]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp
MFV r347989:
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGOpenMPRuntime.cpp
1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides a class for OpenMP runtime code generation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGOpenMPRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/CodeGen/ConstantInitBuilder.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/StmtOpenMP.h"
22 #include "clang/Basic/BitmaskEnum.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/Format.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <cassert>
32
33 using namespace clang;
34 using namespace CodeGen;
35
36 namespace {
37 /// Base class for handling code generation inside OpenMP regions.
38 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
39 public:
40   /// Kinds of OpenMP regions used in codegen.
41   enum CGOpenMPRegionKind {
42     /// Region with outlined function for standalone 'parallel'
43     /// directive.
44     ParallelOutlinedRegion,
45     /// Region with outlined function for standalone 'task' directive.
46     TaskOutlinedRegion,
47     /// Region for constructs that do not require function outlining,
48     /// like 'for', 'sections', 'atomic' etc. directives.
49     InlinedRegion,
50     /// Region with outlined function for standalone 'target' directive.
51     TargetRegion,
52   };
53
54   CGOpenMPRegionInfo(const CapturedStmt &CS,
55                      const CGOpenMPRegionKind RegionKind,
56                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
57                      bool HasCancel)
58       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
59         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
60
61   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
62                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
63                      bool HasCancel)
64       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
65         Kind(Kind), HasCancel(HasCancel) {}
66
67   /// Get a variable or parameter for storing global thread id
68   /// inside OpenMP construct.
69   virtual const VarDecl *getThreadIDVariable() const = 0;
70
71   /// Emit the captured statement body.
72   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
73
74   /// Get an LValue for the current ThreadID variable.
75   /// \return LValue for thread id variable. This LValue always has type int32*.
76   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
77
78   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
79
80   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
81
82   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
83
84   bool hasCancel() const { return HasCancel; }
85
86   static bool classof(const CGCapturedStmtInfo *Info) {
87     return Info->getKind() == CR_OpenMP;
88   }
89
90   ~CGOpenMPRegionInfo() override = default;
91
92 protected:
93   CGOpenMPRegionKind RegionKind;
94   RegionCodeGenTy CodeGen;
95   OpenMPDirectiveKind Kind;
96   bool HasCancel;
97 };
98
99 /// API for captured statement code generation in OpenMP constructs.
100 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
101 public:
102   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
103                              const RegionCodeGenTy &CodeGen,
104                              OpenMPDirectiveKind Kind, bool HasCancel,
105                              StringRef HelperName)
106       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
107                            HasCancel),
108         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
109     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
110   }
111
112   /// Get a variable or parameter for storing global thread id
113   /// inside OpenMP construct.
114   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
115
116   /// Get the name of the capture helper.
117   StringRef getHelperName() const override { return HelperName; }
118
119   static bool classof(const CGCapturedStmtInfo *Info) {
120     return CGOpenMPRegionInfo::classof(Info) &&
121            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
122                ParallelOutlinedRegion;
123   }
124
125 private:
126   /// A variable or parameter storing global thread id for OpenMP
127   /// constructs.
128   const VarDecl *ThreadIDVar;
129   StringRef HelperName;
130 };
131
132 /// API for captured statement code generation in OpenMP constructs.
133 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
134 public:
135   class UntiedTaskActionTy final : public PrePostActionTy {
136     bool Untied;
137     const VarDecl *PartIDVar;
138     const RegionCodeGenTy UntiedCodeGen;
139     llvm::SwitchInst *UntiedSwitch = nullptr;
140
141   public:
142     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
143                        const RegionCodeGenTy &UntiedCodeGen)
144         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
145     void Enter(CodeGenFunction &CGF) override {
146       if (Untied) {
147         // Emit task switching point.
148         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
149             CGF.GetAddrOfLocalVar(PartIDVar),
150             PartIDVar->getType()->castAs<PointerType>());
151         llvm::Value *Res =
152             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
153         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
154         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
155         CGF.EmitBlock(DoneBB);
156         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
157         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
158         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
159                               CGF.Builder.GetInsertBlock());
160         emitUntiedSwitch(CGF);
161       }
162     }
163     void emitUntiedSwitch(CodeGenFunction &CGF) const {
164       if (Untied) {
165         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
166             CGF.GetAddrOfLocalVar(PartIDVar),
167             PartIDVar->getType()->castAs<PointerType>());
168         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
169                               PartIdLVal);
170         UntiedCodeGen(CGF);
171         CodeGenFunction::JumpDest CurPoint =
172             CGF.getJumpDestInCurrentScope(".untied.next.");
173         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
174         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
175         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
176                               CGF.Builder.GetInsertBlock());
177         CGF.EmitBranchThroughCleanup(CurPoint);
178         CGF.EmitBlock(CurPoint.getBlock());
179       }
180     }
181     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
182   };
183   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
184                                  const VarDecl *ThreadIDVar,
185                                  const RegionCodeGenTy &CodeGen,
186                                  OpenMPDirectiveKind Kind, bool HasCancel,
187                                  const UntiedTaskActionTy &Action)
188       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
189         ThreadIDVar(ThreadIDVar), Action(Action) {
190     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
191   }
192
193   /// Get a variable or parameter for storing global thread id
194   /// inside OpenMP construct.
195   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
196
197   /// Get an LValue for the current ThreadID variable.
198   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
199
200   /// Get the name of the capture helper.
201   StringRef getHelperName() const override { return ".omp_outlined."; }
202
203   void emitUntiedSwitch(CodeGenFunction &CGF) override {
204     Action.emitUntiedSwitch(CGF);
205   }
206
207   static bool classof(const CGCapturedStmtInfo *Info) {
208     return CGOpenMPRegionInfo::classof(Info) &&
209            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
210                TaskOutlinedRegion;
211   }
212
213 private:
214   /// A variable or parameter storing global thread id for OpenMP
215   /// constructs.
216   const VarDecl *ThreadIDVar;
217   /// Action for emitting code for untied tasks.
218   const UntiedTaskActionTy &Action;
219 };
220
221 /// API for inlined captured statement code generation in OpenMP
222 /// constructs.
223 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
224 public:
225   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
226                             const RegionCodeGenTy &CodeGen,
227                             OpenMPDirectiveKind Kind, bool HasCancel)
228       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
229         OldCSI(OldCSI),
230         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
231
232   // Retrieve the value of the context parameter.
233   llvm::Value *getContextValue() const override {
234     if (OuterRegionInfo)
235       return OuterRegionInfo->getContextValue();
236     llvm_unreachable("No context value for inlined OpenMP region");
237   }
238
239   void setContextValue(llvm::Value *V) override {
240     if (OuterRegionInfo) {
241       OuterRegionInfo->setContextValue(V);
242       return;
243     }
244     llvm_unreachable("No context value for inlined OpenMP region");
245   }
246
247   /// Lookup the captured field decl for a variable.
248   const FieldDecl *lookup(const VarDecl *VD) const override {
249     if (OuterRegionInfo)
250       return OuterRegionInfo->lookup(VD);
251     // If there is no outer outlined region,no need to lookup in a list of
252     // captured variables, we can use the original one.
253     return nullptr;
254   }
255
256   FieldDecl *getThisFieldDecl() const override {
257     if (OuterRegionInfo)
258       return OuterRegionInfo->getThisFieldDecl();
259     return nullptr;
260   }
261
262   /// Get a variable or parameter for storing global thread id
263   /// inside OpenMP construct.
264   const VarDecl *getThreadIDVariable() const override {
265     if (OuterRegionInfo)
266       return OuterRegionInfo->getThreadIDVariable();
267     return nullptr;
268   }
269
270   /// Get an LValue for the current ThreadID variable.
271   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
272     if (OuterRegionInfo)
273       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
274     llvm_unreachable("No LValue for inlined OpenMP construct");
275   }
276
277   /// Get the name of the capture helper.
278   StringRef getHelperName() const override {
279     if (auto *OuterRegionInfo = getOldCSI())
280       return OuterRegionInfo->getHelperName();
281     llvm_unreachable("No helper name for inlined OpenMP construct");
282   }
283
284   void emitUntiedSwitch(CodeGenFunction &CGF) override {
285     if (OuterRegionInfo)
286       OuterRegionInfo->emitUntiedSwitch(CGF);
287   }
288
289   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
290
291   static bool classof(const CGCapturedStmtInfo *Info) {
292     return CGOpenMPRegionInfo::classof(Info) &&
293            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
294   }
295
296   ~CGOpenMPInlinedRegionInfo() override = default;
297
298 private:
299   /// CodeGen info about outer OpenMP region.
300   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
301   CGOpenMPRegionInfo *OuterRegionInfo;
302 };
303
304 /// API for captured statement code generation in OpenMP target
305 /// constructs. For this captures, implicit parameters are used instead of the
306 /// captured fields. The name of the target region has to be unique in a given
307 /// application so it is provided by the client, because only the client has
308 /// the information to generate that.
309 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
310 public:
311   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
312                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
313       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
314                            /*HasCancel=*/false),
315         HelperName(HelperName) {}
316
317   /// This is unused for target regions because each starts executing
318   /// with a single thread.
319   const VarDecl *getThreadIDVariable() const override { return nullptr; }
320
321   /// Get the name of the capture helper.
322   StringRef getHelperName() const override { return HelperName; }
323
324   static bool classof(const CGCapturedStmtInfo *Info) {
325     return CGOpenMPRegionInfo::classof(Info) &&
326            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
327   }
328
329 private:
330   StringRef HelperName;
331 };
332
333 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
334   llvm_unreachable("No codegen for expressions");
335 }
336 /// API for generation of expressions captured in a innermost OpenMP
337 /// region.
338 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
339 public:
340   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
341       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
342                                   OMPD_unknown,
343                                   /*HasCancel=*/false),
344         PrivScope(CGF) {
345     // Make sure the globals captured in the provided statement are local by
346     // using the privatization logic. We assume the same variable is not
347     // captured more than once.
348     for (const auto &C : CS.captures()) {
349       if (!C.capturesVariable() && !C.capturesVariableByCopy())
350         continue;
351
352       const VarDecl *VD = C.getCapturedVar();
353       if (VD->isLocalVarDeclOrParm())
354         continue;
355
356       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
357                       /*RefersToEnclosingVariableOrCapture=*/false,
358                       VD->getType().getNonReferenceType(), VK_LValue,
359                       C.getLocation());
360       PrivScope.addPrivate(
361           VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(); });
362     }
363     (void)PrivScope.Privatize();
364   }
365
366   /// Lookup the captured field decl for a variable.
367   const FieldDecl *lookup(const VarDecl *VD) const override {
368     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
369       return FD;
370     return nullptr;
371   }
372
373   /// Emit the captured statement body.
374   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
375     llvm_unreachable("No body for expressions");
376   }
377
378   /// Get a variable or parameter for storing global thread id
379   /// inside OpenMP construct.
380   const VarDecl *getThreadIDVariable() const override {
381     llvm_unreachable("No thread id for expressions");
382   }
383
384   /// Get the name of the capture helper.
385   StringRef getHelperName() const override {
386     llvm_unreachable("No helper name for expressions");
387   }
388
389   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
390
391 private:
392   /// Private scope to capture global variables.
393   CodeGenFunction::OMPPrivateScope PrivScope;
394 };
395
396 /// RAII for emitting code of OpenMP constructs.
397 class InlinedOpenMPRegionRAII {
398   CodeGenFunction &CGF;
399   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
400   FieldDecl *LambdaThisCaptureField = nullptr;
401   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
402
403 public:
404   /// Constructs region for combined constructs.
405   /// \param CodeGen Code generation sequence for combined directives. Includes
406   /// a list of functions used for code generation of implicitly inlined
407   /// regions.
408   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
409                           OpenMPDirectiveKind Kind, bool HasCancel)
410       : CGF(CGF) {
411     // Start emission for the construct.
412     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
413         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
414     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
415     LambdaThisCaptureField = CGF.LambdaThisCaptureField;
416     CGF.LambdaThisCaptureField = nullptr;
417     BlockInfo = CGF.BlockInfo;
418     CGF.BlockInfo = nullptr;
419   }
420
421   ~InlinedOpenMPRegionRAII() {
422     // Restore original CapturedStmtInfo only if we're done with code emission.
423     auto *OldCSI =
424         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
425     delete CGF.CapturedStmtInfo;
426     CGF.CapturedStmtInfo = OldCSI;
427     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
428     CGF.LambdaThisCaptureField = LambdaThisCaptureField;
429     CGF.BlockInfo = BlockInfo;
430   }
431 };
432
433 /// Values for bit flags used in the ident_t to describe the fields.
434 /// All enumeric elements are named and described in accordance with the code
435 /// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
436 enum OpenMPLocationFlags : unsigned {
437   /// Use trampoline for internal microtask.
438   OMP_IDENT_IMD = 0x01,
439   /// Use c-style ident structure.
440   OMP_IDENT_KMPC = 0x02,
441   /// Atomic reduction option for kmpc_reduce.
442   OMP_ATOMIC_REDUCE = 0x10,
443   /// Explicit 'barrier' directive.
444   OMP_IDENT_BARRIER_EXPL = 0x20,
445   /// Implicit barrier in code.
446   OMP_IDENT_BARRIER_IMPL = 0x40,
447   /// Implicit barrier in 'for' directive.
448   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
449   /// Implicit barrier in 'sections' directive.
450   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
451   /// Implicit barrier in 'single' directive.
452   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
453   /// Call of __kmp_for_static_init for static loop.
454   OMP_IDENT_WORK_LOOP = 0x200,
455   /// Call of __kmp_for_static_init for sections.
456   OMP_IDENT_WORK_SECTIONS = 0x400,
457   /// Call of __kmp_for_static_init for distribute.
458   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
459   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
460 };
461
462 /// Describes ident structure that describes a source location.
463 /// All descriptions are taken from
464 /// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
465 /// Original structure:
466 /// typedef struct ident {
467 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
468 ///                                  see above  */
469 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
470 ///                                  KMP_IDENT_KMPC identifies this union
471 ///                                  member  */
472 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
473 ///                                  see above */
474 ///#if USE_ITT_BUILD
475 ///                            /*  but currently used for storing
476 ///                                region-specific ITT */
477 ///                            /*  contextual information. */
478 ///#endif /* USE_ITT_BUILD */
479 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
480 ///                                 C++  */
481 ///    char const *psource;    /**< String describing the source location.
482 ///                            The string is composed of semi-colon separated
483 //                             fields which describe the source file,
484 ///                            the function and a pair of line numbers that
485 ///                            delimit the construct.
486 ///                             */
487 /// } ident_t;
488 enum IdentFieldIndex {
489   /// might be used in Fortran
490   IdentField_Reserved_1,
491   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
492   IdentField_Flags,
493   /// Not really used in Fortran any more
494   IdentField_Reserved_2,
495   /// Source[4] in Fortran, do not use for C++
496   IdentField_Reserved_3,
497   /// String describing the source location. The string is composed of
498   /// semi-colon separated fields which describe the source file, the function
499   /// and a pair of line numbers that delimit the construct.
500   IdentField_PSource
501 };
502
503 /// Schedule types for 'omp for' loops (these enumerators are taken from
504 /// the enum sched_type in kmp.h).
505 enum OpenMPSchedType {
506   /// Lower bound for default (unordered) versions.
507   OMP_sch_lower = 32,
508   OMP_sch_static_chunked = 33,
509   OMP_sch_static = 34,
510   OMP_sch_dynamic_chunked = 35,
511   OMP_sch_guided_chunked = 36,
512   OMP_sch_runtime = 37,
513   OMP_sch_auto = 38,
514   /// static with chunk adjustment (e.g., simd)
515   OMP_sch_static_balanced_chunked = 45,
516   /// Lower bound for 'ordered' versions.
517   OMP_ord_lower = 64,
518   OMP_ord_static_chunked = 65,
519   OMP_ord_static = 66,
520   OMP_ord_dynamic_chunked = 67,
521   OMP_ord_guided_chunked = 68,
522   OMP_ord_runtime = 69,
523   OMP_ord_auto = 70,
524   OMP_sch_default = OMP_sch_static,
525   /// dist_schedule types
526   OMP_dist_sch_static_chunked = 91,
527   OMP_dist_sch_static = 92,
528   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
529   /// Set if the monotonic schedule modifier was present.
530   OMP_sch_modifier_monotonic = (1 << 29),
531   /// Set if the nonmonotonic schedule modifier was present.
532   OMP_sch_modifier_nonmonotonic = (1 << 30),
533 };
534
535 enum OpenMPRTLFunction {
536   /// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
537   /// kmpc_micro microtask, ...);
538   OMPRTL__kmpc_fork_call,
539   /// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
540   /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
541   OMPRTL__kmpc_threadprivate_cached,
542   /// Call to void __kmpc_threadprivate_register( ident_t *,
543   /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
544   OMPRTL__kmpc_threadprivate_register,
545   // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
546   OMPRTL__kmpc_global_thread_num,
547   // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
548   // kmp_critical_name *crit);
549   OMPRTL__kmpc_critical,
550   // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
551   // global_tid, kmp_critical_name *crit, uintptr_t hint);
552   OMPRTL__kmpc_critical_with_hint,
553   // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
554   // kmp_critical_name *crit);
555   OMPRTL__kmpc_end_critical,
556   // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
557   // global_tid);
558   OMPRTL__kmpc_cancel_barrier,
559   // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
560   OMPRTL__kmpc_barrier,
561   // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
562   OMPRTL__kmpc_for_static_fini,
563   // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
564   // global_tid);
565   OMPRTL__kmpc_serialized_parallel,
566   // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
567   // global_tid);
568   OMPRTL__kmpc_end_serialized_parallel,
569   // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
570   // kmp_int32 num_threads);
571   OMPRTL__kmpc_push_num_threads,
572   // Call to void __kmpc_flush(ident_t *loc);
573   OMPRTL__kmpc_flush,
574   // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
575   OMPRTL__kmpc_master,
576   // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
577   OMPRTL__kmpc_end_master,
578   // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
579   // int end_part);
580   OMPRTL__kmpc_omp_taskyield,
581   // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
582   OMPRTL__kmpc_single,
583   // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
584   OMPRTL__kmpc_end_single,
585   // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
586   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
587   // kmp_routine_entry_t *task_entry);
588   OMPRTL__kmpc_omp_task_alloc,
589   // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
590   // new_task);
591   OMPRTL__kmpc_omp_task,
592   // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
593   // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
594   // kmp_int32 didit);
595   OMPRTL__kmpc_copyprivate,
596   // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
597   // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
598   // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
599   OMPRTL__kmpc_reduce,
600   // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
601   // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
602   // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
603   // *lck);
604   OMPRTL__kmpc_reduce_nowait,
605   // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
606   // kmp_critical_name *lck);
607   OMPRTL__kmpc_end_reduce,
608   // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
609   // kmp_critical_name *lck);
610   OMPRTL__kmpc_end_reduce_nowait,
611   // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
612   // kmp_task_t * new_task);
613   OMPRTL__kmpc_omp_task_begin_if0,
614   // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
615   // kmp_task_t * new_task);
616   OMPRTL__kmpc_omp_task_complete_if0,
617   // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
618   OMPRTL__kmpc_ordered,
619   // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
620   OMPRTL__kmpc_end_ordered,
621   // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
622   // global_tid);
623   OMPRTL__kmpc_omp_taskwait,
624   // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
625   OMPRTL__kmpc_taskgroup,
626   // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
627   OMPRTL__kmpc_end_taskgroup,
628   // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
629   // int proc_bind);
630   OMPRTL__kmpc_push_proc_bind,
631   // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
632   // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
633   // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
634   OMPRTL__kmpc_omp_task_with_deps,
635   // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
636   // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
637   // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
638   OMPRTL__kmpc_omp_wait_deps,
639   // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
640   // global_tid, kmp_int32 cncl_kind);
641   OMPRTL__kmpc_cancellationpoint,
642   // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
643   // kmp_int32 cncl_kind);
644   OMPRTL__kmpc_cancel,
645   // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
646   // kmp_int32 num_teams, kmp_int32 thread_limit);
647   OMPRTL__kmpc_push_num_teams,
648   // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
649   // microtask, ...);
650   OMPRTL__kmpc_fork_teams,
651   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
652   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
653   // sched, kmp_uint64 grainsize, void *task_dup);
654   OMPRTL__kmpc_taskloop,
655   // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
656   // num_dims, struct kmp_dim *dims);
657   OMPRTL__kmpc_doacross_init,
658   // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
659   OMPRTL__kmpc_doacross_fini,
660   // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
661   // *vec);
662   OMPRTL__kmpc_doacross_post,
663   // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
664   // *vec);
665   OMPRTL__kmpc_doacross_wait,
666   // Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
667   // *data);
668   OMPRTL__kmpc_task_reduction_init,
669   // Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
670   // *d);
671   OMPRTL__kmpc_task_reduction_get_th_data,
672
673   //
674   // Offloading related calls
675   //
676   // Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
677   // size);
678   OMPRTL__kmpc_push_target_tripcount,
679   // Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
680   // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
681   // *arg_types);
682   OMPRTL__tgt_target,
683   // Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
684   // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
685   // *arg_types);
686   OMPRTL__tgt_target_nowait,
687   // Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
688   // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
689   // *arg_types, int32_t num_teams, int32_t thread_limit);
690   OMPRTL__tgt_target_teams,
691   // Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
692   // *host_ptr, int32_t arg_num, void** args_base, void **args, size_t
693   // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
694   OMPRTL__tgt_target_teams_nowait,
695   // Call to void __tgt_register_lib(__tgt_bin_desc *desc);
696   OMPRTL__tgt_register_lib,
697   // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
698   OMPRTL__tgt_unregister_lib,
699   // Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
700   // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
701   OMPRTL__tgt_target_data_begin,
702   // Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
703   // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
704   // *arg_types);
705   OMPRTL__tgt_target_data_begin_nowait,
706   // Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
707   // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
708   OMPRTL__tgt_target_data_end,
709   // Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
710   // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
711   // *arg_types);
712   OMPRTL__tgt_target_data_end_nowait,
713   // Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
714   // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
715   OMPRTL__tgt_target_data_update,
716   // Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
717   // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
718   // *arg_types);
719   OMPRTL__tgt_target_data_update_nowait,
720 };
721
722 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
723 /// region.
724 class CleanupTy final : public EHScopeStack::Cleanup {
725   PrePostActionTy *Action;
726
727 public:
728   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
729   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
730     if (!CGF.HaveInsertPoint())
731       return;
732     Action->Exit(CGF);
733   }
734 };
735
736 } // anonymous namespace
737
738 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
739   CodeGenFunction::RunCleanupsScope Scope(CGF);
740   if (PrePostAction) {
741     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
742     Callback(CodeGen, CGF, *PrePostAction);
743   } else {
744     PrePostActionTy Action;
745     Callback(CodeGen, CGF, Action);
746   }
747 }
748
749 /// Check if the combiner is a call to UDR combiner and if it is so return the
750 /// UDR decl used for reduction.
751 static const OMPDeclareReductionDecl *
752 getReductionInit(const Expr *ReductionOp) {
753   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
754     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
755       if (const auto *DRE =
756               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
757         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
758           return DRD;
759   return nullptr;
760 }
761
762 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
763                                              const OMPDeclareReductionDecl *DRD,
764                                              const Expr *InitOp,
765                                              Address Private, Address Original,
766                                              QualType Ty) {
767   if (DRD->getInitializer()) {
768     std::pair<llvm::Function *, llvm::Function *> Reduction =
769         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
770     const auto *CE = cast<CallExpr>(InitOp);
771     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
772     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
773     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
774     const auto *LHSDRE =
775         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
776     const auto *RHSDRE =
777         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
778     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
779     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
780                             [=]() { return Private; });
781     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
782                             [=]() { return Original; });
783     (void)PrivateScope.Privatize();
784     RValue Func = RValue::get(Reduction.second);
785     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
786     CGF.EmitIgnoredExpr(InitOp);
787   } else {
788     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
789     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
790     auto *GV = new llvm::GlobalVariable(
791         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
792         llvm::GlobalValue::PrivateLinkage, Init, Name);
793     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
794     RValue InitRVal;
795     switch (CGF.getEvaluationKind(Ty)) {
796     case TEK_Scalar:
797       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
798       break;
799     case TEK_Complex:
800       InitRVal =
801           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
802       break;
803     case TEK_Aggregate:
804       InitRVal = RValue::getAggregate(LV.getAddress());
805       break;
806     }
807     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
808     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
809     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
810                          /*IsInitializer=*/false);
811   }
812 }
813
814 /// Emit initialization of arrays of complex types.
815 /// \param DestAddr Address of the array.
816 /// \param Type Type of array.
817 /// \param Init Initial expression of array.
818 /// \param SrcAddr Address of the original array.
819 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
820                                  QualType Type, bool EmitDeclareReductionInit,
821                                  const Expr *Init,
822                                  const OMPDeclareReductionDecl *DRD,
823                                  Address SrcAddr = Address::invalid()) {
824   // Perform element-by-element initialization.
825   QualType ElementTy;
826
827   // Drill down to the base element type on both arrays.
828   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
829   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
830   DestAddr =
831       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
832   if (DRD)
833     SrcAddr =
834         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
835
836   llvm::Value *SrcBegin = nullptr;
837   if (DRD)
838     SrcBegin = SrcAddr.getPointer();
839   llvm::Value *DestBegin = DestAddr.getPointer();
840   // Cast from pointer to array type to pointer to single element.
841   llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
842   // The basic structure here is a while-do loop.
843   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
844   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
845   llvm::Value *IsEmpty =
846       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
847   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
848
849   // Enter the loop body, making that address the current address.
850   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
851   CGF.EmitBlock(BodyBB);
852
853   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
854
855   llvm::PHINode *SrcElementPHI = nullptr;
856   Address SrcElementCurrent = Address::invalid();
857   if (DRD) {
858     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
859                                           "omp.arraycpy.srcElementPast");
860     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
861     SrcElementCurrent =
862         Address(SrcElementPHI,
863                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
864   }
865   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
866       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
867   DestElementPHI->addIncoming(DestBegin, EntryBB);
868   Address DestElementCurrent =
869       Address(DestElementPHI,
870               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
871
872   // Emit copy.
873   {
874     CodeGenFunction::RunCleanupsScope InitScope(CGF);
875     if (EmitDeclareReductionInit) {
876       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
877                                        SrcElementCurrent, ElementTy);
878     } else
879       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
880                            /*IsInitializer=*/false);
881   }
882
883   if (DRD) {
884     // Shift the address forward by one element.
885     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
886         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
887     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
888   }
889
890   // Shift the address forward by one element.
891   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
892       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
893   // Check whether we've reached the end.
894   llvm::Value *Done =
895       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
896   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
897   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
898
899   // Done.
900   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
901 }
902
903 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
904   return CGF.EmitOMPSharedLValue(E);
905 }
906
907 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
908                                             const Expr *E) {
909   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
910     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
911   return LValue();
912 }
913
914 void ReductionCodeGen::emitAggregateInitialization(
915     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
916     const OMPDeclareReductionDecl *DRD) {
917   // Emit VarDecl with copy init for arrays.
918   // Get the address of the original variable captured in current
919   // captured region.
920   const auto *PrivateVD =
921       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
922   bool EmitDeclareReductionInit =
923       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
924   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
925                        EmitDeclareReductionInit,
926                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
927                                                 : PrivateVD->getInit(),
928                        DRD, SharedLVal.getAddress());
929 }
930
931 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
932                                    ArrayRef<const Expr *> Privates,
933                                    ArrayRef<const Expr *> ReductionOps) {
934   ClausesData.reserve(Shareds.size());
935   SharedAddresses.reserve(Shareds.size());
936   Sizes.reserve(Shareds.size());
937   BaseDecls.reserve(Shareds.size());
938   auto IPriv = Privates.begin();
939   auto IRed = ReductionOps.begin();
940   for (const Expr *Ref : Shareds) {
941     ClausesData.emplace_back(Ref, *IPriv, *IRed);
942     std::advance(IPriv, 1);
943     std::advance(IRed, 1);
944   }
945 }
946
947 void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
948   assert(SharedAddresses.size() == N &&
949          "Number of generated lvalues must be exactly N.");
950   LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
951   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
952   SharedAddresses.emplace_back(First, Second);
953 }
954
955 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
956   const auto *PrivateVD =
957       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
958   QualType PrivateType = PrivateVD->getType();
959   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
960   if (!PrivateType->isVariablyModifiedType()) {
961     Sizes.emplace_back(
962         CGF.getTypeSize(
963             SharedAddresses[N].first.getType().getNonReferenceType()),
964         nullptr);
965     return;
966   }
967   llvm::Value *Size;
968   llvm::Value *SizeInChars;
969   auto *ElemType =
970       cast<llvm::PointerType>(SharedAddresses[N].first.getPointer()->getType())
971           ->getElementType();
972   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
973   if (AsArraySection) {
974     Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(),
975                                      SharedAddresses[N].first.getPointer());
976     Size = CGF.Builder.CreateNUWAdd(
977         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
978     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
979   } else {
980     SizeInChars = CGF.getTypeSize(
981         SharedAddresses[N].first.getType().getNonReferenceType());
982     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
983   }
984   Sizes.emplace_back(SizeInChars, Size);
985   CodeGenFunction::OpaqueValueMapping OpaqueMap(
986       CGF,
987       cast<OpaqueValueExpr>(
988           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
989       RValue::get(Size));
990   CGF.EmitVariablyModifiedType(PrivateType);
991 }
992
993 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
994                                          llvm::Value *Size) {
995   const auto *PrivateVD =
996       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
997   QualType PrivateType = PrivateVD->getType();
998   if (!PrivateType->isVariablyModifiedType()) {
999     assert(!Size && !Sizes[N].second &&
1000            "Size should be nullptr for non-variably modified reduction "
1001            "items.");
1002     return;
1003   }
1004   CodeGenFunction::OpaqueValueMapping OpaqueMap(
1005       CGF,
1006       cast<OpaqueValueExpr>(
1007           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
1008       RValue::get(Size));
1009   CGF.EmitVariablyModifiedType(PrivateType);
1010 }
1011
1012 void ReductionCodeGen::emitInitialization(
1013     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
1014     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
1015   assert(SharedAddresses.size() > N && "No variable was generated");
1016   const auto *PrivateVD =
1017       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1018   const OMPDeclareReductionDecl *DRD =
1019       getReductionInit(ClausesData[N].ReductionOp);
1020   QualType PrivateType = PrivateVD->getType();
1021   PrivateAddr = CGF.Builder.CreateElementBitCast(
1022       PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1023   QualType SharedType = SharedAddresses[N].first.getType();
1024   SharedLVal = CGF.MakeAddrLValue(
1025       CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(),
1026                                        CGF.ConvertTypeForMem(SharedType)),
1027       SharedType, SharedAddresses[N].first.getBaseInfo(),
1028       CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
1029   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
1030     emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
1031   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1032     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
1033                                      PrivateAddr, SharedLVal.getAddress(),
1034                                      SharedLVal.getType());
1035   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
1036              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
1037     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
1038                          PrivateVD->getType().getQualifiers(),
1039                          /*IsInitializer=*/false);
1040   }
1041 }
1042
1043 bool ReductionCodeGen::needCleanups(unsigned N) {
1044   const auto *PrivateVD =
1045       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1046   QualType PrivateType = PrivateVD->getType();
1047   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1048   return DTorKind != QualType::DK_none;
1049 }
1050
1051 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
1052                                     Address PrivateAddr) {
1053   const auto *PrivateVD =
1054       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1055   QualType PrivateType = PrivateVD->getType();
1056   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1057   if (needCleanups(N)) {
1058     PrivateAddr = CGF.Builder.CreateElementBitCast(
1059         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1060     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
1061   }
1062 }
1063
1064 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1065                           LValue BaseLV) {
1066   BaseTy = BaseTy.getNonReferenceType();
1067   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1068          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1069     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
1070       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
1071     } else {
1072       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy);
1073       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
1074     }
1075     BaseTy = BaseTy->getPointeeType();
1076   }
1077   return CGF.MakeAddrLValue(
1078       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(),
1079                                        CGF.ConvertTypeForMem(ElTy)),
1080       BaseLV.getType(), BaseLV.getBaseInfo(),
1081       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
1082 }
1083
1084 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1085                           llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
1086                           llvm::Value *Addr) {
1087   Address Tmp = Address::invalid();
1088   Address TopTmp = Address::invalid();
1089   Address MostTopTmp = Address::invalid();
1090   BaseTy = BaseTy.getNonReferenceType();
1091   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1092          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1093     Tmp = CGF.CreateMemTemp(BaseTy);
1094     if (TopTmp.isValid())
1095       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
1096     else
1097       MostTopTmp = Tmp;
1098     TopTmp = Tmp;
1099     BaseTy = BaseTy->getPointeeType();
1100   }
1101   llvm::Type *Ty = BaseLVType;
1102   if (Tmp.isValid())
1103     Ty = Tmp.getElementType();
1104   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
1105   if (Tmp.isValid()) {
1106     CGF.Builder.CreateStore(Addr, Tmp);
1107     return MostTopTmp;
1108   }
1109   return Address(Addr, BaseLVAlignment);
1110 }
1111
1112 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
1113   const VarDecl *OrigVD = nullptr;
1114   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
1115     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
1116     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
1117       Base = TempOASE->getBase()->IgnoreParenImpCasts();
1118     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1119       Base = TempASE->getBase()->IgnoreParenImpCasts();
1120     DE = cast<DeclRefExpr>(Base);
1121     OrigVD = cast<VarDecl>(DE->getDecl());
1122   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
1123     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
1124     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1125       Base = TempASE->getBase()->IgnoreParenImpCasts();
1126     DE = cast<DeclRefExpr>(Base);
1127     OrigVD = cast<VarDecl>(DE->getDecl());
1128   }
1129   return OrigVD;
1130 }
1131
1132 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
1133                                                Address PrivateAddr) {
1134   const DeclRefExpr *DE;
1135   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
1136     BaseDecls.emplace_back(OrigVD);
1137     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
1138     LValue BaseLValue =
1139         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1140                     OriginalBaseLValue);
1141     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1142         BaseLValue.getPointer(), SharedAddresses[N].first.getPointer());
1143     llvm::Value *PrivatePointer =
1144         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1145             PrivateAddr.getPointer(),
1146             SharedAddresses[N].first.getAddress().getType());
1147     llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1148     return castToBase(CGF, OrigVD->getType(),
1149                       SharedAddresses[N].first.getType(),
1150                       OriginalBaseLValue.getAddress().getType(),
1151                       OriginalBaseLValue.getAlignment(), Ptr);
1152   }
1153   BaseDecls.emplace_back(
1154       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1155   return PrivateAddr;
1156 }
1157
1158 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1159   const OMPDeclareReductionDecl *DRD =
1160       getReductionInit(ClausesData[N].ReductionOp);
1161   return DRD && DRD->getInitializer();
1162 }
1163
1164 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1165   return CGF.EmitLoadOfPointerLValue(
1166       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1167       getThreadIDVariable()->getType()->castAs<PointerType>());
1168 }
1169
1170 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1171   if (!CGF.HaveInsertPoint())
1172     return;
1173   // 1.2.2 OpenMP Language Terminology
1174   // Structured block - An executable statement with a single entry at the
1175   // top and a single exit at the bottom.
1176   // The point of exit cannot be a branch out of the structured block.
1177   // longjmp() and throw() must not violate the entry/exit criteria.
1178   CGF.EHStack.pushTerminate();
1179   CodeGen(CGF);
1180   CGF.EHStack.popTerminate();
1181 }
1182
1183 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1184     CodeGenFunction &CGF) {
1185   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1186                             getThreadIDVariable()->getType(),
1187                             AlignmentSource::Decl);
1188 }
1189
1190 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1191                                        QualType FieldTy) {
1192   auto *Field = FieldDecl::Create(
1193       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1194       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1195       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1196   Field->setAccess(AS_public);
1197   DC->addDecl(Field);
1198   return Field;
1199 }
1200
1201 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1202                                  StringRef Separator)
1203     : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1204       OffloadEntriesInfoManager(CGM) {
1205   ASTContext &C = CGM.getContext();
1206   RecordDecl *RD = C.buildImplicitRecord("ident_t");
1207   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
1208   RD->startDefinition();
1209   // reserved_1
1210   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1211   // flags
1212   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1213   // reserved_2
1214   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1215   // reserved_3
1216   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1217   // psource
1218   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
1219   RD->completeDefinition();
1220   IdentQTy = C.getRecordType(RD);
1221   IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
1222   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1223
1224   loadOffloadInfoMetadata();
1225 }
1226
1227 void CGOpenMPRuntime::clear() {
1228   InternalVars.clear();
1229   // Clean non-target variable declarations possibly used only in debug info.
1230   for (const auto &Data : EmittedNonTargetVariables) {
1231     if (!Data.getValue().pointsToAliveValue())
1232       continue;
1233     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1234     if (!GV)
1235       continue;
1236     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1237       continue;
1238     GV->eraseFromParent();
1239   }
1240 }
1241
1242 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1243   SmallString<128> Buffer;
1244   llvm::raw_svector_ostream OS(Buffer);
1245   StringRef Sep = FirstSeparator;
1246   for (StringRef Part : Parts) {
1247     OS << Sep << Part;
1248     Sep = Separator;
1249   }
1250   return OS.str();
1251 }
1252
1253 static llvm::Function *
1254 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1255                           const Expr *CombinerInitializer, const VarDecl *In,
1256                           const VarDecl *Out, bool IsCombiner) {
1257   // void .omp_combiner.(Ty *in, Ty *out);
1258   ASTContext &C = CGM.getContext();
1259   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1260   FunctionArgList Args;
1261   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1262                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1263   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1264                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1265   Args.push_back(&OmpOutParm);
1266   Args.push_back(&OmpInParm);
1267   const CGFunctionInfo &FnInfo =
1268       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1269   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1270   std::string Name = CGM.getOpenMPRuntime().getName(
1271       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1272   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1273                                     Name, &CGM.getModule());
1274   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1275   Fn->removeFnAttr(llvm::Attribute::NoInline);
1276   Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1277   Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1278   CodeGenFunction CGF(CGM);
1279   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1280   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1281   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1282                     Out->getLocation());
1283   CodeGenFunction::OMPPrivateScope Scope(CGF);
1284   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1285   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1286     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1287         .getAddress();
1288   });
1289   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1290   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1291     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1292         .getAddress();
1293   });
1294   (void)Scope.Privatize();
1295   if (!IsCombiner && Out->hasInit() &&
1296       !CGF.isTrivialInitializer(Out->getInit())) {
1297     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1298                          Out->getType().getQualifiers(),
1299                          /*IsInitializer=*/true);
1300   }
1301   if (CombinerInitializer)
1302     CGF.EmitIgnoredExpr(CombinerInitializer);
1303   Scope.ForceCleanup();
1304   CGF.FinishFunction();
1305   return Fn;
1306 }
1307
1308 void CGOpenMPRuntime::emitUserDefinedReduction(
1309     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1310   if (UDRMap.count(D) > 0)
1311     return;
1312   llvm::Function *Combiner = emitCombinerOrInitializer(
1313       CGM, D->getType(), D->getCombiner(),
1314       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1315       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1316       /*IsCombiner=*/true);
1317   llvm::Function *Initializer = nullptr;
1318   if (const Expr *Init = D->getInitializer()) {
1319     Initializer = emitCombinerOrInitializer(
1320         CGM, D->getType(),
1321         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1322                                                                      : nullptr,
1323         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1324         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1325         /*IsCombiner=*/false);
1326   }
1327   UDRMap.try_emplace(D, Combiner, Initializer);
1328   if (CGF) {
1329     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1330     Decls.second.push_back(D);
1331   }
1332 }
1333
1334 std::pair<llvm::Function *, llvm::Function *>
1335 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1336   auto I = UDRMap.find(D);
1337   if (I != UDRMap.end())
1338     return I->second;
1339   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1340   return UDRMap.lookup(D);
1341 }
1342
1343 static llvm::Value *emitParallelOrTeamsOutlinedFunction(
1344     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1345     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1346     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1347   assert(ThreadIDVar->getType()->isPointerType() &&
1348          "thread id variable must be of type kmp_int32 *");
1349   CodeGenFunction CGF(CGM, true);
1350   bool HasCancel = false;
1351   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1352     HasCancel = OPD->hasCancel();
1353   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1354     HasCancel = OPSD->hasCancel();
1355   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1356     HasCancel = OPFD->hasCancel();
1357   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1358     HasCancel = OPFD->hasCancel();
1359   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1360     HasCancel = OPFD->hasCancel();
1361   else if (const auto *OPFD =
1362                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1363     HasCancel = OPFD->hasCancel();
1364   else if (const auto *OPFD =
1365                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1366     HasCancel = OPFD->hasCancel();
1367   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1368                                     HasCancel, OutlinedHelperName);
1369   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1370   return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
1371 }
1372
1373 llvm::Value *CGOpenMPRuntime::emitParallelOutlinedFunction(
1374     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1375     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1376   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1377   return emitParallelOrTeamsOutlinedFunction(
1378       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1379 }
1380
1381 llvm::Value *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1382     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1383     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1384   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1385   return emitParallelOrTeamsOutlinedFunction(
1386       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1387 }
1388
1389 llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction(
1390     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1391     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1392     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1393     bool Tied, unsigned &NumberOfParts) {
1394   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1395                                               PrePostActionTy &) {
1396     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1397     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1398     llvm::Value *TaskArgs[] = {
1399         UpLoc, ThreadID,
1400         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1401                                     TaskTVar->getType()->castAs<PointerType>())
1402             .getPointer()};
1403     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
1404   };
1405   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1406                                                             UntiedCodeGen);
1407   CodeGen.setAction(Action);
1408   assert(!ThreadIDVar->getType()->isPointerType() &&
1409          "thread id variable must be of type kmp_int32 for tasks");
1410   const OpenMPDirectiveKind Region =
1411       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1412                                                       : OMPD_task;
1413   const CapturedStmt *CS = D.getCapturedStmt(Region);
1414   const auto *TD = dyn_cast<OMPTaskDirective>(&D);
1415   CodeGenFunction CGF(CGM, true);
1416   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1417                                         InnermostKind,
1418                                         TD ? TD->hasCancel() : false, Action);
1419   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1420   llvm::Value *Res = CGF.GenerateCapturedStmtFunction(*CS);
1421   if (!Tied)
1422     NumberOfParts = Action.getNumberOfParts();
1423   return Res;
1424 }
1425
1426 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1427                              const RecordDecl *RD, const CGRecordLayout &RL,
1428                              ArrayRef<llvm::Constant *> Data) {
1429   llvm::StructType *StructTy = RL.getLLVMType();
1430   unsigned PrevIdx = 0;
1431   ConstantInitBuilder CIBuilder(CGM);
1432   auto DI = Data.begin();
1433   for (const FieldDecl *FD : RD->fields()) {
1434     unsigned Idx = RL.getLLVMFieldNo(FD);
1435     // Fill the alignment.
1436     for (unsigned I = PrevIdx; I < Idx; ++I)
1437       Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1438     PrevIdx = Idx + 1;
1439     Fields.add(*DI);
1440     ++DI;
1441   }
1442 }
1443
1444 template <class... As>
1445 static llvm::GlobalVariable *
1446 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1447                    ArrayRef<llvm::Constant *> Data, const Twine &Name,
1448                    As &&... Args) {
1449   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1450   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1451   ConstantInitBuilder CIBuilder(CGM);
1452   ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1453   buildStructValue(Fields, CGM, RD, RL, Data);
1454   return Fields.finishAndCreateGlobal(
1455       Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1456       std::forward<As>(Args)...);
1457 }
1458
1459 template <typename T>
1460 static void
1461 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1462                                          ArrayRef<llvm::Constant *> Data,
1463                                          T &Parent) {
1464   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1465   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1466   ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1467   buildStructValue(Fields, CGM, RD, RL, Data);
1468   Fields.finishAndAddTo(Parent);
1469 }
1470
1471 Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
1472   CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1473   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1474   FlagsTy FlagsKey(Flags, Reserved2Flags);
1475   llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
1476   if (!Entry) {
1477     if (!DefaultOpenMPPSource) {
1478       // Initialize default location for psource field of ident_t structure of
1479       // all ident_t objects. Format is ";file;function;line;column;;".
1480       // Taken from
1481       // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c
1482       DefaultOpenMPPSource =
1483           CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
1484       DefaultOpenMPPSource =
1485           llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
1486     }
1487
1488     llvm::Constant *Data[] = {
1489         llvm::ConstantInt::getNullValue(CGM.Int32Ty),
1490         llvm::ConstantInt::get(CGM.Int32Ty, Flags),
1491         llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
1492         llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
1493     llvm::GlobalValue *DefaultOpenMPLocation =
1494         createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
1495                            llvm::GlobalValue::PrivateLinkage);
1496     DefaultOpenMPLocation->setUnnamedAddr(
1497         llvm::GlobalValue::UnnamedAddr::Global);
1498
1499     OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
1500   }
1501   return Address(Entry, Align);
1502 }
1503
1504 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1505                                              bool AtCurrentPoint) {
1506   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1507   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1508
1509   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1510   if (AtCurrentPoint) {
1511     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1512         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1513   } else {
1514     Elem.second.ServiceInsertPt =
1515         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1516     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1517   }
1518 }
1519
1520 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1521   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1522   if (Elem.second.ServiceInsertPt) {
1523     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1524     Elem.second.ServiceInsertPt = nullptr;
1525     Ptr->eraseFromParent();
1526   }
1527 }
1528
1529 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1530                                                  SourceLocation Loc,
1531                                                  unsigned Flags) {
1532   Flags |= OMP_IDENT_KMPC;
1533   // If no debug info is generated - return global default location.
1534   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1535       Loc.isInvalid())
1536     return getOrCreateDefaultLocation(Flags).getPointer();
1537
1538   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1539
1540   CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1541   Address LocValue = Address::invalid();
1542   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1543   if (I != OpenMPLocThreadIDMap.end())
1544     LocValue = Address(I->second.DebugLoc, Align);
1545
1546   // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
1547   // GetOpenMPThreadID was called before this routine.
1548   if (!LocValue.isValid()) {
1549     // Generate "ident_t .kmpc_loc.addr;"
1550     Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
1551     auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1552     Elem.second.DebugLoc = AI.getPointer();
1553     LocValue = AI;
1554
1555     if (!Elem.second.ServiceInsertPt)
1556       setLocThreadIdInsertPt(CGF);
1557     CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1558     CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1559     CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
1560                              CGF.getTypeSize(IdentQTy));
1561   }
1562
1563   // char **psource = &.kmpc_loc_<flags>.addr.psource;
1564   LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
1565   auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
1566   LValue PSource =
1567       CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
1568
1569   llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
1570   if (OMPDebugLoc == nullptr) {
1571     SmallString<128> Buffer2;
1572     llvm::raw_svector_ostream OS2(Buffer2);
1573     // Build debug location
1574     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1575     OS2 << ";" << PLoc.getFilename() << ";";
1576     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1577       OS2 << FD->getQualifiedNameAsString();
1578     OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1579     OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
1580     OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
1581   }
1582   // *psource = ";<File>;<Function>;<Line>;<Column>;;";
1583   CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
1584
1585   // Our callers always pass this to a runtime function, so for
1586   // convenience, go ahead and return a naked pointer.
1587   return LocValue.getPointer();
1588 }
1589
1590 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1591                                           SourceLocation Loc) {
1592   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1593
1594   llvm::Value *ThreadID = nullptr;
1595   // Check whether we've already cached a load of the thread id in this
1596   // function.
1597   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1598   if (I != OpenMPLocThreadIDMap.end()) {
1599     ThreadID = I->second.ThreadID;
1600     if (ThreadID != nullptr)
1601       return ThreadID;
1602   }
1603   // If exceptions are enabled, do not use parameter to avoid possible crash.
1604   if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1605       !CGF.getLangOpts().CXXExceptions ||
1606       CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
1607     if (auto *OMPRegionInfo =
1608             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1609       if (OMPRegionInfo->getThreadIDVariable()) {
1610         // Check if this an outlined function with thread id passed as argument.
1611         LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1612         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1613         // If value loaded in entry block, cache it and use it everywhere in
1614         // function.
1615         if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
1616           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1617           Elem.second.ThreadID = ThreadID;
1618         }
1619         return ThreadID;
1620       }
1621     }
1622   }
1623
1624   // This is not an outlined function region - need to call __kmpc_int32
1625   // kmpc_global_thread_num(ident_t *loc).
1626   // Generate thread id value and cache this value for use across the
1627   // function.
1628   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1629   if (!Elem.second.ServiceInsertPt)
1630     setLocThreadIdInsertPt(CGF);
1631   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1632   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1633   llvm::CallInst *Call = CGF.Builder.CreateCall(
1634       createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
1635       emitUpdateLocation(CGF, Loc));
1636   Call->setCallingConv(CGF.getRuntimeCC());
1637   Elem.second.ThreadID = Call;
1638   return Call;
1639 }
1640
1641 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1642   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1643   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1644     clearLocThreadIdInsertPt(CGF);
1645     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1646   }
1647   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1648     for(auto *D : FunctionUDRMap[CGF.CurFn])
1649       UDRMap.erase(D);
1650     FunctionUDRMap.erase(CGF.CurFn);
1651   }
1652 }
1653
1654 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1655   return IdentTy->getPointerTo();
1656 }
1657
1658 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1659   if (!Kmpc_MicroTy) {
1660     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1661     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1662                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1663     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1664   }
1665   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1666 }
1667
1668 llvm::Constant *
1669 CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
1670   llvm::Constant *RTLFn = nullptr;
1671   switch (static_cast<OpenMPRTLFunction>(Function)) {
1672   case OMPRTL__kmpc_fork_call: {
1673     // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
1674     // microtask, ...);
1675     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1676                                 getKmpc_MicroPointerTy()};
1677     auto *FnTy =
1678         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
1679     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
1680     break;
1681   }
1682   case OMPRTL__kmpc_global_thread_num: {
1683     // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
1684     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1685     auto *FnTy =
1686         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1687     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
1688     break;
1689   }
1690   case OMPRTL__kmpc_threadprivate_cached: {
1691     // Build void *__kmpc_threadprivate_cached(ident_t *loc,
1692     // kmp_int32 global_tid, void *data, size_t size, void ***cache);
1693     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1694                                 CGM.VoidPtrTy, CGM.SizeTy,
1695                                 CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
1696     auto *FnTy =
1697         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
1698     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
1699     break;
1700   }
1701   case OMPRTL__kmpc_critical: {
1702     // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
1703     // kmp_critical_name *crit);
1704     llvm::Type *TypeParams[] = {
1705         getIdentTyPointerTy(), CGM.Int32Ty,
1706         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1707     auto *FnTy =
1708         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1709     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
1710     break;
1711   }
1712   case OMPRTL__kmpc_critical_with_hint: {
1713     // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
1714     // kmp_critical_name *crit, uintptr_t hint);
1715     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1716                                 llvm::PointerType::getUnqual(KmpCriticalNameTy),
1717                                 CGM.IntPtrTy};
1718     auto *FnTy =
1719         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1720     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
1721     break;
1722   }
1723   case OMPRTL__kmpc_threadprivate_register: {
1724     // Build void __kmpc_threadprivate_register(ident_t *, void *data,
1725     // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
1726     // typedef void *(*kmpc_ctor)(void *);
1727     auto *KmpcCtorTy =
1728         llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1729                                 /*isVarArg*/ false)->getPointerTo();
1730     // typedef void *(*kmpc_cctor)(void *, void *);
1731     llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1732     auto *KmpcCopyCtorTy =
1733         llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
1734                                 /*isVarArg*/ false)
1735             ->getPointerTo();
1736     // typedef void (*kmpc_dtor)(void *);
1737     auto *KmpcDtorTy =
1738         llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
1739             ->getPointerTo();
1740     llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
1741                               KmpcCopyCtorTy, KmpcDtorTy};
1742     auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
1743                                         /*isVarArg*/ false);
1744     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
1745     break;
1746   }
1747   case OMPRTL__kmpc_end_critical: {
1748     // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
1749     // kmp_critical_name *crit);
1750     llvm::Type *TypeParams[] = {
1751         getIdentTyPointerTy(), CGM.Int32Ty,
1752         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1753     auto *FnTy =
1754         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1755     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
1756     break;
1757   }
1758   case OMPRTL__kmpc_cancel_barrier: {
1759     // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
1760     // global_tid);
1761     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1762     auto *FnTy =
1763         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1764     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
1765     break;
1766   }
1767   case OMPRTL__kmpc_barrier: {
1768     // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
1769     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1770     auto *FnTy =
1771         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1772     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
1773     break;
1774   }
1775   case OMPRTL__kmpc_for_static_fini: {
1776     // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
1777     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1778     auto *FnTy =
1779         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1780     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
1781     break;
1782   }
1783   case OMPRTL__kmpc_push_num_threads: {
1784     // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
1785     // kmp_int32 num_threads)
1786     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1787                                 CGM.Int32Ty};
1788     auto *FnTy =
1789         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1790     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
1791     break;
1792   }
1793   case OMPRTL__kmpc_serialized_parallel: {
1794     // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
1795     // global_tid);
1796     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1797     auto *FnTy =
1798         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1799     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
1800     break;
1801   }
1802   case OMPRTL__kmpc_end_serialized_parallel: {
1803     // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
1804     // global_tid);
1805     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1806     auto *FnTy =
1807         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1808     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
1809     break;
1810   }
1811   case OMPRTL__kmpc_flush: {
1812     // Build void __kmpc_flush(ident_t *loc);
1813     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1814     auto *FnTy =
1815         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1816     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
1817     break;
1818   }
1819   case OMPRTL__kmpc_master: {
1820     // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
1821     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1822     auto *FnTy =
1823         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1824     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
1825     break;
1826   }
1827   case OMPRTL__kmpc_end_master: {
1828     // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
1829     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1830     auto *FnTy =
1831         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1832     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
1833     break;
1834   }
1835   case OMPRTL__kmpc_omp_taskyield: {
1836     // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
1837     // int end_part);
1838     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
1839     auto *FnTy =
1840         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1841     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
1842     break;
1843   }
1844   case OMPRTL__kmpc_single: {
1845     // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
1846     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1847     auto *FnTy =
1848         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1849     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
1850     break;
1851   }
1852   case OMPRTL__kmpc_end_single: {
1853     // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
1854     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1855     auto *FnTy =
1856         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1857     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
1858     break;
1859   }
1860   case OMPRTL__kmpc_omp_task_alloc: {
1861     // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
1862     // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1863     // kmp_routine_entry_t *task_entry);
1864     assert(KmpRoutineEntryPtrTy != nullptr &&
1865            "Type kmp_routine_entry_t must be created.");
1866     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
1867                                 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
1868     // Return void * and then cast to particular kmp_task_t type.
1869     auto *FnTy =
1870         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
1871     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
1872     break;
1873   }
1874   case OMPRTL__kmpc_omp_task: {
1875     // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1876     // *new_task);
1877     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1878                                 CGM.VoidPtrTy};
1879     auto *FnTy =
1880         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1881     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
1882     break;
1883   }
1884   case OMPRTL__kmpc_copyprivate: {
1885     // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
1886     // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
1887     // kmp_int32 didit);
1888     llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1889     auto *CpyFnTy =
1890         llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
1891     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
1892                                 CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
1893                                 CGM.Int32Ty};
1894     auto *FnTy =
1895         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1896     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
1897     break;
1898   }
1899   case OMPRTL__kmpc_reduce: {
1900     // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
1901     // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
1902     // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
1903     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1904     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1905                                                /*isVarArg=*/false);
1906     llvm::Type *TypeParams[] = {
1907         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1908         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1909         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1910     auto *FnTy =
1911         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1912     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
1913     break;
1914   }
1915   case OMPRTL__kmpc_reduce_nowait: {
1916     // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
1917     // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
1918     // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
1919     // *lck);
1920     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1921     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1922                                                /*isVarArg=*/false);
1923     llvm::Type *TypeParams[] = {
1924         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1925         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1926         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1927     auto *FnTy =
1928         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1929     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
1930     break;
1931   }
1932   case OMPRTL__kmpc_end_reduce: {
1933     // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
1934     // kmp_critical_name *lck);
1935     llvm::Type *TypeParams[] = {
1936         getIdentTyPointerTy(), CGM.Int32Ty,
1937         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1938     auto *FnTy =
1939         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1940     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
1941     break;
1942   }
1943   case OMPRTL__kmpc_end_reduce_nowait: {
1944     // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
1945     // kmp_critical_name *lck);
1946     llvm::Type *TypeParams[] = {
1947         getIdentTyPointerTy(), CGM.Int32Ty,
1948         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1949     auto *FnTy =
1950         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1951     RTLFn =
1952         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
1953     break;
1954   }
1955   case OMPRTL__kmpc_omp_task_begin_if0: {
1956     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1957     // *new_task);
1958     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1959                                 CGM.VoidPtrTy};
1960     auto *FnTy =
1961         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1962     RTLFn =
1963         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
1964     break;
1965   }
1966   case OMPRTL__kmpc_omp_task_complete_if0: {
1967     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1968     // *new_task);
1969     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1970                                 CGM.VoidPtrTy};
1971     auto *FnTy =
1972         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1973     RTLFn = CGM.CreateRuntimeFunction(FnTy,
1974                                       /*Name=*/"__kmpc_omp_task_complete_if0");
1975     break;
1976   }
1977   case OMPRTL__kmpc_ordered: {
1978     // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
1979     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1980     auto *FnTy =
1981         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1982     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
1983     break;
1984   }
1985   case OMPRTL__kmpc_end_ordered: {
1986     // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
1987     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1988     auto *FnTy =
1989         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1990     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
1991     break;
1992   }
1993   case OMPRTL__kmpc_omp_taskwait: {
1994     // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
1995     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1996     auto *FnTy =
1997         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1998     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
1999     break;
2000   }
2001   case OMPRTL__kmpc_taskgroup: {
2002     // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
2003     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2004     auto *FnTy =
2005         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2006     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
2007     break;
2008   }
2009   case OMPRTL__kmpc_end_taskgroup: {
2010     // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
2011     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2012     auto *FnTy =
2013         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2014     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
2015     break;
2016   }
2017   case OMPRTL__kmpc_push_proc_bind: {
2018     // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
2019     // int proc_bind)
2020     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2021     auto *FnTy =
2022         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2023     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
2024     break;
2025   }
2026   case OMPRTL__kmpc_omp_task_with_deps: {
2027     // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
2028     // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
2029     // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
2030     llvm::Type *TypeParams[] = {
2031         getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
2032         CGM.VoidPtrTy,         CGM.Int32Ty, CGM.VoidPtrTy};
2033     auto *FnTy =
2034         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2035     RTLFn =
2036         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
2037     break;
2038   }
2039   case OMPRTL__kmpc_omp_wait_deps: {
2040     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
2041     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
2042     // kmp_depend_info_t *noalias_dep_list);
2043     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2044                                 CGM.Int32Ty,           CGM.VoidPtrTy,
2045                                 CGM.Int32Ty,           CGM.VoidPtrTy};
2046     auto *FnTy =
2047         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2048     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
2049     break;
2050   }
2051   case OMPRTL__kmpc_cancellationpoint: {
2052     // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
2053     // global_tid, kmp_int32 cncl_kind)
2054     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2055     auto *FnTy =
2056         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2057     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
2058     break;
2059   }
2060   case OMPRTL__kmpc_cancel: {
2061     // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
2062     // kmp_int32 cncl_kind)
2063     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2064     auto *FnTy =
2065         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2066     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
2067     break;
2068   }
2069   case OMPRTL__kmpc_push_num_teams: {
2070     // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
2071     // kmp_int32 num_teams, kmp_int32 num_threads)
2072     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
2073         CGM.Int32Ty};
2074     auto *FnTy =
2075         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2076     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
2077     break;
2078   }
2079   case OMPRTL__kmpc_fork_teams: {
2080     // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
2081     // microtask, ...);
2082     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2083                                 getKmpc_MicroPointerTy()};
2084     auto *FnTy =
2085         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
2086     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
2087     break;
2088   }
2089   case OMPRTL__kmpc_taskloop: {
2090     // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
2091     // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
2092     // sched, kmp_uint64 grainsize, void *task_dup);
2093     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2094                                 CGM.IntTy,
2095                                 CGM.VoidPtrTy,
2096                                 CGM.IntTy,
2097                                 CGM.Int64Ty->getPointerTo(),
2098                                 CGM.Int64Ty->getPointerTo(),
2099                                 CGM.Int64Ty,
2100                                 CGM.IntTy,
2101                                 CGM.IntTy,
2102                                 CGM.Int64Ty,
2103                                 CGM.VoidPtrTy};
2104     auto *FnTy =
2105         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2106     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
2107     break;
2108   }
2109   case OMPRTL__kmpc_doacross_init: {
2110     // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
2111     // num_dims, struct kmp_dim *dims);
2112     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2113                                 CGM.Int32Ty,
2114                                 CGM.Int32Ty,
2115                                 CGM.VoidPtrTy};
2116     auto *FnTy =
2117         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2118     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
2119     break;
2120   }
2121   case OMPRTL__kmpc_doacross_fini: {
2122     // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
2123     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2124     auto *FnTy =
2125         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2126     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
2127     break;
2128   }
2129   case OMPRTL__kmpc_doacross_post: {
2130     // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
2131     // *vec);
2132     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2133                                 CGM.Int64Ty->getPointerTo()};
2134     auto *FnTy =
2135         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2136     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
2137     break;
2138   }
2139   case OMPRTL__kmpc_doacross_wait: {
2140     // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
2141     // *vec);
2142     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2143                                 CGM.Int64Ty->getPointerTo()};
2144     auto *FnTy =
2145         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2146     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
2147     break;
2148   }
2149   case OMPRTL__kmpc_task_reduction_init: {
2150     // Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
2151     // *data);
2152     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
2153     auto *FnTy =
2154         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2155     RTLFn =
2156         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
2157     break;
2158   }
2159   case OMPRTL__kmpc_task_reduction_get_th_data: {
2160     // Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
2161     // *d);
2162     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
2163     auto *FnTy =
2164         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2165     RTLFn = CGM.CreateRuntimeFunction(
2166         FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
2167     break;
2168   }
2169   case OMPRTL__kmpc_push_target_tripcount: {
2170     // Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
2171     // size);
2172     llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
2173     llvm::FunctionType *FnTy =
2174         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2175     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
2176     break;
2177   }
2178   case OMPRTL__tgt_target: {
2179     // Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
2180     // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2181     // *arg_types);
2182     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2183                                 CGM.VoidPtrTy,
2184                                 CGM.Int32Ty,
2185                                 CGM.VoidPtrPtrTy,
2186                                 CGM.VoidPtrPtrTy,
2187                                 CGM.SizeTy->getPointerTo(),
2188                                 CGM.Int64Ty->getPointerTo()};
2189     auto *FnTy =
2190         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2191     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
2192     break;
2193   }
2194   case OMPRTL__tgt_target_nowait: {
2195     // Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
2196     // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
2197     // int64_t *arg_types);
2198     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2199                                 CGM.VoidPtrTy,
2200                                 CGM.Int32Ty,
2201                                 CGM.VoidPtrPtrTy,
2202                                 CGM.VoidPtrPtrTy,
2203                                 CGM.SizeTy->getPointerTo(),
2204                                 CGM.Int64Ty->getPointerTo()};
2205     auto *FnTy =
2206         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2207     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
2208     break;
2209   }
2210   case OMPRTL__tgt_target_teams: {
2211     // Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
2212     // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
2213     // int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2214     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2215                                 CGM.VoidPtrTy,
2216                                 CGM.Int32Ty,
2217                                 CGM.VoidPtrPtrTy,
2218                                 CGM.VoidPtrPtrTy,
2219                                 CGM.SizeTy->getPointerTo(),
2220                                 CGM.Int64Ty->getPointerTo(),
2221                                 CGM.Int32Ty,
2222                                 CGM.Int32Ty};
2223     auto *FnTy =
2224         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2225     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
2226     break;
2227   }
2228   case OMPRTL__tgt_target_teams_nowait: {
2229     // Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
2230     // *host_ptr, int32_t arg_num, void** args_base, void **args, size_t
2231     // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2232     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2233                                 CGM.VoidPtrTy,
2234                                 CGM.Int32Ty,
2235                                 CGM.VoidPtrPtrTy,
2236                                 CGM.VoidPtrPtrTy,
2237                                 CGM.SizeTy->getPointerTo(),
2238                                 CGM.Int64Ty->getPointerTo(),
2239                                 CGM.Int32Ty,
2240                                 CGM.Int32Ty};
2241     auto *FnTy =
2242         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2243     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
2244     break;
2245   }
2246   case OMPRTL__tgt_register_lib: {
2247     // Build void __tgt_register_lib(__tgt_bin_desc *desc);
2248     QualType ParamTy =
2249         CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
2250     llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
2251     auto *FnTy =
2252         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2253     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
2254     break;
2255   }
2256   case OMPRTL__tgt_unregister_lib: {
2257     // Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
2258     QualType ParamTy =
2259         CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
2260     llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
2261     auto *FnTy =
2262         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2263     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
2264     break;
2265   }
2266   case OMPRTL__tgt_target_data_begin: {
2267     // Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
2268     // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
2269     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2270                                 CGM.Int32Ty,
2271                                 CGM.VoidPtrPtrTy,
2272                                 CGM.VoidPtrPtrTy,
2273                                 CGM.SizeTy->getPointerTo(),
2274                                 CGM.Int64Ty->getPointerTo()};
2275     auto *FnTy =
2276         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2277     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
2278     break;
2279   }
2280   case OMPRTL__tgt_target_data_begin_nowait: {
2281     // Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
2282     // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2283     // *arg_types);
2284     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2285                                 CGM.Int32Ty,
2286                                 CGM.VoidPtrPtrTy,
2287                                 CGM.VoidPtrPtrTy,
2288                                 CGM.SizeTy->getPointerTo(),
2289                                 CGM.Int64Ty->getPointerTo()};
2290     auto *FnTy =
2291         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2292     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
2293     break;
2294   }
2295   case OMPRTL__tgt_target_data_end: {
2296     // Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
2297     // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
2298     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2299                                 CGM.Int32Ty,
2300                                 CGM.VoidPtrPtrTy,
2301                                 CGM.VoidPtrPtrTy,
2302                                 CGM.SizeTy->getPointerTo(),
2303                                 CGM.Int64Ty->getPointerTo()};
2304     auto *FnTy =
2305         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2306     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
2307     break;
2308   }
2309   case OMPRTL__tgt_target_data_end_nowait: {
2310     // Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
2311     // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2312     // *arg_types);
2313     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2314                                 CGM.Int32Ty,
2315                                 CGM.VoidPtrPtrTy,
2316                                 CGM.VoidPtrPtrTy,
2317                                 CGM.SizeTy->getPointerTo(),
2318                                 CGM.Int64Ty->getPointerTo()};
2319     auto *FnTy =
2320         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2321     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
2322     break;
2323   }
2324   case OMPRTL__tgt_target_data_update: {
2325     // Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
2326     // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
2327     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2328                                 CGM.Int32Ty,
2329                                 CGM.VoidPtrPtrTy,
2330                                 CGM.VoidPtrPtrTy,
2331                                 CGM.SizeTy->getPointerTo(),
2332                                 CGM.Int64Ty->getPointerTo()};
2333     auto *FnTy =
2334         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2335     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
2336     break;
2337   }
2338   case OMPRTL__tgt_target_data_update_nowait: {
2339     // Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
2340     // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2341     // *arg_types);
2342     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2343                                 CGM.Int32Ty,
2344                                 CGM.VoidPtrPtrTy,
2345                                 CGM.VoidPtrPtrTy,
2346                                 CGM.SizeTy->getPointerTo(),
2347                                 CGM.Int64Ty->getPointerTo()};
2348     auto *FnTy =
2349         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2350     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
2351     break;
2352   }
2353   }
2354   assert(RTLFn && "Unable to find OpenMP runtime function");
2355   return RTLFn;
2356 }
2357
2358 llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize,
2359                                                              bool IVSigned) {
2360   assert((IVSize == 32 || IVSize == 64) &&
2361          "IV size is not compatible with the omp runtime");
2362   StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
2363                                             : "__kmpc_for_static_init_4u")
2364                                 : (IVSigned ? "__kmpc_for_static_init_8"
2365                                             : "__kmpc_for_static_init_8u");
2366   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2367   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2368   llvm::Type *TypeParams[] = {
2369     getIdentTyPointerTy(),                     // loc
2370     CGM.Int32Ty,                               // tid
2371     CGM.Int32Ty,                               // schedtype
2372     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2373     PtrTy,                                     // p_lower
2374     PtrTy,                                     // p_upper
2375     PtrTy,                                     // p_stride
2376     ITy,                                       // incr
2377     ITy                                        // chunk
2378   };
2379   auto *FnTy =
2380       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2381   return CGM.CreateRuntimeFunction(FnTy, Name);
2382 }
2383
2384 llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize,
2385                                                             bool IVSigned) {
2386   assert((IVSize == 32 || IVSize == 64) &&
2387          "IV size is not compatible with the omp runtime");
2388   StringRef Name =
2389       IVSize == 32
2390           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
2391           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
2392   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2393   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
2394                                CGM.Int32Ty,           // tid
2395                                CGM.Int32Ty,           // schedtype
2396                                ITy,                   // lower
2397                                ITy,                   // upper
2398                                ITy,                   // stride
2399                                ITy                    // chunk
2400   };
2401   auto *FnTy =
2402       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2403   return CGM.CreateRuntimeFunction(FnTy, Name);
2404 }
2405
2406 llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize,
2407                                                             bool IVSigned) {
2408   assert((IVSize == 32 || IVSize == 64) &&
2409          "IV size is not compatible with the omp runtime");
2410   StringRef Name =
2411       IVSize == 32
2412           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
2413           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
2414   llvm::Type *TypeParams[] = {
2415       getIdentTyPointerTy(), // loc
2416       CGM.Int32Ty,           // tid
2417   };
2418   auto *FnTy =
2419       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2420   return CGM.CreateRuntimeFunction(FnTy, Name);
2421 }
2422
2423 llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize,
2424                                                             bool IVSigned) {
2425   assert((IVSize == 32 || IVSize == 64) &&
2426          "IV size is not compatible with the omp runtime");
2427   StringRef Name =
2428       IVSize == 32
2429           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
2430           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
2431   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2432   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2433   llvm::Type *TypeParams[] = {
2434     getIdentTyPointerTy(),                     // loc
2435     CGM.Int32Ty,                               // tid
2436     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2437     PtrTy,                                     // p_lower
2438     PtrTy,                                     // p_upper
2439     PtrTy                                      // p_stride
2440   };
2441   auto *FnTy =
2442       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2443   return CGM.CreateRuntimeFunction(FnTy, Name);
2444 }
2445
2446 Address CGOpenMPRuntime::getAddrOfDeclareTargetLink(const VarDecl *VD) {
2447   if (CGM.getLangOpts().OpenMPSimd)
2448     return Address::invalid();
2449   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2450       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2451   if (Res && *Res == OMPDeclareTargetDeclAttr::MT_Link) {
2452     SmallString<64> PtrName;
2453     {
2454       llvm::raw_svector_ostream OS(PtrName);
2455       OS << CGM.getMangledName(GlobalDecl(VD)) << "_decl_tgt_link_ptr";
2456     }
2457     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
2458     if (!Ptr) {
2459       QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
2460       Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
2461                                         PtrName);
2462       if (!CGM.getLangOpts().OpenMPIsDevice) {
2463         auto *GV = cast<llvm::GlobalVariable>(Ptr);
2464         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
2465         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
2466       }
2467       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ptr));
2468       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
2469     }
2470     return Address(Ptr, CGM.getContext().getDeclAlign(VD));
2471   }
2472   return Address::invalid();
2473 }
2474
2475 llvm::Constant *
2476 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
2477   assert(!CGM.getLangOpts().OpenMPUseTLS ||
2478          !CGM.getContext().getTargetInfo().isTLSSupported());
2479   // Lookup the entry, lazily creating it if necessary.
2480   std::string Suffix = getName({"cache", ""});
2481   return getOrCreateInternalVariable(
2482       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
2483 }
2484
2485 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
2486                                                 const VarDecl *VD,
2487                                                 Address VDAddr,
2488                                                 SourceLocation Loc) {
2489   if (CGM.getLangOpts().OpenMPUseTLS &&
2490       CGM.getContext().getTargetInfo().isTLSSupported())
2491     return VDAddr;
2492
2493   llvm::Type *VarTy = VDAddr.getElementType();
2494   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2495                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
2496                                                        CGM.Int8PtrTy),
2497                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
2498                          getOrCreateThreadPrivateCache(VD)};
2499   return Address(CGF.EmitRuntimeCall(
2500       createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
2501                  VDAddr.getAlignment());
2502 }
2503
2504 void CGOpenMPRuntime::emitThreadPrivateVarInit(
2505     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
2506     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
2507   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
2508   // library.
2509   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
2510   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
2511                       OMPLoc);
2512   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
2513   // to register constructor/destructor for variable.
2514   llvm::Value *Args[] = {
2515       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
2516       Ctor, CopyCtor, Dtor};
2517   CGF.EmitRuntimeCall(
2518       createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
2519 }
2520
2521 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
2522     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
2523     bool PerformInit, CodeGenFunction *CGF) {
2524   if (CGM.getLangOpts().OpenMPUseTLS &&
2525       CGM.getContext().getTargetInfo().isTLSSupported())
2526     return nullptr;
2527
2528   VD = VD->getDefinition(CGM.getContext());
2529   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
2530     QualType ASTTy = VD->getType();
2531
2532     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
2533     const Expr *Init = VD->getAnyInitializer();
2534     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2535       // Generate function that re-emits the declaration's initializer into the
2536       // threadprivate copy of the variable VD
2537       CodeGenFunction CtorCGF(CGM);
2538       FunctionArgList Args;
2539       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2540                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2541                             ImplicitParamDecl::Other);
2542       Args.push_back(&Dst);
2543
2544       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2545           CGM.getContext().VoidPtrTy, Args);
2546       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2547       std::string Name = getName({"__kmpc_global_ctor_", ""});
2548       llvm::Function *Fn =
2549           CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2550       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
2551                             Args, Loc, Loc);
2552       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
2553           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2554           CGM.getContext().VoidPtrTy, Dst.getLocation());
2555       Address Arg = Address(ArgVal, VDAddr.getAlignment());
2556       Arg = CtorCGF.Builder.CreateElementBitCast(
2557           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
2558       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
2559                                /*IsInitializer=*/true);
2560       ArgVal = CtorCGF.EmitLoadOfScalar(
2561           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2562           CGM.getContext().VoidPtrTy, Dst.getLocation());
2563       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
2564       CtorCGF.FinishFunction();
2565       Ctor = Fn;
2566     }
2567     if (VD->getType().isDestructedType() != QualType::DK_none) {
2568       // Generate function that emits destructor call for the threadprivate copy
2569       // of the variable VD
2570       CodeGenFunction DtorCGF(CGM);
2571       FunctionArgList Args;
2572       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2573                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2574                             ImplicitParamDecl::Other);
2575       Args.push_back(&Dst);
2576
2577       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2578           CGM.getContext().VoidTy, Args);
2579       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2580       std::string Name = getName({"__kmpc_global_dtor_", ""});
2581       llvm::Function *Fn =
2582           CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2583       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2584       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
2585                             Loc, Loc);
2586       // Create a scope with an artificial location for the body of this function.
2587       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2588       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
2589           DtorCGF.GetAddrOfLocalVar(&Dst),
2590           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
2591       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
2592                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
2593                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
2594       DtorCGF.FinishFunction();
2595       Dtor = Fn;
2596     }
2597     // Do not emit init function if it is not required.
2598     if (!Ctor && !Dtor)
2599       return nullptr;
2600
2601     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
2602     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
2603                                                /*isVarArg=*/false)
2604                            ->getPointerTo();
2605     // Copying constructor for the threadprivate variable.
2606     // Must be NULL - reserved by runtime, but currently it requires that this
2607     // parameter is always NULL. Otherwise it fires assertion.
2608     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
2609     if (Ctor == nullptr) {
2610       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
2611                                              /*isVarArg=*/false)
2612                          ->getPointerTo();
2613       Ctor = llvm::Constant::getNullValue(CtorTy);
2614     }
2615     if (Dtor == nullptr) {
2616       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
2617                                              /*isVarArg=*/false)
2618                          ->getPointerTo();
2619       Dtor = llvm::Constant::getNullValue(DtorTy);
2620     }
2621     if (!CGF) {
2622       auto *InitFunctionTy =
2623           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
2624       std::string Name = getName({"__omp_threadprivate_init_", ""});
2625       llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
2626           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
2627       CodeGenFunction InitCGF(CGM);
2628       FunctionArgList ArgList;
2629       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
2630                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
2631                             Loc, Loc);
2632       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2633       InitCGF.FinishFunction();
2634       return InitFunction;
2635     }
2636     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2637   }
2638   return nullptr;
2639 }
2640
2641 /// Obtain information that uniquely identifies a target entry. This
2642 /// consists of the file and device IDs as well as line number associated with
2643 /// the relevant entry source location.
2644 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
2645                                      unsigned &DeviceID, unsigned &FileID,
2646                                      unsigned &LineNum) {
2647   SourceManager &SM = C.getSourceManager();
2648
2649   // The loc should be always valid and have a file ID (the user cannot use
2650   // #pragma directives in macros)
2651
2652   assert(Loc.isValid() && "Source location is expected to be always valid.");
2653
2654   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2655   assert(PLoc.isValid() && "Source location is expected to be always valid.");
2656
2657   llvm::sys::fs::UniqueID ID;
2658   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
2659     SM.getDiagnostics().Report(diag::err_cannot_open_file)
2660         << PLoc.getFilename() << EC.message();
2661
2662   DeviceID = ID.getDevice();
2663   FileID = ID.getFile();
2664   LineNum = PLoc.getLine();
2665 }
2666
2667 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
2668                                                      llvm::GlobalVariable *Addr,
2669                                                      bool PerformInit) {
2670   Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2671       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2672   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link)
2673     return CGM.getLangOpts().OpenMPIsDevice;
2674   VD = VD->getDefinition(CGM.getContext());
2675   if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
2676     return CGM.getLangOpts().OpenMPIsDevice;
2677
2678   QualType ASTTy = VD->getType();
2679
2680   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
2681   // Produce the unique prefix to identify the new target regions. We use
2682   // the source location of the variable declaration which we know to not
2683   // conflict with any target region.
2684   unsigned DeviceID;
2685   unsigned FileID;
2686   unsigned Line;
2687   getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
2688   SmallString<128> Buffer, Out;
2689   {
2690     llvm::raw_svector_ostream OS(Buffer);
2691     OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
2692        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
2693   }
2694
2695   const Expr *Init = VD->getAnyInitializer();
2696   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2697     llvm::Constant *Ctor;
2698     llvm::Constant *ID;
2699     if (CGM.getLangOpts().OpenMPIsDevice) {
2700       // Generate function that re-emits the declaration's initializer into
2701       // the threadprivate copy of the variable VD
2702       CodeGenFunction CtorCGF(CGM);
2703
2704       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2705       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2706       llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2707           FTy, Twine(Buffer, "_ctor"), FI, Loc);
2708       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
2709       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2710                             FunctionArgList(), Loc, Loc);
2711       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
2712       CtorCGF.EmitAnyExprToMem(Init,
2713                                Address(Addr, CGM.getContext().getDeclAlign(VD)),
2714                                Init->getType().getQualifiers(),
2715                                /*IsInitializer=*/true);
2716       CtorCGF.FinishFunction();
2717       Ctor = Fn;
2718       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
2719       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
2720     } else {
2721       Ctor = new llvm::GlobalVariable(
2722           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
2723           llvm::GlobalValue::PrivateLinkage,
2724           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
2725       ID = Ctor;
2726     }
2727
2728     // Register the information for the entry associated with the constructor.
2729     Out.clear();
2730     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
2731         DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
2732         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
2733   }
2734   if (VD->getType().isDestructedType() != QualType::DK_none) {
2735     llvm::Constant *Dtor;
2736     llvm::Constant *ID;
2737     if (CGM.getLangOpts().OpenMPIsDevice) {
2738       // Generate function that emits destructor call for the threadprivate
2739       // copy of the variable VD
2740       CodeGenFunction DtorCGF(CGM);
2741
2742       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2743       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2744       llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2745           FTy, Twine(Buffer, "_dtor"), FI, Loc);
2746       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2747       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2748                             FunctionArgList(), Loc, Loc);
2749       // Create a scope with an artificial location for the body of this
2750       // function.
2751       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2752       DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
2753                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
2754                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
2755       DtorCGF.FinishFunction();
2756       Dtor = Fn;
2757       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
2758       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
2759     } else {
2760       Dtor = new llvm::GlobalVariable(
2761           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
2762           llvm::GlobalValue::PrivateLinkage,
2763           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
2764       ID = Dtor;
2765     }
2766     // Register the information for the entry associated with the destructor.
2767     Out.clear();
2768     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
2769         DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
2770         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
2771   }
2772   return CGM.getLangOpts().OpenMPIsDevice;
2773 }
2774
2775 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
2776                                                           QualType VarType,
2777                                                           StringRef Name) {
2778   std::string Suffix = getName({"artificial", ""});
2779   std::string CacheSuffix = getName({"cache", ""});
2780   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
2781   llvm::Value *GAddr =
2782       getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
2783   llvm::Value *Args[] = {
2784       emitUpdateLocation(CGF, SourceLocation()),
2785       getThreadID(CGF, SourceLocation()),
2786       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
2787       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
2788                                 /*IsSigned=*/false),
2789       getOrCreateInternalVariable(
2790           CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
2791   return Address(
2792       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2793           CGF.EmitRuntimeCall(
2794               createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
2795           VarLVType->getPointerTo(/*AddrSpace=*/0)),
2796       CGM.getPointerAlign());
2797 }
2798
2799 void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
2800                                       const RegionCodeGenTy &ThenGen,
2801                                       const RegionCodeGenTy &ElseGen) {
2802   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2803
2804   // If the condition constant folds and can be elided, try to avoid emitting
2805   // the condition and the dead arm of the if/else.
2806   bool CondConstant;
2807   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2808     if (CondConstant)
2809       ThenGen(CGF);
2810     else
2811       ElseGen(CGF);
2812     return;
2813   }
2814
2815   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
2816   // emit the conditional branch.
2817   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2818   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2819   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2820   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2821
2822   // Emit the 'then' code.
2823   CGF.EmitBlock(ThenBlock);
2824   ThenGen(CGF);
2825   CGF.EmitBranch(ContBlock);
2826   // Emit the 'else' code if present.
2827   // There is no need to emit line number for unconditional branch.
2828   (void)ApplyDebugLocation::CreateEmpty(CGF);
2829   CGF.EmitBlock(ElseBlock);
2830   ElseGen(CGF);
2831   // There is no need to emit line number for unconditional branch.
2832   (void)ApplyDebugLocation::CreateEmpty(CGF);
2833   CGF.EmitBranch(ContBlock);
2834   // Emit the continuation block for code after the if.
2835   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2836 }
2837
2838 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2839                                        llvm::Value *OutlinedFn,
2840                                        ArrayRef<llvm::Value *> CapturedVars,
2841                                        const Expr *IfCond) {
2842   if (!CGF.HaveInsertPoint())
2843     return;
2844   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2845   auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
2846                                                      PrePostActionTy &) {
2847     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2848     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2849     llvm::Value *Args[] = {
2850         RTLoc,
2851         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2852         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2853     llvm::SmallVector<llvm::Value *, 16> RealArgs;
2854     RealArgs.append(std::begin(Args), std::end(Args));
2855     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2856
2857     llvm::Value *RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
2858     CGF.EmitRuntimeCall(RTLFn, RealArgs);
2859   };
2860   auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
2861                                                           PrePostActionTy &) {
2862     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2863     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2864     // Build calls:
2865     // __kmpc_serialized_parallel(&Loc, GTid);
2866     llvm::Value *Args[] = {RTLoc, ThreadID};
2867     CGF.EmitRuntimeCall(
2868         RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
2869
2870     // OutlinedFn(&GTid, &zero, CapturedStruct);
2871     Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2872                                                         /*Name*/ ".zero.addr");
2873     CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2874     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2875     // ThreadId for serialized parallels is 0.
2876     OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2877     OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2878     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2879     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2880
2881     // __kmpc_end_serialized_parallel(&Loc, GTid);
2882     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2883     CGF.EmitRuntimeCall(
2884         RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
2885         EndArgs);
2886   };
2887   if (IfCond) {
2888     emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
2889   } else {
2890     RegionCodeGenTy ThenRCG(ThenGen);
2891     ThenRCG(CGF);
2892   }
2893 }
2894
2895 // If we're inside an (outlined) parallel region, use the region info's
2896 // thread-ID variable (it is passed in a first argument of the outlined function
2897 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2898 // regular serial code region, get thread ID by calling kmp_int32
2899 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2900 // return the address of that temp.
2901 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2902                                              SourceLocation Loc) {
2903   if (auto *OMPRegionInfo =
2904           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2905     if (OMPRegionInfo->getThreadIDVariable())
2906       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
2907
2908   llvm::Value *ThreadID = getThreadID(CGF, Loc);
2909   QualType Int32Ty =
2910       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2911   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2912   CGF.EmitStoreOfScalar(ThreadID,
2913                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2914
2915   return ThreadIDTemp;
2916 }
2917
2918 llvm::Constant *
2919 CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty,
2920                                              const llvm::Twine &Name) {
2921   SmallString<256> Buffer;
2922   llvm::raw_svector_ostream Out(Buffer);
2923   Out << Name;
2924   StringRef RuntimeName = Out.str();
2925   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
2926   if (Elem.second) {
2927     assert(Elem.second->getType()->getPointerElementType() == Ty &&
2928            "OMP internal variable has different type than requested");
2929     return &*Elem.second;
2930   }
2931
2932   return Elem.second = new llvm::GlobalVariable(
2933              CGM.getModule(), Ty, /*IsConstant*/ false,
2934              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
2935              Elem.first());
2936 }
2937
2938 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2939   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2940   std::string Name = getName({Prefix, "var"});
2941   return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
2942 }
2943
2944 namespace {
2945 /// Common pre(post)-action for different OpenMP constructs.
2946 class CommonActionTy final : public PrePostActionTy {
2947   llvm::Value *EnterCallee;
2948   ArrayRef<llvm::Value *> EnterArgs;
2949   llvm::Value *ExitCallee;
2950   ArrayRef<llvm::Value *> ExitArgs;
2951   bool Conditional;
2952   llvm::BasicBlock *ContBlock = nullptr;
2953
2954 public:
2955   CommonActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
2956                  llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
2957                  bool Conditional = false)
2958       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2959         ExitArgs(ExitArgs), Conditional(Conditional) {}
2960   void Enter(CodeGenFunction &CGF) override {
2961     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2962     if (Conditional) {
2963       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2964       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2965       ContBlock = CGF.createBasicBlock("omp_if.end");
2966       // Generate the branch (If-stmt)
2967       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2968       CGF.EmitBlock(ThenBlock);
2969     }
2970   }
2971   void Done(CodeGenFunction &CGF) {
2972     // Emit the rest of blocks/branches
2973     CGF.EmitBranch(ContBlock);
2974     CGF.EmitBlock(ContBlock, true);
2975   }
2976   void Exit(CodeGenFunction &CGF) override {
2977     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2978   }
2979 };
2980 } // anonymous namespace
2981
2982 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2983                                          StringRef CriticalName,
2984                                          const RegionCodeGenTy &CriticalOpGen,
2985                                          SourceLocation Loc, const Expr *Hint) {
2986   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2987   // CriticalOpGen();
2988   // __kmpc_end_critical(ident_t *, gtid, Lock);
2989   // Prepare arguments and build a call to __kmpc_critical
2990   if (!CGF.HaveInsertPoint())
2991     return;
2992   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2993                          getCriticalRegionLock(CriticalName)};
2994   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2995                                                 std::end(Args));
2996   if (Hint) {
2997     EnterArgs.push_back(CGF.Builder.CreateIntCast(
2998         CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
2999   }
3000   CommonActionTy Action(
3001       createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
3002                                  : OMPRTL__kmpc_critical),
3003       EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
3004   CriticalOpGen.setAction(Action);
3005   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
3006 }
3007
3008 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
3009                                        const RegionCodeGenTy &MasterOpGen,
3010                                        SourceLocation Loc) {
3011   if (!CGF.HaveInsertPoint())
3012     return;
3013   // if(__kmpc_master(ident_t *, gtid)) {
3014   //   MasterOpGen();
3015   //   __kmpc_end_master(ident_t *, gtid);
3016   // }
3017   // Prepare arguments and build a call to __kmpc_master
3018   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3019   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
3020                         createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
3021                         /*Conditional=*/true);
3022   MasterOpGen.setAction(Action);
3023   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
3024   Action.Done(CGF);
3025 }
3026
3027 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
3028                                         SourceLocation Loc) {
3029   if (!CGF.HaveInsertPoint())
3030     return;
3031   // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
3032   llvm::Value *Args[] = {
3033       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3034       llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
3035   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
3036   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
3037     Region->emitUntiedSwitch(CGF);
3038 }
3039
3040 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
3041                                           const RegionCodeGenTy &TaskgroupOpGen,
3042                                           SourceLocation Loc) {
3043   if (!CGF.HaveInsertPoint())
3044     return;
3045   // __kmpc_taskgroup(ident_t *, gtid);
3046   // TaskgroupOpGen();
3047   // __kmpc_end_taskgroup(ident_t *, gtid);
3048   // Prepare arguments and build a call to __kmpc_taskgroup
3049   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3050   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
3051                         createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
3052                         Args);
3053   TaskgroupOpGen.setAction(Action);
3054   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
3055 }
3056
3057 /// Given an array of pointers to variables, project the address of a
3058 /// given variable.
3059 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
3060                                       unsigned Index, const VarDecl *Var) {
3061   // Pull out the pointer to the variable.
3062   Address PtrAddr =
3063       CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize());
3064   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
3065
3066   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
3067   Addr = CGF.Builder.CreateElementBitCast(
3068       Addr, CGF.ConvertTypeForMem(Var->getType()));
3069   return Addr;
3070 }
3071
3072 static llvm::Value *emitCopyprivateCopyFunction(
3073     CodeGenModule &CGM, llvm::Type *ArgsType,
3074     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
3075     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
3076     SourceLocation Loc) {
3077   ASTContext &C = CGM.getContext();
3078   // void copy_func(void *LHSArg, void *RHSArg);
3079   FunctionArgList Args;
3080   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3081                            ImplicitParamDecl::Other);
3082   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3083                            ImplicitParamDecl::Other);
3084   Args.push_back(&LHSArg);
3085   Args.push_back(&RHSArg);
3086   const auto &CGFI =
3087       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3088   std::string Name =
3089       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
3090   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
3091                                     llvm::GlobalValue::InternalLinkage, Name,
3092                                     &CGM.getModule());
3093   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3094   Fn->setDoesNotRecurse();
3095   CodeGenFunction CGF(CGM);
3096   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3097   // Dest = (void*[n])(LHSArg);
3098   // Src = (void*[n])(RHSArg);
3099   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3100       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
3101       ArgsType), CGF.getPointerAlign());
3102   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3103       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
3104       ArgsType), CGF.getPointerAlign());
3105   // *(Type0*)Dst[0] = *(Type0*)Src[0];
3106   // *(Type1*)Dst[1] = *(Type1*)Src[1];
3107   // ...
3108   // *(Typen*)Dst[n] = *(Typen*)Src[n];
3109   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
3110     const auto *DestVar =
3111         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
3112     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
3113
3114     const auto *SrcVar =
3115         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
3116     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
3117
3118     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
3119     QualType Type = VD->getType();
3120     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
3121   }
3122   CGF.FinishFunction();
3123   return Fn;
3124 }
3125
3126 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
3127                                        const RegionCodeGenTy &SingleOpGen,
3128                                        SourceLocation Loc,
3129                                        ArrayRef<const Expr *> CopyprivateVars,
3130                                        ArrayRef<const Expr *> SrcExprs,
3131                                        ArrayRef<const Expr *> DstExprs,
3132                                        ArrayRef<const Expr *> AssignmentOps) {
3133   if (!CGF.HaveInsertPoint())
3134     return;
3135   assert(CopyprivateVars.size() == SrcExprs.size() &&
3136          CopyprivateVars.size() == DstExprs.size() &&
3137          CopyprivateVars.size() == AssignmentOps.size());
3138   ASTContext &C = CGM.getContext();
3139   // int32 did_it = 0;
3140   // if(__kmpc_single(ident_t *, gtid)) {
3141   //   SingleOpGen();
3142   //   __kmpc_end_single(ident_t *, gtid);
3143   //   did_it = 1;
3144   // }
3145   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3146   // <copy_func>, did_it);
3147
3148   Address DidIt = Address::invalid();
3149   if (!CopyprivateVars.empty()) {
3150     // int32 did_it = 0;
3151     QualType KmpInt32Ty =
3152         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3153     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
3154     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
3155   }
3156   // Prepare arguments and build a call to __kmpc_single
3157   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3158   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
3159                         createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
3160                         /*Conditional=*/true);
3161   SingleOpGen.setAction(Action);
3162   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
3163   if (DidIt.isValid()) {
3164     // did_it = 1;
3165     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
3166   }
3167   Action.Done(CGF);
3168   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3169   // <copy_func>, did_it);
3170   if (DidIt.isValid()) {
3171     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
3172     QualType CopyprivateArrayTy =
3173         C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
3174                                /*IndexTypeQuals=*/0);
3175     // Create a list of all private variables for copyprivate.
3176     Address CopyprivateList =
3177         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
3178     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
3179       Address Elem = CGF.Builder.CreateConstArrayGEP(
3180           CopyprivateList, I, CGF.getPointerSize());
3181       CGF.Builder.CreateStore(
3182           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3183               CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
3184           Elem);
3185     }
3186     // Build function that copies private values from single region to all other
3187     // threads in the corresponding parallel region.
3188     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
3189         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
3190         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
3191     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
3192     Address CL =
3193       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
3194                                                       CGF.VoidPtrTy);
3195     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
3196     llvm::Value *Args[] = {
3197         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
3198         getThreadID(CGF, Loc),        // i32 <gtid>
3199         BufSize,                      // size_t <buf_size>
3200         CL.getPointer(),              // void *<copyprivate list>
3201         CpyFn,                        // void (*) (void *, void *) <copy_func>
3202         DidItVal                      // i32 did_it
3203     };
3204     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
3205   }
3206 }
3207
3208 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
3209                                         const RegionCodeGenTy &OrderedOpGen,
3210                                         SourceLocation Loc, bool IsThreads) {
3211   if (!CGF.HaveInsertPoint())
3212     return;
3213   // __kmpc_ordered(ident_t *, gtid);
3214   // OrderedOpGen();
3215   // __kmpc_end_ordered(ident_t *, gtid);
3216   // Prepare arguments and build a call to __kmpc_ordered
3217   if (IsThreads) {
3218     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3219     CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
3220                           createRuntimeFunction(OMPRTL__kmpc_end_ordered),
3221                           Args);
3222     OrderedOpGen.setAction(Action);
3223     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3224     return;
3225   }
3226   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3227 }
3228
3229 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
3230   unsigned Flags;
3231   if (Kind == OMPD_for)
3232     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
3233   else if (Kind == OMPD_sections)
3234     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
3235   else if (Kind == OMPD_single)
3236     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
3237   else if (Kind == OMPD_barrier)
3238     Flags = OMP_IDENT_BARRIER_EXPL;
3239   else
3240     Flags = OMP_IDENT_BARRIER_IMPL;
3241   return Flags;
3242 }
3243
3244 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
3245                                       OpenMPDirectiveKind Kind, bool EmitChecks,
3246                                       bool ForceSimpleCall) {
3247   if (!CGF.HaveInsertPoint())
3248     return;
3249   // Build call __kmpc_cancel_barrier(loc, thread_id);
3250   // Build call __kmpc_barrier(loc, thread_id);
3251   unsigned Flags = getDefaultFlagsForBarriers(Kind);
3252   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
3253   // thread_id);
3254   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
3255                          getThreadID(CGF, Loc)};
3256   if (auto *OMPRegionInfo =
3257           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
3258     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
3259       llvm::Value *Result = CGF.EmitRuntimeCall(
3260           createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
3261       if (EmitChecks) {
3262         // if (__kmpc_cancel_barrier()) {
3263         //   exit from construct;
3264         // }
3265         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
3266         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
3267         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
3268         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
3269         CGF.EmitBlock(ExitBB);
3270         //   exit from construct;
3271         CodeGenFunction::JumpDest CancelDestination =
3272             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
3273         CGF.EmitBranchThroughCleanup(CancelDestination);
3274         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
3275       }
3276       return;
3277     }
3278   }
3279   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
3280 }
3281
3282 /// Map the OpenMP loop schedule to the runtime enumeration.
3283 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
3284                                           bool Chunked, bool Ordered) {
3285   switch (ScheduleKind) {
3286   case OMPC_SCHEDULE_static:
3287     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
3288                    : (Ordered ? OMP_ord_static : OMP_sch_static);
3289   case OMPC_SCHEDULE_dynamic:
3290     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
3291   case OMPC_SCHEDULE_guided:
3292     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
3293   case OMPC_SCHEDULE_runtime:
3294     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
3295   case OMPC_SCHEDULE_auto:
3296     return Ordered ? OMP_ord_auto : OMP_sch_auto;
3297   case OMPC_SCHEDULE_unknown:
3298     assert(!Chunked && "chunk was specified but schedule kind not known");
3299     return Ordered ? OMP_ord_static : OMP_sch_static;
3300   }
3301   llvm_unreachable("Unexpected runtime schedule");
3302 }
3303
3304 /// Map the OpenMP distribute schedule to the runtime enumeration.
3305 static OpenMPSchedType
3306 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
3307   // only static is allowed for dist_schedule
3308   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
3309 }
3310
3311 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
3312                                          bool Chunked) const {
3313   OpenMPSchedType Schedule =
3314       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3315   return Schedule == OMP_sch_static;
3316 }
3317
3318 bool CGOpenMPRuntime::isStaticNonchunked(
3319     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3320   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3321   return Schedule == OMP_dist_sch_static;
3322 }
3323
3324 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
3325                                       bool Chunked) const {
3326   OpenMPSchedType Schedule =
3327       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3328   return Schedule == OMP_sch_static_chunked;
3329 }
3330
3331 bool CGOpenMPRuntime::isStaticChunked(
3332     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3333   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3334   return Schedule == OMP_dist_sch_static_chunked;
3335 }
3336
3337 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
3338   OpenMPSchedType Schedule =
3339       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
3340   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
3341   return Schedule != OMP_sch_static;
3342 }
3343
3344 static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
3345                                   OpenMPScheduleClauseModifier M1,
3346                                   OpenMPScheduleClauseModifier M2) {
3347   int Modifier = 0;
3348   switch (M1) {
3349   case OMPC_SCHEDULE_MODIFIER_monotonic:
3350     Modifier = OMP_sch_modifier_monotonic;
3351     break;
3352   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3353     Modifier = OMP_sch_modifier_nonmonotonic;
3354     break;
3355   case OMPC_SCHEDULE_MODIFIER_simd:
3356     if (Schedule == OMP_sch_static_chunked)
3357       Schedule = OMP_sch_static_balanced_chunked;
3358     break;
3359   case OMPC_SCHEDULE_MODIFIER_last:
3360   case OMPC_SCHEDULE_MODIFIER_unknown:
3361     break;
3362   }
3363   switch (M2) {
3364   case OMPC_SCHEDULE_MODIFIER_monotonic:
3365     Modifier = OMP_sch_modifier_monotonic;
3366     break;
3367   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3368     Modifier = OMP_sch_modifier_nonmonotonic;
3369     break;
3370   case OMPC_SCHEDULE_MODIFIER_simd:
3371     if (Schedule == OMP_sch_static_chunked)
3372       Schedule = OMP_sch_static_balanced_chunked;
3373     break;
3374   case OMPC_SCHEDULE_MODIFIER_last:
3375   case OMPC_SCHEDULE_MODIFIER_unknown:
3376     break;
3377   }
3378   return Schedule | Modifier;
3379 }
3380
3381 void CGOpenMPRuntime::emitForDispatchInit(
3382     CodeGenFunction &CGF, SourceLocation Loc,
3383     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
3384     bool Ordered, const DispatchRTInput &DispatchValues) {
3385   if (!CGF.HaveInsertPoint())
3386     return;
3387   OpenMPSchedType Schedule = getRuntimeSchedule(
3388       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
3389   assert(Ordered ||
3390          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
3391           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
3392           Schedule != OMP_sch_static_balanced_chunked));
3393   // Call __kmpc_dispatch_init(
3394   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
3395   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
3396   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
3397
3398   // If the Chunk was not specified in the clause - use default value 1.
3399   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
3400                                             : CGF.Builder.getIntN(IVSize, 1);
3401   llvm::Value *Args[] = {
3402       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3403       CGF.Builder.getInt32(addMonoNonMonoModifier(
3404           Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
3405       DispatchValues.LB,                                // Lower
3406       DispatchValues.UB,                                // Upper
3407       CGF.Builder.getIntN(IVSize, 1),                   // Stride
3408       Chunk                                             // Chunk
3409   };
3410   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
3411 }
3412
3413 static void emitForStaticInitCall(
3414     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
3415     llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule,
3416     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
3417     const CGOpenMPRuntime::StaticRTInput &Values) {
3418   if (!CGF.HaveInsertPoint())
3419     return;
3420
3421   assert(!Values.Ordered);
3422   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
3423          Schedule == OMP_sch_static_balanced_chunked ||
3424          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
3425          Schedule == OMP_dist_sch_static ||
3426          Schedule == OMP_dist_sch_static_chunked);
3427
3428   // Call __kmpc_for_static_init(
3429   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
3430   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
3431   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
3432   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
3433   llvm::Value *Chunk = Values.Chunk;
3434   if (Chunk == nullptr) {
3435     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
3436             Schedule == OMP_dist_sch_static) &&
3437            "expected static non-chunked schedule");
3438     // If the Chunk was not specified in the clause - use default value 1.
3439     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
3440   } else {
3441     assert((Schedule == OMP_sch_static_chunked ||
3442             Schedule == OMP_sch_static_balanced_chunked ||
3443             Schedule == OMP_ord_static_chunked ||
3444             Schedule == OMP_dist_sch_static_chunked) &&
3445            "expected static chunked schedule");
3446   }
3447   llvm::Value *Args[] = {
3448       UpdateLocation,
3449       ThreadId,
3450       CGF.Builder.getInt32(addMonoNonMonoModifier(Schedule, M1,
3451                                                   M2)), // Schedule type
3452       Values.IL.getPointer(),                           // &isLastIter
3453       Values.LB.getPointer(),                           // &LB
3454       Values.UB.getPointer(),                           // &UB
3455       Values.ST.getPointer(),                           // &Stride
3456       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
3457       Chunk                                             // Chunk
3458   };
3459   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
3460 }
3461
3462 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
3463                                         SourceLocation Loc,
3464                                         OpenMPDirectiveKind DKind,
3465                                         const OpenMPScheduleTy &ScheduleKind,
3466                                         const StaticRTInput &Values) {
3467   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
3468       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
3469   assert(isOpenMPWorksharingDirective(DKind) &&
3470          "Expected loop-based or sections-based directive.");
3471   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
3472                                              isOpenMPLoopDirective(DKind)
3473                                                  ? OMP_IDENT_WORK_LOOP
3474                                                  : OMP_IDENT_WORK_SECTIONS);
3475   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3476   llvm::Constant *StaticInitFunction =
3477       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3478   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3479                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
3480 }
3481
3482 void CGOpenMPRuntime::emitDistributeStaticInit(
3483     CodeGenFunction &CGF, SourceLocation Loc,
3484     OpenMPDistScheduleClauseKind SchedKind,
3485     const CGOpenMPRuntime::StaticRTInput &Values) {
3486   OpenMPSchedType ScheduleNum =
3487       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
3488   llvm::Value *UpdatedLocation =
3489       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
3490   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3491   llvm::Constant *StaticInitFunction =
3492       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3493   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3494                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
3495                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
3496 }
3497
3498 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
3499                                           SourceLocation Loc,
3500                                           OpenMPDirectiveKind DKind) {
3501   if (!CGF.HaveInsertPoint())
3502     return;
3503   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
3504   llvm::Value *Args[] = {
3505       emitUpdateLocation(CGF, Loc,
3506                          isOpenMPDistributeDirective(DKind)
3507                              ? OMP_IDENT_WORK_DISTRIBUTE
3508                              : isOpenMPLoopDirective(DKind)
3509                                    ? OMP_IDENT_WORK_LOOP
3510                                    : OMP_IDENT_WORK_SECTIONS),
3511       getThreadID(CGF, Loc)};
3512   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
3513                       Args);
3514 }
3515
3516 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
3517                                                  SourceLocation Loc,
3518                                                  unsigned IVSize,
3519                                                  bool IVSigned) {
3520   if (!CGF.HaveInsertPoint())
3521     return;
3522   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
3523   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3524   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
3525 }
3526
3527 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
3528                                           SourceLocation Loc, unsigned IVSize,
3529                                           bool IVSigned, Address IL,
3530                                           Address LB, Address UB,
3531                                           Address ST) {
3532   // Call __kmpc_dispatch_next(
3533   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
3534   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
3535   //          kmp_int[32|64] *p_stride);
3536   llvm::Value *Args[] = {
3537       emitUpdateLocation(CGF, Loc),
3538       getThreadID(CGF, Loc),
3539       IL.getPointer(), // &isLastIter
3540       LB.getPointer(), // &Lower
3541       UB.getPointer(), // &Upper
3542       ST.getPointer()  // &Stride
3543   };
3544   llvm::Value *Call =
3545       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
3546   return CGF.EmitScalarConversion(
3547       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
3548       CGF.getContext().BoolTy, Loc);
3549 }
3550
3551 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
3552                                            llvm::Value *NumThreads,
3553                                            SourceLocation Loc) {
3554   if (!CGF.HaveInsertPoint())
3555     return;
3556   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
3557   llvm::Value *Args[] = {
3558       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3559       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
3560   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
3561                       Args);
3562 }
3563
3564 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
3565                                          OpenMPProcBindClauseKind ProcBind,
3566                                          SourceLocation Loc) {
3567   if (!CGF.HaveInsertPoint())
3568     return;
3569   // Constants for proc bind value accepted by the runtime.
3570   enum ProcBindTy {
3571     ProcBindFalse = 0,
3572     ProcBindTrue,
3573     ProcBindMaster,
3574     ProcBindClose,
3575     ProcBindSpread,
3576     ProcBindIntel,
3577     ProcBindDefault
3578   } RuntimeProcBind;
3579   switch (ProcBind) {
3580   case OMPC_PROC_BIND_master:
3581     RuntimeProcBind = ProcBindMaster;
3582     break;
3583   case OMPC_PROC_BIND_close:
3584     RuntimeProcBind = ProcBindClose;
3585     break;
3586   case OMPC_PROC_BIND_spread:
3587     RuntimeProcBind = ProcBindSpread;
3588     break;
3589   case OMPC_PROC_BIND_unknown:
3590     llvm_unreachable("Unsupported proc_bind value.");
3591   }
3592   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
3593   llvm::Value *Args[] = {
3594       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3595       llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
3596   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
3597 }
3598
3599 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
3600                                 SourceLocation Loc) {
3601   if (!CGF.HaveInsertPoint())
3602     return;
3603   // Build call void __kmpc_flush(ident_t *loc)
3604   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
3605                       emitUpdateLocation(CGF, Loc));
3606 }
3607
3608 namespace {
3609 /// Indexes of fields for type kmp_task_t.
3610 enum KmpTaskTFields {
3611   /// List of shared variables.
3612   KmpTaskTShareds,
3613   /// Task routine.
3614   KmpTaskTRoutine,
3615   /// Partition id for the untied tasks.
3616   KmpTaskTPartId,
3617   /// Function with call of destructors for private variables.
3618   Data1,
3619   /// Task priority.
3620   Data2,
3621   /// (Taskloops only) Lower bound.
3622   KmpTaskTLowerBound,
3623   /// (Taskloops only) Upper bound.
3624   KmpTaskTUpperBound,
3625   /// (Taskloops only) Stride.
3626   KmpTaskTStride,
3627   /// (Taskloops only) Is last iteration flag.
3628   KmpTaskTLastIter,
3629   /// (Taskloops only) Reduction data.
3630   KmpTaskTReductions,
3631 };
3632 } // anonymous namespace
3633
3634 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
3635   return OffloadEntriesTargetRegion.empty() &&
3636          OffloadEntriesDeviceGlobalVar.empty();
3637 }
3638
3639 /// Initialize target region entry.
3640 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3641     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3642                                     StringRef ParentName, unsigned LineNum,
3643                                     unsigned Order) {
3644   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3645                                              "only required for the device "
3646                                              "code generation.");
3647   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
3648       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
3649                                    OMPTargetRegionEntryTargetRegion);
3650   ++OffloadingEntriesNum;
3651 }
3652
3653 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3654     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3655                                   StringRef ParentName, unsigned LineNum,
3656                                   llvm::Constant *Addr, llvm::Constant *ID,
3657                                   OMPTargetRegionEntryKind Flags) {
3658   // If we are emitting code for a target, the entry is already initialized,
3659   // only has to be registered.
3660   if (CGM.getLangOpts().OpenMPIsDevice) {
3661     if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
3662       unsigned DiagID = CGM.getDiags().getCustomDiagID(
3663           DiagnosticsEngine::Error,
3664           "Unable to find target region on line '%0' in the device code.");
3665       CGM.getDiags().Report(DiagID) << LineNum;
3666       return;
3667     }
3668     auto &Entry =
3669         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
3670     assert(Entry.isValid() && "Entry not initialized!");
3671     Entry.setAddress(Addr);
3672     Entry.setID(ID);
3673     Entry.setFlags(Flags);
3674   } else {
3675     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
3676     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
3677     ++OffloadingEntriesNum;
3678   }
3679 }
3680
3681 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
3682     unsigned DeviceID, unsigned FileID, StringRef ParentName,
3683     unsigned LineNum) const {
3684   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
3685   if (PerDevice == OffloadEntriesTargetRegion.end())
3686     return false;
3687   auto PerFile = PerDevice->second.find(FileID);
3688   if (PerFile == PerDevice->second.end())
3689     return false;
3690   auto PerParentName = PerFile->second.find(ParentName);
3691   if (PerParentName == PerFile->second.end())
3692     return false;
3693   auto PerLine = PerParentName->second.find(LineNum);
3694   if (PerLine == PerParentName->second.end())
3695     return false;
3696   // Fail if this entry is already registered.
3697   if (PerLine->second.getAddress() || PerLine->second.getID())
3698     return false;
3699   return true;
3700 }
3701
3702 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
3703     const OffloadTargetRegionEntryInfoActTy &Action) {
3704   // Scan all target region entries and perform the provided action.
3705   for (const auto &D : OffloadEntriesTargetRegion)
3706     for (const auto &F : D.second)
3707       for (const auto &P : F.second)
3708         for (const auto &L : P.second)
3709           Action(D.first, F.first, P.first(), L.first, L.second);
3710 }
3711
3712 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3713     initializeDeviceGlobalVarEntryInfo(StringRef Name,
3714                                        OMPTargetGlobalVarEntryKind Flags,
3715                                        unsigned Order) {
3716   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3717                                              "only required for the device "
3718                                              "code generation.");
3719   OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3720   ++OffloadingEntriesNum;
3721 }
3722
3723 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3724     registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3725                                      CharUnits VarSize,
3726                                      OMPTargetGlobalVarEntryKind Flags,
3727                                      llvm::GlobalValue::LinkageTypes Linkage) {
3728   if (CGM.getLangOpts().OpenMPIsDevice) {
3729     auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3730     assert(Entry.isValid() && Entry.getFlags() == Flags &&
3731            "Entry not initialized!");
3732     assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3733            "Resetting with the new address.");
3734     if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName))
3735       return;
3736     Entry.setAddress(Addr);
3737     Entry.setVarSize(VarSize);
3738     Entry.setLinkage(Linkage);
3739   } else {
3740     if (hasDeviceGlobalVarEntryInfo(VarName))
3741       return;
3742     OffloadEntriesDeviceGlobalVar.try_emplace(
3743         VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3744     ++OffloadingEntriesNum;
3745   }
3746 }
3747
3748 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3749     actOnDeviceGlobalVarEntriesInfo(
3750         const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3751   // Scan all target region entries and perform the provided action.
3752   for (const auto &E : OffloadEntriesDeviceGlobalVar)
3753     Action(E.getKey(), E.getValue());
3754 }
3755
3756 llvm::Function *
3757 CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
3758   // If we don't have entries or if we are emitting code for the device, we
3759   // don't need to do anything.
3760   if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
3761     return nullptr;
3762
3763   llvm::Module &M = CGM.getModule();
3764   ASTContext &C = CGM.getContext();
3765
3766   // Get list of devices we care about
3767   const std::vector<llvm::Triple> &Devices = CGM.getLangOpts().OMPTargetTriples;
3768
3769   // We should be creating an offloading descriptor only if there are devices
3770   // specified.
3771   assert(!Devices.empty() && "No OpenMP offloading devices??");
3772
3773   // Create the external variables that will point to the begin and end of the
3774   // host entries section. These will be defined by the linker.
3775   llvm::Type *OffloadEntryTy =
3776       CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
3777   std::string EntriesBeginName = getName({"omp_offloading", "entries_begin"});
3778   auto *HostEntriesBegin = new llvm::GlobalVariable(
3779       M, OffloadEntryTy, /*isConstant=*/true,
3780       llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
3781       EntriesBeginName);
3782   std::string EntriesEndName = getName({"omp_offloading", "entries_end"});
3783   auto *HostEntriesEnd =
3784       new llvm::GlobalVariable(M, OffloadEntryTy, /*isConstant=*/true,
3785                                llvm::GlobalValue::ExternalLinkage,
3786                                /*Initializer=*/nullptr, EntriesEndName);
3787
3788   // Create all device images
3789   auto *DeviceImageTy = cast<llvm::StructType>(
3790       CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
3791   ConstantInitBuilder DeviceImagesBuilder(CGM);
3792   ConstantArrayBuilder DeviceImagesEntries =
3793       DeviceImagesBuilder.beginArray(DeviceImageTy);
3794
3795   for (const llvm::Triple &Device : Devices) {
3796     StringRef T = Device.getTriple();
3797     std::string BeginName = getName({"omp_offloading", "img_start", ""});
3798     auto *ImgBegin = new llvm::GlobalVariable(
3799         M, CGM.Int8Ty, /*isConstant=*/true,
3800         llvm::GlobalValue::ExternalWeakLinkage,
3801         /*Initializer=*/nullptr, Twine(BeginName).concat(T));
3802     std::string EndName = getName({"omp_offloading", "img_end", ""});
3803     auto *ImgEnd = new llvm::GlobalVariable(
3804         M, CGM.Int8Ty, /*isConstant=*/true,
3805         llvm::GlobalValue::ExternalWeakLinkage,
3806         /*Initializer=*/nullptr, Twine(EndName).concat(T));
3807
3808     llvm::Constant *Data[] = {ImgBegin, ImgEnd, HostEntriesBegin,
3809                               HostEntriesEnd};
3810     createConstantGlobalStructAndAddToParent(CGM, getTgtDeviceImageQTy(), Data,
3811                                              DeviceImagesEntries);
3812   }
3813
3814   // Create device images global array.
3815   std::string ImagesName = getName({"omp_offloading", "device_images"});
3816   llvm::GlobalVariable *DeviceImages =
3817       DeviceImagesEntries.finishAndCreateGlobal(ImagesName,
3818                                                 CGM.getPointerAlign(),
3819                                                 /*isConstant=*/true);
3820   DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3821
3822   // This is a Zero array to be used in the creation of the constant expressions
3823   llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
3824                              llvm::Constant::getNullValue(CGM.Int32Ty)};
3825
3826   // Create the target region descriptor.
3827   llvm::Constant *Data[] = {
3828       llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()),
3829       llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(),
3830                                            DeviceImages, Index),
3831       HostEntriesBegin, HostEntriesEnd};
3832   std::string Descriptor = getName({"omp_offloading", "descriptor"});
3833   llvm::GlobalVariable *Desc = createGlobalStruct(
3834       CGM, getTgtBinaryDescriptorQTy(), /*IsConstant=*/true, Data, Descriptor);
3835
3836   // Emit code to register or unregister the descriptor at execution
3837   // startup or closing, respectively.
3838
3839   llvm::Function *UnRegFn;
3840   {
3841     FunctionArgList Args;
3842     ImplicitParamDecl DummyPtr(C, C.VoidPtrTy, ImplicitParamDecl::Other);
3843     Args.push_back(&DummyPtr);
3844
3845     CodeGenFunction CGF(CGM);
3846     // Disable debug info for global (de-)initializer because they are not part
3847     // of some particular construct.
3848     CGF.disableDebugInfo();
3849     const auto &FI =
3850         CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3851     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
3852     std::string UnregName = getName({"omp_offloading", "descriptor_unreg"});
3853     UnRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, UnregName, FI);
3854     CGF.StartFunction(GlobalDecl(), C.VoidTy, UnRegFn, FI, Args);
3855     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
3856                         Desc);
3857     CGF.FinishFunction();
3858   }
3859   llvm::Function *RegFn;
3860   {
3861     CodeGenFunction CGF(CGM);
3862     // Disable debug info for global (de-)initializer because they are not part
3863     // of some particular construct.
3864     CGF.disableDebugInfo();
3865     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
3866     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
3867
3868     // Encode offload target triples into the registration function name. It
3869     // will serve as a comdat key for the registration/unregistration code for
3870     // this particular combination of offloading targets.
3871     SmallVector<StringRef, 4U> RegFnNameParts(Devices.size() + 2U);
3872     RegFnNameParts[0] = "omp_offloading";
3873     RegFnNameParts[1] = "descriptor_reg";
3874     llvm::transform(Devices, std::next(RegFnNameParts.begin(), 2),
3875                     [](const llvm::Triple &T) -> const std::string& {
3876                       return T.getTriple();
3877                     });
3878     llvm::sort(std::next(RegFnNameParts.begin(), 2), RegFnNameParts.end());
3879     std::string Descriptor = getName(RegFnNameParts);
3880     RegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, Descriptor, FI);
3881     CGF.StartFunction(GlobalDecl(), C.VoidTy, RegFn, FI, FunctionArgList());
3882     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_lib), Desc);
3883     // Create a variable to drive the registration and unregistration of the
3884     // descriptor, so we can reuse the logic that emits Ctors and Dtors.
3885     ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(),
3886                                   SourceLocation(), nullptr, C.CharTy,
3887                                   ImplicitParamDecl::Other);
3888     CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
3889     CGF.FinishFunction();
3890   }
3891   if (CGM.supportsCOMDAT()) {
3892     // It is sufficient to call registration function only once, so create a
3893     // COMDAT group for registration/unregistration functions and associated
3894     // data. That would reduce startup time and code size. Registration
3895     // function serves as a COMDAT group key.
3896     llvm::Comdat *ComdatKey = M.getOrInsertComdat(RegFn->getName());
3897     RegFn->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3898     RegFn->setVisibility(llvm::GlobalValue::HiddenVisibility);
3899     RegFn->setComdat(ComdatKey);
3900     UnRegFn->setComdat(ComdatKey);
3901     DeviceImages->setComdat(ComdatKey);
3902     Desc->setComdat(ComdatKey);
3903   }
3904   return RegFn;
3905 }
3906
3907 void CGOpenMPRuntime::createOffloadEntry(
3908     llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
3909     llvm::GlobalValue::LinkageTypes Linkage) {
3910   StringRef Name = Addr->getName();
3911   llvm::Module &M = CGM.getModule();
3912   llvm::LLVMContext &C = M.getContext();
3913
3914   // Create constant string with the name.
3915   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
3916
3917   std::string StringName = getName({"omp_offloading", "entry_name"});
3918   auto *Str = new llvm::GlobalVariable(
3919       M, StrPtrInit->getType(), /*isConstant=*/true,
3920       llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
3921   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3922
3923   llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
3924                             llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
3925                             llvm::ConstantInt::get(CGM.SizeTy, Size),
3926                             llvm::ConstantInt::get(CGM.Int32Ty, Flags),
3927                             llvm::ConstantInt::get(CGM.Int32Ty, 0)};
3928   std::string EntryName = getName({"omp_offloading", "entry", ""});
3929   llvm::GlobalVariable *Entry = createGlobalStruct(
3930       CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
3931       Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
3932
3933   // The entry has to be created in the section the linker expects it to be.
3934   std::string Section = getName({"omp_offloading", "entries"});
3935   Entry->setSection(Section);
3936 }
3937
3938 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
3939   // Emit the offloading entries and metadata so that the device codegen side
3940   // can easily figure out what to emit. The produced metadata looks like
3941   // this:
3942   //
3943   // !omp_offload.info = !{!1, ...}
3944   //
3945   // Right now we only generate metadata for function that contain target
3946   // regions.
3947
3948   // If we do not have entries, we don't need to do anything.
3949   if (OffloadEntriesInfoManager.empty())
3950     return;
3951
3952   llvm::Module &M = CGM.getModule();
3953   llvm::LLVMContext &C = M.getContext();
3954   SmallVector<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
3955       OrderedEntries(OffloadEntriesInfoManager.size());
3956   llvm::SmallVector<StringRef, 16> ParentFunctions(
3957       OffloadEntriesInfoManager.size());
3958
3959   // Auxiliary methods to create metadata values and strings.
3960   auto &&GetMDInt = [this](unsigned V) {
3961     return llvm::ConstantAsMetadata::get(
3962         llvm::ConstantInt::get(CGM.Int32Ty, V));
3963   };
3964
3965   auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
3966
3967   // Create the offloading info metadata node.
3968   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
3969
3970   // Create function that emits metadata for each target region entry;
3971   auto &&TargetRegionMetadataEmitter =
3972       [&C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, &GetMDString](
3973           unsigned DeviceID, unsigned FileID, StringRef ParentName,
3974           unsigned Line,
3975           const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
3976         // Generate metadata for target regions. Each entry of this metadata
3977         // contains:
3978         // - Entry 0 -> Kind of this type of metadata (0).
3979         // - Entry 1 -> Device ID of the file where the entry was identified.
3980         // - Entry 2 -> File ID of the file where the entry was identified.
3981         // - Entry 3 -> Mangled name of the function where the entry was
3982         // identified.
3983         // - Entry 4 -> Line in the file where the entry was identified.
3984         // - Entry 5 -> Order the entry was created.
3985         // The first element of the metadata node is the kind.
3986         llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
3987                                  GetMDInt(FileID),      GetMDString(ParentName),
3988                                  GetMDInt(Line),        GetMDInt(E.getOrder())};
3989
3990         // Save this entry in the right position of the ordered entries array.
3991         OrderedEntries[E.getOrder()] = &E;
3992         ParentFunctions[E.getOrder()] = ParentName;
3993
3994         // Add metadata to the named metadata node.
3995         MD->addOperand(llvm::MDNode::get(C, Ops));
3996       };
3997
3998   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
3999       TargetRegionMetadataEmitter);
4000
4001   // Create function that emits metadata for each device global variable entry;
4002   auto &&DeviceGlobalVarMetadataEmitter =
4003       [&C, &OrderedEntries, &GetMDInt, &GetMDString,
4004        MD](StringRef MangledName,
4005            const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
4006                &E) {
4007         // Generate metadata for global variables. Each entry of this metadata
4008         // contains:
4009         // - Entry 0 -> Kind of this type of metadata (1).
4010         // - Entry 1 -> Mangled name of the variable.
4011         // - Entry 2 -> Declare target kind.
4012         // - Entry 3 -> Order the entry was created.
4013         // The first element of the metadata node is the kind.
4014         llvm::Metadata *Ops[] = {
4015             GetMDInt(E.getKind()), GetMDString(MangledName),
4016             GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
4017
4018         // Save this entry in the right position of the ordered entries array.
4019         OrderedEntries[E.getOrder()] = &E;
4020
4021         // Add metadata to the named metadata node.
4022         MD->addOperand(llvm::MDNode::get(C, Ops));
4023       };
4024
4025   OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
4026       DeviceGlobalVarMetadataEmitter);
4027
4028   for (const auto *E : OrderedEntries) {
4029     assert(E && "All ordered entries must exist!");
4030     if (const auto *CE =
4031             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
4032                 E)) {
4033       if (!CE->getID() || !CE->getAddress()) {
4034         // Do not blame the entry if the parent funtion is not emitted.
4035         StringRef FnName = ParentFunctions[CE->getOrder()];
4036         if (!CGM.GetGlobalValue(FnName))
4037           continue;
4038         unsigned DiagID = CGM.getDiags().getCustomDiagID(
4039             DiagnosticsEngine::Error,
4040             "Offloading entry for target region is incorrect: either the "
4041             "address or the ID is invalid.");
4042         CGM.getDiags().Report(DiagID);
4043         continue;
4044       }
4045       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
4046                          CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
4047     } else if (const auto *CE =
4048                    dyn_cast<OffloadEntriesInfoManagerTy::
4049                                 OffloadEntryInfoDeviceGlobalVar>(E)) {
4050       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
4051           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4052               CE->getFlags());
4053       switch (Flags) {
4054       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
4055         if (!CE->getAddress()) {
4056           unsigned DiagID = CGM.getDiags().getCustomDiagID(
4057               DiagnosticsEngine::Error,
4058               "Offloading entry for declare target variable is incorrect: the "
4059               "address is invalid.");
4060           CGM.getDiags().Report(DiagID);
4061           continue;
4062         }
4063         // The vaiable has no definition - no need to add the entry.
4064         if (CE->getVarSize().isZero())
4065           continue;
4066         break;
4067       }
4068       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
4069         assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
4070                 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
4071                "Declaret target link address is set.");
4072         if (CGM.getLangOpts().OpenMPIsDevice)
4073           continue;
4074         if (!CE->getAddress()) {
4075           unsigned DiagID = CGM.getDiags().getCustomDiagID(
4076               DiagnosticsEngine::Error,
4077               "Offloading entry for declare target variable is incorrect: the "
4078               "address is invalid.");
4079           CGM.getDiags().Report(DiagID);
4080           continue;
4081         }
4082         break;
4083       }
4084       createOffloadEntry(CE->getAddress(), CE->getAddress(),
4085                          CE->getVarSize().getQuantity(), Flags,
4086                          CE->getLinkage());
4087     } else {
4088       llvm_unreachable("Unsupported entry kind.");
4089     }
4090   }
4091 }
4092
4093 /// Loads all the offload entries information from the host IR
4094 /// metadata.
4095 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
4096   // If we are in target mode, load the metadata from the host IR. This code has
4097   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
4098
4099   if (!CGM.getLangOpts().OpenMPIsDevice)
4100     return;
4101
4102   if (CGM.getLangOpts().OMPHostIRFile.empty())
4103     return;
4104
4105   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
4106   if (auto EC = Buf.getError()) {
4107     CGM.getDiags().Report(diag::err_cannot_open_file)
4108         << CGM.getLangOpts().OMPHostIRFile << EC.message();
4109     return;
4110   }
4111
4112   llvm::LLVMContext C;
4113   auto ME = expectedToErrorOrAndEmitErrors(
4114       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
4115
4116   if (auto EC = ME.getError()) {
4117     unsigned DiagID = CGM.getDiags().getCustomDiagID(
4118         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
4119     CGM.getDiags().Report(DiagID)
4120         << CGM.getLangOpts().OMPHostIRFile << EC.message();
4121     return;
4122   }
4123
4124   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
4125   if (!MD)
4126     return;
4127
4128   for (llvm::MDNode *MN : MD->operands()) {
4129     auto &&GetMDInt = [MN](unsigned Idx) {
4130       auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
4131       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
4132     };
4133
4134     auto &&GetMDString = [MN](unsigned Idx) {
4135       auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
4136       return V->getString();
4137     };
4138
4139     switch (GetMDInt(0)) {
4140     default:
4141       llvm_unreachable("Unexpected metadata!");
4142       break;
4143     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4144         OffloadingEntryInfoTargetRegion:
4145       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
4146           /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
4147           /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
4148           /*Order=*/GetMDInt(5));
4149       break;
4150     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4151         OffloadingEntryInfoDeviceGlobalVar:
4152       OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
4153           /*MangledName=*/GetMDString(1),
4154           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4155               /*Flags=*/GetMDInt(2)),
4156           /*Order=*/GetMDInt(3));
4157       break;
4158     }
4159   }
4160 }
4161
4162 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
4163   if (!KmpRoutineEntryPtrTy) {
4164     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
4165     ASTContext &C = CGM.getContext();
4166     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
4167     FunctionProtoType::ExtProtoInfo EPI;
4168     KmpRoutineEntryPtrQTy = C.getPointerType(
4169         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
4170     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
4171   }
4172 }
4173
4174 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
4175   // Make sure the type of the entry is already created. This is the type we
4176   // have to create:
4177   // struct __tgt_offload_entry{
4178   //   void      *addr;       // Pointer to the offload entry info.
4179   //                          // (function or global)
4180   //   char      *name;       // Name of the function or global.
4181   //   size_t     size;       // Size of the entry info (0 if it a function).
4182   //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'.
4183   //   int32_t    reserved;   // Reserved, to use by the runtime library.
4184   // };
4185   if (TgtOffloadEntryQTy.isNull()) {
4186     ASTContext &C = CGM.getContext();
4187     RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
4188     RD->startDefinition();
4189     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4190     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
4191     addFieldToRecordDecl(C, RD, C.getSizeType());
4192     addFieldToRecordDecl(
4193         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4194     addFieldToRecordDecl(
4195         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4196     RD->completeDefinition();
4197     RD->addAttr(PackedAttr::CreateImplicit(C));
4198     TgtOffloadEntryQTy = C.getRecordType(RD);
4199   }
4200   return TgtOffloadEntryQTy;
4201 }
4202
4203 QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
4204   // These are the types we need to build:
4205   // struct __tgt_device_image{
4206   // void   *ImageStart;       // Pointer to the target code start.
4207   // void   *ImageEnd;         // Pointer to the target code end.
4208   // // We also add the host entries to the device image, as it may be useful
4209   // // for the target runtime to have access to that information.
4210   // __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all
4211   //                                       // the entries.
4212   // __tgt_offload_entry  *EntriesEnd;     // End of the table with all the
4213   //                                       // entries (non inclusive).
4214   // };
4215   if (TgtDeviceImageQTy.isNull()) {
4216     ASTContext &C = CGM.getContext();
4217     RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image");
4218     RD->startDefinition();
4219     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4220     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4221     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4222     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4223     RD->completeDefinition();
4224     TgtDeviceImageQTy = C.getRecordType(RD);
4225   }
4226   return TgtDeviceImageQTy;
4227 }
4228
4229 QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
4230   // struct __tgt_bin_desc{
4231   //   int32_t              NumDevices;      // Number of devices supported.
4232   //   __tgt_device_image   *DeviceImages;   // Arrays of device images
4233   //                                         // (one per device).
4234   //   __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all the
4235   //                                         // entries.
4236   //   __tgt_offload_entry  *EntriesEnd;     // End of the table with all the
4237   //                                         // entries (non inclusive).
4238   // };
4239   if (TgtBinaryDescriptorQTy.isNull()) {
4240     ASTContext &C = CGM.getContext();
4241     RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc");
4242     RD->startDefinition();
4243     addFieldToRecordDecl(
4244         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4245     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
4246     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4247     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4248     RD->completeDefinition();
4249     TgtBinaryDescriptorQTy = C.getRecordType(RD);
4250   }
4251   return TgtBinaryDescriptorQTy;
4252 }
4253
4254 namespace {
4255 struct PrivateHelpersTy {
4256   PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
4257                    const VarDecl *PrivateElemInit)
4258       : Original(Original), PrivateCopy(PrivateCopy),
4259         PrivateElemInit(PrivateElemInit) {}
4260   const VarDecl *Original;
4261   const VarDecl *PrivateCopy;
4262   const VarDecl *PrivateElemInit;
4263 };
4264 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
4265 } // anonymous namespace
4266
4267 static RecordDecl *
4268 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
4269   if (!Privates.empty()) {
4270     ASTContext &C = CGM.getContext();
4271     // Build struct .kmp_privates_t. {
4272     //         /*  private vars  */
4273     //       };
4274     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
4275     RD->startDefinition();
4276     for (const auto &Pair : Privates) {
4277       const VarDecl *VD = Pair.second.Original;
4278       QualType Type = VD->getType().getNonReferenceType();
4279       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
4280       if (VD->hasAttrs()) {
4281         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
4282              E(VD->getAttrs().end());
4283              I != E; ++I)
4284           FD->addAttr(*I);
4285       }
4286     }
4287     RD->completeDefinition();
4288     return RD;
4289   }
4290   return nullptr;
4291 }
4292
4293 static RecordDecl *
4294 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
4295                          QualType KmpInt32Ty,
4296                          QualType KmpRoutineEntryPointerQTy) {
4297   ASTContext &C = CGM.getContext();
4298   // Build struct kmp_task_t {
4299   //         void *              shareds;
4300   //         kmp_routine_entry_t routine;
4301   //         kmp_int32           part_id;
4302   //         kmp_cmplrdata_t data1;
4303   //         kmp_cmplrdata_t data2;
4304   // For taskloops additional fields:
4305   //         kmp_uint64          lb;
4306   //         kmp_uint64          ub;
4307   //         kmp_int64           st;
4308   //         kmp_int32           liter;
4309   //         void *              reductions;
4310   //       };
4311   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
4312   UD->startDefinition();
4313   addFieldToRecordDecl(C, UD, KmpInt32Ty);
4314   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
4315   UD->completeDefinition();
4316   QualType KmpCmplrdataTy = C.getRecordType(UD);
4317   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
4318   RD->startDefinition();
4319   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4320   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
4321   addFieldToRecordDecl(C, RD, KmpInt32Ty);
4322   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4323   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4324   if (isOpenMPTaskLoopDirective(Kind)) {
4325     QualType KmpUInt64Ty =
4326         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
4327     QualType KmpInt64Ty =
4328         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
4329     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4330     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4331     addFieldToRecordDecl(C, RD, KmpInt64Ty);
4332     addFieldToRecordDecl(C, RD, KmpInt32Ty);
4333     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4334   }
4335   RD->completeDefinition();
4336   return RD;
4337 }
4338
4339 static RecordDecl *
4340 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
4341                                      ArrayRef<PrivateDataTy> Privates) {
4342   ASTContext &C = CGM.getContext();
4343   // Build struct kmp_task_t_with_privates {
4344   //         kmp_task_t task_data;
4345   //         .kmp_privates_t. privates;
4346   //       };
4347   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
4348   RD->startDefinition();
4349   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
4350   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
4351     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
4352   RD->completeDefinition();
4353   return RD;
4354 }
4355
4356 /// Emit a proxy function which accepts kmp_task_t as the second
4357 /// argument.
4358 /// \code
4359 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
4360 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
4361 ///   For taskloops:
4362 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4363 ///   tt->reductions, tt->shareds);
4364 ///   return 0;
4365 /// }
4366 /// \endcode
4367 static llvm::Value *
4368 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
4369                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
4370                       QualType KmpTaskTWithPrivatesPtrQTy,
4371                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
4372                       QualType SharedsPtrTy, llvm::Value *TaskFunction,
4373                       llvm::Value *TaskPrivatesMap) {
4374   ASTContext &C = CGM.getContext();
4375   FunctionArgList Args;
4376   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4377                             ImplicitParamDecl::Other);
4378   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4379                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4380                                 ImplicitParamDecl::Other);
4381   Args.push_back(&GtidArg);
4382   Args.push_back(&TaskTypeArg);
4383   const auto &TaskEntryFnInfo =
4384       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4385   llvm::FunctionType *TaskEntryTy =
4386       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
4387   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
4388   auto *TaskEntry = llvm::Function::Create(
4389       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4390   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
4391   TaskEntry->setDoesNotRecurse();
4392   CodeGenFunction CGF(CGM);
4393   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
4394                     Loc, Loc);
4395
4396   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
4397   // tt,
4398   // For taskloops:
4399   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4400   // tt->task_data.shareds);
4401   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
4402       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
4403   LValue TDBase = CGF.EmitLoadOfPointerLValue(
4404       CGF.GetAddrOfLocalVar(&TaskTypeArg),
4405       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4406   const auto *KmpTaskTWithPrivatesQTyRD =
4407       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4408   LValue Base =
4409       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4410   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4411   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
4412   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
4413   llvm::Value *PartidParam = PartIdLVal.getPointer();
4414
4415   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
4416   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
4417   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4418       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
4419       CGF.ConvertTypeForMem(SharedsPtrTy));
4420
4421   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4422   llvm::Value *PrivatesParam;
4423   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
4424     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
4425     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4426         PrivatesLVal.getPointer(), CGF.VoidPtrTy);
4427   } else {
4428     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4429   }
4430
4431   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
4432                                TaskPrivatesMap,
4433                                CGF.Builder
4434                                    .CreatePointerBitCastOrAddrSpaceCast(
4435                                        TDBase.getAddress(), CGF.VoidPtrTy)
4436                                    .getPointer()};
4437   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
4438                                           std::end(CommonArgs));
4439   if (isOpenMPTaskLoopDirective(Kind)) {
4440     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
4441     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
4442     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
4443     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
4444     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
4445     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
4446     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
4447     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
4448     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
4449     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4450     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4451     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
4452     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
4453     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
4454     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
4455     CallArgs.push_back(LBParam);
4456     CallArgs.push_back(UBParam);
4457     CallArgs.push_back(StParam);
4458     CallArgs.push_back(LIParam);
4459     CallArgs.push_back(RParam);
4460   }
4461   CallArgs.push_back(SharedsParam);
4462
4463   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
4464                                                   CallArgs);
4465   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
4466                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
4467   CGF.FinishFunction();
4468   return TaskEntry;
4469 }
4470
4471 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
4472                                             SourceLocation Loc,
4473                                             QualType KmpInt32Ty,
4474                                             QualType KmpTaskTWithPrivatesPtrQTy,
4475                                             QualType KmpTaskTWithPrivatesQTy) {
4476   ASTContext &C = CGM.getContext();
4477   FunctionArgList Args;
4478   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4479                             ImplicitParamDecl::Other);
4480   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4481                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4482                                 ImplicitParamDecl::Other);
4483   Args.push_back(&GtidArg);
4484   Args.push_back(&TaskTypeArg);
4485   const auto &DestructorFnInfo =
4486       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4487   llvm::FunctionType *DestructorFnTy =
4488       CGM.getTypes().GetFunctionType(DestructorFnInfo);
4489   std::string Name =
4490       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
4491   auto *DestructorFn =
4492       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
4493                              Name, &CGM.getModule());
4494   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
4495                                     DestructorFnInfo);
4496   DestructorFn->setDoesNotRecurse();
4497   CodeGenFunction CGF(CGM);
4498   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
4499                     Args, Loc, Loc);
4500
4501   LValue Base = CGF.EmitLoadOfPointerLValue(
4502       CGF.GetAddrOfLocalVar(&TaskTypeArg),
4503       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4504   const auto *KmpTaskTWithPrivatesQTyRD =
4505       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4506   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4507   Base = CGF.EmitLValueForField(Base, *FI);
4508   for (const auto *Field :
4509        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
4510     if (QualType::DestructionKind DtorKind =
4511             Field->getType().isDestructedType()) {
4512       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
4513       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
4514     }
4515   }
4516   CGF.FinishFunction();
4517   return DestructorFn;
4518 }
4519
4520 /// Emit a privates mapping function for correct handling of private and
4521 /// firstprivate variables.
4522 /// \code
4523 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
4524 /// **noalias priv1,...,  <tyn> **noalias privn) {
4525 ///   *priv1 = &.privates.priv1;
4526 ///   ...;
4527 ///   *privn = &.privates.privn;
4528 /// }
4529 /// \endcode
4530 static llvm::Value *
4531 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
4532                                ArrayRef<const Expr *> PrivateVars,
4533                                ArrayRef<const Expr *> FirstprivateVars,
4534                                ArrayRef<const Expr *> LastprivateVars,
4535                                QualType PrivatesQTy,
4536                                ArrayRef<PrivateDataTy> Privates) {
4537   ASTContext &C = CGM.getContext();
4538   FunctionArgList Args;
4539   ImplicitParamDecl TaskPrivatesArg(
4540       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4541       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
4542       ImplicitParamDecl::Other);
4543   Args.push_back(&TaskPrivatesArg);
4544   llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
4545   unsigned Counter = 1;
4546   for (const Expr *E : PrivateVars) {
4547     Args.push_back(ImplicitParamDecl::Create(
4548         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4549         C.getPointerType(C.getPointerType(E->getType()))
4550             .withConst()
4551             .withRestrict(),
4552         ImplicitParamDecl::Other));
4553     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4554     PrivateVarsPos[VD] = Counter;
4555     ++Counter;
4556   }
4557   for (const Expr *E : FirstprivateVars) {
4558     Args.push_back(ImplicitParamDecl::Create(
4559         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4560         C.getPointerType(C.getPointerType(E->getType()))
4561             .withConst()
4562             .withRestrict(),
4563         ImplicitParamDecl::Other));
4564     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4565     PrivateVarsPos[VD] = Counter;
4566     ++Counter;
4567   }
4568   for (const Expr *E : LastprivateVars) {
4569     Args.push_back(ImplicitParamDecl::Create(
4570         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4571         C.getPointerType(C.getPointerType(E->getType()))
4572             .withConst()
4573             .withRestrict(),
4574         ImplicitParamDecl::Other));
4575     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4576     PrivateVarsPos[VD] = Counter;
4577     ++Counter;
4578   }
4579   const auto &TaskPrivatesMapFnInfo =
4580       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4581   llvm::FunctionType *TaskPrivatesMapTy =
4582       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
4583   std::string Name =
4584       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
4585   auto *TaskPrivatesMap = llvm::Function::Create(
4586       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
4587       &CGM.getModule());
4588   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
4589                                     TaskPrivatesMapFnInfo);
4590   TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
4591   TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
4592   TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
4593   CodeGenFunction CGF(CGM);
4594   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
4595                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
4596
4597   // *privi = &.privates.privi;
4598   LValue Base = CGF.EmitLoadOfPointerLValue(
4599       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
4600       TaskPrivatesArg.getType()->castAs<PointerType>());
4601   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
4602   Counter = 0;
4603   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
4604     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
4605     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
4606     LValue RefLVal =
4607         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
4608     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
4609         RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
4610     CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
4611     ++Counter;
4612   }
4613   CGF.FinishFunction();
4614   return TaskPrivatesMap;
4615 }
4616
4617 static bool stable_sort_comparator(const PrivateDataTy P1,
4618                                    const PrivateDataTy P2) {
4619   return P1.first > P2.first;
4620 }
4621
4622 /// Emit initialization for private variables in task-based directives.
4623 static void emitPrivatesInit(CodeGenFunction &CGF,
4624                              const OMPExecutableDirective &D,
4625                              Address KmpTaskSharedsPtr, LValue TDBase,
4626                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4627                              QualType SharedsTy, QualType SharedsPtrTy,
4628                              const OMPTaskDataTy &Data,
4629                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
4630   ASTContext &C = CGF.getContext();
4631   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4632   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
4633   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
4634                                  ? OMPD_taskloop
4635                                  : OMPD_task;
4636   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
4637   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
4638   LValue SrcBase;
4639   bool IsTargetTask =
4640       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
4641       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
4642   // For target-based directives skip 3 firstprivate arrays BasePointersArray,
4643   // PointersArray and SizesArray. The original variables for these arrays are
4644   // not captured and we get their addresses explicitly.
4645   if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
4646       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
4647     SrcBase = CGF.MakeAddrLValue(
4648         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4649             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
4650         SharedsTy);
4651   }
4652   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
4653   for (const PrivateDataTy &Pair : Privates) {
4654     const VarDecl *VD = Pair.second.PrivateCopy;
4655     const Expr *Init = VD->getAnyInitializer();
4656     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
4657                              !CGF.isTrivialInitializer(Init)))) {
4658       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
4659       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
4660         const VarDecl *OriginalVD = Pair.second.Original;
4661         // Check if the variable is the target-based BasePointersArray,
4662         // PointersArray or SizesArray.
4663         LValue SharedRefLValue;
4664         QualType Type = OriginalVD->getType();
4665         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
4666         if (IsTargetTask && !SharedField) {
4667           assert(isa<ImplicitParamDecl>(OriginalVD) &&
4668                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
4669                  cast<CapturedDecl>(OriginalVD->getDeclContext())
4670                          ->getNumParams() == 0 &&
4671                  isa<TranslationUnitDecl>(
4672                      cast<CapturedDecl>(OriginalVD->getDeclContext())
4673                          ->getDeclContext()) &&
4674                  "Expected artificial target data variable.");
4675           SharedRefLValue =
4676               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
4677         } else {
4678           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
4679           SharedRefLValue = CGF.MakeAddrLValue(
4680               Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
4681               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
4682               SharedRefLValue.getTBAAInfo());
4683         }
4684         if (Type->isArrayType()) {
4685           // Initialize firstprivate array.
4686           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
4687             // Perform simple memcpy.
4688             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
4689           } else {
4690             // Initialize firstprivate array using element-by-element
4691             // initialization.
4692             CGF.EmitOMPAggregateAssign(
4693                 PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
4694                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
4695                                                   Address SrcElement) {
4696                   // Clean up any temporaries needed by the initialization.
4697                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
4698                   InitScope.addPrivate(
4699                       Elem, [SrcElement]() -> Address { return SrcElement; });
4700                   (void)InitScope.Privatize();
4701                   // Emit initialization for single element.
4702                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
4703                       CGF, &CapturesInfo);
4704                   CGF.EmitAnyExprToMem(Init, DestElement,
4705                                        Init->getType().getQualifiers(),
4706                                        /*IsInitializer=*/false);
4707                 });
4708           }
4709         } else {
4710           CodeGenFunction::OMPPrivateScope InitScope(CGF);
4711           InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
4712             return SharedRefLValue.getAddress();
4713           });
4714           (void)InitScope.Privatize();
4715           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
4716           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
4717                              /*capturedByInit=*/false);
4718         }
4719       } else {
4720         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
4721       }
4722     }
4723     ++FI;
4724   }
4725 }
4726
4727 /// Check if duplication function is required for taskloops.
4728 static bool checkInitIsRequired(CodeGenFunction &CGF,
4729                                 ArrayRef<PrivateDataTy> Privates) {
4730   bool InitRequired = false;
4731   for (const PrivateDataTy &Pair : Privates) {
4732     const VarDecl *VD = Pair.second.PrivateCopy;
4733     const Expr *Init = VD->getAnyInitializer();
4734     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
4735                                     !CGF.isTrivialInitializer(Init));
4736     if (InitRequired)
4737       break;
4738   }
4739   return InitRequired;
4740 }
4741
4742
4743 /// Emit task_dup function (for initialization of
4744 /// private/firstprivate/lastprivate vars and last_iter flag)
4745 /// \code
4746 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
4747 /// lastpriv) {
4748 /// // setup lastprivate flag
4749 ///    task_dst->last = lastpriv;
4750 /// // could be constructor calls here...
4751 /// }
4752 /// \endcode
4753 static llvm::Value *
4754 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
4755                     const OMPExecutableDirective &D,
4756                     QualType KmpTaskTWithPrivatesPtrQTy,
4757                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4758                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
4759                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
4760                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
4761   ASTContext &C = CGM.getContext();
4762   FunctionArgList Args;
4763   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4764                            KmpTaskTWithPrivatesPtrQTy,
4765                            ImplicitParamDecl::Other);
4766   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4767                            KmpTaskTWithPrivatesPtrQTy,
4768                            ImplicitParamDecl::Other);
4769   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
4770                                 ImplicitParamDecl::Other);
4771   Args.push_back(&DstArg);
4772   Args.push_back(&SrcArg);
4773   Args.push_back(&LastprivArg);
4774   const auto &TaskDupFnInfo =
4775       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4776   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
4777   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
4778   auto *TaskDup = llvm::Function::Create(
4779       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4780   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
4781   TaskDup->setDoesNotRecurse();
4782   CodeGenFunction CGF(CGM);
4783   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
4784                     Loc);
4785
4786   LValue TDBase = CGF.EmitLoadOfPointerLValue(
4787       CGF.GetAddrOfLocalVar(&DstArg),
4788       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4789   // task_dst->liter = lastpriv;
4790   if (WithLastIter) {
4791     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4792     LValue Base = CGF.EmitLValueForField(
4793         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4794     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4795     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
4796         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
4797     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
4798   }
4799
4800   // Emit initial values for private copies (if any).
4801   assert(!Privates.empty());
4802   Address KmpTaskSharedsPtr = Address::invalid();
4803   if (!Data.FirstprivateVars.empty()) {
4804     LValue TDBase = CGF.EmitLoadOfPointerLValue(
4805         CGF.GetAddrOfLocalVar(&SrcArg),
4806         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4807     LValue Base = CGF.EmitLValueForField(
4808         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4809     KmpTaskSharedsPtr = Address(
4810         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
4811                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
4812                                                   KmpTaskTShareds)),
4813                              Loc),
4814         CGF.getNaturalTypeAlignment(SharedsTy));
4815   }
4816   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
4817                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
4818   CGF.FinishFunction();
4819   return TaskDup;
4820 }
4821
4822 /// Checks if destructor function is required to be generated.
4823 /// \return true if cleanups are required, false otherwise.
4824 static bool
4825 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
4826   bool NeedsCleanup = false;
4827   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4828   const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
4829   for (const FieldDecl *FD : PrivateRD->fields()) {
4830     NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
4831     if (NeedsCleanup)
4832       break;
4833   }
4834   return NeedsCleanup;
4835 }
4836
4837 CGOpenMPRuntime::TaskResultTy
4838 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4839                               const OMPExecutableDirective &D,
4840                               llvm::Value *TaskFunction, QualType SharedsTy,
4841                               Address Shareds, const OMPTaskDataTy &Data) {
4842   ASTContext &C = CGM.getContext();
4843   llvm::SmallVector<PrivateDataTy, 4> Privates;
4844   // Aggregate privates and sort them by the alignment.
4845   auto I = Data.PrivateCopies.begin();
4846   for (const Expr *E : Data.PrivateVars) {
4847     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4848     Privates.emplace_back(
4849         C.getDeclAlign(VD),
4850         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4851                          /*PrivateElemInit=*/nullptr));
4852     ++I;
4853   }
4854   I = Data.FirstprivateCopies.begin();
4855   auto IElemInitRef = Data.FirstprivateInits.begin();
4856   for (const Expr *E : Data.FirstprivateVars) {
4857     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4858     Privates.emplace_back(
4859         C.getDeclAlign(VD),
4860         PrivateHelpersTy(
4861             VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4862             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4863     ++I;
4864     ++IElemInitRef;
4865   }
4866   I = Data.LastprivateCopies.begin();
4867   for (const Expr *E : Data.LastprivateVars) {
4868     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4869     Privates.emplace_back(
4870         C.getDeclAlign(VD),
4871         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4872                          /*PrivateElemInit=*/nullptr));
4873     ++I;
4874   }
4875   std::stable_sort(Privates.begin(), Privates.end(), stable_sort_comparator);
4876   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4877   // Build type kmp_routine_entry_t (if not built yet).
4878   emitKmpRoutineEntryT(KmpInt32Ty);
4879   // Build type kmp_task_t (if not built yet).
4880   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4881     if (SavedKmpTaskloopTQTy.isNull()) {
4882       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4883           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4884     }
4885     KmpTaskTQTy = SavedKmpTaskloopTQTy;
4886   } else {
4887     assert((D.getDirectiveKind() == OMPD_task ||
4888             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
4889             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
4890            "Expected taskloop, task or target directive");
4891     if (SavedKmpTaskTQTy.isNull()) {
4892       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4893           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4894     }
4895     KmpTaskTQTy = SavedKmpTaskTQTy;
4896   }
4897   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4898   // Build particular struct kmp_task_t for the given task.
4899   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
4900       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
4901   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
4902   QualType KmpTaskTWithPrivatesPtrQTy =
4903       C.getPointerType(KmpTaskTWithPrivatesQTy);
4904   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
4905   llvm::Type *KmpTaskTWithPrivatesPtrTy =
4906       KmpTaskTWithPrivatesTy->getPointerTo();
4907   llvm::Value *KmpTaskTWithPrivatesTySize =
4908       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
4909   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
4910
4911   // Emit initial values for private copies (if any).
4912   llvm::Value *TaskPrivatesMap = nullptr;
4913   llvm::Type *TaskPrivatesMapTy =
4914       std::next(cast<llvm::Function>(TaskFunction)->arg_begin(), 3)->getType();
4915   if (!Privates.empty()) {
4916     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4917     TaskPrivatesMap = emitTaskPrivateMappingFunction(
4918         CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
4919         FI->getType(), Privates);
4920     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4921         TaskPrivatesMap, TaskPrivatesMapTy);
4922   } else {
4923     TaskPrivatesMap = llvm::ConstantPointerNull::get(
4924         cast<llvm::PointerType>(TaskPrivatesMapTy));
4925   }
4926   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
4927   // kmp_task_t *tt);
4928   llvm::Value *TaskEntry = emitProxyTaskFunction(
4929       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4930       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
4931       TaskPrivatesMap);
4932
4933   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
4934   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
4935   // kmp_routine_entry_t *task_entry);
4936   // Task flags. Format is taken from
4937   // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h,
4938   // description of kmp_tasking_flags struct.
4939   enum {
4940     TiedFlag = 0x1,
4941     FinalFlag = 0x2,
4942     DestructorsFlag = 0x8,
4943     PriorityFlag = 0x20
4944   };
4945   unsigned Flags = Data.Tied ? TiedFlag : 0;
4946   bool NeedsCleanup = false;
4947   if (!Privates.empty()) {
4948     NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
4949     if (NeedsCleanup)
4950       Flags = Flags | DestructorsFlag;
4951   }
4952   if (Data.Priority.getInt())
4953     Flags = Flags | PriorityFlag;
4954   llvm::Value *TaskFlags =
4955       Data.Final.getPointer()
4956           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
4957                                      CGF.Builder.getInt32(FinalFlag),
4958                                      CGF.Builder.getInt32(/*C=*/0))
4959           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
4960   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
4961   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
4962   llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc),
4963                               getThreadID(CGF, Loc), TaskFlags,
4964                               KmpTaskTWithPrivatesTySize, SharedsSize,
4965                               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4966                                   TaskEntry, KmpRoutineEntryPtrTy)};
4967   llvm::Value *NewTask = CGF.EmitRuntimeCall(
4968       createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
4969   llvm::Value *NewTaskNewTaskTTy =
4970       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4971           NewTask, KmpTaskTWithPrivatesPtrTy);
4972   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
4973                                                KmpTaskTWithPrivatesQTy);
4974   LValue TDBase =
4975       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
4976   // Fill the data in the resulting kmp_task_t record.
4977   // Copy shareds if there are any.
4978   Address KmpTaskSharedsPtr = Address::invalid();
4979   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
4980     KmpTaskSharedsPtr =
4981         Address(CGF.EmitLoadOfScalar(
4982                     CGF.EmitLValueForField(
4983                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
4984                                            KmpTaskTShareds)),
4985                     Loc),
4986                 CGF.getNaturalTypeAlignment(SharedsTy));
4987     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
4988     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
4989     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
4990   }
4991   // Emit initial values for private copies (if any).
4992   TaskResultTy Result;
4993   if (!Privates.empty()) {
4994     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
4995                      SharedsTy, SharedsPtrTy, Data, Privates,
4996                      /*ForDup=*/false);
4997     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
4998         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
4999       Result.TaskDupFn = emitTaskDupFunction(
5000           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
5001           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
5002           /*WithLastIter=*/!Data.LastprivateVars.empty());
5003     }
5004   }
5005   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
5006   enum { Priority = 0, Destructors = 1 };
5007   // Provide pointer to function with destructors for privates.
5008   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
5009   const RecordDecl *KmpCmplrdataUD =
5010       (*FI)->getType()->getAsUnionType()->getDecl();
5011   if (NeedsCleanup) {
5012     llvm::Value *DestructorFn = emitDestructorsFunction(
5013         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
5014         KmpTaskTWithPrivatesQTy);
5015     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
5016     LValue DestructorsLV = CGF.EmitLValueForField(
5017         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
5018     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5019                               DestructorFn, KmpRoutineEntryPtrTy),
5020                           DestructorsLV);
5021   }
5022   // Set priority.
5023   if (Data.Priority.getInt()) {
5024     LValue Data2LV = CGF.EmitLValueForField(
5025         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
5026     LValue PriorityLV = CGF.EmitLValueForField(
5027         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
5028     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
5029   }
5030   Result.NewTask = NewTask;
5031   Result.TaskEntry = TaskEntry;
5032   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
5033   Result.TDBase = TDBase;
5034   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
5035   return Result;
5036 }
5037
5038 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5039                                    const OMPExecutableDirective &D,
5040                                    llvm::Value *TaskFunction,
5041                                    QualType SharedsTy, Address Shareds,
5042                                    const Expr *IfCond,
5043                                    const OMPTaskDataTy &Data) {
5044   if (!CGF.HaveInsertPoint())
5045     return;
5046
5047   TaskResultTy Result =
5048       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5049   llvm::Value *NewTask = Result.NewTask;
5050   llvm::Value *TaskEntry = Result.TaskEntry;
5051   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5052   LValue TDBase = Result.TDBase;
5053   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5054   ASTContext &C = CGM.getContext();
5055   // Process list of dependences.
5056   Address DependenciesArray = Address::invalid();
5057   unsigned NumDependencies = Data.Dependences.size();
5058   if (NumDependencies) {
5059     // Dependence kind for RTL.
5060     enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 };
5061     enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
5062     RecordDecl *KmpDependInfoRD;
5063     QualType FlagsTy =
5064         C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
5065     llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5066     if (KmpDependInfoTy.isNull()) {
5067       KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
5068       KmpDependInfoRD->startDefinition();
5069       addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
5070       addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
5071       addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
5072       KmpDependInfoRD->completeDefinition();
5073       KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
5074     } else {
5075       KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5076     }
5077     CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy);
5078     // Define type kmp_depend_info[<Dependences.size()>];
5079     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
5080         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
5081         ArrayType::Normal, /*IndexTypeQuals=*/0);
5082     // kmp_depend_info[<Dependences.size()>] deps;
5083     DependenciesArray =
5084         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
5085     for (unsigned I = 0; I < NumDependencies; ++I) {
5086       const Expr *E = Data.Dependences[I].second;
5087       LValue Addr = CGF.EmitLValue(E);
5088       llvm::Value *Size;
5089       QualType Ty = E->getType();
5090       if (const auto *ASE =
5091               dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
5092         LValue UpAddrLVal =
5093             CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false);
5094         llvm::Value *UpAddr =
5095             CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
5096         llvm::Value *LowIntPtr =
5097             CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
5098         llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
5099         Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
5100       } else {
5101         Size = CGF.getTypeSize(Ty);
5102       }
5103       LValue Base = CGF.MakeAddrLValue(
5104           CGF.Builder.CreateConstArrayGEP(DependenciesArray, I, DependencySize),
5105           KmpDependInfoTy);
5106       // deps[i].base_addr = &<Dependences[i].second>;
5107       LValue BaseAddrLVal = CGF.EmitLValueForField(
5108           Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
5109       CGF.EmitStoreOfScalar(
5110           CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
5111           BaseAddrLVal);
5112       // deps[i].len = sizeof(<Dependences[i].second>);
5113       LValue LenLVal = CGF.EmitLValueForField(
5114           Base, *std::next(KmpDependInfoRD->field_begin(), Len));
5115       CGF.EmitStoreOfScalar(Size, LenLVal);
5116       // deps[i].flags = <Dependences[i].first>;
5117       RTLDependenceKindTy DepKind;
5118       switch (Data.Dependences[I].first) {
5119       case OMPC_DEPEND_in:
5120         DepKind = DepIn;
5121         break;
5122       // Out and InOut dependencies must use the same code.
5123       case OMPC_DEPEND_out:
5124       case OMPC_DEPEND_inout:
5125         DepKind = DepInOut;
5126         break;
5127       case OMPC_DEPEND_source:
5128       case OMPC_DEPEND_sink:
5129       case OMPC_DEPEND_unknown:
5130         llvm_unreachable("Unknown task dependence type");
5131       }
5132       LValue FlagsLVal = CGF.EmitLValueForField(
5133           Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5134       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5135                             FlagsLVal);
5136     }
5137     DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5138         CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()),
5139         CGF.VoidPtrTy);
5140   }
5141
5142   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5143   // libcall.
5144   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5145   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5146   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5147   // list is not empty
5148   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5149   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5150   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5151   llvm::Value *DepTaskArgs[7];
5152   if (NumDependencies) {
5153     DepTaskArgs[0] = UpLoc;
5154     DepTaskArgs[1] = ThreadID;
5155     DepTaskArgs[2] = NewTask;
5156     DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
5157     DepTaskArgs[4] = DependenciesArray.getPointer();
5158     DepTaskArgs[5] = CGF.Builder.getInt32(0);
5159     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5160   }
5161   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
5162                         &TaskArgs,
5163                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5164     if (!Data.Tied) {
5165       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5166       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5167       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5168     }
5169     if (NumDependencies) {
5170       CGF.EmitRuntimeCall(
5171           createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
5172     } else {
5173       CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
5174                           TaskArgs);
5175     }
5176     // Check if parent region is untied and build return for untied task;
5177     if (auto *Region =
5178             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5179       Region->emitUntiedSwitch(CGF);
5180   };
5181
5182   llvm::Value *DepWaitTaskArgs[6];
5183   if (NumDependencies) {
5184     DepWaitTaskArgs[0] = UpLoc;
5185     DepWaitTaskArgs[1] = ThreadID;
5186     DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
5187     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5188     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5189     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5190   }
5191   auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
5192                         NumDependencies, &DepWaitTaskArgs,
5193                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5194     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5195     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5196     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5197     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5198     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5199     // is specified.
5200     if (NumDependencies)
5201       CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
5202                           DepWaitTaskArgs);
5203     // Call proxy_task_entry(gtid, new_task);
5204     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5205                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5206       Action.Enter(CGF);
5207       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5208       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5209                                                           OutlinedFnArgs);
5210     };
5211
5212     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5213     // kmp_task_t *new_task);
5214     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5215     // kmp_task_t *new_task);
5216     RegionCodeGenTy RCG(CodeGen);
5217     CommonActionTy Action(
5218         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
5219         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
5220     RCG.setAction(Action);
5221     RCG(CGF);
5222   };
5223
5224   if (IfCond) {
5225     emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5226   } else {
5227     RegionCodeGenTy ThenRCG(ThenCodeGen);
5228     ThenRCG(CGF);
5229   }
5230 }
5231
5232 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5233                                        const OMPLoopDirective &D,
5234                                        llvm::Value *TaskFunction,
5235                                        QualType SharedsTy, Address Shareds,
5236                                        const Expr *IfCond,
5237                                        const OMPTaskDataTy &Data) {
5238   if (!CGF.HaveInsertPoint())
5239     return;
5240   TaskResultTy Result =
5241       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5242   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5243   // libcall.
5244   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5245   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5246   // sched, kmp_uint64 grainsize, void *task_dup);
5247   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5248   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5249   llvm::Value *IfVal;
5250   if (IfCond) {
5251     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5252                                       /*isSigned=*/true);
5253   } else {
5254     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5255   }
5256
5257   LValue LBLVal = CGF.EmitLValueForField(
5258       Result.TDBase,
5259       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5260   const auto *LBVar =
5261       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5262   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
5263                        /*IsInitializer=*/true);
5264   LValue UBLVal = CGF.EmitLValueForField(
5265       Result.TDBase,
5266       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5267   const auto *UBVar =
5268       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5269   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
5270                        /*IsInitializer=*/true);
5271   LValue StLVal = CGF.EmitLValueForField(
5272       Result.TDBase,
5273       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5274   const auto *StVar =
5275       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5276   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
5277                        /*IsInitializer=*/true);
5278   // Store reductions address.
5279   LValue RedLVal = CGF.EmitLValueForField(
5280       Result.TDBase,
5281       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5282   if (Data.Reductions) {
5283     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5284   } else {
5285     CGF.EmitNullInitialization(RedLVal.getAddress(),
5286                                CGF.getContext().VoidPtrTy);
5287   }
5288   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5289   llvm::Value *TaskArgs[] = {
5290       UpLoc,
5291       ThreadID,
5292       Result.NewTask,
5293       IfVal,
5294       LBLVal.getPointer(),
5295       UBLVal.getPointer(),
5296       CGF.EmitLoadOfScalar(StLVal, Loc),
5297       llvm::ConstantInt::getSigned(
5298               CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5299       llvm::ConstantInt::getSigned(
5300           CGF.IntTy, Data.Schedule.getPointer()
5301                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
5302                          : NoSchedule),
5303       Data.Schedule.getPointer()
5304           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5305                                       /*isSigned=*/false)
5306           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5307       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5308                              Result.TaskDupFn, CGF.VoidPtrTy)
5309                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5310   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
5311 }
5312
5313 /// Emit reduction operation for each element of array (required for
5314 /// array sections) LHS op = RHS.
5315 /// \param Type Type of array.
5316 /// \param LHSVar Variable on the left side of the reduction operation
5317 /// (references element of array in original variable).
5318 /// \param RHSVar Variable on the right side of the reduction operation
5319 /// (references element of array in original variable).
5320 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5321 /// RHSVar.
5322 static void EmitOMPAggregateReduction(
5323     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5324     const VarDecl *RHSVar,
5325     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5326                                   const Expr *, const Expr *)> &RedOpGen,
5327     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5328     const Expr *UpExpr = nullptr) {
5329   // Perform element-by-element initialization.
5330   QualType ElementTy;
5331   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5332   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5333
5334   // Drill down to the base element type on both arrays.
5335   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5336   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5337
5338   llvm::Value *RHSBegin = RHSAddr.getPointer();
5339   llvm::Value *LHSBegin = LHSAddr.getPointer();
5340   // Cast from pointer to array type to pointer to single element.
5341   llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5342   // The basic structure here is a while-do loop.
5343   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5344   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5345   llvm::Value *IsEmpty =
5346       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5347   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5348
5349   // Enter the loop body, making that address the current address.
5350   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5351   CGF.EmitBlock(BodyBB);
5352
5353   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5354
5355   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5356       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5357   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5358   Address RHSElementCurrent =
5359       Address(RHSElementPHI,
5360               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5361
5362   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5363       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5364   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5365   Address LHSElementCurrent =
5366       Address(LHSElementPHI,
5367               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5368
5369   // Emit copy.
5370   CodeGenFunction::OMPPrivateScope Scope(CGF);
5371   Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5372   Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5373   Scope.Privatize();
5374   RedOpGen(CGF, XExpr, EExpr, UpExpr);
5375   Scope.ForceCleanup();
5376
5377   // Shift the address forward by one element.
5378   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5379       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5380   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5381       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5382   // Check whether we've reached the end.
5383   llvm::Value *Done =
5384       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5385   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5386   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5387   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5388
5389   // Done.
5390   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5391 }
5392
5393 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5394 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5395 /// UDR combiner function.
5396 static void emitReductionCombiner(CodeGenFunction &CGF,
5397                                   const Expr *ReductionOp) {
5398   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5399     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5400       if (const auto *DRE =
5401               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5402         if (const auto *DRD =
5403                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5404           std::pair<llvm::Function *, llvm::Function *> Reduction =
5405               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5406           RValue Func = RValue::get(Reduction.first);
5407           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5408           CGF.EmitIgnoredExpr(ReductionOp);
5409           return;
5410         }
5411   CGF.EmitIgnoredExpr(ReductionOp);
5412 }
5413
5414 llvm::Value *CGOpenMPRuntime::emitReductionFunction(
5415     CodeGenModule &CGM, SourceLocation Loc, llvm::Type *ArgsType,
5416     ArrayRef<const Expr *> Privates, ArrayRef<const Expr *> LHSExprs,
5417     ArrayRef<const Expr *> RHSExprs, ArrayRef<const Expr *> ReductionOps) {
5418   ASTContext &C = CGM.getContext();
5419
5420   // void reduction_func(void *LHSArg, void *RHSArg);
5421   FunctionArgList Args;
5422   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5423                            ImplicitParamDecl::Other);
5424   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5425                            ImplicitParamDecl::Other);
5426   Args.push_back(&LHSArg);
5427   Args.push_back(&RHSArg);
5428   const auto &CGFI =
5429       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5430   std::string Name = getName({"omp", "reduction", "reduction_func"});
5431   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5432                                     llvm::GlobalValue::InternalLinkage, Name,
5433                                     &CGM.getModule());
5434   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5435   Fn->setDoesNotRecurse();
5436   CodeGenFunction CGF(CGM);
5437   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5438
5439   // Dst = (void*[n])(LHSArg);
5440   // Src = (void*[n])(RHSArg);
5441   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5442       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5443       ArgsType), CGF.getPointerAlign());
5444   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5445       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5446       ArgsType), CGF.getPointerAlign());
5447
5448   //  ...
5449   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5450   //  ...
5451   CodeGenFunction::OMPPrivateScope Scope(CGF);
5452   auto IPriv = Privates.begin();
5453   unsigned Idx = 0;
5454   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5455     const auto *RHSVar =
5456         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5457     Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5458       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5459     });
5460     const auto *LHSVar =
5461         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5462     Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5463       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5464     });
5465     QualType PrivTy = (*IPriv)->getType();
5466     if (PrivTy->isVariablyModifiedType()) {
5467       // Get array size and emit VLA type.
5468       ++Idx;
5469       Address Elem =
5470           CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize());
5471       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5472       const VariableArrayType *VLA =
5473           CGF.getContext().getAsVariableArrayType(PrivTy);
5474       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5475       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5476           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5477       CGF.EmitVariablyModifiedType(PrivTy);
5478     }
5479   }
5480   Scope.Privatize();
5481   IPriv = Privates.begin();
5482   auto ILHS = LHSExprs.begin();
5483   auto IRHS = RHSExprs.begin();
5484   for (const Expr *E : ReductionOps) {
5485     if ((*IPriv)->getType()->isArrayType()) {
5486       // Emit reduction for array section.
5487       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5488       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5489       EmitOMPAggregateReduction(
5490           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5491           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5492             emitReductionCombiner(CGF, E);
5493           });
5494     } else {
5495       // Emit reduction for array subscript or single variable.
5496       emitReductionCombiner(CGF, E);
5497     }
5498     ++IPriv;
5499     ++ILHS;
5500     ++IRHS;
5501   }
5502   Scope.ForceCleanup();
5503   CGF.FinishFunction();
5504   return Fn;
5505 }
5506
5507 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5508                                                   const Expr *ReductionOp,
5509                                                   const Expr *PrivateRef,
5510                                                   const DeclRefExpr *LHS,
5511                                                   const DeclRefExpr *RHS) {
5512   if (PrivateRef->getType()->isArrayType()) {
5513     // Emit reduction for array section.
5514     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5515     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5516     EmitOMPAggregateReduction(
5517         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5518         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5519           emitReductionCombiner(CGF, ReductionOp);
5520         });
5521   } else {
5522     // Emit reduction for array subscript or single variable.
5523     emitReductionCombiner(CGF, ReductionOp);
5524   }
5525 }
5526
5527 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5528                                     ArrayRef<const Expr *> Privates,
5529                                     ArrayRef<const Expr *> LHSExprs,
5530                                     ArrayRef<const Expr *> RHSExprs,
5531                                     ArrayRef<const Expr *> ReductionOps,
5532                                     ReductionOptionsTy Options) {
5533   if (!CGF.HaveInsertPoint())
5534     return;
5535
5536   bool WithNowait = Options.WithNowait;
5537   bool SimpleReduction = Options.SimpleReduction;
5538
5539   // Next code should be emitted for reduction:
5540   //
5541   // static kmp_critical_name lock = { 0 };
5542   //
5543   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5544   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5545   //  ...
5546   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5547   //  *(Type<n>-1*)rhs[<n>-1]);
5548   // }
5549   //
5550   // ...
5551   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5552   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5553   // RedList, reduce_func, &<lock>)) {
5554   // case 1:
5555   //  ...
5556   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5557   //  ...
5558   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5559   // break;
5560   // case 2:
5561   //  ...
5562   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5563   //  ...
5564   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5565   // break;
5566   // default:;
5567   // }
5568   //
5569   // if SimpleReduction is true, only the next code is generated:
5570   //  ...
5571   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5572   //  ...
5573
5574   ASTContext &C = CGM.getContext();
5575
5576   if (SimpleReduction) {
5577     CodeGenFunction::RunCleanupsScope Scope(CGF);
5578     auto IPriv = Privates.begin();
5579     auto ILHS = LHSExprs.begin();
5580     auto IRHS = RHSExprs.begin();
5581     for (const Expr *E : ReductionOps) {
5582       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5583                                   cast<DeclRefExpr>(*IRHS));
5584       ++IPriv;
5585       ++ILHS;
5586       ++IRHS;
5587     }
5588     return;
5589   }
5590
5591   // 1. Build a list of reduction variables.
5592   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5593   auto Size = RHSExprs.size();
5594   for (const Expr *E : Privates) {
5595     if (E->getType()->isVariablyModifiedType())
5596       // Reserve place for array size.
5597       ++Size;
5598   }
5599   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5600   QualType ReductionArrayTy =
5601       C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
5602                              /*IndexTypeQuals=*/0);
5603   Address ReductionList =
5604       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5605   auto IPriv = Privates.begin();
5606   unsigned Idx = 0;
5607   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5608     Address Elem =
5609       CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize());
5610     CGF.Builder.CreateStore(
5611         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5612             CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
5613         Elem);
5614     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5615       // Store array size.
5616       ++Idx;
5617       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
5618                                              CGF.getPointerSize());
5619       llvm::Value *Size = CGF.Builder.CreateIntCast(
5620           CGF.getVLASize(
5621                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5622               .NumElts,
5623           CGF.SizeTy, /*isSigned=*/false);
5624       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5625                               Elem);
5626     }
5627   }
5628
5629   // 2. Emit reduce_func().
5630   llvm::Value *ReductionFn = emitReductionFunction(
5631       CGM, Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(),
5632       Privates, LHSExprs, RHSExprs, ReductionOps);
5633
5634   // 3. Create static kmp_critical_name lock = { 0 };
5635   std::string Name = getName({"reduction"});
5636   llvm::Value *Lock = getCriticalRegionLock(Name);
5637
5638   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5639   // RedList, reduce_func, &<lock>);
5640   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5641   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5642   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5643   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5644       ReductionList.getPointer(), CGF.VoidPtrTy);
5645   llvm::Value *Args[] = {
5646       IdentTLoc,                             // ident_t *<loc>
5647       ThreadId,                              // i32 <gtid>
5648       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5649       ReductionArrayTySize,                  // size_type sizeof(RedList)
5650       RL,                                    // void *RedList
5651       ReductionFn, // void (*) (void *, void *) <reduce_func>
5652       Lock         // kmp_critical_name *&<lock>
5653   };
5654   llvm::Value *Res = CGF.EmitRuntimeCall(
5655       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
5656                                        : OMPRTL__kmpc_reduce),
5657       Args);
5658
5659   // 5. Build switch(res)
5660   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5661   llvm::SwitchInst *SwInst =
5662       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5663
5664   // 6. Build case 1:
5665   //  ...
5666   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5667   //  ...
5668   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5669   // break;
5670   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5671   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5672   CGF.EmitBlock(Case1BB);
5673
5674   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5675   llvm::Value *EndArgs[] = {
5676       IdentTLoc, // ident_t *<loc>
5677       ThreadId,  // i32 <gtid>
5678       Lock       // kmp_critical_name *&<lock>
5679   };
5680   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5681                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5682     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5683     auto IPriv = Privates.begin();
5684     auto ILHS = LHSExprs.begin();
5685     auto IRHS = RHSExprs.begin();
5686     for (const Expr *E : ReductionOps) {
5687       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5688                                      cast<DeclRefExpr>(*IRHS));
5689       ++IPriv;
5690       ++ILHS;
5691       ++IRHS;
5692     }
5693   };
5694   RegionCodeGenTy RCG(CodeGen);
5695   CommonActionTy Action(
5696       nullptr, llvm::None,
5697       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
5698                                        : OMPRTL__kmpc_end_reduce),
5699       EndArgs);
5700   RCG.setAction(Action);
5701   RCG(CGF);
5702
5703   CGF.EmitBranch(DefaultBB);
5704
5705   // 7. Build case 2:
5706   //  ...
5707   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5708   //  ...
5709   // break;
5710   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5711   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5712   CGF.EmitBlock(Case2BB);
5713
5714   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5715                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5716     auto ILHS = LHSExprs.begin();
5717     auto IRHS = RHSExprs.begin();
5718     auto IPriv = Privates.begin();
5719     for (const Expr *E : ReductionOps) {
5720       const Expr *XExpr = nullptr;
5721       const Expr *EExpr = nullptr;
5722       const Expr *UpExpr = nullptr;
5723       BinaryOperatorKind BO = BO_Comma;
5724       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5725         if (BO->getOpcode() == BO_Assign) {
5726           XExpr = BO->getLHS();
5727           UpExpr = BO->getRHS();
5728         }
5729       }
5730       // Try to emit update expression as a simple atomic.
5731       const Expr *RHSExpr = UpExpr;
5732       if (RHSExpr) {
5733         // Analyze RHS part of the whole expression.
5734         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5735                 RHSExpr->IgnoreParenImpCasts())) {
5736           // If this is a conditional operator, analyze its condition for
5737           // min/max reduction operator.
5738           RHSExpr = ACO->getCond();
5739         }
5740         if (const auto *BORHS =
5741                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5742           EExpr = BORHS->getRHS();
5743           BO = BORHS->getOpcode();
5744         }
5745       }
5746       if (XExpr) {
5747         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5748         auto &&AtomicRedGen = [BO, VD,
5749                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5750                                     const Expr *EExpr, const Expr *UpExpr) {
5751           LValue X = CGF.EmitLValue(XExpr);
5752           RValue E;
5753           if (EExpr)
5754             E = CGF.EmitAnyExpr(EExpr);
5755           CGF.EmitOMPAtomicSimpleUpdateExpr(
5756               X, E, BO, /*IsXLHSInRHSPart=*/true,
5757               llvm::AtomicOrdering::Monotonic, Loc,
5758               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5759                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5760                 PrivateScope.addPrivate(
5761                     VD, [&CGF, VD, XRValue, Loc]() {
5762                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5763                       CGF.emitOMPSimpleStore(
5764                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5765                           VD->getType().getNonReferenceType(), Loc);
5766                       return LHSTemp;
5767                     });
5768                 (void)PrivateScope.Privatize();
5769                 return CGF.EmitAnyExpr(UpExpr);
5770               });
5771         };
5772         if ((*IPriv)->getType()->isArrayType()) {
5773           // Emit atomic reduction for array section.
5774           const auto *RHSVar =
5775               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5776           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5777                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5778         } else {
5779           // Emit atomic reduction for array subscript or single variable.
5780           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5781         }
5782       } else {
5783         // Emit as a critical region.
5784         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5785                                            const Expr *, const Expr *) {
5786           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5787           std::string Name = RT.getName({"atomic_reduction"});
5788           RT.emitCriticalRegion(
5789               CGF, Name,
5790               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5791                 Action.Enter(CGF);
5792                 emitReductionCombiner(CGF, E);
5793               },
5794               Loc);
5795         };
5796         if ((*IPriv)->getType()->isArrayType()) {
5797           const auto *LHSVar =
5798               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5799           const auto *RHSVar =
5800               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5801           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5802                                     CritRedGen);
5803         } else {
5804           CritRedGen(CGF, nullptr, nullptr, nullptr);
5805         }
5806       }
5807       ++ILHS;
5808       ++IRHS;
5809       ++IPriv;
5810     }
5811   };
5812   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5813   if (!WithNowait) {
5814     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5815     llvm::Value *EndArgs[] = {
5816         IdentTLoc, // ident_t *<loc>
5817         ThreadId,  // i32 <gtid>
5818         Lock       // kmp_critical_name *&<lock>
5819     };
5820     CommonActionTy Action(nullptr, llvm::None,
5821                           createRuntimeFunction(OMPRTL__kmpc_end_reduce),
5822                           EndArgs);
5823     AtomicRCG.setAction(Action);
5824     AtomicRCG(CGF);
5825   } else {
5826     AtomicRCG(CGF);
5827   }
5828
5829   CGF.EmitBranch(DefaultBB);
5830   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5831 }
5832
5833 /// Generates unique name for artificial threadprivate variables.
5834 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
5835 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5836                                       const Expr *Ref) {
5837   SmallString<256> Buffer;
5838   llvm::raw_svector_ostream Out(Buffer);
5839   const clang::DeclRefExpr *DE;
5840   const VarDecl *D = ::getBaseDecl(Ref, DE);
5841   if (!D)
5842     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5843   D = D->getCanonicalDecl();
5844   std::string Name = CGM.getOpenMPRuntime().getName(
5845       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5846   Out << Prefix << Name << "_"
5847       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5848   return Out.str();
5849 }
5850
5851 /// Emits reduction initializer function:
5852 /// \code
5853 /// void @.red_init(void* %arg) {
5854 /// %0 = bitcast void* %arg to <type>*
5855 /// store <type> <init>, <type>* %0
5856 /// ret void
5857 /// }
5858 /// \endcode
5859 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5860                                            SourceLocation Loc,
5861                                            ReductionCodeGen &RCG, unsigned N) {
5862   ASTContext &C = CGM.getContext();
5863   FunctionArgList Args;
5864   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5865                           ImplicitParamDecl::Other);
5866   Args.emplace_back(&Param);
5867   const auto &FnInfo =
5868       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5869   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5870   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5871   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5872                                     Name, &CGM.getModule());
5873   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5874   Fn->setDoesNotRecurse();
5875   CodeGenFunction CGF(CGM);
5876   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5877   Address PrivateAddr = CGF.EmitLoadOfPointer(
5878       CGF.GetAddrOfLocalVar(&Param),
5879       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5880   llvm::Value *Size = nullptr;
5881   // If the size of the reduction item is non-constant, load it from global
5882   // threadprivate variable.
5883   if (RCG.getSizes(N).second) {
5884     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5885         CGF, CGM.getContext().getSizeType(),
5886         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5887     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5888                                 CGM.getContext().getSizeType(), Loc);
5889   }
5890   RCG.emitAggregateType(CGF, N, Size);
5891   LValue SharedLVal;
5892   // If initializer uses initializer from declare reduction construct, emit a
5893   // pointer to the address of the original reduction item (reuired by reduction
5894   // initializer)
5895   if (RCG.usesReductionInitializer(N)) {
5896     Address SharedAddr =
5897         CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5898             CGF, CGM.getContext().VoidPtrTy,
5899             generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
5900     SharedAddr = CGF.EmitLoadOfPointer(
5901         SharedAddr,
5902         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
5903     SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
5904   } else {
5905     SharedLVal = CGF.MakeNaturalAlignAddrLValue(
5906         llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
5907         CGM.getContext().VoidPtrTy);
5908   }
5909   // Emit the initializer:
5910   // %0 = bitcast void* %arg to <type>*
5911   // store <type> <init>, <type>* %0
5912   RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
5913                          [](CodeGenFunction &) { return false; });
5914   CGF.FinishFunction();
5915   return Fn;
5916 }
5917
5918 /// Emits reduction combiner function:
5919 /// \code
5920 /// void @.red_comb(void* %arg0, void* %arg1) {
5921 /// %lhs = bitcast void* %arg0 to <type>*
5922 /// %rhs = bitcast void* %arg1 to <type>*
5923 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
5924 /// store <type> %2, <type>* %lhs
5925 /// ret void
5926 /// }
5927 /// \endcode
5928 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
5929                                            SourceLocation Loc,
5930                                            ReductionCodeGen &RCG, unsigned N,
5931                                            const Expr *ReductionOp,
5932                                            const Expr *LHS, const Expr *RHS,
5933                                            const Expr *PrivateRef) {
5934   ASTContext &C = CGM.getContext();
5935   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
5936   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
5937   FunctionArgList Args;
5938   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
5939                                C.VoidPtrTy, ImplicitParamDecl::Other);
5940   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5941                             ImplicitParamDecl::Other);
5942   Args.emplace_back(&ParamInOut);
5943   Args.emplace_back(&ParamIn);
5944   const auto &FnInfo =
5945       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5946   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5947   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
5948   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5949                                     Name, &CGM.getModule());
5950   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5951   Fn->setDoesNotRecurse();
5952   CodeGenFunction CGF(CGM);
5953   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5954   llvm::Value *Size = nullptr;
5955   // If the size of the reduction item is non-constant, load it from global
5956   // threadprivate variable.
5957   if (RCG.getSizes(N).second) {
5958     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5959         CGF, CGM.getContext().getSizeType(),
5960         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5961     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5962                                 CGM.getContext().getSizeType(), Loc);
5963   }
5964   RCG.emitAggregateType(CGF, N, Size);
5965   // Remap lhs and rhs variables to the addresses of the function arguments.
5966   // %lhs = bitcast void* %arg0 to <type>*
5967   // %rhs = bitcast void* %arg1 to <type>*
5968   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5969   PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
5970     // Pull out the pointer to the variable.
5971     Address PtrAddr = CGF.EmitLoadOfPointer(
5972         CGF.GetAddrOfLocalVar(&ParamInOut),
5973         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5974     return CGF.Builder.CreateElementBitCast(
5975         PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
5976   });
5977   PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
5978     // Pull out the pointer to the variable.
5979     Address PtrAddr = CGF.EmitLoadOfPointer(
5980         CGF.GetAddrOfLocalVar(&ParamIn),
5981         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5982     return CGF.Builder.CreateElementBitCast(
5983         PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
5984   });
5985   PrivateScope.Privatize();
5986   // Emit the combiner body:
5987   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
5988   // store <type> %2, <type>* %lhs
5989   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
5990       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
5991       cast<DeclRefExpr>(RHS));
5992   CGF.FinishFunction();
5993   return Fn;
5994 }
5995
5996 /// Emits reduction finalizer function:
5997 /// \code
5998 /// void @.red_fini(void* %arg) {
5999 /// %0 = bitcast void* %arg to <type>*
6000 /// <destroy>(<type>* %0)
6001 /// ret void
6002 /// }
6003 /// \endcode
6004 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
6005                                            SourceLocation Loc,
6006                                            ReductionCodeGen &RCG, unsigned N) {
6007   if (!RCG.needCleanups(N))
6008     return nullptr;
6009   ASTContext &C = CGM.getContext();
6010   FunctionArgList Args;
6011   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6012                           ImplicitParamDecl::Other);
6013   Args.emplace_back(&Param);
6014   const auto &FnInfo =
6015       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6016   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6017   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
6018   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6019                                     Name, &CGM.getModule());
6020   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6021   Fn->setDoesNotRecurse();
6022   CodeGenFunction CGF(CGM);
6023   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6024   Address PrivateAddr = CGF.EmitLoadOfPointer(
6025       CGF.GetAddrOfLocalVar(&Param),
6026       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6027   llvm::Value *Size = nullptr;
6028   // If the size of the reduction item is non-constant, load it from global
6029   // threadprivate variable.
6030   if (RCG.getSizes(N).second) {
6031     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6032         CGF, CGM.getContext().getSizeType(),
6033         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6034     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6035                                 CGM.getContext().getSizeType(), Loc);
6036   }
6037   RCG.emitAggregateType(CGF, N, Size);
6038   // Emit the finalizer body:
6039   // <destroy>(<type>* %0)
6040   RCG.emitCleanups(CGF, N, PrivateAddr);
6041   CGF.FinishFunction();
6042   return Fn;
6043 }
6044
6045 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6046     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6047     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6048   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6049     return nullptr;
6050
6051   // Build typedef struct:
6052   // kmp_task_red_input {
6053   //   void *reduce_shar; // shared reduction item
6054   //   size_t reduce_size; // size of data item
6055   //   void *reduce_init; // data initialization routine
6056   //   void *reduce_fini; // data finalization routine
6057   //   void *reduce_comb; // data combiner routine
6058   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
6059   // } kmp_task_red_input_t;
6060   ASTContext &C = CGM.getContext();
6061   RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
6062   RD->startDefinition();
6063   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6064   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6065   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6066   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6067   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6068   const FieldDecl *FlagsFD = addFieldToRecordDecl(
6069       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6070   RD->completeDefinition();
6071   QualType RDType = C.getRecordType(RD);
6072   unsigned Size = Data.ReductionVars.size();
6073   llvm::APInt ArraySize(/*numBits=*/64, Size);
6074   QualType ArrayRDType = C.getConstantArrayType(
6075       RDType, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
6076   // kmp_task_red_input_t .rd_input.[Size];
6077   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6078   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
6079                        Data.ReductionOps);
6080   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6081     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6082     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6083                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6084     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6085         TaskRedInput.getPointer(), Idxs,
6086         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6087         ".rd_input.gep.");
6088     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6089     // ElemLVal.reduce_shar = &Shareds[Cnt];
6090     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6091     RCG.emitSharedLValue(CGF, Cnt);
6092     llvm::Value *CastedShared =
6093         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer());
6094     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6095     RCG.emitAggregateType(CGF, Cnt);
6096     llvm::Value *SizeValInChars;
6097     llvm::Value *SizeVal;
6098     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6099     // We use delayed creation/initialization for VLAs, array sections and
6100     // custom reduction initializations. It is required because runtime does not
6101     // provide the way to pass the sizes of VLAs/array sections to
6102     // initializer/combiner/finalizer functions and does not pass the pointer to
6103     // original reduction item to the initializer. Instead threadprivate global
6104     // variables are used to store these values and use them in the functions.
6105     bool DelayedCreation = !!SizeVal;
6106     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6107                                                /*isSigned=*/false);
6108     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6109     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6110     // ElemLVal.reduce_init = init;
6111     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6112     llvm::Value *InitAddr =
6113         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6114     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6115     DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
6116     // ElemLVal.reduce_fini = fini;
6117     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6118     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6119     llvm::Value *FiniAddr = Fini
6120                                 ? CGF.EmitCastToVoidPtr(Fini)
6121                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6122     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6123     // ElemLVal.reduce_comb = comb;
6124     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6125     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6126         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6127         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6128     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6129     // ElemLVal.flags = 0;
6130     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6131     if (DelayedCreation) {
6132       CGF.EmitStoreOfScalar(
6133           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*IsSigned=*/true),
6134           FlagsLVal);
6135     } else
6136       CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType());
6137   }
6138   // Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
6139   // *data);
6140   llvm::Value *Args[] = {
6141       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6142                                 /*isSigned=*/true),
6143       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6144       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6145                                                       CGM.VoidPtrTy)};
6146   return CGF.EmitRuntimeCall(
6147       createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
6148 }
6149
6150 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6151                                               SourceLocation Loc,
6152                                               ReductionCodeGen &RCG,
6153                                               unsigned N) {
6154   auto Sizes = RCG.getSizes(N);
6155   // Emit threadprivate global variable if the type is non-constant
6156   // (Sizes.second = nullptr).
6157   if (Sizes.second) {
6158     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6159                                                      /*isSigned=*/false);
6160     Address SizeAddr = getAddrOfArtificialThreadPrivate(
6161         CGF, CGM.getContext().getSizeType(),
6162         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6163     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6164   }
6165   // Store address of the original reduction item if custom initializer is used.
6166   if (RCG.usesReductionInitializer(N)) {
6167     Address SharedAddr = getAddrOfArtificialThreadPrivate(
6168         CGF, CGM.getContext().VoidPtrTy,
6169         generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
6170     CGF.Builder.CreateStore(
6171         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6172             RCG.getSharedLValue(N).getPointer(), CGM.VoidPtrTy),
6173         SharedAddr, /*IsVolatile=*/false);
6174   }
6175 }
6176
6177 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6178                                               SourceLocation Loc,
6179                                               llvm::Value *ReductionsPtr,
6180                                               LValue SharedLVal) {
6181   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6182   // *d);
6183   llvm::Value *Args[] = {
6184       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6185                                 /*isSigned=*/true),
6186       ReductionsPtr,
6187       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(SharedLVal.getPointer(),
6188                                                       CGM.VoidPtrTy)};
6189   return Address(
6190       CGF.EmitRuntimeCall(
6191           createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
6192       SharedLVal.getAlignment());
6193 }
6194
6195 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6196                                        SourceLocation Loc) {
6197   if (!CGF.HaveInsertPoint())
6198     return;
6199   // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6200   // global_tid);
6201   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6202   // Ignore return result until untied tasks are supported.
6203   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
6204   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6205     Region->emitUntiedSwitch(CGF);
6206 }
6207
6208 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6209                                            OpenMPDirectiveKind InnerKind,
6210                                            const RegionCodeGenTy &CodeGen,
6211                                            bool HasCancel) {
6212   if (!CGF.HaveInsertPoint())
6213     return;
6214   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6215   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6216 }
6217
6218 namespace {
6219 enum RTCancelKind {
6220   CancelNoreq = 0,
6221   CancelParallel = 1,
6222   CancelLoop = 2,
6223   CancelSections = 3,
6224   CancelTaskgroup = 4
6225 };
6226 } // anonymous namespace
6227
6228 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6229   RTCancelKind CancelKind = CancelNoreq;
6230   if (CancelRegion == OMPD_parallel)
6231     CancelKind = CancelParallel;
6232   else if (CancelRegion == OMPD_for)
6233     CancelKind = CancelLoop;
6234   else if (CancelRegion == OMPD_sections)
6235     CancelKind = CancelSections;
6236   else {
6237     assert(CancelRegion == OMPD_taskgroup);
6238     CancelKind = CancelTaskgroup;
6239   }
6240   return CancelKind;
6241 }
6242
6243 void CGOpenMPRuntime::emitCancellationPointCall(
6244     CodeGenFunction &CGF, SourceLocation Loc,
6245     OpenMPDirectiveKind CancelRegion) {
6246   if (!CGF.HaveInsertPoint())
6247     return;
6248   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6249   // global_tid, kmp_int32 cncl_kind);
6250   if (auto *OMPRegionInfo =
6251           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6252     // For 'cancellation point taskgroup', the task region info may not have a
6253     // cancel. This may instead happen in another adjacent task.
6254     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6255       llvm::Value *Args[] = {
6256           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6257           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6258       // Ignore return result until untied tasks are supported.
6259       llvm::Value *Result = CGF.EmitRuntimeCall(
6260           createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
6261       // if (__kmpc_cancellationpoint()) {
6262       //   exit from construct;
6263       // }
6264       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6265       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6266       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6267       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6268       CGF.EmitBlock(ExitBB);
6269       // exit from construct;
6270       CodeGenFunction::JumpDest CancelDest =
6271           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6272       CGF.EmitBranchThroughCleanup(CancelDest);
6273       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6274     }
6275   }
6276 }
6277
6278 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6279                                      const Expr *IfCond,
6280                                      OpenMPDirectiveKind CancelRegion) {
6281   if (!CGF.HaveInsertPoint())
6282     return;
6283   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6284   // kmp_int32 cncl_kind);
6285   if (auto *OMPRegionInfo =
6286           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6287     auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
6288                                                         PrePostActionTy &) {
6289       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6290       llvm::Value *Args[] = {
6291           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6292           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6293       // Ignore return result until untied tasks are supported.
6294       llvm::Value *Result = CGF.EmitRuntimeCall(
6295           RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
6296       // if (__kmpc_cancel()) {
6297       //   exit from construct;
6298       // }
6299       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6300       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6301       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6302       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6303       CGF.EmitBlock(ExitBB);
6304       // exit from construct;
6305       CodeGenFunction::JumpDest CancelDest =
6306           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6307       CGF.EmitBranchThroughCleanup(CancelDest);
6308       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6309     };
6310     if (IfCond) {
6311       emitOMPIfClause(CGF, IfCond, ThenGen,
6312                       [](CodeGenFunction &, PrePostActionTy &) {});
6313     } else {
6314       RegionCodeGenTy ThenRCG(ThenGen);
6315       ThenRCG(CGF);
6316     }
6317   }
6318 }
6319
6320 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6321     const OMPExecutableDirective &D, StringRef ParentName,
6322     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6323     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6324   assert(!ParentName.empty() && "Invalid target region parent name!");
6325   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6326                                    IsOffloadEntry, CodeGen);
6327 }
6328
6329 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6330     const OMPExecutableDirective &D, StringRef ParentName,
6331     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6332     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6333   // Create a unique name for the entry function using the source location
6334   // information of the current target region. The name will be something like:
6335   //
6336   // __omp_offloading_DD_FFFF_PP_lBB
6337   //
6338   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6339   // mangled name of the function that encloses the target region and BB is the
6340   // line number of the target region.
6341
6342   unsigned DeviceID;
6343   unsigned FileID;
6344   unsigned Line;
6345   getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6346                            Line);
6347   SmallString<64> EntryFnName;
6348   {
6349     llvm::raw_svector_ostream OS(EntryFnName);
6350     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6351        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6352   }
6353
6354   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6355
6356   CodeGenFunction CGF(CGM, true);
6357   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6358   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6359
6360   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
6361
6362   // If this target outline function is not an offload entry, we don't need to
6363   // register it.
6364   if (!IsOffloadEntry)
6365     return;
6366
6367   // The target region ID is used by the runtime library to identify the current
6368   // target region, so it only has to be unique and not necessarily point to
6369   // anything. It could be the pointer to the outlined function that implements
6370   // the target region, but we aren't using that so that the compiler doesn't
6371   // need to keep that, and could therefore inline the host function if proven
6372   // worthwhile during optimization. In the other hand, if emitting code for the
6373   // device, the ID has to be the function address so that it can retrieved from
6374   // the offloading entry and launched by the runtime library. We also mark the
6375   // outlined function to have external linkage in case we are emitting code for
6376   // the device, because these functions will be entry points to the device.
6377
6378   if (CGM.getLangOpts().OpenMPIsDevice) {
6379     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6380     OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6381     OutlinedFn->setDSOLocal(false);
6382   } else {
6383     std::string Name = getName({EntryFnName, "region_id"});
6384     OutlinedFnID = new llvm::GlobalVariable(
6385         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6386         llvm::GlobalValue::WeakAnyLinkage,
6387         llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6388   }
6389
6390   // Register the information for the entry associated with this target region.
6391   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6392       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6393       OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6394 }
6395
6396 /// discard all CompoundStmts intervening between two constructs
6397 static const Stmt *ignoreCompoundStmts(const Stmt *Body) {
6398   while (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body))
6399     Body = CS->body_front();
6400
6401   return Body;
6402 }
6403
6404 /// Emit the number of teams for a target directive.  Inspect the num_teams
6405 /// clause associated with a teams construct combined or closely nested
6406 /// with the target directive.
6407 ///
6408 /// Emit a team of size one for directives such as 'target parallel' that
6409 /// have no associated teams construct.
6410 ///
6411 /// Otherwise, return nullptr.
6412 static llvm::Value *
6413 emitNumTeamsForTargetDirective(CGOpenMPRuntime &OMPRuntime,
6414                                CodeGenFunction &CGF,
6415                                const OMPExecutableDirective &D) {
6416   assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
6417                                               "teams directive expected to be "
6418                                               "emitted only for the host!");
6419
6420   CGBuilderTy &Bld = CGF.Builder;
6421
6422   // If the target directive is combined with a teams directive:
6423   //   Return the value in the num_teams clause, if any.
6424   //   Otherwise, return 0 to denote the runtime default.
6425   if (isOpenMPTeamsDirective(D.getDirectiveKind())) {
6426     if (const auto *NumTeamsClause = D.getSingleClause<OMPNumTeamsClause>()) {
6427       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6428       llvm::Value *NumTeams = CGF.EmitScalarExpr(NumTeamsClause->getNumTeams(),
6429                                                  /*IgnoreResultAssign*/ true);
6430       return Bld.CreateIntCast(NumTeams, CGF.Int32Ty,
6431                                /*IsSigned=*/true);
6432     }
6433
6434     // The default value is 0.
6435     return Bld.getInt32(0);
6436   }
6437
6438   // If the target directive is combined with a parallel directive but not a
6439   // teams directive, start one team.
6440   if (isOpenMPParallelDirective(D.getDirectiveKind()))
6441     return Bld.getInt32(1);
6442
6443   // If the current target region has a teams region enclosed, we need to get
6444   // the number of teams to pass to the runtime function call. This is done
6445   // by generating the expression in a inlined region. This is required because
6446   // the expression is captured in the enclosing target environment when the
6447   // teams directive is not combined with target.
6448
6449   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6450
6451   if (const auto *TeamsDir = dyn_cast_or_null<OMPExecutableDirective>(
6452           ignoreCompoundStmts(CS.getCapturedStmt()))) {
6453     if (isOpenMPTeamsDirective(TeamsDir->getDirectiveKind())) {
6454       if (const auto *NTE = TeamsDir->getSingleClause<OMPNumTeamsClause>()) {
6455         CGOpenMPInnerExprInfo CGInfo(CGF, CS);
6456         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6457         llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams());
6458         return Bld.CreateIntCast(NumTeams, CGF.Int32Ty,
6459                                  /*IsSigned=*/true);
6460       }
6461
6462       // If we have an enclosed teams directive but no num_teams clause we use
6463       // the default value 0.
6464       return Bld.getInt32(0);
6465     }
6466   }
6467
6468   // No teams associated with the directive.
6469   return nullptr;
6470 }
6471
6472 /// Emit the number of threads for a target directive.  Inspect the
6473 /// thread_limit clause associated with a teams construct combined or closely
6474 /// nested with the target directive.
6475 ///
6476 /// Emit the num_threads clause for directives such as 'target parallel' that
6477 /// have no associated teams construct.
6478 ///
6479 /// Otherwise, return nullptr.
6480 static llvm::Value *
6481 emitNumThreadsForTargetDirective(CGOpenMPRuntime &OMPRuntime,
6482                                  CodeGenFunction &CGF,
6483                                  const OMPExecutableDirective &D) {
6484   assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
6485                                               "teams directive expected to be "
6486                                               "emitted only for the host!");
6487
6488   CGBuilderTy &Bld = CGF.Builder;
6489
6490   //
6491   // If the target directive is combined with a teams directive:
6492   //   Return the value in the thread_limit clause, if any.
6493   //
6494   // If the target directive is combined with a parallel directive:
6495   //   Return the value in the num_threads clause, if any.
6496   //
6497   // If both clauses are set, select the minimum of the two.
6498   //
6499   // If neither teams or parallel combined directives set the number of threads
6500   // in a team, return 0 to denote the runtime default.
6501   //
6502   // If this is not a teams directive return nullptr.
6503
6504   if (isOpenMPTeamsDirective(D.getDirectiveKind()) ||
6505       isOpenMPParallelDirective(D.getDirectiveKind())) {
6506     llvm::Value *DefaultThreadLimitVal = Bld.getInt32(0);
6507     llvm::Value *NumThreadsVal = nullptr;
6508     llvm::Value *ThreadLimitVal = nullptr;
6509
6510     if (const auto *ThreadLimitClause =
6511             D.getSingleClause<OMPThreadLimitClause>()) {
6512       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6513       llvm::Value *ThreadLimit =
6514           CGF.EmitScalarExpr(ThreadLimitClause->getThreadLimit(),
6515                              /*IgnoreResultAssign*/ true);
6516       ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty,
6517                                          /*IsSigned=*/true);
6518     }
6519
6520     if (const auto *NumThreadsClause =
6521             D.getSingleClause<OMPNumThreadsClause>()) {
6522       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6523       llvm::Value *NumThreads =
6524           CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
6525                              /*IgnoreResultAssign*/ true);
6526       NumThreadsVal =
6527           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*IsSigned=*/true);
6528     }
6529
6530     // Select the lesser of thread_limit and num_threads.
6531     if (NumThreadsVal)
6532       ThreadLimitVal = ThreadLimitVal
6533                            ? Bld.CreateSelect(Bld.CreateICmpSLT(NumThreadsVal,
6534                                                                 ThreadLimitVal),
6535                                               NumThreadsVal, ThreadLimitVal)
6536                            : NumThreadsVal;
6537
6538     // Set default value passed to the runtime if either teams or a target
6539     // parallel type directive is found but no clause is specified.
6540     if (!ThreadLimitVal)
6541       ThreadLimitVal = DefaultThreadLimitVal;
6542
6543     return ThreadLimitVal;
6544   }
6545
6546   // If the current target region has a teams region enclosed, we need to get
6547   // the thread limit to pass to the runtime function call. This is done
6548   // by generating the expression in a inlined region. This is required because
6549   // the expression is captured in the enclosing target environment when the
6550   // teams directive is not combined with target.
6551
6552   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6553
6554   if (const auto *TeamsDir = dyn_cast_or_null<OMPExecutableDirective>(
6555           ignoreCompoundStmts(CS.getCapturedStmt()))) {
6556     if (isOpenMPTeamsDirective(TeamsDir->getDirectiveKind())) {
6557       if (const auto *TLE = TeamsDir->getSingleClause<OMPThreadLimitClause>()) {
6558         CGOpenMPInnerExprInfo CGInfo(CGF, CS);
6559         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6560         llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit());
6561         return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty,
6562                                          /*IsSigned=*/true);
6563       }
6564
6565       // If we have an enclosed teams directive but no thread_limit clause we
6566       // use the default value 0.
6567       return CGF.Builder.getInt32(0);
6568     }
6569   }
6570
6571   // No teams associated with the directive.
6572   return nullptr;
6573 }
6574
6575 namespace {
6576 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
6577
6578 // Utility to handle information from clauses associated with a given
6579 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
6580 // It provides a convenient interface to obtain the information and generate
6581 // code for that information.
6582 class MappableExprsHandler {
6583 public:
6584   /// Values for bit flags used to specify the mapping type for
6585   /// offloading.
6586   enum OpenMPOffloadMappingFlags : uint64_t {
6587     /// No flags
6588     OMP_MAP_NONE = 0x0,
6589     /// Allocate memory on the device and move data from host to device.
6590     OMP_MAP_TO = 0x01,
6591     /// Allocate memory on the device and move data from device to host.
6592     OMP_MAP_FROM = 0x02,
6593     /// Always perform the requested mapping action on the element, even
6594     /// if it was already mapped before.
6595     OMP_MAP_ALWAYS = 0x04,
6596     /// Delete the element from the device environment, ignoring the
6597     /// current reference count associated with the element.
6598     OMP_MAP_DELETE = 0x08,
6599     /// The element being mapped is a pointer-pointee pair; both the
6600     /// pointer and the pointee should be mapped.
6601     OMP_MAP_PTR_AND_OBJ = 0x10,
6602     /// This flags signals that the base address of an entry should be
6603     /// passed to the target kernel as an argument.
6604     OMP_MAP_TARGET_PARAM = 0x20,
6605     /// Signal that the runtime library has to return the device pointer
6606     /// in the current position for the data being mapped. Used when we have the
6607     /// use_device_ptr clause.
6608     OMP_MAP_RETURN_PARAM = 0x40,
6609     /// This flag signals that the reference being passed is a pointer to
6610     /// private data.
6611     OMP_MAP_PRIVATE = 0x80,
6612     /// Pass the element to the device by value.
6613     OMP_MAP_LITERAL = 0x100,
6614     /// Implicit map
6615     OMP_MAP_IMPLICIT = 0x200,
6616     /// The 16 MSBs of the flags indicate whether the entry is member of some
6617     /// struct/class.
6618     OMP_MAP_MEMBER_OF = 0xffff000000000000,
6619     LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
6620   };
6621
6622   /// Class that associates information with a base pointer to be passed to the
6623   /// runtime library.
6624   class BasePointerInfo {
6625     /// The base pointer.
6626     llvm::Value *Ptr = nullptr;
6627     /// The base declaration that refers to this device pointer, or null if
6628     /// there is none.
6629     const ValueDecl *DevPtrDecl = nullptr;
6630
6631   public:
6632     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
6633         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
6634     llvm::Value *operator*() const { return Ptr; }
6635     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
6636     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
6637   };
6638
6639   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
6640   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
6641   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
6642
6643   /// Map between a struct and the its lowest & highest elements which have been
6644   /// mapped.
6645   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
6646   ///                    HE(FieldIndex, Pointer)}
6647   struct StructRangeInfoTy {
6648     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
6649         0, Address::invalid()};
6650     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
6651         0, Address::invalid()};
6652     Address Base = Address::invalid();
6653   };
6654
6655 private:
6656   /// Kind that defines how a device pointer has to be returned.
6657   struct MapInfo {
6658     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
6659     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
6660     ArrayRef<OpenMPMapModifierKind> MapModifiers;
6661     bool ReturnDevicePointer = false;
6662     bool IsImplicit = false;
6663
6664     MapInfo() = default;
6665     MapInfo(
6666         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
6667         OpenMPMapClauseKind MapType,
6668         ArrayRef<OpenMPMapModifierKind> MapModifiers,
6669         bool ReturnDevicePointer, bool IsImplicit)
6670         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
6671           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
6672   };
6673
6674   /// If use_device_ptr is used on a pointer which is a struct member and there
6675   /// is no map information about it, then emission of that entry is deferred
6676   /// until the whole struct has been processed.
6677   struct DeferredDevicePtrEntryTy {
6678     const Expr *IE = nullptr;
6679     const ValueDecl *VD = nullptr;
6680
6681     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
6682         : IE(IE), VD(VD) {}
6683   };
6684
6685   /// Directive from where the map clauses were extracted.
6686   const OMPExecutableDirective &CurDir;
6687
6688   /// Function the directive is being generated for.
6689   CodeGenFunction &CGF;
6690
6691   /// Set of all first private variables in the current directive.
6692   llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls;
6693
6694   /// Map between device pointer declarations and their expression components.
6695   /// The key value for declarations in 'this' is null.
6696   llvm::DenseMap<
6697       const ValueDecl *,
6698       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
6699       DevPointersMap;
6700
6701   llvm::Value *getExprTypeSize(const Expr *E) const {
6702     QualType ExprTy = E->getType().getCanonicalType();
6703
6704     // Reference types are ignored for mapping purposes.
6705     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
6706       ExprTy = RefTy->getPointeeType().getCanonicalType();
6707
6708     // Given that an array section is considered a built-in type, we need to
6709     // do the calculation based on the length of the section instead of relying
6710     // on CGF.getTypeSize(E->getType()).
6711     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
6712       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
6713                             OAE->getBase()->IgnoreParenImpCasts())
6714                             .getCanonicalType();
6715
6716       // If there is no length associated with the expression, that means we
6717       // are using the whole length of the base.
6718       if (!OAE->getLength() && OAE->getColonLoc().isValid())
6719         return CGF.getTypeSize(BaseTy);
6720
6721       llvm::Value *ElemSize;
6722       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
6723         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
6724       } else {
6725         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
6726         assert(ATy && "Expecting array type if not a pointer type.");
6727         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
6728       }
6729
6730       // If we don't have a length at this point, that is because we have an
6731       // array section with a single element.
6732       if (!OAE->getLength())
6733         return ElemSize;
6734
6735       llvm::Value *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
6736       LengthVal =
6737           CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
6738       return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
6739     }
6740     return CGF.getTypeSize(ExprTy);
6741   }
6742
6743   /// Return the corresponding bits for a given map clause modifier. Add
6744   /// a flag marking the map as a pointer if requested. Add a flag marking the
6745   /// map as the first one of a series of maps that relate to the same map
6746   /// expression.
6747   OpenMPOffloadMappingFlags getMapTypeBits(
6748       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
6749       bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
6750     OpenMPOffloadMappingFlags Bits =
6751         IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
6752     switch (MapType) {
6753     case OMPC_MAP_alloc:
6754     case OMPC_MAP_release:
6755       // alloc and release is the default behavior in the runtime library,  i.e.
6756       // if we don't pass any bits alloc/release that is what the runtime is
6757       // going to do. Therefore, we don't need to signal anything for these two
6758       // type modifiers.
6759       break;
6760     case OMPC_MAP_to:
6761       Bits |= OMP_MAP_TO;
6762       break;
6763     case OMPC_MAP_from:
6764       Bits |= OMP_MAP_FROM;
6765       break;
6766     case OMPC_MAP_tofrom:
6767       Bits |= OMP_MAP_TO | OMP_MAP_FROM;
6768       break;
6769     case OMPC_MAP_delete:
6770       Bits |= OMP_MAP_DELETE;
6771       break;
6772     case OMPC_MAP_unknown:
6773       llvm_unreachable("Unexpected map type!");
6774     }
6775     if (AddPtrFlag)
6776       Bits |= OMP_MAP_PTR_AND_OBJ;
6777     if (AddIsTargetParamFlag)
6778       Bits |= OMP_MAP_TARGET_PARAM;
6779     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
6780         != MapModifiers.end())
6781       Bits |= OMP_MAP_ALWAYS;
6782     return Bits;
6783   }
6784
6785   /// Return true if the provided expression is a final array section. A
6786   /// final array section, is one whose length can't be proved to be one.
6787   bool isFinalArraySectionExpression(const Expr *E) const {
6788     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
6789
6790     // It is not an array section and therefore not a unity-size one.
6791     if (!OASE)
6792       return false;
6793
6794     // An array section with no colon always refer to a single element.
6795     if (OASE->getColonLoc().isInvalid())
6796       return false;
6797
6798     const Expr *Length = OASE->getLength();
6799
6800     // If we don't have a length we have to check if the array has size 1
6801     // for this dimension. Also, we should always expect a length if the
6802     // base type is pointer.
6803     if (!Length) {
6804       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
6805                              OASE->getBase()->IgnoreParenImpCasts())
6806                              .getCanonicalType();
6807       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
6808         return ATy->getSize().getSExtValue() != 1;
6809       // If we don't have a constant dimension length, we have to consider
6810       // the current section as having any size, so it is not necessarily
6811       // unitary. If it happen to be unity size, that's user fault.
6812       return true;
6813     }
6814
6815     // Check if the length evaluates to 1.
6816     Expr::EvalResult Result;
6817     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
6818       return true; // Can have more that size 1.
6819
6820     llvm::APSInt ConstLength = Result.Val.getInt();
6821     return ConstLength.getSExtValue() != 1;
6822   }
6823
6824   /// Generate the base pointers, section pointers, sizes and map type
6825   /// bits for the provided map type, map modifier, and expression components.
6826   /// \a IsFirstComponent should be set to true if the provided set of
6827   /// components is the first associated with a capture.
6828   void generateInfoForComponentList(
6829       OpenMPMapClauseKind MapType,
6830       ArrayRef<OpenMPMapModifierKind> MapModifiers,
6831       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
6832       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
6833       MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
6834       StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
6835       bool IsImplicit,
6836       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
6837           OverlappedElements = llvm::None) const {
6838     // The following summarizes what has to be generated for each map and the
6839     // types below. The generated information is expressed in this order:
6840     // base pointer, section pointer, size, flags
6841     // (to add to the ones that come from the map type and modifier).
6842     //
6843     // double d;
6844     // int i[100];
6845     // float *p;
6846     //
6847     // struct S1 {
6848     //   int i;
6849     //   float f[50];
6850     // }
6851     // struct S2 {
6852     //   int i;
6853     //   float f[50];
6854     //   S1 s;
6855     //   double *p;
6856     //   struct S2 *ps;
6857     // }
6858     // S2 s;
6859     // S2 *ps;
6860     //
6861     // map(d)
6862     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
6863     //
6864     // map(i)
6865     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
6866     //
6867     // map(i[1:23])
6868     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
6869     //
6870     // map(p)
6871     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
6872     //
6873     // map(p[1:24])
6874     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
6875     //
6876     // map(s)
6877     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
6878     //
6879     // map(s.i)
6880     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
6881     //
6882     // map(s.s.f)
6883     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
6884     //
6885     // map(s.p)
6886     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
6887     //
6888     // map(to: s.p[:22])
6889     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
6890     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
6891     // &(s.p), &(s.p[0]), 22*sizeof(double),
6892     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
6893     // (*) alloc space for struct members, only this is a target parameter
6894     // (**) map the pointer (nothing to be mapped in this example) (the compiler
6895     //      optimizes this entry out, same in the examples below)
6896     // (***) map the pointee (map: to)
6897     //
6898     // map(s.ps)
6899     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
6900     //
6901     // map(from: s.ps->s.i)
6902     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
6903     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
6904     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
6905     //
6906     // map(to: s.ps->ps)
6907     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
6908     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
6909     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
6910     //
6911     // map(s.ps->ps->ps)
6912     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
6913     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
6914     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
6915     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
6916     //
6917     // map(to: s.ps->ps->s.f[:22])
6918     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
6919     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
6920     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
6921     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
6922     //
6923     // map(ps)
6924     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
6925     //
6926     // map(ps->i)
6927     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
6928     //
6929     // map(ps->s.f)
6930     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
6931     //
6932     // map(from: ps->p)
6933     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
6934     //
6935     // map(to: ps->p[:22])
6936     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
6937     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
6938     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
6939     //
6940     // map(ps->ps)
6941     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
6942     //
6943     // map(from: ps->ps->s.i)
6944     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
6945     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
6946     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
6947     //
6948     // map(from: ps->ps->ps)
6949     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
6950     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
6951     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
6952     //
6953     // map(ps->ps->ps->ps)
6954     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
6955     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
6956     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
6957     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
6958     //
6959     // map(to: ps->ps->ps->s.f[:22])
6960     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
6961     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
6962     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
6963     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
6964     //
6965     // map(to: s.f[:22]) map(from: s.p[:33])
6966     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
6967     //     sizeof(double*) (**), TARGET_PARAM
6968     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
6969     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
6970     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
6971     // (*) allocate contiguous space needed to fit all mapped members even if
6972     //     we allocate space for members not mapped (in this example,
6973     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
6974     //     them as well because they fall between &s.f[0] and &s.p)
6975     //
6976     // map(from: s.f[:22]) map(to: ps->p[:33])
6977     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
6978     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
6979     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
6980     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
6981     // (*) the struct this entry pertains to is the 2nd element in the list of
6982     //     arguments, hence MEMBER_OF(2)
6983     //
6984     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
6985     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
6986     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
6987     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
6988     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
6989     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
6990     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
6991     // (*) the struct this entry pertains to is the 4th element in the list
6992     //     of arguments, hence MEMBER_OF(4)
6993
6994     // Track if the map information being generated is the first for a capture.
6995     bool IsCaptureFirstInfo = IsFirstComponentList;
6996     bool IsLink = false; // Is this variable a "declare target link"?
6997
6998     // Scan the components from the base to the complete expression.
6999     auto CI = Components.rbegin();
7000     auto CE = Components.rend();
7001     auto I = CI;
7002
7003     // Track if the map information being generated is the first for a list of
7004     // components.
7005     bool IsExpressionFirstInfo = true;
7006     Address BP = Address::invalid();
7007     const Expr *AssocExpr = I->getAssociatedExpression();
7008     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7009     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7010
7011     if (isa<MemberExpr>(AssocExpr)) {
7012       // The base is the 'this' pointer. The content of the pointer is going
7013       // to be the base of the field being mapped.
7014       BP = CGF.LoadCXXThisAddress();
7015     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7016                (OASE &&
7017                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7018       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
7019     } else {
7020       // The base is the reference to the variable.
7021       // BP = &Var.
7022       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
7023       if (const auto *VD =
7024               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7025         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7026                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
7027           if (*Res == OMPDeclareTargetDeclAttr::MT_Link) {
7028             IsLink = true;
7029             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
7030           }
7031       }
7032
7033       // If the variable is a pointer and is being dereferenced (i.e. is not
7034       // the last component), the base has to be the pointer itself, not its
7035       // reference. References are ignored for mapping purposes.
7036       QualType Ty =
7037           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7038       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7039         BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7040
7041         // We do not need to generate individual map information for the
7042         // pointer, it can be associated with the combined storage.
7043         ++I;
7044       }
7045     }
7046
7047     // Track whether a component of the list should be marked as MEMBER_OF some
7048     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7049     // in a component list should be marked as MEMBER_OF, all subsequent entries
7050     // do not belong to the base struct. E.g.
7051     // struct S2 s;
7052     // s.ps->ps->ps->f[:]
7053     //   (1) (2) (3) (4)
7054     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7055     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7056     // is the pointee of ps(2) which is not member of struct s, so it should not
7057     // be marked as such (it is still PTR_AND_OBJ).
7058     // The variable is initialized to false so that PTR_AND_OBJ entries which
7059     // are not struct members are not considered (e.g. array of pointers to
7060     // data).
7061     bool ShouldBeMemberOf = false;
7062
7063     // Variable keeping track of whether or not we have encountered a component
7064     // in the component list which is a member expression. Useful when we have a
7065     // pointer or a final array section, in which case it is the previous
7066     // component in the list which tells us whether we have a member expression.
7067     // E.g. X.f[:]
7068     // While processing the final array section "[:]" it is "f" which tells us
7069     // whether we are dealing with a member of a declared struct.
7070     const MemberExpr *EncounteredME = nullptr;
7071
7072     for (; I != CE; ++I) {
7073       // If the current component is member of a struct (parent struct) mark it.
7074       if (!EncounteredME) {
7075         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7076         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7077         // as MEMBER_OF the parent struct.
7078         if (EncounteredME)
7079           ShouldBeMemberOf = true;
7080       }
7081
7082       auto Next = std::next(I);
7083
7084       // We need to generate the addresses and sizes if this is the last
7085       // component, if the component is a pointer or if it is an array section
7086       // whose length can't be proved to be one. If this is a pointer, it
7087       // becomes the base address for the following components.
7088
7089       // A final array section, is one whose length can't be proved to be one.
7090       bool IsFinalArraySection =
7091           isFinalArraySectionExpression(I->getAssociatedExpression());
7092
7093       // Get information on whether the element is a pointer. Have to do a
7094       // special treatment for array sections given that they are built-in
7095       // types.
7096       const auto *OASE =
7097           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7098       bool IsPointer =
7099           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7100                        .getCanonicalType()
7101                        ->isAnyPointerType()) ||
7102           I->getAssociatedExpression()->getType()->isAnyPointerType();
7103
7104       if (Next == CE || IsPointer || IsFinalArraySection) {
7105         // If this is not the last component, we expect the pointer to be
7106         // associated with an array expression or member expression.
7107         assert((Next == CE ||
7108                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7109                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7110                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
7111                "Unexpected expression");
7112
7113         Address LB =
7114             CGF.EmitOMPSharedLValue(I->getAssociatedExpression()).getAddress();
7115
7116         // If this component is a pointer inside the base struct then we don't
7117         // need to create any entry for it - it will be combined with the object
7118         // it is pointing to into a single PTR_AND_OBJ entry.
7119         bool IsMemberPointer =
7120             IsPointer && EncounteredME &&
7121             (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7122              EncounteredME);
7123         if (!OverlappedElements.empty()) {
7124           // Handle base element with the info for overlapped elements.
7125           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7126           assert(Next == CE &&
7127                  "Expected last element for the overlapped elements.");
7128           assert(!IsPointer &&
7129                  "Unexpected base element with the pointer type.");
7130           // Mark the whole struct as the struct that requires allocation on the
7131           // device.
7132           PartialStruct.LowestElem = {0, LB};
7133           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7134               I->getAssociatedExpression()->getType());
7135           Address HB = CGF.Builder.CreateConstGEP(
7136               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7137                                                               CGF.VoidPtrTy),
7138               TypeSize.getQuantity() - 1, CharUnits::One());
7139           PartialStruct.HighestElem = {
7140               std::numeric_limits<decltype(
7141                   PartialStruct.HighestElem.first)>::max(),
7142               HB};
7143           PartialStruct.Base = BP;
7144           // Emit data for non-overlapped data.
7145           OpenMPOffloadMappingFlags Flags =
7146               OMP_MAP_MEMBER_OF |
7147               getMapTypeBits(MapType, MapModifiers, IsImplicit,
7148                              /*AddPtrFlag=*/false,
7149                              /*AddIsTargetParamFlag=*/false);
7150           LB = BP;
7151           llvm::Value *Size = nullptr;
7152           // Do bitcopy of all non-overlapped structure elements.
7153           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7154                    Component : OverlappedElements) {
7155             Address ComponentLB = Address::invalid();
7156             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7157                  Component) {
7158               if (MC.getAssociatedDeclaration()) {
7159                 ComponentLB =
7160                     CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7161                         .getAddress();
7162                 Size = CGF.Builder.CreatePtrDiff(
7163                     CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7164                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7165                 break;
7166               }
7167             }
7168             BasePointers.push_back(BP.getPointer());
7169             Pointers.push_back(LB.getPointer());
7170             Sizes.push_back(Size);
7171             Types.push_back(Flags);
7172             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1,
7173                                             CGF.getPointerSize());
7174           }
7175           BasePointers.push_back(BP.getPointer());
7176           Pointers.push_back(LB.getPointer());
7177           Size = CGF.Builder.CreatePtrDiff(
7178               CGF.EmitCastToVoidPtr(
7179                   CGF.Builder.CreateConstGEP(HB, 1, CharUnits::One())
7180                       .getPointer()),
7181               CGF.EmitCastToVoidPtr(LB.getPointer()));
7182           Sizes.push_back(Size);
7183           Types.push_back(Flags);
7184           break;
7185         }
7186         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7187         if (!IsMemberPointer) {
7188           BasePointers.push_back(BP.getPointer());
7189           Pointers.push_back(LB.getPointer());
7190           Sizes.push_back(Size);
7191
7192           // We need to add a pointer flag for each map that comes from the
7193           // same expression except for the first one. We also need to signal
7194           // this map is the first one that relates with the current capture
7195           // (there is a set of entries for each capture).
7196           OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7197               MapType, MapModifiers, IsImplicit,
7198               !IsExpressionFirstInfo || IsLink, IsCaptureFirstInfo && !IsLink);
7199
7200           if (!IsExpressionFirstInfo) {
7201             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7202             // then we reset the TO/FROM/ALWAYS/DELETE flags.
7203             if (IsPointer)
7204               Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7205                          OMP_MAP_DELETE);
7206
7207             if (ShouldBeMemberOf) {
7208               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7209               // should be later updated with the correct value of MEMBER_OF.
7210               Flags |= OMP_MAP_MEMBER_OF;
7211               // From now on, all subsequent PTR_AND_OBJ entries should not be
7212               // marked as MEMBER_OF.
7213               ShouldBeMemberOf = false;
7214             }
7215           }
7216
7217           Types.push_back(Flags);
7218         }
7219
7220         // If we have encountered a member expression so far, keep track of the
7221         // mapped member. If the parent is "*this", then the value declaration
7222         // is nullptr.
7223         if (EncounteredME) {
7224           const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
7225           unsigned FieldIndex = FD->getFieldIndex();
7226
7227           // Update info about the lowest and highest elements for this struct
7228           if (!PartialStruct.Base.isValid()) {
7229             PartialStruct.LowestElem = {FieldIndex, LB};
7230             PartialStruct.HighestElem = {FieldIndex, LB};
7231             PartialStruct.Base = BP;
7232           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7233             PartialStruct.LowestElem = {FieldIndex, LB};
7234           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7235             PartialStruct.HighestElem = {FieldIndex, LB};
7236           }
7237         }
7238
7239         // If we have a final array section, we are done with this expression.
7240         if (IsFinalArraySection)
7241           break;
7242
7243         // The pointer becomes the base for the next element.
7244         if (Next != CE)
7245           BP = LB;
7246
7247         IsExpressionFirstInfo = false;
7248         IsCaptureFirstInfo = false;
7249       }
7250     }
7251   }
7252
7253   /// Return the adjusted map modifiers if the declaration a capture refers to
7254   /// appears in a first-private clause. This is expected to be used only with
7255   /// directives that start with 'target'.
7256   MappableExprsHandler::OpenMPOffloadMappingFlags
7257   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
7258     assert(Cap.capturesVariable() && "Expected capture by reference only!");
7259
7260     // A first private variable captured by reference will use only the
7261     // 'private ptr' and 'map to' flag. Return the right flags if the captured
7262     // declaration is known as first-private in this handler.
7263     if (FirstPrivateDecls.count(Cap.getCapturedVar()))
7264       return MappableExprsHandler::OMP_MAP_PRIVATE |
7265              MappableExprsHandler::OMP_MAP_TO;
7266     return MappableExprsHandler::OMP_MAP_TO |
7267            MappableExprsHandler::OMP_MAP_FROM;
7268   }
7269
7270   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
7271     // Member of is given by the 16 MSB of the flag, so rotate by 48 bits.
7272     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
7273                                                   << 48);
7274   }
7275
7276   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
7277                                      OpenMPOffloadMappingFlags MemberOfFlag) {
7278     // If the entry is PTR_AND_OBJ but has not been marked with the special
7279     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
7280     // marked as MEMBER_OF.
7281     if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
7282         ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
7283       return;
7284
7285     // Reset the placeholder value to prepare the flag for the assignment of the
7286     // proper MEMBER_OF value.
7287     Flags &= ~OMP_MAP_MEMBER_OF;
7288     Flags |= MemberOfFlag;
7289   }
7290
7291   void getPlainLayout(const CXXRecordDecl *RD,
7292                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
7293                       bool AsBase) const {
7294     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
7295
7296     llvm::StructType *St =
7297         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
7298
7299     unsigned NumElements = St->getNumElements();
7300     llvm::SmallVector<
7301         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
7302         RecordLayout(NumElements);
7303
7304     // Fill bases.
7305     for (const auto &I : RD->bases()) {
7306       if (I.isVirtual())
7307         continue;
7308       const auto *Base = I.getType()->getAsCXXRecordDecl();
7309       // Ignore empty bases.
7310       if (Base->isEmpty() || CGF.getContext()
7311                                  .getASTRecordLayout(Base)
7312                                  .getNonVirtualSize()
7313                                  .isZero())
7314         continue;
7315
7316       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
7317       RecordLayout[FieldIndex] = Base;
7318     }
7319     // Fill in virtual bases.
7320     for (const auto &I : RD->vbases()) {
7321       const auto *Base = I.getType()->getAsCXXRecordDecl();
7322       // Ignore empty bases.
7323       if (Base->isEmpty())
7324         continue;
7325       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
7326       if (RecordLayout[FieldIndex])
7327         continue;
7328       RecordLayout[FieldIndex] = Base;
7329     }
7330     // Fill in all the fields.
7331     assert(!RD->isUnion() && "Unexpected union.");
7332     for (const auto *Field : RD->fields()) {
7333       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
7334       // will fill in later.)
7335       if (!Field->isBitField()) {
7336         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
7337         RecordLayout[FieldIndex] = Field;
7338       }
7339     }
7340     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
7341              &Data : RecordLayout) {
7342       if (Data.isNull())
7343         continue;
7344       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
7345         getPlainLayout(Base, Layout, /*AsBase=*/true);
7346       else
7347         Layout.push_back(Data.get<const FieldDecl *>());
7348     }
7349   }
7350
7351 public:
7352   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
7353       : CurDir(Dir), CGF(CGF) {
7354     // Extract firstprivate clause information.
7355     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
7356       for (const auto *D : C->varlists())
7357         FirstPrivateDecls.insert(
7358             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
7359     // Extract device pointer clause information.
7360     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
7361       for (auto L : C->component_lists())
7362         DevPointersMap[L.first].push_back(L.second);
7363   }
7364
7365   /// Generate code for the combined entry if we have a partially mapped struct
7366   /// and take care of the mapping flags of the arguments corresponding to
7367   /// individual struct members.
7368   void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
7369                          MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7370                          MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
7371                          const StructRangeInfoTy &PartialStruct) const {
7372     // Base is the base of the struct
7373     BasePointers.push_back(PartialStruct.Base.getPointer());
7374     // Pointer is the address of the lowest element
7375     llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
7376     Pointers.push_back(LB);
7377     // Size is (addr of {highest+1} element) - (addr of lowest element)
7378     llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
7379     llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
7380     llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
7381     llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
7382     llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
7383     llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.SizeTy,
7384                                                   /*isSinged=*/false);
7385     Sizes.push_back(Size);
7386     // Map type is always TARGET_PARAM
7387     Types.push_back(OMP_MAP_TARGET_PARAM);
7388     // Remove TARGET_PARAM flag from the first element
7389     (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
7390
7391     // All other current entries will be MEMBER_OF the combined entry
7392     // (except for PTR_AND_OBJ entries which do not have a placeholder value
7393     // 0xFFFF in the MEMBER_OF field).
7394     OpenMPOffloadMappingFlags MemberOfFlag =
7395         getMemberOfFlag(BasePointers.size() - 1);
7396     for (auto &M : CurTypes)
7397       setCorrectMemberOfFlag(M, MemberOfFlag);
7398   }
7399
7400   /// Generate all the base pointers, section pointers, sizes and map
7401   /// types for the extracted mappable expressions. Also, for each item that
7402   /// relates with a device pointer, a pair of the relevant declaration and
7403   /// index where it occurs is appended to the device pointers info array.
7404   void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
7405                        MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7406                        MapFlagsArrayTy &Types) const {
7407     // We have to process the component lists that relate with the same
7408     // declaration in a single chunk so that we can generate the map flags
7409     // correctly. Therefore, we organize all lists in a map.
7410     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
7411
7412     // Helper function to fill the information map for the different supported
7413     // clauses.
7414     auto &&InfoGen = [&Info](
7415         const ValueDecl *D,
7416         OMPClauseMappableExprCommon::MappableExprComponentListRef L,
7417         OpenMPMapClauseKind MapType,
7418         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7419         bool ReturnDevicePointer, bool IsImplicit) {
7420       const ValueDecl *VD =
7421           D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
7422       Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
7423                             IsImplicit);
7424     };
7425
7426     // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
7427     for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
7428       for (const auto &L : C->component_lists()) {
7429         InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
7430             /*ReturnDevicePointer=*/false, C->isImplicit());
7431       }
7432     for (const auto *C : this->CurDir.getClausesOfKind<OMPToClause>())
7433       for (const auto &L : C->component_lists()) {
7434         InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
7435             /*ReturnDevicePointer=*/false, C->isImplicit());
7436       }
7437     for (const auto *C : this->CurDir.getClausesOfKind<OMPFromClause>())
7438       for (const auto &L : C->component_lists()) {
7439         InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
7440             /*ReturnDevicePointer=*/false, C->isImplicit());
7441       }
7442
7443     // Look at the use_device_ptr clause information and mark the existing map
7444     // entries as such. If there is no map information for an entry in the
7445     // use_device_ptr list, we create one with map type 'alloc' and zero size
7446     // section. It is the user fault if that was not mapped before. If there is
7447     // no map information and the pointer is a struct member, then we defer the
7448     // emission of that entry until the whole struct has been processed.
7449     llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
7450         DeferredInfo;
7451
7452     // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
7453     for (const auto *C :
7454         this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) {
7455       for (const auto &L : C->component_lists()) {
7456         assert(!L.second.empty() && "Not expecting empty list of components!");
7457         const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
7458         VD = cast<ValueDecl>(VD->getCanonicalDecl());
7459         const Expr *IE = L.second.back().getAssociatedExpression();
7460         // If the first component is a member expression, we have to look into
7461         // 'this', which maps to null in the map of map information. Otherwise
7462         // look directly for the information.
7463         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
7464
7465         // We potentially have map information for this declaration already.
7466         // Look for the first set of components that refer to it.
7467         if (It != Info.end()) {
7468           auto CI = std::find_if(
7469               It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
7470                 return MI.Components.back().getAssociatedDeclaration() == VD;
7471               });
7472           // If we found a map entry, signal that the pointer has to be returned
7473           // and move on to the next declaration.
7474           if (CI != It->second.end()) {
7475             CI->ReturnDevicePointer = true;
7476             continue;
7477           }
7478         }
7479
7480         // We didn't find any match in our map information - generate a zero
7481         // size array section - if the pointer is a struct member we defer this
7482         // action until the whole struct has been processed.
7483         // FIXME: MSVC 2013 seems to require this-> to find member CGF.
7484         if (isa<MemberExpr>(IE)) {
7485           // Insert the pointer into Info to be processed by
7486           // generateInfoForComponentList. Because it is a member pointer
7487           // without a pointee, no entry will be generated for it, therefore
7488           // we need to generate one after the whole struct has been processed.
7489           // Nonetheless, generateInfoForComponentList must be called to take
7490           // the pointer into account for the calculation of the range of the
7491           // partial struct.
7492           InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
7493                   /*ReturnDevicePointer=*/false, C->isImplicit());
7494           DeferredInfo[nullptr].emplace_back(IE, VD);
7495         } else {
7496           llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
7497               this->CGF.EmitLValue(IE), IE->getExprLoc());
7498           BasePointers.emplace_back(Ptr, VD);
7499           Pointers.push_back(Ptr);
7500           Sizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy));
7501           Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
7502         }
7503       }
7504     }
7505
7506     for (const auto &M : Info) {
7507       // We need to know when we generate information for the first component
7508       // associated with a capture, because the mapping flags depend on it.
7509       bool IsFirstComponentList = true;
7510
7511       // Temporary versions of arrays
7512       MapBaseValuesArrayTy CurBasePointers;
7513       MapValuesArrayTy CurPointers;
7514       MapValuesArrayTy CurSizes;
7515       MapFlagsArrayTy CurTypes;
7516       StructRangeInfoTy PartialStruct;
7517
7518       for (const MapInfo &L : M.second) {
7519         assert(!L.Components.empty() &&
7520                "Not expecting declaration with no component lists.");
7521
7522         // Remember the current base pointer index.
7523         unsigned CurrentBasePointersIdx = CurBasePointers.size();
7524         // FIXME: MSVC 2013 seems to require this-> to find the member method.
7525         this->generateInfoForComponentList(
7526             L.MapType, L.MapModifiers, L.Components, CurBasePointers,
7527             CurPointers, CurSizes, CurTypes, PartialStruct,
7528             IsFirstComponentList, L.IsImplicit);
7529
7530         // If this entry relates with a device pointer, set the relevant
7531         // declaration and add the 'return pointer' flag.
7532         if (L.ReturnDevicePointer) {
7533           assert(CurBasePointers.size() > CurrentBasePointersIdx &&
7534                  "Unexpected number of mapped base pointers.");
7535
7536           const ValueDecl *RelevantVD =
7537               L.Components.back().getAssociatedDeclaration();
7538           assert(RelevantVD &&
7539                  "No relevant declaration related with device pointer??");
7540
7541           CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
7542           CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
7543         }
7544         IsFirstComponentList = false;
7545       }
7546
7547       // Append any pending zero-length pointers which are struct members and
7548       // used with use_device_ptr.
7549       auto CI = DeferredInfo.find(M.first);
7550       if (CI != DeferredInfo.end()) {
7551         for (const DeferredDevicePtrEntryTy &L : CI->second) {
7552           llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer();
7553           llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
7554               this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
7555           CurBasePointers.emplace_back(BasePtr, L.VD);
7556           CurPointers.push_back(Ptr);
7557           CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy));
7558           // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
7559           // value MEMBER_OF=FFFF so that the entry is later updated with the
7560           // correct value of MEMBER_OF.
7561           CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
7562                              OMP_MAP_MEMBER_OF);
7563         }
7564       }
7565
7566       // If there is an entry in PartialStruct it means we have a struct with
7567       // individual members mapped. Emit an extra combined entry.
7568       if (PartialStruct.Base.isValid())
7569         emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
7570                           PartialStruct);
7571
7572       // We need to append the results of this capture to what we already have.
7573       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
7574       Pointers.append(CurPointers.begin(), CurPointers.end());
7575       Sizes.append(CurSizes.begin(), CurSizes.end());
7576       Types.append(CurTypes.begin(), CurTypes.end());
7577     }
7578   }
7579
7580   /// Emit capture info for lambdas for variables captured by reference.
7581   void generateInfoForLambdaCaptures(
7582       const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
7583       MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7584       MapFlagsArrayTy &Types,
7585       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
7586     const auto *RD = VD->getType()
7587                          .getCanonicalType()
7588                          .getNonReferenceType()
7589                          ->getAsCXXRecordDecl();
7590     if (!RD || !RD->isLambda())
7591       return;
7592     Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
7593     LValue VDLVal = CGF.MakeAddrLValue(
7594         VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
7595     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
7596     FieldDecl *ThisCapture = nullptr;
7597     RD->getCaptureFields(Captures, ThisCapture);
7598     if (ThisCapture) {
7599       LValue ThisLVal =
7600           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
7601       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
7602       LambdaPointers.try_emplace(ThisLVal.getPointer(), VDLVal.getPointer());
7603       BasePointers.push_back(ThisLVal.getPointer());
7604       Pointers.push_back(ThisLValVal.getPointer());
7605       Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
7606       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
7607                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
7608     }
7609     for (const LambdaCapture &LC : RD->captures()) {
7610       if (LC.getCaptureKind() != LCK_ByRef)
7611         continue;
7612       const VarDecl *VD = LC.getCapturedVar();
7613       auto It = Captures.find(VD);
7614       assert(It != Captures.end() && "Found lambda capture without field.");
7615       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
7616       LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
7617       LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
7618       BasePointers.push_back(VarLVal.getPointer());
7619       Pointers.push_back(VarLValVal.getPointer());
7620       Sizes.push_back(CGF.getTypeSize(
7621           VD->getType().getCanonicalType().getNonReferenceType()));
7622       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
7623                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
7624     }
7625   }
7626
7627   /// Set correct indices for lambdas captures.
7628   void adjustMemberOfForLambdaCaptures(
7629       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
7630       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
7631       MapFlagsArrayTy &Types) const {
7632     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
7633       // Set correct member_of idx for all implicit lambda captures.
7634       if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
7635                        OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
7636         continue;
7637       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
7638       assert(BasePtr && "Unable to find base lambda address.");
7639       int TgtIdx = -1;
7640       for (unsigned J = I; J > 0; --J) {
7641         unsigned Idx = J - 1;
7642         if (Pointers[Idx] != BasePtr)
7643           continue;
7644         TgtIdx = Idx;
7645         break;
7646       }
7647       assert(TgtIdx != -1 && "Unable to find parent lambda.");
7648       // All other current entries will be MEMBER_OF the combined entry
7649       // (except for PTR_AND_OBJ entries which do not have a placeholder value
7650       // 0xFFFF in the MEMBER_OF field).
7651       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
7652       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
7653     }
7654   }
7655
7656   /// Generate the base pointers, section pointers, sizes and map types
7657   /// associated to a given capture.
7658   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
7659                               llvm::Value *Arg,
7660                               MapBaseValuesArrayTy &BasePointers,
7661                               MapValuesArrayTy &Pointers,
7662                               MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
7663                               StructRangeInfoTy &PartialStruct) const {
7664     assert(!Cap->capturesVariableArrayType() &&
7665            "Not expecting to generate map info for a variable array type!");
7666
7667     // We need to know when we generating information for the first component
7668     const ValueDecl *VD = Cap->capturesThis()
7669                               ? nullptr
7670                               : Cap->getCapturedVar()->getCanonicalDecl();
7671
7672     // If this declaration appears in a is_device_ptr clause we just have to
7673     // pass the pointer by value. If it is a reference to a declaration, we just
7674     // pass its value.
7675     if (DevPointersMap.count(VD)) {
7676       BasePointers.emplace_back(Arg, VD);
7677       Pointers.push_back(Arg);
7678       Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
7679       Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
7680       return;
7681     }
7682
7683     using MapData =
7684         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
7685                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
7686     SmallVector<MapData, 4> DeclComponentLists;
7687     // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
7688     for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
7689       for (const auto &L : C->decl_component_lists(VD)) {
7690         assert(L.first == VD &&
7691                "We got information for the wrong declaration??");
7692         assert(!L.second.empty() &&
7693                "Not expecting declaration with no component lists.");
7694         DeclComponentLists.emplace_back(L.second, C->getMapType(),
7695                                         C->getMapTypeModifiers(),
7696                                         C->isImplicit());
7697       }
7698     }
7699
7700     // Find overlapping elements (including the offset from the base element).
7701     llvm::SmallDenseMap<
7702         const MapData *,
7703         llvm::SmallVector<
7704             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
7705         4>
7706         OverlappedData;
7707     size_t Count = 0;
7708     for (const MapData &L : DeclComponentLists) {
7709       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7710       OpenMPMapClauseKind MapType;
7711       ArrayRef<OpenMPMapModifierKind> MapModifiers;
7712       bool IsImplicit;
7713       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
7714       ++Count;
7715       for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
7716         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
7717         std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
7718         auto CI = Components.rbegin();
7719         auto CE = Components.rend();
7720         auto SI = Components1.rbegin();
7721         auto SE = Components1.rend();
7722         for (; CI != CE && SI != SE; ++CI, ++SI) {
7723           if (CI->getAssociatedExpression()->getStmtClass() !=
7724               SI->getAssociatedExpression()->getStmtClass())
7725             break;
7726           // Are we dealing with different variables/fields?
7727           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
7728             break;
7729         }
7730         // Found overlapping if, at least for one component, reached the head of
7731         // the components list.
7732         if (CI == CE || SI == SE) {
7733           assert((CI != CE || SI != SE) &&
7734                  "Unexpected full match of the mapping components.");
7735           const MapData &BaseData = CI == CE ? L : L1;
7736           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
7737               SI == SE ? Components : Components1;
7738           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
7739           OverlappedElements.getSecond().push_back(SubData);
7740         }
7741       }
7742     }
7743     // Sort the overlapped elements for each item.
7744     llvm::SmallVector<const FieldDecl *, 4> Layout;
7745     if (!OverlappedData.empty()) {
7746       if (const auto *CRD =
7747               VD->getType().getCanonicalType()->getAsCXXRecordDecl())
7748         getPlainLayout(CRD, Layout, /*AsBase=*/false);
7749       else {
7750         const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
7751         Layout.append(RD->field_begin(), RD->field_end());
7752       }
7753     }
7754     for (auto &Pair : OverlappedData) {
7755       llvm::sort(
7756           Pair.getSecond(),
7757           [&Layout](
7758               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
7759               OMPClauseMappableExprCommon::MappableExprComponentListRef
7760                   Second) {
7761             auto CI = First.rbegin();
7762             auto CE = First.rend();
7763             auto SI = Second.rbegin();
7764             auto SE = Second.rend();
7765             for (; CI != CE && SI != SE; ++CI, ++SI) {
7766               if (CI->getAssociatedExpression()->getStmtClass() !=
7767                   SI->getAssociatedExpression()->getStmtClass())
7768                 break;
7769               // Are we dealing with different variables/fields?
7770               if (CI->getAssociatedDeclaration() !=
7771                   SI->getAssociatedDeclaration())
7772                 break;
7773             }
7774
7775             // Lists contain the same elements.
7776             if (CI == CE && SI == SE)
7777               return false;
7778
7779             // List with less elements is less than list with more elements.
7780             if (CI == CE || SI == SE)
7781               return CI == CE;
7782
7783             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
7784             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
7785             if (FD1->getParent() == FD2->getParent())
7786               return FD1->getFieldIndex() < FD2->getFieldIndex();
7787             const auto It =
7788                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
7789                   return FD == FD1 || FD == FD2;
7790                 });
7791             return *It == FD1;
7792           });
7793     }
7794
7795     // Associated with a capture, because the mapping flags depend on it.
7796     // Go through all of the elements with the overlapped elements.
7797     for (const auto &Pair : OverlappedData) {
7798       const MapData &L = *Pair.getFirst();
7799       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7800       OpenMPMapClauseKind MapType;
7801       ArrayRef<OpenMPMapModifierKind> MapModifiers;
7802       bool IsImplicit;
7803       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
7804       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7805           OverlappedComponents = Pair.getSecond();
7806       bool IsFirstComponentList = true;
7807       generateInfoForComponentList(MapType, MapModifiers, Components,
7808                                    BasePointers, Pointers, Sizes, Types,
7809                                    PartialStruct, IsFirstComponentList,
7810                                    IsImplicit, OverlappedComponents);
7811     }
7812     // Go through other elements without overlapped elements.
7813     bool IsFirstComponentList = OverlappedData.empty();
7814     for (const MapData &L : DeclComponentLists) {
7815       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7816       OpenMPMapClauseKind MapType;
7817       ArrayRef<OpenMPMapModifierKind> MapModifiers;
7818       bool IsImplicit;
7819       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
7820       auto It = OverlappedData.find(&L);
7821       if (It == OverlappedData.end())
7822         generateInfoForComponentList(MapType, MapModifiers, Components,
7823                                      BasePointers, Pointers, Sizes, Types,
7824                                      PartialStruct, IsFirstComponentList,
7825                                      IsImplicit);
7826       IsFirstComponentList = false;
7827     }
7828   }
7829
7830   /// Generate the base pointers, section pointers, sizes and map types
7831   /// associated with the declare target link variables.
7832   void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
7833                                         MapValuesArrayTy &Pointers,
7834                                         MapValuesArrayTy &Sizes,
7835                                         MapFlagsArrayTy &Types) const {
7836     // Map other list items in the map clause which are not captured variables
7837     // but "declare target link" global variables.,
7838     for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
7839       for (const auto &L : C->component_lists()) {
7840         if (!L.first)
7841           continue;
7842         const auto *VD = dyn_cast<VarDecl>(L.first);
7843         if (!VD)
7844           continue;
7845         llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7846             OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
7847         if (!Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
7848           continue;
7849         StructRangeInfoTy PartialStruct;
7850         generateInfoForComponentList(
7851             C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
7852             Pointers, Sizes, Types, PartialStruct,
7853             /*IsFirstComponentList=*/true, C->isImplicit());
7854         assert(!PartialStruct.Base.isValid() &&
7855                "No partial structs for declare target link expected.");
7856       }
7857     }
7858   }
7859
7860   /// Generate the default map information for a given capture \a CI,
7861   /// record field declaration \a RI and captured value \a CV.
7862   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
7863                               const FieldDecl &RI, llvm::Value *CV,
7864                               MapBaseValuesArrayTy &CurBasePointers,
7865                               MapValuesArrayTy &CurPointers,
7866                               MapValuesArrayTy &CurSizes,
7867                               MapFlagsArrayTy &CurMapTypes) const {
7868     // Do the default mapping.
7869     if (CI.capturesThis()) {
7870       CurBasePointers.push_back(CV);
7871       CurPointers.push_back(CV);
7872       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
7873       CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType()));
7874       // Default map type.
7875       CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
7876     } else if (CI.capturesVariableByCopy()) {
7877       CurBasePointers.push_back(CV);
7878       CurPointers.push_back(CV);
7879       if (!RI.getType()->isAnyPointerType()) {
7880         // We have to signal to the runtime captures passed by value that are
7881         // not pointers.
7882         CurMapTypes.push_back(OMP_MAP_LITERAL);
7883         CurSizes.push_back(CGF.getTypeSize(RI.getType()));
7884       } else {
7885         // Pointers are implicitly mapped with a zero size and no flags
7886         // (other than first map that is added for all implicit maps).
7887         CurMapTypes.push_back(OMP_MAP_NONE);
7888         CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy));
7889       }
7890     } else {
7891       assert(CI.capturesVariable() && "Expected captured reference.");
7892       CurBasePointers.push_back(CV);
7893       CurPointers.push_back(CV);
7894
7895       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
7896       QualType ElementType = PtrTy->getPointeeType();
7897       CurSizes.push_back(CGF.getTypeSize(ElementType));
7898       // The default map type for a scalar/complex type is 'to' because by
7899       // default the value doesn't have to be retrieved. For an aggregate
7900       // type, the default is 'tofrom'.
7901       CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
7902     }
7903     // Every default map produces a single argument which is a target parameter.
7904     CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
7905
7906     // Add flag stating this is an implicit map.
7907     CurMapTypes.back() |= OMP_MAP_IMPLICIT;
7908   }
7909 };
7910
7911 enum OpenMPOffloadingReservedDeviceIDs {
7912   /// Device ID if the device was not defined, runtime should get it
7913   /// from environment variables in the spec.
7914   OMP_DEVICEID_UNDEF = -1,
7915 };
7916 } // anonymous namespace
7917
7918 /// Emit the arrays used to pass the captures and map information to the
7919 /// offloading runtime library. If there is no map or capture information,
7920 /// return nullptr by reference.
7921 static void
7922 emitOffloadingArrays(CodeGenFunction &CGF,
7923                      MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
7924                      MappableExprsHandler::MapValuesArrayTy &Pointers,
7925                      MappableExprsHandler::MapValuesArrayTy &Sizes,
7926                      MappableExprsHandler::MapFlagsArrayTy &MapTypes,
7927                      CGOpenMPRuntime::TargetDataInfo &Info) {
7928   CodeGenModule &CGM = CGF.CGM;
7929   ASTContext &Ctx = CGF.getContext();
7930
7931   // Reset the array information.
7932   Info.clearArrayInfo();
7933   Info.NumberOfPtrs = BasePointers.size();
7934
7935   if (Info.NumberOfPtrs) {
7936     // Detect if we have any capture size requiring runtime evaluation of the
7937     // size so that a constant array could be eventually used.
7938     bool hasRuntimeEvaluationCaptureSize = false;
7939     for (llvm::Value *S : Sizes)
7940       if (!isa<llvm::Constant>(S)) {
7941         hasRuntimeEvaluationCaptureSize = true;
7942         break;
7943       }
7944
7945     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
7946     QualType PointerArrayType =
7947         Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
7948                                  /*IndexTypeQuals=*/0);
7949
7950     Info.BasePointersArray =
7951         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
7952     Info.PointersArray =
7953         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
7954
7955     // If we don't have any VLA types or other types that require runtime
7956     // evaluation, we can use a constant array for the map sizes, otherwise we
7957     // need to fill up the arrays as we do for the pointers.
7958     if (hasRuntimeEvaluationCaptureSize) {
7959       QualType SizeArrayType = Ctx.getConstantArrayType(
7960           Ctx.getSizeType(), PointerNumAP, ArrayType::Normal,
7961           /*IndexTypeQuals=*/0);
7962       Info.SizesArray =
7963           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
7964     } else {
7965       // We expect all the sizes to be constant, so we collect them to create
7966       // a constant array.
7967       SmallVector<llvm::Constant *, 16> ConstSizes;
7968       for (llvm::Value *S : Sizes)
7969         ConstSizes.push_back(cast<llvm::Constant>(S));
7970
7971       auto *SizesArrayInit = llvm::ConstantArray::get(
7972           llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes);
7973       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
7974       auto *SizesArrayGbl = new llvm::GlobalVariable(
7975           CGM.getModule(), SizesArrayInit->getType(),
7976           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
7977           SizesArrayInit, Name);
7978       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
7979       Info.SizesArray = SizesArrayGbl;
7980     }
7981
7982     // The map types are always constant so we don't need to generate code to
7983     // fill arrays. Instead, we create an array constant.
7984     SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
7985     llvm::copy(MapTypes, Mapping.begin());
7986     llvm::Constant *MapTypesArrayInit =
7987         llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
7988     std::string MaptypesName =
7989         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
7990     auto *MapTypesArrayGbl = new llvm::GlobalVariable(
7991         CGM.getModule(), MapTypesArrayInit->getType(),
7992         /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
7993         MapTypesArrayInit, MaptypesName);
7994     MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
7995     Info.MapTypesArray = MapTypesArrayGbl;
7996
7997     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
7998       llvm::Value *BPVal = *BasePointers[I];
7999       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
8000           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8001           Info.BasePointersArray, 0, I);
8002       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8003           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
8004       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8005       CGF.Builder.CreateStore(BPVal, BPAddr);
8006
8007       if (Info.requiresDevicePointerInfo())
8008         if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
8009           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
8010
8011       llvm::Value *PVal = Pointers[I];
8012       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
8013           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8014           Info.PointersArray, 0, I);
8015       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8016           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
8017       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8018       CGF.Builder.CreateStore(PVal, PAddr);
8019
8020       if (hasRuntimeEvaluationCaptureSize) {
8021         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
8022             llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs),
8023             Info.SizesArray,
8024             /*Idx0=*/0,
8025             /*Idx1=*/I);
8026         Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType()));
8027         CGF.Builder.CreateStore(
8028             CGF.Builder.CreateIntCast(Sizes[I], CGM.SizeTy, /*isSigned=*/true),
8029             SAddr);
8030       }
8031     }
8032   }
8033 }
8034 /// Emit the arguments to be passed to the runtime library based on the
8035 /// arrays of pointers, sizes and map types.
8036 static void emitOffloadingArraysArgument(
8037     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
8038     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
8039     llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
8040   CodeGenModule &CGM = CGF.CGM;
8041   if (Info.NumberOfPtrs) {
8042     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8043         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8044         Info.BasePointersArray,
8045         /*Idx0=*/0, /*Idx1=*/0);
8046     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8047         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8048         Info.PointersArray,
8049         /*Idx0=*/0,
8050         /*Idx1=*/0);
8051     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8052         llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), Info.SizesArray,
8053         /*Idx0=*/0, /*Idx1=*/0);
8054     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8055         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8056         Info.MapTypesArray,
8057         /*Idx0=*/0,
8058         /*Idx1=*/0);
8059   } else {
8060     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8061     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8062     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo());
8063     MapTypesArrayArg =
8064         llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8065   }
8066 }
8067
8068 /// Checks if the expression is constant or does not have non-trivial function
8069 /// calls.
8070 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
8071   // We can skip constant expressions.
8072   // We can skip expressions with trivial calls or simple expressions.
8073   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
8074           !E->hasNonTrivialCall(Ctx)) &&
8075          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
8076 }
8077
8078 /// Checks if the \p Body is the \a CompoundStmt and returns its child statement
8079 /// iff there is only one that is not evaluatable at the compile time.
8080 static const Stmt *getSingleCompoundChild(ASTContext &Ctx, const Stmt *Body) {
8081   if (const auto *C = dyn_cast<CompoundStmt>(Body)) {
8082     const Stmt *Child = nullptr;
8083     for (const Stmt *S : C->body()) {
8084       if (const auto *E = dyn_cast<Expr>(S)) {
8085         if (isTrivial(Ctx, E))
8086           continue;
8087       }
8088       // Some of the statements can be ignored.
8089       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
8090           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
8091         continue;
8092       // Analyze declarations.
8093       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
8094         if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
8095               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
8096                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
8097                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
8098                   isa<UsingDirectiveDecl>(D) ||
8099                   isa<OMPDeclareReductionDecl>(D) ||
8100                   isa<OMPThreadPrivateDecl>(D))
8101                 return true;
8102               const auto *VD = dyn_cast<VarDecl>(D);
8103               if (!VD)
8104                 return false;
8105               return VD->isConstexpr() ||
8106                      ((VD->getType().isTrivialType(Ctx) ||
8107                        VD->getType()->isReferenceType()) &&
8108                       (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
8109             }))
8110           continue;
8111       }
8112       // Found multiple children - cannot get the one child only.
8113       if (Child)
8114         return Body;
8115       Child = S;
8116     }
8117     if (Child)
8118       return Child;
8119   }
8120   return Body;
8121 }
8122
8123 /// Check for inner distribute directive.
8124 static const OMPExecutableDirective *
8125 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
8126   const auto *CS = D.getInnermostCapturedStmt();
8127   const auto *Body =
8128       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
8129   const Stmt *ChildStmt = getSingleCompoundChild(Ctx, Body);
8130
8131   if (const auto *NestedDir = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
8132     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
8133     switch (D.getDirectiveKind()) {
8134     case OMPD_target:
8135       if (isOpenMPDistributeDirective(DKind))
8136         return NestedDir;
8137       if (DKind == OMPD_teams) {
8138         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
8139             /*IgnoreCaptured=*/true);
8140         if (!Body)
8141           return nullptr;
8142         ChildStmt = getSingleCompoundChild(Ctx, Body);
8143         if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
8144           DKind = NND->getDirectiveKind();
8145           if (isOpenMPDistributeDirective(DKind))
8146             return NND;
8147         }
8148       }
8149       return nullptr;
8150     case OMPD_target_teams:
8151       if (isOpenMPDistributeDirective(DKind))
8152         return NestedDir;
8153       return nullptr;
8154     case OMPD_target_parallel:
8155     case OMPD_target_simd:
8156     case OMPD_target_parallel_for:
8157     case OMPD_target_parallel_for_simd:
8158       return nullptr;
8159     case OMPD_target_teams_distribute:
8160     case OMPD_target_teams_distribute_simd:
8161     case OMPD_target_teams_distribute_parallel_for:
8162     case OMPD_target_teams_distribute_parallel_for_simd:
8163     case OMPD_parallel:
8164     case OMPD_for:
8165     case OMPD_parallel_for:
8166     case OMPD_parallel_sections:
8167     case OMPD_for_simd:
8168     case OMPD_parallel_for_simd:
8169     case OMPD_cancel:
8170     case OMPD_cancellation_point:
8171     case OMPD_ordered:
8172     case OMPD_threadprivate:
8173     case OMPD_task:
8174     case OMPD_simd:
8175     case OMPD_sections:
8176     case OMPD_section:
8177     case OMPD_single:
8178     case OMPD_master:
8179     case OMPD_critical:
8180     case OMPD_taskyield:
8181     case OMPD_barrier:
8182     case OMPD_taskwait:
8183     case OMPD_taskgroup:
8184     case OMPD_atomic:
8185     case OMPD_flush:
8186     case OMPD_teams:
8187     case OMPD_target_data:
8188     case OMPD_target_exit_data:
8189     case OMPD_target_enter_data:
8190     case OMPD_distribute:
8191     case OMPD_distribute_simd:
8192     case OMPD_distribute_parallel_for:
8193     case OMPD_distribute_parallel_for_simd:
8194     case OMPD_teams_distribute:
8195     case OMPD_teams_distribute_simd:
8196     case OMPD_teams_distribute_parallel_for:
8197     case OMPD_teams_distribute_parallel_for_simd:
8198     case OMPD_target_update:
8199     case OMPD_declare_simd:
8200     case OMPD_declare_target:
8201     case OMPD_end_declare_target:
8202     case OMPD_declare_reduction:
8203     case OMPD_taskloop:
8204     case OMPD_taskloop_simd:
8205     case OMPD_requires:
8206     case OMPD_unknown:
8207       llvm_unreachable("Unexpected directive.");
8208     }
8209   }
8210
8211   return nullptr;
8212 }
8213
8214 void CGOpenMPRuntime::emitTargetNumIterationsCall(
8215     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *Device,
8216     const llvm::function_ref<llvm::Value *(
8217         CodeGenFunction &CGF, const OMPLoopDirective &D)> &SizeEmitter) {
8218   OpenMPDirectiveKind Kind = D.getDirectiveKind();
8219   const OMPExecutableDirective *TD = &D;
8220   // Get nested teams distribute kind directive, if any.
8221   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
8222     TD = getNestedDistributeDirective(CGM.getContext(), D);
8223   if (!TD)
8224     return;
8225   const auto *LD = cast<OMPLoopDirective>(TD);
8226   auto &&CodeGen = [LD, &Device, &SizeEmitter, this](CodeGenFunction &CGF,
8227                                                      PrePostActionTy &) {
8228     llvm::Value *NumIterations = SizeEmitter(CGF, *LD);
8229
8230     // Emit device ID if any.
8231     llvm::Value *DeviceID;
8232     if (Device)
8233       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8234                                            CGF.Int64Ty, /*isSigned=*/true);
8235     else
8236       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8237
8238     llvm::Value *Args[] = {DeviceID, NumIterations};
8239     CGF.EmitRuntimeCall(
8240         createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
8241   };
8242   emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
8243 }
8244
8245 void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
8246                                      const OMPExecutableDirective &D,
8247                                      llvm::Value *OutlinedFn,
8248                                      llvm::Value *OutlinedFnID,
8249                                      const Expr *IfCond, const Expr *Device) {
8250   if (!CGF.HaveInsertPoint())
8251     return;
8252
8253   assert(OutlinedFn && "Invalid outlined function!");
8254
8255   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
8256   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
8257   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
8258   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
8259                                             PrePostActionTy &) {
8260     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8261   };
8262   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
8263
8264   CodeGenFunction::OMPTargetDataInfo InputInfo;
8265   llvm::Value *MapTypesArray = nullptr;
8266   // Fill up the pointer arrays and transfer execution to the device.
8267   auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
8268                     &MapTypesArray, &CS, RequiresOuterTask,
8269                     &CapturedVars](CodeGenFunction &CGF, PrePostActionTy &) {
8270     // On top of the arrays that were filled up, the target offloading call
8271     // takes as arguments the device id as well as the host pointer. The host
8272     // pointer is used by the runtime library to identify the current target
8273     // region, so it only has to be unique and not necessarily point to
8274     // anything. It could be the pointer to the outlined function that
8275     // implements the target region, but we aren't using that so that the
8276     // compiler doesn't need to keep that, and could therefore inline the host
8277     // function if proven worthwhile during optimization.
8278
8279     // From this point on, we need to have an ID of the target region defined.
8280     assert(OutlinedFnID && "Invalid outlined function ID!");
8281
8282     // Emit device ID if any.
8283     llvm::Value *DeviceID;
8284     if (Device) {
8285       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8286                                            CGF.Int64Ty, /*isSigned=*/true);
8287     } else {
8288       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8289     }
8290
8291     // Emit the number of elements in the offloading arrays.
8292     llvm::Value *PointerNum =
8293         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
8294
8295     // Return value of the runtime offloading call.
8296     llvm::Value *Return;
8297
8298     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(*this, CGF, D);
8299     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(*this, CGF, D);
8300
8301     bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
8302     // The target region is an outlined function launched by the runtime
8303     // via calls __tgt_target() or __tgt_target_teams().
8304     //
8305     // __tgt_target() launches a target region with one team and one thread,
8306     // executing a serial region.  This master thread may in turn launch
8307     // more threads within its team upon encountering a parallel region,
8308     // however, no additional teams can be launched on the device.
8309     //
8310     // __tgt_target_teams() launches a target region with one or more teams,
8311     // each with one or more threads.  This call is required for target
8312     // constructs such as:
8313     //  'target teams'
8314     //  'target' / 'teams'
8315     //  'target teams distribute parallel for'
8316     //  'target parallel'
8317     // and so on.
8318     //
8319     // Note that on the host and CPU targets, the runtime implementation of
8320     // these calls simply call the outlined function without forking threads.
8321     // The outlined functions themselves have runtime calls to
8322     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
8323     // the compiler in emitTeamsCall() and emitParallelCall().
8324     //
8325     // In contrast, on the NVPTX target, the implementation of
8326     // __tgt_target_teams() launches a GPU kernel with the requested number
8327     // of teams and threads so no additional calls to the runtime are required.
8328     if (NumTeams) {
8329       // If we have NumTeams defined this means that we have an enclosed teams
8330       // region. Therefore we also expect to have NumThreads defined. These two
8331       // values should be defined in the presence of a teams directive,
8332       // regardless of having any clauses associated. If the user is using teams
8333       // but no clauses, these two values will be the default that should be
8334       // passed to the runtime library - a 32-bit integer with the value zero.
8335       assert(NumThreads && "Thread limit expression should be available along "
8336                            "with number of teams.");
8337       llvm::Value *OffloadingArgs[] = {DeviceID,
8338                                        OutlinedFnID,
8339                                        PointerNum,
8340                                        InputInfo.BasePointersArray.getPointer(),
8341                                        InputInfo.PointersArray.getPointer(),
8342                                        InputInfo.SizesArray.getPointer(),
8343                                        MapTypesArray,
8344                                        NumTeams,
8345                                        NumThreads};
8346       Return = CGF.EmitRuntimeCall(
8347           createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
8348                                           : OMPRTL__tgt_target_teams),
8349           OffloadingArgs);
8350     } else {
8351       llvm::Value *OffloadingArgs[] = {DeviceID,
8352                                        OutlinedFnID,
8353                                        PointerNum,
8354                                        InputInfo.BasePointersArray.getPointer(),
8355                                        InputInfo.PointersArray.getPointer(),
8356                                        InputInfo.SizesArray.getPointer(),
8357                                        MapTypesArray};
8358       Return = CGF.EmitRuntimeCall(
8359           createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
8360                                           : OMPRTL__tgt_target),
8361           OffloadingArgs);
8362     }
8363
8364     // Check the error code and execute the host version if required.
8365     llvm::BasicBlock *OffloadFailedBlock =
8366         CGF.createBasicBlock("omp_offload.failed");
8367     llvm::BasicBlock *OffloadContBlock =
8368         CGF.createBasicBlock("omp_offload.cont");
8369     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
8370     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
8371
8372     CGF.EmitBlock(OffloadFailedBlock);
8373     if (RequiresOuterTask) {
8374       CapturedVars.clear();
8375       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8376     }
8377     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
8378     CGF.EmitBranch(OffloadContBlock);
8379
8380     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
8381   };
8382
8383   // Notify that the host version must be executed.
8384   auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
8385                     RequiresOuterTask](CodeGenFunction &CGF,
8386                                        PrePostActionTy &) {
8387     if (RequiresOuterTask) {
8388       CapturedVars.clear();
8389       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8390     }
8391     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
8392   };
8393
8394   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
8395                           &CapturedVars, RequiresOuterTask,
8396                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
8397     // Fill up the arrays with all the captured variables.
8398     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
8399     MappableExprsHandler::MapValuesArrayTy Pointers;
8400     MappableExprsHandler::MapValuesArrayTy Sizes;
8401     MappableExprsHandler::MapFlagsArrayTy MapTypes;
8402
8403     // Get mappable expression information.
8404     MappableExprsHandler MEHandler(D, CGF);
8405     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
8406
8407     auto RI = CS.getCapturedRecordDecl()->field_begin();
8408     auto CV = CapturedVars.begin();
8409     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
8410                                               CE = CS.capture_end();
8411          CI != CE; ++CI, ++RI, ++CV) {
8412       MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
8413       MappableExprsHandler::MapValuesArrayTy CurPointers;
8414       MappableExprsHandler::MapValuesArrayTy CurSizes;
8415       MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
8416       MappableExprsHandler::StructRangeInfoTy PartialStruct;
8417
8418       // VLA sizes are passed to the outlined region by copy and do not have map
8419       // information associated.
8420       if (CI->capturesVariableArrayType()) {
8421         CurBasePointers.push_back(*CV);
8422         CurPointers.push_back(*CV);
8423         CurSizes.push_back(CGF.getTypeSize(RI->getType()));
8424         // Copy to the device as an argument. No need to retrieve it.
8425         CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
8426                               MappableExprsHandler::OMP_MAP_TARGET_PARAM);
8427       } else {
8428         // If we have any information in the map clause, we use it, otherwise we
8429         // just do a default mapping.
8430         MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
8431                                          CurSizes, CurMapTypes, PartialStruct);
8432         if (CurBasePointers.empty())
8433           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
8434                                            CurPointers, CurSizes, CurMapTypes);
8435         // Generate correct mapping for variables captured by reference in
8436         // lambdas.
8437         if (CI->capturesVariable())
8438           MEHandler.generateInfoForLambdaCaptures(
8439               CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
8440               CurMapTypes, LambdaPointers);
8441       }
8442       // We expect to have at least an element of information for this capture.
8443       assert(!CurBasePointers.empty() &&
8444              "Non-existing map pointer for capture!");
8445       assert(CurBasePointers.size() == CurPointers.size() &&
8446              CurBasePointers.size() == CurSizes.size() &&
8447              CurBasePointers.size() == CurMapTypes.size() &&
8448              "Inconsistent map information sizes!");
8449
8450       // If there is an entry in PartialStruct it means we have a struct with
8451       // individual members mapped. Emit an extra combined entry.
8452       if (PartialStruct.Base.isValid())
8453         MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
8454                                     CurMapTypes, PartialStruct);
8455
8456       // We need to append the results of this capture to what we already have.
8457       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8458       Pointers.append(CurPointers.begin(), CurPointers.end());
8459       Sizes.append(CurSizes.begin(), CurSizes.end());
8460       MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
8461     }
8462     // Adjust MEMBER_OF flags for the lambdas captures.
8463     MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
8464                                               Pointers, MapTypes);
8465     // Map other list items in the map clause which are not captured variables
8466     // but "declare target link" global variables.
8467     MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
8468                                                MapTypes);
8469
8470     TargetDataInfo Info;
8471     // Fill up the arrays and create the arguments.
8472     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
8473     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
8474                                  Info.PointersArray, Info.SizesArray,
8475                                  Info.MapTypesArray, Info);
8476     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
8477     InputInfo.BasePointersArray =
8478         Address(Info.BasePointersArray, CGM.getPointerAlign());
8479     InputInfo.PointersArray =
8480         Address(Info.PointersArray, CGM.getPointerAlign());
8481     InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
8482     MapTypesArray = Info.MapTypesArray;
8483     if (RequiresOuterTask)
8484       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
8485     else
8486       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
8487   };
8488
8489   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
8490                              CodeGenFunction &CGF, PrePostActionTy &) {
8491     if (RequiresOuterTask) {
8492       CodeGenFunction::OMPTargetDataInfo InputInfo;
8493       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
8494     } else {
8495       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
8496     }
8497   };
8498
8499   // If we have a target function ID it means that we need to support
8500   // offloading, otherwise, just execute on the host. We need to execute on host
8501   // regardless of the conditional in the if clause if, e.g., the user do not
8502   // specify target triples.
8503   if (OutlinedFnID) {
8504     if (IfCond) {
8505       emitOMPIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
8506     } else {
8507       RegionCodeGenTy ThenRCG(TargetThenGen);
8508       ThenRCG(CGF);
8509     }
8510   } else {
8511     RegionCodeGenTy ElseRCG(TargetElseGen);
8512     ElseRCG(CGF);
8513   }
8514 }
8515
8516 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
8517                                                     StringRef ParentName) {
8518   if (!S)
8519     return;
8520
8521   // Codegen OMP target directives that offload compute to the device.
8522   bool RequiresDeviceCodegen =
8523       isa<OMPExecutableDirective>(S) &&
8524       isOpenMPTargetExecutionDirective(
8525           cast<OMPExecutableDirective>(S)->getDirectiveKind());
8526
8527   if (RequiresDeviceCodegen) {
8528     const auto &E = *cast<OMPExecutableDirective>(S);
8529     unsigned DeviceID;
8530     unsigned FileID;
8531     unsigned Line;
8532     getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
8533                              FileID, Line);
8534
8535     // Is this a target region that should not be emitted as an entry point? If
8536     // so just signal we are done with this target region.
8537     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
8538                                                             ParentName, Line))
8539       return;
8540
8541     switch (E.getDirectiveKind()) {
8542     case OMPD_target:
8543       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
8544                                                    cast<OMPTargetDirective>(E));
8545       break;
8546     case OMPD_target_parallel:
8547       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
8548           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
8549       break;
8550     case OMPD_target_teams:
8551       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
8552           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
8553       break;
8554     case OMPD_target_teams_distribute:
8555       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
8556           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
8557       break;
8558     case OMPD_target_teams_distribute_simd:
8559       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
8560           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
8561       break;
8562     case OMPD_target_parallel_for:
8563       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
8564           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
8565       break;
8566     case OMPD_target_parallel_for_simd:
8567       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
8568           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
8569       break;
8570     case OMPD_target_simd:
8571       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
8572           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
8573       break;
8574     case OMPD_target_teams_distribute_parallel_for:
8575       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
8576           CGM, ParentName,
8577           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
8578       break;
8579     case OMPD_target_teams_distribute_parallel_for_simd:
8580       CodeGenFunction::
8581           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
8582               CGM, ParentName,
8583               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
8584       break;
8585     case OMPD_parallel:
8586     case OMPD_for:
8587     case OMPD_parallel_for:
8588     case OMPD_parallel_sections:
8589     case OMPD_for_simd:
8590     case OMPD_parallel_for_simd:
8591     case OMPD_cancel:
8592     case OMPD_cancellation_point:
8593     case OMPD_ordered:
8594     case OMPD_threadprivate:
8595     case OMPD_task:
8596     case OMPD_simd:
8597     case OMPD_sections:
8598     case OMPD_section:
8599     case OMPD_single:
8600     case OMPD_master:
8601     case OMPD_critical:
8602     case OMPD_taskyield:
8603     case OMPD_barrier:
8604     case OMPD_taskwait:
8605     case OMPD_taskgroup:
8606     case OMPD_atomic:
8607     case OMPD_flush:
8608     case OMPD_teams:
8609     case OMPD_target_data:
8610     case OMPD_target_exit_data:
8611     case OMPD_target_enter_data:
8612     case OMPD_distribute:
8613     case OMPD_distribute_simd:
8614     case OMPD_distribute_parallel_for:
8615     case OMPD_distribute_parallel_for_simd:
8616     case OMPD_teams_distribute:
8617     case OMPD_teams_distribute_simd:
8618     case OMPD_teams_distribute_parallel_for:
8619     case OMPD_teams_distribute_parallel_for_simd:
8620     case OMPD_target_update:
8621     case OMPD_declare_simd:
8622     case OMPD_declare_target:
8623     case OMPD_end_declare_target:
8624     case OMPD_declare_reduction:
8625     case OMPD_taskloop:
8626     case OMPD_taskloop_simd:
8627     case OMPD_requires:
8628     case OMPD_unknown:
8629       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
8630     }
8631     return;
8632   }
8633
8634   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
8635     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
8636       return;
8637
8638     scanForTargetRegionsFunctions(
8639         E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
8640     return;
8641   }
8642
8643   // If this is a lambda function, look into its body.
8644   if (const auto *L = dyn_cast<LambdaExpr>(S))
8645     S = L->getBody();
8646
8647   // Keep looking for target regions recursively.
8648   for (const Stmt *II : S->children())
8649     scanForTargetRegionsFunctions(II, ParentName);
8650 }
8651
8652 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
8653   // If emitting code for the host, we do not process FD here. Instead we do
8654   // the normal code generation.
8655   if (!CGM.getLangOpts().OpenMPIsDevice)
8656     return false;
8657
8658   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
8659   StringRef Name = CGM.getMangledName(GD);
8660   // Try to detect target regions in the function.
8661   if (const auto *FD = dyn_cast<FunctionDecl>(VD))
8662     scanForTargetRegionsFunctions(FD->getBody(), Name);
8663
8664   // Do not to emit function if it is not marked as declare target.
8665   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
8666          AlreadyEmittedTargetFunctions.count(Name) == 0;
8667 }
8668
8669 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
8670   if (!CGM.getLangOpts().OpenMPIsDevice)
8671     return false;
8672
8673   // Check if there are Ctors/Dtors in this declaration and look for target
8674   // regions in it. We use the complete variant to produce the kernel name
8675   // mangling.
8676   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
8677   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
8678     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
8679       StringRef ParentName =
8680           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
8681       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
8682     }
8683     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
8684       StringRef ParentName =
8685           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
8686       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
8687     }
8688   }
8689
8690   // Do not to emit variable if it is not marked as declare target.
8691   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
8692       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
8693           cast<VarDecl>(GD.getDecl()));
8694   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link) {
8695     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
8696     return true;
8697   }
8698   return false;
8699 }
8700
8701 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
8702                                                    llvm::Constant *Addr) {
8703   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
8704       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
8705   if (!Res) {
8706     if (CGM.getLangOpts().OpenMPIsDevice) {
8707       // Register non-target variables being emitted in device code (debug info
8708       // may cause this).
8709       StringRef VarName = CGM.getMangledName(VD);
8710       EmittedNonTargetVariables.try_emplace(VarName, Addr);
8711     }
8712     return;
8713   }
8714   // Register declare target variables.
8715   OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
8716   StringRef VarName;
8717   CharUnits VarSize;
8718   llvm::GlobalValue::LinkageTypes Linkage;
8719   switch (*Res) {
8720   case OMPDeclareTargetDeclAttr::MT_To:
8721     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
8722     VarName = CGM.getMangledName(VD);
8723     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
8724       VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
8725       assert(!VarSize.isZero() && "Expected non-zero size of the variable");
8726     } else {
8727       VarSize = CharUnits::Zero();
8728     }
8729     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
8730     // Temp solution to prevent optimizations of the internal variables.
8731     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
8732       std::string RefName = getName({VarName, "ref"});
8733       if (!CGM.GetGlobalValue(RefName)) {
8734         llvm::Constant *AddrRef =
8735             getOrCreateInternalVariable(Addr->getType(), RefName);
8736         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
8737         GVAddrRef->setConstant(/*Val=*/true);
8738         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
8739         GVAddrRef->setInitializer(Addr);
8740         CGM.addCompilerUsedGlobal(GVAddrRef);
8741       }
8742     }
8743     break;
8744   case OMPDeclareTargetDeclAttr::MT_Link:
8745     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
8746     if (CGM.getLangOpts().OpenMPIsDevice) {
8747       VarName = Addr->getName();
8748       Addr = nullptr;
8749     } else {
8750       VarName = getAddrOfDeclareTargetLink(VD).getName();
8751       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetLink(VD).getPointer());
8752     }
8753     VarSize = CGM.getPointerSize();
8754     Linkage = llvm::GlobalValue::WeakAnyLinkage;
8755     break;
8756   }
8757   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
8758       VarName, Addr, VarSize, Flags, Linkage);
8759 }
8760
8761 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
8762   if (isa<FunctionDecl>(GD.getDecl()) ||
8763       isa<OMPDeclareReductionDecl>(GD.getDecl()))
8764     return emitTargetFunctions(GD);
8765
8766   return emitTargetGlobalVariable(GD);
8767 }
8768
8769 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
8770   for (const VarDecl *VD : DeferredGlobalVariables) {
8771     llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
8772         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
8773     if (!Res)
8774       continue;
8775     if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
8776       CGM.EmitGlobal(VD);
8777     } else {
8778       assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
8779              "Expected to or link clauses.");
8780       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
8781     }
8782   }
8783 }
8784
8785 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
8786     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
8787   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
8788          " Expected target-based directive.");
8789 }
8790
8791 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
8792     CodeGenModule &CGM)
8793     : CGM(CGM) {
8794   if (CGM.getLangOpts().OpenMPIsDevice) {
8795     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
8796     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
8797   }
8798 }
8799
8800 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
8801   if (CGM.getLangOpts().OpenMPIsDevice)
8802     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
8803 }
8804
8805 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
8806   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
8807     return true;
8808
8809   StringRef Name = CGM.getMangledName(GD);
8810   const auto *D = cast<FunctionDecl>(GD.getDecl());
8811   // Do not to emit function if it is marked as declare target as it was already
8812   // emitted.
8813   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
8814     if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) {
8815       if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name)))
8816         return !F->isDeclaration();
8817       return false;
8818     }
8819     return true;
8820   }
8821
8822   return !AlreadyEmittedTargetFunctions.insert(Name).second;
8823 }
8824
8825 llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
8826   // If we have offloading in the current module, we need to emit the entries
8827   // now and register the offloading descriptor.
8828   createOffloadEntriesAndInfoMetadata();
8829
8830   // Create and register the offloading binary descriptors. This is the main
8831   // entity that captures all the information about offloading in the current
8832   // compilation unit.
8833   return createOffloadingBinaryDescriptorRegistration();
8834 }
8835
8836 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
8837                                     const OMPExecutableDirective &D,
8838                                     SourceLocation Loc,
8839                                     llvm::Value *OutlinedFn,
8840                                     ArrayRef<llvm::Value *> CapturedVars) {
8841   if (!CGF.HaveInsertPoint())
8842     return;
8843
8844   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
8845   CodeGenFunction::RunCleanupsScope Scope(CGF);
8846
8847   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
8848   llvm::Value *Args[] = {
8849       RTLoc,
8850       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
8851       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
8852   llvm::SmallVector<llvm::Value *, 16> RealArgs;
8853   RealArgs.append(std::begin(Args), std::end(Args));
8854   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
8855
8856   llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
8857   CGF.EmitRuntimeCall(RTLFn, RealArgs);
8858 }
8859
8860 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
8861                                          const Expr *NumTeams,
8862                                          const Expr *ThreadLimit,
8863                                          SourceLocation Loc) {
8864   if (!CGF.HaveInsertPoint())
8865     return;
8866
8867   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
8868
8869   llvm::Value *NumTeamsVal =
8870       NumTeams
8871           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
8872                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
8873           : CGF.Builder.getInt32(0);
8874
8875   llvm::Value *ThreadLimitVal =
8876       ThreadLimit
8877           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
8878                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
8879           : CGF.Builder.getInt32(0);
8880
8881   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
8882   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
8883                                      ThreadLimitVal};
8884   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
8885                       PushNumTeamsArgs);
8886 }
8887
8888 void CGOpenMPRuntime::emitTargetDataCalls(
8889     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
8890     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
8891   if (!CGF.HaveInsertPoint())
8892     return;
8893
8894   // Action used to replace the default codegen action and turn privatization
8895   // off.
8896   PrePostActionTy NoPrivAction;
8897
8898   // Generate the code for the opening of the data environment. Capture all the
8899   // arguments of the runtime call by reference because they are used in the
8900   // closing of the region.
8901   auto &&BeginThenGen = [this, &D, Device, &Info,
8902                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
8903     // Fill up the arrays with all the mapped variables.
8904     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
8905     MappableExprsHandler::MapValuesArrayTy Pointers;
8906     MappableExprsHandler::MapValuesArrayTy Sizes;
8907     MappableExprsHandler::MapFlagsArrayTy MapTypes;
8908
8909     // Get map clause information.
8910     MappableExprsHandler MCHandler(D, CGF);
8911     MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
8912
8913     // Fill up the arrays and create the arguments.
8914     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
8915
8916     llvm::Value *BasePointersArrayArg = nullptr;
8917     llvm::Value *PointersArrayArg = nullptr;
8918     llvm::Value *SizesArrayArg = nullptr;
8919     llvm::Value *MapTypesArrayArg = nullptr;
8920     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
8921                                  SizesArrayArg, MapTypesArrayArg, Info);
8922
8923     // Emit device ID if any.
8924     llvm::Value *DeviceID = nullptr;
8925     if (Device) {
8926       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8927                                            CGF.Int64Ty, /*isSigned=*/true);
8928     } else {
8929       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8930     }
8931
8932     // Emit the number of elements in the offloading arrays.
8933     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
8934
8935     llvm::Value *OffloadingArgs[] = {
8936         DeviceID,         PointerNum,    BasePointersArrayArg,
8937         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
8938     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
8939                         OffloadingArgs);
8940
8941     // If device pointer privatization is required, emit the body of the region
8942     // here. It will have to be duplicated: with and without privatization.
8943     if (!Info.CaptureDeviceAddrMap.empty())
8944       CodeGen(CGF);
8945   };
8946
8947   // Generate code for the closing of the data region.
8948   auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
8949                                             PrePostActionTy &) {
8950     assert(Info.isValid() && "Invalid data environment closing arguments.");
8951
8952     llvm::Value *BasePointersArrayArg = nullptr;
8953     llvm::Value *PointersArrayArg = nullptr;
8954     llvm::Value *SizesArrayArg = nullptr;
8955     llvm::Value *MapTypesArrayArg = nullptr;
8956     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
8957                                  SizesArrayArg, MapTypesArrayArg, Info);
8958
8959     // Emit device ID if any.
8960     llvm::Value *DeviceID = nullptr;
8961     if (Device) {
8962       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8963                                            CGF.Int64Ty, /*isSigned=*/true);
8964     } else {
8965       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8966     }
8967
8968     // Emit the number of elements in the offloading arrays.
8969     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
8970
8971     llvm::Value *OffloadingArgs[] = {
8972         DeviceID,         PointerNum,    BasePointersArrayArg,
8973         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
8974     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
8975                         OffloadingArgs);
8976   };
8977
8978   // If we need device pointer privatization, we need to emit the body of the
8979   // region with no privatization in the 'else' branch of the conditional.
8980   // Otherwise, we don't have to do anything.
8981   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
8982                                                          PrePostActionTy &) {
8983     if (!Info.CaptureDeviceAddrMap.empty()) {
8984       CodeGen.setAction(NoPrivAction);
8985       CodeGen(CGF);
8986     }
8987   };
8988
8989   // We don't have to do anything to close the region if the if clause evaluates
8990   // to false.
8991   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
8992
8993   if (IfCond) {
8994     emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
8995   } else {
8996     RegionCodeGenTy RCG(BeginThenGen);
8997     RCG(CGF);
8998   }
8999
9000   // If we don't require privatization of device pointers, we emit the body in
9001   // between the runtime calls. This avoids duplicating the body code.
9002   if (Info.CaptureDeviceAddrMap.empty()) {
9003     CodeGen.setAction(NoPrivAction);
9004     CodeGen(CGF);
9005   }
9006
9007   if (IfCond) {
9008     emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen);
9009   } else {
9010     RegionCodeGenTy RCG(EndThenGen);
9011     RCG(CGF);
9012   }
9013 }
9014
9015 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
9016     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9017     const Expr *Device) {
9018   if (!CGF.HaveInsertPoint())
9019     return;
9020
9021   assert((isa<OMPTargetEnterDataDirective>(D) ||
9022           isa<OMPTargetExitDataDirective>(D) ||
9023           isa<OMPTargetUpdateDirective>(D)) &&
9024          "Expecting either target enter, exit data, or update directives.");
9025
9026   CodeGenFunction::OMPTargetDataInfo InputInfo;
9027   llvm::Value *MapTypesArray = nullptr;
9028   // Generate the code for the opening of the data environment.
9029   auto &&ThenGen = [this, &D, Device, &InputInfo,
9030                     &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
9031     // Emit device ID if any.
9032     llvm::Value *DeviceID = nullptr;
9033     if (Device) {
9034       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9035                                            CGF.Int64Ty, /*isSigned=*/true);
9036     } else {
9037       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9038     }
9039
9040     // Emit the number of elements in the offloading arrays.
9041     llvm::Constant *PointerNum =
9042         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9043
9044     llvm::Value *OffloadingArgs[] = {DeviceID,
9045                                      PointerNum,
9046                                      InputInfo.BasePointersArray.getPointer(),
9047                                      InputInfo.PointersArray.getPointer(),
9048                                      InputInfo.SizesArray.getPointer(),
9049                                      MapTypesArray};
9050
9051     // Select the right runtime function call for each expected standalone
9052     // directive.
9053     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9054     OpenMPRTLFunction RTLFn;
9055     switch (D.getDirectiveKind()) {
9056     case OMPD_target_enter_data:
9057       RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
9058                         : OMPRTL__tgt_target_data_begin;
9059       break;
9060     case OMPD_target_exit_data:
9061       RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
9062                         : OMPRTL__tgt_target_data_end;
9063       break;
9064     case OMPD_target_update:
9065       RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
9066                         : OMPRTL__tgt_target_data_update;
9067       break;
9068     case OMPD_parallel:
9069     case OMPD_for:
9070     case OMPD_parallel_for:
9071     case OMPD_parallel_sections:
9072     case OMPD_for_simd:
9073     case OMPD_parallel_for_simd:
9074     case OMPD_cancel:
9075     case OMPD_cancellation_point:
9076     case OMPD_ordered:
9077     case OMPD_threadprivate:
9078     case OMPD_task:
9079     case OMPD_simd:
9080     case OMPD_sections:
9081     case OMPD_section:
9082     case OMPD_single:
9083     case OMPD_master:
9084     case OMPD_critical:
9085     case OMPD_taskyield:
9086     case OMPD_barrier:
9087     case OMPD_taskwait:
9088     case OMPD_taskgroup:
9089     case OMPD_atomic:
9090     case OMPD_flush:
9091     case OMPD_teams:
9092     case OMPD_target_data:
9093     case OMPD_distribute:
9094     case OMPD_distribute_simd:
9095     case OMPD_distribute_parallel_for:
9096     case OMPD_distribute_parallel_for_simd:
9097     case OMPD_teams_distribute:
9098     case OMPD_teams_distribute_simd:
9099     case OMPD_teams_distribute_parallel_for:
9100     case OMPD_teams_distribute_parallel_for_simd:
9101     case OMPD_declare_simd:
9102     case OMPD_declare_target:
9103     case OMPD_end_declare_target:
9104     case OMPD_declare_reduction:
9105     case OMPD_taskloop:
9106     case OMPD_taskloop_simd:
9107     case OMPD_target:
9108     case OMPD_target_simd:
9109     case OMPD_target_teams_distribute:
9110     case OMPD_target_teams_distribute_simd:
9111     case OMPD_target_teams_distribute_parallel_for:
9112     case OMPD_target_teams_distribute_parallel_for_simd:
9113     case OMPD_target_teams:
9114     case OMPD_target_parallel:
9115     case OMPD_target_parallel_for:
9116     case OMPD_target_parallel_for_simd:
9117     case OMPD_requires:
9118     case OMPD_unknown:
9119       llvm_unreachable("Unexpected standalone target data directive.");
9120       break;
9121     }
9122     CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
9123   };
9124
9125   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
9126                              CodeGenFunction &CGF, PrePostActionTy &) {
9127     // Fill up the arrays with all the mapped variables.
9128     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9129     MappableExprsHandler::MapValuesArrayTy Pointers;
9130     MappableExprsHandler::MapValuesArrayTy Sizes;
9131     MappableExprsHandler::MapFlagsArrayTy MapTypes;
9132
9133     // Get map clause information.
9134     MappableExprsHandler MEHandler(D, CGF);
9135     MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
9136
9137     TargetDataInfo Info;
9138     // Fill up the arrays and create the arguments.
9139     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9140     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
9141                                  Info.PointersArray, Info.SizesArray,
9142                                  Info.MapTypesArray, Info);
9143     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
9144     InputInfo.BasePointersArray =
9145         Address(Info.BasePointersArray, CGM.getPointerAlign());
9146     InputInfo.PointersArray =
9147         Address(Info.PointersArray, CGM.getPointerAlign());
9148     InputInfo.SizesArray =
9149         Address(Info.SizesArray, CGM.getPointerAlign());
9150     MapTypesArray = Info.MapTypesArray;
9151     if (D.hasClausesOfKind<OMPDependClause>())
9152       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
9153     else
9154       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
9155   };
9156
9157   if (IfCond) {
9158     emitOMPIfClause(CGF, IfCond, TargetThenGen,
9159                     [](CodeGenFunction &CGF, PrePostActionTy &) {});
9160   } else {
9161     RegionCodeGenTy ThenRCG(TargetThenGen);
9162     ThenRCG(CGF);
9163   }
9164 }
9165
9166 namespace {
9167   /// Kind of parameter in a function with 'declare simd' directive.
9168   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
9169   /// Attribute set of the parameter.
9170   struct ParamAttrTy {
9171     ParamKindTy Kind = Vector;
9172     llvm::APSInt StrideOrArg;
9173     llvm::APSInt Alignment;
9174   };
9175 } // namespace
9176
9177 static unsigned evaluateCDTSize(const FunctionDecl *FD,
9178                                 ArrayRef<ParamAttrTy> ParamAttrs) {
9179   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
9180   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
9181   // of that clause. The VLEN value must be power of 2.
9182   // In other case the notion of the function`s "characteristic data type" (CDT)
9183   // is used to compute the vector length.
9184   // CDT is defined in the following order:
9185   //   a) For non-void function, the CDT is the return type.
9186   //   b) If the function has any non-uniform, non-linear parameters, then the
9187   //   CDT is the type of the first such parameter.
9188   //   c) If the CDT determined by a) or b) above is struct, union, or class
9189   //   type which is pass-by-value (except for the type that maps to the
9190   //   built-in complex data type), the characteristic data type is int.
9191   //   d) If none of the above three cases is applicable, the CDT is int.
9192   // The VLEN is then determined based on the CDT and the size of vector
9193   // register of that ISA for which current vector version is generated. The
9194   // VLEN is computed using the formula below:
9195   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
9196   // where vector register size specified in section 3.2.1 Registers and the
9197   // Stack Frame of original AMD64 ABI document.
9198   QualType RetType = FD->getReturnType();
9199   if (RetType.isNull())
9200     return 0;
9201   ASTContext &C = FD->getASTContext();
9202   QualType CDT;
9203   if (!RetType.isNull() && !RetType->isVoidType()) {
9204     CDT = RetType;
9205   } else {
9206     unsigned Offset = 0;
9207     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
9208       if (ParamAttrs[Offset].Kind == Vector)
9209         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
9210       ++Offset;
9211     }
9212     if (CDT.isNull()) {
9213       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
9214         if (ParamAttrs[I + Offset].Kind == Vector) {
9215           CDT = FD->getParamDecl(I)->getType();
9216           break;
9217         }
9218       }
9219     }
9220   }
9221   if (CDT.isNull())
9222     CDT = C.IntTy;
9223   CDT = CDT->getCanonicalTypeUnqualified();
9224   if (CDT->isRecordType() || CDT->isUnionType())
9225     CDT = C.IntTy;
9226   return C.getTypeSize(CDT);
9227 }
9228
9229 static void
9230 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
9231                            const llvm::APSInt &VLENVal,
9232                            ArrayRef<ParamAttrTy> ParamAttrs,
9233                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
9234   struct ISADataTy {
9235     char ISA;
9236     unsigned VecRegSize;
9237   };
9238   ISADataTy ISAData[] = {
9239       {
9240           'b', 128
9241       }, // SSE
9242       {
9243           'c', 256
9244       }, // AVX
9245       {
9246           'd', 256
9247       }, // AVX2
9248       {
9249           'e', 512
9250       }, // AVX512
9251   };
9252   llvm::SmallVector<char, 2> Masked;
9253   switch (State) {
9254   case OMPDeclareSimdDeclAttr::BS_Undefined:
9255     Masked.push_back('N');
9256     Masked.push_back('M');
9257     break;
9258   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
9259     Masked.push_back('N');
9260     break;
9261   case OMPDeclareSimdDeclAttr::BS_Inbranch:
9262     Masked.push_back('M');
9263     break;
9264   }
9265   for (char Mask : Masked) {
9266     for (const ISADataTy &Data : ISAData) {
9267       SmallString<256> Buffer;
9268       llvm::raw_svector_ostream Out(Buffer);
9269       Out << "_ZGV" << Data.ISA << Mask;
9270       if (!VLENVal) {
9271         Out << llvm::APSInt::getUnsigned(Data.VecRegSize /
9272                                          evaluateCDTSize(FD, ParamAttrs));
9273       } else {
9274         Out << VLENVal;
9275       }
9276       for (const ParamAttrTy &ParamAttr : ParamAttrs) {
9277         switch (ParamAttr.Kind){
9278         case LinearWithVarStride:
9279           Out << 's' << ParamAttr.StrideOrArg;
9280           break;
9281         case Linear:
9282           Out << 'l';
9283           if (!!ParamAttr.StrideOrArg)
9284             Out << ParamAttr.StrideOrArg;
9285           break;
9286         case Uniform:
9287           Out << 'u';
9288           break;
9289         case Vector:
9290           Out << 'v';
9291           break;
9292         }
9293         if (!!ParamAttr.Alignment)
9294           Out << 'a' << ParamAttr.Alignment;
9295       }
9296       Out << '_' << Fn->getName();
9297       Fn->addFnAttr(Out.str());
9298     }
9299   }
9300 }
9301
9302 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
9303                                               llvm::Function *Fn) {
9304   ASTContext &C = CGM.getContext();
9305   FD = FD->getMostRecentDecl();
9306   // Map params to their positions in function decl.
9307   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
9308   if (isa<CXXMethodDecl>(FD))
9309     ParamPositions.try_emplace(FD, 0);
9310   unsigned ParamPos = ParamPositions.size();
9311   for (const ParmVarDecl *P : FD->parameters()) {
9312     ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
9313     ++ParamPos;
9314   }
9315   while (FD) {
9316     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
9317       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
9318       // Mark uniform parameters.
9319       for (const Expr *E : Attr->uniforms()) {
9320         E = E->IgnoreParenImpCasts();
9321         unsigned Pos;
9322         if (isa<CXXThisExpr>(E)) {
9323           Pos = ParamPositions[FD];
9324         } else {
9325           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
9326                                 ->getCanonicalDecl();
9327           Pos = ParamPositions[PVD];
9328         }
9329         ParamAttrs[Pos].Kind = Uniform;
9330       }
9331       // Get alignment info.
9332       auto NI = Attr->alignments_begin();
9333       for (const Expr *E : Attr->aligneds()) {
9334         E = E->IgnoreParenImpCasts();
9335         unsigned Pos;
9336         QualType ParmTy;
9337         if (isa<CXXThisExpr>(E)) {
9338           Pos = ParamPositions[FD];
9339           ParmTy = E->getType();
9340         } else {
9341           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
9342                                 ->getCanonicalDecl();
9343           Pos = ParamPositions[PVD];
9344           ParmTy = PVD->getType();
9345         }
9346         ParamAttrs[Pos].Alignment =
9347             (*NI)
9348                 ? (*NI)->EvaluateKnownConstInt(C)
9349                 : llvm::APSInt::getUnsigned(
9350                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
9351                           .getQuantity());
9352         ++NI;
9353       }
9354       // Mark linear parameters.
9355       auto SI = Attr->steps_begin();
9356       auto MI = Attr->modifiers_begin();
9357       for (const Expr *E : Attr->linears()) {
9358         E = E->IgnoreParenImpCasts();
9359         unsigned Pos;
9360         if (isa<CXXThisExpr>(E)) {
9361           Pos = ParamPositions[FD];
9362         } else {
9363           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
9364                                 ->getCanonicalDecl();
9365           Pos = ParamPositions[PVD];
9366         }
9367         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
9368         ParamAttr.Kind = Linear;
9369         if (*SI) {
9370           Expr::EvalResult Result;
9371           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
9372             if (const auto *DRE =
9373                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
9374               if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
9375                 ParamAttr.Kind = LinearWithVarStride;
9376                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
9377                     ParamPositions[StridePVD->getCanonicalDecl()]);
9378               }
9379             }
9380           } else {
9381             ParamAttr.StrideOrArg = Result.Val.getInt();
9382           }
9383         }
9384         ++SI;
9385         ++MI;
9386       }
9387       llvm::APSInt VLENVal;
9388       if (const Expr *VLEN = Attr->getSimdlen())
9389         VLENVal = VLEN->EvaluateKnownConstInt(C);
9390       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
9391       if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
9392           CGM.getTriple().getArch() == llvm::Triple::x86_64)
9393         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
9394     }
9395     FD = FD->getPreviousDecl();
9396   }
9397 }
9398
9399 namespace {
9400 /// Cleanup action for doacross support.
9401 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
9402 public:
9403   static const int DoacrossFinArgs = 2;
9404
9405 private:
9406   llvm::Value *RTLFn;
9407   llvm::Value *Args[DoacrossFinArgs];
9408
9409 public:
9410   DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef<llvm::Value *> CallArgs)
9411       : RTLFn(RTLFn) {
9412     assert(CallArgs.size() == DoacrossFinArgs);
9413     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
9414   }
9415   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
9416     if (!CGF.HaveInsertPoint())
9417       return;
9418     CGF.EmitRuntimeCall(RTLFn, Args);
9419   }
9420 };
9421 } // namespace
9422
9423 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
9424                                        const OMPLoopDirective &D,
9425                                        ArrayRef<Expr *> NumIterations) {
9426   if (!CGF.HaveInsertPoint())
9427     return;
9428
9429   ASTContext &C = CGM.getContext();
9430   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
9431   RecordDecl *RD;
9432   if (KmpDimTy.isNull()) {
9433     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
9434     //  kmp_int64 lo; // lower
9435     //  kmp_int64 up; // upper
9436     //  kmp_int64 st; // stride
9437     // };
9438     RD = C.buildImplicitRecord("kmp_dim");
9439     RD->startDefinition();
9440     addFieldToRecordDecl(C, RD, Int64Ty);
9441     addFieldToRecordDecl(C, RD, Int64Ty);
9442     addFieldToRecordDecl(C, RD, Int64Ty);
9443     RD->completeDefinition();
9444     KmpDimTy = C.getRecordType(RD);
9445   } else {
9446     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
9447   }
9448   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
9449   QualType ArrayTy =
9450       C.getConstantArrayType(KmpDimTy, Size, ArrayType::Normal, 0);
9451
9452   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
9453   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
9454   enum { LowerFD = 0, UpperFD, StrideFD };
9455   // Fill dims with data.
9456   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
9457     LValue DimsLVal =
9458         CGF.MakeAddrLValue(CGF.Builder.CreateConstArrayGEP(
9459                                DimsAddr, I, C.getTypeSizeInChars(KmpDimTy)),
9460                            KmpDimTy);
9461     // dims.upper = num_iterations;
9462     LValue UpperLVal = CGF.EmitLValueForField(
9463         DimsLVal, *std::next(RD->field_begin(), UpperFD));
9464     llvm::Value *NumIterVal =
9465         CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
9466                                  D.getNumIterations()->getType(), Int64Ty,
9467                                  D.getNumIterations()->getExprLoc());
9468     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
9469     // dims.stride = 1;
9470     LValue StrideLVal = CGF.EmitLValueForField(
9471         DimsLVal, *std::next(RD->field_begin(), StrideFD));
9472     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
9473                           StrideLVal);
9474   }
9475
9476   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
9477   // kmp_int32 num_dims, struct kmp_dim * dims);
9478   llvm::Value *Args[] = {
9479       emitUpdateLocation(CGF, D.getBeginLoc()),
9480       getThreadID(CGF, D.getBeginLoc()),
9481       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
9482       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9483           CGF.Builder
9484               .CreateConstArrayGEP(DimsAddr, 0, C.getTypeSizeInChars(KmpDimTy))
9485               .getPointer(),
9486           CGM.VoidPtrTy)};
9487
9488   llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init);
9489   CGF.EmitRuntimeCall(RTLFn, Args);
9490   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
9491       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
9492   llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
9493   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
9494                                              llvm::makeArrayRef(FiniArgs));
9495 }
9496
9497 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
9498                                           const OMPDependClause *C) {
9499   QualType Int64Ty =
9500       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9501   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
9502   QualType ArrayTy = CGM.getContext().getConstantArrayType(
9503       Int64Ty, Size, ArrayType::Normal, 0);
9504   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
9505   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
9506     const Expr *CounterVal = C->getLoopData(I);
9507     assert(CounterVal);
9508     llvm::Value *CntVal = CGF.EmitScalarConversion(
9509         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
9510         CounterVal->getExprLoc());
9511     CGF.EmitStoreOfScalar(
9512         CntVal,
9513         CGF.Builder.CreateConstArrayGEP(
9514             CntAddr, I, CGM.getContext().getTypeSizeInChars(Int64Ty)),
9515         /*Volatile=*/false, Int64Ty);
9516   }
9517   llvm::Value *Args[] = {
9518       emitUpdateLocation(CGF, C->getBeginLoc()),
9519       getThreadID(CGF, C->getBeginLoc()),
9520       CGF.Builder
9521           .CreateConstArrayGEP(CntAddr, 0,
9522                                CGM.getContext().getTypeSizeInChars(Int64Ty))
9523           .getPointer()};
9524   llvm::Value *RTLFn;
9525   if (C->getDependencyKind() == OMPC_DEPEND_source) {
9526     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
9527   } else {
9528     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
9529     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
9530   }
9531   CGF.EmitRuntimeCall(RTLFn, Args);
9532 }
9533
9534 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
9535                                llvm::Value *Callee,
9536                                ArrayRef<llvm::Value *> Args) const {
9537   assert(Loc.isValid() && "Outlined function call location must be valid.");
9538   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
9539
9540   if (auto *Fn = dyn_cast<llvm::Function>(Callee)) {
9541     if (Fn->doesNotThrow()) {
9542       CGF.EmitNounwindRuntimeCall(Fn, Args);
9543       return;
9544     }
9545   }
9546   CGF.EmitRuntimeCall(Callee, Args);
9547 }
9548
9549 void CGOpenMPRuntime::emitOutlinedFunctionCall(
9550     CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
9551     ArrayRef<llvm::Value *> Args) const {
9552   emitCall(CGF, Loc, OutlinedFn, Args);
9553 }
9554
9555 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
9556                                              const VarDecl *NativeParam,
9557                                              const VarDecl *TargetParam) const {
9558   return CGF.GetAddrOfLocalVar(NativeParam);
9559 }
9560
9561 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
9562                                                    const VarDecl *VD) {
9563   return Address::invalid();
9564 }
9565
9566 llvm::Value *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
9567     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
9568     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
9569   llvm_unreachable("Not supported in SIMD-only mode");
9570 }
9571
9572 llvm::Value *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
9573     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
9574     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
9575   llvm_unreachable("Not supported in SIMD-only mode");
9576 }
9577
9578 llvm::Value *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
9579     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
9580     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
9581     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
9582     bool Tied, unsigned &NumberOfParts) {
9583   llvm_unreachable("Not supported in SIMD-only mode");
9584 }
9585
9586 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
9587                                            SourceLocation Loc,
9588                                            llvm::Value *OutlinedFn,
9589                                            ArrayRef<llvm::Value *> CapturedVars,
9590                                            const Expr *IfCond) {
9591   llvm_unreachable("Not supported in SIMD-only mode");
9592 }
9593
9594 void CGOpenMPSIMDRuntime::emitCriticalRegion(
9595     CodeGenFunction &CGF, StringRef CriticalName,
9596     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
9597     const Expr *Hint) {
9598   llvm_unreachable("Not supported in SIMD-only mode");
9599 }
9600
9601 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
9602                                            const RegionCodeGenTy &MasterOpGen,
9603                                            SourceLocation Loc) {
9604   llvm_unreachable("Not supported in SIMD-only mode");
9605 }
9606
9607 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
9608                                             SourceLocation Loc) {
9609   llvm_unreachable("Not supported in SIMD-only mode");
9610 }
9611
9612 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
9613     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
9614     SourceLocation Loc) {
9615   llvm_unreachable("Not supported in SIMD-only mode");
9616 }
9617
9618 void CGOpenMPSIMDRuntime::emitSingleRegion(
9619     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
9620     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
9621     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
9622     ArrayRef<const Expr *> AssignmentOps) {
9623   llvm_unreachable("Not supported in SIMD-only mode");
9624 }
9625
9626 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
9627                                             const RegionCodeGenTy &OrderedOpGen,
9628                                             SourceLocation Loc,
9629                                             bool IsThreads) {
9630   llvm_unreachable("Not supported in SIMD-only mode");
9631 }
9632
9633 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
9634                                           SourceLocation Loc,
9635                                           OpenMPDirectiveKind Kind,
9636                                           bool EmitChecks,
9637                                           bool ForceSimpleCall) {
9638   llvm_unreachable("Not supported in SIMD-only mode");
9639 }
9640
9641 void CGOpenMPSIMDRuntime::emitForDispatchInit(
9642     CodeGenFunction &CGF, SourceLocation Loc,
9643     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
9644     bool Ordered, const DispatchRTInput &DispatchValues) {
9645   llvm_unreachable("Not supported in SIMD-only mode");
9646 }
9647
9648 void CGOpenMPSIMDRuntime::emitForStaticInit(
9649     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
9650     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
9651   llvm_unreachable("Not supported in SIMD-only mode");
9652 }
9653
9654 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
9655     CodeGenFunction &CGF, SourceLocation Loc,
9656     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
9657   llvm_unreachable("Not supported in SIMD-only mode");
9658 }
9659
9660 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
9661                                                      SourceLocation Loc,
9662                                                      unsigned IVSize,
9663                                                      bool IVSigned) {
9664   llvm_unreachable("Not supported in SIMD-only mode");
9665 }
9666
9667 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
9668                                               SourceLocation Loc,
9669                                               OpenMPDirectiveKind DKind) {
9670   llvm_unreachable("Not supported in SIMD-only mode");
9671 }
9672
9673 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
9674                                               SourceLocation Loc,
9675                                               unsigned IVSize, bool IVSigned,
9676                                               Address IL, Address LB,
9677                                               Address UB, Address ST) {
9678   llvm_unreachable("Not supported in SIMD-only mode");
9679 }
9680
9681 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
9682                                                llvm::Value *NumThreads,
9683                                                SourceLocation Loc) {
9684   llvm_unreachable("Not supported in SIMD-only mode");
9685 }
9686
9687 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
9688                                              OpenMPProcBindClauseKind ProcBind,
9689                                              SourceLocation Loc) {
9690   llvm_unreachable("Not supported in SIMD-only mode");
9691 }
9692
9693 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
9694                                                     const VarDecl *VD,
9695                                                     Address VDAddr,
9696                                                     SourceLocation Loc) {
9697   llvm_unreachable("Not supported in SIMD-only mode");
9698 }
9699
9700 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
9701     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
9702     CodeGenFunction *CGF) {
9703   llvm_unreachable("Not supported in SIMD-only mode");
9704 }
9705
9706 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
9707     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
9708   llvm_unreachable("Not supported in SIMD-only mode");
9709 }
9710
9711 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
9712                                     ArrayRef<const Expr *> Vars,
9713                                     SourceLocation Loc) {
9714   llvm_unreachable("Not supported in SIMD-only mode");
9715 }
9716
9717 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
9718                                        const OMPExecutableDirective &D,
9719                                        llvm::Value *TaskFunction,
9720                                        QualType SharedsTy, Address Shareds,
9721                                        const Expr *IfCond,
9722                                        const OMPTaskDataTy &Data) {
9723   llvm_unreachable("Not supported in SIMD-only mode");
9724 }
9725
9726 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
9727     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
9728     llvm::Value *TaskFunction, QualType SharedsTy, Address Shareds,
9729     const Expr *IfCond, const OMPTaskDataTy &Data) {
9730   llvm_unreachable("Not supported in SIMD-only mode");
9731 }
9732
9733 void CGOpenMPSIMDRuntime::emitReduction(
9734     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
9735     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
9736     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
9737   assert(Options.SimpleReduction && "Only simple reduction is expected.");
9738   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
9739                                  ReductionOps, Options);
9740 }
9741
9742 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
9743     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
9744     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
9745   llvm_unreachable("Not supported in SIMD-only mode");
9746 }
9747
9748 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
9749                                                   SourceLocation Loc,
9750                                                   ReductionCodeGen &RCG,
9751                                                   unsigned N) {
9752   llvm_unreachable("Not supported in SIMD-only mode");
9753 }
9754
9755 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
9756                                                   SourceLocation Loc,
9757                                                   llvm::Value *ReductionsPtr,
9758                                                   LValue SharedLVal) {
9759   llvm_unreachable("Not supported in SIMD-only mode");
9760 }
9761
9762 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
9763                                            SourceLocation Loc) {
9764   llvm_unreachable("Not supported in SIMD-only mode");
9765 }
9766
9767 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
9768     CodeGenFunction &CGF, SourceLocation Loc,
9769     OpenMPDirectiveKind CancelRegion) {
9770   llvm_unreachable("Not supported in SIMD-only mode");
9771 }
9772
9773 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
9774                                          SourceLocation Loc, const Expr *IfCond,
9775                                          OpenMPDirectiveKind CancelRegion) {
9776   llvm_unreachable("Not supported in SIMD-only mode");
9777 }
9778
9779 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
9780     const OMPExecutableDirective &D, StringRef ParentName,
9781     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
9782     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
9783   llvm_unreachable("Not supported in SIMD-only mode");
9784 }
9785
9786 void CGOpenMPSIMDRuntime::emitTargetCall(CodeGenFunction &CGF,
9787                                          const OMPExecutableDirective &D,
9788                                          llvm::Value *OutlinedFn,
9789                                          llvm::Value *OutlinedFnID,
9790                                          const Expr *IfCond, const Expr *Device) {
9791   llvm_unreachable("Not supported in SIMD-only mode");
9792 }
9793
9794 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
9795   llvm_unreachable("Not supported in SIMD-only mode");
9796 }
9797
9798 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
9799   llvm_unreachable("Not supported in SIMD-only mode");
9800 }
9801
9802 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
9803   return false;
9804 }
9805
9806 llvm::Function *CGOpenMPSIMDRuntime::emitRegistrationFunction() {
9807   return nullptr;
9808 }
9809
9810 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
9811                                         const OMPExecutableDirective &D,
9812                                         SourceLocation Loc,
9813                                         llvm::Value *OutlinedFn,
9814                                         ArrayRef<llvm::Value *> CapturedVars) {
9815   llvm_unreachable("Not supported in SIMD-only mode");
9816 }
9817
9818 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
9819                                              const Expr *NumTeams,
9820                                              const Expr *ThreadLimit,
9821                                              SourceLocation Loc) {
9822   llvm_unreachable("Not supported in SIMD-only mode");
9823 }
9824
9825 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
9826     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9827     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
9828   llvm_unreachable("Not supported in SIMD-only mode");
9829 }
9830
9831 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
9832     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9833     const Expr *Device) {
9834   llvm_unreachable("Not supported in SIMD-only mode");
9835 }
9836
9837 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
9838                                            const OMPLoopDirective &D,
9839                                            ArrayRef<Expr *> NumIterations) {
9840   llvm_unreachable("Not supported in SIMD-only mode");
9841 }
9842
9843 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
9844                                               const OMPDependClause *C) {
9845   llvm_unreachable("Not supported in SIMD-only mode");
9846 }
9847
9848 const VarDecl *
9849 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
9850                                         const VarDecl *NativeParam) const {
9851   llvm_unreachable("Not supported in SIMD-only mode");
9852 }
9853
9854 Address
9855 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
9856                                          const VarDecl *NativeParam,
9857                                          const VarDecl *TargetParam) const {
9858   llvm_unreachable("Not supported in SIMD-only mode");
9859 }
9860