]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
MFC r309362:
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenFunction.cpp
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 using namespace clang;
38 using namespace CodeGen;
39
40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43               CGBuilderInserterTy(this)),
44       CurFn(nullptr), ReturnValue(Address::invalid()),
45       CapturedStmtInfo(nullptr),
46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48       IsOutlinedSEHHelper(false),
49       BlockInfo(nullptr), BlockPointer(nullptr),
50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53       DebugInfo(CGM.getModuleDebugInfo()),
54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59       CXXStructorImplicitParamDecl(nullptr),
60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62       TerminateHandler(nullptr), TrapBB(nullptr) {
63   if (!suppressNewContext)
64     CGM.getCXXABI().getMangleContext().startNewFunction();
65
66   llvm::FastMathFlags FMF;
67   if (CGM.getLangOpts().FastMath)
68     FMF.setUnsafeAlgebra();
69   if (CGM.getLangOpts().FiniteMathOnly) {
70     FMF.setNoNaNs();
71     FMF.setNoInfs();
72   }
73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74     FMF.setNoNaNs();
75   }
76   if (CGM.getCodeGenOpts().NoSignedZeros) {
77     FMF.setNoSignedZeros();
78   }
79   if (CGM.getCodeGenOpts().ReciprocalMath) {
80     FMF.setAllowReciprocal();
81   }
82   Builder.setFastMathFlags(FMF);
83 }
84
85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87
88   // If there are any unclaimed block infos, go ahead and destroy them
89   // now.  This can happen if IR-gen gets clever and skips evaluating
90   // something.
91   if (FirstBlockInfo)
92     destroyBlockInfos(FirstBlockInfo);
93
94   if (getLangOpts().OpenMP) {
95     CGM.getOpenMPRuntime().functionFinished(*this);
96   }
97 }
98
99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                      AlignmentSource *Source) {
101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                  /*forPointee*/ true);
103 }
104
105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                    AlignmentSource *Source,
107                                                    bool forPointeeType) {
108   // Honor alignment typedef attributes even on incomplete types.
109   // We also honor them straight for C++ class types, even as pointees;
110   // there's an expressivity gap here.
111   if (auto TT = T->getAs<TypedefType>()) {
112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
113       if (Source) *Source = AlignmentSource::AttributedType;
114       return getContext().toCharUnitsFromBits(Align);
115     }
116   }
117
118   if (Source) *Source = AlignmentSource::Type;
119
120   CharUnits Alignment;
121   if (T->isIncompleteType()) {
122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123   } else {
124     // For C++ class pointees, we don't know whether we're pointing at a
125     // base or a complete object, so we generally need to use the
126     // non-virtual alignment.
127     const CXXRecordDecl *RD;
128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129       Alignment = CGM.getClassPointerAlignment(RD);
130     } else {
131       Alignment = getContext().getTypeAlignInChars(T);
132     }
133
134     // Cap to the global maximum type alignment unless the alignment
135     // was somehow explicit on the type.
136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137       if (Alignment.getQuantity() > MaxAlign &&
138           !getContext().isAlignmentRequired(T))
139         Alignment = CharUnits::fromQuantity(MaxAlign);
140     }
141   }
142   return Alignment;
143 }
144
145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146   AlignmentSource AlignSource;
147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                           CGM.getTBAAInfo(T));
150 }
151
152 /// Given a value of type T* that may not be to a complete object,
153 /// construct an l-value with the natural pointee alignment of T.
154 LValue
155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156   AlignmentSource AlignSource;
157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
159 }
160
161
162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163   return CGM.getTypes().ConvertTypeForMem(T);
164 }
165
166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167   return CGM.getTypes().ConvertType(T);
168 }
169
170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171   type = type.getCanonicalType();
172   while (true) {
173     switch (type->getTypeClass()) {
174 #define TYPE(name, parent)
175 #define ABSTRACT_TYPE(name, parent)
176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
177 #define DEPENDENT_TYPE(name, parent) case Type::name:
178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179 #include "clang/AST/TypeNodes.def"
180       llvm_unreachable("non-canonical or dependent type in IR-generation");
181
182     case Type::Auto:
183       llvm_unreachable("undeduced auto type in IR-generation");
184
185     // Various scalar types.
186     case Type::Builtin:
187     case Type::Pointer:
188     case Type::BlockPointer:
189     case Type::LValueReference:
190     case Type::RValueReference:
191     case Type::MemberPointer:
192     case Type::Vector:
193     case Type::ExtVector:
194     case Type::FunctionProto:
195     case Type::FunctionNoProto:
196     case Type::Enum:
197     case Type::ObjCObjectPointer:
198     case Type::Pipe:
199       return TEK_Scalar;
200
201     // Complexes.
202     case Type::Complex:
203       return TEK_Complex;
204
205     // Arrays, records, and Objective-C objects.
206     case Type::ConstantArray:
207     case Type::IncompleteArray:
208     case Type::VariableArray:
209     case Type::Record:
210     case Type::ObjCObject:
211     case Type::ObjCInterface:
212       return TEK_Aggregate;
213
214     // We operate on atomic values according to their underlying type.
215     case Type::Atomic:
216       type = cast<AtomicType>(type)->getValueType();
217       continue;
218     }
219     llvm_unreachable("unknown type kind!");
220   }
221 }
222
223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
224   // For cleanliness, we try to avoid emitting the return block for
225   // simple cases.
226   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
227
228   if (CurBB) {
229     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
230
231     // We have a valid insert point, reuse it if it is empty or there are no
232     // explicit jumps to the return block.
233     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
234       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
235       delete ReturnBlock.getBlock();
236     } else
237       EmitBlock(ReturnBlock.getBlock());
238     return llvm::DebugLoc();
239   }
240
241   // Otherwise, if the return block is the target of a single direct
242   // branch then we can just put the code in that block instead. This
243   // cleans up functions which started with a unified return block.
244   if (ReturnBlock.getBlock()->hasOneUse()) {
245     llvm::BranchInst *BI =
246       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
247     if (BI && BI->isUnconditional() &&
248         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
249       // Record/return the DebugLoc of the simple 'return' expression to be used
250       // later by the actual 'ret' instruction.
251       llvm::DebugLoc Loc = BI->getDebugLoc();
252       Builder.SetInsertPoint(BI->getParent());
253       BI->eraseFromParent();
254       delete ReturnBlock.getBlock();
255       return Loc;
256     }
257   }
258
259   // FIXME: We are at an unreachable point, there is no reason to emit the block
260   // unless it has uses. However, we still need a place to put the debug
261   // region.end for now.
262
263   EmitBlock(ReturnBlock.getBlock());
264   return llvm::DebugLoc();
265 }
266
267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
268   if (!BB) return;
269   if (!BB->use_empty())
270     return CGF.CurFn->getBasicBlockList().push_back(BB);
271   delete BB;
272 }
273
274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
275   assert(BreakContinueStack.empty() &&
276          "mismatched push/pop in break/continue stack!");
277
278   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
279     && NumSimpleReturnExprs == NumReturnExprs
280     && ReturnBlock.getBlock()->use_empty();
281   // Usually the return expression is evaluated before the cleanup
282   // code.  If the function contains only a simple return statement,
283   // such as a constant, the location before the cleanup code becomes
284   // the last useful breakpoint in the function, because the simple
285   // return expression will be evaluated after the cleanup code. To be
286   // safe, set the debug location for cleanup code to the location of
287   // the return statement.  Otherwise the cleanup code should be at the
288   // end of the function's lexical scope.
289   //
290   // If there are multiple branches to the return block, the branch
291   // instructions will get the location of the return statements and
292   // all will be fine.
293   if (CGDebugInfo *DI = getDebugInfo()) {
294     if (OnlySimpleReturnStmts)
295       DI->EmitLocation(Builder, LastStopPoint);
296     else
297       DI->EmitLocation(Builder, EndLoc);
298   }
299
300   // Pop any cleanups that might have been associated with the
301   // parameters.  Do this in whatever block we're currently in; it's
302   // important to do this before we enter the return block or return
303   // edges will be *really* confused.
304   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
305   bool HasOnlyLifetimeMarkers =
306       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
307   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
308   if (HasCleanups) {
309     // Make sure the line table doesn't jump back into the body for
310     // the ret after it's been at EndLoc.
311     if (CGDebugInfo *DI = getDebugInfo())
312       if (OnlySimpleReturnStmts)
313         DI->EmitLocation(Builder, EndLoc);
314
315     PopCleanupBlocks(PrologueCleanupDepth);
316   }
317
318   // Emit function epilog (to return).
319   llvm::DebugLoc Loc = EmitReturnBlock();
320
321   if (ShouldInstrumentFunction())
322     EmitFunctionInstrumentation("__cyg_profile_func_exit");
323
324   // Emit debug descriptor for function end.
325   if (CGDebugInfo *DI = getDebugInfo())
326     DI->EmitFunctionEnd(Builder);
327
328   // Reset the debug location to that of the simple 'return' expression, if any
329   // rather than that of the end of the function's scope '}'.
330   ApplyDebugLocation AL(*this, Loc);
331   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
332   EmitEndEHSpec(CurCodeDecl);
333
334   assert(EHStack.empty() &&
335          "did not remove all scopes from cleanup stack!");
336
337   // If someone did an indirect goto, emit the indirect goto block at the end of
338   // the function.
339   if (IndirectBranch) {
340     EmitBlock(IndirectBranch->getParent());
341     Builder.ClearInsertionPoint();
342   }
343
344   // If some of our locals escaped, insert a call to llvm.localescape in the
345   // entry block.
346   if (!EscapedLocals.empty()) {
347     // Invert the map from local to index into a simple vector. There should be
348     // no holes.
349     SmallVector<llvm::Value *, 4> EscapeArgs;
350     EscapeArgs.resize(EscapedLocals.size());
351     for (auto &Pair : EscapedLocals)
352       EscapeArgs[Pair.second] = Pair.first;
353     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
354         &CGM.getModule(), llvm::Intrinsic::localescape);
355     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
356   }
357
358   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
359   llvm::Instruction *Ptr = AllocaInsertPt;
360   AllocaInsertPt = nullptr;
361   Ptr->eraseFromParent();
362
363   // If someone took the address of a label but never did an indirect goto, we
364   // made a zero entry PHI node, which is illegal, zap it now.
365   if (IndirectBranch) {
366     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
367     if (PN->getNumIncomingValues() == 0) {
368       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
369       PN->eraseFromParent();
370     }
371   }
372
373   EmitIfUsed(*this, EHResumeBlock);
374   EmitIfUsed(*this, TerminateLandingPad);
375   EmitIfUsed(*this, TerminateHandler);
376   EmitIfUsed(*this, UnreachableBlock);
377
378   if (CGM.getCodeGenOpts().EmitDeclMetadata)
379     EmitDeclMetadata();
380
381   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
382            I = DeferredReplacements.begin(),
383            E = DeferredReplacements.end();
384        I != E; ++I) {
385     I->first->replaceAllUsesWith(I->second);
386     I->first->eraseFromParent();
387   }
388 }
389
390 /// ShouldInstrumentFunction - Return true if the current function should be
391 /// instrumented with __cyg_profile_func_* calls
392 bool CodeGenFunction::ShouldInstrumentFunction() {
393   if (!CGM.getCodeGenOpts().InstrumentFunctions)
394     return false;
395   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
396     return false;
397   return true;
398 }
399
400 /// ShouldXRayInstrument - Return true if the current function should be
401 /// instrumented with XRay nop sleds.
402 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
403   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
404 }
405
406 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
407 /// instrumentation function with the current function and the call site, if
408 /// function instrumentation is enabled.
409 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
410   auto NL = ApplyDebugLocation::CreateArtificial(*this);
411   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
412   llvm::PointerType *PointerTy = Int8PtrTy;
413   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
414   llvm::FunctionType *FunctionTy =
415     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
416
417   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
418   llvm::CallInst *CallSite = Builder.CreateCall(
419     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
420     llvm::ConstantInt::get(Int32Ty, 0),
421     "callsite");
422
423   llvm::Value *args[] = {
424     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
425     CallSite
426   };
427
428   EmitNounwindRuntimeCall(F, args);
429 }
430
431 void CodeGenFunction::EmitMCountInstrumentation() {
432   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
433
434   llvm::Constant *MCountFn =
435     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
436   EmitNounwindRuntimeCall(MCountFn);
437 }
438
439 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
440 // information in the program executable. The argument information stored
441 // includes the argument name, its type, the address and access qualifiers used.
442 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
443                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
444                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
445   // Create MDNodes that represent the kernel arg metadata.
446   // Each MDNode is a list in the form of "key", N number of values which is
447   // the same number of values as their are kernel arguments.
448
449   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
450
451   // MDNode for the kernel argument address space qualifiers.
452   SmallVector<llvm::Metadata *, 8> addressQuals;
453
454   // MDNode for the kernel argument access qualifiers (images only).
455   SmallVector<llvm::Metadata *, 8> accessQuals;
456
457   // MDNode for the kernel argument type names.
458   SmallVector<llvm::Metadata *, 8> argTypeNames;
459
460   // MDNode for the kernel argument base type names.
461   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
462
463   // MDNode for the kernel argument type qualifiers.
464   SmallVector<llvm::Metadata *, 8> argTypeQuals;
465
466   // MDNode for the kernel argument names.
467   SmallVector<llvm::Metadata *, 8> argNames;
468
469   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
470     const ParmVarDecl *parm = FD->getParamDecl(i);
471     QualType ty = parm->getType();
472     std::string typeQuals;
473
474     if (ty->isPointerType()) {
475       QualType pointeeTy = ty->getPointeeType();
476
477       // Get address qualifier.
478       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
479           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
480
481       // Get argument type name.
482       std::string typeName =
483           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
484
485       // Turn "unsigned type" to "utype"
486       std::string::size_type pos = typeName.find("unsigned");
487       if (pointeeTy.isCanonical() && pos != std::string::npos)
488         typeName.erase(pos+1, 8);
489
490       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
491
492       std::string baseTypeName =
493           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
494               Policy) +
495           "*";
496
497       // Turn "unsigned type" to "utype"
498       pos = baseTypeName.find("unsigned");
499       if (pos != std::string::npos)
500         baseTypeName.erase(pos+1, 8);
501
502       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
503
504       // Get argument type qualifiers:
505       if (ty.isRestrictQualified())
506         typeQuals = "restrict";
507       if (pointeeTy.isConstQualified() ||
508           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
509         typeQuals += typeQuals.empty() ? "const" : " const";
510       if (pointeeTy.isVolatileQualified())
511         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
512     } else {
513       uint32_t AddrSpc = 0;
514       bool isPipe = ty->isPipeType();
515       if (ty->isImageType() || isPipe)
516         AddrSpc =
517           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
518
519       addressQuals.push_back(
520           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
521
522       // Get argument type name.
523       std::string typeName;
524       if (isPipe)
525         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
526                      .getAsString(Policy);
527       else
528         typeName = ty.getUnqualifiedType().getAsString(Policy);
529
530       // Turn "unsigned type" to "utype"
531       std::string::size_type pos = typeName.find("unsigned");
532       if (ty.isCanonical() && pos != std::string::npos)
533         typeName.erase(pos+1, 8);
534
535       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
536
537       std::string baseTypeName;
538       if (isPipe)
539         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
540                           ->getElementType().getCanonicalType()
541                           .getAsString(Policy);
542       else
543         baseTypeName =
544           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
545
546       // Turn "unsigned type" to "utype"
547       pos = baseTypeName.find("unsigned");
548       if (pos != std::string::npos)
549         baseTypeName.erase(pos+1, 8);
550
551       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
552
553       // Get argument type qualifiers:
554       if (ty.isConstQualified())
555         typeQuals = "const";
556       if (ty.isVolatileQualified())
557         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
558       if (isPipe)
559         typeQuals = "pipe";
560     }
561
562     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
563
564     // Get image and pipe access qualifier:
565     if (ty->isImageType()|| ty->isPipeType()) {
566       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
567       if (A && A->isWriteOnly())
568         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
569       else if (A && A->isReadWrite())
570         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
571       else
572         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
573     } else
574       accessQuals.push_back(llvm::MDString::get(Context, "none"));
575
576     // Get argument name.
577     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
578   }
579
580   Fn->setMetadata("kernel_arg_addr_space",
581                   llvm::MDNode::get(Context, addressQuals));
582   Fn->setMetadata("kernel_arg_access_qual",
583                   llvm::MDNode::get(Context, accessQuals));
584   Fn->setMetadata("kernel_arg_type",
585                   llvm::MDNode::get(Context, argTypeNames));
586   Fn->setMetadata("kernel_arg_base_type",
587                   llvm::MDNode::get(Context, argBaseTypeNames));
588   Fn->setMetadata("kernel_arg_type_qual",
589                   llvm::MDNode::get(Context, argTypeQuals));
590   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
591     Fn->setMetadata("kernel_arg_name",
592                     llvm::MDNode::get(Context, argNames));
593 }
594
595 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
596                                                llvm::Function *Fn)
597 {
598   if (!FD->hasAttr<OpenCLKernelAttr>())
599     return;
600
601   llvm::LLVMContext &Context = getLLVMContext();
602
603   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
604
605   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
606     QualType hintQTy = A->getTypeHint();
607     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
608     bool isSignedInteger =
609         hintQTy->isSignedIntegerType() ||
610         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
611     llvm::Metadata *attrMDArgs[] = {
612         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
613             CGM.getTypes().ConvertType(A->getTypeHint()))),
614         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
615             llvm::IntegerType::get(Context, 32),
616             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
617     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
618   }
619
620   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
621     llvm::Metadata *attrMDArgs[] = {
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
624         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
625     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
626   }
627
628   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
629     llvm::Metadata *attrMDArgs[] = {
630         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
631         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
632         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
633     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
634   }
635 }
636
637 /// Determine whether the function F ends with a return stmt.
638 static bool endsWithReturn(const Decl* F) {
639   const Stmt *Body = nullptr;
640   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
641     Body = FD->getBody();
642   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
643     Body = OMD->getBody();
644
645   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
646     auto LastStmt = CS->body_rbegin();
647     if (LastStmt != CS->body_rend())
648       return isa<ReturnStmt>(*LastStmt);
649   }
650   return false;
651 }
652
653 void CodeGenFunction::StartFunction(GlobalDecl GD,
654                                     QualType RetTy,
655                                     llvm::Function *Fn,
656                                     const CGFunctionInfo &FnInfo,
657                                     const FunctionArgList &Args,
658                                     SourceLocation Loc,
659                                     SourceLocation StartLoc) {
660   assert(!CurFn &&
661          "Do not use a CodeGenFunction object for more than one function");
662
663   const Decl *D = GD.getDecl();
664
665   DidCallStackSave = false;
666   CurCodeDecl = D;
667   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
668     if (FD->usesSEHTry())
669       CurSEHParent = FD;
670   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
671   FnRetTy = RetTy;
672   CurFn = Fn;
673   CurFnInfo = &FnInfo;
674   assert(CurFn->isDeclaration() && "Function already has body?");
675
676   if (CGM.isInSanitizerBlacklist(Fn, Loc))
677     SanOpts.clear();
678
679   if (D) {
680     // Apply the no_sanitize* attributes to SanOpts.
681     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
682       SanOpts.Mask &= ~Attr->getMask();
683   }
684
685   // Apply sanitizer attributes to the function.
686   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
687     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
688   if (SanOpts.has(SanitizerKind::Thread))
689     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
690   if (SanOpts.has(SanitizerKind::Memory))
691     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
692   if (SanOpts.has(SanitizerKind::SafeStack))
693     Fn->addFnAttr(llvm::Attribute::SafeStack);
694
695   // Apply xray attributes to the function (as a string, for now)
696   if (D && ShouldXRayInstrumentFunction()) {
697     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
698       if (XRayAttr->alwaysXRayInstrument())
699         Fn->addFnAttr("function-instrument", "xray-always");
700       if (XRayAttr->neverXRayInstrument())
701         Fn->addFnAttr("function-instrument", "xray-never");
702     } else {
703       Fn->addFnAttr(
704           "xray-instruction-threshold",
705           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
706     }
707   }
708
709   // Pass inline keyword to optimizer if it appears explicitly on any
710   // declaration. Also, in the case of -fno-inline attach NoInline
711   // attribute to all functions that are not marked AlwaysInline, or
712   // to all functions that are not marked inline or implicitly inline
713   // in the case of -finline-hint-functions.
714   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
715     const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
716     if (!CodeGenOpts.NoInline) {
717       for (auto RI : FD->redecls())
718         if (RI->isInlineSpecified()) {
719           Fn->addFnAttr(llvm::Attribute::InlineHint);
720           break;
721         }
722       if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
723           !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
724         Fn->addFnAttr(llvm::Attribute::NoInline);
725     } else if (!FD->hasAttr<AlwaysInlineAttr>())
726       Fn->addFnAttr(llvm::Attribute::NoInline);
727     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
728       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
729   }
730
731   // Add no-jump-tables value.
732   Fn->addFnAttr("no-jump-tables",
733                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
734
735   if (getLangOpts().OpenCL) {
736     // Add metadata for a kernel function.
737     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
738       EmitOpenCLKernelMetadata(FD, Fn);
739   }
740
741   // If we are checking function types, emit a function type signature as
742   // prologue data.
743   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
744     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
745       if (llvm::Constant *PrologueSig =
746               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
747         llvm::Constant *FTRTTIConst =
748             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
749         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
750         llvm::Constant *PrologueStructConst =
751             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
752         Fn->setPrologueData(PrologueStructConst);
753       }
754     }
755   }
756
757   // If we're in C++ mode and the function name is "main", it is guaranteed
758   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
759   // used within a program").
760   if (getLangOpts().CPlusPlus)
761     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
762       if (FD->isMain())
763         Fn->addFnAttr(llvm::Attribute::NoRecurse);
764   
765   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
766
767   // Create a marker to make it easy to insert allocas into the entryblock
768   // later.  Don't create this with the builder, because we don't want it
769   // folded.
770   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
771   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
772
773   ReturnBlock = getJumpDestInCurrentScope("return");
774
775   Builder.SetInsertPoint(EntryBB);
776
777   // Emit subprogram debug descriptor.
778   if (CGDebugInfo *DI = getDebugInfo()) {
779     // Reconstruct the type from the argument list so that implicit parameters,
780     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
781     // convention.
782     CallingConv CC = CallingConv::CC_C;
783     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
784       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
785         CC = SrcFnTy->getCallConv();
786     SmallVector<QualType, 16> ArgTypes;
787     for (const VarDecl *VD : Args)
788       ArgTypes.push_back(VD->getType());
789     QualType FnType = getContext().getFunctionType(
790         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
791     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
792   }
793
794   if (ShouldInstrumentFunction())
795     EmitFunctionInstrumentation("__cyg_profile_func_enter");
796
797   if (CGM.getCodeGenOpts().InstrumentForProfiling)
798     EmitMCountInstrumentation();
799
800   if (RetTy->isVoidType()) {
801     // Void type; nothing to return.
802     ReturnValue = Address::invalid();
803
804     // Count the implicit return.
805     if (!endsWithReturn(D))
806       ++NumReturnExprs;
807   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
808              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
809     // Indirect aggregate return; emit returned value directly into sret slot.
810     // This reduces code size, and affects correctness in C++.
811     auto AI = CurFn->arg_begin();
812     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
813       ++AI;
814     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
815   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
816              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
817     // Load the sret pointer from the argument struct and return into that.
818     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
819     llvm::Function::arg_iterator EI = CurFn->arg_end();
820     --EI;
821     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
822     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
823     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
824   } else {
825     ReturnValue = CreateIRTemp(RetTy, "retval");
826
827     // Tell the epilog emitter to autorelease the result.  We do this
828     // now so that various specialized functions can suppress it
829     // during their IR-generation.
830     if (getLangOpts().ObjCAutoRefCount &&
831         !CurFnInfo->isReturnsRetained() &&
832         RetTy->isObjCRetainableType())
833       AutoreleaseResult = true;
834   }
835
836   EmitStartEHSpec(CurCodeDecl);
837
838   PrologueCleanupDepth = EHStack.stable_begin();
839   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
840
841   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
842     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
843     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
844     if (MD->getParent()->isLambda() &&
845         MD->getOverloadedOperator() == OO_Call) {
846       // We're in a lambda; figure out the captures.
847       MD->getParent()->getCaptureFields(LambdaCaptureFields,
848                                         LambdaThisCaptureField);
849       if (LambdaThisCaptureField) {
850         // If the lambda captures the object referred to by '*this' - either by
851         // value or by reference, make sure CXXThisValue points to the correct
852         // object.
853
854         // Get the lvalue for the field (which is a copy of the enclosing object
855         // or contains the address of the enclosing object).
856         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
857         if (!LambdaThisCaptureField->getType()->isPointerType()) {
858           // If the enclosing object was captured by value, just use its address.
859           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
860         } else {
861           // Load the lvalue pointed to by the field, since '*this' was captured
862           // by reference.
863           CXXThisValue =
864               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
865         }
866       }
867       for (auto *FD : MD->getParent()->fields()) {
868         if (FD->hasCapturedVLAType()) {
869           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
870                                            SourceLocation()).getScalarVal();
871           auto VAT = FD->getCapturedVLAType();
872           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
873         }
874       }
875     } else {
876       // Not in a lambda; just use 'this' from the method.
877       // FIXME: Should we generate a new load for each use of 'this'?  The
878       // fast register allocator would be happier...
879       CXXThisValue = CXXABIThisValue;
880     }
881   }
882
883   // If any of the arguments have a variably modified type, make sure to
884   // emit the type size.
885   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
886        i != e; ++i) {
887     const VarDecl *VD = *i;
888
889     // Dig out the type as written from ParmVarDecls; it's unclear whether
890     // the standard (C99 6.9.1p10) requires this, but we're following the
891     // precedent set by gcc.
892     QualType Ty;
893     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
894       Ty = PVD->getOriginalType();
895     else
896       Ty = VD->getType();
897
898     if (Ty->isVariablyModifiedType())
899       EmitVariablyModifiedType(Ty);
900   }
901   // Emit a location at the end of the prologue.
902   if (CGDebugInfo *DI = getDebugInfo())
903     DI->EmitLocation(Builder, StartLoc);
904 }
905
906 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
907                                        const Stmt *Body) {
908   incrementProfileCounter(Body);
909   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
910     EmitCompoundStmtWithoutScope(*S);
911   else
912     EmitStmt(Body);
913 }
914
915 /// When instrumenting to collect profile data, the counts for some blocks
916 /// such as switch cases need to not include the fall-through counts, so
917 /// emit a branch around the instrumentation code. When not instrumenting,
918 /// this just calls EmitBlock().
919 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
920                                                const Stmt *S) {
921   llvm::BasicBlock *SkipCountBB = nullptr;
922   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
923     // When instrumenting for profiling, the fallthrough to certain
924     // statements needs to skip over the instrumentation code so that we
925     // get an accurate count.
926     SkipCountBB = createBasicBlock("skipcount");
927     EmitBranch(SkipCountBB);
928   }
929   EmitBlock(BB);
930   uint64_t CurrentCount = getCurrentProfileCount();
931   incrementProfileCounter(S);
932   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
933   if (SkipCountBB)
934     EmitBlock(SkipCountBB);
935 }
936
937 /// Tries to mark the given function nounwind based on the
938 /// non-existence of any throwing calls within it.  We believe this is
939 /// lightweight enough to do at -O0.
940 static void TryMarkNoThrow(llvm::Function *F) {
941   // LLVM treats 'nounwind' on a function as part of the type, so we
942   // can't do this on functions that can be overwritten.
943   if (F->isInterposable()) return;
944
945   for (llvm::BasicBlock &BB : *F)
946     for (llvm::Instruction &I : BB)
947       if (I.mayThrow())
948         return;
949
950   F->setDoesNotThrow();
951 }
952
953 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
954                                                FunctionArgList &Args) {
955   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
956   QualType ResTy = FD->getReturnType();
957
958   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
959   if (MD && MD->isInstance()) {
960     if (CGM.getCXXABI().HasThisReturn(GD))
961       ResTy = MD->getThisType(getContext());
962     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
963       ResTy = CGM.getContext().VoidPtrTy;
964     CGM.getCXXABI().buildThisParam(*this, Args);
965   }
966
967   // The base version of an inheriting constructor whose constructed base is a
968   // virtual base is not passed any arguments (because it doesn't actually call
969   // the inherited constructor).
970   bool PassedParams = true;
971   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
972     if (auto Inherited = CD->getInheritedConstructor())
973       PassedParams =
974           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
975
976   if (PassedParams) {
977     for (auto *Param : FD->parameters()) {
978       Args.push_back(Param);
979       if (!Param->hasAttr<PassObjectSizeAttr>())
980         continue;
981
982       IdentifierInfo *NoID = nullptr;
983       auto *Implicit = ImplicitParamDecl::Create(
984           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
985           getContext().getSizeType());
986       SizeArguments[Param] = Implicit;
987       Args.push_back(Implicit);
988     }
989   }
990
991   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
992     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
993
994   return ResTy;
995 }
996
997 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
998                                    const CGFunctionInfo &FnInfo) {
999   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1000   CurGD = GD;
1001
1002   FunctionArgList Args;
1003   QualType ResTy = BuildFunctionArgList(GD, Args);
1004
1005   // Check if we should generate debug info for this function.
1006   if (FD->hasAttr<NoDebugAttr>())
1007     DebugInfo = nullptr; // disable debug info indefinitely for this function
1008
1009   SourceRange BodyRange;
1010   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
1011   CurEHLocation = BodyRange.getEnd();
1012
1013   // Use the location of the start of the function to determine where
1014   // the function definition is located. By default use the location
1015   // of the declaration as the location for the subprogram. A function
1016   // may lack a declaration in the source code if it is created by code
1017   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1018   SourceLocation Loc = FD->getLocation();
1019
1020   // If this is a function specialization then use the pattern body
1021   // as the location for the function.
1022   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1023     if (SpecDecl->hasBody(SpecDecl))
1024       Loc = SpecDecl->getLocation();
1025
1026   // Emit the standard function prologue.
1027   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1028
1029   // Generate the body of the function.
1030   PGO.assignRegionCounters(GD, CurFn);
1031   if (isa<CXXDestructorDecl>(FD))
1032     EmitDestructorBody(Args);
1033   else if (isa<CXXConstructorDecl>(FD))
1034     EmitConstructorBody(Args);
1035   else if (getLangOpts().CUDA &&
1036            !getLangOpts().CUDAIsDevice &&
1037            FD->hasAttr<CUDAGlobalAttr>())
1038     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1039   else if (isa<CXXConversionDecl>(FD) &&
1040            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1041     // The lambda conversion to block pointer is special; the semantics can't be
1042     // expressed in the AST, so IRGen needs to special-case it.
1043     EmitLambdaToBlockPointerBody(Args);
1044   } else if (isa<CXXMethodDecl>(FD) &&
1045              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1046     // The lambda static invoker function is special, because it forwards or
1047     // clones the body of the function call operator (but is actually static).
1048     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1049   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1050              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1051               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1052     // Implicit copy-assignment gets the same special treatment as implicit
1053     // copy-constructors.
1054     emitImplicitAssignmentOperatorBody(Args);
1055   } else if (Stmt *Body = FD->getBody()) {
1056     EmitFunctionBody(Args, Body);
1057   } else
1058     llvm_unreachable("no definition for emitted function");
1059
1060   // C++11 [stmt.return]p2:
1061   //   Flowing off the end of a function [...] results in undefined behavior in
1062   //   a value-returning function.
1063   // C11 6.9.1p12:
1064   //   If the '}' that terminates a function is reached, and the value of the
1065   //   function call is used by the caller, the behavior is undefined.
1066   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1067       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1068     if (SanOpts.has(SanitizerKind::Return)) {
1069       SanitizerScope SanScope(this);
1070       llvm::Value *IsFalse = Builder.getFalse();
1071       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1072                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1073                 None);
1074     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1075       EmitTrapCall(llvm::Intrinsic::trap);
1076     }
1077     Builder.CreateUnreachable();
1078     Builder.ClearInsertionPoint();
1079   }
1080
1081   // Emit the standard function epilogue.
1082   FinishFunction(BodyRange.getEnd());
1083
1084   // If we haven't marked the function nothrow through other means, do
1085   // a quick pass now to see if we can.
1086   if (!CurFn->doesNotThrow())
1087     TryMarkNoThrow(CurFn);
1088 }
1089
1090 /// ContainsLabel - Return true if the statement contains a label in it.  If
1091 /// this statement is not executed normally, it not containing a label means
1092 /// that we can just remove the code.
1093 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1094   // Null statement, not a label!
1095   if (!S) return false;
1096
1097   // If this is a label, we have to emit the code, consider something like:
1098   // if (0) {  ...  foo:  bar(); }  goto foo;
1099   //
1100   // TODO: If anyone cared, we could track __label__'s, since we know that you
1101   // can't jump to one from outside their declared region.
1102   if (isa<LabelStmt>(S))
1103     return true;
1104
1105   // If this is a case/default statement, and we haven't seen a switch, we have
1106   // to emit the code.
1107   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1108     return true;
1109
1110   // If this is a switch statement, we want to ignore cases below it.
1111   if (isa<SwitchStmt>(S))
1112     IgnoreCaseStmts = true;
1113
1114   // Scan subexpressions for verboten labels.
1115   for (const Stmt *SubStmt : S->children())
1116     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1117       return true;
1118
1119   return false;
1120 }
1121
1122 /// containsBreak - Return true if the statement contains a break out of it.
1123 /// If the statement (recursively) contains a switch or loop with a break
1124 /// inside of it, this is fine.
1125 bool CodeGenFunction::containsBreak(const Stmt *S) {
1126   // Null statement, not a label!
1127   if (!S) return false;
1128
1129   // If this is a switch or loop that defines its own break scope, then we can
1130   // include it and anything inside of it.
1131   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1132       isa<ForStmt>(S))
1133     return false;
1134
1135   if (isa<BreakStmt>(S))
1136     return true;
1137
1138   // Scan subexpressions for verboten breaks.
1139   for (const Stmt *SubStmt : S->children())
1140     if (containsBreak(SubStmt))
1141       return true;
1142
1143   return false;
1144 }
1145
1146
1147 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1148 /// to a constant, or if it does but contains a label, return false.  If it
1149 /// constant folds return true and set the boolean result in Result.
1150 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1151                                                    bool &ResultBool,
1152                                                    bool AllowLabels) {
1153   llvm::APSInt ResultInt;
1154   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1155     return false;
1156
1157   ResultBool = ResultInt.getBoolValue();
1158   return true;
1159 }
1160
1161 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1162 /// to a constant, or if it does but contains a label, return false.  If it
1163 /// constant folds return true and set the folded value.
1164 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1165                                                    llvm::APSInt &ResultInt,
1166                                                    bool AllowLabels) {
1167   // FIXME: Rename and handle conversion of other evaluatable things
1168   // to bool.
1169   llvm::APSInt Int;
1170   if (!Cond->EvaluateAsInt(Int, getContext()))
1171     return false;  // Not foldable, not integer or not fully evaluatable.
1172
1173   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1174     return false;  // Contains a label.
1175
1176   ResultInt = Int;
1177   return true;
1178 }
1179
1180
1181
1182 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1183 /// statement) to the specified blocks.  Based on the condition, this might try
1184 /// to simplify the codegen of the conditional based on the branch.
1185 ///
1186 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1187                                            llvm::BasicBlock *TrueBlock,
1188                                            llvm::BasicBlock *FalseBlock,
1189                                            uint64_t TrueCount) {
1190   Cond = Cond->IgnoreParens();
1191
1192   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1193
1194     // Handle X && Y in a condition.
1195     if (CondBOp->getOpcode() == BO_LAnd) {
1196       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1197       // folded if the case was simple enough.
1198       bool ConstantBool = false;
1199       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1200           ConstantBool) {
1201         // br(1 && X) -> br(X).
1202         incrementProfileCounter(CondBOp);
1203         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1204                                     TrueCount);
1205       }
1206
1207       // If we have "X && 1", simplify the code to use an uncond branch.
1208       // "X && 0" would have been constant folded to 0.
1209       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1210           ConstantBool) {
1211         // br(X && 1) -> br(X).
1212         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1213                                     TrueCount);
1214       }
1215
1216       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1217       // want to jump to the FalseBlock.
1218       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1219       // The counter tells us how often we evaluate RHS, and all of TrueCount
1220       // can be propagated to that branch.
1221       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1222
1223       ConditionalEvaluation eval(*this);
1224       {
1225         ApplyDebugLocation DL(*this, Cond);
1226         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1227         EmitBlock(LHSTrue);
1228       }
1229
1230       incrementProfileCounter(CondBOp);
1231       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1232
1233       // Any temporaries created here are conditional.
1234       eval.begin(*this);
1235       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1236       eval.end(*this);
1237
1238       return;
1239     }
1240
1241     if (CondBOp->getOpcode() == BO_LOr) {
1242       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1243       // folded if the case was simple enough.
1244       bool ConstantBool = false;
1245       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1246           !ConstantBool) {
1247         // br(0 || X) -> br(X).
1248         incrementProfileCounter(CondBOp);
1249         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1250                                     TrueCount);
1251       }
1252
1253       // If we have "X || 0", simplify the code to use an uncond branch.
1254       // "X || 1" would have been constant folded to 1.
1255       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1256           !ConstantBool) {
1257         // br(X || 0) -> br(X).
1258         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1259                                     TrueCount);
1260       }
1261
1262       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1263       // want to jump to the TrueBlock.
1264       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1265       // We have the count for entry to the RHS and for the whole expression
1266       // being true, so we can divy up True count between the short circuit and
1267       // the RHS.
1268       uint64_t LHSCount =
1269           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1270       uint64_t RHSCount = TrueCount - LHSCount;
1271
1272       ConditionalEvaluation eval(*this);
1273       {
1274         ApplyDebugLocation DL(*this, Cond);
1275         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1276         EmitBlock(LHSFalse);
1277       }
1278
1279       incrementProfileCounter(CondBOp);
1280       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1281
1282       // Any temporaries created here are conditional.
1283       eval.begin(*this);
1284       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1285
1286       eval.end(*this);
1287
1288       return;
1289     }
1290   }
1291
1292   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1293     // br(!x, t, f) -> br(x, f, t)
1294     if (CondUOp->getOpcode() == UO_LNot) {
1295       // Negate the count.
1296       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1297       // Negate the condition and swap the destination blocks.
1298       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1299                                   FalseCount);
1300     }
1301   }
1302
1303   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1304     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1305     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1306     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1307
1308     ConditionalEvaluation cond(*this);
1309     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1310                          getProfileCount(CondOp));
1311
1312     // When computing PGO branch weights, we only know the overall count for
1313     // the true block. This code is essentially doing tail duplication of the
1314     // naive code-gen, introducing new edges for which counts are not
1315     // available. Divide the counts proportionally between the LHS and RHS of
1316     // the conditional operator.
1317     uint64_t LHSScaledTrueCount = 0;
1318     if (TrueCount) {
1319       double LHSRatio =
1320           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1321       LHSScaledTrueCount = TrueCount * LHSRatio;
1322     }
1323
1324     cond.begin(*this);
1325     EmitBlock(LHSBlock);
1326     incrementProfileCounter(CondOp);
1327     {
1328       ApplyDebugLocation DL(*this, Cond);
1329       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1330                            LHSScaledTrueCount);
1331     }
1332     cond.end(*this);
1333
1334     cond.begin(*this);
1335     EmitBlock(RHSBlock);
1336     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1337                          TrueCount - LHSScaledTrueCount);
1338     cond.end(*this);
1339
1340     return;
1341   }
1342
1343   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1344     // Conditional operator handling can give us a throw expression as a
1345     // condition for a case like:
1346     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1347     // Fold this to:
1348     //   br(c, throw x, br(y, t, f))
1349     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1350     return;
1351   }
1352
1353   // If the branch has a condition wrapped by __builtin_unpredictable,
1354   // create metadata that specifies that the branch is unpredictable.
1355   // Don't bother if not optimizing because that metadata would not be used.
1356   llvm::MDNode *Unpredictable = nullptr;
1357   auto *Call = dyn_cast<CallExpr>(Cond);
1358   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1359     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1360     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1361       llvm::MDBuilder MDHelper(getLLVMContext());
1362       Unpredictable = MDHelper.createUnpredictable();
1363     }
1364   }
1365
1366   // Create branch weights based on the number of times we get here and the
1367   // number of times the condition should be true.
1368   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1369   llvm::MDNode *Weights =
1370       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1371
1372   // Emit the code with the fully general case.
1373   llvm::Value *CondV;
1374   {
1375     ApplyDebugLocation DL(*this, Cond);
1376     CondV = EvaluateExprAsBool(Cond);
1377   }
1378   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1379 }
1380
1381 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1382 /// specified stmt yet.
1383 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1384   CGM.ErrorUnsupported(S, Type);
1385 }
1386
1387 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1388 /// variable-length array whose elements have a non-zero bit-pattern.
1389 ///
1390 /// \param baseType the inner-most element type of the array
1391 /// \param src - a char* pointing to the bit-pattern for a single
1392 /// base element of the array
1393 /// \param sizeInChars - the total size of the VLA, in chars
1394 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1395                                Address dest, Address src,
1396                                llvm::Value *sizeInChars) {
1397   CGBuilderTy &Builder = CGF.Builder;
1398
1399   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1400   llvm::Value *baseSizeInChars
1401     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1402
1403   Address begin =
1404     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1405   llvm::Value *end =
1406     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1407
1408   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1409   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1410   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1411
1412   // Make a loop over the VLA.  C99 guarantees that the VLA element
1413   // count must be nonzero.
1414   CGF.EmitBlock(loopBB);
1415
1416   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1417   cur->addIncoming(begin.getPointer(), originBB);
1418
1419   CharUnits curAlign =
1420     dest.getAlignment().alignmentOfArrayElement(baseSize);
1421
1422   // memcpy the individual element bit-pattern.
1423   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1424                        /*volatile*/ false);
1425
1426   // Go to the next element.
1427   llvm::Value *next =
1428     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1429
1430   // Leave if that's the end of the VLA.
1431   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1432   Builder.CreateCondBr(done, contBB, loopBB);
1433   cur->addIncoming(next, loopBB);
1434
1435   CGF.EmitBlock(contBB);
1436 }
1437
1438 void
1439 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1440   // Ignore empty classes in C++.
1441   if (getLangOpts().CPlusPlus) {
1442     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1443       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1444         return;
1445     }
1446   }
1447
1448   // Cast the dest ptr to the appropriate i8 pointer type.
1449   if (DestPtr.getElementType() != Int8Ty)
1450     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1451
1452   // Get size and alignment info for this aggregate.
1453   CharUnits size = getContext().getTypeSizeInChars(Ty);
1454
1455   llvm::Value *SizeVal;
1456   const VariableArrayType *vla;
1457
1458   // Don't bother emitting a zero-byte memset.
1459   if (size.isZero()) {
1460     // But note that getTypeInfo returns 0 for a VLA.
1461     if (const VariableArrayType *vlaType =
1462           dyn_cast_or_null<VariableArrayType>(
1463                                           getContext().getAsArrayType(Ty))) {
1464       QualType eltType;
1465       llvm::Value *numElts;
1466       std::tie(numElts, eltType) = getVLASize(vlaType);
1467
1468       SizeVal = numElts;
1469       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1470       if (!eltSize.isOne())
1471         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1472       vla = vlaType;
1473     } else {
1474       return;
1475     }
1476   } else {
1477     SizeVal = CGM.getSize(size);
1478     vla = nullptr;
1479   }
1480
1481   // If the type contains a pointer to data member we can't memset it to zero.
1482   // Instead, create a null constant and copy it to the destination.
1483   // TODO: there are other patterns besides zero that we can usefully memset,
1484   // like -1, which happens to be the pattern used by member-pointers.
1485   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1486     // For a VLA, emit a single element, then splat that over the VLA.
1487     if (vla) Ty = getContext().getBaseElementType(vla);
1488
1489     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1490
1491     llvm::GlobalVariable *NullVariable =
1492       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1493                                /*isConstant=*/true,
1494                                llvm::GlobalVariable::PrivateLinkage,
1495                                NullConstant, Twine());
1496     CharUnits NullAlign = DestPtr.getAlignment();
1497     NullVariable->setAlignment(NullAlign.getQuantity());
1498     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1499                    NullAlign);
1500
1501     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1502
1503     // Get and call the appropriate llvm.memcpy overload.
1504     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1505     return;
1506   }
1507
1508   // Otherwise, just memset the whole thing to zero.  This is legal
1509   // because in LLVM, all default initializers (other than the ones we just
1510   // handled above) are guaranteed to have a bit pattern of all zeros.
1511   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1512 }
1513
1514 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1515   // Make sure that there is a block for the indirect goto.
1516   if (!IndirectBranch)
1517     GetIndirectGotoBlock();
1518
1519   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1520
1521   // Make sure the indirect branch includes all of the address-taken blocks.
1522   IndirectBranch->addDestination(BB);
1523   return llvm::BlockAddress::get(CurFn, BB);
1524 }
1525
1526 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1527   // If we already made the indirect branch for indirect goto, return its block.
1528   if (IndirectBranch) return IndirectBranch->getParent();
1529
1530   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1531
1532   // Create the PHI node that indirect gotos will add entries to.
1533   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1534                                               "indirect.goto.dest");
1535
1536   // Create the indirect branch instruction.
1537   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1538   return IndirectBranch->getParent();
1539 }
1540
1541 /// Computes the length of an array in elements, as well as the base
1542 /// element type and a properly-typed first element pointer.
1543 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1544                                               QualType &baseType,
1545                                               Address &addr) {
1546   const ArrayType *arrayType = origArrayType;
1547
1548   // If it's a VLA, we have to load the stored size.  Note that
1549   // this is the size of the VLA in bytes, not its size in elements.
1550   llvm::Value *numVLAElements = nullptr;
1551   if (isa<VariableArrayType>(arrayType)) {
1552     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1553
1554     // Walk into all VLAs.  This doesn't require changes to addr,
1555     // which has type T* where T is the first non-VLA element type.
1556     do {
1557       QualType elementType = arrayType->getElementType();
1558       arrayType = getContext().getAsArrayType(elementType);
1559
1560       // If we only have VLA components, 'addr' requires no adjustment.
1561       if (!arrayType) {
1562         baseType = elementType;
1563         return numVLAElements;
1564       }
1565     } while (isa<VariableArrayType>(arrayType));
1566
1567     // We get out here only if we find a constant array type
1568     // inside the VLA.
1569   }
1570
1571   // We have some number of constant-length arrays, so addr should
1572   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1573   // down to the first element of addr.
1574   SmallVector<llvm::Value*, 8> gepIndices;
1575
1576   // GEP down to the array type.
1577   llvm::ConstantInt *zero = Builder.getInt32(0);
1578   gepIndices.push_back(zero);
1579
1580   uint64_t countFromCLAs = 1;
1581   QualType eltType;
1582
1583   llvm::ArrayType *llvmArrayType =
1584     dyn_cast<llvm::ArrayType>(addr.getElementType());
1585   while (llvmArrayType) {
1586     assert(isa<ConstantArrayType>(arrayType));
1587     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1588              == llvmArrayType->getNumElements());
1589
1590     gepIndices.push_back(zero);
1591     countFromCLAs *= llvmArrayType->getNumElements();
1592     eltType = arrayType->getElementType();
1593
1594     llvmArrayType =
1595       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1596     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1597     assert((!llvmArrayType || arrayType) &&
1598            "LLVM and Clang types are out-of-synch");
1599   }
1600
1601   if (arrayType) {
1602     // From this point onwards, the Clang array type has been emitted
1603     // as some other type (probably a packed struct). Compute the array
1604     // size, and just emit the 'begin' expression as a bitcast.
1605     while (arrayType) {
1606       countFromCLAs *=
1607           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1608       eltType = arrayType->getElementType();
1609       arrayType = getContext().getAsArrayType(eltType);
1610     }
1611
1612     llvm::Type *baseType = ConvertType(eltType);
1613     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1614   } else {
1615     // Create the actual GEP.
1616     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1617                                              gepIndices, "array.begin"),
1618                    addr.getAlignment());
1619   }
1620
1621   baseType = eltType;
1622
1623   llvm::Value *numElements
1624     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1625
1626   // If we had any VLA dimensions, factor them in.
1627   if (numVLAElements)
1628     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1629
1630   return numElements;
1631 }
1632
1633 std::pair<llvm::Value*, QualType>
1634 CodeGenFunction::getVLASize(QualType type) {
1635   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1636   assert(vla && "type was not a variable array type!");
1637   return getVLASize(vla);
1638 }
1639
1640 std::pair<llvm::Value*, QualType>
1641 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1642   // The number of elements so far; always size_t.
1643   llvm::Value *numElements = nullptr;
1644
1645   QualType elementType;
1646   do {
1647     elementType = type->getElementType();
1648     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1649     assert(vlaSize && "no size for VLA!");
1650     assert(vlaSize->getType() == SizeTy);
1651
1652     if (!numElements) {
1653       numElements = vlaSize;
1654     } else {
1655       // It's undefined behavior if this wraps around, so mark it that way.
1656       // FIXME: Teach -fsanitize=undefined to trap this.
1657       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1658     }
1659   } while ((type = getContext().getAsVariableArrayType(elementType)));
1660
1661   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1662 }
1663
1664 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1665   assert(type->isVariablyModifiedType() &&
1666          "Must pass variably modified type to EmitVLASizes!");
1667
1668   EnsureInsertPoint();
1669
1670   // We're going to walk down into the type and look for VLA
1671   // expressions.
1672   do {
1673     assert(type->isVariablyModifiedType());
1674
1675     const Type *ty = type.getTypePtr();
1676     switch (ty->getTypeClass()) {
1677
1678 #define TYPE(Class, Base)
1679 #define ABSTRACT_TYPE(Class, Base)
1680 #define NON_CANONICAL_TYPE(Class, Base)
1681 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1682 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1683 #include "clang/AST/TypeNodes.def"
1684       llvm_unreachable("unexpected dependent type!");
1685
1686     // These types are never variably-modified.
1687     case Type::Builtin:
1688     case Type::Complex:
1689     case Type::Vector:
1690     case Type::ExtVector:
1691     case Type::Record:
1692     case Type::Enum:
1693     case Type::Elaborated:
1694     case Type::TemplateSpecialization:
1695     case Type::ObjCObject:
1696     case Type::ObjCInterface:
1697     case Type::ObjCObjectPointer:
1698       llvm_unreachable("type class is never variably-modified!");
1699
1700     case Type::Adjusted:
1701       type = cast<AdjustedType>(ty)->getAdjustedType();
1702       break;
1703
1704     case Type::Decayed:
1705       type = cast<DecayedType>(ty)->getPointeeType();
1706       break;
1707
1708     case Type::Pointer:
1709       type = cast<PointerType>(ty)->getPointeeType();
1710       break;
1711
1712     case Type::BlockPointer:
1713       type = cast<BlockPointerType>(ty)->getPointeeType();
1714       break;
1715
1716     case Type::LValueReference:
1717     case Type::RValueReference:
1718       type = cast<ReferenceType>(ty)->getPointeeType();
1719       break;
1720
1721     case Type::MemberPointer:
1722       type = cast<MemberPointerType>(ty)->getPointeeType();
1723       break;
1724
1725     case Type::ConstantArray:
1726     case Type::IncompleteArray:
1727       // Losing element qualification here is fine.
1728       type = cast<ArrayType>(ty)->getElementType();
1729       break;
1730
1731     case Type::VariableArray: {
1732       // Losing element qualification here is fine.
1733       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1734
1735       // Unknown size indication requires no size computation.
1736       // Otherwise, evaluate and record it.
1737       if (const Expr *size = vat->getSizeExpr()) {
1738         // It's possible that we might have emitted this already,
1739         // e.g. with a typedef and a pointer to it.
1740         llvm::Value *&entry = VLASizeMap[size];
1741         if (!entry) {
1742           llvm::Value *Size = EmitScalarExpr(size);
1743
1744           // C11 6.7.6.2p5:
1745           //   If the size is an expression that is not an integer constant
1746           //   expression [...] each time it is evaluated it shall have a value
1747           //   greater than zero.
1748           if (SanOpts.has(SanitizerKind::VLABound) &&
1749               size->getType()->isSignedIntegerType()) {
1750             SanitizerScope SanScope(this);
1751             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1752             llvm::Constant *StaticArgs[] = {
1753               EmitCheckSourceLocation(size->getLocStart()),
1754               EmitCheckTypeDescriptor(size->getType())
1755             };
1756             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1757                                      SanitizerKind::VLABound),
1758                       "vla_bound_not_positive", StaticArgs, Size);
1759           }
1760
1761           // Always zexting here would be wrong if it weren't
1762           // undefined behavior to have a negative bound.
1763           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1764         }
1765       }
1766       type = vat->getElementType();
1767       break;
1768     }
1769
1770     case Type::FunctionProto:
1771     case Type::FunctionNoProto:
1772       type = cast<FunctionType>(ty)->getReturnType();
1773       break;
1774
1775     case Type::Paren:
1776     case Type::TypeOf:
1777     case Type::UnaryTransform:
1778     case Type::Attributed:
1779     case Type::SubstTemplateTypeParm:
1780     case Type::PackExpansion:
1781       // Keep walking after single level desugaring.
1782       type = type.getSingleStepDesugaredType(getContext());
1783       break;
1784
1785     case Type::Typedef:
1786     case Type::Decltype:
1787     case Type::Auto:
1788       // Stop walking: nothing to do.
1789       return;
1790
1791     case Type::TypeOfExpr:
1792       // Stop walking: emit typeof expression.
1793       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1794       return;
1795
1796     case Type::Atomic:
1797       type = cast<AtomicType>(ty)->getValueType();
1798       break;
1799
1800     case Type::Pipe:
1801       type = cast<PipeType>(ty)->getElementType();
1802       break;
1803     }
1804   } while (type->isVariablyModifiedType());
1805 }
1806
1807 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1808   if (getContext().getBuiltinVaListType()->isArrayType())
1809     return EmitPointerWithAlignment(E);
1810   return EmitLValue(E).getAddress();
1811 }
1812
1813 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1814   return EmitLValue(E).getAddress();
1815 }
1816
1817 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1818                                               llvm::Constant *Init) {
1819   assert (Init && "Invalid DeclRefExpr initializer!");
1820   if (CGDebugInfo *Dbg = getDebugInfo())
1821     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1822       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1823 }
1824
1825 CodeGenFunction::PeepholeProtection
1826 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1827   // At the moment, the only aggressive peephole we do in IR gen
1828   // is trunc(zext) folding, but if we add more, we can easily
1829   // extend this protection.
1830
1831   if (!rvalue.isScalar()) return PeepholeProtection();
1832   llvm::Value *value = rvalue.getScalarVal();
1833   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1834
1835   // Just make an extra bitcast.
1836   assert(HaveInsertPoint());
1837   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1838                                                   Builder.GetInsertBlock());
1839
1840   PeepholeProtection protection;
1841   protection.Inst = inst;
1842   return protection;
1843 }
1844
1845 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1846   if (!protection.Inst) return;
1847
1848   // In theory, we could try to duplicate the peepholes now, but whatever.
1849   protection.Inst->eraseFromParent();
1850 }
1851
1852 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1853                                                  llvm::Value *AnnotatedVal,
1854                                                  StringRef AnnotationStr,
1855                                                  SourceLocation Location) {
1856   llvm::Value *Args[4] = {
1857     AnnotatedVal,
1858     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1859     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1860     CGM.EmitAnnotationLineNo(Location)
1861   };
1862   return Builder.CreateCall(AnnotationFn, Args);
1863 }
1864
1865 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1866   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1867   // FIXME We create a new bitcast for every annotation because that's what
1868   // llvm-gcc was doing.
1869   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1870     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1871                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1872                        I->getAnnotation(), D->getLocation());
1873 }
1874
1875 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1876                                               Address Addr) {
1877   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1878   llvm::Value *V = Addr.getPointer();
1879   llvm::Type *VTy = V->getType();
1880   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1881                                     CGM.Int8PtrTy);
1882
1883   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1884     // FIXME Always emit the cast inst so we can differentiate between
1885     // annotation on the first field of a struct and annotation on the struct
1886     // itself.
1887     if (VTy != CGM.Int8PtrTy)
1888       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1889     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1890     V = Builder.CreateBitCast(V, VTy);
1891   }
1892
1893   return Address(V, Addr.getAlignment());
1894 }
1895
1896 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1897
1898 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1899     : CGF(CGF) {
1900   assert(!CGF->IsSanitizerScope);
1901   CGF->IsSanitizerScope = true;
1902 }
1903
1904 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1905   CGF->IsSanitizerScope = false;
1906 }
1907
1908 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1909                                    const llvm::Twine &Name,
1910                                    llvm::BasicBlock *BB,
1911                                    llvm::BasicBlock::iterator InsertPt) const {
1912   LoopStack.InsertHelper(I);
1913   if (IsSanitizerScope)
1914     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1915 }
1916
1917 void CGBuilderInserter::InsertHelper(
1918     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1919     llvm::BasicBlock::iterator InsertPt) const {
1920   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1921   if (CGF)
1922     CGF->InsertHelper(I, Name, BB, InsertPt);
1923 }
1924
1925 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1926                                 CodeGenModule &CGM, const FunctionDecl *FD,
1927                                 std::string &FirstMissing) {
1928   // If there aren't any required features listed then go ahead and return.
1929   if (ReqFeatures.empty())
1930     return false;
1931
1932   // Now build up the set of caller features and verify that all the required
1933   // features are there.
1934   llvm::StringMap<bool> CallerFeatureMap;
1935   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1936
1937   // If we have at least one of the features in the feature list return
1938   // true, otherwise return false.
1939   return std::all_of(
1940       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1941         SmallVector<StringRef, 1> OrFeatures;
1942         Feature.split(OrFeatures, "|");
1943         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1944                            [&](StringRef Feature) {
1945                              if (!CallerFeatureMap.lookup(Feature)) {
1946                                FirstMissing = Feature.str();
1947                                return false;
1948                              }
1949                              return true;
1950                            });
1951       });
1952 }
1953
1954 // Emits an error if we don't have a valid set of target features for the
1955 // called function.
1956 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1957                                           const FunctionDecl *TargetDecl) {
1958   // Early exit if this is an indirect call.
1959   if (!TargetDecl)
1960     return;
1961
1962   // Get the current enclosing function if it exists. If it doesn't
1963   // we can't check the target features anyhow.
1964   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1965   if (!FD)
1966     return;
1967
1968   // Grab the required features for the call. For a builtin this is listed in
1969   // the td file with the default cpu, for an always_inline function this is any
1970   // listed cpu and any listed features.
1971   unsigned BuiltinID = TargetDecl->getBuiltinID();
1972   std::string MissingFeature;
1973   if (BuiltinID) {
1974     SmallVector<StringRef, 1> ReqFeatures;
1975     const char *FeatureList =
1976         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1977     // Return if the builtin doesn't have any required features.
1978     if (!FeatureList || StringRef(FeatureList) == "")
1979       return;
1980     StringRef(FeatureList).split(ReqFeatures, ",");
1981     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1982       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1983           << TargetDecl->getDeclName()
1984           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1985
1986   } else if (TargetDecl->hasAttr<TargetAttr>()) {
1987     // Get the required features for the callee.
1988     SmallVector<StringRef, 1> ReqFeatures;
1989     llvm::StringMap<bool> CalleeFeatureMap;
1990     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1991     for (const auto &F : CalleeFeatureMap) {
1992       // Only positive features are "required".
1993       if (F.getValue())
1994         ReqFeatures.push_back(F.getKey());
1995     }
1996     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1997       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1998           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
1999   }
2000 }
2001
2002 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2003   if (!CGM.getCodeGenOpts().SanitizeStats)
2004     return;
2005
2006   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2007   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2008   CGM.getSanStats().create(IRB, SSK);
2009 }