]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp
Upgrade our copy of clang, llvm and lldb to 3.5.0 release.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGObjC.cpp
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                       QualType ET,
36                                       const ObjCMethodDecl *Method,
37                                       RValue Result);
38
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42   llvm::Type *type =
43     cast<llvm::PointerType>(addr->getType())->getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C = 
51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59 ///
60 llvm::Value *
61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62   // Generate the correct selector for this literal's concrete type.
63   const Expr *SubExpr = E->getSubExpr();
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   assert(BoxingMethod && "BoxingMethod is null");
67   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
68   Selector Sel = BoxingMethod->getSelector();
69   
70   // Generate a reference to the class pointer, which will be the receiver.
71   // Assumes that the method was introduced in the class that should be
72   // messaged (avoids pulling it out of the result type).
73   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
74   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
75   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
76   
77   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = argDecl->getType().getUnqualifiedType();
79   RValue RV = EmitAnyExpr(SubExpr);
80   CallArgList Args;
81   Args.add(RV, ArgQT);
82
83   RValue result = Runtime.GenerateMessageSend(
84       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
85       Args, ClassDecl, BoxingMethod);
86   return Builder.CreateBitCast(result.getScalarVal(), 
87                                ConvertType(E->getType()));
88 }
89
90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
91                                     const ObjCMethodDecl *MethodWithObjects) {
92   ASTContext &Context = CGM.getContext();
93   const ObjCDictionaryLiteral *DLE = nullptr;
94   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
95   if (!ALE)
96     DLE = cast<ObjCDictionaryLiteral>(E);
97   
98   // Compute the type of the array we're initializing.
99   uint64_t NumElements = 
100     ALE ? ALE->getNumElements() : DLE->getNumElements();
101   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
102                             NumElements);
103   QualType ElementType = Context.getObjCIdType().withConst();
104   QualType ElementArrayType 
105     = Context.getConstantArrayType(ElementType, APNumElements, 
106                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
107
108   // Allocate the temporary array(s).
109   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
110   llvm::Value *Keys = nullptr;
111   if (DLE)
112     Keys = CreateMemTemp(ElementArrayType, "keys");
113   
114   // In ARC, we may need to do extra work to keep all the keys and
115   // values alive until after the call.
116   SmallVector<llvm::Value *, 16> NeededObjects;
117   bool TrackNeededObjects =
118     (getLangOpts().ObjCAutoRefCount &&
119     CGM.getCodeGenOpts().OptimizationLevel != 0);
120
121   // Perform the actual initialialization of the array(s).
122   for (uint64_t i = 0; i < NumElements; i++) {
123     if (ALE) {
124       // Emit the element and store it to the appropriate array slot.
125       const Expr *Rhs = ALE->getElement(i);
126       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
127                                    ElementType,
128                                    Context.getTypeAlignInChars(Rhs->getType()),
129                                    Context);
130
131       llvm::Value *value = EmitScalarExpr(Rhs);
132       EmitStoreThroughLValue(RValue::get(value), LV, true);
133       if (TrackNeededObjects) {
134         NeededObjects.push_back(value);
135       }
136     } else {      
137       // Emit the key and store it to the appropriate array slot.
138       const Expr *Key = DLE->getKeyValueElement(i).Key;
139       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
140                                       ElementType,
141                                     Context.getTypeAlignInChars(Key->getType()),
142                                       Context);
143       llvm::Value *keyValue = EmitScalarExpr(Key);
144       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
145
146       // Emit the value and store it to the appropriate array slot.
147       const Expr *Value = DLE->getKeyValueElement(i).Value;  
148       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 
149                                         ElementType,
150                                   Context.getTypeAlignInChars(Value->getType()),
151                                         Context);
152       llvm::Value *valueValue = EmitScalarExpr(Value);
153       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
154       if (TrackNeededObjects) {
155         NeededObjects.push_back(keyValue);
156         NeededObjects.push_back(valueValue);
157       }
158     }
159   }
160   
161   // Generate the argument list.
162   CallArgList Args;  
163   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
164   const ParmVarDecl *argDecl = *PI++;
165   QualType ArgQT = argDecl->getType().getUnqualifiedType();
166   Args.add(RValue::get(Objects), ArgQT);
167   if (DLE) {
168     argDecl = *PI++;
169     ArgQT = argDecl->getType().getUnqualifiedType();
170     Args.add(RValue::get(Keys), ArgQT);
171   }
172   argDecl = *PI;
173   ArgQT = argDecl->getType().getUnqualifiedType();
174   llvm::Value *Count = 
175     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
176   Args.add(RValue::get(Count), ArgQT);
177
178   // Generate a reference to the class pointer, which will be the receiver.
179   Selector Sel = MethodWithObjects->getSelector();
180   QualType ResultType = E->getType();
181   const ObjCObjectPointerType *InterfacePointerType
182     = ResultType->getAsObjCInterfacePointerType();
183   ObjCInterfaceDecl *Class 
184     = InterfacePointerType->getObjectType()->getInterface();
185   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
186   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
187
188   // Generate the message send.
189   RValue result = Runtime.GenerateMessageSend(
190       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
191       Receiver, Args, Class, MethodWithObjects);
192
193   // The above message send needs these objects, but in ARC they are
194   // passed in a buffer that is essentially __unsafe_unretained.
195   // Therefore we must prevent the optimizer from releasing them until
196   // after the call.
197   if (TrackNeededObjects) {
198     EmitARCIntrinsicUse(NeededObjects);
199   }
200
201   return Builder.CreateBitCast(result.getScalarVal(), 
202                                ConvertType(E->getType()));
203 }
204
205 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
206   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
207 }
208
209 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
210                                             const ObjCDictionaryLiteral *E) {
211   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
212 }
213
214 /// Emit a selector.
215 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
216   // Untyped selector.
217   // Note that this implementation allows for non-constant strings to be passed
218   // as arguments to @selector().  Currently, the only thing preventing this
219   // behaviour is the type checking in the front end.
220   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
221 }
222
223 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
224   // FIXME: This should pass the Decl not the name.
225   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
226 }
227
228 /// \brief Adjust the type of the result of an Objective-C message send 
229 /// expression when the method has a related result type.
230 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
231                                       QualType ExpT,
232                                       const ObjCMethodDecl *Method,
233                                       RValue Result) {
234   if (!Method)
235     return Result;
236
237   if (!Method->hasRelatedResultType() ||
238       CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
239       !Result.isScalar())
240     return Result;
241   
242   // We have applied a related result type. Cast the rvalue appropriately.
243   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
244                                                CGF.ConvertType(ExpT)));
245 }
246
247 /// Decide whether to extend the lifetime of the receiver of a
248 /// returns-inner-pointer message.
249 static bool
250 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
251   switch (message->getReceiverKind()) {
252
253   // For a normal instance message, we should extend unless the
254   // receiver is loaded from a variable with precise lifetime.
255   case ObjCMessageExpr::Instance: {
256     const Expr *receiver = message->getInstanceReceiver();
257     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
258     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
259     receiver = ice->getSubExpr()->IgnoreParens();
260
261     // Only __strong variables.
262     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
263       return true;
264
265     // All ivars and fields have precise lifetime.
266     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
267       return false;
268
269     // Otherwise, check for variables.
270     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
271     if (!declRef) return true;
272     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
273     if (!var) return true;
274
275     // All variables have precise lifetime except local variables with
276     // automatic storage duration that aren't specially marked.
277     return (var->hasLocalStorage() &&
278             !var->hasAttr<ObjCPreciseLifetimeAttr>());
279   }
280
281   case ObjCMessageExpr::Class:
282   case ObjCMessageExpr::SuperClass:
283     // It's never necessary for class objects.
284     return false;
285
286   case ObjCMessageExpr::SuperInstance:
287     // We generally assume that 'self' lives throughout a method call.
288     return false;
289   }
290
291   llvm_unreachable("invalid receiver kind");
292 }
293
294 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
295                                             ReturnValueSlot Return) {
296   // Only the lookup mechanism and first two arguments of the method
297   // implementation vary between runtimes.  We can get the receiver and
298   // arguments in generic code.
299
300   bool isDelegateInit = E->isDelegateInitCall();
301
302   const ObjCMethodDecl *method = E->getMethodDecl();
303
304   // We don't retain the receiver in delegate init calls, and this is
305   // safe because the receiver value is always loaded from 'self',
306   // which we zero out.  We don't want to Block_copy block receivers,
307   // though.
308   bool retainSelf =
309     (!isDelegateInit &&
310      CGM.getLangOpts().ObjCAutoRefCount &&
311      method &&
312      method->hasAttr<NSConsumesSelfAttr>());
313
314   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
315   bool isSuperMessage = false;
316   bool isClassMessage = false;
317   ObjCInterfaceDecl *OID = nullptr;
318   // Find the receiver
319   QualType ReceiverType;
320   llvm::Value *Receiver = nullptr;
321   switch (E->getReceiverKind()) {
322   case ObjCMessageExpr::Instance:
323     ReceiverType = E->getInstanceReceiver()->getType();
324     if (retainSelf) {
325       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
326                                                    E->getInstanceReceiver());
327       Receiver = ter.getPointer();
328       if (ter.getInt()) retainSelf = false;
329     } else
330       Receiver = EmitScalarExpr(E->getInstanceReceiver());
331     break;
332
333   case ObjCMessageExpr::Class: {
334     ReceiverType = E->getClassReceiver();
335     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
336     assert(ObjTy && "Invalid Objective-C class message send");
337     OID = ObjTy->getInterface();
338     assert(OID && "Invalid Objective-C class message send");
339     Receiver = Runtime.GetClass(*this, OID);
340     isClassMessage = true;
341     break;
342   }
343
344   case ObjCMessageExpr::SuperInstance:
345     ReceiverType = E->getSuperType();
346     Receiver = LoadObjCSelf();
347     isSuperMessage = true;
348     break;
349
350   case ObjCMessageExpr::SuperClass:
351     ReceiverType = E->getSuperType();
352     Receiver = LoadObjCSelf();
353     isSuperMessage = true;
354     isClassMessage = true;
355     break;
356   }
357
358   if (retainSelf)
359     Receiver = EmitARCRetainNonBlock(Receiver);
360
361   // In ARC, we sometimes want to "extend the lifetime"
362   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
363   // messages.
364   if (getLangOpts().ObjCAutoRefCount && method &&
365       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
366       shouldExtendReceiverForInnerPointerMessage(E))
367     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
368
369   QualType ResultType = method ? method->getReturnType() : E->getType();
370
371   CallArgList Args;
372   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
373
374   // For delegate init calls in ARC, do an unsafe store of null into
375   // self.  This represents the call taking direct ownership of that
376   // value.  We have to do this after emitting the other call
377   // arguments because they might also reference self, but we don't
378   // have to worry about any of them modifying self because that would
379   // be an undefined read and write of an object in unordered
380   // expressions.
381   if (isDelegateInit) {
382     assert(getLangOpts().ObjCAutoRefCount &&
383            "delegate init calls should only be marked in ARC");
384
385     // Do an unsafe store of null into self.
386     llvm::Value *selfAddr =
387       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
388     assert(selfAddr && "no self entry for a delegate init call?");
389
390     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
391   }
392
393   RValue result;
394   if (isSuperMessage) {
395     // super is only valid in an Objective-C method
396     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
397     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
398     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
399                                               E->getSelector(),
400                                               OMD->getClassInterface(),
401                                               isCategoryImpl,
402                                               Receiver,
403                                               isClassMessage,
404                                               Args,
405                                               method);
406   } else {
407     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
408                                          E->getSelector(),
409                                          Receiver, Args, OID,
410                                          method);
411   }
412
413   // For delegate init calls in ARC, implicitly store the result of
414   // the call back into self.  This takes ownership of the value.
415   if (isDelegateInit) {
416     llvm::Value *selfAddr =
417       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
418     llvm::Value *newSelf = result.getScalarVal();
419
420     // The delegate return type isn't necessarily a matching type; in
421     // fact, it's quite likely to be 'id'.
422     llvm::Type *selfTy =
423       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
424     newSelf = Builder.CreateBitCast(newSelf, selfTy);
425
426     Builder.CreateStore(newSelf, selfAddr);
427   }
428
429   return AdjustRelatedResultType(*this, E->getType(), method, result);
430 }
431
432 namespace {
433 struct FinishARCDealloc : EHScopeStack::Cleanup {
434   void Emit(CodeGenFunction &CGF, Flags flags) override {
435     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
436
437     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
438     const ObjCInterfaceDecl *iface = impl->getClassInterface();
439     if (!iface->getSuperClass()) return;
440
441     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
442
443     // Call [super dealloc] if we have a superclass.
444     llvm::Value *self = CGF.LoadObjCSelf();
445
446     CallArgList args;
447     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
448                                                       CGF.getContext().VoidTy,
449                                                       method->getSelector(),
450                                                       iface,
451                                                       isCategory,
452                                                       self,
453                                                       /*is class msg*/ false,
454                                                       args,
455                                                       method);
456   }
457 };
458 }
459
460 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
461 /// the LLVM function and sets the other context used by
462 /// CodeGenFunction.
463 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
464                                       const ObjCContainerDecl *CD,
465                                       SourceLocation StartLoc) {
466   FunctionArgList args;
467   // Check if we should generate debug info for this method.
468   if (OMD->hasAttr<NoDebugAttr>())
469     DebugInfo = nullptr; // disable debug info indefinitely for this function
470
471   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
472
473   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
474   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
475
476   args.push_back(OMD->getSelfDecl());
477   args.push_back(OMD->getCmdDecl());
478
479   for (const auto *PI : OMD->params())
480     args.push_back(PI);
481
482   CurGD = OMD;
483
484   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
485                 OMD->getLocation(), StartLoc);
486
487   // In ARC, certain methods get an extra cleanup.
488   if (CGM.getLangOpts().ObjCAutoRefCount &&
489       OMD->isInstanceMethod() &&
490       OMD->getSelector().isUnarySelector()) {
491     const IdentifierInfo *ident = 
492       OMD->getSelector().getIdentifierInfoForSlot(0);
493     if (ident->isStr("dealloc"))
494       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
495   }
496 }
497
498 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
499                                               LValue lvalue, QualType type);
500
501 /// Generate an Objective-C method.  An Objective-C method is a C function with
502 /// its pointer, name, and types registered in the class struture.
503 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
504   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
505   PGO.assignRegionCounters(OMD, CurFn);
506   assert(isa<CompoundStmt>(OMD->getBody()));
507   RegionCounter Cnt = getPGORegionCounter(OMD->getBody());
508   Cnt.beginRegion(Builder);
509   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
510   FinishFunction(OMD->getBodyRBrace());
511   PGO.emitInstrumentationData();
512   PGO.destroyRegionCounters();
513 }
514
515 /// emitStructGetterCall - Call the runtime function to load a property
516 /// into the return value slot.
517 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 
518                                  bool isAtomic, bool hasStrong) {
519   ASTContext &Context = CGF.getContext();
520
521   llvm::Value *src =
522     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
523                           ivar, 0).getAddress();
524
525   // objc_copyStruct (ReturnValue, &structIvar, 
526   //                  sizeof (Type of Ivar), isAtomic, false);
527   CallArgList args;
528
529   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
530   args.add(RValue::get(dest), Context.VoidPtrTy);
531
532   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
533   args.add(RValue::get(src), Context.VoidPtrTy);
534
535   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
536   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
537   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
538   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
539
540   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
541   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
542                                                       FunctionType::ExtInfo(),
543                                                       RequiredArgs::All),
544                fn, ReturnValueSlot(), args);
545 }
546
547 /// Determine whether the given architecture supports unaligned atomic
548 /// accesses.  They don't have to be fast, just faster than a function
549 /// call and a mutex.
550 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
551   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
552   // currently supported by the backend.)
553   return 0;
554 }
555
556 /// Return the maximum size that permits atomic accesses for the given
557 /// architecture.
558 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
559                                         llvm::Triple::ArchType arch) {
560   // ARM has 8-byte atomic accesses, but it's not clear whether we
561   // want to rely on them here.
562
563   // In the default case, just assume that any size up to a pointer is
564   // fine given adequate alignment.
565   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
566 }
567
568 namespace {
569   class PropertyImplStrategy {
570   public:
571     enum StrategyKind {
572       /// The 'native' strategy is to use the architecture's provided
573       /// reads and writes.
574       Native,
575
576       /// Use objc_setProperty and objc_getProperty.
577       GetSetProperty,
578
579       /// Use objc_setProperty for the setter, but use expression
580       /// evaluation for the getter.
581       SetPropertyAndExpressionGet,
582
583       /// Use objc_copyStruct.
584       CopyStruct,
585
586       /// The 'expression' strategy is to emit normal assignment or
587       /// lvalue-to-rvalue expressions.
588       Expression
589     };
590
591     StrategyKind getKind() const { return StrategyKind(Kind); }
592
593     bool hasStrongMember() const { return HasStrong; }
594     bool isAtomic() const { return IsAtomic; }
595     bool isCopy() const { return IsCopy; }
596
597     CharUnits getIvarSize() const { return IvarSize; }
598     CharUnits getIvarAlignment() const { return IvarAlignment; }
599
600     PropertyImplStrategy(CodeGenModule &CGM,
601                          const ObjCPropertyImplDecl *propImpl);
602
603   private:
604     unsigned Kind : 8;
605     unsigned IsAtomic : 1;
606     unsigned IsCopy : 1;
607     unsigned HasStrong : 1;
608
609     CharUnits IvarSize;
610     CharUnits IvarAlignment;
611   };
612 }
613
614 /// Pick an implementation strategy for the given property synthesis.
615 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
616                                      const ObjCPropertyImplDecl *propImpl) {
617   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
618   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
619
620   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
621   IsAtomic = prop->isAtomic();
622   HasStrong = false; // doesn't matter here.
623
624   // Evaluate the ivar's size and alignment.
625   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
626   QualType ivarType = ivar->getType();
627   std::tie(IvarSize, IvarAlignment) =
628       CGM.getContext().getTypeInfoInChars(ivarType);
629
630   // If we have a copy property, we always have to use getProperty/setProperty.
631   // TODO: we could actually use setProperty and an expression for non-atomics.
632   if (IsCopy) {
633     Kind = GetSetProperty;
634     return;
635   }
636
637   // Handle retain.
638   if (setterKind == ObjCPropertyDecl::Retain) {
639     // In GC-only, there's nothing special that needs to be done.
640     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
641       // fallthrough
642
643     // In ARC, if the property is non-atomic, use expression emission,
644     // which translates to objc_storeStrong.  This isn't required, but
645     // it's slightly nicer.
646     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
647       // Using standard expression emission for the setter is only
648       // acceptable if the ivar is __strong, which won't be true if
649       // the property is annotated with __attribute__((NSObject)).
650       // TODO: falling all the way back to objc_setProperty here is
651       // just laziness, though;  we could still use objc_storeStrong
652       // if we hacked it right.
653       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
654         Kind = Expression;
655       else
656         Kind = SetPropertyAndExpressionGet;
657       return;
658
659     // Otherwise, we need to at least use setProperty.  However, if
660     // the property isn't atomic, we can use normal expression
661     // emission for the getter.
662     } else if (!IsAtomic) {
663       Kind = SetPropertyAndExpressionGet;
664       return;
665
666     // Otherwise, we have to use both setProperty and getProperty.
667     } else {
668       Kind = GetSetProperty;
669       return;
670     }
671   }
672
673   // If we're not atomic, just use expression accesses.
674   if (!IsAtomic) {
675     Kind = Expression;
676     return;
677   }
678
679   // Properties on bitfield ivars need to be emitted using expression
680   // accesses even if they're nominally atomic.
681   if (ivar->isBitField()) {
682     Kind = Expression;
683     return;
684   }
685
686   // GC-qualified or ARC-qualified ivars need to be emitted as
687   // expressions.  This actually works out to being atomic anyway,
688   // except for ARC __strong, but that should trigger the above code.
689   if (ivarType.hasNonTrivialObjCLifetime() ||
690       (CGM.getLangOpts().getGC() &&
691        CGM.getContext().getObjCGCAttrKind(ivarType))) {
692     Kind = Expression;
693     return;
694   }
695
696   // Compute whether the ivar has strong members.
697   if (CGM.getLangOpts().getGC())
698     if (const RecordType *recordType = ivarType->getAs<RecordType>())
699       HasStrong = recordType->getDecl()->hasObjectMember();
700
701   // We can never access structs with object members with a native
702   // access, because we need to use write barriers.  This is what
703   // objc_copyStruct is for.
704   if (HasStrong) {
705     Kind = CopyStruct;
706     return;
707   }
708
709   // Otherwise, this is target-dependent and based on the size and
710   // alignment of the ivar.
711
712   // If the size of the ivar is not a power of two, give up.  We don't
713   // want to get into the business of doing compare-and-swaps.
714   if (!IvarSize.isPowerOfTwo()) {
715     Kind = CopyStruct;
716     return;
717   }
718
719   llvm::Triple::ArchType arch =
720     CGM.getTarget().getTriple().getArch();
721
722   // Most architectures require memory to fit within a single cache
723   // line, so the alignment has to be at least the size of the access.
724   // Otherwise we have to grab a lock.
725   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
726     Kind = CopyStruct;
727     return;
728   }
729
730   // If the ivar's size exceeds the architecture's maximum atomic
731   // access size, we have to use CopyStruct.
732   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
733     Kind = CopyStruct;
734     return;
735   }
736
737   // Otherwise, we can use native loads and stores.
738   Kind = Native;
739 }
740
741 /// \brief Generate an Objective-C property getter function.
742 ///
743 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
744 /// is illegal within a category.
745 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
746                                          const ObjCPropertyImplDecl *PID) {
747   llvm::Constant *AtomicHelperFn = 
748     GenerateObjCAtomicGetterCopyHelperFunction(PID);
749   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
750   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
751   assert(OMD && "Invalid call to generate getter (empty method)");
752   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
753
754   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
755
756   FinishFunction();
757 }
758
759 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
760   const Expr *getter = propImpl->getGetterCXXConstructor();
761   if (!getter) return true;
762
763   // Sema only makes only of these when the ivar has a C++ class type,
764   // so the form is pretty constrained.
765
766   // If the property has a reference type, we might just be binding a
767   // reference, in which case the result will be a gl-value.  We should
768   // treat this as a non-trivial operation.
769   if (getter->isGLValue())
770     return false;
771
772   // If we selected a trivial copy-constructor, we're okay.
773   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
774     return (construct->getConstructor()->isTrivial());
775
776   // The constructor might require cleanups (in which case it's never
777   // trivial).
778   assert(isa<ExprWithCleanups>(getter));
779   return false;
780 }
781
782 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 
783 /// copy the ivar into the resturn slot.
784 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 
785                                           llvm::Value *returnAddr,
786                                           ObjCIvarDecl *ivar,
787                                           llvm::Constant *AtomicHelperFn) {
788   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
789   //                           AtomicHelperFn);
790   CallArgList args;
791   
792   // The 1st argument is the return Slot.
793   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
794   
795   // The 2nd argument is the address of the ivar.
796   llvm::Value *ivarAddr = 
797   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 
798                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
799   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
800   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
801   
802   // Third argument is the helper function.
803   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
804   
805   llvm::Value *copyCppAtomicObjectFn = 
806     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
807   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
808                                                       args,
809                                                       FunctionType::ExtInfo(),
810                                                       RequiredArgs::All),
811                copyCppAtomicObjectFn, ReturnValueSlot(), args);
812 }
813
814 void
815 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
816                                         const ObjCPropertyImplDecl *propImpl,
817                                         const ObjCMethodDecl *GetterMethodDecl,
818                                         llvm::Constant *AtomicHelperFn) {
819   // If there's a non-trivial 'get' expression, we just have to emit that.
820   if (!hasTrivialGetExpr(propImpl)) {
821     if (!AtomicHelperFn) {
822       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
823                      /*nrvo*/ nullptr);
824       EmitReturnStmt(ret);
825     }
826     else {
827       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
828       emitCPPObjectAtomicGetterCall(*this, ReturnValue, 
829                                     ivar, AtomicHelperFn);
830     }
831     return;
832   }
833
834   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
835   QualType propType = prop->getType();
836   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
837
838   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();  
839
840   // Pick an implementation strategy.
841   PropertyImplStrategy strategy(CGM, propImpl);
842   switch (strategy.getKind()) {
843   case PropertyImplStrategy::Native: {
844     // We don't need to do anything for a zero-size struct.
845     if (strategy.getIvarSize().isZero())
846       return;
847
848     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
849
850     // Currently, all atomic accesses have to be through integer
851     // types, so there's no point in trying to pick a prettier type.
852     llvm::Type *bitcastType =
853       llvm::Type::getIntNTy(getLLVMContext(),
854                             getContext().toBits(strategy.getIvarSize()));
855     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
856
857     // Perform an atomic load.  This does not impose ordering constraints.
858     llvm::Value *ivarAddr = LV.getAddress();
859     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
860     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
861     load->setAlignment(strategy.getIvarAlignment().getQuantity());
862     load->setAtomic(llvm::Unordered);
863
864     // Store that value into the return address.  Doing this with a
865     // bitcast is likely to produce some pretty ugly IR, but it's not
866     // the *most* terrible thing in the world.
867     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
868
869     // Make sure we don't do an autorelease.
870     AutoreleaseResult = false;
871     return;
872   }
873
874   case PropertyImplStrategy::GetSetProperty: {
875     llvm::Value *getPropertyFn =
876       CGM.getObjCRuntime().GetPropertyGetFunction();
877     if (!getPropertyFn) {
878       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
879       return;
880     }
881
882     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
883     // FIXME: Can't this be simpler? This might even be worse than the
884     // corresponding gcc code.
885     llvm::Value *cmd =
886       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
887     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
888     llvm::Value *ivarOffset =
889       EmitIvarOffset(classImpl->getClassInterface(), ivar);
890
891     CallArgList args;
892     args.add(RValue::get(self), getContext().getObjCIdType());
893     args.add(RValue::get(cmd), getContext().getObjCSelType());
894     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
895     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
896              getContext().BoolTy);
897
898     // FIXME: We shouldn't need to get the function info here, the
899     // runtime already should have computed it to build the function.
900     llvm::Instruction *CallInstruction;
901     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
902                                                        FunctionType::ExtInfo(),
903                                                             RequiredArgs::All),
904                          getPropertyFn, ReturnValueSlot(), args, nullptr,
905                          &CallInstruction);
906     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
907       call->setTailCall();
908
909     // We need to fix the type here. Ivars with copy & retain are
910     // always objects so we don't need to worry about complex or
911     // aggregates.
912     RV = RValue::get(Builder.CreateBitCast(
913         RV.getScalarVal(),
914         getTypes().ConvertType(getterMethod->getReturnType())));
915
916     EmitReturnOfRValue(RV, propType);
917
918     // objc_getProperty does an autorelease, so we should suppress ours.
919     AutoreleaseResult = false;
920
921     return;
922   }
923
924   case PropertyImplStrategy::CopyStruct:
925     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
926                          strategy.hasStrongMember());
927     return;
928
929   case PropertyImplStrategy::Expression:
930   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
931     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
932
933     QualType ivarType = ivar->getType();
934     switch (getEvaluationKind(ivarType)) {
935     case TEK_Complex: {
936       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
937       EmitStoreOfComplex(pair,
938                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
939                          /*init*/ true);
940       return;
941     }
942     case TEK_Aggregate:
943       // The return value slot is guaranteed to not be aliased, but
944       // that's not necessarily the same as "on the stack", so
945       // we still potentially need objc_memmove_collectable.
946       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
947       return;
948     case TEK_Scalar: {
949       llvm::Value *value;
950       if (propType->isReferenceType()) {
951         value = LV.getAddress();
952       } else {
953         // We want to load and autoreleaseReturnValue ARC __weak ivars.
954         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
955           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
956
957         // Otherwise we want to do a simple load, suppressing the
958         // final autorelease.
959         } else {
960           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
961           AutoreleaseResult = false;
962         }
963
964         value = Builder.CreateBitCast(value, ConvertType(propType));
965         value = Builder.CreateBitCast(
966             value, ConvertType(GetterMethodDecl->getReturnType()));
967       }
968       
969       EmitReturnOfRValue(RValue::get(value), propType);
970       return;
971     }
972     }
973     llvm_unreachable("bad evaluation kind");
974   }
975
976   }
977   llvm_unreachable("bad @property implementation strategy!");
978 }
979
980 /// emitStructSetterCall - Call the runtime function to store the value
981 /// from the first formal parameter into the given ivar.
982 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
983                                  ObjCIvarDecl *ivar) {
984   // objc_copyStruct (&structIvar, &Arg, 
985   //                  sizeof (struct something), true, false);
986   CallArgList args;
987
988   // The first argument is the address of the ivar.
989   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
990                                                 CGF.LoadObjCSelf(), ivar, 0)
991     .getAddress();
992   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
993   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
994
995   // The second argument is the address of the parameter variable.
996   ParmVarDecl *argVar = *OMD->param_begin();
997   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 
998                      VK_LValue, SourceLocation());
999   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1000   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1001   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1002
1003   // The third argument is the sizeof the type.
1004   llvm::Value *size =
1005     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1006   args.add(RValue::get(size), CGF.getContext().getSizeType());
1007
1008   // The fourth argument is the 'isAtomic' flag.
1009   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1010
1011   // The fifth argument is the 'hasStrong' flag.
1012   // FIXME: should this really always be false?
1013   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1014
1015   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1016   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1017                                                       args,
1018                                                       FunctionType::ExtInfo(),
1019                                                       RequiredArgs::All),
1020                copyStructFn, ReturnValueSlot(), args);
1021 }
1022
1023 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 
1024 /// the value from the first formal parameter into the given ivar, using 
1025 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1026 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 
1027                                           ObjCMethodDecl *OMD,
1028                                           ObjCIvarDecl *ivar,
1029                                           llvm::Constant *AtomicHelperFn) {
1030   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 
1031   //                           AtomicHelperFn);
1032   CallArgList args;
1033   
1034   // The first argument is the address of the ivar.
1035   llvm::Value *ivarAddr = 
1036     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 
1037                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1038   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1039   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1040   
1041   // The second argument is the address of the parameter variable.
1042   ParmVarDecl *argVar = *OMD->param_begin();
1043   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 
1044                      VK_LValue, SourceLocation());
1045   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1046   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1047   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1048   
1049   // Third argument is the helper function.
1050   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1051   
1052   llvm::Value *copyCppAtomicObjectFn = 
1053     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1054   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1055                                                       args,
1056                                                       FunctionType::ExtInfo(),
1057                                                       RequiredArgs::All),
1058                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1059 }
1060
1061
1062 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1063   Expr *setter = PID->getSetterCXXAssignment();
1064   if (!setter) return true;
1065
1066   // Sema only makes only of these when the ivar has a C++ class type,
1067   // so the form is pretty constrained.
1068
1069   // An operator call is trivial if the function it calls is trivial.
1070   // This also implies that there's nothing non-trivial going on with
1071   // the arguments, because operator= can only be trivial if it's a
1072   // synthesized assignment operator and therefore both parameters are
1073   // references.
1074   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1075     if (const FunctionDecl *callee
1076           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1077       if (callee->isTrivial())
1078         return true;
1079     return false;
1080   }
1081
1082   assert(isa<ExprWithCleanups>(setter));
1083   return false;
1084 }
1085
1086 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1087   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1088     return false;
1089   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1090 }
1091
1092 void
1093 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1094                                         const ObjCPropertyImplDecl *propImpl,
1095                                         llvm::Constant *AtomicHelperFn) {
1096   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1097   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1098   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1099   
1100   // Just use the setter expression if Sema gave us one and it's
1101   // non-trivial.
1102   if (!hasTrivialSetExpr(propImpl)) {
1103     if (!AtomicHelperFn)
1104       // If non-atomic, assignment is called directly.
1105       EmitStmt(propImpl->getSetterCXXAssignment());
1106     else
1107       // If atomic, assignment is called via a locking api.
1108       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1109                                     AtomicHelperFn);
1110     return;
1111   }
1112
1113   PropertyImplStrategy strategy(CGM, propImpl);
1114   switch (strategy.getKind()) {
1115   case PropertyImplStrategy::Native: {
1116     // We don't need to do anything for a zero-size struct.
1117     if (strategy.getIvarSize().isZero())
1118       return;
1119
1120     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1121
1122     LValue ivarLValue =
1123       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1124     llvm::Value *ivarAddr = ivarLValue.getAddress();
1125
1126     // Currently, all atomic accesses have to be through integer
1127     // types, so there's no point in trying to pick a prettier type.
1128     llvm::Type *bitcastType =
1129       llvm::Type::getIntNTy(getLLVMContext(),
1130                             getContext().toBits(strategy.getIvarSize()));
1131     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1132
1133     // Cast both arguments to the chosen operation type.
1134     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1135     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1136
1137     // This bitcast load is likely to cause some nasty IR.
1138     llvm::Value *load = Builder.CreateLoad(argAddr);
1139
1140     // Perform an atomic store.  There are no memory ordering requirements.
1141     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1142     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1143     store->setAtomic(llvm::Unordered);
1144     return;
1145   }
1146
1147   case PropertyImplStrategy::GetSetProperty:
1148   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1149
1150     llvm::Value *setOptimizedPropertyFn = nullptr;
1151     llvm::Value *setPropertyFn = nullptr;
1152     if (UseOptimizedSetter(CGM)) {
1153       // 10.8 and iOS 6.0 code and GC is off
1154       setOptimizedPropertyFn = 
1155         CGM.getObjCRuntime()
1156            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1157                                             strategy.isCopy());
1158       if (!setOptimizedPropertyFn) {
1159         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1160         return;
1161       }
1162     }
1163     else {
1164       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1165       if (!setPropertyFn) {
1166         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1167         return;
1168       }
1169     }
1170    
1171     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1172     //                       <is-atomic>, <is-copy>).
1173     llvm::Value *cmd =
1174       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1175     llvm::Value *self =
1176       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1177     llvm::Value *ivarOffset =
1178       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1179     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1180     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1181
1182     CallArgList args;
1183     args.add(RValue::get(self), getContext().getObjCIdType());
1184     args.add(RValue::get(cmd), getContext().getObjCSelType());
1185     if (setOptimizedPropertyFn) {
1186       args.add(RValue::get(arg), getContext().getObjCIdType());
1187       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1188       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1189                                                   FunctionType::ExtInfo(),
1190                                                   RequiredArgs::All),
1191                setOptimizedPropertyFn, ReturnValueSlot(), args);
1192     } else {
1193       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1194       args.add(RValue::get(arg), getContext().getObjCIdType());
1195       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1196                getContext().BoolTy);
1197       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1198                getContext().BoolTy);
1199       // FIXME: We shouldn't need to get the function info here, the runtime
1200       // already should have computed it to build the function.
1201       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1202                                                   FunctionType::ExtInfo(),
1203                                                   RequiredArgs::All),
1204                setPropertyFn, ReturnValueSlot(), args);
1205     }
1206     
1207     return;
1208   }
1209
1210   case PropertyImplStrategy::CopyStruct:
1211     emitStructSetterCall(*this, setterMethod, ivar);
1212     return;
1213
1214   case PropertyImplStrategy::Expression:
1215     break;
1216   }
1217
1218   // Otherwise, fake up some ASTs and emit a normal assignment.
1219   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1220   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1221                    VK_LValue, SourceLocation());
1222   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1223                             selfDecl->getType(), CK_LValueToRValue, &self,
1224                             VK_RValue);
1225   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1226                           SourceLocation(), SourceLocation(),
1227                           &selfLoad, true, true);
1228
1229   ParmVarDecl *argDecl = *setterMethod->param_begin();
1230   QualType argType = argDecl->getType().getNonReferenceType();
1231   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1232   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1233                            argType.getUnqualifiedType(), CK_LValueToRValue,
1234                            &arg, VK_RValue);
1235     
1236   // The property type can differ from the ivar type in some situations with
1237   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1238   // The following absurdity is just to ensure well-formed IR.
1239   CastKind argCK = CK_NoOp;
1240   if (ivarRef.getType()->isObjCObjectPointerType()) {
1241     if (argLoad.getType()->isObjCObjectPointerType())
1242       argCK = CK_BitCast;
1243     else if (argLoad.getType()->isBlockPointerType())
1244       argCK = CK_BlockPointerToObjCPointerCast;
1245     else
1246       argCK = CK_CPointerToObjCPointerCast;
1247   } else if (ivarRef.getType()->isBlockPointerType()) {
1248      if (argLoad.getType()->isBlockPointerType())
1249       argCK = CK_BitCast;
1250     else
1251       argCK = CK_AnyPointerToBlockPointerCast;
1252   } else if (ivarRef.getType()->isPointerType()) {
1253     argCK = CK_BitCast;
1254   }
1255   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1256                            ivarRef.getType(), argCK, &argLoad,
1257                            VK_RValue);
1258   Expr *finalArg = &argLoad;
1259   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1260                                            argLoad.getType()))
1261     finalArg = &argCast;
1262
1263
1264   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1265                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1266                         SourceLocation(), false);
1267   EmitStmt(&assign);
1268 }
1269
1270 /// \brief Generate an Objective-C property setter function.
1271 ///
1272 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1273 /// is illegal within a category.
1274 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1275                                          const ObjCPropertyImplDecl *PID) {
1276   llvm::Constant *AtomicHelperFn = 
1277     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1278   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1279   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1280   assert(OMD && "Invalid call to generate setter (empty method)");
1281   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1282
1283   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1284
1285   FinishFunction();
1286 }
1287
1288 namespace {
1289   struct DestroyIvar : EHScopeStack::Cleanup {
1290   private:
1291     llvm::Value *addr;
1292     const ObjCIvarDecl *ivar;
1293     CodeGenFunction::Destroyer *destroyer;
1294     bool useEHCleanupForArray;
1295   public:
1296     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1297                 CodeGenFunction::Destroyer *destroyer,
1298                 bool useEHCleanupForArray)
1299       : addr(addr), ivar(ivar), destroyer(destroyer),
1300         useEHCleanupForArray(useEHCleanupForArray) {}
1301
1302     void Emit(CodeGenFunction &CGF, Flags flags) override {
1303       LValue lvalue
1304         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1305       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1306                       flags.isForNormalCleanup() && useEHCleanupForArray);
1307     }
1308   };
1309 }
1310
1311 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1312 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1313                                       llvm::Value *addr,
1314                                       QualType type) {
1315   llvm::Value *null = getNullForVariable(addr);
1316   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1317 }
1318
1319 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1320                                   ObjCImplementationDecl *impl) {
1321   CodeGenFunction::RunCleanupsScope scope(CGF);
1322
1323   llvm::Value *self = CGF.LoadObjCSelf();
1324
1325   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1326   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1327        ivar; ivar = ivar->getNextIvar()) {
1328     QualType type = ivar->getType();
1329
1330     // Check whether the ivar is a destructible type.
1331     QualType::DestructionKind dtorKind = type.isDestructedType();
1332     if (!dtorKind) continue;
1333
1334     CodeGenFunction::Destroyer *destroyer = nullptr;
1335
1336     // Use a call to objc_storeStrong to destroy strong ivars, for the
1337     // general benefit of the tools.
1338     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1339       destroyer = destroyARCStrongWithStore;
1340
1341     // Otherwise use the default for the destruction kind.
1342     } else {
1343       destroyer = CGF.getDestroyer(dtorKind);
1344     }
1345
1346     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1347
1348     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1349                                          cleanupKind & EHCleanup);
1350   }
1351
1352   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1353 }
1354
1355 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1356                                                  ObjCMethodDecl *MD,
1357                                                  bool ctor) {
1358   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1359   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1360
1361   // Emit .cxx_construct.
1362   if (ctor) {
1363     // Suppress the final autorelease in ARC.
1364     AutoreleaseResult = false;
1365
1366     for (const auto *IvarInit : IMP->inits()) {
1367       FieldDecl *Field = IvarInit->getAnyMember();
1368       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1369       LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 
1370                                     LoadObjCSelf(), Ivar, 0);
1371       EmitAggExpr(IvarInit->getInit(),
1372                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1373                                           AggValueSlot::DoesNotNeedGCBarriers,
1374                                           AggValueSlot::IsNotAliased));
1375     }
1376     // constructor returns 'self'.
1377     CodeGenTypes &Types = CGM.getTypes();
1378     QualType IdTy(CGM.getContext().getObjCIdType());
1379     llvm::Value *SelfAsId =
1380       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1381     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1382
1383   // Emit .cxx_destruct.
1384   } else {
1385     emitCXXDestructMethod(*this, IMP);
1386   }
1387   FinishFunction();
1388 }
1389
1390 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1391   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1392   it++; it++;
1393   const ABIArgInfo &AI = it->info;
1394   // FIXME. Is this sufficient check?
1395   return (AI.getKind() == ABIArgInfo::Indirect);
1396 }
1397
1398 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1399   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1400     return false;
1401   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1402     return FDTTy->getDecl()->hasObjectMember();
1403   return false;
1404 }
1405
1406 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1407   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1408   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1409                   Self->getType(), VK_LValue, SourceLocation());
1410   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1411 }
1412
1413 QualType CodeGenFunction::TypeOfSelfObject() {
1414   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1415   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1416   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1417     getContext().getCanonicalType(selfDecl->getType()));
1418   return PTy->getPointeeType();
1419 }
1420
1421 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1422   llvm::Constant *EnumerationMutationFn =
1423     CGM.getObjCRuntime().EnumerationMutationFunction();
1424
1425   if (!EnumerationMutationFn) {
1426     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1427     return;
1428   }
1429
1430   CGDebugInfo *DI = getDebugInfo();
1431   if (DI)
1432     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1433
1434   // The local variable comes into scope immediately.
1435   AutoVarEmission variable = AutoVarEmission::invalid();
1436   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1437     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1438
1439   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1440
1441   // Fast enumeration state.
1442   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1443   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1444   EmitNullInitialization(StatePtr, StateTy);
1445
1446   // Number of elements in the items array.
1447   static const unsigned NumItems = 16;
1448
1449   // Fetch the countByEnumeratingWithState:objects:count: selector.
1450   IdentifierInfo *II[] = {
1451     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1452     &CGM.getContext().Idents.get("objects"),
1453     &CGM.getContext().Idents.get("count")
1454   };
1455   Selector FastEnumSel =
1456     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1457
1458   QualType ItemsTy =
1459     getContext().getConstantArrayType(getContext().getObjCIdType(),
1460                                       llvm::APInt(32, NumItems),
1461                                       ArrayType::Normal, 0);
1462   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1463
1464   // Emit the collection pointer.  In ARC, we do a retain.
1465   llvm::Value *Collection;
1466   if (getLangOpts().ObjCAutoRefCount) {
1467     Collection = EmitARCRetainScalarExpr(S.getCollection());
1468
1469     // Enter a cleanup to do the release.
1470     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1471   } else {
1472     Collection = EmitScalarExpr(S.getCollection());
1473   }
1474
1475   // The 'continue' label needs to appear within the cleanup for the
1476   // collection object.
1477   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1478
1479   // Send it our message:
1480   CallArgList Args;
1481
1482   // The first argument is a temporary of the enumeration-state type.
1483   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1484
1485   // The second argument is a temporary array with space for NumItems
1486   // pointers.  We'll actually be loading elements from the array
1487   // pointer written into the control state; this buffer is so that
1488   // collections that *aren't* backed by arrays can still queue up
1489   // batches of elements.
1490   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1491
1492   // The third argument is the capacity of that temporary array.
1493   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1494   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1495   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1496
1497   // Start the enumeration.
1498   RValue CountRV =
1499     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1500                                              getContext().UnsignedLongTy,
1501                                              FastEnumSel,
1502                                              Collection, Args);
1503
1504   // The initial number of objects that were returned in the buffer.
1505   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1506
1507   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1508   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1509
1510   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1511
1512   // If the limit pointer was zero to begin with, the collection is
1513   // empty; skip all this. Set the branch weight assuming this has the same
1514   // probability of exiting the loop as any other loop exit.
1515   uint64_t EntryCount = PGO.getCurrentRegionCount();
1516   RegionCounter Cnt = getPGORegionCounter(&S);
1517   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1518                        EmptyBB, LoopInitBB,
1519                        PGO.createBranchWeights(EntryCount, Cnt.getCount()));
1520
1521   // Otherwise, initialize the loop.
1522   EmitBlock(LoopInitBB);
1523
1524   // Save the initial mutations value.  This is the value at an
1525   // address that was written into the state object by
1526   // countByEnumeratingWithState:objects:count:.
1527   llvm::Value *StateMutationsPtrPtr =
1528     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1529   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1530                                                       "mutationsptr");
1531
1532   llvm::Value *initialMutations =
1533     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1534
1535   // Start looping.  This is the point we return to whenever we have a
1536   // fresh, non-empty batch of objects.
1537   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1538   EmitBlock(LoopBodyBB);
1539
1540   // The current index into the buffer.
1541   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1542   index->addIncoming(zero, LoopInitBB);
1543
1544   // The current buffer size.
1545   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1546   count->addIncoming(initialBufferLimit, LoopInitBB);
1547
1548   Cnt.beginRegion(Builder);
1549
1550   // Check whether the mutations value has changed from where it was
1551   // at start.  StateMutationsPtr should actually be invariant between
1552   // refreshes.
1553   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1554   llvm::Value *currentMutations
1555     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1556
1557   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1558   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1559
1560   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1561                        WasNotMutatedBB, WasMutatedBB);
1562
1563   // If so, call the enumeration-mutation function.
1564   EmitBlock(WasMutatedBB);
1565   llvm::Value *V =
1566     Builder.CreateBitCast(Collection,
1567                           ConvertType(getContext().getObjCIdType()));
1568   CallArgList Args2;
1569   Args2.add(RValue::get(V), getContext().getObjCIdType());
1570   // FIXME: We shouldn't need to get the function info here, the runtime already
1571   // should have computed it to build the function.
1572   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1573                                                   FunctionType::ExtInfo(),
1574                                                   RequiredArgs::All),
1575            EnumerationMutationFn, ReturnValueSlot(), Args2);
1576
1577   // Otherwise, or if the mutation function returns, just continue.
1578   EmitBlock(WasNotMutatedBB);
1579
1580   // Initialize the element variable.
1581   RunCleanupsScope elementVariableScope(*this);
1582   bool elementIsVariable;
1583   LValue elementLValue;
1584   QualType elementType;
1585   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1586     // Initialize the variable, in case it's a __block variable or something.
1587     EmitAutoVarInit(variable);
1588
1589     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1590     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1591                         VK_LValue, SourceLocation());
1592     elementLValue = EmitLValue(&tempDRE);
1593     elementType = D->getType();
1594     elementIsVariable = true;
1595
1596     if (D->isARCPseudoStrong())
1597       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1598   } else {
1599     elementLValue = LValue(); // suppress warning
1600     elementType = cast<Expr>(S.getElement())->getType();
1601     elementIsVariable = false;
1602   }
1603   llvm::Type *convertedElementType = ConvertType(elementType);
1604
1605   // Fetch the buffer out of the enumeration state.
1606   // TODO: this pointer should actually be invariant between
1607   // refreshes, which would help us do certain loop optimizations.
1608   llvm::Value *StateItemsPtr =
1609     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1610   llvm::Value *EnumStateItems =
1611     Builder.CreateLoad(StateItemsPtr, "stateitems");
1612
1613   // Fetch the value at the current index from the buffer.
1614   llvm::Value *CurrentItemPtr =
1615     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1616   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1617
1618   // Cast that value to the right type.
1619   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1620                                       "currentitem");
1621
1622   // Make sure we have an l-value.  Yes, this gets evaluated every
1623   // time through the loop.
1624   if (!elementIsVariable) {
1625     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1626     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1627   } else {
1628     EmitScalarInit(CurrentItem, elementLValue);
1629   }
1630
1631   // If we do have an element variable, this assignment is the end of
1632   // its initialization.
1633   if (elementIsVariable)
1634     EmitAutoVarCleanups(variable);
1635
1636   // Perform the loop body, setting up break and continue labels.
1637   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1638   {
1639     RunCleanupsScope Scope(*this);
1640     EmitStmt(S.getBody());
1641   }
1642   BreakContinueStack.pop_back();
1643
1644   // Destroy the element variable now.
1645   elementVariableScope.ForceCleanup();
1646
1647   // Check whether there are more elements.
1648   EmitBlock(AfterBody.getBlock());
1649
1650   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1651
1652   // First we check in the local buffer.
1653   llvm::Value *indexPlusOne
1654     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1655
1656   // If we haven't overrun the buffer yet, we can continue.
1657   // Set the branch weights based on the simplifying assumption that this is
1658   // like a while-loop, i.e., ignoring that the false branch fetches more
1659   // elements and then returns to the loop.
1660   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1661                        LoopBodyBB, FetchMoreBB,
1662                        PGO.createBranchWeights(Cnt.getCount(), EntryCount));
1663
1664   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1665   count->addIncoming(count, AfterBody.getBlock());
1666
1667   // Otherwise, we have to fetch more elements.
1668   EmitBlock(FetchMoreBB);
1669
1670   CountRV =
1671     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1672                                              getContext().UnsignedLongTy,
1673                                              FastEnumSel,
1674                                              Collection, Args);
1675
1676   // If we got a zero count, we're done.
1677   llvm::Value *refetchCount = CountRV.getScalarVal();
1678
1679   // (note that the message send might split FetchMoreBB)
1680   index->addIncoming(zero, Builder.GetInsertBlock());
1681   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1682
1683   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1684                        EmptyBB, LoopBodyBB);
1685
1686   // No more elements.
1687   EmitBlock(EmptyBB);
1688
1689   if (!elementIsVariable) {
1690     // If the element was not a declaration, set it to be null.
1691
1692     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1693     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1694     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1695   }
1696
1697   if (DI)
1698     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1699
1700   // Leave the cleanup we entered in ARC.
1701   if (getLangOpts().ObjCAutoRefCount)
1702     PopCleanupBlock();
1703
1704   EmitBlock(LoopEnd.getBlock());
1705 }
1706
1707 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1708   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1709 }
1710
1711 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1712   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1713 }
1714
1715 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1716                                               const ObjCAtSynchronizedStmt &S) {
1717   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1718 }
1719
1720 /// Produce the code for a CK_ARCProduceObject.  Just does a
1721 /// primitive retain.
1722 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1723                                                     llvm::Value *value) {
1724   return EmitARCRetain(type, value);
1725 }
1726
1727 namespace {
1728   struct CallObjCRelease : EHScopeStack::Cleanup {
1729     CallObjCRelease(llvm::Value *object) : object(object) {}
1730     llvm::Value *object;
1731
1732     void Emit(CodeGenFunction &CGF, Flags flags) override {
1733       // Releases at the end of the full-expression are imprecise.
1734       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1735     }
1736   };
1737 }
1738
1739 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1740 /// release at the end of the full-expression.
1741 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1742                                                     llvm::Value *object) {
1743   // If we're in a conditional branch, we need to make the cleanup
1744   // conditional.
1745   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1746   return object;
1747 }
1748
1749 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1750                                                            llvm::Value *value) {
1751   return EmitARCRetainAutorelease(type, value);
1752 }
1753
1754 /// Given a number of pointers, inform the optimizer that they're
1755 /// being intrinsically used up until this point in the program.
1756 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1757   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1758   if (!fn) {
1759     llvm::FunctionType *fnType =
1760       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1761     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1762   }
1763
1764   // This isn't really a "runtime" function, but as an intrinsic it
1765   // doesn't really matter as long as we align things up.
1766   EmitNounwindRuntimeCall(fn, values);
1767 }
1768
1769
1770 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1771                                                 llvm::FunctionType *type,
1772                                                 StringRef fnName) {
1773   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1774
1775   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1776     // If the target runtime doesn't naturally support ARC, emit weak
1777     // references to the runtime support library.  We don't really
1778     // permit this to fail, but we need a particular relocation style.
1779     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1780       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1781     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1782       // If we have Native ARC, set nonlazybind attribute for these APIs for
1783       // performance.
1784       f->addFnAttr(llvm::Attribute::NonLazyBind);
1785     }
1786   }
1787
1788   return fn;
1789 }
1790
1791 /// Perform an operation having the signature
1792 ///   i8* (i8*)
1793 /// where a null input causes a no-op and returns null.
1794 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1795                                           llvm::Value *value,
1796                                           llvm::Constant *&fn,
1797                                           StringRef fnName,
1798                                           bool isTailCall = false) {
1799   if (isa<llvm::ConstantPointerNull>(value)) return value;
1800
1801   if (!fn) {
1802     llvm::FunctionType *fnType =
1803       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1804     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1805   }
1806
1807   // Cast the argument to 'id'.
1808   llvm::Type *origType = value->getType();
1809   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1810
1811   // Call the function.
1812   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1813   if (isTailCall)
1814     call->setTailCall();
1815
1816   // Cast the result back to the original type.
1817   return CGF.Builder.CreateBitCast(call, origType);
1818 }
1819
1820 /// Perform an operation having the following signature:
1821 ///   i8* (i8**)
1822 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1823                                          llvm::Value *addr,
1824                                          llvm::Constant *&fn,
1825                                          StringRef fnName) {
1826   if (!fn) {
1827     llvm::FunctionType *fnType =
1828       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1829     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1830   }
1831
1832   // Cast the argument to 'id*'.
1833   llvm::Type *origType = addr->getType();
1834   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1835
1836   // Call the function.
1837   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1838
1839   // Cast the result back to a dereference of the original type.
1840   if (origType != CGF.Int8PtrPtrTy)
1841     result = CGF.Builder.CreateBitCast(result,
1842                         cast<llvm::PointerType>(origType)->getElementType());
1843
1844   return result;
1845 }
1846
1847 /// Perform an operation having the following signature:
1848 ///   i8* (i8**, i8*)
1849 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1850                                           llvm::Value *addr,
1851                                           llvm::Value *value,
1852                                           llvm::Constant *&fn,
1853                                           StringRef fnName,
1854                                           bool ignored) {
1855   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1856            == value->getType());
1857
1858   if (!fn) {
1859     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1860
1861     llvm::FunctionType *fnType
1862       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1863     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1864   }
1865
1866   llvm::Type *origType = value->getType();
1867
1868   llvm::Value *args[] = {
1869     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1870     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1871   };
1872   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1873
1874   if (ignored) return nullptr;
1875
1876   return CGF.Builder.CreateBitCast(result, origType);
1877 }
1878
1879 /// Perform an operation having the following signature:
1880 ///   void (i8**, i8**)
1881 static void emitARCCopyOperation(CodeGenFunction &CGF,
1882                                  llvm::Value *dst,
1883                                  llvm::Value *src,
1884                                  llvm::Constant *&fn,
1885                                  StringRef fnName) {
1886   assert(dst->getType() == src->getType());
1887
1888   if (!fn) {
1889     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1890
1891     llvm::FunctionType *fnType
1892       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1893     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1894   }
1895
1896   llvm::Value *args[] = {
1897     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1898     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1899   };
1900   CGF.EmitNounwindRuntimeCall(fn, args);
1901 }
1902
1903 /// Produce the code to do a retain.  Based on the type, calls one of:
1904 ///   call i8* \@objc_retain(i8* %value)
1905 ///   call i8* \@objc_retainBlock(i8* %value)
1906 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1907   if (type->isBlockPointerType())
1908     return EmitARCRetainBlock(value, /*mandatory*/ false);
1909   else
1910     return EmitARCRetainNonBlock(value);
1911 }
1912
1913 /// Retain the given object, with normal retain semantics.
1914 ///   call i8* \@objc_retain(i8* %value)
1915 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1916   return emitARCValueOperation(*this, value,
1917                                CGM.getARCEntrypoints().objc_retain,
1918                                "objc_retain");
1919 }
1920
1921 /// Retain the given block, with _Block_copy semantics.
1922 ///   call i8* \@objc_retainBlock(i8* %value)
1923 ///
1924 /// \param mandatory - If false, emit the call with metadata
1925 /// indicating that it's okay for the optimizer to eliminate this call
1926 /// if it can prove that the block never escapes except down the stack.
1927 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1928                                                  bool mandatory) {
1929   llvm::Value *result
1930     = emitARCValueOperation(*this, value,
1931                             CGM.getARCEntrypoints().objc_retainBlock,
1932                             "objc_retainBlock");
1933
1934   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1935   // tell the optimizer that it doesn't need to do this copy if the
1936   // block doesn't escape, where being passed as an argument doesn't
1937   // count as escaping.
1938   if (!mandatory && isa<llvm::Instruction>(result)) {
1939     llvm::CallInst *call
1940       = cast<llvm::CallInst>(result->stripPointerCasts());
1941     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1942
1943     SmallVector<llvm::Value*,1> args;
1944     call->setMetadata("clang.arc.copy_on_escape",
1945                       llvm::MDNode::get(Builder.getContext(), args));
1946   }
1947
1948   return result;
1949 }
1950
1951 /// Retain the given object which is the result of a function call.
1952 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1953 ///
1954 /// Yes, this function name is one character away from a different
1955 /// call with completely different semantics.
1956 llvm::Value *
1957 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1958   // Fetch the void(void) inline asm which marks that we're going to
1959   // retain the autoreleased return value.
1960   llvm::InlineAsm *&marker
1961     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1962   if (!marker) {
1963     StringRef assembly
1964       = CGM.getTargetCodeGenInfo()
1965            .getARCRetainAutoreleasedReturnValueMarker();
1966
1967     // If we have an empty assembly string, there's nothing to do.
1968     if (assembly.empty()) {
1969
1970     // Otherwise, at -O0, build an inline asm that we're going to call
1971     // in a moment.
1972     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1973       llvm::FunctionType *type =
1974         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1975       
1976       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1977
1978     // If we're at -O1 and above, we don't want to litter the code
1979     // with this marker yet, so leave a breadcrumb for the ARC
1980     // optimizer to pick up.
1981     } else {
1982       llvm::NamedMDNode *metadata =
1983         CGM.getModule().getOrInsertNamedMetadata(
1984                             "clang.arc.retainAutoreleasedReturnValueMarker");
1985       assert(metadata->getNumOperands() <= 1);
1986       if (metadata->getNumOperands() == 0) {
1987         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1988         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1989       }
1990     }
1991   }
1992
1993   // Call the marker asm if we made one, which we do only at -O0.
1994   if (marker) Builder.CreateCall(marker);
1995
1996   return emitARCValueOperation(*this, value,
1997                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1998                                "objc_retainAutoreleasedReturnValue");
1999 }
2000
2001 /// Release the given object.
2002 ///   call void \@objc_release(i8* %value)
2003 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2004                                      ARCPreciseLifetime_t precise) {
2005   if (isa<llvm::ConstantPointerNull>(value)) return;
2006
2007   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2008   if (!fn) {
2009     llvm::FunctionType *fnType =
2010       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2011     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2012   }
2013
2014   // Cast the argument to 'id'.
2015   value = Builder.CreateBitCast(value, Int8PtrTy);
2016
2017   // Call objc_release.
2018   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2019
2020   if (precise == ARCImpreciseLifetime) {
2021     SmallVector<llvm::Value*,1> args;
2022     call->setMetadata("clang.imprecise_release",
2023                       llvm::MDNode::get(Builder.getContext(), args));
2024   }
2025 }
2026
2027 /// Destroy a __strong variable.
2028 ///
2029 /// At -O0, emit a call to store 'null' into the address;
2030 /// instrumenting tools prefer this because the address is exposed,
2031 /// but it's relatively cumbersome to optimize.
2032 ///
2033 /// At -O1 and above, just load and call objc_release.
2034 ///
2035 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2036 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2037                                            ARCPreciseLifetime_t precise) {
2038   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2039     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2040     llvm::Value *null = llvm::ConstantPointerNull::get(
2041                           cast<llvm::PointerType>(addrTy->getElementType()));
2042     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2043     return;
2044   }
2045
2046   llvm::Value *value = Builder.CreateLoad(addr);
2047   EmitARCRelease(value, precise);
2048 }
2049
2050 /// Store into a strong object.  Always calls this:
2051 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2052 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2053                                                      llvm::Value *value,
2054                                                      bool ignored) {
2055   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2056            == value->getType());
2057
2058   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2059   if (!fn) {
2060     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2061     llvm::FunctionType *fnType
2062       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2063     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2064   }
2065
2066   llvm::Value *args[] = {
2067     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2068     Builder.CreateBitCast(value, Int8PtrTy)
2069   };
2070   EmitNounwindRuntimeCall(fn, args);
2071
2072   if (ignored) return nullptr;
2073   return value;
2074 }
2075
2076 /// Store into a strong object.  Sometimes calls this:
2077 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2078 /// Other times, breaks it down into components.
2079 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2080                                                  llvm::Value *newValue,
2081                                                  bool ignored) {
2082   QualType type = dst.getType();
2083   bool isBlock = type->isBlockPointerType();
2084
2085   // Use a store barrier at -O0 unless this is a block type or the
2086   // lvalue is inadequately aligned.
2087   if (shouldUseFusedARCCalls() &&
2088       !isBlock &&
2089       (dst.getAlignment().isZero() ||
2090        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2091     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2092   }
2093
2094   // Otherwise, split it out.
2095
2096   // Retain the new value.
2097   newValue = EmitARCRetain(type, newValue);
2098
2099   // Read the old value.
2100   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2101
2102   // Store.  We do this before the release so that any deallocs won't
2103   // see the old value.
2104   EmitStoreOfScalar(newValue, dst);
2105
2106   // Finally, release the old value.
2107   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2108
2109   return newValue;
2110 }
2111
2112 /// Autorelease the given object.
2113 ///   call i8* \@objc_autorelease(i8* %value)
2114 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2115   return emitARCValueOperation(*this, value,
2116                                CGM.getARCEntrypoints().objc_autorelease,
2117                                "objc_autorelease");
2118 }
2119
2120 /// Autorelease the given object.
2121 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2122 llvm::Value *
2123 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2124   return emitARCValueOperation(*this, value,
2125                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2126                                "objc_autoreleaseReturnValue",
2127                                /*isTailCall*/ true);
2128 }
2129
2130 /// Do a fused retain/autorelease of the given object.
2131 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2132 llvm::Value *
2133 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2134   return emitARCValueOperation(*this, value,
2135                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2136                                "objc_retainAutoreleaseReturnValue",
2137                                /*isTailCall*/ true);
2138 }
2139
2140 /// Do a fused retain/autorelease of the given object.
2141 ///   call i8* \@objc_retainAutorelease(i8* %value)
2142 /// or
2143 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2144 ///   call i8* \@objc_autorelease(i8* %retain)
2145 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2146                                                        llvm::Value *value) {
2147   if (!type->isBlockPointerType())
2148     return EmitARCRetainAutoreleaseNonBlock(value);
2149
2150   if (isa<llvm::ConstantPointerNull>(value)) return value;
2151
2152   llvm::Type *origType = value->getType();
2153   value = Builder.CreateBitCast(value, Int8PtrTy);
2154   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2155   value = EmitARCAutorelease(value);
2156   return Builder.CreateBitCast(value, origType);
2157 }
2158
2159 /// Do a fused retain/autorelease of the given object.
2160 ///   call i8* \@objc_retainAutorelease(i8* %value)
2161 llvm::Value *
2162 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2163   return emitARCValueOperation(*this, value,
2164                                CGM.getARCEntrypoints().objc_retainAutorelease,
2165                                "objc_retainAutorelease");
2166 }
2167
2168 /// i8* \@objc_loadWeak(i8** %addr)
2169 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2170 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2171   return emitARCLoadOperation(*this, addr,
2172                               CGM.getARCEntrypoints().objc_loadWeak,
2173                               "objc_loadWeak");
2174 }
2175
2176 /// i8* \@objc_loadWeakRetained(i8** %addr)
2177 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2178   return emitARCLoadOperation(*this, addr,
2179                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2180                               "objc_loadWeakRetained");
2181 }
2182
2183 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2184 /// Returns %value.
2185 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2186                                                llvm::Value *value,
2187                                                bool ignored) {
2188   return emitARCStoreOperation(*this, addr, value,
2189                                CGM.getARCEntrypoints().objc_storeWeak,
2190                                "objc_storeWeak", ignored);
2191 }
2192
2193 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2194 /// Returns %value.  %addr is known to not have a current weak entry.
2195 /// Essentially equivalent to:
2196 ///   *addr = nil; objc_storeWeak(addr, value);
2197 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2198   // If we're initializing to null, just write null to memory; no need
2199   // to get the runtime involved.  But don't do this if optimization
2200   // is enabled, because accounting for this would make the optimizer
2201   // much more complicated.
2202   if (isa<llvm::ConstantPointerNull>(value) &&
2203       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2204     Builder.CreateStore(value, addr);
2205     return;
2206   }
2207
2208   emitARCStoreOperation(*this, addr, value,
2209                         CGM.getARCEntrypoints().objc_initWeak,
2210                         "objc_initWeak", /*ignored*/ true);
2211 }
2212
2213 /// void \@objc_destroyWeak(i8** %addr)
2214 /// Essentially objc_storeWeak(addr, nil).
2215 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2216   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2217   if (!fn) {
2218     llvm::FunctionType *fnType =
2219       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2220     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2221   }
2222
2223   // Cast the argument to 'id*'.
2224   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2225
2226   EmitNounwindRuntimeCall(fn, addr);
2227 }
2228
2229 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2230 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2231 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2232 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2233   emitARCCopyOperation(*this, dst, src,
2234                        CGM.getARCEntrypoints().objc_moveWeak,
2235                        "objc_moveWeak");
2236 }
2237
2238 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2239 /// Disregards the current value in %dest.  Essentially
2240 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2241 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2242   emitARCCopyOperation(*this, dst, src,
2243                        CGM.getARCEntrypoints().objc_copyWeak,
2244                        "objc_copyWeak");
2245 }
2246
2247 /// Produce the code to do a objc_autoreleasepool_push.
2248 ///   call i8* \@objc_autoreleasePoolPush(void)
2249 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2250   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2251   if (!fn) {
2252     llvm::FunctionType *fnType =
2253       llvm::FunctionType::get(Int8PtrTy, false);
2254     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2255   }
2256
2257   return EmitNounwindRuntimeCall(fn);
2258 }
2259
2260 /// Produce the code to do a primitive release.
2261 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2262 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2263   assert(value->getType() == Int8PtrTy);
2264
2265   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2266   if (!fn) {
2267     llvm::FunctionType *fnType =
2268       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2269
2270     // We don't want to use a weak import here; instead we should not
2271     // fall into this path.
2272     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2273   }
2274
2275   // objc_autoreleasePoolPop can throw.
2276   EmitRuntimeCallOrInvoke(fn, value);
2277 }
2278
2279 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2280 /// Which is: [[NSAutoreleasePool alloc] init];
2281 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2282 /// init is declared as: - (id) init; in its NSObject super class.
2283 ///
2284 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2285   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2286   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2287   // [NSAutoreleasePool alloc]
2288   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2289   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2290   CallArgList Args;
2291   RValue AllocRV =  
2292     Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 
2293                                 getContext().getObjCIdType(),
2294                                 AllocSel, Receiver, Args); 
2295
2296   // [Receiver init]
2297   Receiver = AllocRV.getScalarVal();
2298   II = &CGM.getContext().Idents.get("init");
2299   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2300   RValue InitRV =
2301     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2302                                 getContext().getObjCIdType(),
2303                                 InitSel, Receiver, Args); 
2304   return InitRV.getScalarVal();
2305 }
2306
2307 /// Produce the code to do a primitive release.
2308 /// [tmp drain];
2309 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2310   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2311   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2312   CallArgList Args;
2313   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2314                               getContext().VoidTy, DrainSel, Arg, Args); 
2315 }
2316
2317 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2318                                               llvm::Value *addr,
2319                                               QualType type) {
2320   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2321 }
2322
2323 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2324                                                 llvm::Value *addr,
2325                                                 QualType type) {
2326   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2327 }
2328
2329 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2330                                      llvm::Value *addr,
2331                                      QualType type) {
2332   CGF.EmitARCDestroyWeak(addr);
2333 }
2334
2335 namespace {
2336   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2337     llvm::Value *Token;
2338
2339     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2340
2341     void Emit(CodeGenFunction &CGF, Flags flags) override {
2342       CGF.EmitObjCAutoreleasePoolPop(Token);
2343     }
2344   };
2345   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2346     llvm::Value *Token;
2347
2348     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2349
2350     void Emit(CodeGenFunction &CGF, Flags flags) override {
2351       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2352     }
2353   };
2354 }
2355
2356 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2357   if (CGM.getLangOpts().ObjCAutoRefCount)
2358     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2359   else
2360     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2361 }
2362
2363 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2364                                                   LValue lvalue,
2365                                                   QualType type) {
2366   switch (type.getObjCLifetime()) {
2367   case Qualifiers::OCL_None:
2368   case Qualifiers::OCL_ExplicitNone:
2369   case Qualifiers::OCL_Strong:
2370   case Qualifiers::OCL_Autoreleasing:
2371     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2372                                               SourceLocation()).getScalarVal(),
2373                          false);
2374
2375   case Qualifiers::OCL_Weak:
2376     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2377                          true);
2378   }
2379
2380   llvm_unreachable("impossible lifetime!");
2381 }
2382
2383 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2384                                                   const Expr *e) {
2385   e = e->IgnoreParens();
2386   QualType type = e->getType();
2387
2388   // If we're loading retained from a __strong xvalue, we can avoid 
2389   // an extra retain/release pair by zeroing out the source of this
2390   // "move" operation.
2391   if (e->isXValue() &&
2392       !type.isConstQualified() &&
2393       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2394     // Emit the lvalue.
2395     LValue lv = CGF.EmitLValue(e);
2396     
2397     // Load the object pointer.
2398     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2399                                                SourceLocation()).getScalarVal();
2400     
2401     // Set the source pointer to NULL.
2402     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2403     
2404     return TryEmitResult(result, true);
2405   }
2406
2407   // As a very special optimization, in ARC++, if the l-value is the
2408   // result of a non-volatile assignment, do a simple retain of the
2409   // result of the call to objc_storeWeak instead of reloading.
2410   if (CGF.getLangOpts().CPlusPlus &&
2411       !type.isVolatileQualified() &&
2412       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2413       isa<BinaryOperator>(e) &&
2414       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2415     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2416
2417   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2418 }
2419
2420 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2421                                            llvm::Value *value);
2422
2423 /// Given that the given expression is some sort of call (which does
2424 /// not return retained), emit a retain following it.
2425 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2426   llvm::Value *value = CGF.EmitScalarExpr(e);
2427   return emitARCRetainAfterCall(CGF, value);
2428 }
2429
2430 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2431                                            llvm::Value *value) {
2432   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2433     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2434
2435     // Place the retain immediately following the call.
2436     CGF.Builder.SetInsertPoint(call->getParent(),
2437                                ++llvm::BasicBlock::iterator(call));
2438     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2439
2440     CGF.Builder.restoreIP(ip);
2441     return value;
2442   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2443     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2444
2445     // Place the retain at the beginning of the normal destination block.
2446     llvm::BasicBlock *BB = invoke->getNormalDest();
2447     CGF.Builder.SetInsertPoint(BB, BB->begin());
2448     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2449
2450     CGF.Builder.restoreIP(ip);
2451     return value;
2452
2453   // Bitcasts can arise because of related-result returns.  Rewrite
2454   // the operand.
2455   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2456     llvm::Value *operand = bitcast->getOperand(0);
2457     operand = emitARCRetainAfterCall(CGF, operand);
2458     bitcast->setOperand(0, operand);
2459     return bitcast;
2460
2461   // Generic fall-back case.
2462   } else {
2463     // Retain using the non-block variant: we never need to do a copy
2464     // of a block that's been returned to us.
2465     return CGF.EmitARCRetainNonBlock(value);
2466   }
2467 }
2468
2469 /// Determine whether it might be important to emit a separate
2470 /// objc_retain_block on the result of the given expression, or
2471 /// whether it's okay to just emit it in a +1 context.
2472 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2473   assert(e->getType()->isBlockPointerType());
2474   e = e->IgnoreParens();
2475
2476   // For future goodness, emit block expressions directly in +1
2477   // contexts if we can.
2478   if (isa<BlockExpr>(e))
2479     return false;
2480
2481   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2482     switch (cast->getCastKind()) {
2483     // Emitting these operations in +1 contexts is goodness.
2484     case CK_LValueToRValue:
2485     case CK_ARCReclaimReturnedObject:
2486     case CK_ARCConsumeObject:
2487     case CK_ARCProduceObject:
2488       return false;
2489
2490     // These operations preserve a block type.
2491     case CK_NoOp:
2492     case CK_BitCast:
2493       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2494
2495     // These operations are known to be bad (or haven't been considered).
2496     case CK_AnyPointerToBlockPointerCast:
2497     default:
2498       return true;
2499     }
2500   }
2501
2502   return true;
2503 }
2504
2505 /// Try to emit a PseudoObjectExpr at +1.
2506 ///
2507 /// This massively duplicates emitPseudoObjectRValue.
2508 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2509                                                   const PseudoObjectExpr *E) {
2510   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2511
2512   // Find the result expression.
2513   const Expr *resultExpr = E->getResultExpr();
2514   assert(resultExpr);
2515   TryEmitResult result;
2516
2517   for (PseudoObjectExpr::const_semantics_iterator
2518          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2519     const Expr *semantic = *i;
2520
2521     // If this semantic expression is an opaque value, bind it
2522     // to the result of its source expression.
2523     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2524       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2525       OVMA opaqueData;
2526
2527       // If this semantic is the result of the pseudo-object
2528       // expression, try to evaluate the source as +1.
2529       if (ov == resultExpr) {
2530         assert(!OVMA::shouldBindAsLValue(ov));
2531         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2532         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2533
2534       // Otherwise, just bind it.
2535       } else {
2536         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2537       }
2538       opaques.push_back(opaqueData);
2539
2540     // Otherwise, if the expression is the result, evaluate it
2541     // and remember the result.
2542     } else if (semantic == resultExpr) {
2543       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2544
2545     // Otherwise, evaluate the expression in an ignored context.
2546     } else {
2547       CGF.EmitIgnoredExpr(semantic);
2548     }
2549   }
2550
2551   // Unbind all the opaques now.
2552   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2553     opaques[i].unbind(CGF);
2554
2555   return result;
2556 }
2557
2558 static TryEmitResult
2559 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2560   // We should *never* see a nested full-expression here, because if
2561   // we fail to emit at +1, our caller must not retain after we close
2562   // out the full-expression.
2563   assert(!isa<ExprWithCleanups>(e));
2564
2565   // The desired result type, if it differs from the type of the
2566   // ultimate opaque expression.
2567   llvm::Type *resultType = nullptr;
2568
2569   while (true) {
2570     e = e->IgnoreParens();
2571
2572     // There's a break at the end of this if-chain;  anything
2573     // that wants to keep looping has to explicitly continue.
2574     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2575       switch (ce->getCastKind()) {
2576       // No-op casts don't change the type, so we just ignore them.
2577       case CK_NoOp:
2578         e = ce->getSubExpr();
2579         continue;
2580
2581       case CK_LValueToRValue: {
2582         TryEmitResult loadResult
2583           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2584         if (resultType) {
2585           llvm::Value *value = loadResult.getPointer();
2586           value = CGF.Builder.CreateBitCast(value, resultType);
2587           loadResult.setPointer(value);
2588         }
2589         return loadResult;
2590       }
2591
2592       // These casts can change the type, so remember that and
2593       // soldier on.  We only need to remember the outermost such
2594       // cast, though.
2595       case CK_CPointerToObjCPointerCast:
2596       case CK_BlockPointerToObjCPointerCast:
2597       case CK_AnyPointerToBlockPointerCast:
2598       case CK_BitCast:
2599         if (!resultType)
2600           resultType = CGF.ConvertType(ce->getType());
2601         e = ce->getSubExpr();
2602         assert(e->getType()->hasPointerRepresentation());
2603         continue;
2604
2605       // For consumptions, just emit the subexpression and thus elide
2606       // the retain/release pair.
2607       case CK_ARCConsumeObject: {
2608         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2609         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2610         return TryEmitResult(result, true);
2611       }
2612
2613       // Block extends are net +0.  Naively, we could just recurse on
2614       // the subexpression, but actually we need to ensure that the
2615       // value is copied as a block, so there's a little filter here.
2616       case CK_ARCExtendBlockObject: {
2617         llvm::Value *result; // will be a +0 value
2618
2619         // If we can't safely assume the sub-expression will produce a
2620         // block-copied value, emit the sub-expression at +0.
2621         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2622           result = CGF.EmitScalarExpr(ce->getSubExpr());
2623
2624         // Otherwise, try to emit the sub-expression at +1 recursively.
2625         } else {
2626           TryEmitResult subresult
2627             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2628           result = subresult.getPointer();
2629
2630           // If that produced a retained value, just use that,
2631           // possibly casting down.
2632           if (subresult.getInt()) {
2633             if (resultType)
2634               result = CGF.Builder.CreateBitCast(result, resultType);
2635             return TryEmitResult(result, true);
2636           }
2637
2638           // Otherwise it's +0.
2639         }
2640
2641         // Retain the object as a block, then cast down.
2642         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2643         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2644         return TryEmitResult(result, true);
2645       }
2646
2647       // For reclaims, emit the subexpression as a retained call and
2648       // skip the consumption.
2649       case CK_ARCReclaimReturnedObject: {
2650         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2651         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2652         return TryEmitResult(result, true);
2653       }
2654
2655       default:
2656         break;
2657       }
2658
2659     // Skip __extension__.
2660     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2661       if (op->getOpcode() == UO_Extension) {
2662         e = op->getSubExpr();
2663         continue;
2664       }
2665
2666     // For calls and message sends, use the retained-call logic.
2667     // Delegate inits are a special case in that they're the only
2668     // returns-retained expression that *isn't* surrounded by
2669     // a consume.
2670     } else if (isa<CallExpr>(e) ||
2671                (isa<ObjCMessageExpr>(e) &&
2672                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2673       llvm::Value *result = emitARCRetainCall(CGF, e);
2674       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2675       return TryEmitResult(result, true);
2676
2677     // Look through pseudo-object expressions.
2678     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2679       TryEmitResult result
2680         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2681       if (resultType) {
2682         llvm::Value *value = result.getPointer();
2683         value = CGF.Builder.CreateBitCast(value, resultType);
2684         result.setPointer(value);
2685       }
2686       return result;
2687     }
2688
2689     // Conservatively halt the search at any other expression kind.
2690     break;
2691   }
2692
2693   // We didn't find an obvious production, so emit what we've got and
2694   // tell the caller that we didn't manage to retain.
2695   llvm::Value *result = CGF.EmitScalarExpr(e);
2696   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2697   return TryEmitResult(result, false);
2698 }
2699
2700 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2701                                                 LValue lvalue,
2702                                                 QualType type) {
2703   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2704   llvm::Value *value = result.getPointer();
2705   if (!result.getInt())
2706     value = CGF.EmitARCRetain(type, value);
2707   return value;
2708 }
2709
2710 /// EmitARCRetainScalarExpr - Semantically equivalent to
2711 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2712 /// best-effort attempt to peephole expressions that naturally produce
2713 /// retained objects.
2714 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2715   // The retain needs to happen within the full-expression.
2716   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2717     enterFullExpression(cleanups);
2718     RunCleanupsScope scope(*this);
2719     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2720   }
2721
2722   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2723   llvm::Value *value = result.getPointer();
2724   if (!result.getInt())
2725     value = EmitARCRetain(e->getType(), value);
2726   return value;
2727 }
2728
2729 llvm::Value *
2730 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2731   // The retain needs to happen within the full-expression.
2732   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2733     enterFullExpression(cleanups);
2734     RunCleanupsScope scope(*this);
2735     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2736   }
2737
2738   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2739   llvm::Value *value = result.getPointer();
2740   if (result.getInt())
2741     value = EmitARCAutorelease(value);
2742   else
2743     value = EmitARCRetainAutorelease(e->getType(), value);
2744   return value;
2745 }
2746
2747 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2748   llvm::Value *result;
2749   bool doRetain;
2750
2751   if (shouldEmitSeparateBlockRetain(e)) {
2752     result = EmitScalarExpr(e);
2753     doRetain = true;
2754   } else {
2755     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2756     result = subresult.getPointer();
2757     doRetain = !subresult.getInt();
2758   }
2759
2760   if (doRetain)
2761     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2762   return EmitObjCConsumeObject(e->getType(), result);
2763 }
2764
2765 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2766   // In ARC, retain and autorelease the expression.
2767   if (getLangOpts().ObjCAutoRefCount) {
2768     // Do so before running any cleanups for the full-expression.
2769     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2770     return EmitARCRetainAutoreleaseScalarExpr(expr);
2771   }
2772
2773   // Otherwise, use the normal scalar-expression emission.  The
2774   // exception machinery doesn't do anything special with the
2775   // exception like retaining it, so there's no safety associated with
2776   // only running cleanups after the throw has started, and when it
2777   // matters it tends to be substantially inferior code.
2778   return EmitScalarExpr(expr);
2779 }
2780
2781 std::pair<LValue,llvm::Value*>
2782 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2783                                     bool ignored) {
2784   // Evaluate the RHS first.
2785   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2786   llvm::Value *value = result.getPointer();
2787
2788   bool hasImmediateRetain = result.getInt();
2789
2790   // If we didn't emit a retained object, and the l-value is of block
2791   // type, then we need to emit the block-retain immediately in case
2792   // it invalidates the l-value.
2793   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2794     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2795     hasImmediateRetain = true;
2796   }
2797
2798   LValue lvalue = EmitLValue(e->getLHS());
2799
2800   // If the RHS was emitted retained, expand this.
2801   if (hasImmediateRetain) {
2802     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2803     EmitStoreOfScalar(value, lvalue);
2804     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2805   } else {
2806     value = EmitARCStoreStrong(lvalue, value, ignored);
2807   }
2808
2809   return std::pair<LValue,llvm::Value*>(lvalue, value);
2810 }
2811
2812 std::pair<LValue,llvm::Value*>
2813 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2814   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2815   LValue lvalue = EmitLValue(e->getLHS());
2816
2817   EmitStoreOfScalar(value, lvalue);
2818
2819   return std::pair<LValue,llvm::Value*>(lvalue, value);
2820 }
2821
2822 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2823                                           const ObjCAutoreleasePoolStmt &ARPS) {
2824   const Stmt *subStmt = ARPS.getSubStmt();
2825   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2826
2827   CGDebugInfo *DI = getDebugInfo();
2828   if (DI)
2829     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2830
2831   // Keep track of the current cleanup stack depth.
2832   RunCleanupsScope Scope(*this);
2833   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2834     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2835     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2836   } else {
2837     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2838     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2839   }
2840
2841   for (const auto *I : S.body())
2842     EmitStmt(I);
2843
2844   if (DI)
2845     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2846 }
2847
2848 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2849 /// make sure it survives garbage collection until this point.
2850 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2851   // We just use an inline assembly.
2852   llvm::FunctionType *extenderType
2853     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2854   llvm::Value *extender
2855     = llvm::InlineAsm::get(extenderType,
2856                            /* assembly */ "",
2857                            /* constraints */ "r",
2858                            /* side effects */ true);
2859
2860   object = Builder.CreateBitCast(object, VoidPtrTy);
2861   EmitNounwindRuntimeCall(extender, object);
2862 }
2863
2864 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2865 /// non-trivial copy assignment function, produce following helper function.
2866 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2867 ///
2868 llvm::Constant *
2869 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2870                                         const ObjCPropertyImplDecl *PID) {
2871   if (!getLangOpts().CPlusPlus ||
2872       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2873     return nullptr;
2874   QualType Ty = PID->getPropertyIvarDecl()->getType();
2875   if (!Ty->isRecordType())
2876     return nullptr;
2877   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2878   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2879     return nullptr;
2880   llvm::Constant *HelperFn = nullptr;
2881   if (hasTrivialSetExpr(PID))
2882     return nullptr;
2883   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2884   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2885     return HelperFn;
2886   
2887   ASTContext &C = getContext();
2888   IdentifierInfo *II
2889     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2890   FunctionDecl *FD = FunctionDecl::Create(C,
2891                                           C.getTranslationUnitDecl(),
2892                                           SourceLocation(),
2893                                           SourceLocation(), II, C.VoidTy,
2894                                           nullptr, SC_Static,
2895                                           false,
2896                                           false);
2897
2898   QualType DestTy = C.getPointerType(Ty);
2899   QualType SrcTy = Ty;
2900   SrcTy.addConst();
2901   SrcTy = C.getPointerType(SrcTy);
2902   
2903   FunctionArgList args;
2904   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2905   args.push_back(&dstDecl);
2906   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2907   args.push_back(&srcDecl);
2908
2909   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2910       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2911
2912   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2913   
2914   llvm::Function *Fn =
2915     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2916                            "__assign_helper_atomic_property_",
2917                            &CGM.getModule());
2918   
2919   StartFunction(FD, C.VoidTy, Fn, FI, args);
2920   
2921   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2922                       VK_RValue, SourceLocation());
2923   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2924                     VK_LValue, OK_Ordinary, SourceLocation());
2925   
2926   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2927                       VK_RValue, SourceLocation());
2928   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2929                     VK_LValue, OK_Ordinary, SourceLocation());
2930   
2931   Expr *Args[2] = { &DST, &SRC };
2932   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2933   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2934                               Args, DestTy->getPointeeType(),
2935                               VK_LValue, SourceLocation(), false);
2936   
2937   EmitStmt(&TheCall);
2938
2939   FinishFunction();
2940   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2941   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2942   return HelperFn;
2943 }
2944
2945 llvm::Constant *
2946 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2947                                             const ObjCPropertyImplDecl *PID) {
2948   if (!getLangOpts().CPlusPlus ||
2949       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2950     return nullptr;
2951   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2952   QualType Ty = PD->getType();
2953   if (!Ty->isRecordType())
2954     return nullptr;
2955   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2956     return nullptr;
2957   llvm::Constant *HelperFn = nullptr;
2958
2959   if (hasTrivialGetExpr(PID))
2960     return nullptr;
2961   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2962   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2963     return HelperFn;
2964   
2965   
2966   ASTContext &C = getContext();
2967   IdentifierInfo *II
2968   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2969   FunctionDecl *FD = FunctionDecl::Create(C,
2970                                           C.getTranslationUnitDecl(),
2971                                           SourceLocation(),
2972                                           SourceLocation(), II, C.VoidTy,
2973                                           nullptr, SC_Static,
2974                                           false,
2975                                           false);
2976
2977   QualType DestTy = C.getPointerType(Ty);
2978   QualType SrcTy = Ty;
2979   SrcTy.addConst();
2980   SrcTy = C.getPointerType(SrcTy);
2981   
2982   FunctionArgList args;
2983   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2984   args.push_back(&dstDecl);
2985   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2986   args.push_back(&srcDecl);
2987
2988   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2989       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2990
2991   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2992   
2993   llvm::Function *Fn =
2994   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2995                          "__copy_helper_atomic_property_", &CGM.getModule());
2996   
2997   StartFunction(FD, C.VoidTy, Fn, FI, args);
2998   
2999   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3000                       VK_RValue, SourceLocation());
3001   
3002   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3003                     VK_LValue, OK_Ordinary, SourceLocation());
3004   
3005   CXXConstructExpr *CXXConstExpr = 
3006     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3007   
3008   SmallVector<Expr*, 4> ConstructorArgs;
3009   ConstructorArgs.push_back(&SRC);
3010   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3011   ++A;
3012   
3013   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3014        A != AEnd; ++A)
3015     ConstructorArgs.push_back(*A);
3016   
3017   CXXConstructExpr *TheCXXConstructExpr =
3018     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3019                              CXXConstExpr->getConstructor(),
3020                              CXXConstExpr->isElidable(),
3021                              ConstructorArgs,
3022                              CXXConstExpr->hadMultipleCandidates(),
3023                              CXXConstExpr->isListInitialization(),
3024                              CXXConstExpr->isStdInitListInitialization(),
3025                              CXXConstExpr->requiresZeroInitialization(),
3026                              CXXConstExpr->getConstructionKind(),
3027                              SourceRange());
3028   
3029   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3030                       VK_RValue, SourceLocation());
3031   
3032   RValue DV = EmitAnyExpr(&DstExpr);
3033   CharUnits Alignment
3034     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3035   EmitAggExpr(TheCXXConstructExpr, 
3036               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3037                                     AggValueSlot::IsDestructed,
3038                                     AggValueSlot::DoesNotNeedGCBarriers,
3039                                     AggValueSlot::IsNotAliased));
3040   
3041   FinishFunction();
3042   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3043   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3044   return HelperFn;
3045 }
3046
3047 llvm::Value *
3048 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3049   // Get selectors for retain/autorelease.
3050   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3051   Selector CopySelector =
3052       getContext().Selectors.getNullarySelector(CopyID);
3053   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3054   Selector AutoreleaseSelector =
3055       getContext().Selectors.getNullarySelector(AutoreleaseID);
3056
3057   // Emit calls to retain/autorelease.
3058   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3059   llvm::Value *Val = Block;
3060   RValue Result;
3061   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3062                                        Ty, CopySelector,
3063                                        Val, CallArgList(), nullptr, nullptr);
3064   Val = Result.getScalarVal();
3065   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3066                                        Ty, AutoreleaseSelector,
3067                                        Val, CallArgList(), nullptr, nullptr);
3068   Val = Result.getScalarVal();
3069   return Val;
3070 }
3071
3072
3073 CGObjCRuntime::~CGObjCRuntime() {}