]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGStmt.cpp
MFV r337014:
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGStmt.cpp
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30
31 using namespace clang;
32 using namespace CodeGen;
33
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43
44     LastStopPoint = Loc;
45   }
46 }
47
48 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76
77   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
78   // enabled.
79   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
80     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
81       EmitSimpleOMPExecutableDirective(*D);
82       return;
83     }
84   }
85
86   switch (S->getStmtClass()) {
87   case Stmt::NoStmtClass:
88   case Stmt::CXXCatchStmtClass:
89   case Stmt::SEHExceptStmtClass:
90   case Stmt::SEHFinallyStmtClass:
91   case Stmt::MSDependentExistsStmtClass:
92     llvm_unreachable("invalid statement class to emit generically");
93   case Stmt::NullStmtClass:
94   case Stmt::CompoundStmtClass:
95   case Stmt::DeclStmtClass:
96   case Stmt::LabelStmtClass:
97   case Stmt::AttributedStmtClass:
98   case Stmt::GotoStmtClass:
99   case Stmt::BreakStmtClass:
100   case Stmt::ContinueStmtClass:
101   case Stmt::DefaultStmtClass:
102   case Stmt::CaseStmtClass:
103   case Stmt::SEHLeaveStmtClass:
104     llvm_unreachable("should have emitted these statements as simple");
105
106 #define STMT(Type, Base)
107 #define ABSTRACT_STMT(Op)
108 #define EXPR(Type, Base) \
109   case Stmt::Type##Class:
110 #include "clang/AST/StmtNodes.inc"
111   {
112     // Remember the block we came in on.
113     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
114     assert(incoming && "expression emission must have an insertion point");
115
116     EmitIgnoredExpr(cast<Expr>(S));
117
118     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
119     assert(outgoing && "expression emission cleared block!");
120
121     // The expression emitters assume (reasonably!) that the insertion
122     // point is always set.  To maintain that, the call-emission code
123     // for noreturn functions has to enter a new block with no
124     // predecessors.  We want to kill that block and mark the current
125     // insertion point unreachable in the common case of a call like
126     // "exit();".  Since expression emission doesn't otherwise create
127     // blocks with no predecessors, we can just test for that.
128     // However, we must be careful not to do this to our incoming
129     // block, because *statement* emission does sometimes create
130     // reachable blocks which will have no predecessors until later in
131     // the function.  This occurs with, e.g., labels that are not
132     // reachable by fallthrough.
133     if (incoming != outgoing && outgoing->use_empty()) {
134       outgoing->eraseFromParent();
135       Builder.ClearInsertionPoint();
136     }
137     break;
138   }
139
140   case Stmt::IndirectGotoStmtClass:
141     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
142
143   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
144   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
145   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
146   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
147
148   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
149
150   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
151   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
152   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
153   case Stmt::CoroutineBodyStmtClass:
154     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
155     break;
156   case Stmt::CoreturnStmtClass:
157     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
158     break;
159   case Stmt::CapturedStmtClass: {
160     const CapturedStmt *CS = cast<CapturedStmt>(S);
161     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
162     }
163     break;
164   case Stmt::ObjCAtTryStmtClass:
165     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
166     break;
167   case Stmt::ObjCAtCatchStmtClass:
168     llvm_unreachable(
169                     "@catch statements should be handled by EmitObjCAtTryStmt");
170   case Stmt::ObjCAtFinallyStmtClass:
171     llvm_unreachable(
172                   "@finally statements should be handled by EmitObjCAtTryStmt");
173   case Stmt::ObjCAtThrowStmtClass:
174     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
175     break;
176   case Stmt::ObjCAtSynchronizedStmtClass:
177     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
178     break;
179   case Stmt::ObjCForCollectionStmtClass:
180     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
181     break;
182   case Stmt::ObjCAutoreleasePoolStmtClass:
183     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
184     break;
185
186   case Stmt::CXXTryStmtClass:
187     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
188     break;
189   case Stmt::CXXForRangeStmtClass:
190     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
191     break;
192   case Stmt::SEHTryStmtClass:
193     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
194     break;
195   case Stmt::OMPParallelDirectiveClass:
196     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
197     break;
198   case Stmt::OMPSimdDirectiveClass:
199     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
200     break;
201   case Stmt::OMPForDirectiveClass:
202     EmitOMPForDirective(cast<OMPForDirective>(*S));
203     break;
204   case Stmt::OMPForSimdDirectiveClass:
205     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
206     break;
207   case Stmt::OMPSectionsDirectiveClass:
208     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
209     break;
210   case Stmt::OMPSectionDirectiveClass:
211     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
212     break;
213   case Stmt::OMPSingleDirectiveClass:
214     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
215     break;
216   case Stmt::OMPMasterDirectiveClass:
217     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
218     break;
219   case Stmt::OMPCriticalDirectiveClass:
220     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
221     break;
222   case Stmt::OMPParallelForDirectiveClass:
223     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
224     break;
225   case Stmt::OMPParallelForSimdDirectiveClass:
226     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
227     break;
228   case Stmt::OMPParallelSectionsDirectiveClass:
229     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
230     break;
231   case Stmt::OMPTaskDirectiveClass:
232     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
233     break;
234   case Stmt::OMPTaskyieldDirectiveClass:
235     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
236     break;
237   case Stmt::OMPBarrierDirectiveClass:
238     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
239     break;
240   case Stmt::OMPTaskwaitDirectiveClass:
241     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
242     break;
243   case Stmt::OMPTaskgroupDirectiveClass:
244     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
245     break;
246   case Stmt::OMPFlushDirectiveClass:
247     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
248     break;
249   case Stmt::OMPOrderedDirectiveClass:
250     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
251     break;
252   case Stmt::OMPAtomicDirectiveClass:
253     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
254     break;
255   case Stmt::OMPTargetDirectiveClass:
256     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
257     break;
258   case Stmt::OMPTeamsDirectiveClass:
259     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
260     break;
261   case Stmt::OMPCancellationPointDirectiveClass:
262     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
263     break;
264   case Stmt::OMPCancelDirectiveClass:
265     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
266     break;
267   case Stmt::OMPTargetDataDirectiveClass:
268     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
269     break;
270   case Stmt::OMPTargetEnterDataDirectiveClass:
271     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
272     break;
273   case Stmt::OMPTargetExitDataDirectiveClass:
274     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
275     break;
276   case Stmt::OMPTargetParallelDirectiveClass:
277     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
278     break;
279   case Stmt::OMPTargetParallelForDirectiveClass:
280     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
281     break;
282   case Stmt::OMPTaskLoopDirectiveClass:
283     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
284     break;
285   case Stmt::OMPTaskLoopSimdDirectiveClass:
286     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
287     break;
288   case Stmt::OMPDistributeDirectiveClass:
289     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
290     break;
291   case Stmt::OMPTargetUpdateDirectiveClass:
292     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
293     break;
294   case Stmt::OMPDistributeParallelForDirectiveClass:
295     EmitOMPDistributeParallelForDirective(
296         cast<OMPDistributeParallelForDirective>(*S));
297     break;
298   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
299     EmitOMPDistributeParallelForSimdDirective(
300         cast<OMPDistributeParallelForSimdDirective>(*S));
301     break;
302   case Stmt::OMPDistributeSimdDirectiveClass:
303     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForSimdDirectiveClass:
306     EmitOMPTargetParallelForSimdDirective(
307         cast<OMPTargetParallelForSimdDirective>(*S));
308     break;
309   case Stmt::OMPTargetSimdDirectiveClass:
310     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
311     break;
312   case Stmt::OMPTeamsDistributeDirectiveClass:
313     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
314     break;
315   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
316     EmitOMPTeamsDistributeSimdDirective(
317         cast<OMPTeamsDistributeSimdDirective>(*S));
318     break;
319   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
320     EmitOMPTeamsDistributeParallelForSimdDirective(
321         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
322     break;
323   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
324     EmitOMPTeamsDistributeParallelForDirective(
325         cast<OMPTeamsDistributeParallelForDirective>(*S));
326     break;
327   case Stmt::OMPTargetTeamsDirectiveClass:
328     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
329     break;
330   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
331     EmitOMPTargetTeamsDistributeDirective(
332         cast<OMPTargetTeamsDistributeDirective>(*S));
333     break;
334   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
335     EmitOMPTargetTeamsDistributeParallelForDirective(
336         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
337     break;
338   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
339     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
340         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
341     break;
342   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
343     EmitOMPTargetTeamsDistributeSimdDirective(
344         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
345     break;
346   }
347 }
348
349 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
350   switch (S->getStmtClass()) {
351   default: return false;
352   case Stmt::NullStmtClass: break;
353   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
354   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
355   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
356   case Stmt::AttributedStmtClass:
357                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
358   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
359   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
360   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
361   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
362   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
363   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
364   }
365
366   return true;
367 }
368
369 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
370 /// this captures the expression result of the last sub-statement and returns it
371 /// (for use by the statement expression extension).
372 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
373                                           AggValueSlot AggSlot) {
374   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
375                              "LLVM IR generation of compound statement ('{}')");
376
377   // Keep track of the current cleanup stack depth, including debug scopes.
378   LexicalScope Scope(*this, S.getSourceRange());
379
380   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
381 }
382
383 Address
384 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
385                                               bool GetLast,
386                                               AggValueSlot AggSlot) {
387
388   for (CompoundStmt::const_body_iterator I = S.body_begin(),
389        E = S.body_end()-GetLast; I != E; ++I)
390     EmitStmt(*I);
391
392   Address RetAlloca = Address::invalid();
393   if (GetLast) {
394     // We have to special case labels here.  They are statements, but when put
395     // at the end of a statement expression, they yield the value of their
396     // subexpression.  Handle this by walking through all labels we encounter,
397     // emitting them before we evaluate the subexpr.
398     const Stmt *LastStmt = S.body_back();
399     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
400       EmitLabel(LS->getDecl());
401       LastStmt = LS->getSubStmt();
402     }
403
404     EnsureInsertPoint();
405
406     QualType ExprTy = cast<Expr>(LastStmt)->getType();
407     if (hasAggregateEvaluationKind(ExprTy)) {
408       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
409     } else {
410       // We can't return an RValue here because there might be cleanups at
411       // the end of the StmtExpr.  Because of that, we have to emit the result
412       // here into a temporary alloca.
413       RetAlloca = CreateMemTemp(ExprTy);
414       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
415                        /*IsInit*/false);
416     }
417
418   }
419
420   return RetAlloca;
421 }
422
423 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
424   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
425
426   // If there is a cleanup stack, then we it isn't worth trying to
427   // simplify this block (we would need to remove it from the scope map
428   // and cleanup entry).
429   if (!EHStack.empty())
430     return;
431
432   // Can only simplify direct branches.
433   if (!BI || !BI->isUnconditional())
434     return;
435
436   // Can only simplify empty blocks.
437   if (BI->getIterator() != BB->begin())
438     return;
439
440   BB->replaceAllUsesWith(BI->getSuccessor(0));
441   BI->eraseFromParent();
442   BB->eraseFromParent();
443 }
444
445 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
446   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
447
448   // Fall out of the current block (if necessary).
449   EmitBranch(BB);
450
451   if (IsFinished && BB->use_empty()) {
452     delete BB;
453     return;
454   }
455
456   // Place the block after the current block, if possible, or else at
457   // the end of the function.
458   if (CurBB && CurBB->getParent())
459     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
460   else
461     CurFn->getBasicBlockList().push_back(BB);
462   Builder.SetInsertPoint(BB);
463 }
464
465 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
466   // Emit a branch from the current block to the target one if this
467   // was a real block.  If this was just a fall-through block after a
468   // terminator, don't emit it.
469   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
470
471   if (!CurBB || CurBB->getTerminator()) {
472     // If there is no insert point or the previous block is already
473     // terminated, don't touch it.
474   } else {
475     // Otherwise, create a fall-through branch.
476     Builder.CreateBr(Target);
477   }
478
479   Builder.ClearInsertionPoint();
480 }
481
482 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
483   bool inserted = false;
484   for (llvm::User *u : block->users()) {
485     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
486       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
487                                              block);
488       inserted = true;
489       break;
490     }
491   }
492
493   if (!inserted)
494     CurFn->getBasicBlockList().push_back(block);
495
496   Builder.SetInsertPoint(block);
497 }
498
499 CodeGenFunction::JumpDest
500 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
501   JumpDest &Dest = LabelMap[D];
502   if (Dest.isValid()) return Dest;
503
504   // Create, but don't insert, the new block.
505   Dest = JumpDest(createBasicBlock(D->getName()),
506                   EHScopeStack::stable_iterator::invalid(),
507                   NextCleanupDestIndex++);
508   return Dest;
509 }
510
511 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
512   // Add this label to the current lexical scope if we're within any
513   // normal cleanups.  Jumps "in" to this label --- when permitted by
514   // the language --- may need to be routed around such cleanups.
515   if (EHStack.hasNormalCleanups() && CurLexicalScope)
516     CurLexicalScope->addLabel(D);
517
518   JumpDest &Dest = LabelMap[D];
519
520   // If we didn't need a forward reference to this label, just go
521   // ahead and create a destination at the current scope.
522   if (!Dest.isValid()) {
523     Dest = getJumpDestInCurrentScope(D->getName());
524
525   // Otherwise, we need to give this label a target depth and remove
526   // it from the branch-fixups list.
527   } else {
528     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
529     Dest.setScopeDepth(EHStack.stable_begin());
530     ResolveBranchFixups(Dest.getBlock());
531   }
532
533   EmitBlock(Dest.getBlock());
534   incrementProfileCounter(D->getStmt());
535 }
536
537 /// Change the cleanup scope of the labels in this lexical scope to
538 /// match the scope of the enclosing context.
539 void CodeGenFunction::LexicalScope::rescopeLabels() {
540   assert(!Labels.empty());
541   EHScopeStack::stable_iterator innermostScope
542     = CGF.EHStack.getInnermostNormalCleanup();
543
544   // Change the scope depth of all the labels.
545   for (SmallVectorImpl<const LabelDecl*>::const_iterator
546          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
547     assert(CGF.LabelMap.count(*i));
548     JumpDest &dest = CGF.LabelMap.find(*i)->second;
549     assert(dest.getScopeDepth().isValid());
550     assert(innermostScope.encloses(dest.getScopeDepth()));
551     dest.setScopeDepth(innermostScope);
552   }
553
554   // Reparent the labels if the new scope also has cleanups.
555   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
556     ParentScope->Labels.append(Labels.begin(), Labels.end());
557   }
558 }
559
560
561 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
562   EmitLabel(S.getDecl());
563   EmitStmt(S.getSubStmt());
564 }
565
566 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
567   EmitStmt(S.getSubStmt(), S.getAttrs());
568 }
569
570 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
571   // If this code is reachable then emit a stop point (if generating
572   // debug info). We have to do this ourselves because we are on the
573   // "simple" statement path.
574   if (HaveInsertPoint())
575     EmitStopPoint(&S);
576
577   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
578 }
579
580
581 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
582   if (const LabelDecl *Target = S.getConstantTarget()) {
583     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
584     return;
585   }
586
587   // Ensure that we have an i8* for our PHI node.
588   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
589                                          Int8PtrTy, "addr");
590   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
591
592   // Get the basic block for the indirect goto.
593   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
594
595   // The first instruction in the block has to be the PHI for the switch dest,
596   // add an entry for this branch.
597   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
598
599   EmitBranch(IndGotoBB);
600 }
601
602 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
603   // C99 6.8.4.1: The first substatement is executed if the expression compares
604   // unequal to 0.  The condition must be a scalar type.
605   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
606
607   if (S.getInit())
608     EmitStmt(S.getInit());
609
610   if (S.getConditionVariable())
611     EmitAutoVarDecl(*S.getConditionVariable());
612
613   // If the condition constant folds and can be elided, try to avoid emitting
614   // the condition and the dead arm of the if/else.
615   bool CondConstant;
616   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
617                                    S.isConstexpr())) {
618     // Figure out which block (then or else) is executed.
619     const Stmt *Executed = S.getThen();
620     const Stmt *Skipped  = S.getElse();
621     if (!CondConstant)  // Condition false?
622       std::swap(Executed, Skipped);
623
624     // If the skipped block has no labels in it, just emit the executed block.
625     // This avoids emitting dead code and simplifies the CFG substantially.
626     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
627       if (CondConstant)
628         incrementProfileCounter(&S);
629       if (Executed) {
630         RunCleanupsScope ExecutedScope(*this);
631         EmitStmt(Executed);
632       }
633       return;
634     }
635   }
636
637   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
638   // the conditional branch.
639   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
640   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
641   llvm::BasicBlock *ElseBlock = ContBlock;
642   if (S.getElse())
643     ElseBlock = createBasicBlock("if.else");
644
645   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
646                        getProfileCount(S.getThen()));
647
648   // Emit the 'then' code.
649   EmitBlock(ThenBlock);
650   incrementProfileCounter(&S);
651   {
652     RunCleanupsScope ThenScope(*this);
653     EmitStmt(S.getThen());
654   }
655   EmitBranch(ContBlock);
656
657   // Emit the 'else' code if present.
658   if (const Stmt *Else = S.getElse()) {
659     {
660       // There is no need to emit line number for an unconditional branch.
661       auto NL = ApplyDebugLocation::CreateEmpty(*this);
662       EmitBlock(ElseBlock);
663     }
664     {
665       RunCleanupsScope ElseScope(*this);
666       EmitStmt(Else);
667     }
668     {
669       // There is no need to emit line number for an unconditional branch.
670       auto NL = ApplyDebugLocation::CreateEmpty(*this);
671       EmitBranch(ContBlock);
672     }
673   }
674
675   // Emit the continuation block for code after the if.
676   EmitBlock(ContBlock, true);
677 }
678
679 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
680                                     ArrayRef<const Attr *> WhileAttrs) {
681   // Emit the header for the loop, which will also become
682   // the continue target.
683   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
684   EmitBlock(LoopHeader.getBlock());
685
686   const SourceRange &R = S.getSourceRange();
687   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
688                  SourceLocToDebugLoc(R.getBegin()),
689                  SourceLocToDebugLoc(R.getEnd()));
690
691   // Create an exit block for when the condition fails, which will
692   // also become the break target.
693   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
694
695   // Store the blocks to use for break and continue.
696   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
697
698   // C++ [stmt.while]p2:
699   //   When the condition of a while statement is a declaration, the
700   //   scope of the variable that is declared extends from its point
701   //   of declaration (3.3.2) to the end of the while statement.
702   //   [...]
703   //   The object created in a condition is destroyed and created
704   //   with each iteration of the loop.
705   RunCleanupsScope ConditionScope(*this);
706
707   if (S.getConditionVariable())
708     EmitAutoVarDecl(*S.getConditionVariable());
709
710   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
711   // evaluation of the controlling expression takes place before each
712   // execution of the loop body.
713   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
714
715   // while(1) is common, avoid extra exit blocks.  Be sure
716   // to correctly handle break/continue though.
717   bool EmitBoolCondBranch = true;
718   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
719     if (C->isOne())
720       EmitBoolCondBranch = false;
721
722   // As long as the condition is true, go to the loop body.
723   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
724   if (EmitBoolCondBranch) {
725     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
726     if (ConditionScope.requiresCleanups())
727       ExitBlock = createBasicBlock("while.exit");
728     Builder.CreateCondBr(
729         BoolCondVal, LoopBody, ExitBlock,
730         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
731
732     if (ExitBlock != LoopExit.getBlock()) {
733       EmitBlock(ExitBlock);
734       EmitBranchThroughCleanup(LoopExit);
735     }
736   }
737
738   // Emit the loop body.  We have to emit this in a cleanup scope
739   // because it might be a singleton DeclStmt.
740   {
741     RunCleanupsScope BodyScope(*this);
742     EmitBlock(LoopBody);
743     incrementProfileCounter(&S);
744     EmitStmt(S.getBody());
745   }
746
747   BreakContinueStack.pop_back();
748
749   // Immediately force cleanup.
750   ConditionScope.ForceCleanup();
751
752   EmitStopPoint(&S);
753   // Branch to the loop header again.
754   EmitBranch(LoopHeader.getBlock());
755
756   LoopStack.pop();
757
758   // Emit the exit block.
759   EmitBlock(LoopExit.getBlock(), true);
760
761   // The LoopHeader typically is just a branch if we skipped emitting
762   // a branch, try to erase it.
763   if (!EmitBoolCondBranch)
764     SimplifyForwardingBlocks(LoopHeader.getBlock());
765 }
766
767 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
768                                  ArrayRef<const Attr *> DoAttrs) {
769   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
770   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
771
772   uint64_t ParentCount = getCurrentProfileCount();
773
774   // Store the blocks to use for break and continue.
775   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
776
777   // Emit the body of the loop.
778   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
779
780   const SourceRange &R = S.getSourceRange();
781   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
782                  SourceLocToDebugLoc(R.getBegin()),
783                  SourceLocToDebugLoc(R.getEnd()));
784
785   EmitBlockWithFallThrough(LoopBody, &S);
786   {
787     RunCleanupsScope BodyScope(*this);
788     EmitStmt(S.getBody());
789   }
790
791   EmitBlock(LoopCond.getBlock());
792
793   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
794   // after each execution of the loop body."
795
796   // Evaluate the conditional in the while header.
797   // C99 6.8.5p2/p4: The first substatement is executed if the expression
798   // compares unequal to 0.  The condition must be a scalar type.
799   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
800
801   BreakContinueStack.pop_back();
802
803   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
804   // to correctly handle break/continue though.
805   bool EmitBoolCondBranch = true;
806   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
807     if (C->isZero())
808       EmitBoolCondBranch = false;
809
810   // As long as the condition is true, iterate the loop.
811   if (EmitBoolCondBranch) {
812     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
813     Builder.CreateCondBr(
814         BoolCondVal, LoopBody, LoopExit.getBlock(),
815         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
816   }
817
818   LoopStack.pop();
819
820   // Emit the exit block.
821   EmitBlock(LoopExit.getBlock());
822
823   // The DoCond block typically is just a branch if we skipped
824   // emitting a branch, try to erase it.
825   if (!EmitBoolCondBranch)
826     SimplifyForwardingBlocks(LoopCond.getBlock());
827 }
828
829 void CodeGenFunction::EmitForStmt(const ForStmt &S,
830                                   ArrayRef<const Attr *> ForAttrs) {
831   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
832
833   LexicalScope ForScope(*this, S.getSourceRange());
834
835   // Evaluate the first part before the loop.
836   if (S.getInit())
837     EmitStmt(S.getInit());
838
839   // Start the loop with a block that tests the condition.
840   // If there's an increment, the continue scope will be overwritten
841   // later.
842   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
843   llvm::BasicBlock *CondBlock = Continue.getBlock();
844   EmitBlock(CondBlock);
845
846   const SourceRange &R = S.getSourceRange();
847   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
848                  SourceLocToDebugLoc(R.getBegin()),
849                  SourceLocToDebugLoc(R.getEnd()));
850
851   // If the for loop doesn't have an increment we can just use the
852   // condition as the continue block.  Otherwise we'll need to create
853   // a block for it (in the current scope, i.e. in the scope of the
854   // condition), and that we will become our continue block.
855   if (S.getInc())
856     Continue = getJumpDestInCurrentScope("for.inc");
857
858   // Store the blocks to use for break and continue.
859   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
860
861   // Create a cleanup scope for the condition variable cleanups.
862   LexicalScope ConditionScope(*this, S.getSourceRange());
863
864   if (S.getCond()) {
865     // If the for statement has a condition scope, emit the local variable
866     // declaration.
867     if (S.getConditionVariable()) {
868       EmitAutoVarDecl(*S.getConditionVariable());
869     }
870
871     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
872     // If there are any cleanups between here and the loop-exit scope,
873     // create a block to stage a loop exit along.
874     if (ForScope.requiresCleanups())
875       ExitBlock = createBasicBlock("for.cond.cleanup");
876
877     // As long as the condition is true, iterate the loop.
878     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
879
880     // C99 6.8.5p2/p4: The first substatement is executed if the expression
881     // compares unequal to 0.  The condition must be a scalar type.
882     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
883     Builder.CreateCondBr(
884         BoolCondVal, ForBody, ExitBlock,
885         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
886
887     if (ExitBlock != LoopExit.getBlock()) {
888       EmitBlock(ExitBlock);
889       EmitBranchThroughCleanup(LoopExit);
890     }
891
892     EmitBlock(ForBody);
893   } else {
894     // Treat it as a non-zero constant.  Don't even create a new block for the
895     // body, just fall into it.
896   }
897   incrementProfileCounter(&S);
898
899   {
900     // Create a separate cleanup scope for the body, in case it is not
901     // a compound statement.
902     RunCleanupsScope BodyScope(*this);
903     EmitStmt(S.getBody());
904   }
905
906   // If there is an increment, emit it next.
907   if (S.getInc()) {
908     EmitBlock(Continue.getBlock());
909     EmitStmt(S.getInc());
910   }
911
912   BreakContinueStack.pop_back();
913
914   ConditionScope.ForceCleanup();
915
916   EmitStopPoint(&S);
917   EmitBranch(CondBlock);
918
919   ForScope.ForceCleanup();
920
921   LoopStack.pop();
922
923   // Emit the fall-through block.
924   EmitBlock(LoopExit.getBlock(), true);
925 }
926
927 void
928 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
929                                      ArrayRef<const Attr *> ForAttrs) {
930   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
931
932   LexicalScope ForScope(*this, S.getSourceRange());
933
934   // Evaluate the first pieces before the loop.
935   EmitStmt(S.getRangeStmt());
936   EmitStmt(S.getBeginStmt());
937   EmitStmt(S.getEndStmt());
938
939   // Start the loop with a block that tests the condition.
940   // If there's an increment, the continue scope will be overwritten
941   // later.
942   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
943   EmitBlock(CondBlock);
944
945   const SourceRange &R = S.getSourceRange();
946   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
947                  SourceLocToDebugLoc(R.getBegin()),
948                  SourceLocToDebugLoc(R.getEnd()));
949
950   // If there are any cleanups between here and the loop-exit scope,
951   // create a block to stage a loop exit along.
952   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
953   if (ForScope.requiresCleanups())
954     ExitBlock = createBasicBlock("for.cond.cleanup");
955
956   // The loop body, consisting of the specified body and the loop variable.
957   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
958
959   // The body is executed if the expression, contextually converted
960   // to bool, is true.
961   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
962   Builder.CreateCondBr(
963       BoolCondVal, ForBody, ExitBlock,
964       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
965
966   if (ExitBlock != LoopExit.getBlock()) {
967     EmitBlock(ExitBlock);
968     EmitBranchThroughCleanup(LoopExit);
969   }
970
971   EmitBlock(ForBody);
972   incrementProfileCounter(&S);
973
974   // Create a block for the increment. In case of a 'continue', we jump there.
975   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
976
977   // Store the blocks to use for break and continue.
978   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
979
980   {
981     // Create a separate cleanup scope for the loop variable and body.
982     LexicalScope BodyScope(*this, S.getSourceRange());
983     EmitStmt(S.getLoopVarStmt());
984     EmitStmt(S.getBody());
985   }
986
987   EmitStopPoint(&S);
988   // If there is an increment, emit it next.
989   EmitBlock(Continue.getBlock());
990   EmitStmt(S.getInc());
991
992   BreakContinueStack.pop_back();
993
994   EmitBranch(CondBlock);
995
996   ForScope.ForceCleanup();
997
998   LoopStack.pop();
999
1000   // Emit the fall-through block.
1001   EmitBlock(LoopExit.getBlock(), true);
1002 }
1003
1004 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1005   if (RV.isScalar()) {
1006     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1007   } else if (RV.isAggregate()) {
1008     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
1009   } else {
1010     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1011                        /*init*/ true);
1012   }
1013   EmitBranchThroughCleanup(ReturnBlock);
1014 }
1015
1016 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1017 /// if the function returns void, or may be missing one if the function returns
1018 /// non-void.  Fun stuff :).
1019 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1020   if (requiresReturnValueCheck()) {
1021     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getLocStart());
1022     auto *SLocPtr =
1023         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1024                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1025     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1026     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1027     assert(ReturnLocation.isValid() && "No valid return location");
1028     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1029                         ReturnLocation);
1030   }
1031
1032   // Returning from an outlined SEH helper is UB, and we already warn on it.
1033   if (IsOutlinedSEHHelper) {
1034     Builder.CreateUnreachable();
1035     Builder.ClearInsertionPoint();
1036   }
1037
1038   // Emit the result value, even if unused, to evalute the side effects.
1039   const Expr *RV = S.getRetValue();
1040
1041   // Treat block literals in a return expression as if they appeared
1042   // in their own scope.  This permits a small, easily-implemented
1043   // exception to our over-conservative rules about not jumping to
1044   // statements following block literals with non-trivial cleanups.
1045   RunCleanupsScope cleanupScope(*this);
1046   if (const ExprWithCleanups *cleanups =
1047         dyn_cast_or_null<ExprWithCleanups>(RV)) {
1048     enterFullExpression(cleanups);
1049     RV = cleanups->getSubExpr();
1050   }
1051
1052   // FIXME: Clean this up by using an LValue for ReturnTemp,
1053   // EmitStoreThroughLValue, and EmitAnyExpr.
1054   if (getLangOpts().ElideConstructors &&
1055       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1056     // Apply the named return value optimization for this return statement,
1057     // which means doing nothing: the appropriate result has already been
1058     // constructed into the NRVO variable.
1059
1060     // If there is an NRVO flag for this variable, set it to 1 into indicate
1061     // that the cleanup code should not destroy the variable.
1062     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1063       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1064   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1065     // Make sure not to return anything, but evaluate the expression
1066     // for side effects.
1067     if (RV)
1068       EmitAnyExpr(RV);
1069   } else if (!RV) {
1070     // Do nothing (return value is left uninitialized)
1071   } else if (FnRetTy->isReferenceType()) {
1072     // If this function returns a reference, take the address of the expression
1073     // rather than the value.
1074     RValue Result = EmitReferenceBindingToExpr(RV);
1075     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1076   } else {
1077     switch (getEvaluationKind(RV->getType())) {
1078     case TEK_Scalar:
1079       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1080       break;
1081     case TEK_Complex:
1082       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1083                                 /*isInit*/ true);
1084       break;
1085     case TEK_Aggregate:
1086       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
1087                                             Qualifiers(),
1088                                             AggValueSlot::IsDestructed,
1089                                             AggValueSlot::DoesNotNeedGCBarriers,
1090                                             AggValueSlot::IsNotAliased));
1091       break;
1092     }
1093   }
1094
1095   ++NumReturnExprs;
1096   if (!RV || RV->isEvaluatable(getContext()))
1097     ++NumSimpleReturnExprs;
1098
1099   cleanupScope.ForceCleanup();
1100   EmitBranchThroughCleanup(ReturnBlock);
1101 }
1102
1103 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1104   // As long as debug info is modeled with instructions, we have to ensure we
1105   // have a place to insert here and write the stop point here.
1106   if (HaveInsertPoint())
1107     EmitStopPoint(&S);
1108
1109   for (const auto *I : S.decls())
1110     EmitDecl(*I);
1111 }
1112
1113 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1114   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1115
1116   // If this code is reachable then emit a stop point (if generating
1117   // debug info). We have to do this ourselves because we are on the
1118   // "simple" statement path.
1119   if (HaveInsertPoint())
1120     EmitStopPoint(&S);
1121
1122   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1123 }
1124
1125 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1126   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1127
1128   // If this code is reachable then emit a stop point (if generating
1129   // debug info). We have to do this ourselves because we are on the
1130   // "simple" statement path.
1131   if (HaveInsertPoint())
1132     EmitStopPoint(&S);
1133
1134   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1135 }
1136
1137 /// EmitCaseStmtRange - If case statement range is not too big then
1138 /// add multiple cases to switch instruction, one for each value within
1139 /// the range. If range is too big then emit "if" condition check.
1140 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1141   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1142
1143   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1144   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1145
1146   // Emit the code for this case. We do this first to make sure it is
1147   // properly chained from our predecessor before generating the
1148   // switch machinery to enter this block.
1149   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1150   EmitBlockWithFallThrough(CaseDest, &S);
1151   EmitStmt(S.getSubStmt());
1152
1153   // If range is empty, do nothing.
1154   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1155     return;
1156
1157   llvm::APInt Range = RHS - LHS;
1158   // FIXME: parameters such as this should not be hardcoded.
1159   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1160     // Range is small enough to add multiple switch instruction cases.
1161     uint64_t Total = getProfileCount(&S);
1162     unsigned NCases = Range.getZExtValue() + 1;
1163     // We only have one region counter for the entire set of cases here, so we
1164     // need to divide the weights evenly between the generated cases, ensuring
1165     // that the total weight is preserved. E.g., a weight of 5 over three cases
1166     // will be distributed as weights of 2, 2, and 1.
1167     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1168     for (unsigned I = 0; I != NCases; ++I) {
1169       if (SwitchWeights)
1170         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1171       if (Rem)
1172         Rem--;
1173       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1174       ++LHS;
1175     }
1176     return;
1177   }
1178
1179   // The range is too big. Emit "if" condition into a new block,
1180   // making sure to save and restore the current insertion point.
1181   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1182
1183   // Push this test onto the chain of range checks (which terminates
1184   // in the default basic block). The switch's default will be changed
1185   // to the top of this chain after switch emission is complete.
1186   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1187   CaseRangeBlock = createBasicBlock("sw.caserange");
1188
1189   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1190   Builder.SetInsertPoint(CaseRangeBlock);
1191
1192   // Emit range check.
1193   llvm::Value *Diff =
1194     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1195   llvm::Value *Cond =
1196     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1197
1198   llvm::MDNode *Weights = nullptr;
1199   if (SwitchWeights) {
1200     uint64_t ThisCount = getProfileCount(&S);
1201     uint64_t DefaultCount = (*SwitchWeights)[0];
1202     Weights = createProfileWeights(ThisCount, DefaultCount);
1203
1204     // Since we're chaining the switch default through each large case range, we
1205     // need to update the weight for the default, ie, the first case, to include
1206     // this case.
1207     (*SwitchWeights)[0] += ThisCount;
1208   }
1209   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1210
1211   // Restore the appropriate insertion point.
1212   if (RestoreBB)
1213     Builder.SetInsertPoint(RestoreBB);
1214   else
1215     Builder.ClearInsertionPoint();
1216 }
1217
1218 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1219   // If there is no enclosing switch instance that we're aware of, then this
1220   // case statement and its block can be elided.  This situation only happens
1221   // when we've constant-folded the switch, are emitting the constant case,
1222   // and part of the constant case includes another case statement.  For
1223   // instance: switch (4) { case 4: do { case 5: } while (1); }
1224   if (!SwitchInsn) {
1225     EmitStmt(S.getSubStmt());
1226     return;
1227   }
1228
1229   // Handle case ranges.
1230   if (S.getRHS()) {
1231     EmitCaseStmtRange(S);
1232     return;
1233   }
1234
1235   llvm::ConstantInt *CaseVal =
1236     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1237
1238   // If the body of the case is just a 'break', try to not emit an empty block.
1239   // If we're profiling or we're not optimizing, leave the block in for better
1240   // debug and coverage analysis.
1241   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1242       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1243       isa<BreakStmt>(S.getSubStmt())) {
1244     JumpDest Block = BreakContinueStack.back().BreakBlock;
1245
1246     // Only do this optimization if there are no cleanups that need emitting.
1247     if (isObviouslyBranchWithoutCleanups(Block)) {
1248       if (SwitchWeights)
1249         SwitchWeights->push_back(getProfileCount(&S));
1250       SwitchInsn->addCase(CaseVal, Block.getBlock());
1251
1252       // If there was a fallthrough into this case, make sure to redirect it to
1253       // the end of the switch as well.
1254       if (Builder.GetInsertBlock()) {
1255         Builder.CreateBr(Block.getBlock());
1256         Builder.ClearInsertionPoint();
1257       }
1258       return;
1259     }
1260   }
1261
1262   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1263   EmitBlockWithFallThrough(CaseDest, &S);
1264   if (SwitchWeights)
1265     SwitchWeights->push_back(getProfileCount(&S));
1266   SwitchInsn->addCase(CaseVal, CaseDest);
1267
1268   // Recursively emitting the statement is acceptable, but is not wonderful for
1269   // code where we have many case statements nested together, i.e.:
1270   //  case 1:
1271   //    case 2:
1272   //      case 3: etc.
1273   // Handling this recursively will create a new block for each case statement
1274   // that falls through to the next case which is IR intensive.  It also causes
1275   // deep recursion which can run into stack depth limitations.  Handle
1276   // sequential non-range case statements specially.
1277   const CaseStmt *CurCase = &S;
1278   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1279
1280   // Otherwise, iteratively add consecutive cases to this switch stmt.
1281   while (NextCase && NextCase->getRHS() == nullptr) {
1282     CurCase = NextCase;
1283     llvm::ConstantInt *CaseVal =
1284       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1285
1286     if (SwitchWeights)
1287       SwitchWeights->push_back(getProfileCount(NextCase));
1288     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1289       CaseDest = createBasicBlock("sw.bb");
1290       EmitBlockWithFallThrough(CaseDest, &S);
1291     }
1292
1293     SwitchInsn->addCase(CaseVal, CaseDest);
1294     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1295   }
1296
1297   // Normal default recursion for non-cases.
1298   EmitStmt(CurCase->getSubStmt());
1299 }
1300
1301 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1302   // If there is no enclosing switch instance that we're aware of, then this
1303   // default statement can be elided. This situation only happens when we've
1304   // constant-folded the switch.
1305   if (!SwitchInsn) {
1306     EmitStmt(S.getSubStmt());
1307     return;
1308   }
1309
1310   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1311   assert(DefaultBlock->empty() &&
1312          "EmitDefaultStmt: Default block already defined?");
1313
1314   EmitBlockWithFallThrough(DefaultBlock, &S);
1315
1316   EmitStmt(S.getSubStmt());
1317 }
1318
1319 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1320 /// constant value that is being switched on, see if we can dead code eliminate
1321 /// the body of the switch to a simple series of statements to emit.  Basically,
1322 /// on a switch (5) we want to find these statements:
1323 ///    case 5:
1324 ///      printf(...);    <--
1325 ///      ++i;            <--
1326 ///      break;
1327 ///
1328 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1329 /// transformation (for example, one of the elided statements contains a label
1330 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1331 /// should include statements after it (e.g. the printf() line is a substmt of
1332 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1333 /// statement, then return CSFC_Success.
1334 ///
1335 /// If Case is non-null, then we are looking for the specified case, checking
1336 /// that nothing we jump over contains labels.  If Case is null, then we found
1337 /// the case and are looking for the break.
1338 ///
1339 /// If the recursive walk actually finds our Case, then we set FoundCase to
1340 /// true.
1341 ///
1342 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1343 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1344                                             const SwitchCase *Case,
1345                                             bool &FoundCase,
1346                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1347   // If this is a null statement, just succeed.
1348   if (!S)
1349     return Case ? CSFC_Success : CSFC_FallThrough;
1350
1351   // If this is the switchcase (case 4: or default) that we're looking for, then
1352   // we're in business.  Just add the substatement.
1353   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1354     if (S == Case) {
1355       FoundCase = true;
1356       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1357                                       ResultStmts);
1358     }
1359
1360     // Otherwise, this is some other case or default statement, just ignore it.
1361     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1362                                     ResultStmts);
1363   }
1364
1365   // If we are in the live part of the code and we found our break statement,
1366   // return a success!
1367   if (!Case && isa<BreakStmt>(S))
1368     return CSFC_Success;
1369
1370   // If this is a switch statement, then it might contain the SwitchCase, the
1371   // break, or neither.
1372   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1373     // Handle this as two cases: we might be looking for the SwitchCase (if so
1374     // the skipped statements must be skippable) or we might already have it.
1375     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1376     bool StartedInLiveCode = FoundCase;
1377     unsigned StartSize = ResultStmts.size();
1378
1379     // If we've not found the case yet, scan through looking for it.
1380     if (Case) {
1381       // Keep track of whether we see a skipped declaration.  The code could be
1382       // using the declaration even if it is skipped, so we can't optimize out
1383       // the decl if the kept statements might refer to it.
1384       bool HadSkippedDecl = false;
1385
1386       // If we're looking for the case, just see if we can skip each of the
1387       // substatements.
1388       for (; Case && I != E; ++I) {
1389         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1390
1391         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1392         case CSFC_Failure: return CSFC_Failure;
1393         case CSFC_Success:
1394           // A successful result means that either 1) that the statement doesn't
1395           // have the case and is skippable, or 2) does contain the case value
1396           // and also contains the break to exit the switch.  In the later case,
1397           // we just verify the rest of the statements are elidable.
1398           if (FoundCase) {
1399             // If we found the case and skipped declarations, we can't do the
1400             // optimization.
1401             if (HadSkippedDecl)
1402               return CSFC_Failure;
1403
1404             for (++I; I != E; ++I)
1405               if (CodeGenFunction::ContainsLabel(*I, true))
1406                 return CSFC_Failure;
1407             return CSFC_Success;
1408           }
1409           break;
1410         case CSFC_FallThrough:
1411           // If we have a fallthrough condition, then we must have found the
1412           // case started to include statements.  Consider the rest of the
1413           // statements in the compound statement as candidates for inclusion.
1414           assert(FoundCase && "Didn't find case but returned fallthrough?");
1415           // We recursively found Case, so we're not looking for it anymore.
1416           Case = nullptr;
1417
1418           // If we found the case and skipped declarations, we can't do the
1419           // optimization.
1420           if (HadSkippedDecl)
1421             return CSFC_Failure;
1422           break;
1423         }
1424       }
1425
1426       if (!FoundCase)
1427         return CSFC_Success;
1428
1429       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1430     }
1431
1432     // If we have statements in our range, then we know that the statements are
1433     // live and need to be added to the set of statements we're tracking.
1434     bool AnyDecls = false;
1435     for (; I != E; ++I) {
1436       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1437
1438       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1439       case CSFC_Failure: return CSFC_Failure;
1440       case CSFC_FallThrough:
1441         // A fallthrough result means that the statement was simple and just
1442         // included in ResultStmt, keep adding them afterwards.
1443         break;
1444       case CSFC_Success:
1445         // A successful result means that we found the break statement and
1446         // stopped statement inclusion.  We just ensure that any leftover stmts
1447         // are skippable and return success ourselves.
1448         for (++I; I != E; ++I)
1449           if (CodeGenFunction::ContainsLabel(*I, true))
1450             return CSFC_Failure;
1451         return CSFC_Success;
1452       }
1453     }
1454
1455     // If we're about to fall out of a scope without hitting a 'break;', we
1456     // can't perform the optimization if there were any decls in that scope
1457     // (we'd lose their end-of-lifetime).
1458     if (AnyDecls) {
1459       // If the entire compound statement was live, there's one more thing we
1460       // can try before giving up: emit the whole thing as a single statement.
1461       // We can do that unless the statement contains a 'break;'.
1462       // FIXME: Such a break must be at the end of a construct within this one.
1463       // We could emit this by just ignoring the BreakStmts entirely.
1464       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1465         ResultStmts.resize(StartSize);
1466         ResultStmts.push_back(S);
1467       } else {
1468         return CSFC_Failure;
1469       }
1470     }
1471
1472     return CSFC_FallThrough;
1473   }
1474
1475   // Okay, this is some other statement that we don't handle explicitly, like a
1476   // for statement or increment etc.  If we are skipping over this statement,
1477   // just verify it doesn't have labels, which would make it invalid to elide.
1478   if (Case) {
1479     if (CodeGenFunction::ContainsLabel(S, true))
1480       return CSFC_Failure;
1481     return CSFC_Success;
1482   }
1483
1484   // Otherwise, we want to include this statement.  Everything is cool with that
1485   // so long as it doesn't contain a break out of the switch we're in.
1486   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1487
1488   // Otherwise, everything is great.  Include the statement and tell the caller
1489   // that we fall through and include the next statement as well.
1490   ResultStmts.push_back(S);
1491   return CSFC_FallThrough;
1492 }
1493
1494 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1495 /// then invoke CollectStatementsForCase to find the list of statements to emit
1496 /// for a switch on constant.  See the comment above CollectStatementsForCase
1497 /// for more details.
1498 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1499                                        const llvm::APSInt &ConstantCondValue,
1500                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1501                                        ASTContext &C,
1502                                        const SwitchCase *&ResultCase) {
1503   // First step, find the switch case that is being branched to.  We can do this
1504   // efficiently by scanning the SwitchCase list.
1505   const SwitchCase *Case = S.getSwitchCaseList();
1506   const DefaultStmt *DefaultCase = nullptr;
1507
1508   for (; Case; Case = Case->getNextSwitchCase()) {
1509     // It's either a default or case.  Just remember the default statement in
1510     // case we're not jumping to any numbered cases.
1511     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1512       DefaultCase = DS;
1513       continue;
1514     }
1515
1516     // Check to see if this case is the one we're looking for.
1517     const CaseStmt *CS = cast<CaseStmt>(Case);
1518     // Don't handle case ranges yet.
1519     if (CS->getRHS()) return false;
1520
1521     // If we found our case, remember it as 'case'.
1522     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1523       break;
1524   }
1525
1526   // If we didn't find a matching case, we use a default if it exists, or we
1527   // elide the whole switch body!
1528   if (!Case) {
1529     // It is safe to elide the body of the switch if it doesn't contain labels
1530     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1531     if (!DefaultCase)
1532       return !CodeGenFunction::ContainsLabel(&S);
1533     Case = DefaultCase;
1534   }
1535
1536   // Ok, we know which case is being jumped to, try to collect all the
1537   // statements that follow it.  This can fail for a variety of reasons.  Also,
1538   // check to see that the recursive walk actually found our case statement.
1539   // Insane cases like this can fail to find it in the recursive walk since we
1540   // don't handle every stmt kind:
1541   // switch (4) {
1542   //   while (1) {
1543   //     case 4: ...
1544   bool FoundCase = false;
1545   ResultCase = Case;
1546   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1547                                   ResultStmts) != CSFC_Failure &&
1548          FoundCase;
1549 }
1550
1551 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1552   // Handle nested switch statements.
1553   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1554   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1555   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1556
1557   // See if we can constant fold the condition of the switch and therefore only
1558   // emit the live case statement (if any) of the switch.
1559   llvm::APSInt ConstantCondValue;
1560   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1561     SmallVector<const Stmt*, 4> CaseStmts;
1562     const SwitchCase *Case = nullptr;
1563     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1564                                    getContext(), Case)) {
1565       if (Case)
1566         incrementProfileCounter(Case);
1567       RunCleanupsScope ExecutedScope(*this);
1568
1569       if (S.getInit())
1570         EmitStmt(S.getInit());
1571
1572       // Emit the condition variable if needed inside the entire cleanup scope
1573       // used by this special case for constant folded switches.
1574       if (S.getConditionVariable())
1575         EmitAutoVarDecl(*S.getConditionVariable());
1576
1577       // At this point, we are no longer "within" a switch instance, so
1578       // we can temporarily enforce this to ensure that any embedded case
1579       // statements are not emitted.
1580       SwitchInsn = nullptr;
1581
1582       // Okay, we can dead code eliminate everything except this case.  Emit the
1583       // specified series of statements and we're good.
1584       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1585         EmitStmt(CaseStmts[i]);
1586       incrementProfileCounter(&S);
1587
1588       // Now we want to restore the saved switch instance so that nested
1589       // switches continue to function properly
1590       SwitchInsn = SavedSwitchInsn;
1591
1592       return;
1593     }
1594   }
1595
1596   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1597
1598   RunCleanupsScope ConditionScope(*this);
1599
1600   if (S.getInit())
1601     EmitStmt(S.getInit());
1602
1603   if (S.getConditionVariable())
1604     EmitAutoVarDecl(*S.getConditionVariable());
1605   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1606
1607   // Create basic block to hold stuff that comes after switch
1608   // statement. We also need to create a default block now so that
1609   // explicit case ranges tests can have a place to jump to on
1610   // failure.
1611   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1612   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1613   if (PGO.haveRegionCounts()) {
1614     // Walk the SwitchCase list to find how many there are.
1615     uint64_t DefaultCount = 0;
1616     unsigned NumCases = 0;
1617     for (const SwitchCase *Case = S.getSwitchCaseList();
1618          Case;
1619          Case = Case->getNextSwitchCase()) {
1620       if (isa<DefaultStmt>(Case))
1621         DefaultCount = getProfileCount(Case);
1622       NumCases += 1;
1623     }
1624     SwitchWeights = new SmallVector<uint64_t, 16>();
1625     SwitchWeights->reserve(NumCases);
1626     // The default needs to be first. We store the edge count, so we already
1627     // know the right weight.
1628     SwitchWeights->push_back(DefaultCount);
1629   }
1630   CaseRangeBlock = DefaultBlock;
1631
1632   // Clear the insertion point to indicate we are in unreachable code.
1633   Builder.ClearInsertionPoint();
1634
1635   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1636   // then reuse last ContinueBlock.
1637   JumpDest OuterContinue;
1638   if (!BreakContinueStack.empty())
1639     OuterContinue = BreakContinueStack.back().ContinueBlock;
1640
1641   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1642
1643   // Emit switch body.
1644   EmitStmt(S.getBody());
1645
1646   BreakContinueStack.pop_back();
1647
1648   // Update the default block in case explicit case range tests have
1649   // been chained on top.
1650   SwitchInsn->setDefaultDest(CaseRangeBlock);
1651
1652   // If a default was never emitted:
1653   if (!DefaultBlock->getParent()) {
1654     // If we have cleanups, emit the default block so that there's a
1655     // place to jump through the cleanups from.
1656     if (ConditionScope.requiresCleanups()) {
1657       EmitBlock(DefaultBlock);
1658
1659     // Otherwise, just forward the default block to the switch end.
1660     } else {
1661       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1662       delete DefaultBlock;
1663     }
1664   }
1665
1666   ConditionScope.ForceCleanup();
1667
1668   // Emit continuation.
1669   EmitBlock(SwitchExit.getBlock(), true);
1670   incrementProfileCounter(&S);
1671
1672   // If the switch has a condition wrapped by __builtin_unpredictable,
1673   // create metadata that specifies that the switch is unpredictable.
1674   // Don't bother if not optimizing because that metadata would not be used.
1675   auto *Call = dyn_cast<CallExpr>(S.getCond());
1676   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1677     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1678     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1679       llvm::MDBuilder MDHelper(getLLVMContext());
1680       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1681                               MDHelper.createUnpredictable());
1682     }
1683   }
1684
1685   if (SwitchWeights) {
1686     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1687            "switch weights do not match switch cases");
1688     // If there's only one jump destination there's no sense weighting it.
1689     if (SwitchWeights->size() > 1)
1690       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1691                               createProfileWeights(*SwitchWeights));
1692     delete SwitchWeights;
1693   }
1694   SwitchInsn = SavedSwitchInsn;
1695   SwitchWeights = SavedSwitchWeights;
1696   CaseRangeBlock = SavedCRBlock;
1697 }
1698
1699 static std::string
1700 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1701                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1702   std::string Result;
1703
1704   while (*Constraint) {
1705     switch (*Constraint) {
1706     default:
1707       Result += Target.convertConstraint(Constraint);
1708       break;
1709     // Ignore these
1710     case '*':
1711     case '?':
1712     case '!':
1713     case '=': // Will see this and the following in mult-alt constraints.
1714     case '+':
1715       break;
1716     case '#': // Ignore the rest of the constraint alternative.
1717       while (Constraint[1] && Constraint[1] != ',')
1718         Constraint++;
1719       break;
1720     case '&':
1721     case '%':
1722       Result += *Constraint;
1723       while (Constraint[1] && Constraint[1] == *Constraint)
1724         Constraint++;
1725       break;
1726     case ',':
1727       Result += "|";
1728       break;
1729     case 'g':
1730       Result += "imr";
1731       break;
1732     case '[': {
1733       assert(OutCons &&
1734              "Must pass output names to constraints with a symbolic name");
1735       unsigned Index;
1736       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1737       assert(result && "Could not resolve symbolic name"); (void)result;
1738       Result += llvm::utostr(Index);
1739       break;
1740     }
1741     }
1742
1743     Constraint++;
1744   }
1745
1746   return Result;
1747 }
1748
1749 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1750 /// as using a particular register add that as a constraint that will be used
1751 /// in this asm stmt.
1752 static std::string
1753 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1754                        const TargetInfo &Target, CodeGenModule &CGM,
1755                        const AsmStmt &Stmt, const bool EarlyClobber) {
1756   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1757   if (!AsmDeclRef)
1758     return Constraint;
1759   const ValueDecl &Value = *AsmDeclRef->getDecl();
1760   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1761   if (!Variable)
1762     return Constraint;
1763   if (Variable->getStorageClass() != SC_Register)
1764     return Constraint;
1765   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1766   if (!Attr)
1767     return Constraint;
1768   StringRef Register = Attr->getLabel();
1769   assert(Target.isValidGCCRegisterName(Register));
1770   // We're using validateOutputConstraint here because we only care if
1771   // this is a register constraint.
1772   TargetInfo::ConstraintInfo Info(Constraint, "");
1773   if (Target.validateOutputConstraint(Info) &&
1774       !Info.allowsRegister()) {
1775     CGM.ErrorUnsupported(&Stmt, "__asm__");
1776     return Constraint;
1777   }
1778   // Canonicalize the register here before returning it.
1779   Register = Target.getNormalizedGCCRegisterName(Register);
1780   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1781 }
1782
1783 llvm::Value*
1784 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1785                                     LValue InputValue, QualType InputType,
1786                                     std::string &ConstraintStr,
1787                                     SourceLocation Loc) {
1788   llvm::Value *Arg;
1789   if (Info.allowsRegister() || !Info.allowsMemory()) {
1790     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1791       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1792     } else {
1793       llvm::Type *Ty = ConvertType(InputType);
1794       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1795       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1796         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1797         Ty = llvm::PointerType::getUnqual(Ty);
1798
1799         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1800                                                        Ty));
1801       } else {
1802         Arg = InputValue.getPointer();
1803         ConstraintStr += '*';
1804       }
1805     }
1806   } else {
1807     Arg = InputValue.getPointer();
1808     ConstraintStr += '*';
1809   }
1810
1811   return Arg;
1812 }
1813
1814 llvm::Value* CodeGenFunction::EmitAsmInput(
1815                                          const TargetInfo::ConstraintInfo &Info,
1816                                            const Expr *InputExpr,
1817                                            std::string &ConstraintStr) {
1818   // If this can't be a register or memory, i.e., has to be a constant
1819   // (immediate or symbolic), try to emit it as such.
1820   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1821     llvm::APSInt Result;
1822     if (InputExpr->EvaluateAsInt(Result, getContext()))
1823       return llvm::ConstantInt::get(getLLVMContext(), Result);
1824     assert(!Info.requiresImmediateConstant() &&
1825            "Required-immediate inlineasm arg isn't constant?");
1826   }
1827
1828   if (Info.allowsRegister() || !Info.allowsMemory())
1829     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1830       return EmitScalarExpr(InputExpr);
1831   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1832     return EmitScalarExpr(InputExpr);
1833   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1834   LValue Dest = EmitLValue(InputExpr);
1835   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1836                             InputExpr->getExprLoc());
1837 }
1838
1839 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1840 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1841 /// integers which are the source locations of the start of each line in the
1842 /// asm.
1843 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1844                                       CodeGenFunction &CGF) {
1845   SmallVector<llvm::Metadata *, 8> Locs;
1846   // Add the location of the first line to the MDNode.
1847   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1848       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1849   StringRef StrVal = Str->getString();
1850   if (!StrVal.empty()) {
1851     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1852     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1853     unsigned StartToken = 0;
1854     unsigned ByteOffset = 0;
1855
1856     // Add the location of the start of each subsequent line of the asm to the
1857     // MDNode.
1858     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1859       if (StrVal[i] != '\n') continue;
1860       SourceLocation LineLoc = Str->getLocationOfByte(
1861           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1862       Locs.push_back(llvm::ConstantAsMetadata::get(
1863           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1864     }
1865   }
1866
1867   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1868 }
1869
1870 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1871   // Assemble the final asm string.
1872   std::string AsmString = S.generateAsmString(getContext());
1873
1874   // Get all the output and input constraints together.
1875   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1876   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1877
1878   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1879     StringRef Name;
1880     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1881       Name = GAS->getOutputName(i);
1882     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1883     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1884     assert(IsValid && "Failed to parse output constraint");
1885     OutputConstraintInfos.push_back(Info);
1886   }
1887
1888   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1889     StringRef Name;
1890     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1891       Name = GAS->getInputName(i);
1892     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1893     bool IsValid =
1894       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1895     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1896     InputConstraintInfos.push_back(Info);
1897   }
1898
1899   std::string Constraints;
1900
1901   std::vector<LValue> ResultRegDests;
1902   std::vector<QualType> ResultRegQualTys;
1903   std::vector<llvm::Type *> ResultRegTypes;
1904   std::vector<llvm::Type *> ResultTruncRegTypes;
1905   std::vector<llvm::Type *> ArgTypes;
1906   std::vector<llvm::Value*> Args;
1907
1908   // Keep track of inout constraints.
1909   std::string InOutConstraints;
1910   std::vector<llvm::Value*> InOutArgs;
1911   std::vector<llvm::Type*> InOutArgTypes;
1912
1913   // An inline asm can be marked readonly if it meets the following conditions:
1914   //  - it doesn't have any sideeffects
1915   //  - it doesn't clobber memory
1916   //  - it doesn't return a value by-reference
1917   // It can be marked readnone if it doesn't have any input memory constraints
1918   // in addition to meeting the conditions listed above.
1919   bool ReadOnly = true, ReadNone = true;
1920
1921   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1922     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1923
1924     // Simplify the output constraint.
1925     std::string OutputConstraint(S.getOutputConstraint(i));
1926     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1927                                           getTarget());
1928
1929     const Expr *OutExpr = S.getOutputExpr(i);
1930     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1931
1932     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1933                                               getTarget(), CGM, S,
1934                                               Info.earlyClobber());
1935
1936     LValue Dest = EmitLValue(OutExpr);
1937     if (!Constraints.empty())
1938       Constraints += ',';
1939
1940     // If this is a register output, then make the inline asm return it
1941     // by-value.  If this is a memory result, return the value by-reference.
1942     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1943       Constraints += "=" + OutputConstraint;
1944       ResultRegQualTys.push_back(OutExpr->getType());
1945       ResultRegDests.push_back(Dest);
1946       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1947       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1948
1949       // If this output is tied to an input, and if the input is larger, then
1950       // we need to set the actual result type of the inline asm node to be the
1951       // same as the input type.
1952       if (Info.hasMatchingInput()) {
1953         unsigned InputNo;
1954         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1955           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1956           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1957             break;
1958         }
1959         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1960
1961         QualType InputTy = S.getInputExpr(InputNo)->getType();
1962         QualType OutputType = OutExpr->getType();
1963
1964         uint64_t InputSize = getContext().getTypeSize(InputTy);
1965         if (getContext().getTypeSize(OutputType) < InputSize) {
1966           // Form the asm to return the value as a larger integer or fp type.
1967           ResultRegTypes.back() = ConvertType(InputTy);
1968         }
1969       }
1970       if (llvm::Type* AdjTy =
1971             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1972                                                  ResultRegTypes.back()))
1973         ResultRegTypes.back() = AdjTy;
1974       else {
1975         CGM.getDiags().Report(S.getAsmLoc(),
1976                               diag::err_asm_invalid_type_in_input)
1977             << OutExpr->getType() << OutputConstraint;
1978       }
1979     } else {
1980       ArgTypes.push_back(Dest.getAddress().getType());
1981       Args.push_back(Dest.getPointer());
1982       Constraints += "=*";
1983       Constraints += OutputConstraint;
1984       ReadOnly = ReadNone = false;
1985     }
1986
1987     if (Info.isReadWrite()) {
1988       InOutConstraints += ',';
1989
1990       const Expr *InputExpr = S.getOutputExpr(i);
1991       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1992                                             InOutConstraints,
1993                                             InputExpr->getExprLoc());
1994
1995       if (llvm::Type* AdjTy =
1996           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1997                                                Arg->getType()))
1998         Arg = Builder.CreateBitCast(Arg, AdjTy);
1999
2000       if (Info.allowsRegister())
2001         InOutConstraints += llvm::utostr(i);
2002       else
2003         InOutConstraints += OutputConstraint;
2004
2005       InOutArgTypes.push_back(Arg->getType());
2006       InOutArgs.push_back(Arg);
2007     }
2008   }
2009
2010   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2011   // to the return value slot. Only do this when returning in registers.
2012   if (isa<MSAsmStmt>(&S)) {
2013     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2014     if (RetAI.isDirect() || RetAI.isExtend()) {
2015       // Make a fake lvalue for the return value slot.
2016       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2017       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2018           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2019           ResultRegDests, AsmString, S.getNumOutputs());
2020       SawAsmBlock = true;
2021     }
2022   }
2023
2024   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2025     const Expr *InputExpr = S.getInputExpr(i);
2026
2027     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2028
2029     if (Info.allowsMemory())
2030       ReadNone = false;
2031
2032     if (!Constraints.empty())
2033       Constraints += ',';
2034
2035     // Simplify the input constraint.
2036     std::string InputConstraint(S.getInputConstraint(i));
2037     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2038                                          &OutputConstraintInfos);
2039
2040     InputConstraint = AddVariableConstraints(
2041         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2042         getTarget(), CGM, S, false /* No EarlyClobber */);
2043
2044     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2045
2046     // If this input argument is tied to a larger output result, extend the
2047     // input to be the same size as the output.  The LLVM backend wants to see
2048     // the input and output of a matching constraint be the same size.  Note
2049     // that GCC does not define what the top bits are here.  We use zext because
2050     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2051     if (Info.hasTiedOperand()) {
2052       unsigned Output = Info.getTiedOperand();
2053       QualType OutputType = S.getOutputExpr(Output)->getType();
2054       QualType InputTy = InputExpr->getType();
2055
2056       if (getContext().getTypeSize(OutputType) >
2057           getContext().getTypeSize(InputTy)) {
2058         // Use ptrtoint as appropriate so that we can do our extension.
2059         if (isa<llvm::PointerType>(Arg->getType()))
2060           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2061         llvm::Type *OutputTy = ConvertType(OutputType);
2062         if (isa<llvm::IntegerType>(OutputTy))
2063           Arg = Builder.CreateZExt(Arg, OutputTy);
2064         else if (isa<llvm::PointerType>(OutputTy))
2065           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2066         else {
2067           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2068           Arg = Builder.CreateFPExt(Arg, OutputTy);
2069         }
2070       }
2071     }
2072     if (llvm::Type* AdjTy =
2073               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
2074                                                    Arg->getType()))
2075       Arg = Builder.CreateBitCast(Arg, AdjTy);
2076     else
2077       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2078           << InputExpr->getType() << InputConstraint;
2079
2080     ArgTypes.push_back(Arg->getType());
2081     Args.push_back(Arg);
2082     Constraints += InputConstraint;
2083   }
2084
2085   // Append the "input" part of inout constraints last.
2086   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2087     ArgTypes.push_back(InOutArgTypes[i]);
2088     Args.push_back(InOutArgs[i]);
2089   }
2090   Constraints += InOutConstraints;
2091
2092   // Clobbers
2093   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2094     StringRef Clobber = S.getClobber(i);
2095
2096     if (Clobber == "memory")
2097       ReadOnly = ReadNone = false;
2098     else if (Clobber != "cc")
2099       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2100
2101     if (!Constraints.empty())
2102       Constraints += ',';
2103
2104     Constraints += "~{";
2105     Constraints += Clobber;
2106     Constraints += '}';
2107   }
2108
2109   // Add machine specific clobbers
2110   std::string MachineClobbers = getTarget().getClobbers();
2111   if (!MachineClobbers.empty()) {
2112     if (!Constraints.empty())
2113       Constraints += ',';
2114     Constraints += MachineClobbers;
2115   }
2116
2117   llvm::Type *ResultType;
2118   if (ResultRegTypes.empty())
2119     ResultType = VoidTy;
2120   else if (ResultRegTypes.size() == 1)
2121     ResultType = ResultRegTypes[0];
2122   else
2123     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2124
2125   llvm::FunctionType *FTy =
2126     llvm::FunctionType::get(ResultType, ArgTypes, false);
2127
2128   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2129   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2130     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2131   llvm::InlineAsm *IA =
2132     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2133                          /* IsAlignStack */ false, AsmDialect);
2134   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2135   Result->addAttribute(llvm::AttributeList::FunctionIndex,
2136                        llvm::Attribute::NoUnwind);
2137
2138   // Attach readnone and readonly attributes.
2139   if (!HasSideEffect) {
2140     if (ReadNone)
2141       Result->addAttribute(llvm::AttributeList::FunctionIndex,
2142                            llvm::Attribute::ReadNone);
2143     else if (ReadOnly)
2144       Result->addAttribute(llvm::AttributeList::FunctionIndex,
2145                            llvm::Attribute::ReadOnly);
2146   }
2147
2148   // Slap the source location of the inline asm into a !srcloc metadata on the
2149   // call.
2150   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2151     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2152                                                    *this));
2153   } else {
2154     // At least put the line number on MS inline asm blobs.
2155     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2156     Result->setMetadata("srcloc",
2157                         llvm::MDNode::get(getLLVMContext(),
2158                                           llvm::ConstantAsMetadata::get(Loc)));
2159   }
2160
2161   if (getLangOpts().assumeFunctionsAreConvergent()) {
2162     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2163     // convergent (meaning, they may call an intrinsically convergent op, such
2164     // as bar.sync, and so can't have certain optimizations applied around
2165     // them).
2166     Result->addAttribute(llvm::AttributeList::FunctionIndex,
2167                          llvm::Attribute::Convergent);
2168   }
2169
2170   // Extract all of the register value results from the asm.
2171   std::vector<llvm::Value*> RegResults;
2172   if (ResultRegTypes.size() == 1) {
2173     RegResults.push_back(Result);
2174   } else {
2175     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2176       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2177       RegResults.push_back(Tmp);
2178     }
2179   }
2180
2181   assert(RegResults.size() == ResultRegTypes.size());
2182   assert(RegResults.size() == ResultTruncRegTypes.size());
2183   assert(RegResults.size() == ResultRegDests.size());
2184   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2185     llvm::Value *Tmp = RegResults[i];
2186
2187     // If the result type of the LLVM IR asm doesn't match the result type of
2188     // the expression, do the conversion.
2189     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2190       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2191
2192       // Truncate the integer result to the right size, note that TruncTy can be
2193       // a pointer.
2194       if (TruncTy->isFloatingPointTy())
2195         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2196       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2197         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2198         Tmp = Builder.CreateTrunc(Tmp,
2199                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2200         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2201       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2202         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2203         Tmp = Builder.CreatePtrToInt(Tmp,
2204                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2205         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2206       } else if (TruncTy->isIntegerTy()) {
2207         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2208       } else if (TruncTy->isVectorTy()) {
2209         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2210       }
2211     }
2212
2213     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2214   }
2215 }
2216
2217 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2218   const RecordDecl *RD = S.getCapturedRecordDecl();
2219   QualType RecordTy = getContext().getRecordType(RD);
2220
2221   // Initialize the captured struct.
2222   LValue SlotLV =
2223     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2224
2225   RecordDecl::field_iterator CurField = RD->field_begin();
2226   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2227                                                  E = S.capture_init_end();
2228        I != E; ++I, ++CurField) {
2229     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2230     if (CurField->hasCapturedVLAType()) {
2231       auto VAT = CurField->getCapturedVLAType();
2232       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2233     } else {
2234       EmitInitializerForField(*CurField, LV, *I);
2235     }
2236   }
2237
2238   return SlotLV;
2239 }
2240
2241 /// Generate an outlined function for the body of a CapturedStmt, store any
2242 /// captured variables into the captured struct, and call the outlined function.
2243 llvm::Function *
2244 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2245   LValue CapStruct = InitCapturedStruct(S);
2246
2247   // Emit the CapturedDecl
2248   CodeGenFunction CGF(CGM, true);
2249   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2250   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2251   delete CGF.CapturedStmtInfo;
2252
2253   // Emit call to the helper function.
2254   EmitCallOrInvoke(F, CapStruct.getPointer());
2255
2256   return F;
2257 }
2258
2259 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2260   LValue CapStruct = InitCapturedStruct(S);
2261   return CapStruct.getAddress();
2262 }
2263
2264 /// Creates the outlined function for a CapturedStmt.
2265 llvm::Function *
2266 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2267   assert(CapturedStmtInfo &&
2268     "CapturedStmtInfo should be set when generating the captured function");
2269   const CapturedDecl *CD = S.getCapturedDecl();
2270   const RecordDecl *RD = S.getCapturedRecordDecl();
2271   SourceLocation Loc = S.getLocStart();
2272   assert(CD->hasBody() && "missing CapturedDecl body");
2273
2274   // Build the argument list.
2275   ASTContext &Ctx = CGM.getContext();
2276   FunctionArgList Args;
2277   Args.append(CD->param_begin(), CD->param_end());
2278
2279   // Create the function declaration.
2280   const CGFunctionInfo &FuncInfo =
2281     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2282   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2283
2284   llvm::Function *F =
2285     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2286                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2287   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2288   if (CD->isNothrow())
2289     F->addFnAttr(llvm::Attribute::NoUnwind);
2290
2291   // Generate the function.
2292   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2293                 CD->getLocation(),
2294                 CD->getBody()->getLocStart());
2295   // Set the context parameter in CapturedStmtInfo.
2296   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2297   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2298
2299   // Initialize variable-length arrays.
2300   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2301                                            Ctx.getTagDeclType(RD));
2302   for (auto *FD : RD->fields()) {
2303     if (FD->hasCapturedVLAType()) {
2304       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2305                                        S.getLocStart()).getScalarVal();
2306       auto VAT = FD->getCapturedVLAType();
2307       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2308     }
2309   }
2310
2311   // If 'this' is captured, load it into CXXThisValue.
2312   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2313     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2314     LValue ThisLValue = EmitLValueForField(Base, FD);
2315     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2316   }
2317
2318   PGO.assignRegionCounters(GlobalDecl(CD), F);
2319   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2320   FinishFunction(CD->getBodyRBrace());
2321
2322   return F;
2323 }