]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGVTables.cpp
Merge ^/head r286422 through r286684.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGVTables.cpp
1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include <algorithm>
27 #include <cstdio>
28
29 using namespace clang;
30 using namespace CodeGen;
31
32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33     : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
34
35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 
36                                               const ThunkInfo &Thunk) {
37   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
38
39   // Compute the mangled name.
40   SmallString<256> Name;
41   llvm::raw_svector_ostream Out(Name);
42   if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
43     getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
44                                                       Thunk.This, Out);
45   else
46     getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
47   Out.flush();
48
49   llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
50   return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true,
51                                  /*DontDefer=*/true, /*IsThunk=*/true);
52 }
53
54 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
55                                const ThunkInfo &Thunk, llvm::Function *Fn) {
56   CGM.setGlobalVisibility(Fn, MD);
57 }
58
59 #ifndef NDEBUG
60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
61                     const ABIArgInfo &infoR, CanQualType typeR) {
62   return (infoL.getKind() == infoR.getKind() &&
63           (typeL == typeR ||
64            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
65            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
66 }
67 #endif
68
69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
70                                       QualType ResultType, RValue RV,
71                                       const ThunkInfo &Thunk) {
72   // Emit the return adjustment.
73   bool NullCheckValue = !ResultType->isReferenceType();
74
75   llvm::BasicBlock *AdjustNull = nullptr;
76   llvm::BasicBlock *AdjustNotNull = nullptr;
77   llvm::BasicBlock *AdjustEnd = nullptr;
78
79   llvm::Value *ReturnValue = RV.getScalarVal();
80
81   if (NullCheckValue) {
82     AdjustNull = CGF.createBasicBlock("adjust.null");
83     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
84     AdjustEnd = CGF.createBasicBlock("adjust.end");
85   
86     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
87     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
88     CGF.EmitBlock(AdjustNotNull);
89   }
90
91   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue,
92                                                             Thunk.Return);
93
94   if (NullCheckValue) {
95     CGF.Builder.CreateBr(AdjustEnd);
96     CGF.EmitBlock(AdjustNull);
97     CGF.Builder.CreateBr(AdjustEnd);
98     CGF.EmitBlock(AdjustEnd);
99   
100     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
101     PHI->addIncoming(ReturnValue, AdjustNotNull);
102     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 
103                      AdjustNull);
104     ReturnValue = PHI;
105   }
106   
107   return RValue::get(ReturnValue);
108 }
109
110 // This function does roughly the same thing as GenerateThunk, but in a
111 // very different way, so that va_start and va_end work correctly.
112 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
113 //        a function, and that there is an alloca built in the entry block
114 //        for all accesses to "this".
115 // FIXME: This function assumes there is only one "ret" statement per function.
116 // FIXME: Cloning isn't correct in the presence of indirect goto!
117 // FIXME: This implementation of thunks bloats codesize by duplicating the
118 //        function definition.  There are alternatives:
119 //        1. Add some sort of stub support to LLVM for cases where we can
120 //           do a this adjustment, then a sibcall.
121 //        2. We could transform the definition to take a va_list instead of an
122 //           actual variable argument list, then have the thunks (including a
123 //           no-op thunk for the regular definition) call va_start/va_end.
124 //           There's a bit of per-call overhead for this solution, but it's
125 //           better for codesize if the definition is long.
126 llvm::Function *
127 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
128                                       const CGFunctionInfo &FnInfo,
129                                       GlobalDecl GD, const ThunkInfo &Thunk) {
130   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
131   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
132   QualType ResultType = FPT->getReturnType();
133
134   // Get the original function
135   assert(FnInfo.isVariadic());
136   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
137   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
138   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
139
140   // Clone to thunk.
141   llvm::ValueToValueMapTy VMap;
142   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
143                                               /*ModuleLevelChanges=*/false);
144   CGM.getModule().getFunctionList().push_back(NewFn);
145   Fn->replaceAllUsesWith(NewFn);
146   NewFn->takeName(Fn);
147   Fn->eraseFromParent();
148   Fn = NewFn;
149
150   // "Initialize" CGF (minimally).
151   CurFn = Fn;
152
153   // Get the "this" value
154   llvm::Function::arg_iterator AI = Fn->arg_begin();
155   if (CGM.ReturnTypeUsesSRet(FnInfo))
156     ++AI;
157
158   // Find the first store of "this", which will be to the alloca associated
159   // with "this".
160   llvm::Value *ThisPtr = &*AI;
161   llvm::BasicBlock *EntryBB = Fn->begin();
162   llvm::Instruction *ThisStore =
163       std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
164     return isa<llvm::StoreInst>(I) && I.getOperand(0) == ThisPtr;
165   });
166   assert(ThisStore && "Store of this should be in entry block?");
167   // Adjust "this", if necessary.
168   Builder.SetInsertPoint(ThisStore);
169   llvm::Value *AdjustedThisPtr =
170       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
171   ThisStore->setOperand(0, AdjustedThisPtr);
172
173   if (!Thunk.Return.isEmpty()) {
174     // Fix up the returned value, if necessary.
175     for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) {
176       llvm::Instruction *T = I->getTerminator();
177       if (isa<llvm::ReturnInst>(T)) {
178         RValue RV = RValue::get(T->getOperand(0));
179         T->eraseFromParent();
180         Builder.SetInsertPoint(&*I);
181         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
182         Builder.CreateRet(RV.getScalarVal());
183         break;
184       }
185     }
186   }
187
188   return Fn;
189 }
190
191 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
192                                  const CGFunctionInfo &FnInfo) {
193   assert(!CurGD.getDecl() && "CurGD was already set!");
194   CurGD = GD;
195   CurFuncIsThunk = true;
196
197   // Build FunctionArgs.
198   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
199   QualType ThisType = MD->getThisType(getContext());
200   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
201   QualType ResultType = CGM.getCXXABI().HasThisReturn(GD)
202                             ? ThisType
203                             : CGM.getCXXABI().hasMostDerivedReturn(GD)
204                                   ? CGM.getContext().VoidPtrTy
205                                   : FPT->getReturnType();
206   FunctionArgList FunctionArgs;
207
208   // Create the implicit 'this' parameter declaration.
209   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
210
211   // Add the rest of the parameters.
212   FunctionArgs.append(MD->param_begin(), MD->param_end());
213
214   if (isa<CXXDestructorDecl>(MD))
215     CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs);
216
217   // Start defining the function.
218   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
219                 MD->getLocation(), MD->getLocation());
220
221   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
222   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
223   CXXThisValue = CXXABIThisValue;
224 }
225
226 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee,
227                                                 const ThunkInfo *Thunk) {
228   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
229          "Please use a new CGF for this thunk");
230   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
231
232   // Adjust the 'this' pointer if necessary
233   llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment(
234                                              *this, LoadCXXThis(), Thunk->This)
235                                        : LoadCXXThis();
236
237   if (CurFnInfo->usesInAlloca()) {
238     // We don't handle return adjusting thunks, because they require us to call
239     // the copy constructor.  For now, fall through and pretend the return
240     // adjustment was empty so we don't crash.
241     if (Thunk && !Thunk->Return.isEmpty()) {
242       CGM.ErrorUnsupported(
243           MD, "non-trivial argument copy for return-adjusting thunk");
244     }
245     EmitMustTailThunk(MD, AdjustedThisPtr, Callee);
246     return;
247   }
248
249   // Start building CallArgs.
250   CallArgList CallArgs;
251   QualType ThisType = MD->getThisType(getContext());
252   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
253
254   if (isa<CXXDestructorDecl>(MD))
255     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
256
257   // Add the rest of the arguments.
258   for (const ParmVarDecl *PD : MD->params())
259     EmitDelegateCallArg(CallArgs, PD, PD->getLocStart());
260
261   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
262
263 #ifndef NDEBUG
264   const CGFunctionInfo &CallFnInfo =
265     CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
266                                        RequiredArgs::forPrototypePlus(FPT, 1));
267   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
268          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
269          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
270   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
271          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
272                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
273   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
274   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
275     assert(similar(CallFnInfo.arg_begin()[i].info,
276                    CallFnInfo.arg_begin()[i].type,
277                    CurFnInfo->arg_begin()[i].info,
278                    CurFnInfo->arg_begin()[i].type));
279 #endif
280
281   // Determine whether we have a return value slot to use.
282   QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
283                             ? ThisType
284                             : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
285                                   ? CGM.getContext().VoidPtrTy
286                                   : FPT->getReturnType();
287   ReturnValueSlot Slot;
288   if (!ResultType->isVoidType() &&
289       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
290       !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
291     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
292   
293   // Now emit our call.
294   llvm::Instruction *CallOrInvoke;
295   RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke);
296
297   // Consider return adjustment if we have ThunkInfo.
298   if (Thunk && !Thunk->Return.isEmpty())
299     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
300
301   // Emit return.
302   if (!ResultType->isVoidType() && Slot.isNull())
303     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
304
305   // Disable the final ARC autorelease.
306   AutoreleaseResult = false;
307
308   FinishFunction();
309 }
310
311 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD,
312                                         llvm::Value *AdjustedThisPtr,
313                                         llvm::Value *Callee) {
314   // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
315   // to translate AST arguments into LLVM IR arguments.  For thunks, we know
316   // that the caller prototype more or less matches the callee prototype with
317   // the exception of 'this'.
318   SmallVector<llvm::Value *, 8> Args;
319   for (llvm::Argument &A : CurFn->args())
320     Args.push_back(&A);
321
322   // Set the adjusted 'this' pointer.
323   const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
324   if (ThisAI.isDirect()) {
325     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
326     int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
327     llvm::Type *ThisType = Args[ThisArgNo]->getType();
328     if (ThisType != AdjustedThisPtr->getType())
329       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
330     Args[ThisArgNo] = AdjustedThisPtr;
331   } else {
332     assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
333     llvm::Value *ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
334     llvm::Type *ThisType =
335         cast<llvm::PointerType>(ThisAddr->getType())->getElementType();
336     if (ThisType != AdjustedThisPtr->getType())
337       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
338     Builder.CreateStore(AdjustedThisPtr, ThisAddr);
339   }
340
341   // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
342   // don't actually want to run them.
343   llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
344   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
345
346   // Apply the standard set of call attributes.
347   unsigned CallingConv;
348   CodeGen::AttributeListType AttributeList;
349   CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv,
350                              /*AttrOnCallSite=*/true);
351   llvm::AttributeSet Attrs =
352       llvm::AttributeSet::get(getLLVMContext(), AttributeList);
353   Call->setAttributes(Attrs);
354   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
355
356   if (Call->getType()->isVoidTy())
357     Builder.CreateRetVoid();
358   else
359     Builder.CreateRet(Call);
360
361   // Finish the function to maintain CodeGenFunction invariants.
362   // FIXME: Don't emit unreachable code.
363   EmitBlock(createBasicBlock());
364   FinishFunction();
365 }
366
367 void CodeGenFunction::generateThunk(llvm::Function *Fn,
368                                     const CGFunctionInfo &FnInfo,
369                                     GlobalDecl GD, const ThunkInfo &Thunk) {
370   StartThunk(Fn, GD, FnInfo);
371
372   // Get our callee.
373   llvm::Type *Ty =
374     CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
375   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
376
377   // Make the call and return the result.
378   EmitCallAndReturnForThunk(Callee, &Thunk);
379 }
380
381 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
382                                bool ForVTable) {
383   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
384
385   // FIXME: re-use FnInfo in this computation.
386   llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk);
387   llvm::GlobalValue *Entry;
388
389   // Strip off a bitcast if we got one back.
390   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) {
391     assert(CE->getOpcode() == llvm::Instruction::BitCast);
392     Entry = cast<llvm::GlobalValue>(CE->getOperand(0));
393   } else {
394     Entry = cast<llvm::GlobalValue>(C);
395   }
396
397   // There's already a declaration with the same name, check if it has the same
398   // type or if we need to replace it.
399   if (Entry->getType()->getElementType() !=
400       CGM.getTypes().GetFunctionTypeForVTable(GD)) {
401     llvm::GlobalValue *OldThunkFn = Entry;
402
403     // If the types mismatch then we have to rewrite the definition.
404     assert(OldThunkFn->isDeclaration() &&
405            "Shouldn't replace non-declaration");
406
407     // Remove the name from the old thunk function and get a new thunk.
408     OldThunkFn->setName(StringRef());
409     Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk));
410     
411     // If needed, replace the old thunk with a bitcast.
412     if (!OldThunkFn->use_empty()) {
413       llvm::Constant *NewPtrForOldDecl =
414         llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
415       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
416     }
417     
418     // Remove the old thunk.
419     OldThunkFn->eraseFromParent();
420   }
421
422   llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
423   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
424   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
425
426   if (!ThunkFn->isDeclaration()) {
427     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
428       // There is already a thunk emitted for this function, do nothing.
429       return;
430     }
431
432     // Change the linkage.
433     CGM.setFunctionLinkage(GD, ThunkFn);
434     return;
435   }
436
437   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
438
439   if (ThunkFn->isVarArg()) {
440     // Varargs thunks are special; we can't just generate a call because
441     // we can't copy the varargs.  Our implementation is rather
442     // expensive/sucky at the moment, so don't generate the thunk unless
443     // we have to.
444     // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
445     if (UseAvailableExternallyLinkage)
446       return;
447     ThunkFn =
448         CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
449   } else {
450     // Normal thunk body generation.
451     CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk);
452   }
453
454   CGM.setFunctionLinkage(GD, ThunkFn);
455   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
456                                   !Thunk.Return.isEmpty());
457
458   // Set the right visibility.
459   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
460   setThunkVisibility(CGM, MD, Thunk, ThunkFn);
461
462   if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
463     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
464 }
465
466 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
467                                              const ThunkInfo &Thunk) {
468   // If the ABI has key functions, only the TU with the key function should emit
469   // the thunk. However, we can allow inlining of thunks if we emit them with
470   // available_externally linkage together with vtables when optimizations are
471   // enabled.
472   if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
473       !CGM.getCodeGenOpts().OptimizationLevel)
474     return;
475
476   // We can't emit thunks for member functions with incomplete types.
477   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
478   if (!CGM.getTypes().isFuncTypeConvertible(
479            MD->getType()->castAs<FunctionType>()))
480     return;
481
482   emitThunk(GD, Thunk, /*ForVTable=*/true);
483 }
484
485 void CodeGenVTables::EmitThunks(GlobalDecl GD)
486 {
487   const CXXMethodDecl *MD = 
488     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
489
490   // We don't need to generate thunks for the base destructor.
491   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
492     return;
493
494   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
495       VTContext->getThunkInfo(GD);
496
497   if (!ThunkInfoVector)
498     return;
499
500   for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I)
501     emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false);
502 }
503
504 llvm::Constant *CodeGenVTables::CreateVTableInitializer(
505     const CXXRecordDecl *RD, const VTableComponent *Components,
506     unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks,
507     unsigned NumVTableThunks, llvm::Constant *RTTI) {
508   SmallVector<llvm::Constant *, 64> Inits;
509
510   llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
511   
512   llvm::Type *PtrDiffTy = 
513     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
514
515   unsigned NextVTableThunkIndex = 0;
516
517   llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr;
518
519   for (unsigned I = 0; I != NumComponents; ++I) {
520     VTableComponent Component = Components[I];
521
522     llvm::Constant *Init = nullptr;
523
524     switch (Component.getKind()) {
525     case VTableComponent::CK_VCallOffset:
526       Init = llvm::ConstantInt::get(PtrDiffTy, 
527                                     Component.getVCallOffset().getQuantity());
528       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
529       break;
530     case VTableComponent::CK_VBaseOffset:
531       Init = llvm::ConstantInt::get(PtrDiffTy, 
532                                     Component.getVBaseOffset().getQuantity());
533       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
534       break;
535     case VTableComponent::CK_OffsetToTop:
536       Init = llvm::ConstantInt::get(PtrDiffTy, 
537                                     Component.getOffsetToTop().getQuantity());
538       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
539       break;
540     case VTableComponent::CK_RTTI:
541       Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
542       break;
543     case VTableComponent::CK_FunctionPointer:
544     case VTableComponent::CK_CompleteDtorPointer:
545     case VTableComponent::CK_DeletingDtorPointer: {
546       GlobalDecl GD;
547       
548       // Get the right global decl.
549       switch (Component.getKind()) {
550       default:
551         llvm_unreachable("Unexpected vtable component kind");
552       case VTableComponent::CK_FunctionPointer:
553         GD = Component.getFunctionDecl();
554         break;
555       case VTableComponent::CK_CompleteDtorPointer:
556         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
557         break;
558       case VTableComponent::CK_DeletingDtorPointer:
559         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
560         break;
561       }
562
563       if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
564         // We have a pure virtual member function.
565         if (!PureVirtualFn) {
566           llvm::FunctionType *Ty = 
567             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
568           StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
569           PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
570           PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
571                                                          CGM.Int8PtrTy);
572         }
573         Init = PureVirtualFn;
574       } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
575         if (!DeletedVirtualFn) {
576           llvm::FunctionType *Ty =
577             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
578           StringRef DeletedCallName =
579             CGM.getCXXABI().GetDeletedVirtualCallName();
580           DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
581           DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
582                                                          CGM.Int8PtrTy);
583         }
584         Init = DeletedVirtualFn;
585       } else {
586         // Check if we should use a thunk.
587         if (NextVTableThunkIndex < NumVTableThunks &&
588             VTableThunks[NextVTableThunkIndex].first == I) {
589           const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
590         
591           maybeEmitThunkForVTable(GD, Thunk);
592           Init = CGM.GetAddrOfThunk(GD, Thunk);
593
594           NextVTableThunkIndex++;
595         } else {
596           llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
597         
598           Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
599         }
600
601         Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
602       }
603       break;
604     }
605
606     case VTableComponent::CK_UnusedFunctionPointer:
607       Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
608       break;
609     };
610     
611     Inits.push_back(Init);
612   }
613   
614   llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
615   return llvm::ConstantArray::get(ArrayType, Inits);
616 }
617
618 llvm::GlobalVariable *
619 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 
620                                       const BaseSubobject &Base, 
621                                       bool BaseIsVirtual, 
622                                    llvm::GlobalVariable::LinkageTypes Linkage,
623                                       VTableAddressPointsMapTy& AddressPoints) {
624   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
625     DI->completeClassData(Base.getBase());
626
627   std::unique_ptr<VTableLayout> VTLayout(
628       getItaniumVTableContext().createConstructionVTableLayout(
629           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
630
631   // Add the address points.
632   AddressPoints = VTLayout->getAddressPoints();
633
634   // Get the mangled construction vtable name.
635   SmallString<256> OutName;
636   llvm::raw_svector_ostream Out(OutName);
637   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
638       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
639                            Base.getBase(), Out);
640   Out.flush();
641   StringRef Name = OutName.str();
642
643   llvm::ArrayType *ArrayType = 
644     llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
645
646   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
647   // guarantee that they actually will be available externally. Instead, when
648   // emitting an available_externally VTT, we provide references to an internal
649   // linkage construction vtable. The ABI only requires complete-object vtables
650   // to be the same for all instances of a type, not construction vtables.
651   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
652     Linkage = llvm::GlobalVariable::InternalLinkage;
653
654   // Create the variable that will hold the construction vtable.
655   llvm::GlobalVariable *VTable = 
656     CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
657   CGM.setGlobalVisibility(VTable, RD);
658
659   // V-tables are always unnamed_addr.
660   VTable->setUnnamedAddr(true);
661
662   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
663       CGM.getContext().getTagDeclType(Base.getBase()));
664
665   // Create and set the initializer.
666   llvm::Constant *Init = CreateVTableInitializer(
667       Base.getBase(), VTLayout->vtable_component_begin(),
668       VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(),
669       VTLayout->getNumVTableThunks(), RTTI);
670   VTable->setInitializer(Init);
671   
672   CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get());
673
674   return VTable;
675 }
676
677 /// Compute the required linkage of the v-table for the given class.
678 ///
679 /// Note that we only call this at the end of the translation unit.
680 llvm::GlobalVariable::LinkageTypes 
681 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
682   if (!RD->isExternallyVisible())
683     return llvm::GlobalVariable::InternalLinkage;
684
685   // We're at the end of the translation unit, so the current key
686   // function is fully correct.
687   const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
688   if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
689     // If this class has a key function, use that to determine the
690     // linkage of the vtable.
691     const FunctionDecl *def = nullptr;
692     if (keyFunction->hasBody(def))
693       keyFunction = cast<CXXMethodDecl>(def);
694     
695     switch (keyFunction->getTemplateSpecializationKind()) {
696       case TSK_Undeclared:
697       case TSK_ExplicitSpecialization:
698         assert(def && "Should not have been asked to emit this");
699         if (keyFunction->isInlined())
700           return !Context.getLangOpts().AppleKext ?
701                    llvm::GlobalVariable::LinkOnceODRLinkage :
702                    llvm::Function::InternalLinkage;
703         
704         return llvm::GlobalVariable::ExternalLinkage;
705
706       case TSK_ImplicitInstantiation:
707         return !Context.getLangOpts().AppleKext ?
708                  llvm::GlobalVariable::LinkOnceODRLinkage :
709                  llvm::Function::InternalLinkage;
710
711       case TSK_ExplicitInstantiationDefinition:
712         return !Context.getLangOpts().AppleKext ?
713                  llvm::GlobalVariable::WeakODRLinkage :
714                  llvm::Function::InternalLinkage;
715   
716       case TSK_ExplicitInstantiationDeclaration:
717         llvm_unreachable("Should not have been asked to emit this");
718     }
719   }
720
721   // -fapple-kext mode does not support weak linkage, so we must use
722   // internal linkage.
723   if (Context.getLangOpts().AppleKext)
724     return llvm::Function::InternalLinkage;
725
726   llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
727       llvm::GlobalValue::LinkOnceODRLinkage;
728   llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
729       llvm::GlobalValue::WeakODRLinkage;
730   if (RD->hasAttr<DLLExportAttr>()) {
731     // Cannot discard exported vtables.
732     DiscardableODRLinkage = NonDiscardableODRLinkage;
733   } else if (RD->hasAttr<DLLImportAttr>()) {
734     // Imported vtables are available externally.
735     DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
736     NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
737   }
738
739   switch (RD->getTemplateSpecializationKind()) {
740   case TSK_Undeclared:
741   case TSK_ExplicitSpecialization:
742   case TSK_ImplicitInstantiation:
743     return DiscardableODRLinkage;
744
745   case TSK_ExplicitInstantiationDeclaration:
746     return llvm::GlobalVariable::ExternalLinkage;
747
748   case TSK_ExplicitInstantiationDefinition:
749     return NonDiscardableODRLinkage;
750   }
751
752   llvm_unreachable("Invalid TemplateSpecializationKind!");
753 }
754
755 /// This is a callback from Sema to tell us that that a particular v-table is
756 /// required to be emitted in this translation unit.
757 ///
758 /// This is only called for vtables that _must_ be emitted (mainly due to key
759 /// functions).  For weak vtables, CodeGen tracks when they are needed and
760 /// emits them as-needed.
761 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
762   VTables.GenerateClassData(theClass);
763 }
764
765 void 
766 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
767   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
768     DI->completeClassData(RD);
769
770   if (RD->getNumVBases())
771     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
772
773   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
774 }
775
776 /// At this point in the translation unit, does it appear that can we
777 /// rely on the vtable being defined elsewhere in the program?
778 ///
779 /// The response is really only definitive when called at the end of
780 /// the translation unit.
781 ///
782 /// The only semantic restriction here is that the object file should
783 /// not contain a v-table definition when that v-table is defined
784 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
785 /// v-tables when unnecessary.
786 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
787   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
788
789   // If we have an explicit instantiation declaration (and not a
790   // definition), the v-table is defined elsewhere.
791   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
792   if (TSK == TSK_ExplicitInstantiationDeclaration)
793     return true;
794
795   // Otherwise, if the class is an instantiated template, the
796   // v-table must be defined here.
797   if (TSK == TSK_ImplicitInstantiation ||
798       TSK == TSK_ExplicitInstantiationDefinition)
799     return false;
800
801   // Otherwise, if the class doesn't have a key function (possibly
802   // anymore), the v-table must be defined here.
803   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
804   if (!keyFunction)
805     return false;
806
807   // Otherwise, if we don't have a definition of the key function, the
808   // v-table must be defined somewhere else.
809   return !keyFunction->hasBody();
810 }
811
812 /// Given that we're currently at the end of the translation unit, and
813 /// we've emitted a reference to the v-table for this class, should
814 /// we define that v-table?
815 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
816                                                    const CXXRecordDecl *RD) {
817   return !CGM.getVTables().isVTableExternal(RD);
818 }
819
820 /// Given that at some point we emitted a reference to one or more
821 /// v-tables, and that we are now at the end of the translation unit,
822 /// decide whether we should emit them.
823 void CodeGenModule::EmitDeferredVTables() {
824 #ifndef NDEBUG
825   // Remember the size of DeferredVTables, because we're going to assume
826   // that this entire operation doesn't modify it.
827   size_t savedSize = DeferredVTables.size();
828 #endif
829
830   typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator;
831   for (const_iterator i = DeferredVTables.begin(),
832                       e = DeferredVTables.end(); i != e; ++i) {
833     const CXXRecordDecl *RD = *i;
834     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
835       VTables.GenerateClassData(RD);
836   }
837
838   assert(savedSize == DeferredVTables.size() &&
839          "deferred extra v-tables during v-table emission?");
840   DeferredVTables.clear();
841 }
842
843 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) {
844   // FIXME: Make this user configurable.
845   return RD->isInStdNamespace();
846 }
847
848 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable,
849                                             const VTableLayout &VTLayout) {
850   if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
851       !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
852       !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
853       !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast))
854     return;
855
856   CharUnits PointerWidth =
857       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
858
859   std::vector<llvm::MDTuple *> BitsetEntries;
860   // Create a bit set entry for each address point.
861   for (auto &&AP : VTLayout.getAddressPoints()) {
862     if (IsCFIBlacklistedRecord(AP.first.getBase()))
863       continue;
864
865     BitsetEntries.push_back(CreateVTableBitSetEntry(
866         VTable, PointerWidth * AP.second, AP.first.getBase()));
867   }
868
869   // Sort the bit set entries for determinism.
870   std::sort(BitsetEntries.begin(), BitsetEntries.end(), [](llvm::MDTuple *T1,
871                                                            llvm::MDTuple *T2) {
872     if (T1 == T2)
873       return false;
874
875     StringRef S1 = cast<llvm::MDString>(T1->getOperand(0))->getString();
876     StringRef S2 = cast<llvm::MDString>(T2->getOperand(0))->getString();
877     if (S1 < S2)
878       return true;
879     if (S1 != S2)
880       return false;
881
882     uint64_t Offset1 = cast<llvm::ConstantInt>(
883                            cast<llvm::ConstantAsMetadata>(T1->getOperand(2))
884                                ->getValue())->getZExtValue();
885     uint64_t Offset2 = cast<llvm::ConstantInt>(
886                            cast<llvm::ConstantAsMetadata>(T2->getOperand(2))
887                                ->getValue())->getZExtValue();
888     assert(Offset1 != Offset2);
889     return Offset1 < Offset2;
890   });
891
892   llvm::NamedMDNode *BitsetsMD =
893       getModule().getOrInsertNamedMetadata("llvm.bitsets");
894   for (auto BitsetEntry : BitsetEntries)
895     BitsetsMD->addOperand(BitsetEntry);
896 }