]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp
Merge ^/head r288197 through r288456.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenFunction.cpp
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Operator.h"
34 using namespace clang;
35 using namespace CodeGen;
36
37 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
38     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
39       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
40               CGBuilderInserterTy(this)),
41       CurFn(nullptr), CapturedStmtInfo(nullptr),
42       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
43       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
44       IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr),
45       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
46       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
47       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
48       DebugInfo(CGM.getModuleDebugInfo()),
49       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
50       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
51       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
52       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
53       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
54       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
55       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
56       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
57       TerminateHandler(nullptr), TrapBB(nullptr) {
58   if (!suppressNewContext)
59     CGM.getCXXABI().getMangleContext().startNewFunction();
60
61   llvm::FastMathFlags FMF;
62   if (CGM.getLangOpts().FastMath)
63     FMF.setUnsafeAlgebra();
64   if (CGM.getLangOpts().FiniteMathOnly) {
65     FMF.setNoNaNs();
66     FMF.setNoInfs();
67   }
68   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
69     FMF.setNoNaNs();
70   }
71   if (CGM.getCodeGenOpts().NoSignedZeros) {
72     FMF.setNoSignedZeros();
73   }
74   if (CGM.getCodeGenOpts().ReciprocalMath) {
75     FMF.setAllowReciprocal();
76   }
77   Builder.SetFastMathFlags(FMF);
78 }
79
80 CodeGenFunction::~CodeGenFunction() {
81   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
82
83   // If there are any unclaimed block infos, go ahead and destroy them
84   // now.  This can happen if IR-gen gets clever and skips evaluating
85   // something.
86   if (FirstBlockInfo)
87     destroyBlockInfos(FirstBlockInfo);
88
89   if (getLangOpts().OpenMP) {
90     CGM.getOpenMPRuntime().functionFinished(*this);
91   }
92 }
93
94 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
95   CharUnits Alignment;
96   if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
97     Alignment = getContext().getTypeAlignInChars(T);
98     unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
99     if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
100         !getContext().isAlignmentRequired(T))
101       Alignment = CharUnits::fromQuantity(MaxAlign);
102   }
103   return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
104 }
105
106 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
107   return CGM.getTypes().ConvertTypeForMem(T);
108 }
109
110 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
111   return CGM.getTypes().ConvertType(T);
112 }
113
114 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
115   type = type.getCanonicalType();
116   while (true) {
117     switch (type->getTypeClass()) {
118 #define TYPE(name, parent)
119 #define ABSTRACT_TYPE(name, parent)
120 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
121 #define DEPENDENT_TYPE(name, parent) case Type::name:
122 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
123 #include "clang/AST/TypeNodes.def"
124       llvm_unreachable("non-canonical or dependent type in IR-generation");
125
126     case Type::Auto:
127       llvm_unreachable("undeduced auto type in IR-generation");
128
129     // Various scalar types.
130     case Type::Builtin:
131     case Type::Pointer:
132     case Type::BlockPointer:
133     case Type::LValueReference:
134     case Type::RValueReference:
135     case Type::MemberPointer:
136     case Type::Vector:
137     case Type::ExtVector:
138     case Type::FunctionProto:
139     case Type::FunctionNoProto:
140     case Type::Enum:
141     case Type::ObjCObjectPointer:
142       return TEK_Scalar;
143
144     // Complexes.
145     case Type::Complex:
146       return TEK_Complex;
147
148     // Arrays, records, and Objective-C objects.
149     case Type::ConstantArray:
150     case Type::IncompleteArray:
151     case Type::VariableArray:
152     case Type::Record:
153     case Type::ObjCObject:
154     case Type::ObjCInterface:
155       return TEK_Aggregate;
156
157     // We operate on atomic values according to their underlying type.
158     case Type::Atomic:
159       type = cast<AtomicType>(type)->getValueType();
160       continue;
161     }
162     llvm_unreachable("unknown type kind!");
163   }
164 }
165
166 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
167   // For cleanliness, we try to avoid emitting the return block for
168   // simple cases.
169   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
170
171   if (CurBB) {
172     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
173
174     // We have a valid insert point, reuse it if it is empty or there are no
175     // explicit jumps to the return block.
176     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
177       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
178       delete ReturnBlock.getBlock();
179     } else
180       EmitBlock(ReturnBlock.getBlock());
181     return llvm::DebugLoc();
182   }
183
184   // Otherwise, if the return block is the target of a single direct
185   // branch then we can just put the code in that block instead. This
186   // cleans up functions which started with a unified return block.
187   if (ReturnBlock.getBlock()->hasOneUse()) {
188     llvm::BranchInst *BI =
189       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
190     if (BI && BI->isUnconditional() &&
191         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
192       // Record/return the DebugLoc of the simple 'return' expression to be used
193       // later by the actual 'ret' instruction.
194       llvm::DebugLoc Loc = BI->getDebugLoc();
195       Builder.SetInsertPoint(BI->getParent());
196       BI->eraseFromParent();
197       delete ReturnBlock.getBlock();
198       return Loc;
199     }
200   }
201
202   // FIXME: We are at an unreachable point, there is no reason to emit the block
203   // unless it has uses. However, we still need a place to put the debug
204   // region.end for now.
205
206   EmitBlock(ReturnBlock.getBlock());
207   return llvm::DebugLoc();
208 }
209
210 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
211   if (!BB) return;
212   if (!BB->use_empty())
213     return CGF.CurFn->getBasicBlockList().push_back(BB);
214   delete BB;
215 }
216
217 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
218   assert(BreakContinueStack.empty() &&
219          "mismatched push/pop in break/continue stack!");
220
221   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
222     && NumSimpleReturnExprs == NumReturnExprs
223     && ReturnBlock.getBlock()->use_empty();
224   // Usually the return expression is evaluated before the cleanup
225   // code.  If the function contains only a simple return statement,
226   // such as a constant, the location before the cleanup code becomes
227   // the last useful breakpoint in the function, because the simple
228   // return expression will be evaluated after the cleanup code. To be
229   // safe, set the debug location for cleanup code to the location of
230   // the return statement.  Otherwise the cleanup code should be at the
231   // end of the function's lexical scope.
232   //
233   // If there are multiple branches to the return block, the branch
234   // instructions will get the location of the return statements and
235   // all will be fine.
236   if (CGDebugInfo *DI = getDebugInfo()) {
237     if (OnlySimpleReturnStmts)
238       DI->EmitLocation(Builder, LastStopPoint);
239     else
240       DI->EmitLocation(Builder, EndLoc);
241   }
242
243   // Pop any cleanups that might have been associated with the
244   // parameters.  Do this in whatever block we're currently in; it's
245   // important to do this before we enter the return block or return
246   // edges will be *really* confused.
247   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
248   bool HasOnlyLifetimeMarkers =
249       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
250   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
251   if (HasCleanups) {
252     // Make sure the line table doesn't jump back into the body for
253     // the ret after it's been at EndLoc.
254     if (CGDebugInfo *DI = getDebugInfo())
255       if (OnlySimpleReturnStmts)
256         DI->EmitLocation(Builder, EndLoc);
257
258     PopCleanupBlocks(PrologueCleanupDepth);
259   }
260
261   // Emit function epilog (to return).
262   llvm::DebugLoc Loc = EmitReturnBlock();
263
264   if (ShouldInstrumentFunction())
265     EmitFunctionInstrumentation("__cyg_profile_func_exit");
266
267   // Emit debug descriptor for function end.
268   if (CGDebugInfo *DI = getDebugInfo())
269     DI->EmitFunctionEnd(Builder);
270
271   // Reset the debug location to that of the simple 'return' expression, if any
272   // rather than that of the end of the function's scope '}'.
273   ApplyDebugLocation AL(*this, Loc);
274   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
275   EmitEndEHSpec(CurCodeDecl);
276
277   assert(EHStack.empty() &&
278          "did not remove all scopes from cleanup stack!");
279
280   // If someone did an indirect goto, emit the indirect goto block at the end of
281   // the function.
282   if (IndirectBranch) {
283     EmitBlock(IndirectBranch->getParent());
284     Builder.ClearInsertionPoint();
285   }
286
287   // If some of our locals escaped, insert a call to llvm.localescape in the
288   // entry block.
289   if (!EscapedLocals.empty()) {
290     // Invert the map from local to index into a simple vector. There should be
291     // no holes.
292     SmallVector<llvm::Value *, 4> EscapeArgs;
293     EscapeArgs.resize(EscapedLocals.size());
294     for (auto &Pair : EscapedLocals)
295       EscapeArgs[Pair.second] = Pair.first;
296     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
297         &CGM.getModule(), llvm::Intrinsic::localescape);
298     CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
299   }
300
301   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
302   llvm::Instruction *Ptr = AllocaInsertPt;
303   AllocaInsertPt = nullptr;
304   Ptr->eraseFromParent();
305
306   // If someone took the address of a label but never did an indirect goto, we
307   // made a zero entry PHI node, which is illegal, zap it now.
308   if (IndirectBranch) {
309     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
310     if (PN->getNumIncomingValues() == 0) {
311       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
312       PN->eraseFromParent();
313     }
314   }
315
316   EmitIfUsed(*this, EHResumeBlock);
317   EmitIfUsed(*this, TerminateLandingPad);
318   EmitIfUsed(*this, TerminateHandler);
319   EmitIfUsed(*this, UnreachableBlock);
320
321   if (CGM.getCodeGenOpts().EmitDeclMetadata)
322     EmitDeclMetadata();
323
324   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
325            I = DeferredReplacements.begin(),
326            E = DeferredReplacements.end();
327        I != E; ++I) {
328     I->first->replaceAllUsesWith(I->second);
329     I->first->eraseFromParent();
330   }
331 }
332
333 /// ShouldInstrumentFunction - Return true if the current function should be
334 /// instrumented with __cyg_profile_func_* calls
335 bool CodeGenFunction::ShouldInstrumentFunction() {
336   if (!CGM.getCodeGenOpts().InstrumentFunctions)
337     return false;
338   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
339     return false;
340   return true;
341 }
342
343 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
344 /// instrumentation function with the current function and the call site, if
345 /// function instrumentation is enabled.
346 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
347   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
348   llvm::PointerType *PointerTy = Int8PtrTy;
349   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
350   llvm::FunctionType *FunctionTy =
351     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
352
353   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
354   llvm::CallInst *CallSite = Builder.CreateCall(
355     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
356     llvm::ConstantInt::get(Int32Ty, 0),
357     "callsite");
358
359   llvm::Value *args[] = {
360     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
361     CallSite
362   };
363
364   EmitNounwindRuntimeCall(F, args);
365 }
366
367 void CodeGenFunction::EmitMCountInstrumentation() {
368   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
369
370   llvm::Constant *MCountFn =
371     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
372   EmitNounwindRuntimeCall(MCountFn);
373 }
374
375 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
376 // information in the program executable. The argument information stored
377 // includes the argument name, its type, the address and access qualifiers used.
378 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
379                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
380                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
381                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
382   // Create MDNodes that represent the kernel arg metadata.
383   // Each MDNode is a list in the form of "key", N number of values which is
384   // the same number of values as their are kernel arguments.
385
386   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
387
388   // MDNode for the kernel argument address space qualifiers.
389   SmallVector<llvm::Metadata *, 8> addressQuals;
390   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
391
392   // MDNode for the kernel argument access qualifiers (images only).
393   SmallVector<llvm::Metadata *, 8> accessQuals;
394   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
395
396   // MDNode for the kernel argument type names.
397   SmallVector<llvm::Metadata *, 8> argTypeNames;
398   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
399
400   // MDNode for the kernel argument base type names.
401   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
402   argBaseTypeNames.push_back(
403       llvm::MDString::get(Context, "kernel_arg_base_type"));
404
405   // MDNode for the kernel argument type qualifiers.
406   SmallVector<llvm::Metadata *, 8> argTypeQuals;
407   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
408
409   // MDNode for the kernel argument names.
410   SmallVector<llvm::Metadata *, 8> argNames;
411   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
412
413   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
414     const ParmVarDecl *parm = FD->getParamDecl(i);
415     QualType ty = parm->getType();
416     std::string typeQuals;
417
418     if (ty->isPointerType()) {
419       QualType pointeeTy = ty->getPointeeType();
420
421       // Get address qualifier.
422       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
423           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
424
425       // Get argument type name.
426       std::string typeName =
427           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
428
429       // Turn "unsigned type" to "utype"
430       std::string::size_type pos = typeName.find("unsigned");
431       if (pointeeTy.isCanonical() && pos != std::string::npos)
432         typeName.erase(pos+1, 8);
433
434       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
435
436       std::string baseTypeName =
437           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
438               Policy) +
439           "*";
440
441       // Turn "unsigned type" to "utype"
442       pos = baseTypeName.find("unsigned");
443       if (pos != std::string::npos)
444         baseTypeName.erase(pos+1, 8);
445
446       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
447
448       // Get argument type qualifiers:
449       if (ty.isRestrictQualified())
450         typeQuals = "restrict";
451       if (pointeeTy.isConstQualified() ||
452           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
453         typeQuals += typeQuals.empty() ? "const" : " const";
454       if (pointeeTy.isVolatileQualified())
455         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
456     } else {
457       uint32_t AddrSpc = 0;
458       if (ty->isImageType())
459         AddrSpc =
460           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
461
462       addressQuals.push_back(
463           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
464
465       // Get argument type name.
466       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
467
468       // Turn "unsigned type" to "utype"
469       std::string::size_type pos = typeName.find("unsigned");
470       if (ty.isCanonical() && pos != std::string::npos)
471         typeName.erase(pos+1, 8);
472
473       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
474
475       std::string baseTypeName =
476           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
477
478       // Turn "unsigned type" to "utype"
479       pos = baseTypeName.find("unsigned");
480       if (pos != std::string::npos)
481         baseTypeName.erase(pos+1, 8);
482
483       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
484
485       // Get argument type qualifiers:
486       if (ty.isConstQualified())
487         typeQuals = "const";
488       if (ty.isVolatileQualified())
489         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
490     }
491
492     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
493
494     // Get image access qualifier:
495     if (ty->isImageType()) {
496       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
497       if (A && A->isWriteOnly())
498         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
499       else
500         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
501       // FIXME: what about read_write?
502     } else
503       accessQuals.push_back(llvm::MDString::get(Context, "none"));
504
505     // Get argument name.
506     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
507   }
508
509   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
510   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
511   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
512   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
513   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
514   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
515     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
516 }
517
518 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
519                                                llvm::Function *Fn)
520 {
521   if (!FD->hasAttr<OpenCLKernelAttr>())
522     return;
523
524   llvm::LLVMContext &Context = getLLVMContext();
525
526   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
527   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
528
529   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
530                        getContext());
531
532   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
533     QualType hintQTy = A->getTypeHint();
534     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
535     bool isSignedInteger =
536         hintQTy->isSignedIntegerType() ||
537         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
538     llvm::Metadata *attrMDArgs[] = {
539         llvm::MDString::get(Context, "vec_type_hint"),
540         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
541             CGM.getTypes().ConvertType(A->getTypeHint()))),
542         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543             llvm::IntegerType::get(Context, 32),
544             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
545     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
546   }
547
548   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
549     llvm::Metadata *attrMDArgs[] = {
550         llvm::MDString::get(Context, "work_group_size_hint"),
551         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
552         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
553         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
554     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
555   }
556
557   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
558     llvm::Metadata *attrMDArgs[] = {
559         llvm::MDString::get(Context, "reqd_work_group_size"),
560         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
561         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
562         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
563     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
564   }
565
566   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
567   llvm::NamedMDNode *OpenCLKernelMetadata =
568     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
569   OpenCLKernelMetadata->addOperand(kernelMDNode);
570 }
571
572 /// Determine whether the function F ends with a return stmt.
573 static bool endsWithReturn(const Decl* F) {
574   const Stmt *Body = nullptr;
575   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
576     Body = FD->getBody();
577   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
578     Body = OMD->getBody();
579
580   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
581     auto LastStmt = CS->body_rbegin();
582     if (LastStmt != CS->body_rend())
583       return isa<ReturnStmt>(*LastStmt);
584   }
585   return false;
586 }
587
588 void CodeGenFunction::StartFunction(GlobalDecl GD,
589                                     QualType RetTy,
590                                     llvm::Function *Fn,
591                                     const CGFunctionInfo &FnInfo,
592                                     const FunctionArgList &Args,
593                                     SourceLocation Loc,
594                                     SourceLocation StartLoc) {
595   assert(!CurFn &&
596          "Do not use a CodeGenFunction object for more than one function");
597
598   const Decl *D = GD.getDecl();
599
600   DidCallStackSave = false;
601   CurCodeDecl = D;
602   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
603   FnRetTy = RetTy;
604   CurFn = Fn;
605   CurFnInfo = &FnInfo;
606   assert(CurFn->isDeclaration() && "Function already has body?");
607
608   if (CGM.isInSanitizerBlacklist(Fn, Loc))
609     SanOpts.clear();
610
611   if (D) {
612     // Apply the no_sanitize* attributes to SanOpts.
613     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
614       SanOpts.Mask &= ~Attr->getMask();
615   }
616
617   // Apply sanitizer attributes to the function.
618   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
619     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
620   if (SanOpts.has(SanitizerKind::Thread))
621     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
622   if (SanOpts.has(SanitizerKind::Memory))
623     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
624   if (SanOpts.has(SanitizerKind::SafeStack))
625     Fn->addFnAttr(llvm::Attribute::SafeStack);
626
627   // Pass inline keyword to optimizer if it appears explicitly on any
628   // declaration. Also, in the case of -fno-inline attach NoInline
629   // attribute to all function that are not marked AlwaysInline.
630   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
631     if (!CGM.getCodeGenOpts().NoInline) {
632       for (auto RI : FD->redecls())
633         if (RI->isInlineSpecified()) {
634           Fn->addFnAttr(llvm::Attribute::InlineHint);
635           break;
636         }
637     } else if (!FD->hasAttr<AlwaysInlineAttr>())
638       Fn->addFnAttr(llvm::Attribute::NoInline);
639   }
640
641   if (getLangOpts().OpenCL) {
642     // Add metadata for a kernel function.
643     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
644       EmitOpenCLKernelMetadata(FD, Fn);
645   }
646
647   // If we are checking function types, emit a function type signature as
648   // prologue data.
649   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
650     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
651       if (llvm::Constant *PrologueSig =
652               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
653         llvm::Constant *FTRTTIConst =
654             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
655         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
656         llvm::Constant *PrologueStructConst =
657             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
658         Fn->setPrologueData(PrologueStructConst);
659       }
660     }
661   }
662
663   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
664
665   // Create a marker to make it easy to insert allocas into the entryblock
666   // later.  Don't create this with the builder, because we don't want it
667   // folded.
668   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
669   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
670   if (Builder.isNamePreserving())
671     AllocaInsertPt->setName("allocapt");
672
673   ReturnBlock = getJumpDestInCurrentScope("return");
674
675   Builder.SetInsertPoint(EntryBB);
676
677   // Emit subprogram debug descriptor.
678   if (CGDebugInfo *DI = getDebugInfo()) {
679     SmallVector<QualType, 16> ArgTypes;
680     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
681          i != e; ++i) {
682       ArgTypes.push_back((*i)->getType());
683     }
684
685     QualType FnType =
686       getContext().getFunctionType(RetTy, ArgTypes,
687                                    FunctionProtoType::ExtProtoInfo());
688     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
689   }
690
691   if (ShouldInstrumentFunction())
692     EmitFunctionInstrumentation("__cyg_profile_func_enter");
693
694   if (CGM.getCodeGenOpts().InstrumentForProfiling)
695     EmitMCountInstrumentation();
696
697   if (RetTy->isVoidType()) {
698     // Void type; nothing to return.
699     ReturnValue = nullptr;
700
701     // Count the implicit return.
702     if (!endsWithReturn(D))
703       ++NumReturnExprs;
704   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
705              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
706     // Indirect aggregate return; emit returned value directly into sret slot.
707     // This reduces code size, and affects correctness in C++.
708     auto AI = CurFn->arg_begin();
709     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
710       ++AI;
711     ReturnValue = AI;
712   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
713              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
714     // Load the sret pointer from the argument struct and return into that.
715     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
716     llvm::Function::arg_iterator EI = CurFn->arg_end();
717     --EI;
718     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx);
719     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
720   } else {
721     ReturnValue = CreateIRTemp(RetTy, "retval");
722
723     // Tell the epilog emitter to autorelease the result.  We do this
724     // now so that various specialized functions can suppress it
725     // during their IR-generation.
726     if (getLangOpts().ObjCAutoRefCount &&
727         !CurFnInfo->isReturnsRetained() &&
728         RetTy->isObjCRetainableType())
729       AutoreleaseResult = true;
730   }
731
732   EmitStartEHSpec(CurCodeDecl);
733
734   PrologueCleanupDepth = EHStack.stable_begin();
735   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
736
737   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
738     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
739     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
740     if (MD->getParent()->isLambda() &&
741         MD->getOverloadedOperator() == OO_Call) {
742       // We're in a lambda; figure out the captures.
743       MD->getParent()->getCaptureFields(LambdaCaptureFields,
744                                         LambdaThisCaptureField);
745       if (LambdaThisCaptureField) {
746         // If this lambda captures this, load it.
747         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
748         CXXThisValue = EmitLoadOfLValue(ThisLValue,
749                                         SourceLocation()).getScalarVal();
750       }
751       for (auto *FD : MD->getParent()->fields()) {
752         if (FD->hasCapturedVLAType()) {
753           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
754                                            SourceLocation()).getScalarVal();
755           auto VAT = FD->getCapturedVLAType();
756           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
757         }
758       }
759     } else {
760       // Not in a lambda; just use 'this' from the method.
761       // FIXME: Should we generate a new load for each use of 'this'?  The
762       // fast register allocator would be happier...
763       CXXThisValue = CXXABIThisValue;
764     }
765   }
766
767   // If any of the arguments have a variably modified type, make sure to
768   // emit the type size.
769   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
770        i != e; ++i) {
771     const VarDecl *VD = *i;
772
773     // Dig out the type as written from ParmVarDecls; it's unclear whether
774     // the standard (C99 6.9.1p10) requires this, but we're following the
775     // precedent set by gcc.
776     QualType Ty;
777     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
778       Ty = PVD->getOriginalType();
779     else
780       Ty = VD->getType();
781
782     if (Ty->isVariablyModifiedType())
783       EmitVariablyModifiedType(Ty);
784   }
785   // Emit a location at the end of the prologue.
786   if (CGDebugInfo *DI = getDebugInfo())
787     DI->EmitLocation(Builder, StartLoc);
788 }
789
790 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
791                                        const Stmt *Body) {
792   incrementProfileCounter(Body);
793   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
794     EmitCompoundStmtWithoutScope(*S);
795   else
796     EmitStmt(Body);
797 }
798
799 /// When instrumenting to collect profile data, the counts for some blocks
800 /// such as switch cases need to not include the fall-through counts, so
801 /// emit a branch around the instrumentation code. When not instrumenting,
802 /// this just calls EmitBlock().
803 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
804                                                const Stmt *S) {
805   llvm::BasicBlock *SkipCountBB = nullptr;
806   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
807     // When instrumenting for profiling, the fallthrough to certain
808     // statements needs to skip over the instrumentation code so that we
809     // get an accurate count.
810     SkipCountBB = createBasicBlock("skipcount");
811     EmitBranch(SkipCountBB);
812   }
813   EmitBlock(BB);
814   uint64_t CurrentCount = getCurrentProfileCount();
815   incrementProfileCounter(S);
816   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
817   if (SkipCountBB)
818     EmitBlock(SkipCountBB);
819 }
820
821 /// Tries to mark the given function nounwind based on the
822 /// non-existence of any throwing calls within it.  We believe this is
823 /// lightweight enough to do at -O0.
824 static void TryMarkNoThrow(llvm::Function *F) {
825   // LLVM treats 'nounwind' on a function as part of the type, so we
826   // can't do this on functions that can be overwritten.
827   if (F->mayBeOverridden()) return;
828
829   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
830     for (llvm::BasicBlock::iterator
831            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
832       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
833         if (!Call->doesNotThrow())
834           return;
835       } else if (isa<llvm::ResumeInst>(&*BI)) {
836         return;
837       }
838   F->setDoesNotThrow();
839 }
840
841 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
842                                    const CGFunctionInfo &FnInfo) {
843   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
844
845   // Check if we should generate debug info for this function.
846   if (FD->hasAttr<NoDebugAttr>())
847     DebugInfo = nullptr; // disable debug info indefinitely for this function
848
849   FunctionArgList Args;
850   QualType ResTy = FD->getReturnType();
851
852   CurGD = GD;
853   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
854   if (MD && MD->isInstance()) {
855     if (CGM.getCXXABI().HasThisReturn(GD))
856       ResTy = MD->getThisType(getContext());
857     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
858       ResTy = CGM.getContext().VoidPtrTy;
859     CGM.getCXXABI().buildThisParam(*this, Args);
860   }
861
862   Args.append(FD->param_begin(), FD->param_end());
863
864   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
865     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
866
867   SourceRange BodyRange;
868   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
869   CurEHLocation = BodyRange.getEnd();
870
871   // Use the location of the start of the function to determine where
872   // the function definition is located. By default use the location
873   // of the declaration as the location for the subprogram. A function
874   // may lack a declaration in the source code if it is created by code
875   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
876   SourceLocation Loc = FD->getLocation();
877
878   // If this is a function specialization then use the pattern body
879   // as the location for the function.
880   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
881     if (SpecDecl->hasBody(SpecDecl))
882       Loc = SpecDecl->getLocation();
883
884   // Emit the standard function prologue.
885   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
886
887   // Generate the body of the function.
888   PGO.checkGlobalDecl(GD);
889   PGO.assignRegionCounters(GD.getDecl(), CurFn);
890   if (isa<CXXDestructorDecl>(FD))
891     EmitDestructorBody(Args);
892   else if (isa<CXXConstructorDecl>(FD))
893     EmitConstructorBody(Args);
894   else if (getLangOpts().CUDA &&
895            !getLangOpts().CUDAIsDevice &&
896            FD->hasAttr<CUDAGlobalAttr>())
897     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
898   else if (isa<CXXConversionDecl>(FD) &&
899            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
900     // The lambda conversion to block pointer is special; the semantics can't be
901     // expressed in the AST, so IRGen needs to special-case it.
902     EmitLambdaToBlockPointerBody(Args);
903   } else if (isa<CXXMethodDecl>(FD) &&
904              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
905     // The lambda static invoker function is special, because it forwards or
906     // clones the body of the function call operator (but is actually static).
907     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
908   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
909              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
910               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
911     // Implicit copy-assignment gets the same special treatment as implicit
912     // copy-constructors.
913     emitImplicitAssignmentOperatorBody(Args);
914   } else if (Stmt *Body = FD->getBody()) {
915     EmitFunctionBody(Args, Body);
916   } else
917     llvm_unreachable("no definition for emitted function");
918
919   // C++11 [stmt.return]p2:
920   //   Flowing off the end of a function [...] results in undefined behavior in
921   //   a value-returning function.
922   // C11 6.9.1p12:
923   //   If the '}' that terminates a function is reached, and the value of the
924   //   function call is used by the caller, the behavior is undefined.
925   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
926       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
927     if (SanOpts.has(SanitizerKind::Return)) {
928       SanitizerScope SanScope(this);
929       llvm::Value *IsFalse = Builder.getFalse();
930       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
931                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
932                 None);
933     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
934       EmitTrapCall(llvm::Intrinsic::trap);
935     }
936     Builder.CreateUnreachable();
937     Builder.ClearInsertionPoint();
938   }
939
940   // Emit the standard function epilogue.
941   FinishFunction(BodyRange.getEnd());
942
943   // If we haven't marked the function nothrow through other means, do
944   // a quick pass now to see if we can.
945   if (!CurFn->doesNotThrow())
946     TryMarkNoThrow(CurFn);
947 }
948
949 /// ContainsLabel - Return true if the statement contains a label in it.  If
950 /// this statement is not executed normally, it not containing a label means
951 /// that we can just remove the code.
952 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
953   // Null statement, not a label!
954   if (!S) return false;
955
956   // If this is a label, we have to emit the code, consider something like:
957   // if (0) {  ...  foo:  bar(); }  goto foo;
958   //
959   // TODO: If anyone cared, we could track __label__'s, since we know that you
960   // can't jump to one from outside their declared region.
961   if (isa<LabelStmt>(S))
962     return true;
963
964   // If this is a case/default statement, and we haven't seen a switch, we have
965   // to emit the code.
966   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
967     return true;
968
969   // If this is a switch statement, we want to ignore cases below it.
970   if (isa<SwitchStmt>(S))
971     IgnoreCaseStmts = true;
972
973   // Scan subexpressions for verboten labels.
974   for (const Stmt *SubStmt : S->children())
975     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
976       return true;
977
978   return false;
979 }
980
981 /// containsBreak - Return true if the statement contains a break out of it.
982 /// If the statement (recursively) contains a switch or loop with a break
983 /// inside of it, this is fine.
984 bool CodeGenFunction::containsBreak(const Stmt *S) {
985   // Null statement, not a label!
986   if (!S) return false;
987
988   // If this is a switch or loop that defines its own break scope, then we can
989   // include it and anything inside of it.
990   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
991       isa<ForStmt>(S))
992     return false;
993
994   if (isa<BreakStmt>(S))
995     return true;
996
997   // Scan subexpressions for verboten breaks.
998   for (const Stmt *SubStmt : S->children())
999     if (containsBreak(SubStmt))
1000       return true;
1001
1002   return false;
1003 }
1004
1005
1006 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1007 /// to a constant, or if it does but contains a label, return false.  If it
1008 /// constant folds return true and set the boolean result in Result.
1009 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1010                                                    bool &ResultBool) {
1011   llvm::APSInt ResultInt;
1012   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1013     return false;
1014
1015   ResultBool = ResultInt.getBoolValue();
1016   return true;
1017 }
1018
1019 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1020 /// to a constant, or if it does but contains a label, return false.  If it
1021 /// constant folds return true and set the folded value.
1022 bool CodeGenFunction::
1023 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1024   // FIXME: Rename and handle conversion of other evaluatable things
1025   // to bool.
1026   llvm::APSInt Int;
1027   if (!Cond->EvaluateAsInt(Int, getContext()))
1028     return false;  // Not foldable, not integer or not fully evaluatable.
1029
1030   if (CodeGenFunction::ContainsLabel(Cond))
1031     return false;  // Contains a label.
1032
1033   ResultInt = Int;
1034   return true;
1035 }
1036
1037
1038
1039 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1040 /// statement) to the specified blocks.  Based on the condition, this might try
1041 /// to simplify the codegen of the conditional based on the branch.
1042 ///
1043 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1044                                            llvm::BasicBlock *TrueBlock,
1045                                            llvm::BasicBlock *FalseBlock,
1046                                            uint64_t TrueCount) {
1047   Cond = Cond->IgnoreParens();
1048
1049   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1050
1051     // Handle X && Y in a condition.
1052     if (CondBOp->getOpcode() == BO_LAnd) {
1053       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1054       // folded if the case was simple enough.
1055       bool ConstantBool = false;
1056       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1057           ConstantBool) {
1058         // br(1 && X) -> br(X).
1059         incrementProfileCounter(CondBOp);
1060         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1061                                     TrueCount);
1062       }
1063
1064       // If we have "X && 1", simplify the code to use an uncond branch.
1065       // "X && 0" would have been constant folded to 0.
1066       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1067           ConstantBool) {
1068         // br(X && 1) -> br(X).
1069         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1070                                     TrueCount);
1071       }
1072
1073       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1074       // want to jump to the FalseBlock.
1075       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1076       // The counter tells us how often we evaluate RHS, and all of TrueCount
1077       // can be propagated to that branch.
1078       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1079
1080       ConditionalEvaluation eval(*this);
1081       {
1082         ApplyDebugLocation DL(*this, Cond);
1083         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1084         EmitBlock(LHSTrue);
1085       }
1086
1087       incrementProfileCounter(CondBOp);
1088       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1089
1090       // Any temporaries created here are conditional.
1091       eval.begin(*this);
1092       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1093       eval.end(*this);
1094
1095       return;
1096     }
1097
1098     if (CondBOp->getOpcode() == BO_LOr) {
1099       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1100       // folded if the case was simple enough.
1101       bool ConstantBool = false;
1102       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1103           !ConstantBool) {
1104         // br(0 || X) -> br(X).
1105         incrementProfileCounter(CondBOp);
1106         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1107                                     TrueCount);
1108       }
1109
1110       // If we have "X || 0", simplify the code to use an uncond branch.
1111       // "X || 1" would have been constant folded to 1.
1112       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1113           !ConstantBool) {
1114         // br(X || 0) -> br(X).
1115         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1116                                     TrueCount);
1117       }
1118
1119       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1120       // want to jump to the TrueBlock.
1121       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1122       // We have the count for entry to the RHS and for the whole expression
1123       // being true, so we can divy up True count between the short circuit and
1124       // the RHS.
1125       uint64_t LHSCount =
1126           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1127       uint64_t RHSCount = TrueCount - LHSCount;
1128
1129       ConditionalEvaluation eval(*this);
1130       {
1131         ApplyDebugLocation DL(*this, Cond);
1132         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1133         EmitBlock(LHSFalse);
1134       }
1135
1136       incrementProfileCounter(CondBOp);
1137       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1138
1139       // Any temporaries created here are conditional.
1140       eval.begin(*this);
1141       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1142
1143       eval.end(*this);
1144
1145       return;
1146     }
1147   }
1148
1149   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1150     // br(!x, t, f) -> br(x, f, t)
1151     if (CondUOp->getOpcode() == UO_LNot) {
1152       // Negate the count.
1153       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1154       // Negate the condition and swap the destination blocks.
1155       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1156                                   FalseCount);
1157     }
1158   }
1159
1160   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1161     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1162     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1163     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1164
1165     ConditionalEvaluation cond(*this);
1166     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1167                          getProfileCount(CondOp));
1168
1169     // When computing PGO branch weights, we only know the overall count for
1170     // the true block. This code is essentially doing tail duplication of the
1171     // naive code-gen, introducing new edges for which counts are not
1172     // available. Divide the counts proportionally between the LHS and RHS of
1173     // the conditional operator.
1174     uint64_t LHSScaledTrueCount = 0;
1175     if (TrueCount) {
1176       double LHSRatio =
1177           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1178       LHSScaledTrueCount = TrueCount * LHSRatio;
1179     }
1180
1181     cond.begin(*this);
1182     EmitBlock(LHSBlock);
1183     incrementProfileCounter(CondOp);
1184     {
1185       ApplyDebugLocation DL(*this, Cond);
1186       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1187                            LHSScaledTrueCount);
1188     }
1189     cond.end(*this);
1190
1191     cond.begin(*this);
1192     EmitBlock(RHSBlock);
1193     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1194                          TrueCount - LHSScaledTrueCount);
1195     cond.end(*this);
1196
1197     return;
1198   }
1199
1200   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1201     // Conditional operator handling can give us a throw expression as a
1202     // condition for a case like:
1203     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1204     // Fold this to:
1205     //   br(c, throw x, br(y, t, f))
1206     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1207     return;
1208   }
1209
1210   // Create branch weights based on the number of times we get here and the
1211   // number of times the condition should be true.
1212   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1213   llvm::MDNode *Weights =
1214       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1215
1216   // Emit the code with the fully general case.
1217   llvm::Value *CondV;
1218   {
1219     ApplyDebugLocation DL(*this, Cond);
1220     CondV = EvaluateExprAsBool(Cond);
1221   }
1222   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1223 }
1224
1225 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1226 /// specified stmt yet.
1227 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1228   CGM.ErrorUnsupported(S, Type);
1229 }
1230
1231 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1232 /// variable-length array whose elements have a non-zero bit-pattern.
1233 ///
1234 /// \param baseType the inner-most element type of the array
1235 /// \param src - a char* pointing to the bit-pattern for a single
1236 /// base element of the array
1237 /// \param sizeInChars - the total size of the VLA, in chars
1238 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1239                                llvm::Value *dest, llvm::Value *src,
1240                                llvm::Value *sizeInChars) {
1241   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1242     = CGF.getContext().getTypeInfoInChars(baseType);
1243
1244   CGBuilderTy &Builder = CGF.Builder;
1245
1246   llvm::Value *baseSizeInChars
1247     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1248
1249   llvm::Type *i8p = Builder.getInt8PtrTy();
1250
1251   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1252   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1253
1254   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1255   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1256   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1257
1258   // Make a loop over the VLA.  C99 guarantees that the VLA element
1259   // count must be nonzero.
1260   CGF.EmitBlock(loopBB);
1261
1262   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1263   cur->addIncoming(begin, originBB);
1264
1265   // memcpy the individual element bit-pattern.
1266   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1267                        baseSizeAndAlign.second.getQuantity(),
1268                        /*volatile*/ false);
1269
1270   // Go to the next element.
1271   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(),
1272                                                          cur, 1, "vla.next");
1273
1274   // Leave if that's the end of the VLA.
1275   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1276   Builder.CreateCondBr(done, contBB, loopBB);
1277   cur->addIncoming(next, loopBB);
1278
1279   CGF.EmitBlock(contBB);
1280 }
1281
1282 void
1283 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1284   // Ignore empty classes in C++.
1285   if (getLangOpts().CPlusPlus) {
1286     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1287       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1288         return;
1289     }
1290   }
1291
1292   // Cast the dest ptr to the appropriate i8 pointer type.
1293   unsigned DestAS =
1294     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1295   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1296   if (DestPtr->getType() != BP)
1297     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1298
1299   // Get size and alignment info for this aggregate.
1300   std::pair<CharUnits, CharUnits> TypeInfo =
1301     getContext().getTypeInfoInChars(Ty);
1302   CharUnits Size = TypeInfo.first;
1303   CharUnits Align = TypeInfo.second;
1304
1305   llvm::Value *SizeVal;
1306   const VariableArrayType *vla;
1307
1308   // Don't bother emitting a zero-byte memset.
1309   if (Size.isZero()) {
1310     // But note that getTypeInfo returns 0 for a VLA.
1311     if (const VariableArrayType *vlaType =
1312           dyn_cast_or_null<VariableArrayType>(
1313                                           getContext().getAsArrayType(Ty))) {
1314       QualType eltType;
1315       llvm::Value *numElts;
1316       std::tie(numElts, eltType) = getVLASize(vlaType);
1317
1318       SizeVal = numElts;
1319       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1320       if (!eltSize.isOne())
1321         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1322       vla = vlaType;
1323     } else {
1324       return;
1325     }
1326   } else {
1327     SizeVal = CGM.getSize(Size);
1328     vla = nullptr;
1329   }
1330
1331   // If the type contains a pointer to data member we can't memset it to zero.
1332   // Instead, create a null constant and copy it to the destination.
1333   // TODO: there are other patterns besides zero that we can usefully memset,
1334   // like -1, which happens to be the pattern used by member-pointers.
1335   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1336     // For a VLA, emit a single element, then splat that over the VLA.
1337     if (vla) Ty = getContext().getBaseElementType(vla);
1338
1339     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1340
1341     llvm::GlobalVariable *NullVariable =
1342       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1343                                /*isConstant=*/true,
1344                                llvm::GlobalVariable::PrivateLinkage,
1345                                NullConstant, Twine());
1346     llvm::Value *SrcPtr =
1347       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1348
1349     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1350
1351     // Get and call the appropriate llvm.memcpy overload.
1352     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1353     return;
1354   }
1355
1356   // Otherwise, just memset the whole thing to zero.  This is legal
1357   // because in LLVM, all default initializers (other than the ones we just
1358   // handled above) are guaranteed to have a bit pattern of all zeros.
1359   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1360                        Align.getQuantity(), false);
1361 }
1362
1363 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1364   // Make sure that there is a block for the indirect goto.
1365   if (!IndirectBranch)
1366     GetIndirectGotoBlock();
1367
1368   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1369
1370   // Make sure the indirect branch includes all of the address-taken blocks.
1371   IndirectBranch->addDestination(BB);
1372   return llvm::BlockAddress::get(CurFn, BB);
1373 }
1374
1375 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1376   // If we already made the indirect branch for indirect goto, return its block.
1377   if (IndirectBranch) return IndirectBranch->getParent();
1378
1379   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1380
1381   // Create the PHI node that indirect gotos will add entries to.
1382   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1383                                               "indirect.goto.dest");
1384
1385   // Create the indirect branch instruction.
1386   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1387   return IndirectBranch->getParent();
1388 }
1389
1390 /// Computes the length of an array in elements, as well as the base
1391 /// element type and a properly-typed first element pointer.
1392 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1393                                               QualType &baseType,
1394                                               llvm::Value *&addr) {
1395   const ArrayType *arrayType = origArrayType;
1396
1397   // If it's a VLA, we have to load the stored size.  Note that
1398   // this is the size of the VLA in bytes, not its size in elements.
1399   llvm::Value *numVLAElements = nullptr;
1400   if (isa<VariableArrayType>(arrayType)) {
1401     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1402
1403     // Walk into all VLAs.  This doesn't require changes to addr,
1404     // which has type T* where T is the first non-VLA element type.
1405     do {
1406       QualType elementType = arrayType->getElementType();
1407       arrayType = getContext().getAsArrayType(elementType);
1408
1409       // If we only have VLA components, 'addr' requires no adjustment.
1410       if (!arrayType) {
1411         baseType = elementType;
1412         return numVLAElements;
1413       }
1414     } while (isa<VariableArrayType>(arrayType));
1415
1416     // We get out here only if we find a constant array type
1417     // inside the VLA.
1418   }
1419
1420   // We have some number of constant-length arrays, so addr should
1421   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1422   // down to the first element of addr.
1423   SmallVector<llvm::Value*, 8> gepIndices;
1424
1425   // GEP down to the array type.
1426   llvm::ConstantInt *zero = Builder.getInt32(0);
1427   gepIndices.push_back(zero);
1428
1429   uint64_t countFromCLAs = 1;
1430   QualType eltType;
1431
1432   llvm::ArrayType *llvmArrayType =
1433     dyn_cast<llvm::ArrayType>(
1434       cast<llvm::PointerType>(addr->getType())->getElementType());
1435   while (llvmArrayType) {
1436     assert(isa<ConstantArrayType>(arrayType));
1437     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1438              == llvmArrayType->getNumElements());
1439
1440     gepIndices.push_back(zero);
1441     countFromCLAs *= llvmArrayType->getNumElements();
1442     eltType = arrayType->getElementType();
1443
1444     llvmArrayType =
1445       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1446     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1447     assert((!llvmArrayType || arrayType) &&
1448            "LLVM and Clang types are out-of-synch");
1449   }
1450
1451   if (arrayType) {
1452     // From this point onwards, the Clang array type has been emitted
1453     // as some other type (probably a packed struct). Compute the array
1454     // size, and just emit the 'begin' expression as a bitcast.
1455     while (arrayType) {
1456       countFromCLAs *=
1457           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1458       eltType = arrayType->getElementType();
1459       arrayType = getContext().getAsArrayType(eltType);
1460     }
1461
1462     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1463     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1464     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1465   } else {
1466     // Create the actual GEP.
1467     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1468   }
1469
1470   baseType = eltType;
1471
1472   llvm::Value *numElements
1473     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1474
1475   // If we had any VLA dimensions, factor them in.
1476   if (numVLAElements)
1477     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1478
1479   return numElements;
1480 }
1481
1482 std::pair<llvm::Value*, QualType>
1483 CodeGenFunction::getVLASize(QualType type) {
1484   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1485   assert(vla && "type was not a variable array type!");
1486   return getVLASize(vla);
1487 }
1488
1489 std::pair<llvm::Value*, QualType>
1490 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1491   // The number of elements so far; always size_t.
1492   llvm::Value *numElements = nullptr;
1493
1494   QualType elementType;
1495   do {
1496     elementType = type->getElementType();
1497     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1498     assert(vlaSize && "no size for VLA!");
1499     assert(vlaSize->getType() == SizeTy);
1500
1501     if (!numElements) {
1502       numElements = vlaSize;
1503     } else {
1504       // It's undefined behavior if this wraps around, so mark it that way.
1505       // FIXME: Teach -fsanitize=undefined to trap this.
1506       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1507     }
1508   } while ((type = getContext().getAsVariableArrayType(elementType)));
1509
1510   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1511 }
1512
1513 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1514   assert(type->isVariablyModifiedType() &&
1515          "Must pass variably modified type to EmitVLASizes!");
1516
1517   EnsureInsertPoint();
1518
1519   // We're going to walk down into the type and look for VLA
1520   // expressions.
1521   do {
1522     assert(type->isVariablyModifiedType());
1523
1524     const Type *ty = type.getTypePtr();
1525     switch (ty->getTypeClass()) {
1526
1527 #define TYPE(Class, Base)
1528 #define ABSTRACT_TYPE(Class, Base)
1529 #define NON_CANONICAL_TYPE(Class, Base)
1530 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1531 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1532 #include "clang/AST/TypeNodes.def"
1533       llvm_unreachable("unexpected dependent type!");
1534
1535     // These types are never variably-modified.
1536     case Type::Builtin:
1537     case Type::Complex:
1538     case Type::Vector:
1539     case Type::ExtVector:
1540     case Type::Record:
1541     case Type::Enum:
1542     case Type::Elaborated:
1543     case Type::TemplateSpecialization:
1544     case Type::ObjCObject:
1545     case Type::ObjCInterface:
1546     case Type::ObjCObjectPointer:
1547       llvm_unreachable("type class is never variably-modified!");
1548
1549     case Type::Adjusted:
1550       type = cast<AdjustedType>(ty)->getAdjustedType();
1551       break;
1552
1553     case Type::Decayed:
1554       type = cast<DecayedType>(ty)->getPointeeType();
1555       break;
1556
1557     case Type::Pointer:
1558       type = cast<PointerType>(ty)->getPointeeType();
1559       break;
1560
1561     case Type::BlockPointer:
1562       type = cast<BlockPointerType>(ty)->getPointeeType();
1563       break;
1564
1565     case Type::LValueReference:
1566     case Type::RValueReference:
1567       type = cast<ReferenceType>(ty)->getPointeeType();
1568       break;
1569
1570     case Type::MemberPointer:
1571       type = cast<MemberPointerType>(ty)->getPointeeType();
1572       break;
1573
1574     case Type::ConstantArray:
1575     case Type::IncompleteArray:
1576       // Losing element qualification here is fine.
1577       type = cast<ArrayType>(ty)->getElementType();
1578       break;
1579
1580     case Type::VariableArray: {
1581       // Losing element qualification here is fine.
1582       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1583
1584       // Unknown size indication requires no size computation.
1585       // Otherwise, evaluate and record it.
1586       if (const Expr *size = vat->getSizeExpr()) {
1587         // It's possible that we might have emitted this already,
1588         // e.g. with a typedef and a pointer to it.
1589         llvm::Value *&entry = VLASizeMap[size];
1590         if (!entry) {
1591           llvm::Value *Size = EmitScalarExpr(size);
1592
1593           // C11 6.7.6.2p5:
1594           //   If the size is an expression that is not an integer constant
1595           //   expression [...] each time it is evaluated it shall have a value
1596           //   greater than zero.
1597           if (SanOpts.has(SanitizerKind::VLABound) &&
1598               size->getType()->isSignedIntegerType()) {
1599             SanitizerScope SanScope(this);
1600             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1601             llvm::Constant *StaticArgs[] = {
1602               EmitCheckSourceLocation(size->getLocStart()),
1603               EmitCheckTypeDescriptor(size->getType())
1604             };
1605             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1606                                      SanitizerKind::VLABound),
1607                       "vla_bound_not_positive", StaticArgs, Size);
1608           }
1609
1610           // Always zexting here would be wrong if it weren't
1611           // undefined behavior to have a negative bound.
1612           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1613         }
1614       }
1615       type = vat->getElementType();
1616       break;
1617     }
1618
1619     case Type::FunctionProto:
1620     case Type::FunctionNoProto:
1621       type = cast<FunctionType>(ty)->getReturnType();
1622       break;
1623
1624     case Type::Paren:
1625     case Type::TypeOf:
1626     case Type::UnaryTransform:
1627     case Type::Attributed:
1628     case Type::SubstTemplateTypeParm:
1629     case Type::PackExpansion:
1630       // Keep walking after single level desugaring.
1631       type = type.getSingleStepDesugaredType(getContext());
1632       break;
1633
1634     case Type::Typedef:
1635     case Type::Decltype:
1636     case Type::Auto:
1637       // Stop walking: nothing to do.
1638       return;
1639
1640     case Type::TypeOfExpr:
1641       // Stop walking: emit typeof expression.
1642       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1643       return;
1644
1645     case Type::Atomic:
1646       type = cast<AtomicType>(ty)->getValueType();
1647       break;
1648     }
1649   } while (type->isVariablyModifiedType());
1650 }
1651
1652 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1653   if (getContext().getBuiltinVaListType()->isArrayType())
1654     return EmitScalarExpr(E);
1655   return EmitLValue(E).getAddress();
1656 }
1657
1658 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1659                                               llvm::Constant *Init) {
1660   assert (Init && "Invalid DeclRefExpr initializer!");
1661   if (CGDebugInfo *Dbg = getDebugInfo())
1662     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1663       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1664 }
1665
1666 CodeGenFunction::PeepholeProtection
1667 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1668   // At the moment, the only aggressive peephole we do in IR gen
1669   // is trunc(zext) folding, but if we add more, we can easily
1670   // extend this protection.
1671
1672   if (!rvalue.isScalar()) return PeepholeProtection();
1673   llvm::Value *value = rvalue.getScalarVal();
1674   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1675
1676   // Just make an extra bitcast.
1677   assert(HaveInsertPoint());
1678   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1679                                                   Builder.GetInsertBlock());
1680
1681   PeepholeProtection protection;
1682   protection.Inst = inst;
1683   return protection;
1684 }
1685
1686 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1687   if (!protection.Inst) return;
1688
1689   // In theory, we could try to duplicate the peepholes now, but whatever.
1690   protection.Inst->eraseFromParent();
1691 }
1692
1693 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1694                                                  llvm::Value *AnnotatedVal,
1695                                                  StringRef AnnotationStr,
1696                                                  SourceLocation Location) {
1697   llvm::Value *Args[4] = {
1698     AnnotatedVal,
1699     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1700     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1701     CGM.EmitAnnotationLineNo(Location)
1702   };
1703   return Builder.CreateCall(AnnotationFn, Args);
1704 }
1705
1706 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1707   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1708   // FIXME We create a new bitcast for every annotation because that's what
1709   // llvm-gcc was doing.
1710   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1711     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1712                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1713                        I->getAnnotation(), D->getLocation());
1714 }
1715
1716 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1717                                                    llvm::Value *V) {
1718   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1719   llvm::Type *VTy = V->getType();
1720   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1721                                     CGM.Int8PtrTy);
1722
1723   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1724     // FIXME Always emit the cast inst so we can differentiate between
1725     // annotation on the first field of a struct and annotation on the struct
1726     // itself.
1727     if (VTy != CGM.Int8PtrTy)
1728       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1729     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1730     V = Builder.CreateBitCast(V, VTy);
1731   }
1732
1733   return V;
1734 }
1735
1736 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1737
1738 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1739     : CGF(CGF) {
1740   assert(!CGF->IsSanitizerScope);
1741   CGF->IsSanitizerScope = true;
1742 }
1743
1744 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1745   CGF->IsSanitizerScope = false;
1746 }
1747
1748 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1749                                    const llvm::Twine &Name,
1750                                    llvm::BasicBlock *BB,
1751                                    llvm::BasicBlock::iterator InsertPt) const {
1752   LoopStack.InsertHelper(I);
1753   if (IsSanitizerScope)
1754     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1755 }
1756
1757 template <bool PreserveNames>
1758 void CGBuilderInserter<PreserveNames>::InsertHelper(
1759     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1760     llvm::BasicBlock::iterator InsertPt) const {
1761   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1762                                                               InsertPt);
1763   if (CGF)
1764     CGF->InsertHelper(I, Name, BB, InsertPt);
1765 }
1766
1767 #ifdef NDEBUG
1768 #define PreserveNames false
1769 #else
1770 #define PreserveNames true
1771 #endif
1772 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1773     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1774     llvm::BasicBlock::iterator InsertPt) const;
1775 #undef PreserveNames