]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
Restore packaging subdir to enable running unmodified configure script.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenFunction.cpp
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39               CGBuilderInserterTy(this)),
40       CurFn(nullptr), CapturedStmtInfo(nullptr),
41       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
42       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
43       BlockInfo(nullptr), BlockPointer(nullptr),
44       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
45       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
46       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
47       DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
48       DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
49       SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
50       UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
51       CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
52       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
53       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
54       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
55       TerminateHandler(nullptr), TrapBB(nullptr) {
56   if (!suppressNewContext)
57     CGM.getCXXABI().getMangleContext().startNewFunction();
58
59   llvm::FastMathFlags FMF;
60   if (CGM.getLangOpts().FastMath)
61     FMF.setUnsafeAlgebra();
62   if (CGM.getLangOpts().FiniteMathOnly) {
63     FMF.setNoNaNs();
64     FMF.setNoInfs();
65   }
66   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
67     FMF.setNoNaNs();
68   }
69   if (CGM.getCodeGenOpts().NoSignedZeros) {
70     FMF.setNoSignedZeros();
71   }
72   Builder.SetFastMathFlags(FMF);
73 }
74
75 CodeGenFunction::~CodeGenFunction() {
76   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
77
78   // If there are any unclaimed block infos, go ahead and destroy them
79   // now.  This can happen if IR-gen gets clever and skips evaluating
80   // something.
81   if (FirstBlockInfo)
82     destroyBlockInfos(FirstBlockInfo);
83
84   if (getLangOpts().OpenMP) {
85     CGM.getOpenMPRuntime().FunctionFinished(*this);
86   }
87 }
88
89 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
90   CharUnits Alignment;
91   if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
92     Alignment = getContext().getTypeAlignInChars(T);
93     unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
94     if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
95         !getContext().isAlignmentRequired(T))
96       Alignment = CharUnits::fromQuantity(MaxAlign);
97   }
98   return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
99 }
100
101 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
102   return CGM.getTypes().ConvertTypeForMem(T);
103 }
104
105 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
106   return CGM.getTypes().ConvertType(T);
107 }
108
109 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
110   type = type.getCanonicalType();
111   while (true) {
112     switch (type->getTypeClass()) {
113 #define TYPE(name, parent)
114 #define ABSTRACT_TYPE(name, parent)
115 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
116 #define DEPENDENT_TYPE(name, parent) case Type::name:
117 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
118 #include "clang/AST/TypeNodes.def"
119       llvm_unreachable("non-canonical or dependent type in IR-generation");
120
121     case Type::Auto:
122       llvm_unreachable("undeduced auto type in IR-generation");
123
124     // Various scalar types.
125     case Type::Builtin:
126     case Type::Pointer:
127     case Type::BlockPointer:
128     case Type::LValueReference:
129     case Type::RValueReference:
130     case Type::MemberPointer:
131     case Type::Vector:
132     case Type::ExtVector:
133     case Type::FunctionProto:
134     case Type::FunctionNoProto:
135     case Type::Enum:
136     case Type::ObjCObjectPointer:
137       return TEK_Scalar;
138
139     // Complexes.
140     case Type::Complex:
141       return TEK_Complex;
142
143     // Arrays, records, and Objective-C objects.
144     case Type::ConstantArray:
145     case Type::IncompleteArray:
146     case Type::VariableArray:
147     case Type::Record:
148     case Type::ObjCObject:
149     case Type::ObjCInterface:
150       return TEK_Aggregate;
151
152     // We operate on atomic values according to their underlying type.
153     case Type::Atomic:
154       type = cast<AtomicType>(type)->getValueType();
155       continue;
156     }
157     llvm_unreachable("unknown type kind!");
158   }
159 }
160
161 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
162   // For cleanliness, we try to avoid emitting the return block for
163   // simple cases.
164   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
165
166   if (CurBB) {
167     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
168
169     // We have a valid insert point, reuse it if it is empty or there are no
170     // explicit jumps to the return block.
171     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
172       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
173       delete ReturnBlock.getBlock();
174     } else
175       EmitBlock(ReturnBlock.getBlock());
176     return llvm::DebugLoc();
177   }
178
179   // Otherwise, if the return block is the target of a single direct
180   // branch then we can just put the code in that block instead. This
181   // cleans up functions which started with a unified return block.
182   if (ReturnBlock.getBlock()->hasOneUse()) {
183     llvm::BranchInst *BI =
184       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
185     if (BI && BI->isUnconditional() &&
186         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
187       // Record/return the DebugLoc of the simple 'return' expression to be used
188       // later by the actual 'ret' instruction.
189       llvm::DebugLoc Loc = BI->getDebugLoc();
190       Builder.SetInsertPoint(BI->getParent());
191       BI->eraseFromParent();
192       delete ReturnBlock.getBlock();
193       return Loc;
194     }
195   }
196
197   // FIXME: We are at an unreachable point, there is no reason to emit the block
198   // unless it has uses. However, we still need a place to put the debug
199   // region.end for now.
200
201   EmitBlock(ReturnBlock.getBlock());
202   return llvm::DebugLoc();
203 }
204
205 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
206   if (!BB) return;
207   if (!BB->use_empty())
208     return CGF.CurFn->getBasicBlockList().push_back(BB);
209   delete BB;
210 }
211
212 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
213   assert(BreakContinueStack.empty() &&
214          "mismatched push/pop in break/continue stack!");
215
216   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
217     && NumSimpleReturnExprs == NumReturnExprs
218     && ReturnBlock.getBlock()->use_empty();
219   // Usually the return expression is evaluated before the cleanup
220   // code.  If the function contains only a simple return statement,
221   // such as a constant, the location before the cleanup code becomes
222   // the last useful breakpoint in the function, because the simple
223   // return expression will be evaluated after the cleanup code. To be
224   // safe, set the debug location for cleanup code to the location of
225   // the return statement.  Otherwise the cleanup code should be at the
226   // end of the function's lexical scope.
227   //
228   // If there are multiple branches to the return block, the branch
229   // instructions will get the location of the return statements and
230   // all will be fine.
231   if (CGDebugInfo *DI = getDebugInfo()) {
232     if (OnlySimpleReturnStmts)
233       DI->EmitLocation(Builder, LastStopPoint);
234     else
235       DI->EmitLocation(Builder, EndLoc);
236   }
237
238   // Pop any cleanups that might have been associated with the
239   // parameters.  Do this in whatever block we're currently in; it's
240   // important to do this before we enter the return block or return
241   // edges will be *really* confused.
242   bool EmitRetDbgLoc = true;
243   if (EHStack.stable_begin() != PrologueCleanupDepth) {
244     PopCleanupBlocks(PrologueCleanupDepth);
245
246     // Make sure the line table doesn't jump back into the body for
247     // the ret after it's been at EndLoc.
248     EmitRetDbgLoc = false;
249
250     if (CGDebugInfo *DI = getDebugInfo())
251       if (OnlySimpleReturnStmts)
252         DI->EmitLocation(Builder, EndLoc);
253   }
254
255   // Emit function epilog (to return).
256   llvm::DebugLoc Loc = EmitReturnBlock();
257
258   if (ShouldInstrumentFunction())
259     EmitFunctionInstrumentation("__cyg_profile_func_exit");
260
261   // Emit debug descriptor for function end.
262   if (CGDebugInfo *DI = getDebugInfo())
263     DI->EmitFunctionEnd(Builder);
264
265   // Reset the debug location to that of the simple 'return' expression, if any
266   // rather than that of the end of the function's scope '}'.
267   ApplyDebugLocation AL(*this, Loc);
268   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
269   EmitEndEHSpec(CurCodeDecl);
270
271   assert(EHStack.empty() &&
272          "did not remove all scopes from cleanup stack!");
273
274   // If someone did an indirect goto, emit the indirect goto block at the end of
275   // the function.
276   if (IndirectBranch) {
277     EmitBlock(IndirectBranch->getParent());
278     Builder.ClearInsertionPoint();
279   }
280
281   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
282   llvm::Instruction *Ptr = AllocaInsertPt;
283   AllocaInsertPt = nullptr;
284   Ptr->eraseFromParent();
285
286   // If someone took the address of a label but never did an indirect goto, we
287   // made a zero entry PHI node, which is illegal, zap it now.
288   if (IndirectBranch) {
289     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
290     if (PN->getNumIncomingValues() == 0) {
291       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
292       PN->eraseFromParent();
293     }
294   }
295
296   EmitIfUsed(*this, EHResumeBlock);
297   EmitIfUsed(*this, TerminateLandingPad);
298   EmitIfUsed(*this, TerminateHandler);
299   EmitIfUsed(*this, UnreachableBlock);
300
301   if (CGM.getCodeGenOpts().EmitDeclMetadata)
302     EmitDeclMetadata();
303
304   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
305            I = DeferredReplacements.begin(),
306            E = DeferredReplacements.end();
307        I != E; ++I) {
308     I->first->replaceAllUsesWith(I->second);
309     I->first->eraseFromParent();
310   }
311 }
312
313 /// ShouldInstrumentFunction - Return true if the current function should be
314 /// instrumented with __cyg_profile_func_* calls
315 bool CodeGenFunction::ShouldInstrumentFunction() {
316   if (!CGM.getCodeGenOpts().InstrumentFunctions)
317     return false;
318   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
319     return false;
320   return true;
321 }
322
323 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
324 /// instrumentation function with the current function and the call site, if
325 /// function instrumentation is enabled.
326 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
327   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
328   llvm::PointerType *PointerTy = Int8PtrTy;
329   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
330   llvm::FunctionType *FunctionTy =
331     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
332
333   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
334   llvm::CallInst *CallSite = Builder.CreateCall(
335     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
336     llvm::ConstantInt::get(Int32Ty, 0),
337     "callsite");
338
339   llvm::Value *args[] = {
340     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
341     CallSite
342   };
343
344   EmitNounwindRuntimeCall(F, args);
345 }
346
347 void CodeGenFunction::EmitMCountInstrumentation() {
348   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
349
350   llvm::Constant *MCountFn =
351     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
352   EmitNounwindRuntimeCall(MCountFn);
353 }
354
355 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
356 // information in the program executable. The argument information stored
357 // includes the argument name, its type, the address and access qualifiers used.
358 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
359                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
360                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
361                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
362   // Create MDNodes that represent the kernel arg metadata.
363   // Each MDNode is a list in the form of "key", N number of values which is
364   // the same number of values as their are kernel arguments.
365
366   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
367
368   // MDNode for the kernel argument address space qualifiers.
369   SmallVector<llvm::Metadata *, 8> addressQuals;
370   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
371
372   // MDNode for the kernel argument access qualifiers (images only).
373   SmallVector<llvm::Metadata *, 8> accessQuals;
374   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
375
376   // MDNode for the kernel argument type names.
377   SmallVector<llvm::Metadata *, 8> argTypeNames;
378   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
379
380   // MDNode for the kernel argument base type names.
381   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
382   argBaseTypeNames.push_back(
383       llvm::MDString::get(Context, "kernel_arg_base_type"));
384
385   // MDNode for the kernel argument type qualifiers.
386   SmallVector<llvm::Metadata *, 8> argTypeQuals;
387   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
388
389   // MDNode for the kernel argument names.
390   SmallVector<llvm::Metadata *, 8> argNames;
391   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
392
393   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
394     const ParmVarDecl *parm = FD->getParamDecl(i);
395     QualType ty = parm->getType();
396     std::string typeQuals;
397
398     if (ty->isPointerType()) {
399       QualType pointeeTy = ty->getPointeeType();
400
401       // Get address qualifier.
402       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
403           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
404
405       // Get argument type name.
406       std::string typeName =
407           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
408
409       // Turn "unsigned type" to "utype"
410       std::string::size_type pos = typeName.find("unsigned");
411       if (pointeeTy.isCanonical() && pos != std::string::npos)
412         typeName.erase(pos+1, 8);
413
414       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
415
416       std::string baseTypeName =
417           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
418               Policy) +
419           "*";
420
421       // Turn "unsigned type" to "utype"
422       pos = baseTypeName.find("unsigned");
423       if (pos != std::string::npos)
424         baseTypeName.erase(pos+1, 8);
425
426       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
427
428       // Get argument type qualifiers:
429       if (ty.isRestrictQualified())
430         typeQuals = "restrict";
431       if (pointeeTy.isConstQualified() ||
432           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
433         typeQuals += typeQuals.empty() ? "const" : " const";
434       if (pointeeTy.isVolatileQualified())
435         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
436     } else {
437       uint32_t AddrSpc = 0;
438       if (ty->isImageType())
439         AddrSpc =
440           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
441
442       addressQuals.push_back(
443           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
444
445       // Get argument type name.
446       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
447
448       // Turn "unsigned type" to "utype"
449       std::string::size_type pos = typeName.find("unsigned");
450       if (ty.isCanonical() && pos != std::string::npos)
451         typeName.erase(pos+1, 8);
452
453       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
454
455       std::string baseTypeName =
456           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
457
458       // Turn "unsigned type" to "utype"
459       pos = baseTypeName.find("unsigned");
460       if (pos != std::string::npos)
461         baseTypeName.erase(pos+1, 8);
462
463       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
464
465       // Get argument type qualifiers:
466       if (ty.isConstQualified())
467         typeQuals = "const";
468       if (ty.isVolatileQualified())
469         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
470     }
471
472     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
473
474     // Get image access qualifier:
475     if (ty->isImageType()) {
476       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
477       if (A && A->isWriteOnly())
478         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
479       else
480         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
481       // FIXME: what about read_write?
482     } else
483       accessQuals.push_back(llvm::MDString::get(Context, "none"));
484
485     // Get argument name.
486     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
487   }
488
489   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
490   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
491   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
492   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
493   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
494   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
495     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
496 }
497
498 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
499                                                llvm::Function *Fn)
500 {
501   if (!FD->hasAttr<OpenCLKernelAttr>())
502     return;
503
504   llvm::LLVMContext &Context = getLLVMContext();
505
506   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
507   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
508
509   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
510                        getContext());
511
512   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
513     QualType hintQTy = A->getTypeHint();
514     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
515     bool isSignedInteger =
516         hintQTy->isSignedIntegerType() ||
517         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
518     llvm::Metadata *attrMDArgs[] = {
519         llvm::MDString::get(Context, "vec_type_hint"),
520         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
521             CGM.getTypes().ConvertType(A->getTypeHint()))),
522         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523             llvm::IntegerType::get(Context, 32),
524             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
525     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
526   }
527
528   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
529     llvm::Metadata *attrMDArgs[] = {
530         llvm::MDString::get(Context, "work_group_size_hint"),
531         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
532         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
533         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
534     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
535   }
536
537   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
538     llvm::Metadata *attrMDArgs[] = {
539         llvm::MDString::get(Context, "reqd_work_group_size"),
540         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
541         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
542         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
543     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
544   }
545
546   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
547   llvm::NamedMDNode *OpenCLKernelMetadata =
548     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
549   OpenCLKernelMetadata->addOperand(kernelMDNode);
550 }
551
552 /// Determine whether the function F ends with a return stmt.
553 static bool endsWithReturn(const Decl* F) {
554   const Stmt *Body = nullptr;
555   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
556     Body = FD->getBody();
557   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
558     Body = OMD->getBody();
559
560   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
561     auto LastStmt = CS->body_rbegin();
562     if (LastStmt != CS->body_rend())
563       return isa<ReturnStmt>(*LastStmt);
564   }
565   return false;
566 }
567
568 void CodeGenFunction::StartFunction(GlobalDecl GD,
569                                     QualType RetTy,
570                                     llvm::Function *Fn,
571                                     const CGFunctionInfo &FnInfo,
572                                     const FunctionArgList &Args,
573                                     SourceLocation Loc,
574                                     SourceLocation StartLoc) {
575   assert(!CurFn &&
576          "Do not use a CodeGenFunction object for more than one function");
577
578   const Decl *D = GD.getDecl();
579
580   DidCallStackSave = false;
581   CurCodeDecl = D;
582   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
583   FnRetTy = RetTy;
584   CurFn = Fn;
585   CurFnInfo = &FnInfo;
586   assert(CurFn->isDeclaration() && "Function already has body?");
587
588   if (CGM.isInSanitizerBlacklist(Fn, Loc))
589     SanOpts.clear();
590
591   // Pass inline keyword to optimizer if it appears explicitly on any
592   // declaration. Also, in the case of -fno-inline attach NoInline
593   // attribute to all function that are not marked AlwaysInline.
594   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
595     if (!CGM.getCodeGenOpts().NoInline) {
596       for (auto RI : FD->redecls())
597         if (RI->isInlineSpecified()) {
598           Fn->addFnAttr(llvm::Attribute::InlineHint);
599           break;
600         }
601     } else if (!FD->hasAttr<AlwaysInlineAttr>())
602       Fn->addFnAttr(llvm::Attribute::NoInline);
603   }
604
605   if (getLangOpts().OpenCL) {
606     // Add metadata for a kernel function.
607     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
608       EmitOpenCLKernelMetadata(FD, Fn);
609   }
610
611   // If we are checking function types, emit a function type signature as
612   // prologue data.
613   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
614     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
615       if (llvm::Constant *PrologueSig =
616               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
617         llvm::Constant *FTRTTIConst =
618             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
619         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
620         llvm::Constant *PrologueStructConst =
621             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
622         Fn->setPrologueData(PrologueStructConst);
623       }
624     }
625   }
626
627   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
628
629   // Create a marker to make it easy to insert allocas into the entryblock
630   // later.  Don't create this with the builder, because we don't want it
631   // folded.
632   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
633   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
634   if (Builder.isNamePreserving())
635     AllocaInsertPt->setName("allocapt");
636
637   ReturnBlock = getJumpDestInCurrentScope("return");
638
639   Builder.SetInsertPoint(EntryBB);
640
641   // Emit subprogram debug descriptor.
642   if (CGDebugInfo *DI = getDebugInfo()) {
643     SmallVector<QualType, 16> ArgTypes;
644     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
645          i != e; ++i) {
646       ArgTypes.push_back((*i)->getType());
647     }
648
649     QualType FnType =
650       getContext().getFunctionType(RetTy, ArgTypes,
651                                    FunctionProtoType::ExtProtoInfo());
652     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
653   }
654
655   if (ShouldInstrumentFunction())
656     EmitFunctionInstrumentation("__cyg_profile_func_enter");
657
658   if (CGM.getCodeGenOpts().InstrumentForProfiling)
659     EmitMCountInstrumentation();
660
661   if (RetTy->isVoidType()) {
662     // Void type; nothing to return.
663     ReturnValue = nullptr;
664
665     // Count the implicit return.
666     if (!endsWithReturn(D))
667       ++NumReturnExprs;
668   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
669              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
670     // Indirect aggregate return; emit returned value directly into sret slot.
671     // This reduces code size, and affects correctness in C++.
672     auto AI = CurFn->arg_begin();
673     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
674       ++AI;
675     ReturnValue = AI;
676   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
677              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
678     // Load the sret pointer from the argument struct and return into that.
679     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
680     llvm::Function::arg_iterator EI = CurFn->arg_end();
681     --EI;
682     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
683     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
684   } else {
685     ReturnValue = CreateIRTemp(RetTy, "retval");
686
687     // Tell the epilog emitter to autorelease the result.  We do this
688     // now so that various specialized functions can suppress it
689     // during their IR-generation.
690     if (getLangOpts().ObjCAutoRefCount &&
691         !CurFnInfo->isReturnsRetained() &&
692         RetTy->isObjCRetainableType())
693       AutoreleaseResult = true;
694   }
695
696   EmitStartEHSpec(CurCodeDecl);
697
698   PrologueCleanupDepth = EHStack.stable_begin();
699   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
700
701   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
702     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
703     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
704     if (MD->getParent()->isLambda() &&
705         MD->getOverloadedOperator() == OO_Call) {
706       // We're in a lambda; figure out the captures.
707       MD->getParent()->getCaptureFields(LambdaCaptureFields,
708                                         LambdaThisCaptureField);
709       if (LambdaThisCaptureField) {
710         // If this lambda captures this, load it.
711         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
712         CXXThisValue = EmitLoadOfLValue(ThisLValue,
713                                         SourceLocation()).getScalarVal();
714       }
715       for (auto *FD : MD->getParent()->fields()) {
716         if (FD->hasCapturedVLAType()) {
717           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
718                                            SourceLocation()).getScalarVal();
719           auto VAT = FD->getCapturedVLAType();
720           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
721         }
722       }
723     } else {
724       // Not in a lambda; just use 'this' from the method.
725       // FIXME: Should we generate a new load for each use of 'this'?  The
726       // fast register allocator would be happier...
727       CXXThisValue = CXXABIThisValue;
728     }
729   }
730
731   // If any of the arguments have a variably modified type, make sure to
732   // emit the type size.
733   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
734        i != e; ++i) {
735     const VarDecl *VD = *i;
736
737     // Dig out the type as written from ParmVarDecls; it's unclear whether
738     // the standard (C99 6.9.1p10) requires this, but we're following the
739     // precedent set by gcc.
740     QualType Ty;
741     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
742       Ty = PVD->getOriginalType();
743     else
744       Ty = VD->getType();
745
746     if (Ty->isVariablyModifiedType())
747       EmitVariablyModifiedType(Ty);
748   }
749   // Emit a location at the end of the prologue.
750   if (CGDebugInfo *DI = getDebugInfo())
751     DI->EmitLocation(Builder, StartLoc);
752 }
753
754 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
755                                        const Stmt *Body) {
756   RegionCounter Cnt = getPGORegionCounter(Body);
757   Cnt.beginRegion(Builder);
758   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
759     EmitCompoundStmtWithoutScope(*S);
760   else
761     EmitStmt(Body);
762 }
763
764 /// When instrumenting to collect profile data, the counts for some blocks
765 /// such as switch cases need to not include the fall-through counts, so
766 /// emit a branch around the instrumentation code. When not instrumenting,
767 /// this just calls EmitBlock().
768 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
769                                                RegionCounter &Cnt) {
770   llvm::BasicBlock *SkipCountBB = nullptr;
771   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
772     // When instrumenting for profiling, the fallthrough to certain
773     // statements needs to skip over the instrumentation code so that we
774     // get an accurate count.
775     SkipCountBB = createBasicBlock("skipcount");
776     EmitBranch(SkipCountBB);
777   }
778   EmitBlock(BB);
779   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
780   if (SkipCountBB)
781     EmitBlock(SkipCountBB);
782 }
783
784 /// Tries to mark the given function nounwind based on the
785 /// non-existence of any throwing calls within it.  We believe this is
786 /// lightweight enough to do at -O0.
787 static void TryMarkNoThrow(llvm::Function *F) {
788   // LLVM treats 'nounwind' on a function as part of the type, so we
789   // can't do this on functions that can be overwritten.
790   if (F->mayBeOverridden()) return;
791
792   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
793     for (llvm::BasicBlock::iterator
794            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
795       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
796         if (!Call->doesNotThrow())
797           return;
798       } else if (isa<llvm::ResumeInst>(&*BI)) {
799         return;
800       }
801   F->setDoesNotThrow();
802 }
803
804 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
805                                           const FunctionDecl *UnsizedDealloc) {
806   // This is a weak discardable definition of the sized deallocation function.
807   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
808
809   // Call the unsized deallocation function and forward the first argument
810   // unchanged.
811   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
812   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
813 }
814
815 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
816                                    const CGFunctionInfo &FnInfo) {
817   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
818
819   // Check if we should generate debug info for this function.
820   if (FD->hasAttr<NoDebugAttr>())
821     DebugInfo = nullptr; // disable debug info indefinitely for this function
822
823   FunctionArgList Args;
824   QualType ResTy = FD->getReturnType();
825
826   CurGD = GD;
827   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
828   if (MD && MD->isInstance()) {
829     if (CGM.getCXXABI().HasThisReturn(GD))
830       ResTy = MD->getThisType(getContext());
831     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
832       ResTy = CGM.getContext().VoidPtrTy;
833     CGM.getCXXABI().buildThisParam(*this, Args);
834   }
835   
836   Args.append(FD->param_begin(), FD->param_end());
837
838   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
839     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
840
841   SourceRange BodyRange;
842   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
843   CurEHLocation = BodyRange.getEnd();
844
845   // Use the location of the start of the function to determine where
846   // the function definition is located. By default use the location
847   // of the declaration as the location for the subprogram. A function
848   // may lack a declaration in the source code if it is created by code
849   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
850   SourceLocation Loc = FD->getLocation();
851
852   // If this is a function specialization then use the pattern body
853   // as the location for the function.
854   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
855     if (SpecDecl->hasBody(SpecDecl))
856       Loc = SpecDecl->getLocation();
857
858   // Emit the standard function prologue.
859   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
860
861   // Generate the body of the function.
862   PGO.checkGlobalDecl(GD);
863   PGO.assignRegionCounters(GD.getDecl(), CurFn);
864   if (isa<CXXDestructorDecl>(FD))
865     EmitDestructorBody(Args);
866   else if (isa<CXXConstructorDecl>(FD))
867     EmitConstructorBody(Args);
868   else if (getLangOpts().CUDA &&
869            !CGM.getCodeGenOpts().CUDAIsDevice &&
870            FD->hasAttr<CUDAGlobalAttr>())
871     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
872   else if (isa<CXXConversionDecl>(FD) &&
873            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
874     // The lambda conversion to block pointer is special; the semantics can't be
875     // expressed in the AST, so IRGen needs to special-case it.
876     EmitLambdaToBlockPointerBody(Args);
877   } else if (isa<CXXMethodDecl>(FD) &&
878              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
879     // The lambda static invoker function is special, because it forwards or
880     // clones the body of the function call operator (but is actually static).
881     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
882   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
883              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
884               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
885     // Implicit copy-assignment gets the same special treatment as implicit
886     // copy-constructors.
887     emitImplicitAssignmentOperatorBody(Args);
888   } else if (Stmt *Body = FD->getBody()) {
889     EmitFunctionBody(Args, Body);
890   } else if (FunctionDecl *UnsizedDealloc =
891                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
892     // Global sized deallocation functions get an implicit weak definition if
893     // they don't have an explicit definition.
894     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
895   } else
896     llvm_unreachable("no definition for emitted function");
897
898   // C++11 [stmt.return]p2:
899   //   Flowing off the end of a function [...] results in undefined behavior in
900   //   a value-returning function.
901   // C11 6.9.1p12:
902   //   If the '}' that terminates a function is reached, and the value of the
903   //   function call is used by the caller, the behavior is undefined.
904   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
905       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
906     if (SanOpts.has(SanitizerKind::Return)) {
907       SanitizerScope SanScope(this);
908       llvm::Value *IsFalse = Builder.getFalse();
909       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
910                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
911                 None);
912     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
913       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
914     Builder.CreateUnreachable();
915     Builder.ClearInsertionPoint();
916   }
917
918   // Emit the standard function epilogue.
919   FinishFunction(BodyRange.getEnd());
920
921   // If we haven't marked the function nothrow through other means, do
922   // a quick pass now to see if we can.
923   if (!CurFn->doesNotThrow())
924     TryMarkNoThrow(CurFn);
925 }
926
927 /// ContainsLabel - Return true if the statement contains a label in it.  If
928 /// this statement is not executed normally, it not containing a label means
929 /// that we can just remove the code.
930 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
931   // Null statement, not a label!
932   if (!S) return false;
933
934   // If this is a label, we have to emit the code, consider something like:
935   // if (0) {  ...  foo:  bar(); }  goto foo;
936   //
937   // TODO: If anyone cared, we could track __label__'s, since we know that you
938   // can't jump to one from outside their declared region.
939   if (isa<LabelStmt>(S))
940     return true;
941
942   // If this is a case/default statement, and we haven't seen a switch, we have
943   // to emit the code.
944   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
945     return true;
946
947   // If this is a switch statement, we want to ignore cases below it.
948   if (isa<SwitchStmt>(S))
949     IgnoreCaseStmts = true;
950
951   // Scan subexpressions for verboten labels.
952   for (Stmt::const_child_range I = S->children(); I; ++I)
953     if (ContainsLabel(*I, IgnoreCaseStmts))
954       return true;
955
956   return false;
957 }
958
959 /// containsBreak - Return true if the statement contains a break out of it.
960 /// If the statement (recursively) contains a switch or loop with a break
961 /// inside of it, this is fine.
962 bool CodeGenFunction::containsBreak(const Stmt *S) {
963   // Null statement, not a label!
964   if (!S) return false;
965
966   // If this is a switch or loop that defines its own break scope, then we can
967   // include it and anything inside of it.
968   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
969       isa<ForStmt>(S))
970     return false;
971
972   if (isa<BreakStmt>(S))
973     return true;
974
975   // Scan subexpressions for verboten breaks.
976   for (Stmt::const_child_range I = S->children(); I; ++I)
977     if (containsBreak(*I))
978       return true;
979
980   return false;
981 }
982
983
984 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
985 /// to a constant, or if it does but contains a label, return false.  If it
986 /// constant folds return true and set the boolean result in Result.
987 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
988                                                    bool &ResultBool) {
989   llvm::APSInt ResultInt;
990   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
991     return false;
992
993   ResultBool = ResultInt.getBoolValue();
994   return true;
995 }
996
997 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
998 /// to a constant, or if it does but contains a label, return false.  If it
999 /// constant folds return true and set the folded value.
1000 bool CodeGenFunction::
1001 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1002   // FIXME: Rename and handle conversion of other evaluatable things
1003   // to bool.
1004   llvm::APSInt Int;
1005   if (!Cond->EvaluateAsInt(Int, getContext()))
1006     return false;  // Not foldable, not integer or not fully evaluatable.
1007
1008   if (CodeGenFunction::ContainsLabel(Cond))
1009     return false;  // Contains a label.
1010
1011   ResultInt = Int;
1012   return true;
1013 }
1014
1015
1016
1017 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1018 /// statement) to the specified blocks.  Based on the condition, this might try
1019 /// to simplify the codegen of the conditional based on the branch.
1020 ///
1021 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1022                                            llvm::BasicBlock *TrueBlock,
1023                                            llvm::BasicBlock *FalseBlock,
1024                                            uint64_t TrueCount) {
1025   Cond = Cond->IgnoreParens();
1026
1027   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1028
1029     // Handle X && Y in a condition.
1030     if (CondBOp->getOpcode() == BO_LAnd) {
1031       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1032
1033       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1034       // folded if the case was simple enough.
1035       bool ConstantBool = false;
1036       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1037           ConstantBool) {
1038         // br(1 && X) -> br(X).
1039         Cnt.beginRegion(Builder);
1040         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1041                                     TrueCount);
1042       }
1043
1044       // If we have "X && 1", simplify the code to use an uncond branch.
1045       // "X && 0" would have been constant folded to 0.
1046       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1047           ConstantBool) {
1048         // br(X && 1) -> br(X).
1049         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1050                                     TrueCount);
1051       }
1052
1053       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1054       // want to jump to the FalseBlock.
1055       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1056       // The counter tells us how often we evaluate RHS, and all of TrueCount
1057       // can be propagated to that branch.
1058       uint64_t RHSCount = Cnt.getCount();
1059
1060       ConditionalEvaluation eval(*this);
1061       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1062       EmitBlock(LHSTrue);
1063
1064       // Any temporaries created here are conditional.
1065       Cnt.beginRegion(Builder);
1066       eval.begin(*this);
1067       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1068       eval.end(*this);
1069
1070       return;
1071     }
1072
1073     if (CondBOp->getOpcode() == BO_LOr) {
1074       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1075
1076       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1077       // folded if the case was simple enough.
1078       bool ConstantBool = false;
1079       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1080           !ConstantBool) {
1081         // br(0 || X) -> br(X).
1082         Cnt.beginRegion(Builder);
1083         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1084                                     TrueCount);
1085       }
1086
1087       // If we have "X || 0", simplify the code to use an uncond branch.
1088       // "X || 1" would have been constant folded to 1.
1089       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1090           !ConstantBool) {
1091         // br(X || 0) -> br(X).
1092         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1093                                     TrueCount);
1094       }
1095
1096       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1097       // want to jump to the TrueBlock.
1098       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1099       // We have the count for entry to the RHS and for the whole expression
1100       // being true, so we can divy up True count between the short circuit and
1101       // the RHS.
1102       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1103       uint64_t RHSCount = TrueCount - LHSCount;
1104
1105       ConditionalEvaluation eval(*this);
1106       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1107       EmitBlock(LHSFalse);
1108
1109       // Any temporaries created here are conditional.
1110       Cnt.beginRegion(Builder);
1111       eval.begin(*this);
1112       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1113
1114       eval.end(*this);
1115
1116       return;
1117     }
1118   }
1119
1120   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1121     // br(!x, t, f) -> br(x, f, t)
1122     if (CondUOp->getOpcode() == UO_LNot) {
1123       // Negate the count.
1124       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1125       // Negate the condition and swap the destination blocks.
1126       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1127                                   FalseCount);
1128     }
1129   }
1130
1131   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1132     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1133     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1134     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1135
1136     RegionCounter Cnt = getPGORegionCounter(CondOp);
1137     ConditionalEvaluation cond(*this);
1138     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1139
1140     // When computing PGO branch weights, we only know the overall count for
1141     // the true block. This code is essentially doing tail duplication of the
1142     // naive code-gen, introducing new edges for which counts are not
1143     // available. Divide the counts proportionally between the LHS and RHS of
1144     // the conditional operator.
1145     uint64_t LHSScaledTrueCount = 0;
1146     if (TrueCount) {
1147       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1148       LHSScaledTrueCount = TrueCount * LHSRatio;
1149     }
1150
1151     cond.begin(*this);
1152     EmitBlock(LHSBlock);
1153     Cnt.beginRegion(Builder);
1154     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1155                          LHSScaledTrueCount);
1156     cond.end(*this);
1157
1158     cond.begin(*this);
1159     EmitBlock(RHSBlock);
1160     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1161                          TrueCount - LHSScaledTrueCount);
1162     cond.end(*this);
1163
1164     return;
1165   }
1166
1167   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1168     // Conditional operator handling can give us a throw expression as a
1169     // condition for a case like:
1170     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1171     // Fold this to:
1172     //   br(c, throw x, br(y, t, f))
1173     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1174     return;
1175   }
1176
1177   // Create branch weights based on the number of times we get here and the
1178   // number of times the condition should be true.
1179   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1180   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1181                                                   CurrentCount - TrueCount);
1182
1183   // Emit the code with the fully general case.
1184   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1185   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1186 }
1187
1188 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1189 /// specified stmt yet.
1190 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1191   CGM.ErrorUnsupported(S, Type);
1192 }
1193
1194 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1195 /// variable-length array whose elements have a non-zero bit-pattern.
1196 ///
1197 /// \param baseType the inner-most element type of the array
1198 /// \param src - a char* pointing to the bit-pattern for a single
1199 /// base element of the array
1200 /// \param sizeInChars - the total size of the VLA, in chars
1201 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1202                                llvm::Value *dest, llvm::Value *src,
1203                                llvm::Value *sizeInChars) {
1204   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1205     = CGF.getContext().getTypeInfoInChars(baseType);
1206
1207   CGBuilderTy &Builder = CGF.Builder;
1208
1209   llvm::Value *baseSizeInChars
1210     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1211
1212   llvm::Type *i8p = Builder.getInt8PtrTy();
1213
1214   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1215   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1216
1217   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1218   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1219   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1220
1221   // Make a loop over the VLA.  C99 guarantees that the VLA element
1222   // count must be nonzero.
1223   CGF.EmitBlock(loopBB);
1224
1225   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1226   cur->addIncoming(begin, originBB);
1227
1228   // memcpy the individual element bit-pattern.
1229   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1230                        baseSizeAndAlign.second.getQuantity(),
1231                        /*volatile*/ false);
1232
1233   // Go to the next element.
1234   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1235
1236   // Leave if that's the end of the VLA.
1237   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1238   Builder.CreateCondBr(done, contBB, loopBB);
1239   cur->addIncoming(next, loopBB);
1240
1241   CGF.EmitBlock(contBB);
1242 }
1243
1244 void
1245 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1246   // Ignore empty classes in C++.
1247   if (getLangOpts().CPlusPlus) {
1248     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1249       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1250         return;
1251     }
1252   }
1253
1254   // Cast the dest ptr to the appropriate i8 pointer type.
1255   unsigned DestAS =
1256     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1257   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1258   if (DestPtr->getType() != BP)
1259     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1260
1261   // Get size and alignment info for this aggregate.
1262   std::pair<CharUnits, CharUnits> TypeInfo =
1263     getContext().getTypeInfoInChars(Ty);
1264   CharUnits Size = TypeInfo.first;
1265   CharUnits Align = TypeInfo.second;
1266
1267   llvm::Value *SizeVal;
1268   const VariableArrayType *vla;
1269
1270   // Don't bother emitting a zero-byte memset.
1271   if (Size.isZero()) {
1272     // But note that getTypeInfo returns 0 for a VLA.
1273     if (const VariableArrayType *vlaType =
1274           dyn_cast_or_null<VariableArrayType>(
1275                                           getContext().getAsArrayType(Ty))) {
1276       QualType eltType;
1277       llvm::Value *numElts;
1278       std::tie(numElts, eltType) = getVLASize(vlaType);
1279
1280       SizeVal = numElts;
1281       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1282       if (!eltSize.isOne())
1283         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1284       vla = vlaType;
1285     } else {
1286       return;
1287     }
1288   } else {
1289     SizeVal = CGM.getSize(Size);
1290     vla = nullptr;
1291   }
1292
1293   // If the type contains a pointer to data member we can't memset it to zero.
1294   // Instead, create a null constant and copy it to the destination.
1295   // TODO: there are other patterns besides zero that we can usefully memset,
1296   // like -1, which happens to be the pattern used by member-pointers.
1297   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1298     // For a VLA, emit a single element, then splat that over the VLA.
1299     if (vla) Ty = getContext().getBaseElementType(vla);
1300
1301     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1302
1303     llvm::GlobalVariable *NullVariable =
1304       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1305                                /*isConstant=*/true,
1306                                llvm::GlobalVariable::PrivateLinkage,
1307                                NullConstant, Twine());
1308     llvm::Value *SrcPtr =
1309       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1310
1311     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1312
1313     // Get and call the appropriate llvm.memcpy overload.
1314     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1315     return;
1316   }
1317
1318   // Otherwise, just memset the whole thing to zero.  This is legal
1319   // because in LLVM, all default initializers (other than the ones we just
1320   // handled above) are guaranteed to have a bit pattern of all zeros.
1321   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1322                        Align.getQuantity(), false);
1323 }
1324
1325 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1326   // Make sure that there is a block for the indirect goto.
1327   if (!IndirectBranch)
1328     GetIndirectGotoBlock();
1329
1330   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1331
1332   // Make sure the indirect branch includes all of the address-taken blocks.
1333   IndirectBranch->addDestination(BB);
1334   return llvm::BlockAddress::get(CurFn, BB);
1335 }
1336
1337 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1338   // If we already made the indirect branch for indirect goto, return its block.
1339   if (IndirectBranch) return IndirectBranch->getParent();
1340
1341   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1342
1343   // Create the PHI node that indirect gotos will add entries to.
1344   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1345                                               "indirect.goto.dest");
1346
1347   // Create the indirect branch instruction.
1348   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1349   return IndirectBranch->getParent();
1350 }
1351
1352 /// Computes the length of an array in elements, as well as the base
1353 /// element type and a properly-typed first element pointer.
1354 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1355                                               QualType &baseType,
1356                                               llvm::Value *&addr) {
1357   const ArrayType *arrayType = origArrayType;
1358
1359   // If it's a VLA, we have to load the stored size.  Note that
1360   // this is the size of the VLA in bytes, not its size in elements.
1361   llvm::Value *numVLAElements = nullptr;
1362   if (isa<VariableArrayType>(arrayType)) {
1363     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1364
1365     // Walk into all VLAs.  This doesn't require changes to addr,
1366     // which has type T* where T is the first non-VLA element type.
1367     do {
1368       QualType elementType = arrayType->getElementType();
1369       arrayType = getContext().getAsArrayType(elementType);
1370
1371       // If we only have VLA components, 'addr' requires no adjustment.
1372       if (!arrayType) {
1373         baseType = elementType;
1374         return numVLAElements;
1375       }
1376     } while (isa<VariableArrayType>(arrayType));
1377
1378     // We get out here only if we find a constant array type
1379     // inside the VLA.
1380   }
1381
1382   // We have some number of constant-length arrays, so addr should
1383   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1384   // down to the first element of addr.
1385   SmallVector<llvm::Value*, 8> gepIndices;
1386
1387   // GEP down to the array type.
1388   llvm::ConstantInt *zero = Builder.getInt32(0);
1389   gepIndices.push_back(zero);
1390
1391   uint64_t countFromCLAs = 1;
1392   QualType eltType;
1393
1394   llvm::ArrayType *llvmArrayType =
1395     dyn_cast<llvm::ArrayType>(
1396       cast<llvm::PointerType>(addr->getType())->getElementType());
1397   while (llvmArrayType) {
1398     assert(isa<ConstantArrayType>(arrayType));
1399     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1400              == llvmArrayType->getNumElements());
1401
1402     gepIndices.push_back(zero);
1403     countFromCLAs *= llvmArrayType->getNumElements();
1404     eltType = arrayType->getElementType();
1405
1406     llvmArrayType =
1407       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1408     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1409     assert((!llvmArrayType || arrayType) &&
1410            "LLVM and Clang types are out-of-synch");
1411   }
1412
1413   if (arrayType) {
1414     // From this point onwards, the Clang array type has been emitted
1415     // as some other type (probably a packed struct). Compute the array
1416     // size, and just emit the 'begin' expression as a bitcast.
1417     while (arrayType) {
1418       countFromCLAs *=
1419           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1420       eltType = arrayType->getElementType();
1421       arrayType = getContext().getAsArrayType(eltType);
1422     }
1423
1424     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1425     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1426     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1427   } else {
1428     // Create the actual GEP.
1429     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1430   }
1431
1432   baseType = eltType;
1433
1434   llvm::Value *numElements
1435     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1436
1437   // If we had any VLA dimensions, factor them in.
1438   if (numVLAElements)
1439     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1440
1441   return numElements;
1442 }
1443
1444 std::pair<llvm::Value*, QualType>
1445 CodeGenFunction::getVLASize(QualType type) {
1446   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1447   assert(vla && "type was not a variable array type!");
1448   return getVLASize(vla);
1449 }
1450
1451 std::pair<llvm::Value*, QualType>
1452 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1453   // The number of elements so far; always size_t.
1454   llvm::Value *numElements = nullptr;
1455
1456   QualType elementType;
1457   do {
1458     elementType = type->getElementType();
1459     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1460     assert(vlaSize && "no size for VLA!");
1461     assert(vlaSize->getType() == SizeTy);
1462
1463     if (!numElements) {
1464       numElements = vlaSize;
1465     } else {
1466       // It's undefined behavior if this wraps around, so mark it that way.
1467       // FIXME: Teach -fsanitize=undefined to trap this.
1468       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1469     }
1470   } while ((type = getContext().getAsVariableArrayType(elementType)));
1471
1472   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1473 }
1474
1475 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1476   assert(type->isVariablyModifiedType() &&
1477          "Must pass variably modified type to EmitVLASizes!");
1478
1479   EnsureInsertPoint();
1480
1481   // We're going to walk down into the type and look for VLA
1482   // expressions.
1483   do {
1484     assert(type->isVariablyModifiedType());
1485
1486     const Type *ty = type.getTypePtr();
1487     switch (ty->getTypeClass()) {
1488
1489 #define TYPE(Class, Base)
1490 #define ABSTRACT_TYPE(Class, Base)
1491 #define NON_CANONICAL_TYPE(Class, Base)
1492 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1493 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1494 #include "clang/AST/TypeNodes.def"
1495       llvm_unreachable("unexpected dependent type!");
1496
1497     // These types are never variably-modified.
1498     case Type::Builtin:
1499     case Type::Complex:
1500     case Type::Vector:
1501     case Type::ExtVector:
1502     case Type::Record:
1503     case Type::Enum:
1504     case Type::Elaborated:
1505     case Type::TemplateSpecialization:
1506     case Type::ObjCObject:
1507     case Type::ObjCInterface:
1508     case Type::ObjCObjectPointer:
1509       llvm_unreachable("type class is never variably-modified!");
1510
1511     case Type::Adjusted:
1512       type = cast<AdjustedType>(ty)->getAdjustedType();
1513       break;
1514
1515     case Type::Decayed:
1516       type = cast<DecayedType>(ty)->getPointeeType();
1517       break;
1518
1519     case Type::Pointer:
1520       type = cast<PointerType>(ty)->getPointeeType();
1521       break;
1522
1523     case Type::BlockPointer:
1524       type = cast<BlockPointerType>(ty)->getPointeeType();
1525       break;
1526
1527     case Type::LValueReference:
1528     case Type::RValueReference:
1529       type = cast<ReferenceType>(ty)->getPointeeType();
1530       break;
1531
1532     case Type::MemberPointer:
1533       type = cast<MemberPointerType>(ty)->getPointeeType();
1534       break;
1535
1536     case Type::ConstantArray:
1537     case Type::IncompleteArray:
1538       // Losing element qualification here is fine.
1539       type = cast<ArrayType>(ty)->getElementType();
1540       break;
1541
1542     case Type::VariableArray: {
1543       // Losing element qualification here is fine.
1544       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1545
1546       // Unknown size indication requires no size computation.
1547       // Otherwise, evaluate and record it.
1548       if (const Expr *size = vat->getSizeExpr()) {
1549         // It's possible that we might have emitted this already,
1550         // e.g. with a typedef and a pointer to it.
1551         llvm::Value *&entry = VLASizeMap[size];
1552         if (!entry) {
1553           llvm::Value *Size = EmitScalarExpr(size);
1554
1555           // C11 6.7.6.2p5:
1556           //   If the size is an expression that is not an integer constant
1557           //   expression [...] each time it is evaluated it shall have a value
1558           //   greater than zero.
1559           if (SanOpts.has(SanitizerKind::VLABound) &&
1560               size->getType()->isSignedIntegerType()) {
1561             SanitizerScope SanScope(this);
1562             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1563             llvm::Constant *StaticArgs[] = {
1564               EmitCheckSourceLocation(size->getLocStart()),
1565               EmitCheckTypeDescriptor(size->getType())
1566             };
1567             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1568                                      SanitizerKind::VLABound),
1569                       "vla_bound_not_positive", StaticArgs, Size);
1570           }
1571
1572           // Always zexting here would be wrong if it weren't
1573           // undefined behavior to have a negative bound.
1574           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1575         }
1576       }
1577       type = vat->getElementType();
1578       break;
1579     }
1580
1581     case Type::FunctionProto:
1582     case Type::FunctionNoProto:
1583       type = cast<FunctionType>(ty)->getReturnType();
1584       break;
1585
1586     case Type::Paren:
1587     case Type::TypeOf:
1588     case Type::UnaryTransform:
1589     case Type::Attributed:
1590     case Type::SubstTemplateTypeParm:
1591     case Type::PackExpansion:
1592       // Keep walking after single level desugaring.
1593       type = type.getSingleStepDesugaredType(getContext());
1594       break;
1595
1596     case Type::Typedef:
1597     case Type::Decltype:
1598     case Type::Auto:
1599       // Stop walking: nothing to do.
1600       return;
1601
1602     case Type::TypeOfExpr:
1603       // Stop walking: emit typeof expression.
1604       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1605       return;
1606
1607     case Type::Atomic:
1608       type = cast<AtomicType>(ty)->getValueType();
1609       break;
1610     }
1611   } while (type->isVariablyModifiedType());
1612 }
1613
1614 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1615   if (getContext().getBuiltinVaListType()->isArrayType())
1616     return EmitScalarExpr(E);
1617   return EmitLValue(E).getAddress();
1618 }
1619
1620 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1621                                               llvm::Constant *Init) {
1622   assert (Init && "Invalid DeclRefExpr initializer!");
1623   if (CGDebugInfo *Dbg = getDebugInfo())
1624     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1625       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1626 }
1627
1628 CodeGenFunction::PeepholeProtection
1629 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1630   // At the moment, the only aggressive peephole we do in IR gen
1631   // is trunc(zext) folding, but if we add more, we can easily
1632   // extend this protection.
1633
1634   if (!rvalue.isScalar()) return PeepholeProtection();
1635   llvm::Value *value = rvalue.getScalarVal();
1636   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1637
1638   // Just make an extra bitcast.
1639   assert(HaveInsertPoint());
1640   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1641                                                   Builder.GetInsertBlock());
1642
1643   PeepholeProtection protection;
1644   protection.Inst = inst;
1645   return protection;
1646 }
1647
1648 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1649   if (!protection.Inst) return;
1650
1651   // In theory, we could try to duplicate the peepholes now, but whatever.
1652   protection.Inst->eraseFromParent();
1653 }
1654
1655 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1656                                                  llvm::Value *AnnotatedVal,
1657                                                  StringRef AnnotationStr,
1658                                                  SourceLocation Location) {
1659   llvm::Value *Args[4] = {
1660     AnnotatedVal,
1661     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1662     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1663     CGM.EmitAnnotationLineNo(Location)
1664   };
1665   return Builder.CreateCall(AnnotationFn, Args);
1666 }
1667
1668 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1669   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1670   // FIXME We create a new bitcast for every annotation because that's what
1671   // llvm-gcc was doing.
1672   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1673     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1674                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1675                        I->getAnnotation(), D->getLocation());
1676 }
1677
1678 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1679                                                    llvm::Value *V) {
1680   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1681   llvm::Type *VTy = V->getType();
1682   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1683                                     CGM.Int8PtrTy);
1684
1685   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1686     // FIXME Always emit the cast inst so we can differentiate between
1687     // annotation on the first field of a struct and annotation on the struct
1688     // itself.
1689     if (VTy != CGM.Int8PtrTy)
1690       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1691     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1692     V = Builder.CreateBitCast(V, VTy);
1693   }
1694
1695   return V;
1696 }
1697
1698 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1699
1700 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1701     : CGF(CGF) {
1702   assert(!CGF->IsSanitizerScope);
1703   CGF->IsSanitizerScope = true;
1704 }
1705
1706 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1707   CGF->IsSanitizerScope = false;
1708 }
1709
1710 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1711                                    const llvm::Twine &Name,
1712                                    llvm::BasicBlock *BB,
1713                                    llvm::BasicBlock::iterator InsertPt) const {
1714   LoopStack.InsertHelper(I);
1715   if (IsSanitizerScope)
1716     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1717 }
1718
1719 template <bool PreserveNames>
1720 void CGBuilderInserter<PreserveNames>::InsertHelper(
1721     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1722     llvm::BasicBlock::iterator InsertPt) const {
1723   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1724                                                               InsertPt);
1725   if (CGF)
1726     CGF->InsertHelper(I, Name, BB, InsertPt);
1727 }
1728
1729 #ifdef NDEBUG
1730 #define PreserveNames false
1731 #else
1732 #define PreserveNames true
1733 #endif
1734 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1735     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1736     llvm::BasicBlock::iterator InsertPt) const;
1737 #undef PreserveNames