]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGStmt.cpp
Update clang to trunk r256633.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGStmt.cpp
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30
31 using namespace clang;
32 using namespace CodeGen;
33
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43
44     LastStopPoint = Loc;
45   }
46 }
47
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106
107     EmitIgnoredExpr(cast<Expr>(S));
108
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTaskLoopDirectiveClass:
260     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
261     break;
262   case Stmt::OMPTaskLoopSimdDirectiveClass:
263     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
264     break;
265 case Stmt::OMPDistributeDirectiveClass:
266     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
267         break;
268   }
269 }
270
271 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
272   switch (S->getStmtClass()) {
273   default: return false;
274   case Stmt::NullStmtClass: break;
275   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
276   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
277   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
278   case Stmt::AttributedStmtClass:
279                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
280   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
281   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
282   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
283   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
284   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
285   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
286   }
287
288   return true;
289 }
290
291 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
292 /// this captures the expression result of the last sub-statement and returns it
293 /// (for use by the statement expression extension).
294 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
295                                           AggValueSlot AggSlot) {
296   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
297                              "LLVM IR generation of compound statement ('{}')");
298
299   // Keep track of the current cleanup stack depth, including debug scopes.
300   LexicalScope Scope(*this, S.getSourceRange());
301
302   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
303 }
304
305 Address
306 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
307                                               bool GetLast,
308                                               AggValueSlot AggSlot) {
309
310   for (CompoundStmt::const_body_iterator I = S.body_begin(),
311        E = S.body_end()-GetLast; I != E; ++I)
312     EmitStmt(*I);
313
314   Address RetAlloca = Address::invalid();
315   if (GetLast) {
316     // We have to special case labels here.  They are statements, but when put
317     // at the end of a statement expression, they yield the value of their
318     // subexpression.  Handle this by walking through all labels we encounter,
319     // emitting them before we evaluate the subexpr.
320     const Stmt *LastStmt = S.body_back();
321     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
322       EmitLabel(LS->getDecl());
323       LastStmt = LS->getSubStmt();
324     }
325
326     EnsureInsertPoint();
327
328     QualType ExprTy = cast<Expr>(LastStmt)->getType();
329     if (hasAggregateEvaluationKind(ExprTy)) {
330       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
331     } else {
332       // We can't return an RValue here because there might be cleanups at
333       // the end of the StmtExpr.  Because of that, we have to emit the result
334       // here into a temporary alloca.
335       RetAlloca = CreateMemTemp(ExprTy);
336       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
337                        /*IsInit*/false);
338     }
339
340   }
341
342   return RetAlloca;
343 }
344
345 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
346   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
347
348   // If there is a cleanup stack, then we it isn't worth trying to
349   // simplify this block (we would need to remove it from the scope map
350   // and cleanup entry).
351   if (!EHStack.empty())
352     return;
353
354   // Can only simplify direct branches.
355   if (!BI || !BI->isUnconditional())
356     return;
357
358   // Can only simplify empty blocks.
359   if (BI->getIterator() != BB->begin())
360     return;
361
362   BB->replaceAllUsesWith(BI->getSuccessor(0));
363   BI->eraseFromParent();
364   BB->eraseFromParent();
365 }
366
367 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
368   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
369
370   // Fall out of the current block (if necessary).
371   EmitBranch(BB);
372
373   if (IsFinished && BB->use_empty()) {
374     delete BB;
375     return;
376   }
377
378   // Place the block after the current block, if possible, or else at
379   // the end of the function.
380   if (CurBB && CurBB->getParent())
381     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
382   else
383     CurFn->getBasicBlockList().push_back(BB);
384   Builder.SetInsertPoint(BB);
385 }
386
387 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
388   // Emit a branch from the current block to the target one if this
389   // was a real block.  If this was just a fall-through block after a
390   // terminator, don't emit it.
391   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
392
393   if (!CurBB || CurBB->getTerminator()) {
394     // If there is no insert point or the previous block is already
395     // terminated, don't touch it.
396   } else {
397     // Otherwise, create a fall-through branch.
398     Builder.CreateBr(Target);
399   }
400
401   Builder.ClearInsertionPoint();
402 }
403
404 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
405   bool inserted = false;
406   for (llvm::User *u : block->users()) {
407     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
408       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
409                                              block);
410       inserted = true;
411       break;
412     }
413   }
414
415   if (!inserted)
416     CurFn->getBasicBlockList().push_back(block);
417
418   Builder.SetInsertPoint(block);
419 }
420
421 CodeGenFunction::JumpDest
422 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
423   JumpDest &Dest = LabelMap[D];
424   if (Dest.isValid()) return Dest;
425
426   // Create, but don't insert, the new block.
427   Dest = JumpDest(createBasicBlock(D->getName()),
428                   EHScopeStack::stable_iterator::invalid(),
429                   NextCleanupDestIndex++);
430   return Dest;
431 }
432
433 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
434   // Add this label to the current lexical scope if we're within any
435   // normal cleanups.  Jumps "in" to this label --- when permitted by
436   // the language --- may need to be routed around such cleanups.
437   if (EHStack.hasNormalCleanups() && CurLexicalScope)
438     CurLexicalScope->addLabel(D);
439
440   JumpDest &Dest = LabelMap[D];
441
442   // If we didn't need a forward reference to this label, just go
443   // ahead and create a destination at the current scope.
444   if (!Dest.isValid()) {
445     Dest = getJumpDestInCurrentScope(D->getName());
446
447   // Otherwise, we need to give this label a target depth and remove
448   // it from the branch-fixups list.
449   } else {
450     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
451     Dest.setScopeDepth(EHStack.stable_begin());
452     ResolveBranchFixups(Dest.getBlock());
453   }
454
455   EmitBlock(Dest.getBlock());
456   incrementProfileCounter(D->getStmt());
457 }
458
459 /// Change the cleanup scope of the labels in this lexical scope to
460 /// match the scope of the enclosing context.
461 void CodeGenFunction::LexicalScope::rescopeLabels() {
462   assert(!Labels.empty());
463   EHScopeStack::stable_iterator innermostScope
464     = CGF.EHStack.getInnermostNormalCleanup();
465
466   // Change the scope depth of all the labels.
467   for (SmallVectorImpl<const LabelDecl*>::const_iterator
468          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
469     assert(CGF.LabelMap.count(*i));
470     JumpDest &dest = CGF.LabelMap.find(*i)->second;
471     assert(dest.getScopeDepth().isValid());
472     assert(innermostScope.encloses(dest.getScopeDepth()));
473     dest.setScopeDepth(innermostScope);
474   }
475
476   // Reparent the labels if the new scope also has cleanups.
477   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
478     ParentScope->Labels.append(Labels.begin(), Labels.end());
479   }
480 }
481
482
483 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
484   EmitLabel(S.getDecl());
485   EmitStmt(S.getSubStmt());
486 }
487
488 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
489   const Stmt *SubStmt = S.getSubStmt();
490   switch (SubStmt->getStmtClass()) {
491   case Stmt::DoStmtClass:
492     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
493     break;
494   case Stmt::ForStmtClass:
495     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
496     break;
497   case Stmt::WhileStmtClass:
498     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
499     break;
500   case Stmt::CXXForRangeStmtClass:
501     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
502     break;
503   default:
504     EmitStmt(SubStmt);
505   }
506 }
507
508 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
509   // If this code is reachable then emit a stop point (if generating
510   // debug info). We have to do this ourselves because we are on the
511   // "simple" statement path.
512   if (HaveInsertPoint())
513     EmitStopPoint(&S);
514
515   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
516 }
517
518
519 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
520   if (const LabelDecl *Target = S.getConstantTarget()) {
521     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
522     return;
523   }
524
525   // Ensure that we have an i8* for our PHI node.
526   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
527                                          Int8PtrTy, "addr");
528   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
529
530   // Get the basic block for the indirect goto.
531   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
532
533   // The first instruction in the block has to be the PHI for the switch dest,
534   // add an entry for this branch.
535   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
536
537   EmitBranch(IndGotoBB);
538 }
539
540 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
541   // C99 6.8.4.1: The first substatement is executed if the expression compares
542   // unequal to 0.  The condition must be a scalar type.
543   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
544
545   if (S.getConditionVariable())
546     EmitAutoVarDecl(*S.getConditionVariable());
547
548   // If the condition constant folds and can be elided, try to avoid emitting
549   // the condition and the dead arm of the if/else.
550   bool CondConstant;
551   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
552     // Figure out which block (then or else) is executed.
553     const Stmt *Executed = S.getThen();
554     const Stmt *Skipped  = S.getElse();
555     if (!CondConstant)  // Condition false?
556       std::swap(Executed, Skipped);
557
558     // If the skipped block has no labels in it, just emit the executed block.
559     // This avoids emitting dead code and simplifies the CFG substantially.
560     if (!ContainsLabel(Skipped)) {
561       if (CondConstant)
562         incrementProfileCounter(&S);
563       if (Executed) {
564         RunCleanupsScope ExecutedScope(*this);
565         EmitStmt(Executed);
566       }
567       return;
568     }
569   }
570
571   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
572   // the conditional branch.
573   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
574   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
575   llvm::BasicBlock *ElseBlock = ContBlock;
576   if (S.getElse())
577     ElseBlock = createBasicBlock("if.else");
578
579   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
580                        getProfileCount(S.getThen()));
581
582   // Emit the 'then' code.
583   EmitBlock(ThenBlock);
584   incrementProfileCounter(&S);
585   {
586     RunCleanupsScope ThenScope(*this);
587     EmitStmt(S.getThen());
588   }
589   EmitBranch(ContBlock);
590
591   // Emit the 'else' code if present.
592   if (const Stmt *Else = S.getElse()) {
593     {
594       // There is no need to emit line number for an unconditional branch.
595       auto NL = ApplyDebugLocation::CreateEmpty(*this);
596       EmitBlock(ElseBlock);
597     }
598     {
599       RunCleanupsScope ElseScope(*this);
600       EmitStmt(Else);
601     }
602     {
603       // There is no need to emit line number for an unconditional branch.
604       auto NL = ApplyDebugLocation::CreateEmpty(*this);
605       EmitBranch(ContBlock);
606     }
607   }
608
609   // Emit the continuation block for code after the if.
610   EmitBlock(ContBlock, true);
611 }
612
613 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
614                                     ArrayRef<const Attr *> WhileAttrs) {
615   // Emit the header for the loop, which will also become
616   // the continue target.
617   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
618   EmitBlock(LoopHeader.getBlock());
619
620   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
621
622   // Create an exit block for when the condition fails, which will
623   // also become the break target.
624   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
625
626   // Store the blocks to use for break and continue.
627   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
628
629   // C++ [stmt.while]p2:
630   //   When the condition of a while statement is a declaration, the
631   //   scope of the variable that is declared extends from its point
632   //   of declaration (3.3.2) to the end of the while statement.
633   //   [...]
634   //   The object created in a condition is destroyed and created
635   //   with each iteration of the loop.
636   RunCleanupsScope ConditionScope(*this);
637
638   if (S.getConditionVariable())
639     EmitAutoVarDecl(*S.getConditionVariable());
640
641   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
642   // evaluation of the controlling expression takes place before each
643   // execution of the loop body.
644   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
645
646   // while(1) is common, avoid extra exit blocks.  Be sure
647   // to correctly handle break/continue though.
648   bool EmitBoolCondBranch = true;
649   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
650     if (C->isOne())
651       EmitBoolCondBranch = false;
652
653   // As long as the condition is true, go to the loop body.
654   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
655   if (EmitBoolCondBranch) {
656     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
657     if (ConditionScope.requiresCleanups())
658       ExitBlock = createBasicBlock("while.exit");
659     Builder.CreateCondBr(
660         BoolCondVal, LoopBody, ExitBlock,
661         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
662
663     if (ExitBlock != LoopExit.getBlock()) {
664       EmitBlock(ExitBlock);
665       EmitBranchThroughCleanup(LoopExit);
666     }
667   }
668
669   // Emit the loop body.  We have to emit this in a cleanup scope
670   // because it might be a singleton DeclStmt.
671   {
672     RunCleanupsScope BodyScope(*this);
673     EmitBlock(LoopBody);
674     incrementProfileCounter(&S);
675     EmitStmt(S.getBody());
676   }
677
678   BreakContinueStack.pop_back();
679
680   // Immediately force cleanup.
681   ConditionScope.ForceCleanup();
682
683   EmitStopPoint(&S);
684   // Branch to the loop header again.
685   EmitBranch(LoopHeader.getBlock());
686
687   LoopStack.pop();
688
689   // Emit the exit block.
690   EmitBlock(LoopExit.getBlock(), true);
691
692   // The LoopHeader typically is just a branch if we skipped emitting
693   // a branch, try to erase it.
694   if (!EmitBoolCondBranch)
695     SimplifyForwardingBlocks(LoopHeader.getBlock());
696 }
697
698 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
699                                  ArrayRef<const Attr *> DoAttrs) {
700   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
701   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
702
703   uint64_t ParentCount = getCurrentProfileCount();
704
705   // Store the blocks to use for break and continue.
706   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
707
708   // Emit the body of the loop.
709   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
710
711   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
712
713   EmitBlockWithFallThrough(LoopBody, &S);
714   {
715     RunCleanupsScope BodyScope(*this);
716     EmitStmt(S.getBody());
717   }
718
719   EmitBlock(LoopCond.getBlock());
720
721   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
722   // after each execution of the loop body."
723
724   // Evaluate the conditional in the while header.
725   // C99 6.8.5p2/p4: The first substatement is executed if the expression
726   // compares unequal to 0.  The condition must be a scalar type.
727   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
728
729   BreakContinueStack.pop_back();
730
731   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
732   // to correctly handle break/continue though.
733   bool EmitBoolCondBranch = true;
734   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
735     if (C->isZero())
736       EmitBoolCondBranch = false;
737
738   // As long as the condition is true, iterate the loop.
739   if (EmitBoolCondBranch) {
740     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
741     Builder.CreateCondBr(
742         BoolCondVal, LoopBody, LoopExit.getBlock(),
743         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
744   }
745
746   LoopStack.pop();
747
748   // Emit the exit block.
749   EmitBlock(LoopExit.getBlock());
750
751   // The DoCond block typically is just a branch if we skipped
752   // emitting a branch, try to erase it.
753   if (!EmitBoolCondBranch)
754     SimplifyForwardingBlocks(LoopCond.getBlock());
755 }
756
757 void CodeGenFunction::EmitForStmt(const ForStmt &S,
758                                   ArrayRef<const Attr *> ForAttrs) {
759   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
760
761   LexicalScope ForScope(*this, S.getSourceRange());
762
763   // Evaluate the first part before the loop.
764   if (S.getInit())
765     EmitStmt(S.getInit());
766
767   // Start the loop with a block that tests the condition.
768   // If there's an increment, the continue scope will be overwritten
769   // later.
770   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
771   llvm::BasicBlock *CondBlock = Continue.getBlock();
772   EmitBlock(CondBlock);
773
774   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
775
776   // If the for loop doesn't have an increment we can just use the
777   // condition as the continue block.  Otherwise we'll need to create
778   // a block for it (in the current scope, i.e. in the scope of the
779   // condition), and that we will become our continue block.
780   if (S.getInc())
781     Continue = getJumpDestInCurrentScope("for.inc");
782
783   // Store the blocks to use for break and continue.
784   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
785
786   // Create a cleanup scope for the condition variable cleanups.
787   LexicalScope ConditionScope(*this, S.getSourceRange());
788
789   if (S.getCond()) {
790     // If the for statement has a condition scope, emit the local variable
791     // declaration.
792     if (S.getConditionVariable()) {
793       EmitAutoVarDecl(*S.getConditionVariable());
794     }
795
796     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
797     // If there are any cleanups between here and the loop-exit scope,
798     // create a block to stage a loop exit along.
799     if (ForScope.requiresCleanups())
800       ExitBlock = createBasicBlock("for.cond.cleanup");
801
802     // As long as the condition is true, iterate the loop.
803     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
804
805     // C99 6.8.5p2/p4: The first substatement is executed if the expression
806     // compares unequal to 0.  The condition must be a scalar type.
807     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
808     Builder.CreateCondBr(
809         BoolCondVal, ForBody, ExitBlock,
810         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
811
812     if (ExitBlock != LoopExit.getBlock()) {
813       EmitBlock(ExitBlock);
814       EmitBranchThroughCleanup(LoopExit);
815     }
816
817     EmitBlock(ForBody);
818   } else {
819     // Treat it as a non-zero constant.  Don't even create a new block for the
820     // body, just fall into it.
821   }
822   incrementProfileCounter(&S);
823
824   {
825     // Create a separate cleanup scope for the body, in case it is not
826     // a compound statement.
827     RunCleanupsScope BodyScope(*this);
828     EmitStmt(S.getBody());
829   }
830
831   // If there is an increment, emit it next.
832   if (S.getInc()) {
833     EmitBlock(Continue.getBlock());
834     EmitStmt(S.getInc());
835   }
836
837   BreakContinueStack.pop_back();
838
839   ConditionScope.ForceCleanup();
840
841   EmitStopPoint(&S);
842   EmitBranch(CondBlock);
843
844   ForScope.ForceCleanup();
845
846   LoopStack.pop();
847
848   // Emit the fall-through block.
849   EmitBlock(LoopExit.getBlock(), true);
850 }
851
852 void
853 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
854                                      ArrayRef<const Attr *> ForAttrs) {
855   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
856
857   LexicalScope ForScope(*this, S.getSourceRange());
858
859   // Evaluate the first pieces before the loop.
860   EmitStmt(S.getRangeStmt());
861   EmitStmt(S.getBeginEndStmt());
862
863   // Start the loop with a block that tests the condition.
864   // If there's an increment, the continue scope will be overwritten
865   // later.
866   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
867   EmitBlock(CondBlock);
868
869   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
870
871   // If there are any cleanups between here and the loop-exit scope,
872   // create a block to stage a loop exit along.
873   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
874   if (ForScope.requiresCleanups())
875     ExitBlock = createBasicBlock("for.cond.cleanup");
876
877   // The loop body, consisting of the specified body and the loop variable.
878   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
879
880   // The body is executed if the expression, contextually converted
881   // to bool, is true.
882   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
883   Builder.CreateCondBr(
884       BoolCondVal, ForBody, ExitBlock,
885       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
886
887   if (ExitBlock != LoopExit.getBlock()) {
888     EmitBlock(ExitBlock);
889     EmitBranchThroughCleanup(LoopExit);
890   }
891
892   EmitBlock(ForBody);
893   incrementProfileCounter(&S);
894
895   // Create a block for the increment. In case of a 'continue', we jump there.
896   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
897
898   // Store the blocks to use for break and continue.
899   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
900
901   {
902     // Create a separate cleanup scope for the loop variable and body.
903     LexicalScope BodyScope(*this, S.getSourceRange());
904     EmitStmt(S.getLoopVarStmt());
905     EmitStmt(S.getBody());
906   }
907
908   EmitStopPoint(&S);
909   // If there is an increment, emit it next.
910   EmitBlock(Continue.getBlock());
911   EmitStmt(S.getInc());
912
913   BreakContinueStack.pop_back();
914
915   EmitBranch(CondBlock);
916
917   ForScope.ForceCleanup();
918
919   LoopStack.pop();
920
921   // Emit the fall-through block.
922   EmitBlock(LoopExit.getBlock(), true);
923 }
924
925 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
926   if (RV.isScalar()) {
927     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
928   } else if (RV.isAggregate()) {
929     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
930   } else {
931     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
932                        /*init*/ true);
933   }
934   EmitBranchThroughCleanup(ReturnBlock);
935 }
936
937 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
938 /// if the function returns void, or may be missing one if the function returns
939 /// non-void.  Fun stuff :).
940 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
941   // Returning from an outlined SEH helper is UB, and we already warn on it.
942   if (IsOutlinedSEHHelper) {
943     Builder.CreateUnreachable();
944     Builder.ClearInsertionPoint();
945   }
946
947   // Emit the result value, even if unused, to evalute the side effects.
948   const Expr *RV = S.getRetValue();
949
950   // Treat block literals in a return expression as if they appeared
951   // in their own scope.  This permits a small, easily-implemented
952   // exception to our over-conservative rules about not jumping to
953   // statements following block literals with non-trivial cleanups.
954   RunCleanupsScope cleanupScope(*this);
955   if (const ExprWithCleanups *cleanups =
956         dyn_cast_or_null<ExprWithCleanups>(RV)) {
957     enterFullExpression(cleanups);
958     RV = cleanups->getSubExpr();
959   }
960
961   // FIXME: Clean this up by using an LValue for ReturnTemp,
962   // EmitStoreThroughLValue, and EmitAnyExpr.
963   if (getLangOpts().ElideConstructors &&
964       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
965     // Apply the named return value optimization for this return statement,
966     // which means doing nothing: the appropriate result has already been
967     // constructed into the NRVO variable.
968
969     // If there is an NRVO flag for this variable, set it to 1 into indicate
970     // that the cleanup code should not destroy the variable.
971     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
972       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
973   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
974     // Make sure not to return anything, but evaluate the expression
975     // for side effects.
976     if (RV)
977       EmitAnyExpr(RV);
978   } else if (!RV) {
979     // Do nothing (return value is left uninitialized)
980   } else if (FnRetTy->isReferenceType()) {
981     // If this function returns a reference, take the address of the expression
982     // rather than the value.
983     RValue Result = EmitReferenceBindingToExpr(RV);
984     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
985   } else {
986     switch (getEvaluationKind(RV->getType())) {
987     case TEK_Scalar:
988       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
989       break;
990     case TEK_Complex:
991       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
992                                 /*isInit*/ true);
993       break;
994     case TEK_Aggregate:
995       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
996                                             Qualifiers(),
997                                             AggValueSlot::IsDestructed,
998                                             AggValueSlot::DoesNotNeedGCBarriers,
999                                             AggValueSlot::IsNotAliased));
1000       break;
1001     }
1002   }
1003
1004   ++NumReturnExprs;
1005   if (!RV || RV->isEvaluatable(getContext()))
1006     ++NumSimpleReturnExprs;
1007
1008   cleanupScope.ForceCleanup();
1009   EmitBranchThroughCleanup(ReturnBlock);
1010 }
1011
1012 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1013   // As long as debug info is modeled with instructions, we have to ensure we
1014   // have a place to insert here and write the stop point here.
1015   if (HaveInsertPoint())
1016     EmitStopPoint(&S);
1017
1018   for (const auto *I : S.decls())
1019     EmitDecl(*I);
1020 }
1021
1022 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1023   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1024
1025   // If this code is reachable then emit a stop point (if generating
1026   // debug info). We have to do this ourselves because we are on the
1027   // "simple" statement path.
1028   if (HaveInsertPoint())
1029     EmitStopPoint(&S);
1030
1031   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1032 }
1033
1034 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1035   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1036
1037   // If this code is reachable then emit a stop point (if generating
1038   // debug info). We have to do this ourselves because we are on the
1039   // "simple" statement path.
1040   if (HaveInsertPoint())
1041     EmitStopPoint(&S);
1042
1043   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1044 }
1045
1046 /// EmitCaseStmtRange - If case statement range is not too big then
1047 /// add multiple cases to switch instruction, one for each value within
1048 /// the range. If range is too big then emit "if" condition check.
1049 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1050   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1051
1052   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1053   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1054
1055   // Emit the code for this case. We do this first to make sure it is
1056   // properly chained from our predecessor before generating the
1057   // switch machinery to enter this block.
1058   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1059   EmitBlockWithFallThrough(CaseDest, &S);
1060   EmitStmt(S.getSubStmt());
1061
1062   // If range is empty, do nothing.
1063   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1064     return;
1065
1066   llvm::APInt Range = RHS - LHS;
1067   // FIXME: parameters such as this should not be hardcoded.
1068   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1069     // Range is small enough to add multiple switch instruction cases.
1070     uint64_t Total = getProfileCount(&S);
1071     unsigned NCases = Range.getZExtValue() + 1;
1072     // We only have one region counter for the entire set of cases here, so we
1073     // need to divide the weights evenly between the generated cases, ensuring
1074     // that the total weight is preserved. E.g., a weight of 5 over three cases
1075     // will be distributed as weights of 2, 2, and 1.
1076     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1077     for (unsigned I = 0; I != NCases; ++I) {
1078       if (SwitchWeights)
1079         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1080       if (Rem)
1081         Rem--;
1082       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1083       LHS++;
1084     }
1085     return;
1086   }
1087
1088   // The range is too big. Emit "if" condition into a new block,
1089   // making sure to save and restore the current insertion point.
1090   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1091
1092   // Push this test onto the chain of range checks (which terminates
1093   // in the default basic block). The switch's default will be changed
1094   // to the top of this chain after switch emission is complete.
1095   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1096   CaseRangeBlock = createBasicBlock("sw.caserange");
1097
1098   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1099   Builder.SetInsertPoint(CaseRangeBlock);
1100
1101   // Emit range check.
1102   llvm::Value *Diff =
1103     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1104   llvm::Value *Cond =
1105     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1106
1107   llvm::MDNode *Weights = nullptr;
1108   if (SwitchWeights) {
1109     uint64_t ThisCount = getProfileCount(&S);
1110     uint64_t DefaultCount = (*SwitchWeights)[0];
1111     Weights = createProfileWeights(ThisCount, DefaultCount);
1112
1113     // Since we're chaining the switch default through each large case range, we
1114     // need to update the weight for the default, ie, the first case, to include
1115     // this case.
1116     (*SwitchWeights)[0] += ThisCount;
1117   }
1118   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1119
1120   // Restore the appropriate insertion point.
1121   if (RestoreBB)
1122     Builder.SetInsertPoint(RestoreBB);
1123   else
1124     Builder.ClearInsertionPoint();
1125 }
1126
1127 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1128   // If there is no enclosing switch instance that we're aware of, then this
1129   // case statement and its block can be elided.  This situation only happens
1130   // when we've constant-folded the switch, are emitting the constant case,
1131   // and part of the constant case includes another case statement.  For
1132   // instance: switch (4) { case 4: do { case 5: } while (1); }
1133   if (!SwitchInsn) {
1134     EmitStmt(S.getSubStmt());
1135     return;
1136   }
1137
1138   // Handle case ranges.
1139   if (S.getRHS()) {
1140     EmitCaseStmtRange(S);
1141     return;
1142   }
1143
1144   llvm::ConstantInt *CaseVal =
1145     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1146
1147   // If the body of the case is just a 'break', try to not emit an empty block.
1148   // If we're profiling or we're not optimizing, leave the block in for better
1149   // debug and coverage analysis.
1150   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1151       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1152       isa<BreakStmt>(S.getSubStmt())) {
1153     JumpDest Block = BreakContinueStack.back().BreakBlock;
1154
1155     // Only do this optimization if there are no cleanups that need emitting.
1156     if (isObviouslyBranchWithoutCleanups(Block)) {
1157       if (SwitchWeights)
1158         SwitchWeights->push_back(getProfileCount(&S));
1159       SwitchInsn->addCase(CaseVal, Block.getBlock());
1160
1161       // If there was a fallthrough into this case, make sure to redirect it to
1162       // the end of the switch as well.
1163       if (Builder.GetInsertBlock()) {
1164         Builder.CreateBr(Block.getBlock());
1165         Builder.ClearInsertionPoint();
1166       }
1167       return;
1168     }
1169   }
1170
1171   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1172   EmitBlockWithFallThrough(CaseDest, &S);
1173   if (SwitchWeights)
1174     SwitchWeights->push_back(getProfileCount(&S));
1175   SwitchInsn->addCase(CaseVal, CaseDest);
1176
1177   // Recursively emitting the statement is acceptable, but is not wonderful for
1178   // code where we have many case statements nested together, i.e.:
1179   //  case 1:
1180   //    case 2:
1181   //      case 3: etc.
1182   // Handling this recursively will create a new block for each case statement
1183   // that falls through to the next case which is IR intensive.  It also causes
1184   // deep recursion which can run into stack depth limitations.  Handle
1185   // sequential non-range case statements specially.
1186   const CaseStmt *CurCase = &S;
1187   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1188
1189   // Otherwise, iteratively add consecutive cases to this switch stmt.
1190   while (NextCase && NextCase->getRHS() == nullptr) {
1191     CurCase = NextCase;
1192     llvm::ConstantInt *CaseVal =
1193       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1194
1195     if (SwitchWeights)
1196       SwitchWeights->push_back(getProfileCount(NextCase));
1197     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1198       CaseDest = createBasicBlock("sw.bb");
1199       EmitBlockWithFallThrough(CaseDest, &S);
1200     }
1201
1202     SwitchInsn->addCase(CaseVal, CaseDest);
1203     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1204   }
1205
1206   // Normal default recursion for non-cases.
1207   EmitStmt(CurCase->getSubStmt());
1208 }
1209
1210 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1211   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1212   assert(DefaultBlock->empty() &&
1213          "EmitDefaultStmt: Default block already defined?");
1214
1215   EmitBlockWithFallThrough(DefaultBlock, &S);
1216
1217   EmitStmt(S.getSubStmt());
1218 }
1219
1220 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1221 /// constant value that is being switched on, see if we can dead code eliminate
1222 /// the body of the switch to a simple series of statements to emit.  Basically,
1223 /// on a switch (5) we want to find these statements:
1224 ///    case 5:
1225 ///      printf(...);    <--
1226 ///      ++i;            <--
1227 ///      break;
1228 ///
1229 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1230 /// transformation (for example, one of the elided statements contains a label
1231 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1232 /// should include statements after it (e.g. the printf() line is a substmt of
1233 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1234 /// statement, then return CSFC_Success.
1235 ///
1236 /// If Case is non-null, then we are looking for the specified case, checking
1237 /// that nothing we jump over contains labels.  If Case is null, then we found
1238 /// the case and are looking for the break.
1239 ///
1240 /// If the recursive walk actually finds our Case, then we set FoundCase to
1241 /// true.
1242 ///
1243 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1244 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1245                                             const SwitchCase *Case,
1246                                             bool &FoundCase,
1247                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1248   // If this is a null statement, just succeed.
1249   if (!S)
1250     return Case ? CSFC_Success : CSFC_FallThrough;
1251
1252   // If this is the switchcase (case 4: or default) that we're looking for, then
1253   // we're in business.  Just add the substatement.
1254   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1255     if (S == Case) {
1256       FoundCase = true;
1257       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1258                                       ResultStmts);
1259     }
1260
1261     // Otherwise, this is some other case or default statement, just ignore it.
1262     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1263                                     ResultStmts);
1264   }
1265
1266   // If we are in the live part of the code and we found our break statement,
1267   // return a success!
1268   if (!Case && isa<BreakStmt>(S))
1269     return CSFC_Success;
1270
1271   // If this is a switch statement, then it might contain the SwitchCase, the
1272   // break, or neither.
1273   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1274     // Handle this as two cases: we might be looking for the SwitchCase (if so
1275     // the skipped statements must be skippable) or we might already have it.
1276     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1277     if (Case) {
1278       // Keep track of whether we see a skipped declaration.  The code could be
1279       // using the declaration even if it is skipped, so we can't optimize out
1280       // the decl if the kept statements might refer to it.
1281       bool HadSkippedDecl = false;
1282
1283       // If we're looking for the case, just see if we can skip each of the
1284       // substatements.
1285       for (; Case && I != E; ++I) {
1286         HadSkippedDecl |= isa<DeclStmt>(*I);
1287
1288         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1289         case CSFC_Failure: return CSFC_Failure;
1290         case CSFC_Success:
1291           // A successful result means that either 1) that the statement doesn't
1292           // have the case and is skippable, or 2) does contain the case value
1293           // and also contains the break to exit the switch.  In the later case,
1294           // we just verify the rest of the statements are elidable.
1295           if (FoundCase) {
1296             // If we found the case and skipped declarations, we can't do the
1297             // optimization.
1298             if (HadSkippedDecl)
1299               return CSFC_Failure;
1300
1301             for (++I; I != E; ++I)
1302               if (CodeGenFunction::ContainsLabel(*I, true))
1303                 return CSFC_Failure;
1304             return CSFC_Success;
1305           }
1306           break;
1307         case CSFC_FallThrough:
1308           // If we have a fallthrough condition, then we must have found the
1309           // case started to include statements.  Consider the rest of the
1310           // statements in the compound statement as candidates for inclusion.
1311           assert(FoundCase && "Didn't find case but returned fallthrough?");
1312           // We recursively found Case, so we're not looking for it anymore.
1313           Case = nullptr;
1314
1315           // If we found the case and skipped declarations, we can't do the
1316           // optimization.
1317           if (HadSkippedDecl)
1318             return CSFC_Failure;
1319           break;
1320         }
1321       }
1322     }
1323
1324     // If we have statements in our range, then we know that the statements are
1325     // live and need to be added to the set of statements we're tracking.
1326     for (; I != E; ++I) {
1327       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1328       case CSFC_Failure: return CSFC_Failure;
1329       case CSFC_FallThrough:
1330         // A fallthrough result means that the statement was simple and just
1331         // included in ResultStmt, keep adding them afterwards.
1332         break;
1333       case CSFC_Success:
1334         // A successful result means that we found the break statement and
1335         // stopped statement inclusion.  We just ensure that any leftover stmts
1336         // are skippable and return success ourselves.
1337         for (++I; I != E; ++I)
1338           if (CodeGenFunction::ContainsLabel(*I, true))
1339             return CSFC_Failure;
1340         return CSFC_Success;
1341       }
1342     }
1343
1344     return Case ? CSFC_Success : CSFC_FallThrough;
1345   }
1346
1347   // Okay, this is some other statement that we don't handle explicitly, like a
1348   // for statement or increment etc.  If we are skipping over this statement,
1349   // just verify it doesn't have labels, which would make it invalid to elide.
1350   if (Case) {
1351     if (CodeGenFunction::ContainsLabel(S, true))
1352       return CSFC_Failure;
1353     return CSFC_Success;
1354   }
1355
1356   // Otherwise, we want to include this statement.  Everything is cool with that
1357   // so long as it doesn't contain a break out of the switch we're in.
1358   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1359
1360   // Otherwise, everything is great.  Include the statement and tell the caller
1361   // that we fall through and include the next statement as well.
1362   ResultStmts.push_back(S);
1363   return CSFC_FallThrough;
1364 }
1365
1366 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1367 /// then invoke CollectStatementsForCase to find the list of statements to emit
1368 /// for a switch on constant.  See the comment above CollectStatementsForCase
1369 /// for more details.
1370 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1371                                        const llvm::APSInt &ConstantCondValue,
1372                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1373                                        ASTContext &C,
1374                                        const SwitchCase *&ResultCase) {
1375   // First step, find the switch case that is being branched to.  We can do this
1376   // efficiently by scanning the SwitchCase list.
1377   const SwitchCase *Case = S.getSwitchCaseList();
1378   const DefaultStmt *DefaultCase = nullptr;
1379
1380   for (; Case; Case = Case->getNextSwitchCase()) {
1381     // It's either a default or case.  Just remember the default statement in
1382     // case we're not jumping to any numbered cases.
1383     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1384       DefaultCase = DS;
1385       continue;
1386     }
1387
1388     // Check to see if this case is the one we're looking for.
1389     const CaseStmt *CS = cast<CaseStmt>(Case);
1390     // Don't handle case ranges yet.
1391     if (CS->getRHS()) return false;
1392
1393     // If we found our case, remember it as 'case'.
1394     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1395       break;
1396   }
1397
1398   // If we didn't find a matching case, we use a default if it exists, or we
1399   // elide the whole switch body!
1400   if (!Case) {
1401     // It is safe to elide the body of the switch if it doesn't contain labels
1402     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1403     if (!DefaultCase)
1404       return !CodeGenFunction::ContainsLabel(&S);
1405     Case = DefaultCase;
1406   }
1407
1408   // Ok, we know which case is being jumped to, try to collect all the
1409   // statements that follow it.  This can fail for a variety of reasons.  Also,
1410   // check to see that the recursive walk actually found our case statement.
1411   // Insane cases like this can fail to find it in the recursive walk since we
1412   // don't handle every stmt kind:
1413   // switch (4) {
1414   //   while (1) {
1415   //     case 4: ...
1416   bool FoundCase = false;
1417   ResultCase = Case;
1418   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1419                                   ResultStmts) != CSFC_Failure &&
1420          FoundCase;
1421 }
1422
1423 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1424   // Handle nested switch statements.
1425   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1426   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1427   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1428
1429   // See if we can constant fold the condition of the switch and therefore only
1430   // emit the live case statement (if any) of the switch.
1431   llvm::APSInt ConstantCondValue;
1432   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1433     SmallVector<const Stmt*, 4> CaseStmts;
1434     const SwitchCase *Case = nullptr;
1435     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1436                                    getContext(), Case)) {
1437       if (Case)
1438         incrementProfileCounter(Case);
1439       RunCleanupsScope ExecutedScope(*this);
1440
1441       // Emit the condition variable if needed inside the entire cleanup scope
1442       // used by this special case for constant folded switches.
1443       if (S.getConditionVariable())
1444         EmitAutoVarDecl(*S.getConditionVariable());
1445
1446       // At this point, we are no longer "within" a switch instance, so
1447       // we can temporarily enforce this to ensure that any embedded case
1448       // statements are not emitted.
1449       SwitchInsn = nullptr;
1450
1451       // Okay, we can dead code eliminate everything except this case.  Emit the
1452       // specified series of statements and we're good.
1453       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1454         EmitStmt(CaseStmts[i]);
1455       incrementProfileCounter(&S);
1456
1457       // Now we want to restore the saved switch instance so that nested
1458       // switches continue to function properly
1459       SwitchInsn = SavedSwitchInsn;
1460
1461       return;
1462     }
1463   }
1464
1465   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1466
1467   RunCleanupsScope ConditionScope(*this);
1468   if (S.getConditionVariable())
1469     EmitAutoVarDecl(*S.getConditionVariable());
1470   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1471
1472   // Create basic block to hold stuff that comes after switch
1473   // statement. We also need to create a default block now so that
1474   // explicit case ranges tests can have a place to jump to on
1475   // failure.
1476   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1477   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1478   if (PGO.haveRegionCounts()) {
1479     // Walk the SwitchCase list to find how many there are.
1480     uint64_t DefaultCount = 0;
1481     unsigned NumCases = 0;
1482     for (const SwitchCase *Case = S.getSwitchCaseList();
1483          Case;
1484          Case = Case->getNextSwitchCase()) {
1485       if (isa<DefaultStmt>(Case))
1486         DefaultCount = getProfileCount(Case);
1487       NumCases += 1;
1488     }
1489     SwitchWeights = new SmallVector<uint64_t, 16>();
1490     SwitchWeights->reserve(NumCases);
1491     // The default needs to be first. We store the edge count, so we already
1492     // know the right weight.
1493     SwitchWeights->push_back(DefaultCount);
1494   }
1495   CaseRangeBlock = DefaultBlock;
1496
1497   // Clear the insertion point to indicate we are in unreachable code.
1498   Builder.ClearInsertionPoint();
1499
1500   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1501   // then reuse last ContinueBlock.
1502   JumpDest OuterContinue;
1503   if (!BreakContinueStack.empty())
1504     OuterContinue = BreakContinueStack.back().ContinueBlock;
1505
1506   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1507
1508   // Emit switch body.
1509   EmitStmt(S.getBody());
1510
1511   BreakContinueStack.pop_back();
1512
1513   // Update the default block in case explicit case range tests have
1514   // been chained on top.
1515   SwitchInsn->setDefaultDest(CaseRangeBlock);
1516
1517   // If a default was never emitted:
1518   if (!DefaultBlock->getParent()) {
1519     // If we have cleanups, emit the default block so that there's a
1520     // place to jump through the cleanups from.
1521     if (ConditionScope.requiresCleanups()) {
1522       EmitBlock(DefaultBlock);
1523
1524     // Otherwise, just forward the default block to the switch end.
1525     } else {
1526       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1527       delete DefaultBlock;
1528     }
1529   }
1530
1531   ConditionScope.ForceCleanup();
1532
1533   // Emit continuation.
1534   EmitBlock(SwitchExit.getBlock(), true);
1535   incrementProfileCounter(&S);
1536
1537   // If the switch has a condition wrapped by __builtin_unpredictable,
1538   // create metadata that specifies that the switch is unpredictable.
1539   // Don't bother if not optimizing because that metadata would not be used.
1540   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1541     if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) {
1542       const Decl *TargetDecl = Call->getCalleeDecl();
1543       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1544         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1545           llvm::MDBuilder MDHelper(getLLVMContext());
1546           SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1547                                   MDHelper.createUnpredictable());
1548         }
1549       }
1550     }
1551   }
1552
1553   if (SwitchWeights) {
1554     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1555            "switch weights do not match switch cases");
1556     // If there's only one jump destination there's no sense weighting it.
1557     if (SwitchWeights->size() > 1)
1558       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1559                               createProfileWeights(*SwitchWeights));
1560     delete SwitchWeights;
1561   }
1562   SwitchInsn = SavedSwitchInsn;
1563   SwitchWeights = SavedSwitchWeights;
1564   CaseRangeBlock = SavedCRBlock;
1565 }
1566
1567 static std::string
1568 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1569                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1570   std::string Result;
1571
1572   while (*Constraint) {
1573     switch (*Constraint) {
1574     default:
1575       Result += Target.convertConstraint(Constraint);
1576       break;
1577     // Ignore these
1578     case '*':
1579     case '?':
1580     case '!':
1581     case '=': // Will see this and the following in mult-alt constraints.
1582     case '+':
1583       break;
1584     case '#': // Ignore the rest of the constraint alternative.
1585       while (Constraint[1] && Constraint[1] != ',')
1586         Constraint++;
1587       break;
1588     case '&':
1589     case '%':
1590       Result += *Constraint;
1591       while (Constraint[1] && Constraint[1] == *Constraint)
1592         Constraint++;
1593       break;
1594     case ',':
1595       Result += "|";
1596       break;
1597     case 'g':
1598       Result += "imr";
1599       break;
1600     case '[': {
1601       assert(OutCons &&
1602              "Must pass output names to constraints with a symbolic name");
1603       unsigned Index;
1604       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1605       assert(result && "Could not resolve symbolic name"); (void)result;
1606       Result += llvm::utostr(Index);
1607       break;
1608     }
1609     }
1610
1611     Constraint++;
1612   }
1613
1614   return Result;
1615 }
1616
1617 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1618 /// as using a particular register add that as a constraint that will be used
1619 /// in this asm stmt.
1620 static std::string
1621 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1622                        const TargetInfo &Target, CodeGenModule &CGM,
1623                        const AsmStmt &Stmt, const bool EarlyClobber) {
1624   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1625   if (!AsmDeclRef)
1626     return Constraint;
1627   const ValueDecl &Value = *AsmDeclRef->getDecl();
1628   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1629   if (!Variable)
1630     return Constraint;
1631   if (Variable->getStorageClass() != SC_Register)
1632     return Constraint;
1633   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1634   if (!Attr)
1635     return Constraint;
1636   StringRef Register = Attr->getLabel();
1637   assert(Target.isValidGCCRegisterName(Register));
1638   // We're using validateOutputConstraint here because we only care if
1639   // this is a register constraint.
1640   TargetInfo::ConstraintInfo Info(Constraint, "");
1641   if (Target.validateOutputConstraint(Info) &&
1642       !Info.allowsRegister()) {
1643     CGM.ErrorUnsupported(&Stmt, "__asm__");
1644     return Constraint;
1645   }
1646   // Canonicalize the register here before returning it.
1647   Register = Target.getNormalizedGCCRegisterName(Register);
1648   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1649 }
1650
1651 llvm::Value*
1652 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1653                                     LValue InputValue, QualType InputType,
1654                                     std::string &ConstraintStr,
1655                                     SourceLocation Loc) {
1656   llvm::Value *Arg;
1657   if (Info.allowsRegister() || !Info.allowsMemory()) {
1658     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1659       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1660     } else {
1661       llvm::Type *Ty = ConvertType(InputType);
1662       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1663       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1664         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1665         Ty = llvm::PointerType::getUnqual(Ty);
1666
1667         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1668                                                        Ty));
1669       } else {
1670         Arg = InputValue.getPointer();
1671         ConstraintStr += '*';
1672       }
1673     }
1674   } else {
1675     Arg = InputValue.getPointer();
1676     ConstraintStr += '*';
1677   }
1678
1679   return Arg;
1680 }
1681
1682 llvm::Value* CodeGenFunction::EmitAsmInput(
1683                                          const TargetInfo::ConstraintInfo &Info,
1684                                            const Expr *InputExpr,
1685                                            std::string &ConstraintStr) {
1686   // If this can't be a register or memory, i.e., has to be a constant
1687   // (immediate or symbolic), try to emit it as such.
1688   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1689     llvm::APSInt Result;
1690     if (InputExpr->EvaluateAsInt(Result, getContext()))
1691       return llvm::ConstantInt::get(getLLVMContext(), Result);
1692     assert(!Info.requiresImmediateConstant() &&
1693            "Required-immediate inlineasm arg isn't constant?");
1694   }
1695
1696   if (Info.allowsRegister() || !Info.allowsMemory())
1697     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1698       return EmitScalarExpr(InputExpr);
1699   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1700     return EmitScalarExpr(InputExpr);
1701   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1702   LValue Dest = EmitLValue(InputExpr);
1703   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1704                             InputExpr->getExprLoc());
1705 }
1706
1707 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1708 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1709 /// integers which are the source locations of the start of each line in the
1710 /// asm.
1711 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1712                                       CodeGenFunction &CGF) {
1713   SmallVector<llvm::Metadata *, 8> Locs;
1714   // Add the location of the first line to the MDNode.
1715   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1716       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1717   StringRef StrVal = Str->getString();
1718   if (!StrVal.empty()) {
1719     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1720     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1721     unsigned StartToken = 0;
1722     unsigned ByteOffset = 0;
1723
1724     // Add the location of the start of each subsequent line of the asm to the
1725     // MDNode.
1726     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1727       if (StrVal[i] != '\n') continue;
1728       SourceLocation LineLoc = Str->getLocationOfByte(
1729           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1730       Locs.push_back(llvm::ConstantAsMetadata::get(
1731           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1732     }
1733   }
1734
1735   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1736 }
1737
1738 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1739   // Assemble the final asm string.
1740   std::string AsmString = S.generateAsmString(getContext());
1741
1742   // Get all the output and input constraints together.
1743   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1744   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1745
1746   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1747     StringRef Name;
1748     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1749       Name = GAS->getOutputName(i);
1750     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1751     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1752     assert(IsValid && "Failed to parse output constraint");
1753     OutputConstraintInfos.push_back(Info);
1754   }
1755
1756   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1757     StringRef Name;
1758     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1759       Name = GAS->getInputName(i);
1760     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1761     bool IsValid =
1762       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1763     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1764     InputConstraintInfos.push_back(Info);
1765   }
1766
1767   std::string Constraints;
1768
1769   std::vector<LValue> ResultRegDests;
1770   std::vector<QualType> ResultRegQualTys;
1771   std::vector<llvm::Type *> ResultRegTypes;
1772   std::vector<llvm::Type *> ResultTruncRegTypes;
1773   std::vector<llvm::Type *> ArgTypes;
1774   std::vector<llvm::Value*> Args;
1775
1776   // Keep track of inout constraints.
1777   std::string InOutConstraints;
1778   std::vector<llvm::Value*> InOutArgs;
1779   std::vector<llvm::Type*> InOutArgTypes;
1780
1781   // An inline asm can be marked readonly if it meets the following conditions:
1782   //  - it doesn't have any sideeffects
1783   //  - it doesn't clobber memory
1784   //  - it doesn't return a value by-reference
1785   // It can be marked readnone if it doesn't have any input memory constraints
1786   // in addition to meeting the conditions listed above.
1787   bool ReadOnly = true, ReadNone = true;
1788
1789   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1790     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1791
1792     // Simplify the output constraint.
1793     std::string OutputConstraint(S.getOutputConstraint(i));
1794     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1795                                           getTarget());
1796
1797     const Expr *OutExpr = S.getOutputExpr(i);
1798     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1799
1800     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1801                                               getTarget(), CGM, S,
1802                                               Info.earlyClobber());
1803
1804     LValue Dest = EmitLValue(OutExpr);
1805     if (!Constraints.empty())
1806       Constraints += ',';
1807
1808     // If this is a register output, then make the inline asm return it
1809     // by-value.  If this is a memory result, return the value by-reference.
1810     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1811       Constraints += "=" + OutputConstraint;
1812       ResultRegQualTys.push_back(OutExpr->getType());
1813       ResultRegDests.push_back(Dest);
1814       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1815       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1816
1817       // If this output is tied to an input, and if the input is larger, then
1818       // we need to set the actual result type of the inline asm node to be the
1819       // same as the input type.
1820       if (Info.hasMatchingInput()) {
1821         unsigned InputNo;
1822         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1823           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1824           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1825             break;
1826         }
1827         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1828
1829         QualType InputTy = S.getInputExpr(InputNo)->getType();
1830         QualType OutputType = OutExpr->getType();
1831
1832         uint64_t InputSize = getContext().getTypeSize(InputTy);
1833         if (getContext().getTypeSize(OutputType) < InputSize) {
1834           // Form the asm to return the value as a larger integer or fp type.
1835           ResultRegTypes.back() = ConvertType(InputTy);
1836         }
1837       }
1838       if (llvm::Type* AdjTy =
1839             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1840                                                  ResultRegTypes.back()))
1841         ResultRegTypes.back() = AdjTy;
1842       else {
1843         CGM.getDiags().Report(S.getAsmLoc(),
1844                               diag::err_asm_invalid_type_in_input)
1845             << OutExpr->getType() << OutputConstraint;
1846       }
1847     } else {
1848       ArgTypes.push_back(Dest.getAddress().getType());
1849       Args.push_back(Dest.getPointer());
1850       Constraints += "=*";
1851       Constraints += OutputConstraint;
1852       ReadOnly = ReadNone = false;
1853     }
1854
1855     if (Info.isReadWrite()) {
1856       InOutConstraints += ',';
1857
1858       const Expr *InputExpr = S.getOutputExpr(i);
1859       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1860                                             InOutConstraints,
1861                                             InputExpr->getExprLoc());
1862
1863       if (llvm::Type* AdjTy =
1864           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1865                                                Arg->getType()))
1866         Arg = Builder.CreateBitCast(Arg, AdjTy);
1867
1868       if (Info.allowsRegister())
1869         InOutConstraints += llvm::utostr(i);
1870       else
1871         InOutConstraints += OutputConstraint;
1872
1873       InOutArgTypes.push_back(Arg->getType());
1874       InOutArgs.push_back(Arg);
1875     }
1876   }
1877
1878   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1879   // to the return value slot. Only do this when returning in registers.
1880   if (isa<MSAsmStmt>(&S)) {
1881     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1882     if (RetAI.isDirect() || RetAI.isExtend()) {
1883       // Make a fake lvalue for the return value slot.
1884       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1885       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1886           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1887           ResultRegDests, AsmString, S.getNumOutputs());
1888       SawAsmBlock = true;
1889     }
1890   }
1891
1892   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1893     const Expr *InputExpr = S.getInputExpr(i);
1894
1895     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1896
1897     if (Info.allowsMemory())
1898       ReadNone = false;
1899
1900     if (!Constraints.empty())
1901       Constraints += ',';
1902
1903     // Simplify the input constraint.
1904     std::string InputConstraint(S.getInputConstraint(i));
1905     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1906                                          &OutputConstraintInfos);
1907
1908     InputConstraint = AddVariableConstraints(
1909         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1910         getTarget(), CGM, S, false /* No EarlyClobber */);
1911
1912     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1913
1914     // If this input argument is tied to a larger output result, extend the
1915     // input to be the same size as the output.  The LLVM backend wants to see
1916     // the input and output of a matching constraint be the same size.  Note
1917     // that GCC does not define what the top bits are here.  We use zext because
1918     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1919     if (Info.hasTiedOperand()) {
1920       unsigned Output = Info.getTiedOperand();
1921       QualType OutputType = S.getOutputExpr(Output)->getType();
1922       QualType InputTy = InputExpr->getType();
1923
1924       if (getContext().getTypeSize(OutputType) >
1925           getContext().getTypeSize(InputTy)) {
1926         // Use ptrtoint as appropriate so that we can do our extension.
1927         if (isa<llvm::PointerType>(Arg->getType()))
1928           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1929         llvm::Type *OutputTy = ConvertType(OutputType);
1930         if (isa<llvm::IntegerType>(OutputTy))
1931           Arg = Builder.CreateZExt(Arg, OutputTy);
1932         else if (isa<llvm::PointerType>(OutputTy))
1933           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1934         else {
1935           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1936           Arg = Builder.CreateFPExt(Arg, OutputTy);
1937         }
1938       }
1939     }
1940     if (llvm::Type* AdjTy =
1941               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1942                                                    Arg->getType()))
1943       Arg = Builder.CreateBitCast(Arg, AdjTy);
1944     else
1945       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1946           << InputExpr->getType() << InputConstraint;
1947
1948     ArgTypes.push_back(Arg->getType());
1949     Args.push_back(Arg);
1950     Constraints += InputConstraint;
1951   }
1952
1953   // Append the "input" part of inout constraints last.
1954   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1955     ArgTypes.push_back(InOutArgTypes[i]);
1956     Args.push_back(InOutArgs[i]);
1957   }
1958   Constraints += InOutConstraints;
1959
1960   // Clobbers
1961   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1962     StringRef Clobber = S.getClobber(i);
1963
1964     if (Clobber == "memory")
1965       ReadOnly = ReadNone = false;
1966     else if (Clobber != "cc")
1967       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1968
1969     if (!Constraints.empty())
1970       Constraints += ',';
1971
1972     Constraints += "~{";
1973     Constraints += Clobber;
1974     Constraints += '}';
1975   }
1976
1977   // Add machine specific clobbers
1978   std::string MachineClobbers = getTarget().getClobbers();
1979   if (!MachineClobbers.empty()) {
1980     if (!Constraints.empty())
1981       Constraints += ',';
1982     Constraints += MachineClobbers;
1983   }
1984
1985   llvm::Type *ResultType;
1986   if (ResultRegTypes.empty())
1987     ResultType = VoidTy;
1988   else if (ResultRegTypes.size() == 1)
1989     ResultType = ResultRegTypes[0];
1990   else
1991     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1992
1993   llvm::FunctionType *FTy =
1994     llvm::FunctionType::get(ResultType, ArgTypes, false);
1995
1996   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1997   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1998     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1999   llvm::InlineAsm *IA =
2000     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2001                          /* IsAlignStack */ false, AsmDialect);
2002   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2003   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2004                        llvm::Attribute::NoUnwind);
2005
2006   if (isa<MSAsmStmt>(&S)) {
2007     // If the assembly contains any labels, mark the call noduplicate to prevent
2008     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
2009     // works.
2010     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
2011       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2012                            llvm::Attribute::NoDuplicate);
2013   }
2014
2015   // Attach readnone and readonly attributes.
2016   if (!HasSideEffect) {
2017     if (ReadNone)
2018       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2019                            llvm::Attribute::ReadNone);
2020     else if (ReadOnly)
2021       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2022                            llvm::Attribute::ReadOnly);
2023   }
2024
2025   // Slap the source location of the inline asm into a !srcloc metadata on the
2026   // call.
2027   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2028     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2029                                                    *this));
2030   } else {
2031     // At least put the line number on MS inline asm blobs.
2032     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2033     Result->setMetadata("srcloc",
2034                         llvm::MDNode::get(getLLVMContext(),
2035                                           llvm::ConstantAsMetadata::get(Loc)));
2036   }
2037
2038   // Extract all of the register value results from the asm.
2039   std::vector<llvm::Value*> RegResults;
2040   if (ResultRegTypes.size() == 1) {
2041     RegResults.push_back(Result);
2042   } else {
2043     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2044       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2045       RegResults.push_back(Tmp);
2046     }
2047   }
2048
2049   assert(RegResults.size() == ResultRegTypes.size());
2050   assert(RegResults.size() == ResultTruncRegTypes.size());
2051   assert(RegResults.size() == ResultRegDests.size());
2052   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2053     llvm::Value *Tmp = RegResults[i];
2054
2055     // If the result type of the LLVM IR asm doesn't match the result type of
2056     // the expression, do the conversion.
2057     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2058       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2059
2060       // Truncate the integer result to the right size, note that TruncTy can be
2061       // a pointer.
2062       if (TruncTy->isFloatingPointTy())
2063         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2064       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2065         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2066         Tmp = Builder.CreateTrunc(Tmp,
2067                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2068         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2069       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2070         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2071         Tmp = Builder.CreatePtrToInt(Tmp,
2072                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2073         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2074       } else if (TruncTy->isIntegerTy()) {
2075         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2076       } else if (TruncTy->isVectorTy()) {
2077         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2078       }
2079     }
2080
2081     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2082   }
2083 }
2084
2085 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2086   const RecordDecl *RD = S.getCapturedRecordDecl();
2087   QualType RecordTy = getContext().getRecordType(RD);
2088
2089   // Initialize the captured struct.
2090   LValue SlotLV =
2091     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2092
2093   RecordDecl::field_iterator CurField = RD->field_begin();
2094   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2095                                                  E = S.capture_init_end();
2096        I != E; ++I, ++CurField) {
2097     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2098     if (CurField->hasCapturedVLAType()) {
2099       auto VAT = CurField->getCapturedVLAType();
2100       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2101     } else {
2102       EmitInitializerForField(*CurField, LV, *I, None);
2103     }
2104   }
2105
2106   return SlotLV;
2107 }
2108
2109 /// Generate an outlined function for the body of a CapturedStmt, store any
2110 /// captured variables into the captured struct, and call the outlined function.
2111 llvm::Function *
2112 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2113   LValue CapStruct = InitCapturedStruct(S);
2114
2115   // Emit the CapturedDecl
2116   CodeGenFunction CGF(CGM, true);
2117   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2118   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2119   delete CGF.CapturedStmtInfo;
2120
2121   // Emit call to the helper function.
2122   EmitCallOrInvoke(F, CapStruct.getPointer());
2123
2124   return F;
2125 }
2126
2127 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2128   LValue CapStruct = InitCapturedStruct(S);
2129   return CapStruct.getAddress();
2130 }
2131
2132 /// Creates the outlined function for a CapturedStmt.
2133 llvm::Function *
2134 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2135   assert(CapturedStmtInfo &&
2136     "CapturedStmtInfo should be set when generating the captured function");
2137   const CapturedDecl *CD = S.getCapturedDecl();
2138   const RecordDecl *RD = S.getCapturedRecordDecl();
2139   SourceLocation Loc = S.getLocStart();
2140   assert(CD->hasBody() && "missing CapturedDecl body");
2141
2142   // Build the argument list.
2143   ASTContext &Ctx = CGM.getContext();
2144   FunctionArgList Args;
2145   Args.append(CD->param_begin(), CD->param_end());
2146
2147   // Create the function declaration.
2148   FunctionType::ExtInfo ExtInfo;
2149   const CGFunctionInfo &FuncInfo =
2150       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2151                                                     /*IsVariadic=*/false);
2152   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2153
2154   llvm::Function *F =
2155     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2156                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2157   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2158   if (CD->isNothrow())
2159     F->addFnAttr(llvm::Attribute::NoUnwind);
2160
2161   // Generate the function.
2162   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2163                 CD->getLocation(),
2164                 CD->getBody()->getLocStart());
2165   // Set the context parameter in CapturedStmtInfo.
2166   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2167   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2168
2169   // Initialize variable-length arrays.
2170   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2171                                            Ctx.getTagDeclType(RD));
2172   for (auto *FD : RD->fields()) {
2173     if (FD->hasCapturedVLAType()) {
2174       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2175                                        S.getLocStart()).getScalarVal();
2176       auto VAT = FD->getCapturedVLAType();
2177       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2178     }
2179   }
2180
2181   // If 'this' is captured, load it into CXXThisValue.
2182   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2183     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2184     LValue ThisLValue = EmitLValueForField(Base, FD);
2185     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2186   }
2187
2188   PGO.assignRegionCounters(GlobalDecl(CD), F);
2189   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2190   FinishFunction(CD->getBodyRBrace());
2191
2192   return F;
2193 }