756   llvm::Type *DstTy = ConvertType(DstType);
757
758   // Cast from half through float if half isn't a native type.
759   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760     // Cast to FP using the intrinsic if the half type itself isn't supported.
761     if (DstTy->isFloatingPointTy()) {
762       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763         return Builder.CreateCall(
764             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765             Src);
766     } else {
767       // Cast to other types through float, using either the intrinsic or FPExt,
768       // depending on whether the half type itself is supported
769       // (as opposed to operations on half, available with NativeHalfType).
770       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771         Src = Builder.CreateCall(
772             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773                                  CGF.CGM.FloatTy),
774             Src);
775       } else {
776         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777       }
778       SrcType = CGF.getContext().FloatTy;
779       SrcTy = CGF.FloatTy;
780     }
781   }
782
783   // Ignore conversions like int -> uint.
784   if (SrcTy == DstTy)
785     return Src;
786
787   // Handle pointer conversions next: pointers can only be converted to/from
788   // other pointers and integers. Check for pointer types in terms of LLVM, as
789   // some native types (like Obj-C id) may map to a pointer type.
790   if (isa<llvm::PointerType>(DstTy)) {
791     // The source value may be an integer, or a pointer.
792     if (isa<llvm::PointerType>(SrcTy))
793       return Builder.CreateBitCast(Src, DstTy, "conv");
794
795     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796     // First, convert to the correct width so that we control the kind of
797     // extension.
798     llvm::Type *MiddleTy = CGF.IntPtrTy;
799     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800     llvm::Value* IntResult =
801         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802     // Then, cast to pointer.
803     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804   }
805
806   if (isa<llvm::PointerType>(SrcTy)) {
807     // Must be an ptr to int cast.
808     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809     return Builder.CreatePtrToInt(Src, DstTy, "conv");
810   }
811
812   // A scalar can be splatted to an extended vector of the same element type
813   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814     // Cast the scalar to element type
815     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
816     llvm::Value *Elt = EmitScalarConversion(
817         Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL);
818
819     // Splat the element across to all elements
820     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
821     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
822   }
823
824   // Allow bitcast from vector to integer/fp of the same size.
825   if (isa<llvm::VectorType>(SrcTy) ||
826       isa<llvm::VectorType>(DstTy))
827     return Builder.CreateBitCast(Src, DstTy, "conv");
828
829   // Finally, we have the arithmetic types: real int/float.
830   Value *Res = nullptr;
831   llvm::Type *ResTy = DstTy;
832
833   // An overflowing conversion has undefined behavior if either the source type
834   // or the destination type is a floating-point type.
835   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
836       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
837     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
838                              Loc);
839
840   // Cast to half through float if half isn't a native type.
841   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
842     // Make sure we cast in a single step if from another FP type.
843     if (SrcTy->isFloatingPointTy()) {
844       // Use the intrinsic if the half type itself isn't supported
845       // (as opposed to operations on half, available with NativeHalfType).
846       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
847         return Builder.CreateCall(
848             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
849       // If the half type is supported, just use an fptrunc.
850       return Builder.CreateFPTrunc(Src, DstTy);
851     }
852     DstTy = CGF.FloatTy;
853   }
854
855   if (isa<llvm::IntegerType>(SrcTy)) {
856     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
857     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
858       InputSigned = true;
859     }
860     if (isa<llvm::IntegerType>(DstTy))
861       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
862     else if (InputSigned)
863       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
864     else
865       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
866   } else if (isa<llvm::IntegerType>(DstTy)) {
867     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
868     if (DstType->isSignedIntegerOrEnumerationType())
869       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
870     else
871       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
872   } else {
873     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
874            "Unknown real conversion");
875     if (DstTy->getTypeID() < SrcTy->getTypeID())
876       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
877     else
878       Res = Builder.CreateFPExt(Src, DstTy, "conv");
879   }
880
881   if (DstTy != ResTy) {
882     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
883       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
884       Res = Builder.CreateCall(
885         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
886         Res);
887     } else {
888       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
889     }
890   }
891
892   return Res;
893 }
894
895 /// Emit a conversion from the specified complex type to the specified
896 /// destination type, where the destination type is an LLVM scalar type.
897 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
898     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
899     SourceLocation Loc) {
900   // Get the source element type.
901   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
902
903   // Handle conversions to bool first, they are special: comparisons against 0.
904   if (DstTy->isBooleanType()) {
905     //  Complex != 0  -> (Real != 0) | (Imag != 0)
906     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
907     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
908     return Builder.CreateOr(Src.first, Src.second, "tobool");
909   }
910
911   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
912   // the imaginary part of the complex value is discarded and the value of the
913   // real part is converted according to the conversion rules for the
914   // corresponding real type.
915   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
916 }
917
918 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
919   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
920 }
921
922 /// \brief Emit a sanitization check for the given "binary" operation (which
923 /// might actually be a unary increment which has been lowered to a binary
924 /// operation). The check passes if all values in \p Checks (which are \c i1),
925 /// are \c true.
926 void ScalarExprEmitter::EmitBinOpCheck(
927     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
928   assert(CGF.IsSanitizerScope);
929   StringRef CheckName;
930   SmallVector<llvm::Constant *, 4> StaticData;
931   SmallVector<llvm::Value *, 2> DynamicData;
932
933   BinaryOperatorKind Opcode = Info.Opcode;
934   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
935     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
936
937   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
938   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
939   if (UO && UO->getOpcode() == UO_Minus) {
940     CheckName = "negate_overflow";
941     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
942     DynamicData.push_back(Info.RHS);
943   } else {
944     if (BinaryOperator::isShiftOp(Opcode)) {
945       // Shift LHS negative or too large, or RHS out of bounds.
946       CheckName = "shift_out_of_bounds";
947       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
948       StaticData.push_back(
949         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
950       StaticData.push_back(
951         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
952     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
953       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
954       CheckName = "divrem_overflow";
955       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
956     } else {
957       // Arithmetic overflow (+, -, *).
958       switch (Opcode) {
959       case BO_Add: CheckName = "add_overflow"; break;
960       case BO_Sub: CheckName = "sub_overflow"; break;
961       case BO_Mul: CheckName = "mul_overflow"; break;
962       default: llvm_unreachable("unexpected opcode for bin op check");
963       }
964       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
965     }
966     DynamicData.push_back(Info.LHS);
967     DynamicData.push_back(Info.RHS);
968   }
969
970   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
971 }
972
973 //===----------------------------------------------------------------------===//
974 //                            Visitor Methods
975 //===----------------------------------------------------------------------===//
976
977 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
978   CGF.ErrorUnsupported(E, "scalar expression");
979   if (E->getType()->isVoidType())
980     return nullptr;
981   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
982 }
983
984 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
985   // Vector Mask Case
986   if (E->getNumSubExprs() == 2 ||
987       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
988     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
989     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
990     Value *Mask;
991
992     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
993     unsigned LHSElts = LTy->getNumElements();
994
995     if (E->getNumSubExprs() == 3) {
996       Mask = CGF.EmitScalarExpr(E->getExpr(2));
997
998       // Shuffle LHS & RHS into one input vector.
999       SmallVector<llvm::Constant*, 32> concat;
1000       for (unsigned i = 0; i != LHSElts; ++i) {
1001         concat.push_back(Builder.getInt32(2*i));
1002         concat.push_back(Builder.getInt32(2*i+1));
1003       }
1004
1005       Value* CV = llvm::ConstantVector::get(concat);
1006       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1007       LHSElts *= 2;
1008     } else {
1009       Mask = RHS;
1010     }
1011
1012     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1013
1014     // Mask off the high bits of each shuffle index.
1015     Value *MaskBits =
1016         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1017     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1018
1019     // newv = undef
1020     // mask = mask & maskbits
1021     // for each elt
1022     //   n = extract mask i
1023     //   x = extract val n
1024     //   newv = insert newv, x, i
1025     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1026                                                   MTy->getNumElements());
1027     Value* NewV = llvm::UndefValue::get(RTy);
1028     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1029       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1030       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1031
1032       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1033       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1034     }
1035     return NewV;
1036   }
1037
1038   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1039   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1040
1041   SmallVector<llvm::Constant*, 32> indices;
1042   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1043     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1044     // Check for -1 and output it as undef in the IR.
1045     if (Idx.isSigned() && Idx.isAllOnesValue())
1046       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1047     else
1048       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1049   }
1050
1051   Value *SV = llvm::ConstantVector::get(indices);
1052   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1053 }
1054
1055 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1056   QualType SrcType = E->getSrcExpr()->getType(),
1057            DstType = E->getType();
1058
1059   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1060
1061   SrcType = CGF.getContext().getCanonicalType(SrcType);
1062   DstType = CGF.getContext().getCanonicalType(DstType);
1063   if (SrcType == DstType) return Src;
1064
1065   assert(SrcType->isVectorType() &&
1066          "ConvertVector source type must be a vector");
1067   assert(DstType->isVectorType() &&
1068          "ConvertVector destination type must be a vector");
1069
1070   llvm::Type *SrcTy = Src->getType();
1071   llvm::Type *DstTy = ConvertType(DstType);
1072
1073   // Ignore conversions like int -> uint.
1074   if (SrcTy == DstTy)
1075     return Src;
1076
1077   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1078            DstEltType = DstType->getAs<VectorType>()->getElementType();
1079
1080   assert(SrcTy->isVectorTy() &&
1081          "ConvertVector source IR type must be a vector");
1082   assert(DstTy->isVectorTy() &&
1083          "ConvertVector destination IR type must be a vector");
1084
1085   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1086              *DstEltTy = DstTy->getVectorElementType();
1087
1088   if (DstEltType->isBooleanType()) {
1089     assert((SrcEltTy->isFloatingPointTy() ||
1090             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1091
1092     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1093     if (SrcEltTy->isFloatingPointTy()) {
1094       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1095     } else {
1096       return Builder.CreateICmpNE(Src, Zero, "tobool");
1097     }
1098   }
1099
1100   // We have the arithmetic types: real int/float.
1101   Value *Res = nullptr;
1102
1103   if (isa<llvm::IntegerType>(SrcEltTy)) {
1104     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1105     if (isa<llvm::IntegerType>(DstEltTy))
1106       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1107     else if (InputSigned)
1108       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1109     else
1110       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1111   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1112     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1113     if (DstEltType->isSignedIntegerOrEnumerationType())
1114       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1115     else
1116       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1117   } else {
1118     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1119            "Unknown real conversion");
1120     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1121       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1122     else
1123       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1124   }
1125
1126   return Res;
1127 }
1128
1129 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1130   llvm::APSInt Value;
1131   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1132     if (E->isArrow())
1133       CGF.EmitScalarExpr(E->getBase());
1134     else
1135       EmitLValue(E->getBase());
1136     return Builder.getInt(Value);
1137   }
1138
1139   return EmitLoadOfLValue(E);
1140 }
1141
1142 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1143   TestAndClearIgnoreResultAssign();
1144
1145   // Emit subscript expressions in rvalue context's.  For most cases, this just
1146   // loads the lvalue formed by the subscript expr.  However, we have to be
1147   // careful, because the base of a vector subscript is occasionally an rvalue,
1148   // so we can't get it as an lvalue.
1149   if (!E->getBase()->getType()->isVectorType())
1150     return EmitLoadOfLValue(E);
1151
1152   // Handle the vector case.  The base must be a vector, the index must be an
1153   // integer value.
1154   Value *Base = Visit(E->getBase());
1155   Value *Idx  = Visit(E->getIdx());
1156   QualType IdxTy = E->getIdx()->getType();
1157
1158   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1159     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1160
1161   return Builder.CreateExtractElement(Base, Idx, "vecext");
1162 }
1163
1164 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1165                                   unsigned Off, llvm::Type *I32Ty) {
1166   int MV = SVI->getMaskValue(Idx);
1167   if (MV == -1)
1168     return llvm::UndefValue::get(I32Ty);
1169   return llvm::ConstantInt::get(I32Ty, Off+MV);
1170 }
1171
1172 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1173   if (C->getBitWidth() != 32) {
1174       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1175                                                     C->getZExtValue()) &&
1176              "Index operand too large for shufflevector mask!");
1177       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1178   }
1179   return C;
1180 }
1181
1182 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1183   bool Ignore = TestAndClearIgnoreResultAssign();
1184   (void)Ignore;
1185   assert (Ignore == false && "init list ignored");
1186   unsigned NumInitElements = E->getNumInits();
1187
1188   if (E->hadArrayRangeDesignator())
1189     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1190
1191   llvm::VectorType *VType =
1192     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1193
1194   if (!VType) {
1195     if (NumInitElements == 0) {
1196       // C++11 value-initialization for the scalar.
1197       return EmitNullValue(E->getType());
1198     }
1199     // We have a scalar in braces. Just use the first element.
1200     return Visit(E->getInit(0));
1201   }
1202
1203   unsigned ResElts = VType->getNumElements();
1204
1205   // Loop over initializers collecting the Value for each, and remembering
1206   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1207   // us to fold the shuffle for the swizzle into the shuffle for the vector
1208   // initializer, since LLVM optimizers generally do not want to touch
1209   // shuffles.
1210   unsigned CurIdx = 0;
1211   bool VIsUndefShuffle = false;
1212   llvm::Value *V = llvm::UndefValue::get(VType);
1213   for (unsigned i = 0; i != NumInitElements; ++i) {
1214     Expr *IE = E->getInit(i);
1215     Value *Init = Visit(IE);
1216     SmallVector<llvm::Constant*, 16> Args;
1217
1218     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1219
1220     // Handle scalar elements.  If the scalar initializer is actually one
1221     // element of a different vector of the same width, use shuffle instead of
1222     // extract+insert.
1223     if (!VVT) {
1224       if (isa<ExtVectorElementExpr>(IE)) {
1225         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1226
1227         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1228           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1229           Value *LHS = nullptr, *RHS = nullptr;
1230           if (CurIdx == 0) {
1231             // insert into undef -> shuffle (src, undef)
1232             // shufflemask must use an i32
1233             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1234             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1235
1236             LHS = EI->getVectorOperand();
1237             RHS = V;
1238             VIsUndefShuffle = true;
1239           } else if (VIsUndefShuffle) {
1240             // insert into undefshuffle && size match -> shuffle (v, src)
1241             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1242             for (unsigned j = 0; j != CurIdx; ++j)
1243               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1244             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1245             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1246
1247             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1248             RHS = EI->getVectorOperand();
1249             VIsUndefShuffle = false;
1250           }
1251           if (!Args.empty()) {
1252             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1253             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1254             ++CurIdx;
1255             continue;
1256           }
1257         }
1258       }
1259       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1260                                       "vecinit");
1261       VIsUndefShuffle = false;
1262       ++CurIdx;
1263       continue;
1264     }
1265
1266     unsigned InitElts = VVT->getNumElements();
1267
1268     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1269     // input is the same width as the vector being constructed, generate an
1270     // optimized shuffle of the swizzle input into the result.
1271     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1272     if (isa<ExtVectorElementExpr>(IE)) {
1273       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1274       Value *SVOp = SVI->getOperand(0);
1275       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1276
1277       if (OpTy->getNumElements() == ResElts) {
1278         for (unsigned j = 0; j != CurIdx; ++j) {
1279           // If the current vector initializer is a shuffle with undef, merge
1280           // this shuffle directly into it.
1281           if (VIsUndefShuffle) {
1282             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1283                                       CGF.Int32Ty));
1284           } else {
1285             Args.push_back(Builder.getInt32(j));
1286           }
1287         }
1288         for (unsigned j = 0, je = InitElts; j != je; ++j)
1289           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1290         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1291
1292         if (VIsUndefShuffle)
1293           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1294
1295         Init = SVOp;
1296       }
1297     }
1298
1299     // Extend init to result vector length, and then shuffle its contribution
1300     // to the vector initializer into V.
1301     if (Args.empty()) {
1302       for (unsigned j = 0; j != InitElts; ++j)
1303         Args.push_back(Builder.getInt32(j));
1304       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1305       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1306       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1307                                          Mask, "vext");
1308
1309       Args.clear();
1310       for (unsigned j = 0; j != CurIdx; ++j)
1311         Args.push_back(Builder.getInt32(j));
1312       for (unsigned j = 0; j != InitElts; ++j)
1313         Args.push_back(Builder.getInt32(j+Offset));
1314       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1315     }
1316
1317     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1318     // merging subsequent shuffles into this one.
1319     if (CurIdx == 0)
1320       std::swap(V, Init);
1321     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1322     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1323     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1324     CurIdx += InitElts;
1325   }
1326
1327   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1328   // Emit remaining default initializers.
1329   llvm::Type *EltTy = VType->getElementType();
1330
1331   // Emit remaining default initializers
1332   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1333     Value *Idx = Builder.getInt32(CurIdx);
1334     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1335     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1336   }
1337   return V;
1338 }
1339
1340 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1341   const Expr *E = CE->getSubExpr();
1342
1343   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1344     return false;
1345
1346   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1347     // We always assume that 'this' is never null.
1348     return false;
1349   }
1350
1351   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1352     // And that glvalue casts are never null.
1353     if (ICE->getValueKind() != VK_RValue)
1354       return false;
1355   }
1356
1357   return true;
1358 }
1359
1360 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1361 // have to handle a more broad range of conversions than explicit casts, as they
1362 // handle things like function to ptr-to-function decay etc.
1363 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1364   Expr *E = CE->getSubExpr();
1365   QualType DestTy = CE->getType();
1366   CastKind Kind = CE->getCastKind();
1367
1368   if (!DestTy->isVoidType())
1369     TestAndClearIgnoreResultAssign();
1370
1371   // Since almost all cast kinds apply to scalars, this switch doesn't have
1372   // a default case, so the compiler will warn on a missing case.  The cases
1373   // are in the same order as in the CastKind enum.
1374   switch (Kind) {
1375   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1376   case CK_BuiltinFnToFnPtr:
1377     llvm_unreachable("builtin functions are handled elsewhere");
1378
1379   case CK_LValueBitCast:
1380   case CK_ObjCObjectLValueCast: {
1381     Address Addr = EmitLValue(E).getAddress();
1382     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1383     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1384     return EmitLoadOfLValue(LV, CE->getExprLoc());
1385   }
1386
1387   case CK_CPointerToObjCPointerCast:
1388   case CK_BlockPointerToObjCPointerCast:
1389   case CK_AnyPointerToBlockPointerCast:
1390   case CK_BitCast: {
1391     Value *Src = Visit(const_cast<Expr*>(E));
1392     llvm::Type *SrcTy = Src->getType();
1393     llvm::Type *DstTy = ConvertType(DestTy);
1394     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1395         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1396       llvm_unreachable("wrong cast for pointers in different address spaces"
1397                        "(must be an address space cast)!");
1398     }
1399
1400     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1401       if (auto PT = DestTy->getAs<PointerType>())
1402         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1403                                       /*MayBeNull=*/true,
1404                                       CodeGenFunction::CFITCK_UnrelatedCast,
1405                                       CE->getLocStart());
1406     }
1407
1408     return Builder.CreateBitCast(Src, DstTy);
1409   }
1410   case CK_AddressSpaceConversion: {
1411     Value *Src = Visit(const_cast<Expr*>(E));
1412     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1413   }
1414   case CK_AtomicToNonAtomic:
1415   case CK_NonAtomicToAtomic:
1416   case CK_NoOp:
1417   case CK_UserDefinedConversion:
1418     return Visit(const_cast<Expr*>(E));
1419
1420   case CK_BaseToDerived: {
1421     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1422     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1423
1424     Address Base = CGF.EmitPointerWithAlignment(E);
1425     Address Derived =
1426       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1427                                    CE->path_begin(), CE->path_end(),
1428                                    CGF.ShouldNullCheckClassCastValue(CE));
1429
1430     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1431     // performed and the object is not of the derived type.
1432     if (CGF.sanitizePerformTypeCheck())
1433       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1434                         Derived.getPointer(), DestTy->getPointeeType());
1435
1436     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1437       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1438                                     Derived.getPointer(),
1439                                     /*MayBeNull=*/true,
1440                                     CodeGenFunction::CFITCK_DerivedCast,
1441                                     CE->getLocStart());
1442
1443     return Derived.getPointer();
1444   }
1445   case CK_UncheckedDerivedToBase:
1446   case CK_DerivedToBase: {
1447     // The EmitPointerWithAlignment path does this fine; just discard
1448     // the alignment.
1449     return CGF.EmitPointerWithAlignment(CE).getPointer();
1450   }
1451
1452   case CK_Dynamic: {
1453     Address V = CGF.EmitPointerWithAlignment(E);
1454     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1455     return CGF.EmitDynamicCast(V, DCE);
1456   }
1457
1458   case CK_ArrayToPointerDecay:
1459     return CGF.EmitArrayToPointerDecay(E).getPointer();
1460   case CK_FunctionToPointerDecay:
1461     return EmitLValue(E).getPointer();
1462
1463   case CK_NullToPointer:
1464     if (MustVisitNullValue(E))
1465       (void) Visit(E);
1466
1467     return llvm::ConstantPointerNull::get(
1468                                cast<llvm::PointerType>(ConvertType(DestTy)));
1469
1470   case CK_NullToMemberPointer: {
1471     if (MustVisitNullValue(E))
1472       (void) Visit(E);
1473
1474     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1475     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1476   }
1477
1478   case CK_ReinterpretMemberPointer:
1479   case CK_BaseToDerivedMemberPointer:
1480   case CK_DerivedToBaseMemberPointer: {
1481     Value *Src = Visit(E);
1482
1483     // Note that the AST doesn't distinguish between checked and
1484     // unchecked member pointer conversions, so we always have to
1485     // implement checked conversions here.  This is inefficient when
1486     // actual control flow may be required in order to perform the
1487     // check, which it is for data member pointers (but not member
1488     // function pointers on Itanium and ARM).
1489     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1490   }
1491
1492   case CK_ARCProduceObject:
1493     return CGF.EmitARCRetainScalarExpr(E);
1494   case CK_ARCConsumeObject:
1495     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1496   case CK_ARCReclaimReturnedObject: {
1497     llvm::Value *value = Visit(E);
1498     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1499     return CGF.EmitObjCConsumeObject(E->getType(), value);
1500   }
1501   case CK_ARCExtendBlockObject:
1502     return CGF.EmitARCExtendBlockObject(E);
1503
1504   case CK_CopyAndAutoreleaseBlockObject:
1505     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1506
1507   case CK_FloatingRealToComplex:
1508   case CK_FloatingComplexCast:
1509   case CK_IntegralRealToComplex:
1510   case CK_IntegralComplexCast:
1511   case CK_IntegralComplexToFloatingComplex:
1512   case CK_FloatingComplexToIntegralComplex:
1513   case CK_ConstructorConversion:
1514   case CK_ToUnion:
1515     llvm_unreachable("scalar cast to non-scalar value");
1516
1517   case CK_LValueToRValue:
1518     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1519     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1520     return Visit(const_cast<Expr*>(E));
1521
1522   case CK_IntegralToPointer: {
1523     Value *Src = Visit(const_cast<Expr*>(E));
1524
1525     // First, convert to the correct width so that we control the kind of
1526     // extension.
1527     llvm::Type *MiddleTy = CGF.IntPtrTy;
1528     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1529     llvm::Value* IntResult =
1530       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1531
1532     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1533   }
1534   case CK_PointerToIntegral:
1535     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1536     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1537
1538   case CK_ToVoid: {
1539     CGF.EmitIgnoredExpr(E);
1540     return nullptr;
1541   }
1542   case CK_VectorSplat: {
1543     llvm::Type *DstTy = ConvertType(DestTy);
1544     // Need an IgnoreImpCasts here as by default a boolean will be promoted to
1545     // an int, which will not perform the sign extension, so if we know we are
1546     // going to cast to a vector we have to strip the implicit cast off.
1547     Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts()));
1548     Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(),
1549                                DestTy->getAs<VectorType>()->getElementType(),
1550                                CE->getExprLoc(), 
1551                                CGF.getContext().getLangOpts().OpenCL);
1552
1553     // Splat the element across to all elements
1554     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1555     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1556   }
1557
1558   case CK_IntegralCast:
1559   case CK_IntegralToFloating:
1560   case CK_FloatingToIntegral:
1561   case CK_FloatingCast:
1562     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1563                                 CE->getExprLoc());
1564   case CK_IntegralToBoolean:
1565     return EmitIntToBoolConversion(Visit(E));
1566   case CK_PointerToBoolean:
1567     return EmitPointerToBoolConversion(Visit(E));
1568   case CK_FloatingToBoolean:
1569     return EmitFloatToBoolConversion(Visit(E));
1570   case CK_MemberPointerToBoolean: {
1571     llvm::Value *MemPtr = Visit(E);
1572     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1573     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1574   }
1575
1576   case CK_FloatingComplexToReal:
1577   case CK_IntegralComplexToReal:
1578     return CGF.EmitComplexExpr(E, false, true).first;
1579
1580   case CK_FloatingComplexToBoolean:
1581   case CK_IntegralComplexToBoolean: {
1582     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1583
1584     // TODO: kill this function off, inline appropriate case here
1585     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1586                                          CE->getExprLoc());
1587   }
1588
1589   case CK_ZeroToOCLEvent: {
1590     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1591     return llvm::Constant::getNullValue(ConvertType(DestTy));
1592   }
1593
1594   }
1595
1596   llvm_unreachable("unknown scalar cast");
1597 }
1598
1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1600   CodeGenFunction::StmtExprEvaluation eval(CGF);
1601   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1602                                            !E->getType()->isVoidType());
1603   if (!RetAlloca.isValid())
1604     return nullptr;
1605   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1606                               E->getExprLoc());
1607 }
1608
1609 //===----------------------------------------------------------------------===//
1610 //                             Unary Operators
1611 //===----------------------------------------------------------------------===//
1612
1613 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1614                                            llvm::Value *InVal, bool IsInc) {
1615   BinOpInfo BinOp;
1616   BinOp.LHS = InVal;
1617   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1618   BinOp.Ty = E->getType();
1619   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1620   BinOp.FPContractable = false;
1621   BinOp.E = E;
1622   return BinOp;
1623 }
1624
1625 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1626     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1627   llvm::Value *Amount =
1628       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1629   StringRef Name = IsInc ? "inc" : "dec";
1630   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1631   case LangOptions::SOB_Defined:
1632     return Builder.CreateAdd(InVal, Amount, Name);
1633   case LangOptions::SOB_Undefined:
1634     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1635       return Builder.CreateNSWAdd(InVal, Amount, Name);
1636     // Fall through.
1637   case LangOptions::SOB_Trapping:
1638     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1639   }
1640   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1641 }
1642
1643 llvm::Value *
1644 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1645                                            bool isInc, bool isPre) {
1646
1647   QualType type = E->getSubExpr()->getType();
1648   llvm::PHINode *atomicPHI = nullptr;
1649   llvm::Value *value;
1650   llvm::Value *input;
1651
1652   int amount = (isInc ? 1 : -1);
1653
1654   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1655     type = atomicTy->getValueType();
1656     if (isInc && type->isBooleanType()) {
1657       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1658       if (isPre) {
1659         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1660           ->setAtomic(llvm::SequentiallyConsistent);
1661         return Builder.getTrue();
1662       }
1663       // For atomic bool increment, we just store true and return it for
1664       // preincrement, do an atomic swap with true for postincrement
1665         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1666             LV.getPointer(), True, llvm::SequentiallyConsistent);
1667     }
1668     // Special case for atomic increment / decrement on integers, emit
1669     // atomicrmw instructions.  We skip this if we want to be doing overflow
1670     // checking, and fall into the slow path with the atomic cmpxchg loop.
1671     if (!type->isBooleanType() && type->isIntegerType() &&
1672         !(type->isUnsignedIntegerType() &&
1673           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1674         CGF.getLangOpts().getSignedOverflowBehavior() !=
1675             LangOptions::SOB_Trapping) {
1676       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1677         llvm::AtomicRMWInst::Sub;
1678       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1679         llvm::Instruction::Sub;
1680       llvm::Value *amt = CGF.EmitToMemory(
1681           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1682       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1683           LV.getPointer(), amt, llvm::SequentiallyConsistent);
1684       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1685     }
1686     value = EmitLoadOfLValue(LV, E->getExprLoc());
1687     input = value;
1688     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1689     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1690     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1691     value = CGF.EmitToMemory(value, type);
1692     Builder.CreateBr(opBB);
1693     Builder.SetInsertPoint(opBB);
1694     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1695     atomicPHI->addIncoming(value, startBB);
1696     value = atomicPHI;
1697   } else {
1698     value = EmitLoadOfLValue(LV, E->getExprLoc());
1699     input = value;
1700   }
1701
1702   // Special case of integer increment that we have to check first: bool++.
1703   // Due to promotion rules, we get:
1704   //   bool++ -> bool = bool + 1
1705   //          -> bool = (int)bool + 1
1706   //          -> bool = ((int)bool + 1 != 0)
1707   // An interesting aspect of this is that increment is always true.
1708   // Decrement does not have this property.
1709   if (isInc && type->isBooleanType()) {
1710     value = Builder.getTrue();
1711
1712   // Most common case by far: integer increment.
1713   } else if (type->isIntegerType()) {
1714     // Note that signed integer inc/dec with width less than int can't
1715     // overflow because of promotion rules; we're just eliding a few steps here.
1716     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1717                        CGF.IntTy->getIntegerBitWidth();
1718     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1719       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1720     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1721                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1722       value =
1723           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1724     } else {
1725       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1726       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1727     }
1728
1729   // Next most common: pointer increment.
1730   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1731     QualType type = ptr->getPointeeType();
1732
1733     // VLA types don't have constant size.
1734     if (const VariableArrayType *vla
1735           = CGF.getContext().getAsVariableArrayType(type)) {
1736       llvm::Value *numElts = CGF.getVLASize(vla).first;
1737       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1738       if (CGF.getLangOpts().isSignedOverflowDefined())
1739         value = Builder.CreateGEP(value, numElts, "vla.inc");
1740       else
1741         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1742
1743     // Arithmetic on function pointers (!) is just +-1.
1744     } else if (type->isFunctionType()) {
1745       llvm::Value *amt = Builder.getInt32(amount);
1746
1747       value = CGF.EmitCastToVoidPtr(value);
1748       if (CGF.getLangOpts().isSignedOverflowDefined())
1749         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1750       else
1751         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1752       value = Builder.CreateBitCast(value, input->getType());
1753
1754     // For everything else, we can just do a simple increment.
1755     } else {
1756       llvm::Value *amt = Builder.getInt32(amount);
1757       if (CGF.getLangOpts().isSignedOverflowDefined())
1758         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1759       else
1760         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1761     }
1762
1763   // Vector increment/decrement.
1764   } else if (type->isVectorType()) {
1765     if (type->hasIntegerRepresentation()) {
1766       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1767
1768       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1769     } else {
1770       value = Builder.CreateFAdd(
1771                   value,
1772                   llvm::ConstantFP::get(value->getType(), amount),
1773                   isInc ? "inc" : "dec");
1774     }
1775
1776   // Floating point.
1777   } else if (type->isRealFloatingType()) {
1778     // Add the inc/dec to the real part.
1779     llvm::Value *amt;
1780
1781     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1782       // Another special case: half FP increment should be done via float
1783       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1784         value = Builder.CreateCall(
1785             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1786                                  CGF.CGM.FloatTy),
1787             input, "incdec.conv");
1788       } else {
1789         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1790       }
1791     }
1792
1793     if (value->getType()->isFloatTy())
1794       amt = llvm::ConstantFP::get(VMContext,
1795                                   llvm::APFloat(static_cast<float>(amount)));
1796     else if (value->getType()->isDoubleTy())
1797       amt = llvm::ConstantFP::get(VMContext,
1798                                   llvm::APFloat(static_cast<double>(amount)));
1799     else {
1800       // Remaining types are either Half or LongDouble.  Convert from float.
1801       llvm::APFloat F(static_cast<float>(amount));
1802       bool ignored;
1803       // Don't use getFloatTypeSemantics because Half isn't
1804       // necessarily represented using the "half" LLVM type.
1805       F.convert(value->getType()->isHalfTy()
1806                     ? CGF.getTarget().getHalfFormat()
1807                     : CGF.getTarget().getLongDoubleFormat(),
1808                 llvm::APFloat::rmTowardZero, &ignored);
1809       amt = llvm::ConstantFP::get(VMContext, F);
1810     }
1811     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1812
1813     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1814       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1815         value = Builder.CreateCall(
1816             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1817                                  CGF.CGM.FloatTy),
1818             value, "incdec.conv");
1819       } else {
1820         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1821       }
1822     }
1823
1824   // Objective-C pointer types.
1825   } else {
1826     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1827     value = CGF.EmitCastToVoidPtr(value);
1828
1829     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1830     if (!isInc) size = -size;
1831     llvm::Value *sizeValue =
1832       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1833
1834     if (CGF.getLangOpts().isSignedOverflowDefined())
1835       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1836     else
1837       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1838     value = Builder.CreateBitCast(value, input->getType());
1839   }
1840
1841   if (atomicPHI) {
1842     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1843     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1844     auto Pair = CGF.EmitAtomicCompareExchange(
1845         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1846     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1847     llvm::Value *success = Pair.second;
1848     atomicPHI->addIncoming(old, opBB);
1849     Builder.CreateCondBr(success, contBB, opBB);
1850     Builder.SetInsertPoint(contBB);
1851     return isPre ? value : input;
1852   }
1853
1854   // Store the updated result through the lvalue.
1855   if (LV.isBitField())
1856     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1857   else
1858     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1859
1860   // If this is a postinc, return the value read from memory, otherwise use the
1861   // updated value.
1862   return isPre ? value : input;
1863 }
1864
1865
1866
1867 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1868   TestAndClearIgnoreResultAssign();
1869   // Emit unary minus with EmitSub so we handle overflow cases etc.
1870   BinOpInfo BinOp;
1871   BinOp.RHS = Visit(E->getSubExpr());
1872
1873   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1874     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1875   else
1876     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1877   BinOp.Ty = E->getType();
1878   BinOp.Opcode = BO_Sub;
1879   BinOp.FPContractable = false;
1880   BinOp.E = E;
1881   return EmitSub(BinOp);
1882 }
1883
1884 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1885   TestAndClearIgnoreResultAssign();
1886   Value *Op = Visit(E->getSubExpr());
1887   return Builder.CreateNot(Op, "neg");
1888 }
1889
1890 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1891   // Perform vector logical not on comparison with zero vector.
1892   if (E->getType()->isExtVectorType()) {
1893     Value *Oper = Visit(E->getSubExpr());
1894     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1895     Value *Result;
1896     if (Oper->getType()->isFPOrFPVectorTy())
1897       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1898     else
1899       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1900     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1901   }
1902
1903   // Compare operand to zero.
1904   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1905
1906   // Invert value.
1907   // TODO: Could dynamically modify easy computations here.  For example, if
1908   // the operand is an icmp ne, turn into icmp eq.
1909   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1910
1911   // ZExt result to the expr type.
1912   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1913 }
1914
1915 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1916   // Try folding the offsetof to a constant.
1917   llvm::APSInt Value;
1918   if (E->EvaluateAsInt(Value, CGF.getContext()))
1919     return Builder.getInt(Value);
1920
1921   // Loop over the components of the offsetof to compute the value.
1922   unsigned n = E->getNumComponents();
1923   llvm::Type* ResultType = ConvertType(E->getType());
1924   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1925   QualType CurrentType = E->getTypeSourceInfo()->getType();
1926   for (unsigned i = 0; i != n; ++i) {
1927     OffsetOfNode ON = E->getComponent(i);
1928     llvm::Value *Offset = nullptr;
1929     switch (ON.getKind()) {
1930     case OffsetOfNode::Array: {
1931       // Compute the index
1932       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1933       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1934       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1935       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1936
1937       // Save the element type
1938       CurrentType =
1939           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1940
1941       // Compute the element size
1942       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1943           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1944
1945       // Multiply out to compute the result
1946       Offset = Builder.CreateMul(Idx, ElemSize);
1947       break;
1948     }
1949
1950     case OffsetOfNode::Field: {
1951       FieldDecl *MemberDecl = ON.getField();
1952       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1953       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1954
1955       // Compute the index of the field in its parent.
1956       unsigned i = 0;
1957       // FIXME: It would be nice if we didn't have to loop here!
1958       for (RecordDecl::field_iterator Field = RD->field_begin(),
1959                                       FieldEnd = RD->field_end();
1960            Field != FieldEnd; ++Field, ++i) {
1961         if (*Field == MemberDecl)
1962           break;
1963       }
1964       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1965
1966       // Compute the offset to the field
1967       int64_t OffsetInt = RL.getFieldOffset(i) /
1968                           CGF.getContext().getCharWidth();
1969       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1970
1971       // Save the element type.
1972       CurrentType = MemberDecl->getType();
1973       break;
1974     }
1975
1976     case OffsetOfNode::Identifier:
1977       llvm_unreachable("dependent __builtin_offsetof");
1978
1979     case OffsetOfNode::Base: {
1980       if (ON.getBase()->isVirtual()) {
1981         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1982         continue;
1983       }
1984
1985       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1986       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1987
1988       // Save the element type.
1989       CurrentType = ON.getBase()->getType();
1990
1991       // Compute the offset to the base.
1992       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1993       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1994       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1995       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1996       break;
1997     }
1998     }
1999     Result = Builder.CreateAdd(Result, Offset);
2000   }
2001   return Result;
2002 }
2003
2004 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2005 /// argument of the sizeof expression as an integer.
2006 Value *
2007 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2008                               const UnaryExprOrTypeTraitExpr *E) {
2009   QualType TypeToSize = E->getTypeOfArgument();
2010   if (E->getKind() == UETT_SizeOf) {
2011     if (const VariableArrayType *VAT =
2012           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2013       if (E->isArgumentType()) {
2014         // sizeof(type) - make sure to emit the VLA size.
2015         CGF.EmitVariablyModifiedType(TypeToSize);
2016       } else {
2017         // C99 6.5.3.4p2: If the argument is an expression of type
2018         // VLA, it is evaluated.
2019         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2020       }
2021
2022       QualType eltType;
2023       llvm::Value *numElts;
2024       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2025
2026       llvm::Value *size = numElts;
2027
2028       // Scale the number of non-VLA elements by the non-VLA element size.
2029       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2030       if (!eltSize.isOne())
2031         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2032
2033       return size;
2034     }
2035   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2036     auto Alignment =
2037         CGF.getContext()
2038             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2039                 E->getTypeOfArgument()->getPointeeType()))
2040             .getQuantity();
2041     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2042   }
2043
2044   // If this isn't sizeof(vla), the result must be constant; use the constant
2045   // folding logic so we don't have to duplicate it here.
2046   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2047 }
2048
2049 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2050   Expr *Op = E->getSubExpr();
2051   if (Op->getType()->isAnyComplexType()) {
2052     // If it's an l-value, load through the appropriate subobject l-value.
2053     // Note that we have to ask E because Op might be an l-value that
2054     // this won't work for, e.g. an Obj-C property.
2055     if (E->isGLValue())
2056       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2057                                   E->getExprLoc()).getScalarVal();
2058
2059     // Otherwise, calculate and project.
2060     return CGF.EmitComplexExpr(Op, false, true).first;
2061   }
2062
2063   return Visit(Op);
2064 }
2065
2066 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2067   Expr *Op = E->getSubExpr();
2068   if (Op->getType()->isAnyComplexType()) {
2069     // If it's an l-value, load through the appropriate subobject l-value.
2070     // Note that we have to ask E because Op might be an l-value that
2071     // this won't work for, e.g. an Obj-C property.
2072     if (Op->isGLValue())
2073       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2074                                   E->getExprLoc()).getScalarVal();
2075
2076     // Otherwise, calculate and project.
2077     return CGF.EmitComplexExpr(Op, true, false).second;
2078   }
2079
2080   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2081   // effects are evaluated, but not the actual value.
2082   if (Op->isGLValue())
2083     CGF.EmitLValue(Op);
2084   else
2085     CGF.EmitScalarExpr(Op, true);
2086   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2087 }
2088
2089 //===----------------------------------------------------------------------===//
2090 //                           Binary Operators
2091 //===----------------------------------------------------------------------===//
2092
2093 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2094   TestAndClearIgnoreResultAssign();
2095   BinOpInfo Result;
2096   Result.LHS = Visit(E->getLHS());
2097   Result.RHS = Visit(E->getRHS());
2098   Result.Ty  = E->getType();
2099   Result.Opcode = E->getOpcode();
2100   Result.FPContractable = E->isFPContractable();
2101   Result.E = E;
2102   return Result;
2103 }
2104
2105 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2106                                               const CompoundAssignOperator *E,
2107                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2108                                                    Value *&Result) {
2109   QualType LHSTy = E->getLHS()->getType();
2110   BinOpInfo OpInfo;
2111
2112   if (E->getComputationResultType()->isAnyComplexType())
2113     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2114
2115   // Emit the RHS first.  __block variables need to have the rhs evaluated
2116   // first, plus this should improve codegen a little.
2117   OpInfo.RHS = Visit(E->getRHS());
2118   OpInfo.Ty = E->getComputationResultType();
2119   OpInfo.Opcode = E->getOpcode();
2120   OpInfo.FPContractable = E->isFPContractable();
2121   OpInfo.E = E;
2122   // Load/convert the LHS.
2123   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2124
2125   llvm::PHINode *atomicPHI = nullptr;
2126   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2127     QualType type = atomicTy->getValueType();
2128     if (!type->isBooleanType() && type->isIntegerType() &&
2129         !(type->isUnsignedIntegerType() &&
2130           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2131         CGF.getLangOpts().getSignedOverflowBehavior() !=
2132             LangOptions::SOB_Trapping) {
2133       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2134       switch (OpInfo.Opcode) {
2135         // We don't have atomicrmw operands for *, %, /, <<, >>
2136         case BO_MulAssign: case BO_DivAssign:
2137         case BO_RemAssign:
2138         case BO_ShlAssign:
2139         case BO_ShrAssign:
2140           break;
2141         case BO_AddAssign:
2142           aop = llvm::AtomicRMWInst::Add;
2143           break;
2144         case BO_SubAssign:
2145           aop = llvm::AtomicRMWInst::Sub;
2146           break;
2147         case BO_AndAssign:
2148           aop = llvm::AtomicRMWInst::And;
2149           break;
2150         case BO_XorAssign:
2151           aop = llvm::AtomicRMWInst::Xor;
2152           break;
2153         case BO_OrAssign:
2154           aop = llvm::AtomicRMWInst::Or;
2155           break;
2156         default:
2157           llvm_unreachable("Invalid compound assignment type");
2158       }
2159       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2160         llvm::Value *amt = CGF.EmitToMemory(
2161             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2162                                  E->getExprLoc()),
2163             LHSTy);
2164         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2165             llvm::SequentiallyConsistent);
2166         return LHSLV;
2167       }
2168     }
2169     // FIXME: For floating point types, we should be saving and restoring the
2170     // floating point environment in the loop.
2171     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2172     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2173     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2174     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2175     Builder.CreateBr(opBB);
2176     Builder.SetInsertPoint(opBB);
2177     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2178     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2179     OpInfo.LHS = atomicPHI;
2180   }
2181   else
2182     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2183
2184   SourceLocation Loc = E->getExprLoc();
2185   OpInfo.LHS =
2186       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2187
2188   // Expand the binary operator.
2189   Result = (this->*Func)(OpInfo);
2190
2191   // Convert the result back to the LHS type.
2192   Result =
2193       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2194
2195   if (atomicPHI) {
2196     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2197     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2198     auto Pair = CGF.EmitAtomicCompareExchange(
2199         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2200     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2201     llvm::Value *success = Pair.second;
2202     atomicPHI->addIncoming(old, opBB);
2203     Builder.CreateCondBr(success, contBB, opBB);
2204     Builder.SetInsertPoint(contBB);
2205     return LHSLV;
2206   }
2207
2208   // Store the result value into the LHS lvalue. Bit-fields are handled
2209   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2210   // 'An assignment expression has the value of the left operand after the
2211   // assignment...'.
2212   if (LHSLV.isBitField())
2213     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2214   else
2215     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2216
2217   return LHSLV;
2218 }
2219
2220 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2221                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2222   bool Ignore = TestAndClearIgnoreResultAssign();
2223   Value *RHS;
2224   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2225
2226   // If the result is clearly ignored, return now.
2227   if (Ignore)
2228     return nullptr;
2229
2230   // The result of an assignment in C is the assigned r-value.
2231   if (!CGF.getLangOpts().CPlusPlus)
2232     return RHS;
2233
2234   // If the lvalue is non-volatile, return the computed value of the assignment.
2235   if (!LHS.isVolatileQualified())
2236     return RHS;
2237
2238   // Otherwise, reload the value.
2239   return EmitLoadOfLValue(LHS, E->getExprLoc());
2240 }
2241
2242 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2243     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2244   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2245
2246   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2247     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2248                                     SanitizerKind::IntegerDivideByZero));
2249   }
2250
2251   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2252       Ops.Ty->hasSignedIntegerRepresentation()) {
2253     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2254
2255     llvm::Value *IntMin =
2256       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2257     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2258
2259     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2260     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2261     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2262     Checks.push_back(
2263         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2264   }
2265
2266   if (Checks.size() > 0)
2267     EmitBinOpCheck(Checks, Ops);
2268 }
2269
2270 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2271   {
2272     CodeGenFunction::SanitizerScope SanScope(&CGF);
2273     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2274          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2275         Ops.Ty->isIntegerType()) {
2276       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2277       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2278     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2279                Ops.Ty->isRealFloatingType()) {
2280       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2281       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2282       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2283                      Ops);
2284     }
2285   }
2286
2287   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2288     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2289     if (CGF.getLangOpts().OpenCL) {
2290       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2291       llvm::Type *ValTy = Val->getType();
2292       if (ValTy->isFloatTy() ||
2293           (isa<llvm::VectorType>(ValTy) &&
2294            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2295         CGF.SetFPAccuracy(Val, 2.5);
2296     }
2297     return Val;
2298   }
2299   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2300     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2301   else
2302     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2303 }
2304
2305 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2306   // Rem in C can't be a floating point type: C99 6.5.5p2.
2307   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2308     CodeGenFunction::SanitizerScope SanScope(&CGF);
2309     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2310
2311     if (Ops.Ty->isIntegerType())
2312       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2313   }
2314
2315   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2316     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2317   else
2318     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2319 }
2320
2321 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2322   unsigned IID;
2323   unsigned OpID = 0;
2324
2325   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2326   switch (Ops.Opcode) {
2327   case BO_Add:
2328   case BO_AddAssign:
2329     OpID = 1;
2330     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2331                      llvm::Intrinsic::uadd_with_overflow;
2332     break;
2333   case BO_Sub:
2334   case BO_SubAssign:
2335     OpID = 2;
2336     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2337                      llvm::Intrinsic::usub_with_overflow;
2338     break;
2339   case BO_Mul:
2340   case BO_MulAssign:
2341     OpID = 3;
2342     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2343                      llvm::Intrinsic::umul_with_overflow;
2344     break;
2345   default:
2346     llvm_unreachable("Unsupported operation for overflow detection");
2347   }
2348   OpID <<= 1;
2349   if (isSigned)
2350     OpID |= 1;
2351
2352   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2353
2354   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2355
2356   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2357   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2358   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2359
2360   // Handle overflow with llvm.trap if no custom handler has been specified.
2361   const std::string *handlerName =
2362     &CGF.getLangOpts().OverflowHandler;
2363   if (handlerName->empty()) {
2364     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2365     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2366     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2367       CodeGenFunction::SanitizerScope SanScope(&CGF);
2368       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2369       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2370                               : SanitizerKind::UnsignedIntegerOverflow;
2371       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2372     } else
2373       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2374     return result;
2375   }
2376
2377   // Branch in case of overflow.
2378   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2379   llvm::Function::iterator insertPt = initialBB->getIterator();
2380   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2381                                                       &*std::next(insertPt));
2382   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2383
2384   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2385
2386   // If an overflow handler is set, then we want to call it and then use its
2387   // result, if it returns.
2388   Builder.SetInsertPoint(overflowBB);
2389
2390   // Get the overflow handler.
2391   llvm::Type *Int8Ty = CGF.Int8Ty;
2392   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2393   llvm::FunctionType *handlerTy =
2394       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2395   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2396
2397   // Sign extend the args to 64-bit, so that we can use the same handler for
2398   // all types of overflow.
2399   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2400   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2401
2402   // Call the handler with the two arguments, the operation, and the size of
2403   // the result.
2404   llvm::Value *handlerArgs[] = {
2405     lhs,
2406     rhs,
2407     Builder.getInt8(OpID),
2408     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2409   };
2410   llvm::Value *handlerResult =
2411     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2412
2413   // Truncate the result back to the desired size.
2414   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2415   Builder.CreateBr(continueBB);
2416
2417   Builder.SetInsertPoint(continueBB);
2418   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2419   phi->addIncoming(result, initialBB);
2420   phi->addIncoming(handlerResult, overflowBB);
2421
2422   return phi;
2423 }
2424
2425 /// Emit pointer + index arithmetic.
2426 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2427                                     const BinOpInfo &op,
2428                                     bool isSubtraction) {
2429   // Must have binary (not unary) expr here.  Unary pointer
2430   // increment/decrement doesn't use this path.
2431   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2432
2433   Value *pointer = op.LHS;
2434   Expr *pointerOperand = expr->getLHS();
2435   Value *index = op.RHS;
2436   Expr *indexOperand = expr->getRHS();
2437
2438   // In a subtraction, the LHS is always the pointer.
2439   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2440     std::swap(pointer, index);
2441     std::swap(pointerOperand, indexOperand);
2442   }
2443
2444   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2445   if (width != CGF.PointerWidthInBits) {
2446     // Zero-extend or sign-extend the pointer value according to
2447     // whether the index is signed or not.
2448     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2449     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2450                                       "idx.ext");
2451   }
2452
2453   // If this is subtraction, negate the index.
2454   if (isSubtraction)
2455     index = CGF.Builder.CreateNeg(index, "idx.neg");
2456
2457   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2458     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2459                         /*Accessed*/ false);
2460
2461   const PointerType *pointerType
2462     = pointerOperand->getType()->getAs<PointerType>();
2463   if (!pointerType) {
2464     QualType objectType = pointerOperand->getType()
2465                                         ->castAs<ObjCObjectPointerType>()
2466                                         ->getPointeeType();
2467     llvm::Value *objectSize
2468       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2469
2470     index = CGF.Builder.CreateMul(index, objectSize);
2471
2472     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2473     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2474     return CGF.Builder.CreateBitCast(result, pointer->getType());
2475   }
2476
2477   QualType elementType = pointerType->getPointeeType();
2478   if (const VariableArrayType *vla
2479         = CGF.getContext().getAsVariableArrayType(elementType)) {
2480     // The element count here is the total number of non-VLA elements.
2481     llvm::Value *numElements = CGF.getVLASize(vla).first;
2482
2483     // Effectively, the multiply by the VLA size is part of the GEP.
2484     // GEP indexes are signed, and scaling an index isn't permitted to
2485     // signed-overflow, so we use the same semantics for our explicit
2486     // multiply.  We suppress this if overflow is not undefined behavior.
2487     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2488       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2489       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2490     } else {
2491       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2492       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2493     }
2494     return pointer;
2495   }
2496
2497   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2498   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2499   // future proof.
2500   if (elementType->isVoidType() || elementType->isFunctionType()) {
2501     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2502     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2503     return CGF.Builder.CreateBitCast(result, pointer->getType());
2504   }
2505
2506   if (CGF.getLangOpts().isSignedOverflowDefined())
2507     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2508
2509   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2510 }
2511
2512 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2513 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2514 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2515 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2516 // efficient operations.
2517 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2518                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2519                            bool negMul, bool negAdd) {
2520   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2521
2522   Value *MulOp0 = MulOp->getOperand(0);
2523   Value *MulOp1 = MulOp->getOperand(1);
2524   if (negMul) {
2525     MulOp0 =
2526       Builder.CreateFSub(
2527         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2528         "neg");
2529   } else if (negAdd) {
2530     Addend =
2531       Builder.CreateFSub(
2532         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2533         "neg");
2534   }
2535
2536   Value *FMulAdd = Builder.CreateCall(
2537       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2538       {MulOp0, MulOp1, Addend});
2539    MulOp->eraseFromParent();
2540
2541    return FMulAdd;
2542 }
2543
2544 // Check whether it would be legal to emit an fmuladd intrinsic call to
2545 // represent op and if so, build the fmuladd.
2546 //
2547 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2548 // Does NOT check the type of the operation - it's assumed that this function
2549 // will be called from contexts where it's known that the type is contractable.
2550 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2551                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2552                          bool isSub=false) {
2553
2554   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2555           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2556          "Only fadd/fsub can be the root of an fmuladd.");
2557
2558   // Check whether this op is marked as fusable.
2559   if (!op.FPContractable)
2560     return nullptr;
2561
2562   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2563   // either disabled, or handled entirely by the LLVM backend).
2564   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2565     return nullptr;
2566
2567   // We have a potentially fusable op. Look for a mul on one of the operands.
2568   // Also, make sure that the mul result isn't used directly. In that case,
2569   // there's no point creating a muladd operation.
2570   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2571     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2572         LHSBinOp->use_empty())
2573       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2574   }
2575   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2576     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2577         RHSBinOp->use_empty())
2578       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2579   }
2580
2581   return nullptr;
2582 }
2583
2584 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2585   if (op.LHS->getType()->isPointerTy() ||
2586       op.RHS->getType()->isPointerTy())
2587     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2588
2589   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2590     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2591     case LangOptions::SOB_Defined:
2592       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2593     case LangOptions::SOB_Undefined:
2594       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2595         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2596       // Fall through.
2597     case LangOptions::SOB_Trapping:
2598       return EmitOverflowCheckedBinOp(op);
2599     }
2600   }
2601
2602   if (op.Ty->isUnsignedIntegerType() &&
2603       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2604     return EmitOverflowCheckedBinOp(op);
2605
2606   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2607     // Try to form an fmuladd.
2608     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2609       return FMulAdd;
2610
2611     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2612   }
2613
2614   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2615 }
2616
2617 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2618   // The LHS is always a pointer if either side is.
2619   if (!op.LHS->getType()->isPointerTy()) {
2620     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2621       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2622       case LangOptions::SOB_Defined:
2623         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2624       case LangOptions::SOB_Undefined:
2625         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2626           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2627         // Fall through.
2628       case LangOptions::SOB_Trapping:
2629         return EmitOverflowCheckedBinOp(op);
2630       }
2631     }
2632
2633     if (op.Ty->isUnsignedIntegerType() &&
2634         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2635       return EmitOverflowCheckedBinOp(op);
2636
2637     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2638       // Try to form an fmuladd.
2639       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2640         return FMulAdd;
2641       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2642     }
2643
2644     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2645   }
2646
2647   // If the RHS is not a pointer, then we have normal pointer
2648   // arithmetic.
2649   if (!op.RHS->getType()->isPointerTy())
2650     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2651
2652   // Otherwise, this is a pointer subtraction.
2653
2654   // Do the raw subtraction part.
2655   llvm::Value *LHS
2656     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2657   llvm::Value *RHS
2658     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2659   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2660
2661   // Okay, figure out the element size.
2662   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2663   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2664
2665   llvm::Value *divisor = nullptr;
2666
2667   // For a variable-length array, this is going to be non-constant.
2668   if (const VariableArrayType *vla
2669         = CGF.getContext().getAsVariableArrayType(elementType)) {
2670     llvm::Value *numElements;
2671     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2672
2673     divisor = numElements;
2674
2675     // Scale the number of non-VLA elements by the non-VLA element size.
2676     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2677     if (!eltSize.isOne())
2678       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2679
2680   // For everything elese, we can just compute it, safe in the
2681   // assumption that Sema won't let anything through that we can't
2682   // safely compute the size of.
2683   } else {
2684     CharUnits elementSize;
2685     // Handle GCC extension for pointer arithmetic on void* and
2686     // function pointer types.
2687     if (elementType->isVoidType() || elementType->isFunctionType())
2688       elementSize = CharUnits::One();
2689     else
2690       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2691
2692     // Don't even emit the divide for element size of 1.
2693     if (elementSize.isOne())
2694       return diffInChars;
2695
2696     divisor = CGF.CGM.getSize(elementSize);
2697   }
2698
2699   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2700   // pointer difference in C is only defined in the case where both operands
2701   // are pointing to elements of an array.
2702   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2703 }
2704
2705 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2706   llvm::IntegerType *Ty;
2707   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2708     Ty = cast<llvm::IntegerType>(VT->getElementType());
2709   else
2710     Ty = cast<llvm::IntegerType>(LHS->getType());
2711   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2712 }
2713
2714 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2715   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2716   // RHS to the same size as the LHS.
2717   Value *RHS = Ops.RHS;
2718   if (Ops.LHS->getType() != RHS->getType())
2719     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2720
2721   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2722                       Ops.Ty->hasSignedIntegerRepresentation();
2723   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2724   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2725   if (CGF.getLangOpts().OpenCL)
2726     RHS =
2727         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2728   else if ((SanitizeBase || SanitizeExponent) &&
2729            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2730     CodeGenFunction::SanitizerScope SanScope(&CGF);
2731     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2732     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2733     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2734
2735     if (SanitizeExponent) {
2736       Checks.push_back(
2737           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2738     }
2739
2740     if (SanitizeBase) {
2741       // Check whether we are shifting any non-zero bits off the top of the
2742       // integer. We only emit this check if exponent is valid - otherwise
2743       // instructions below will have undefined behavior themselves.
2744       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2745       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2746       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2747       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2748       CGF.EmitBlock(CheckShiftBase);
2749       llvm::Value *BitsShiftedOff =
2750         Builder.CreateLShr(Ops.LHS,
2751                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2752                                              /*NUW*/true, /*NSW*/true),
2753                            "shl.check");
2754       if (CGF.getLangOpts().CPlusPlus) {
2755         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2756         // Under C++11's rules, shifting a 1 bit into the sign bit is
2757         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2758         // define signed left shifts, so we use the C99 and C++11 rules there).
2759         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2760         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2761       }
2762       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2763       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2764       CGF.EmitBlock(Cont);
2765       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2766       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2767       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2768       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2769     }
2770
2771     assert(!Checks.empty());
2772     EmitBinOpCheck(Checks, Ops);
2773   }
2774
2775   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2776 }
2777
2778 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2779   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2780   // RHS to the same size as the LHS.
2781   Value *RHS = Ops.RHS;
2782   if (Ops.LHS->getType() != RHS->getType())
2783     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2784
2785   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2786   if (CGF.getLangOpts().OpenCL)
2787     RHS =
2788         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2789   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2790            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2791     CodeGenFunction::SanitizerScope SanScope(&CGF);
2792     llvm::Value *Valid =
2793         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2794     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2795   }
2796
2797   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2798     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2799   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2800 }
2801
2802 enum IntrinsicType { VCMPEQ, VCMPGT };
2803 // return corresponding comparison intrinsic for given vector type
2804 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2805                                         BuiltinType::Kind ElemKind) {
2806   switch (ElemKind) {
2807   default: llvm_unreachable("unexpected element type");
2808   case BuiltinType::Char_U:
2809   case BuiltinType::UChar:
2810     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2811                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2812   case BuiltinType::Char_S:
2813   case BuiltinType::SChar:
2814     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2815                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2816   case BuiltinType::UShort:
2817     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2818                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2819   case BuiltinType::Short:
2820     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2821                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2822   case BuiltinType::UInt:
2823   case BuiltinType::ULong:
2824     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2825                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2826   case BuiltinType::Int:
2827   case BuiltinType::Long:
2828     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2829                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2830   case BuiltinType::Float:
2831     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2832                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2833   }
2834 }
2835
2836 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2837                                       llvm::CmpInst::Predicate UICmpOpc,
2838                                       llvm::CmpInst::Predicate SICmpOpc,
2839                                       llvm::CmpInst::Predicate FCmpOpc) {
2840   TestAndClearIgnoreResultAssign();
2841   Value *Result;
2842   QualType LHSTy = E->getLHS()->getType();
2843   QualType RHSTy = E->getRHS()->getType();
2844   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2845     assert(E->getOpcode() == BO_EQ ||
2846            E->getOpcode() == BO_NE);
2847     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2848     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2849     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2850                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2851   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2852     Value *LHS = Visit(E->getLHS());
2853     Value *RHS = Visit(E->getRHS());
2854
2855     // If AltiVec, the comparison results in a numeric type, so we use
2856     // intrinsics comparing vectors and giving 0 or 1 as a result
2857     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2858       // constants for mapping CR6 register bits to predicate result
2859       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2860
2861       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2862
2863       // in several cases vector arguments order will be reversed
2864       Value *FirstVecArg = LHS,
2865             *SecondVecArg = RHS;
2866
2867       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2868       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2869       BuiltinType::Kind ElementKind = BTy->getKind();
2870
2871       switch(E->getOpcode()) {
2872       default: llvm_unreachable("is not a comparison operation");
2873       case BO_EQ:
2874         CR6 = CR6_LT;
2875         ID = GetIntrinsic(VCMPEQ, ElementKind);
2876         break;
2877       case BO_NE:
2878         CR6 = CR6_EQ;
2879         ID = GetIntrinsic(VCMPEQ, ElementKind);
2880         break;
2881       case BO_LT:
2882         CR6 = CR6_LT;
2883         ID = GetIntrinsic(VCMPGT, ElementKind);
2884         std::swap(FirstVecArg, SecondVecArg);
2885         break;
2886       case BO_GT:
2887         CR6 = CR6_LT;
2888         ID = GetIntrinsic(VCMPGT, ElementKind);
2889         break;
2890       case BO_LE:
2891         if (ElementKind == BuiltinType::Float) {
2892           CR6 = CR6_LT;
2893           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2894           std::swap(FirstVecArg, SecondVecArg);
2895         }
2896         else {
2897           CR6 = CR6_EQ;
2898           ID = GetIntrinsic(VCMPGT, ElementKind);
2899         }
2900         break;
2901       case BO_GE:
2902         if (ElementKind == BuiltinType::Float) {
2903           CR6 = CR6_LT;
2904           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2905         }
2906         else {
2907           CR6 = CR6_EQ;
2908           ID = GetIntrinsic(VCMPGT, ElementKind);
2909           std::swap(FirstVecArg, SecondVecArg);
2910         }
2911         break;
2912       }
2913
2914       Value *CR6Param = Builder.getInt32(CR6);
2915       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2916       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2917       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2918                                   E->getExprLoc());
2919     }
2920
2921     if (LHS->getType()->isFPOrFPVectorTy()) {
2922       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2923     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2924       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2925     } else {
2926       // Unsigned integers and pointers.
2927       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2928     }
2929
2930     // If this is a vector comparison, sign extend the result to the appropriate
2931     // vector integer type and return it (don't convert to bool).
2932     if (LHSTy->isVectorType())
2933       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2934
2935   } else {
2936     // Complex Comparison: can only be an equality comparison.
2937     CodeGenFunction::ComplexPairTy LHS, RHS;
2938     QualType CETy;
2939     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2940       LHS = CGF.EmitComplexExpr(E->getLHS());
2941       CETy = CTy->getElementType();
2942     } else {
2943       LHS.first = Visit(E->getLHS());
2944       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2945       CETy = LHSTy;
2946     }
2947     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2948       RHS = CGF.EmitComplexExpr(E->getRHS());
2949       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2950                                                      CTy->getElementType()) &&
2951              "The element types must always match.");
2952       (void)CTy;
2953     } else {
2954       RHS.first = Visit(E->getRHS());
2955       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2956       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2957              "The element types must always match.");
2958     }
2959
2960     Value *ResultR, *ResultI;
2961     if (CETy->isRealFloatingType()) {
2962       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2963       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2964     } else {
2965       // Complex comparisons can only be equality comparisons.  As such, signed
2966       // and unsigned opcodes are the same.
2967       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2968       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2969     }
2970
2971     if (E->getOpcode() == BO_EQ) {
2972       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2973     } else {
2974       assert(E->getOpcode() == BO_NE &&
2975              "Complex comparison other than == or != ?");
2976       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2977     }
2978   }
2979
2980   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2981                               E->getExprLoc());
2982 }
2983
2984 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2985   bool Ignore = TestAndClearIgnoreResultAssign();
2986
2987   Value *RHS;
2988   LValue LHS;
2989
2990   switch (E->getLHS()->getType().getObjCLifetime()) {
2991   case Qualifiers::OCL_Strong:
2992     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2993     break;
2994
2995   case Qualifiers::OCL_Autoreleasing:
2996     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2997     break;
2998
2999   case Qualifiers::OCL_Weak:
3000     RHS = Visit(E->getRHS());
3001     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3002     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3003     break;
3004
3005   // No reason to do any of these differently.
3006   case Qualifiers::OCL_None:
3007   case Qualifiers::OCL_ExplicitNone:
3008     // __block variables need to have the rhs evaluated first, plus
3009     // this should improve codegen just a little.
3010     RHS = Visit(E->getRHS());
3011     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3012
3013     // Store the value into the LHS.  Bit-fields are handled specially
3014     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3015     // 'An assignment expression has the value of the left operand after
3016     // the assignment...'.
3017     if (LHS.isBitField())
3018       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3019     else
3020       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3021   }
3022
3023   // If the result is clearly ignored, return now.
3024   if (Ignore)
3025     return nullptr;
3026
3027   // The result of an assignment in C is the assigned r-value.
3028   if (!CGF.getLangOpts().CPlusPlus)
3029     return RHS;
3030
3031   // If the lvalue is non-volatile, return the computed value of the assignment.
3032   if (!LHS.isVolatileQualified())
3033     return RHS;
3034
3035   // Otherwise, reload the value.
3036   return EmitLoadOfLValue(LHS, E->getExprLoc());
3037 }
3038
3039 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3040   // Perform vector logical and on comparisons with zero vectors.
3041   if (E->getType()->isVectorType()) {
3042     CGF.incrementProfileCounter(E);
3043
3044     Value *LHS = Visit(E->getLHS());
3045     Value *RHS = Visit(E->getRHS());
3046     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3047     if (LHS->getType()->isFPOrFPVectorTy()) {
3048       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3049       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3050     } else {
3051       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3052       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3053     }
3054     Value *And = Builder.CreateAnd(LHS, RHS);
3055     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3056   }
3057
3058   llvm::Type *ResTy = ConvertType(E->getType());
3059
3060   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3061   // If we have 1 && X, just emit X without inserting the control flow.
3062   bool LHSCondVal;
3063   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3064     if (LHSCondVal) { // If we have 1 && X, just emit X.
3065       CGF.incrementProfileCounter(E);
3066
3067       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3068       // ZExt result to int or bool.
3069       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3070     }
3071
3072     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3073     if (!CGF.ContainsLabel(E->getRHS()))
3074       return llvm::Constant::getNullValue(ResTy);
3075   }
3076
3077   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3078   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3079
3080   CodeGenFunction::ConditionalEvaluation eval(CGF);
3081
3082   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3083   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3084                            CGF.getProfileCount(E->getRHS()));
3085
3086   // Any edges into the ContBlock are now from an (indeterminate number of)
3087   // edges from this first condition.  All of these values will be false.  Start
3088   // setting up the PHI node in the Cont Block for this.
3089   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3090                                             "", ContBlock);
3091   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3092        PI != PE; ++PI)
3093     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3094
3095   eval.begin(CGF);
3096   CGF.EmitBlock(RHSBlock);
3097   CGF.incrementProfileCounter(E);
3098   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3099   eval.end(CGF);
3100
3101   // Reaquire the RHS block, as there may be subblocks inserted.
3102   RHSBlock = Builder.GetInsertBlock();
3103
3104   // Emit an unconditional branch from this block to ContBlock.
3105   {
3106     // There is no need to emit line number for unconditional branch.
3107     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3108     CGF.EmitBlock(ContBlock);
3109   }
3110   // Insert an entry into the phi node for the edge with the value of RHSCond.
3111   PN->addIncoming(RHSCond, RHSBlock);
3112
3113   // ZExt result to int.
3114   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3115 }
3116
3117 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3118   // Perform vector logical or on comparisons with zero vectors.
3119   if (E->getType()->isVectorType()) {
3120     CGF.incrementProfileCounter(E);
3121
3122     Value *LHS = Visit(E->getLHS());
3123     Value *RHS = Visit(E->getRHS());
3124     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3125     if (LHS->getType()->isFPOrFPVectorTy()) {
3126       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3127       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3128     } else {
3129       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3130       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3131     }
3132     Value *Or = Builder.CreateOr(LHS, RHS);
3133     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3134   }
3135
3136   llvm::Type *ResTy = ConvertType(E->getType());
3137
3138   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3139   // If we have 0 || X, just emit X without inserting the control flow.
3140   bool LHSCondVal;
3141   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3142     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3143       CGF.incrementProfileCounter(E);
3144
3145       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3146       // ZExt result to int or bool.
3147       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3148     }
3149
3150     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3151     if (!CGF.ContainsLabel(E->getRHS()))
3152       return llvm::ConstantInt::get(ResTy, 1);
3153   }
3154
3155   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3156   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3157
3158   CodeGenFunction::ConditionalEvaluation eval(CGF);
3159
3160   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3161   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3162                            CGF.getCurrentProfileCount() -
3163                                CGF.getProfileCount(E->getRHS()));
3164
3165   // Any edges into the ContBlock are now from an (indeterminate number of)
3166   // edges from this first condition.  All of these values will be true.  Start
3167   // setting up the PHI node in the Cont Block for this.
3168   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3169                                             "", ContBlock);
3170   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3171        PI != PE; ++PI)
3172     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3173
3174   eval.begin(CGF);
3175
3176   // Emit the RHS condition as a bool value.
3177   CGF.EmitBlock(RHSBlock);
3178   CGF.incrementProfileCounter(E);
3179   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3180
3181   eval.end(CGF);
3182
3183   // Reaquire the RHS block, as there may be subblocks inserted.
3184   RHSBlock = Builder.GetInsertBlock();
3185
3186   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3187   // into the phi node for the edge with the value of RHSCond.
3188   CGF.EmitBlock(ContBlock);
3189   PN->addIncoming(RHSCond, RHSBlock);
3190
3191   // ZExt result to int.
3192   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3193 }
3194
3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3196   CGF.EmitIgnoredExpr(E->getLHS());
3197   CGF.EnsureInsertPoint();
3198   return Visit(E->getRHS());
3199 }
3200
3201 //===----------------------------------------------------------------------===//
3202 //                             Other Operators
3203 //===----------------------------------------------------------------------===//
3204
3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3206 /// expression is cheap enough and side-effect-free enough to evaluate
3207 /// unconditionally instead of conditionally.  This is used to convert control
3208 /// flow into selects in some cases.
3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3210                                                    CodeGenFunction &CGF) {
3211   // Anything that is an integer or floating point constant is fine.
3212   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3213
3214   // Even non-volatile automatic variables can't be evaluated unconditionally.
3215   // Referencing a thread_local may cause non-trivial initialization work to
3216   // occur. If we're inside a lambda and one of the variables is from the scope
3217   // outside the lambda, that function may have returned already. Reading its
3218   // locals is a bad idea. Also, these reads may introduce races there didn't
3219   // exist in the source-level program.
3220 }
3221
3222
3223 Value *ScalarExprEmitter::
3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3225   TestAndClearIgnoreResultAssign();
3226
3227   // Bind the common expression if necessary.
3228   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3229
3230   Expr *condExpr = E->getCond();
3231   Expr *lhsExpr = E->getTrueExpr();
3232   Expr *rhsExpr = E->getFalseExpr();
3233
3234   // If the condition constant folds and can be elided, try to avoid emitting
3235   // the condition and the dead arm.
3236   bool CondExprBool;
3237   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3238     Expr *live = lhsExpr, *dead = rhsExpr;
3239     if (!CondExprBool) std::swap(live, dead);
3240
3241     // If the dead side doesn't have labels we need, just emit the Live part.
3242     if (!CGF.ContainsLabel(dead)) {
3243       if (CondExprBool)
3244         CGF.incrementProfileCounter(E);
3245       Value *Result = Visit(live);
3246
3247       // If the live part is a throw expression, it acts like it has a void
3248       // type, so evaluating it returns a null Value*.  However, a conditional
3249       // with non-void type must return a non-null Value*.
3250       if (!Result && !E->getType()->isVoidType())
3251         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3252
3253       return Result;
3254     }
3255   }
3256
3257   // OpenCL: If the condition is a vector, we can treat this condition like
3258   // the select function.
3259   if (CGF.getLangOpts().OpenCL
3260       && condExpr->getType()->isVectorType()) {
3261     CGF.incrementProfileCounter(E);
3262
3263     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3264     llvm::Value *LHS = Visit(lhsExpr);
3265     llvm::Value *RHS = Visit(rhsExpr);
3266
3267     llvm::Type *condType = ConvertType(condExpr->getType());
3268     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3269
3270     unsigned numElem = vecTy->getNumElements();
3271     llvm::Type *elemType = vecTy->getElementType();
3272
3273     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3274     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3275     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3276                                           llvm::VectorType::get(elemType,
3277                                                                 numElem),
3278                                           "sext");
3279     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3280
3281     // Cast float to int to perform ANDs if necessary.
3282     llvm::Value *RHSTmp = RHS;
3283     llvm::Value *LHSTmp = LHS;
3284     bool wasCast = false;
3285     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3286     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3287       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3288       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3289       wasCast = true;
3290     }
3291
3292     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3293     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3294     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3295     if (wasCast)
3296       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3297
3298     return tmp5;
3299   }
3300
3301   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3302   // select instead of as control flow.  We can only do this if it is cheap and
3303   // safe to evaluate the LHS and RHS unconditionally.
3304   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3305       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3306     CGF.incrementProfileCounter(E);
3307
3308     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3309     llvm::Value *LHS = Visit(lhsExpr);
3310     llvm::Value *RHS = Visit(rhsExpr);
3311     if (!LHS) {
3312       // If the conditional has void type, make sure we return a null Value*.
3313       assert(!RHS && "LHS and RHS types must match");
3314       return nullptr;
3315     }
3316     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3317   }
3318
3319   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3320   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3321   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3322
3323   CodeGenFunction::ConditionalEvaluation eval(CGF);
3324   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3325                            CGF.getProfileCount(lhsExpr));
3326
3327   CGF.EmitBlock(LHSBlock);
3328   CGF.incrementProfileCounter(E);
3329   eval.begin(CGF);
3330   Value *LHS = Visit(lhsExpr);
3331   eval.end(CGF);
3332
3333   LHSBlock = Builder.GetInsertBlock();
3334   Builder.CreateBr(ContBlock);
3335
3336   CGF.EmitBlock(RHSBlock);
3337   eval.begin(CGF);
3338   Value *RHS = Visit(rhsExpr);
3339   eval.end(CGF);
3340
3341   RHSBlock = Builder.GetInsertBlock();
3342   CGF.EmitBlock(ContBlock);
3343
3344   // If the LHS or RHS is a throw expression, it will be legitimately null.
3345   if (!LHS)
3346     return RHS;
3347   if (!RHS)
3348     return LHS;
3349
3350   // Create a PHI node for the real part.
3351   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3352   PN->addIncoming(LHS, LHSBlock);
3353   PN->addIncoming(RHS, RHSBlock);
3354   return PN;
3355 }
3356
3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3358   return Visit(E->getChosenSubExpr());
3359 }
3360
3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3362   QualType Ty = VE->getType();
3363
3364   if (Ty->isVariablyModifiedType())
3365     CGF.EmitVariablyModifiedType(Ty);
3366
3367   Address ArgValue = Address::invalid();
3368   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3369
3370   llvm::Type *ArgTy = ConvertType(VE->getType());
3371
3372   // If EmitVAArg fails, we fall back to the LLVM instruction.
3373   if (!ArgPtr.isValid())
3374     return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
3375
3376   // FIXME Volatility.
3377   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3378
3379   // If EmitVAArg promoted the type, we must truncate it.
3380   if (ArgTy != Val->getType()) {
3381     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3382       Val = Builder.CreateIntToPtr(Val, ArgTy);
3383     else
3384       Val = Builder.CreateTrunc(Val, ArgTy);
3385   }
3386
3387   return Val;
3388 }
3389
3390 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3391   return CGF.EmitBlockLiteral(block);
3392 }
3393
3394 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3395   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3396   llvm::Type *DstTy = ConvertType(E->getType());
3397
3398   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3399   // a shuffle vector instead of a bitcast.
3400   llvm::Type *SrcTy = Src->getType();
3401   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3402     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3403     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3404     if ((numElementsDst == 3 && numElementsSrc == 4)
3405         || (numElementsDst == 4 && numElementsSrc == 3)) {
3406
3407
3408       // In the case of going from int4->float3, a bitcast is needed before
3409       // doing a shuffle.
3410       llvm::Type *srcElemTy =
3411       cast<llvm::VectorType>(SrcTy)->getElementType();
3412       llvm::Type *dstElemTy =
3413       cast<llvm::VectorType>(DstTy)->getElementType();
3414
3415       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3416           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3417         // Create a float type of the same size as the source or destination.
3418         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3419                                                                  numElementsSrc);
3420
3421         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3422       }
3423
3424       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3425
3426       SmallVector<llvm::Constant*, 3> Args;
3427       Args.push_back(Builder.getInt32(0));
3428       Args.push_back(Builder.getInt32(1));
3429       Args.push_back(Builder.getInt32(2));
3430
3431       if (numElementsDst == 4)
3432         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3433
3434       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3435
3436       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3437     }
3438   }
3439
3440   return Builder.CreateBitCast(Src, DstTy, "astype");
3441 }
3442
3443 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3444   return CGF.EmitAtomicExpr(E).getScalarVal();
3445 }
3446
3447 //===----------------------------------------------------------------------===//
3448 //                         Entry Point into this File
3449 //===----------------------------------------------------------------------===//
3450
3451 /// Emit the computation of the specified expression of scalar type, ignoring
3452 /// the result.
3453 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3454   assert(E && hasScalarEvaluationKind(E->getType()) &&
3455          "Invalid scalar expression to emit");
3456
3457   return ScalarExprEmitter(*this, IgnoreResultAssign)
3458       .Visit(const_cast<Expr *>(E));
3459 }
3460
3461 /// Emit a conversion from the specified type to the specified destination type,
3462 /// both of which are LLVM scalar types.
3463 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3464                                              QualType DstTy,
3465                                              SourceLocation Loc) {
3466   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3467          "Invalid scalar expression to emit");
3468   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3469 }
3470
3471 /// Emit a conversion from the specified complex type to the specified
3472 /// destination type, where the destination type is an LLVM scalar type.
3473 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3474                                                       QualType SrcTy,
3475                                                       QualType DstTy,
3476                                                       SourceLocation Loc) {
3477   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3478          "Invalid complex -> scalar conversion");
3479   return ScalarExprEmitter(*this)
3480       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3481 }
3482
3483
3484 llvm::Value *CodeGenFunction::
3485 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3486                         bool isInc, bool isPre) {
3487   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3488 }
3489
3490 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3491   // object->isa or (*object).isa
3492   // Generate code as for: *(Class*)object
3493
3494   Expr *BaseExpr = E->getBase();
3495   Address Addr = Address::invalid();
3496   if (BaseExpr->isRValue()) {
3497     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3498   } else {
3499     Addr = EmitLValue(BaseExpr).getAddress();
3500   }
3501
3502   // Cast the address to Class*.
3503   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3504   return MakeAddrLValue(Addr, E->getType());
3505 }
3506
3507
3508 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3509                                             const CompoundAssignOperator *E) {
3510   ScalarExprEmitter Scalar(*this);
3511   Value *Result = nullptr;
3512   switch (E->getOpcode()) {
3513 #define COMPOUND_OP(Op)                                                       \
3514     case BO_##Op##Assign:                                                     \
3515       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3516                                              Result)
3517   COMPOUND_OP(Mul);
3518   COMPOUND_OP(Div);
3519   COMPOUND_OP(Rem);
3520   COMPOUND_OP(Add);
3521   COMPOUND_OP(Sub);
3522   COMPOUND_OP(Shl);
3523   COMPOUND_OP(Shr);
3524   COMPOUND_OP(And);
3525   COMPOUND_OP(Xor);
3526   COMPOUND_OP(Or);
3527 #undef COMPOUND_OP
3528
3529   case BO_PtrMemD:
3530   case BO_PtrMemI:
3531   case BO_Mul:
3532   case BO_Div:
3533   case BO_Rem:
3534   case BO_Add:
3535   case BO_Sub:
3536   case BO_Shl:
3537   case BO_Shr:
3538   case BO_LT:
3539   case BO_GT:
3540   case BO_LE:
3541   case BO_GE:
3542   case BO_EQ:
3543   case BO_NE:
3544   case BO_And:
3545   case BO_Xor:
3546   case BO_Or:
3547   case BO_LAnd:
3548   case BO_LOr:
3549   case BO_Assign:
3550   case BO_Comma:
3551     llvm_unreachable("Not valid compound assignment operators");
3552   }
3553
3554   llvm_unreachable("Unhandled compound assignment operator");
3555 }