]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h
Import the Linaro Cortex Strings library into contrib.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenFunction.h
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/OpenMPKinds.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Debug.h"
39
40 namespace llvm {
41 class BasicBlock;
42 class LLVMContext;
43 class MDNode;
44 class Module;
45 class SwitchInst;
46 class Twine;
47 class Value;
48 class CallSite;
49 }
50
51 namespace clang {
52 class ASTContext;
53 class BlockDecl;
54 class CXXDestructorDecl;
55 class CXXForRangeStmt;
56 class CXXTryStmt;
57 class Decl;
58 class LabelDecl;
59 class EnumConstantDecl;
60 class FunctionDecl;
61 class FunctionProtoType;
62 class LabelStmt;
63 class ObjCContainerDecl;
64 class ObjCInterfaceDecl;
65 class ObjCIvarDecl;
66 class ObjCMethodDecl;
67 class ObjCImplementationDecl;
68 class ObjCPropertyImplDecl;
69 class TargetInfo;
70 class TargetCodeGenInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77
78 namespace CodeGen {
79 class CodeGenTypes;
80 class CGFunctionInfo;
81 class CGRecordLayout;
82 class CGBlockInfo;
83 class CGCXXABI;
84 class BlockByrefHelpers;
85 class BlockByrefInfo;
86 class BlockFlags;
87 class BlockFieldFlags;
88
89 /// The kind of evaluation to perform on values of a particular
90 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
91 /// CGExprAgg?
92 ///
93 /// TODO: should vectors maybe be split out into their own thing?
94 enum TypeEvaluationKind {
95   TEK_Scalar,
96   TEK_Complex,
97   TEK_Aggregate
98 };
99
100 /// CodeGenFunction - This class organizes the per-function state that is used
101 /// while generating LLVM code.
102 class CodeGenFunction : public CodeGenTypeCache {
103   CodeGenFunction(const CodeGenFunction &) = delete;
104   void operator=(const CodeGenFunction &) = delete;
105
106   friend class CGCXXABI;
107 public:
108   /// A jump destination is an abstract label, branching to which may
109   /// require a jump out through normal cleanups.
110   struct JumpDest {
111     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
112     JumpDest(llvm::BasicBlock *Block,
113              EHScopeStack::stable_iterator Depth,
114              unsigned Index)
115       : Block(Block), ScopeDepth(Depth), Index(Index) {}
116
117     bool isValid() const { return Block != nullptr; }
118     llvm::BasicBlock *getBlock() const { return Block; }
119     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
120     unsigned getDestIndex() const { return Index; }
121
122     // This should be used cautiously.
123     void setScopeDepth(EHScopeStack::stable_iterator depth) {
124       ScopeDepth = depth;
125     }
126
127   private:
128     llvm::BasicBlock *Block;
129     EHScopeStack::stable_iterator ScopeDepth;
130     unsigned Index;
131   };
132
133   CodeGenModule &CGM;  // Per-module state.
134   const TargetInfo &Target;
135
136   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
137   LoopInfoStack LoopStack;
138   CGBuilderTy Builder;
139
140   /// \brief CGBuilder insert helper. This function is called after an
141   /// instruction is created using Builder.
142   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
143                     llvm::BasicBlock *BB,
144                     llvm::BasicBlock::iterator InsertPt) const;
145
146   /// CurFuncDecl - Holds the Decl for the current outermost
147   /// non-closure context.
148   const Decl *CurFuncDecl;
149   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
150   const Decl *CurCodeDecl;
151   const CGFunctionInfo *CurFnInfo;
152   QualType FnRetTy;
153   llvm::Function *CurFn;
154
155   /// CurGD - The GlobalDecl for the current function being compiled.
156   GlobalDecl CurGD;
157
158   /// PrologueCleanupDepth - The cleanup depth enclosing all the
159   /// cleanups associated with the parameters.
160   EHScopeStack::stable_iterator PrologueCleanupDepth;
161
162   /// ReturnBlock - Unified return block.
163   JumpDest ReturnBlock;
164
165   /// ReturnValue - The temporary alloca to hold the return
166   /// value. This is invalid iff the function has no return value.
167   Address ReturnValue;
168
169   /// AllocaInsertPoint - This is an instruction in the entry block before which
170   /// we prefer to insert allocas.
171   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
172
173   /// \brief API for captured statement code generation.
174   class CGCapturedStmtInfo {
175   public:
176     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
177         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
178     explicit CGCapturedStmtInfo(const CapturedStmt &S,
179                                 CapturedRegionKind K = CR_Default)
180       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
181
182       RecordDecl::field_iterator Field =
183         S.getCapturedRecordDecl()->field_begin();
184       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
185                                                 E = S.capture_end();
186            I != E; ++I, ++Field) {
187         if (I->capturesThis())
188           CXXThisFieldDecl = *Field;
189         else if (I->capturesVariable())
190           CaptureFields[I->getCapturedVar()] = *Field;
191       }
192     }
193
194     virtual ~CGCapturedStmtInfo();
195
196     CapturedRegionKind getKind() const { return Kind; }
197
198     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
199     // \brief Retrieve the value of the context parameter.
200     virtual llvm::Value *getContextValue() const { return ThisValue; }
201
202     /// \brief Lookup the captured field decl for a variable.
203     virtual const FieldDecl *lookup(const VarDecl *VD) const {
204       return CaptureFields.lookup(VD);
205     }
206
207     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
208     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
209
210     static bool classof(const CGCapturedStmtInfo *) {
211       return true;
212     }
213
214     /// \brief Emit the captured statement body.
215     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
216       CGF.incrementProfileCounter(S);
217       CGF.EmitStmt(S);
218     }
219
220     /// \brief Get the name of the capture helper.
221     virtual StringRef getHelperName() const { return "__captured_stmt"; }
222
223   private:
224     /// \brief The kind of captured statement being generated.
225     CapturedRegionKind Kind;
226
227     /// \brief Keep the map between VarDecl and FieldDecl.
228     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
229
230     /// \brief The base address of the captured record, passed in as the first
231     /// argument of the parallel region function.
232     llvm::Value *ThisValue;
233
234     /// \brief Captured 'this' type.
235     FieldDecl *CXXThisFieldDecl;
236   };
237   CGCapturedStmtInfo *CapturedStmtInfo;
238
239   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
240   class CGCapturedStmtRAII {
241   private:
242     CodeGenFunction &CGF;
243     CGCapturedStmtInfo *PrevCapturedStmtInfo;
244   public:
245     CGCapturedStmtRAII(CodeGenFunction &CGF,
246                        CGCapturedStmtInfo *NewCapturedStmtInfo)
247         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
248       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
249     }
250     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
251   };
252
253   /// \brief Sanitizers enabled for this function.
254   SanitizerSet SanOpts;
255
256   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
257   bool IsSanitizerScope;
258
259   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
260   class SanitizerScope {
261     CodeGenFunction *CGF;
262   public:
263     SanitizerScope(CodeGenFunction *CGF);
264     ~SanitizerScope();
265   };
266
267   /// In C++, whether we are code generating a thunk.  This controls whether we
268   /// should emit cleanups.
269   bool CurFuncIsThunk;
270
271   /// In ARC, whether we should autorelease the return value.
272   bool AutoreleaseResult;
273
274   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
275   /// potentially set the return value.
276   bool SawAsmBlock;
277
278   /// True if the current function is an outlined SEH helper. This can be a
279   /// finally block or filter expression.
280   bool IsOutlinedSEHHelper;
281
282   const CodeGen::CGBlockInfo *BlockInfo;
283   llvm::Value *BlockPointer;
284
285   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
286   FieldDecl *LambdaThisCaptureField;
287
288   /// \brief A mapping from NRVO variables to the flags used to indicate
289   /// when the NRVO has been applied to this variable.
290   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
291
292   EHScopeStack EHStack;
293   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
294   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
295
296   llvm::Instruction *CurrentFuncletPad = nullptr;
297
298   /// Header for data within LifetimeExtendedCleanupStack.
299   struct LifetimeExtendedCleanupHeader {
300     /// The size of the following cleanup object.
301     unsigned Size;
302     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
303     CleanupKind Kind;
304
305     size_t getSize() const { return Size; }
306     CleanupKind getKind() const { return Kind; }
307   };
308
309   /// i32s containing the indexes of the cleanup destinations.
310   llvm::AllocaInst *NormalCleanupDest;
311
312   unsigned NextCleanupDestIndex;
313
314   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
315   CGBlockInfo *FirstBlockInfo;
316
317   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
318   llvm::BasicBlock *EHResumeBlock;
319
320   /// The exception slot.  All landing pads write the current exception pointer
321   /// into this alloca.
322   llvm::Value *ExceptionSlot;
323
324   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
325   /// write the current selector value into this alloca.
326   llvm::AllocaInst *EHSelectorSlot;
327
328   /// A stack of exception code slots. Entering an __except block pushes a slot
329   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
330   /// a value from the top of the stack.
331   SmallVector<Address, 1> SEHCodeSlotStack;
332
333   /// Value returned by __exception_info intrinsic.
334   llvm::Value *SEHInfo = nullptr;
335
336   /// Emits a landing pad for the current EH stack.
337   llvm::BasicBlock *EmitLandingPad();
338
339   llvm::BasicBlock *getInvokeDestImpl();
340
341   template <class T>
342   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
343     return DominatingValue<T>::save(*this, value);
344   }
345
346 public:
347   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
348   /// rethrows.
349   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
350
351   /// A class controlling the emission of a finally block.
352   class FinallyInfo {
353     /// Where the catchall's edge through the cleanup should go.
354     JumpDest RethrowDest;
355
356     /// A function to call to enter the catch.
357     llvm::Constant *BeginCatchFn;
358
359     /// An i1 variable indicating whether or not the @finally is
360     /// running for an exception.
361     llvm::AllocaInst *ForEHVar;
362
363     /// An i8* variable into which the exception pointer to rethrow
364     /// has been saved.
365     llvm::AllocaInst *SavedExnVar;
366
367   public:
368     void enter(CodeGenFunction &CGF, const Stmt *Finally,
369                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
370                llvm::Constant *rethrowFn);
371     void exit(CodeGenFunction &CGF);
372   };
373
374   /// Returns true inside SEH __try blocks.
375   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
376
377   /// Returns true while emitting a cleanuppad.
378   bool isCleanupPadScope() const {
379     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
380   }
381
382   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
383   /// current full-expression.  Safe against the possibility that
384   /// we're currently inside a conditionally-evaluated expression.
385   template <class T, class... As>
386   void pushFullExprCleanup(CleanupKind kind, As... A) {
387     // If we're not in a conditional branch, or if none of the
388     // arguments requires saving, then use the unconditional cleanup.
389     if (!isInConditionalBranch())
390       return EHStack.pushCleanup<T>(kind, A...);
391
392     // Stash values in a tuple so we can guarantee the order of saves.
393     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
394     SavedTuple Saved{saveValueInCond(A)...};
395
396     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
397     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
398     initFullExprCleanup();
399   }
400
401   /// \brief Queue a cleanup to be pushed after finishing the current
402   /// full-expression.
403   template <class T, class... As>
404   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
405     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
406
407     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
408
409     size_t OldSize = LifetimeExtendedCleanupStack.size();
410     LifetimeExtendedCleanupStack.resize(
411         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
412
413     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
414                   "Cleanup will be allocated on misaligned address");
415     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
416     new (Buffer) LifetimeExtendedCleanupHeader(Header);
417     new (Buffer + sizeof(Header)) T(A...);
418   }
419
420   /// Set up the last cleaup that was pushed as a conditional
421   /// full-expression cleanup.
422   void initFullExprCleanup();
423
424   /// PushDestructorCleanup - Push a cleanup to call the
425   /// complete-object destructor of an object of the given type at the
426   /// given address.  Does nothing if T is not a C++ class type with a
427   /// non-trivial destructor.
428   void PushDestructorCleanup(QualType T, Address Addr);
429
430   /// PushDestructorCleanup - Push a cleanup to call the
431   /// complete-object variant of the given destructor on the object at
432   /// the given address.
433   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
434
435   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
436   /// process all branch fixups.
437   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
438
439   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
440   /// The block cannot be reactivated.  Pops it if it's the top of the
441   /// stack.
442   ///
443   /// \param DominatingIP - An instruction which is known to
444   ///   dominate the current IP (if set) and which lies along
445   ///   all paths of execution between the current IP and the
446   ///   the point at which the cleanup comes into scope.
447   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
448                               llvm::Instruction *DominatingIP);
449
450   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
451   /// Cannot be used to resurrect a deactivated cleanup.
452   ///
453   /// \param DominatingIP - An instruction which is known to
454   ///   dominate the current IP (if set) and which lies along
455   ///   all paths of execution between the current IP and the
456   ///   the point at which the cleanup comes into scope.
457   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
458                             llvm::Instruction *DominatingIP);
459
460   /// \brief Enters a new scope for capturing cleanups, all of which
461   /// will be executed once the scope is exited.
462   class RunCleanupsScope {
463     EHScopeStack::stable_iterator CleanupStackDepth;
464     size_t LifetimeExtendedCleanupStackSize;
465     bool OldDidCallStackSave;
466   protected:
467     bool PerformCleanup;
468   private:
469
470     RunCleanupsScope(const RunCleanupsScope &) = delete;
471     void operator=(const RunCleanupsScope &) = delete;
472
473   protected:
474     CodeGenFunction& CGF;
475
476   public:
477     /// \brief Enter a new cleanup scope.
478     explicit RunCleanupsScope(CodeGenFunction &CGF)
479       : PerformCleanup(true), CGF(CGF)
480     {
481       CleanupStackDepth = CGF.EHStack.stable_begin();
482       LifetimeExtendedCleanupStackSize =
483           CGF.LifetimeExtendedCleanupStack.size();
484       OldDidCallStackSave = CGF.DidCallStackSave;
485       CGF.DidCallStackSave = false;
486     }
487
488     /// \brief Exit this cleanup scope, emitting any accumulated
489     /// cleanups.
490     ~RunCleanupsScope() {
491       if (PerformCleanup) {
492         CGF.DidCallStackSave = OldDidCallStackSave;
493         CGF.PopCleanupBlocks(CleanupStackDepth,
494                              LifetimeExtendedCleanupStackSize);
495       }
496     }
497
498     /// \brief Determine whether this scope requires any cleanups.
499     bool requiresCleanups() const {
500       return CGF.EHStack.stable_begin() != CleanupStackDepth;
501     }
502
503     /// \brief Force the emission of cleanups now, instead of waiting
504     /// until this object is destroyed.
505     void ForceCleanup() {
506       assert(PerformCleanup && "Already forced cleanup");
507       CGF.DidCallStackSave = OldDidCallStackSave;
508       CGF.PopCleanupBlocks(CleanupStackDepth,
509                            LifetimeExtendedCleanupStackSize);
510       PerformCleanup = false;
511     }
512   };
513
514   class LexicalScope : public RunCleanupsScope {
515     SourceRange Range;
516     SmallVector<const LabelDecl*, 4> Labels;
517     LexicalScope *ParentScope;
518
519     LexicalScope(const LexicalScope &) = delete;
520     void operator=(const LexicalScope &) = delete;
521
522   public:
523     /// \brief Enter a new cleanup scope.
524     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
525       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
526       CGF.CurLexicalScope = this;
527       if (CGDebugInfo *DI = CGF.getDebugInfo())
528         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
529     }
530
531     void addLabel(const LabelDecl *label) {
532       assert(PerformCleanup && "adding label to dead scope?");
533       Labels.push_back(label);
534     }
535
536     /// \brief Exit this cleanup scope, emitting any accumulated
537     /// cleanups.
538     ~LexicalScope() {
539       if (CGDebugInfo *DI = CGF.getDebugInfo())
540         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
541
542       // If we should perform a cleanup, force them now.  Note that
543       // this ends the cleanup scope before rescoping any labels.
544       if (PerformCleanup) {
545         ApplyDebugLocation DL(CGF, Range.getEnd());
546         ForceCleanup();
547       }
548     }
549
550     /// \brief Force the emission of cleanups now, instead of waiting
551     /// until this object is destroyed.
552     void ForceCleanup() {
553       CGF.CurLexicalScope = ParentScope;
554       RunCleanupsScope::ForceCleanup();
555
556       if (!Labels.empty())
557         rescopeLabels();
558     }
559
560     void rescopeLabels();
561   };
562
563   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
564
565   /// \brief The scope used to remap some variables as private in the OpenMP
566   /// loop body (or other captured region emitted without outlining), and to
567   /// restore old vars back on exit.
568   class OMPPrivateScope : public RunCleanupsScope {
569     DeclMapTy SavedLocals;
570     DeclMapTy SavedPrivates;
571
572   private:
573     OMPPrivateScope(const OMPPrivateScope &) = delete;
574     void operator=(const OMPPrivateScope &) = delete;
575
576   public:
577     /// \brief Enter a new OpenMP private scope.
578     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
579
580     /// \brief Registers \a LocalVD variable as a private and apply \a
581     /// PrivateGen function for it to generate corresponding private variable.
582     /// \a PrivateGen returns an address of the generated private variable.
583     /// \return true if the variable is registered as private, false if it has
584     /// been privatized already.
585     bool
586     addPrivate(const VarDecl *LocalVD,
587                llvm::function_ref<Address()> PrivateGen) {
588       assert(PerformCleanup && "adding private to dead scope");
589
590       // Only save it once.
591       if (SavedLocals.count(LocalVD)) return false;
592
593       // Copy the existing local entry to SavedLocals.
594       auto it = CGF.LocalDeclMap.find(LocalVD);
595       if (it != CGF.LocalDeclMap.end()) {
596         SavedLocals.insert({LocalVD, it->second});
597       } else {
598         SavedLocals.insert({LocalVD, Address::invalid()});
599       }
600
601       // Generate the private entry.
602       Address Addr = PrivateGen();
603       QualType VarTy = LocalVD->getType();
604       if (VarTy->isReferenceType()) {
605         Address Temp = CGF.CreateMemTemp(VarTy);
606         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
607         Addr = Temp;
608       }
609       SavedPrivates.insert({LocalVD, Addr});
610
611       return true;
612     }
613
614     /// \brief Privatizes local variables previously registered as private.
615     /// Registration is separate from the actual privatization to allow
616     /// initializers use values of the original variables, not the private one.
617     /// This is important, for example, if the private variable is a class
618     /// variable initialized by a constructor that references other private
619     /// variables. But at initialization original variables must be used, not
620     /// private copies.
621     /// \return true if at least one variable was privatized, false otherwise.
622     bool Privatize() {
623       copyInto(SavedPrivates, CGF.LocalDeclMap);
624       SavedPrivates.clear();
625       return !SavedLocals.empty();
626     }
627
628     void ForceCleanup() {
629       RunCleanupsScope::ForceCleanup();
630       copyInto(SavedLocals, CGF.LocalDeclMap);
631       SavedLocals.clear();
632     }
633
634     /// \brief Exit scope - all the mapped variables are restored.
635     ~OMPPrivateScope() {
636       if (PerformCleanup)
637         ForceCleanup();
638     }
639
640   private:
641     /// Copy all the entries in the source map over the corresponding
642     /// entries in the destination, which must exist.
643     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
644       for (auto &pair : src) {
645         if (!pair.second.isValid()) {
646           dest.erase(pair.first);
647           continue;
648         }
649
650         auto it = dest.find(pair.first);
651         if (it != dest.end()) {
652           it->second = pair.second;
653         } else {
654           dest.insert(pair);
655         }
656       }
657     }
658   };
659
660   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
661   /// that have been added.
662   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
663
664   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
665   /// that have been added, then adds all lifetime-extended cleanups from
666   /// the given position to the stack.
667   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
668                         size_t OldLifetimeExtendedStackSize);
669
670   void ResolveBranchFixups(llvm::BasicBlock *Target);
671
672   /// The given basic block lies in the current EH scope, but may be a
673   /// target of a potentially scope-crossing jump; get a stable handle
674   /// to which we can perform this jump later.
675   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
676     return JumpDest(Target,
677                     EHStack.getInnermostNormalCleanup(),
678                     NextCleanupDestIndex++);
679   }
680
681   /// The given basic block lies in the current EH scope, but may be a
682   /// target of a potentially scope-crossing jump; get a stable handle
683   /// to which we can perform this jump later.
684   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
685     return getJumpDestInCurrentScope(createBasicBlock(Name));
686   }
687
688   /// EmitBranchThroughCleanup - Emit a branch from the current insert
689   /// block through the normal cleanup handling code (if any) and then
690   /// on to \arg Dest.
691   void EmitBranchThroughCleanup(JumpDest Dest);
692   
693   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
694   /// specified destination obviously has no cleanups to run.  'false' is always
695   /// a conservatively correct answer for this method.
696   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
697
698   /// popCatchScope - Pops the catch scope at the top of the EHScope
699   /// stack, emitting any required code (other than the catch handlers
700   /// themselves).
701   void popCatchScope();
702
703   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
704   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
705   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
706
707   /// An object to manage conditionally-evaluated expressions.
708   class ConditionalEvaluation {
709     llvm::BasicBlock *StartBB;
710
711   public:
712     ConditionalEvaluation(CodeGenFunction &CGF)
713       : StartBB(CGF.Builder.GetInsertBlock()) {}
714
715     void begin(CodeGenFunction &CGF) {
716       assert(CGF.OutermostConditional != this);
717       if (!CGF.OutermostConditional)
718         CGF.OutermostConditional = this;
719     }
720
721     void end(CodeGenFunction &CGF) {
722       assert(CGF.OutermostConditional != nullptr);
723       if (CGF.OutermostConditional == this)
724         CGF.OutermostConditional = nullptr;
725     }
726
727     /// Returns a block which will be executed prior to each
728     /// evaluation of the conditional code.
729     llvm::BasicBlock *getStartingBlock() const {
730       return StartBB;
731     }
732   };
733
734   /// isInConditionalBranch - Return true if we're currently emitting
735   /// one branch or the other of a conditional expression.
736   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
737
738   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
739     assert(isInConditionalBranch());
740     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
741     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
742     store->setAlignment(addr.getAlignment().getQuantity());
743   }
744
745   /// An RAII object to record that we're evaluating a statement
746   /// expression.
747   class StmtExprEvaluation {
748     CodeGenFunction &CGF;
749
750     /// We have to save the outermost conditional: cleanups in a
751     /// statement expression aren't conditional just because the
752     /// StmtExpr is.
753     ConditionalEvaluation *SavedOutermostConditional;
754
755   public:
756     StmtExprEvaluation(CodeGenFunction &CGF)
757       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
758       CGF.OutermostConditional = nullptr;
759     }
760
761     ~StmtExprEvaluation() {
762       CGF.OutermostConditional = SavedOutermostConditional;
763       CGF.EnsureInsertPoint();
764     }
765   };
766
767   /// An object which temporarily prevents a value from being
768   /// destroyed by aggressive peephole optimizations that assume that
769   /// all uses of a value have been realized in the IR.
770   class PeepholeProtection {
771     llvm::Instruction *Inst;
772     friend class CodeGenFunction;
773
774   public:
775     PeepholeProtection() : Inst(nullptr) {}
776   };
777
778   /// A non-RAII class containing all the information about a bound
779   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
780   /// this which makes individual mappings very simple; using this
781   /// class directly is useful when you have a variable number of
782   /// opaque values or don't want the RAII functionality for some
783   /// reason.
784   class OpaqueValueMappingData {
785     const OpaqueValueExpr *OpaqueValue;
786     bool BoundLValue;
787     CodeGenFunction::PeepholeProtection Protection;
788
789     OpaqueValueMappingData(const OpaqueValueExpr *ov,
790                            bool boundLValue)
791       : OpaqueValue(ov), BoundLValue(boundLValue) {}
792   public:
793     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
794
795     static bool shouldBindAsLValue(const Expr *expr) {
796       // gl-values should be bound as l-values for obvious reasons.
797       // Records should be bound as l-values because IR generation
798       // always keeps them in memory.  Expressions of function type
799       // act exactly like l-values but are formally required to be
800       // r-values in C.
801       return expr->isGLValue() ||
802              expr->getType()->isFunctionType() ||
803              hasAggregateEvaluationKind(expr->getType());
804     }
805
806     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
807                                        const OpaqueValueExpr *ov,
808                                        const Expr *e) {
809       if (shouldBindAsLValue(ov))
810         return bind(CGF, ov, CGF.EmitLValue(e));
811       return bind(CGF, ov, CGF.EmitAnyExpr(e));
812     }
813
814     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
815                                        const OpaqueValueExpr *ov,
816                                        const LValue &lv) {
817       assert(shouldBindAsLValue(ov));
818       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
819       return OpaqueValueMappingData(ov, true);
820     }
821
822     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
823                                        const OpaqueValueExpr *ov,
824                                        const RValue &rv) {
825       assert(!shouldBindAsLValue(ov));
826       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
827
828       OpaqueValueMappingData data(ov, false);
829
830       // Work around an extremely aggressive peephole optimization in
831       // EmitScalarConversion which assumes that all other uses of a
832       // value are extant.
833       data.Protection = CGF.protectFromPeepholes(rv);
834
835       return data;
836     }
837
838     bool isValid() const { return OpaqueValue != nullptr; }
839     void clear() { OpaqueValue = nullptr; }
840
841     void unbind(CodeGenFunction &CGF) {
842       assert(OpaqueValue && "no data to unbind!");
843
844       if (BoundLValue) {
845         CGF.OpaqueLValues.erase(OpaqueValue);
846       } else {
847         CGF.OpaqueRValues.erase(OpaqueValue);
848         CGF.unprotectFromPeepholes(Protection);
849       }
850     }
851   };
852
853   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
854   class OpaqueValueMapping {
855     CodeGenFunction &CGF;
856     OpaqueValueMappingData Data;
857
858   public:
859     static bool shouldBindAsLValue(const Expr *expr) {
860       return OpaqueValueMappingData::shouldBindAsLValue(expr);
861     }
862
863     /// Build the opaque value mapping for the given conditional
864     /// operator if it's the GNU ?: extension.  This is a common
865     /// enough pattern that the convenience operator is really
866     /// helpful.
867     ///
868     OpaqueValueMapping(CodeGenFunction &CGF,
869                        const AbstractConditionalOperator *op) : CGF(CGF) {
870       if (isa<ConditionalOperator>(op))
871         // Leave Data empty.
872         return;
873
874       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
875       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
876                                           e->getCommon());
877     }
878
879     OpaqueValueMapping(CodeGenFunction &CGF,
880                        const OpaqueValueExpr *opaqueValue,
881                        LValue lvalue)
882       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
883     }
884
885     OpaqueValueMapping(CodeGenFunction &CGF,
886                        const OpaqueValueExpr *opaqueValue,
887                        RValue rvalue)
888       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
889     }
890
891     void pop() {
892       Data.unbind(CGF);
893       Data.clear();
894     }
895
896     ~OpaqueValueMapping() {
897       if (Data.isValid()) Data.unbind(CGF);
898     }
899   };
900   
901 private:
902   CGDebugInfo *DebugInfo;
903   bool DisableDebugInfo;
904
905   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
906   /// calling llvm.stacksave for multiple VLAs in the same scope.
907   bool DidCallStackSave;
908
909   /// IndirectBranch - The first time an indirect goto is seen we create a block
910   /// with an indirect branch.  Every time we see the address of a label taken,
911   /// we add the label to the indirect goto.  Every subsequent indirect goto is
912   /// codegen'd as a jump to the IndirectBranch's basic block.
913   llvm::IndirectBrInst *IndirectBranch;
914
915   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
916   /// decls.
917   DeclMapTy LocalDeclMap;
918
919   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
920   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
921   /// parameter.
922   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
923       SizeArguments;
924
925   /// Track escaped local variables with auto storage. Used during SEH
926   /// outlining to produce a call to llvm.localescape.
927   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
928
929   /// LabelMap - This keeps track of the LLVM basic block for each C label.
930   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
931
932   // BreakContinueStack - This keeps track of where break and continue
933   // statements should jump to.
934   struct BreakContinue {
935     BreakContinue(JumpDest Break, JumpDest Continue)
936       : BreakBlock(Break), ContinueBlock(Continue) {}
937
938     JumpDest BreakBlock;
939     JumpDest ContinueBlock;
940   };
941   SmallVector<BreakContinue, 8> BreakContinueStack;
942
943   CodeGenPGO PGO;
944
945   /// Calculate branch weights appropriate for PGO data
946   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
947   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
948   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
949                                             uint64_t LoopCount);
950
951 public:
952   /// Increment the profiler's counter for the given statement.
953   void incrementProfileCounter(const Stmt *S) {
954     if (CGM.getCodeGenOpts().ProfileInstrGenerate)
955       PGO.emitCounterIncrement(Builder, S);
956     PGO.setCurrentStmt(S);
957   }
958
959   /// Get the profiler's count for the given statement.
960   uint64_t getProfileCount(const Stmt *S) {
961     Optional<uint64_t> Count = PGO.getStmtCount(S);
962     if (!Count.hasValue())
963       return 0;
964     return *Count;
965   }
966
967   /// Set the profiler's current count.
968   void setCurrentProfileCount(uint64_t Count) {
969     PGO.setCurrentRegionCount(Count);
970   }
971
972   /// Get the profiler's current count. This is generally the count for the most
973   /// recently incremented counter.
974   uint64_t getCurrentProfileCount() {
975     return PGO.getCurrentRegionCount();
976   }
977
978 private:
979
980   /// SwitchInsn - This is nearest current switch instruction. It is null if
981   /// current context is not in a switch.
982   llvm::SwitchInst *SwitchInsn;
983   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
984   SmallVector<uint64_t, 16> *SwitchWeights;
985
986   /// CaseRangeBlock - This block holds if condition check for last case
987   /// statement range in current switch instruction.
988   llvm::BasicBlock *CaseRangeBlock;
989
990   /// OpaqueLValues - Keeps track of the current set of opaque value
991   /// expressions.
992   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
993   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
994
995   // VLASizeMap - This keeps track of the associated size for each VLA type.
996   // We track this by the size expression rather than the type itself because
997   // in certain situations, like a const qualifier applied to an VLA typedef,
998   // multiple VLA types can share the same size expression.
999   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1000   // enter/leave scopes.
1001   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1002
1003   /// A block containing a single 'unreachable' instruction.  Created
1004   /// lazily by getUnreachableBlock().
1005   llvm::BasicBlock *UnreachableBlock;
1006
1007   /// Counts of the number return expressions in the function.
1008   unsigned NumReturnExprs;
1009
1010   /// Count the number of simple (constant) return expressions in the function.
1011   unsigned NumSimpleReturnExprs;
1012
1013   /// The last regular (non-return) debug location (breakpoint) in the function.
1014   SourceLocation LastStopPoint;
1015
1016 public:
1017   /// A scope within which we are constructing the fields of an object which
1018   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1019   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1020   class FieldConstructionScope {
1021   public:
1022     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1023         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1024       CGF.CXXDefaultInitExprThis = This;
1025     }
1026     ~FieldConstructionScope() {
1027       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1028     }
1029
1030   private:
1031     CodeGenFunction &CGF;
1032     Address OldCXXDefaultInitExprThis;
1033   };
1034
1035   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1036   /// is overridden to be the object under construction.
1037   class CXXDefaultInitExprScope {
1038   public:
1039     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1040       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1041         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1042       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1043       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1044     }
1045     ~CXXDefaultInitExprScope() {
1046       CGF.CXXThisValue = OldCXXThisValue;
1047       CGF.CXXThisAlignment = OldCXXThisAlignment;
1048     }
1049
1050   public:
1051     CodeGenFunction &CGF;
1052     llvm::Value *OldCXXThisValue;
1053     CharUnits OldCXXThisAlignment;
1054   };
1055
1056 private:
1057   /// CXXThisDecl - When generating code for a C++ member function,
1058   /// this will hold the implicit 'this' declaration.
1059   ImplicitParamDecl *CXXABIThisDecl;
1060   llvm::Value *CXXABIThisValue;
1061   llvm::Value *CXXThisValue;
1062   CharUnits CXXABIThisAlignment;
1063   CharUnits CXXThisAlignment;
1064
1065   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1066   /// this expression.
1067   Address CXXDefaultInitExprThis = Address::invalid();
1068
1069   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1070   /// destructor, this will hold the implicit argument (e.g. VTT).
1071   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1072   llvm::Value *CXXStructorImplicitParamValue;
1073
1074   /// OutermostConditional - Points to the outermost active
1075   /// conditional control.  This is used so that we know if a
1076   /// temporary should be destroyed conditionally.
1077   ConditionalEvaluation *OutermostConditional;
1078
1079   /// The current lexical scope.
1080   LexicalScope *CurLexicalScope;
1081
1082   /// The current source location that should be used for exception
1083   /// handling code.
1084   SourceLocation CurEHLocation;
1085
1086   /// BlockByrefInfos - For each __block variable, contains
1087   /// information about the layout of the variable.
1088   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1089
1090   llvm::BasicBlock *TerminateLandingPad;
1091   llvm::BasicBlock *TerminateHandler;
1092   llvm::BasicBlock *TrapBB;
1093
1094   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1095   /// In the kernel metadata node, reference the kernel function and metadata 
1096   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1097   /// - A node for the vec_type_hint(<type>) qualifier contains string
1098   ///   "vec_type_hint", an undefined value of the <type> data type,
1099   ///   and a Boolean that is true if the <type> is integer and signed.
1100   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 
1101   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1102   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 
1103   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1104   void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 
1105                                 llvm::Function *Fn);
1106
1107 public:
1108   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1109   ~CodeGenFunction();
1110
1111   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1112   ASTContext &getContext() const { return CGM.getContext(); }
1113   CGDebugInfo *getDebugInfo() { 
1114     if (DisableDebugInfo) 
1115       return nullptr;
1116     return DebugInfo; 
1117   }
1118   void disableDebugInfo() { DisableDebugInfo = true; }
1119   void enableDebugInfo() { DisableDebugInfo = false; }
1120
1121   bool shouldUseFusedARCCalls() {
1122     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1123   }
1124
1125   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1126
1127   /// Returns a pointer to the function's exception object and selector slot,
1128   /// which is assigned in every landing pad.
1129   Address getExceptionSlot();
1130   Address getEHSelectorSlot();
1131
1132   /// Returns the contents of the function's exception object and selector
1133   /// slots.
1134   llvm::Value *getExceptionFromSlot();
1135   llvm::Value *getSelectorFromSlot();
1136
1137   Address getNormalCleanupDestSlot();
1138
1139   llvm::BasicBlock *getUnreachableBlock() {
1140     if (!UnreachableBlock) {
1141       UnreachableBlock = createBasicBlock("unreachable");
1142       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1143     }
1144     return UnreachableBlock;
1145   }
1146
1147   llvm::BasicBlock *getInvokeDest() {
1148     if (!EHStack.requiresLandingPad()) return nullptr;
1149     return getInvokeDestImpl();
1150   }
1151
1152   bool currentFunctionUsesSEHTry() const {
1153     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1154     return FD && FD->usesSEHTry();
1155   }
1156
1157   const TargetInfo &getTarget() const { return Target; }
1158   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1159
1160   //===--------------------------------------------------------------------===//
1161   //                                  Cleanups
1162   //===--------------------------------------------------------------------===//
1163
1164   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1165
1166   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1167                                         Address arrayEndPointer,
1168                                         QualType elementType,
1169                                         CharUnits elementAlignment,
1170                                         Destroyer *destroyer);
1171   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1172                                       llvm::Value *arrayEnd,
1173                                       QualType elementType,
1174                                       CharUnits elementAlignment,
1175                                       Destroyer *destroyer);
1176
1177   void pushDestroy(QualType::DestructionKind dtorKind,
1178                    Address addr, QualType type);
1179   void pushEHDestroy(QualType::DestructionKind dtorKind,
1180                      Address addr, QualType type);
1181   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1182                    Destroyer *destroyer, bool useEHCleanupForArray);
1183   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1184                                    QualType type, Destroyer *destroyer,
1185                                    bool useEHCleanupForArray);
1186   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1187                                    llvm::Value *CompletePtr,
1188                                    QualType ElementType);
1189   void pushStackRestore(CleanupKind kind, Address SPMem);
1190   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1191                    bool useEHCleanupForArray);
1192   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1193                                         Destroyer *destroyer,
1194                                         bool useEHCleanupForArray,
1195                                         const VarDecl *VD);
1196   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1197                         QualType elementType, CharUnits elementAlign,
1198                         Destroyer *destroyer,
1199                         bool checkZeroLength, bool useEHCleanup);
1200
1201   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1202
1203   /// Determines whether an EH cleanup is required to destroy a type
1204   /// with the given destruction kind.
1205   bool needsEHCleanup(QualType::DestructionKind kind) {
1206     switch (kind) {
1207     case QualType::DK_none:
1208       return false;
1209     case QualType::DK_cxx_destructor:
1210     case QualType::DK_objc_weak_lifetime:
1211       return getLangOpts().Exceptions;
1212     case QualType::DK_objc_strong_lifetime:
1213       return getLangOpts().Exceptions &&
1214              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1215     }
1216     llvm_unreachable("bad destruction kind");
1217   }
1218
1219   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1220     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1221   }
1222
1223   //===--------------------------------------------------------------------===//
1224   //                                  Objective-C
1225   //===--------------------------------------------------------------------===//
1226
1227   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1228
1229   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1230
1231   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1232   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1233                           const ObjCPropertyImplDecl *PID);
1234   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1235                               const ObjCPropertyImplDecl *propImpl,
1236                               const ObjCMethodDecl *GetterMothodDecl,
1237                               llvm::Constant *AtomicHelperFn);
1238
1239   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1240                                   ObjCMethodDecl *MD, bool ctor);
1241
1242   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1243   /// for the given property.
1244   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1245                           const ObjCPropertyImplDecl *PID);
1246   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1247                               const ObjCPropertyImplDecl *propImpl,
1248                               llvm::Constant *AtomicHelperFn);
1249
1250   //===--------------------------------------------------------------------===//
1251   //                                  Block Bits
1252   //===--------------------------------------------------------------------===//
1253
1254   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1255   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1256   static void destroyBlockInfos(CGBlockInfo *info);
1257
1258   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1259                                         const CGBlockInfo &Info,
1260                                         const DeclMapTy &ldm,
1261                                         bool IsLambdaConversionToBlock);
1262
1263   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1264   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1265   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1266                                              const ObjCPropertyImplDecl *PID);
1267   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1268                                              const ObjCPropertyImplDecl *PID);
1269   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1270
1271   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1272
1273   class AutoVarEmission;
1274
1275   void emitByrefStructureInit(const AutoVarEmission &emission);
1276   void enterByrefCleanup(const AutoVarEmission &emission);
1277
1278   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1279                                 llvm::Value *ptr);
1280
1281   Address LoadBlockStruct();
1282   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1283
1284   /// BuildBlockByrefAddress - Computes the location of the
1285   /// data in a variable which is declared as __block.
1286   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1287                                 bool followForward = true);
1288   Address emitBlockByrefAddress(Address baseAddr,
1289                                 const BlockByrefInfo &info,
1290                                 bool followForward,
1291                                 const llvm::Twine &name);
1292
1293   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1294
1295   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1296                     const CGFunctionInfo &FnInfo);
1297   /// \brief Emit code for the start of a function.
1298   /// \param Loc       The location to be associated with the function.
1299   /// \param StartLoc  The location of the function body.
1300   void StartFunction(GlobalDecl GD,
1301                      QualType RetTy,
1302                      llvm::Function *Fn,
1303                      const CGFunctionInfo &FnInfo,
1304                      const FunctionArgList &Args,
1305                      SourceLocation Loc = SourceLocation(),
1306                      SourceLocation StartLoc = SourceLocation());
1307
1308   void EmitConstructorBody(FunctionArgList &Args);
1309   void EmitDestructorBody(FunctionArgList &Args);
1310   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1311   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1312   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1313
1314   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1315                                   CallArgList &CallArgs);
1316   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1317   void EmitLambdaBlockInvokeBody();
1318   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1319   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1320   void EmitAsanPrologueOrEpilogue(bool Prologue);
1321
1322   /// \brief Emit the unified return block, trying to avoid its emission when
1323   /// possible.
1324   /// \return The debug location of the user written return statement if the
1325   /// return block is is avoided.
1326   llvm::DebugLoc EmitReturnBlock();
1327
1328   /// FinishFunction - Complete IR generation of the current function. It is
1329   /// legal to call this function even if there is no current insertion point.
1330   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1331
1332   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1333                   const CGFunctionInfo &FnInfo);
1334
1335   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1336
1337   void FinishThunk();
1338
1339   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1340   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1341                          llvm::Value *Callee);
1342
1343   /// Generate a thunk for the given method.
1344   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1345                      GlobalDecl GD, const ThunkInfo &Thunk);
1346
1347   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1348                                        const CGFunctionInfo &FnInfo,
1349                                        GlobalDecl GD, const ThunkInfo &Thunk);
1350
1351   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1352                         FunctionArgList &Args);
1353
1354   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1355                                ArrayRef<VarDecl *> ArrayIndexes);
1356
1357   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1358   struct VPtr {
1359     BaseSubobject Base;
1360     const CXXRecordDecl *NearestVBase;
1361     CharUnits OffsetFromNearestVBase;
1362     const CXXRecordDecl *VTableClass;
1363   };
1364
1365   /// Initialize the vtable pointer of the given subobject.
1366   void InitializeVTablePointer(const VPtr &vptr);
1367
1368   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1369
1370   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1371   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1372
1373   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1374                          CharUnits OffsetFromNearestVBase,
1375                          bool BaseIsNonVirtualPrimaryBase,
1376                          const CXXRecordDecl *VTableClass,
1377                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1378
1379   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1380
1381   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1382   /// to by This.
1383   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1384                             const CXXRecordDecl *VTableClass);
1385
1386   enum CFITypeCheckKind {
1387     CFITCK_VCall,
1388     CFITCK_NVCall,
1389     CFITCK_DerivedCast,
1390     CFITCK_UnrelatedCast,
1391   };
1392
1393   /// \brief Derived is the presumed address of an object of type T after a
1394   /// cast. If T is a polymorphic class type, emit a check that the virtual
1395   /// table for Derived belongs to a class derived from T.
1396   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1397                                  bool MayBeNull, CFITypeCheckKind TCK,
1398                                  SourceLocation Loc);
1399
1400   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1401   /// If vptr CFI is enabled, emit a check that VTable is valid.
1402   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
1403                                  CFITypeCheckKind TCK, SourceLocation Loc);
1404
1405   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1406   /// RD using llvm.bitset.test.
1407   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1408                           CFITypeCheckKind TCK, SourceLocation Loc);
1409
1410   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1411   /// expr can be devirtualized.
1412   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1413                                          const CXXMethodDecl *MD);
1414
1415   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1416   /// given phase of destruction for a destructor.  The end result
1417   /// should call destructors on members and base classes in reverse
1418   /// order of their construction.
1419   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1420
1421   /// ShouldInstrumentFunction - Return true if the current function should be
1422   /// instrumented with __cyg_profile_func_* calls
1423   bool ShouldInstrumentFunction();
1424
1425   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1426   /// instrumentation function with the current function and the call site, if
1427   /// function instrumentation is enabled.
1428   void EmitFunctionInstrumentation(const char *Fn);
1429
1430   /// EmitMCountInstrumentation - Emit call to .mcount.
1431   void EmitMCountInstrumentation();
1432
1433   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1434   /// arguments for the given function. This is also responsible for naming the
1435   /// LLVM function arguments.
1436   void EmitFunctionProlog(const CGFunctionInfo &FI,
1437                           llvm::Function *Fn,
1438                           const FunctionArgList &Args);
1439
1440   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1441   /// given temporary.
1442   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1443                           SourceLocation EndLoc);
1444
1445   /// EmitStartEHSpec - Emit the start of the exception spec.
1446   void EmitStartEHSpec(const Decl *D);
1447
1448   /// EmitEndEHSpec - Emit the end of the exception spec.
1449   void EmitEndEHSpec(const Decl *D);
1450
1451   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1452   llvm::BasicBlock *getTerminateLandingPad();
1453
1454   /// getTerminateHandler - Return a handler (not a landing pad, just
1455   /// a catch handler) that just calls terminate.  This is used when
1456   /// a terminate scope encloses a try.
1457   llvm::BasicBlock *getTerminateHandler();
1458
1459   llvm::Type *ConvertTypeForMem(QualType T);
1460   llvm::Type *ConvertType(QualType T);
1461   llvm::Type *ConvertType(const TypeDecl *T) {
1462     return ConvertType(getContext().getTypeDeclType(T));
1463   }
1464
1465   /// LoadObjCSelf - Load the value of self. This function is only valid while
1466   /// generating code for an Objective-C method.
1467   llvm::Value *LoadObjCSelf();
1468
1469   /// TypeOfSelfObject - Return type of object that this self represents.
1470   QualType TypeOfSelfObject();
1471
1472   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1473   /// an aggregate LLVM type or is void.
1474   static TypeEvaluationKind getEvaluationKind(QualType T);
1475
1476   static bool hasScalarEvaluationKind(QualType T) {
1477     return getEvaluationKind(T) == TEK_Scalar;
1478   }
1479
1480   static bool hasAggregateEvaluationKind(QualType T) {
1481     return getEvaluationKind(T) == TEK_Aggregate;
1482   }
1483
1484   /// createBasicBlock - Create an LLVM basic block.
1485   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1486                                      llvm::Function *parent = nullptr,
1487                                      llvm::BasicBlock *before = nullptr) {
1488 #ifdef NDEBUG
1489     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1490 #else
1491     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1492 #endif
1493   }
1494
1495   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1496   /// label maps to.
1497   JumpDest getJumpDestForLabel(const LabelDecl *S);
1498
1499   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1500   /// another basic block, simplify it. This assumes that no other code could
1501   /// potentially reference the basic block.
1502   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1503
1504   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1505   /// adding a fall-through branch from the current insert block if
1506   /// necessary. It is legal to call this function even if there is no current
1507   /// insertion point.
1508   ///
1509   /// IsFinished - If true, indicates that the caller has finished emitting
1510   /// branches to the given block and does not expect to emit code into it. This
1511   /// means the block can be ignored if it is unreachable.
1512   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1513
1514   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1515   /// near its uses, and leave the insertion point in it.
1516   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1517
1518   /// EmitBranch - Emit a branch to the specified basic block from the current
1519   /// insert block, taking care to avoid creation of branches from dummy
1520   /// blocks. It is legal to call this function even if there is no current
1521   /// insertion point.
1522   ///
1523   /// This function clears the current insertion point. The caller should follow
1524   /// calls to this function with calls to Emit*Block prior to generation new
1525   /// code.
1526   void EmitBranch(llvm::BasicBlock *Block);
1527
1528   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1529   /// indicates that the current code being emitted is unreachable.
1530   bool HaveInsertPoint() const {
1531     return Builder.GetInsertBlock() != nullptr;
1532   }
1533
1534   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1535   /// emitted IR has a place to go. Note that by definition, if this function
1536   /// creates a block then that block is unreachable; callers may do better to
1537   /// detect when no insertion point is defined and simply skip IR generation.
1538   void EnsureInsertPoint() {
1539     if (!HaveInsertPoint())
1540       EmitBlock(createBasicBlock());
1541   }
1542
1543   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1544   /// specified stmt yet.
1545   void ErrorUnsupported(const Stmt *S, const char *Type);
1546
1547   //===--------------------------------------------------------------------===//
1548   //                                  Helpers
1549   //===--------------------------------------------------------------------===//
1550
1551   LValue MakeAddrLValue(Address Addr, QualType T,
1552                         AlignmentSource AlignSource = AlignmentSource::Type) {
1553     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1554                             CGM.getTBAAInfo(T));
1555   }
1556
1557   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1558                         AlignmentSource AlignSource = AlignmentSource::Type) {
1559     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1560                             AlignSource, CGM.getTBAAInfo(T));
1561   }
1562
1563   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1564   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1565   CharUnits getNaturalTypeAlignment(QualType T,
1566                                     AlignmentSource *Source = nullptr,
1567                                     bool forPointeeType = false);
1568   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1569                                            AlignmentSource *Source = nullptr);
1570
1571   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1572                               AlignmentSource *Source = nullptr);
1573   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1574
1575   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1576   /// block. The caller is responsible for setting an appropriate alignment on
1577   /// the alloca.
1578   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1579                                      const Twine &Name = "tmp");
1580   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1581                            const Twine &Name = "tmp");
1582
1583   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1584   /// default ABI alignment of the given LLVM type.
1585   ///
1586   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1587   /// any given AST type that happens to have been lowered to the
1588   /// given IR type.  This should only ever be used for function-local,
1589   /// IR-driven manipulations like saving and restoring a value.  Do
1590   /// not hand this address off to arbitrary IRGen routines, and especially
1591   /// do not pass it as an argument to a function that might expect a
1592   /// properly ABI-aligned value.
1593   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1594                                        const Twine &Name = "tmp");
1595
1596   /// InitTempAlloca - Provide an initial value for the given alloca which
1597   /// will be observable at all locations in the function.
1598   ///
1599   /// The address should be something that was returned from one of
1600   /// the CreateTempAlloca or CreateMemTemp routines, and the
1601   /// initializer must be valid in the entry block (i.e. it must
1602   /// either be a constant or an argument value).
1603   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1604
1605   /// CreateIRTemp - Create a temporary IR object of the given type, with
1606   /// appropriate alignment. This routine should only be used when an temporary
1607   /// value needs to be stored into an alloca (for example, to avoid explicit
1608   /// PHI construction), but the type is the IR type, not the type appropriate
1609   /// for storing in memory.
1610   ///
1611   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1612   /// ConvertType instead of ConvertTypeForMem.
1613   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1614
1615   /// CreateMemTemp - Create a temporary memory object of the given type, with
1616   /// appropriate alignment.
1617   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1618   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1619
1620   /// CreateAggTemp - Create a temporary memory object for the given
1621   /// aggregate type.
1622   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1623     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1624                                  T.getQualifiers(),
1625                                  AggValueSlot::IsNotDestructed,
1626                                  AggValueSlot::DoesNotNeedGCBarriers,
1627                                  AggValueSlot::IsNotAliased);
1628   }
1629
1630   /// Emit a cast to void* in the appropriate address space.
1631   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1632
1633   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1634   /// expression and compare the result against zero, returning an Int1Ty value.
1635   llvm::Value *EvaluateExprAsBool(const Expr *E);
1636
1637   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1638   void EmitIgnoredExpr(const Expr *E);
1639
1640   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1641   /// any type.  The result is returned as an RValue struct.  If this is an
1642   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1643   /// the result should be returned.
1644   ///
1645   /// \param ignoreResult True if the resulting value isn't used.
1646   RValue EmitAnyExpr(const Expr *E,
1647                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1648                      bool ignoreResult = false);
1649
1650   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1651   // or the value of the expression, depending on how va_list is defined.
1652   Address EmitVAListRef(const Expr *E);
1653
1654   /// Emit a "reference" to a __builtin_ms_va_list; this is
1655   /// always the value of the expression, because a __builtin_ms_va_list is a
1656   /// pointer to a char.
1657   Address EmitMSVAListRef(const Expr *E);
1658
1659   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1660   /// always be accessible even if no aggregate location is provided.
1661   RValue EmitAnyExprToTemp(const Expr *E);
1662
1663   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1664   /// arbitrary expression into the given memory location.
1665   void EmitAnyExprToMem(const Expr *E, Address Location,
1666                         Qualifiers Quals, bool IsInitializer);
1667
1668   void EmitAnyExprToExn(const Expr *E, Address Addr);
1669
1670   /// EmitExprAsInit - Emits the code necessary to initialize a
1671   /// location in memory with the given initializer.
1672   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1673                       bool capturedByInit);
1674
1675   /// hasVolatileMember - returns true if aggregate type has a volatile
1676   /// member.
1677   bool hasVolatileMember(QualType T) {
1678     if (const RecordType *RT = T->getAs<RecordType>()) {
1679       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1680       return RD->hasVolatileMember();
1681     }
1682     return false;
1683   }
1684   /// EmitAggregateCopy - Emit an aggregate assignment.
1685   ///
1686   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1687   /// This is required for correctness when assigning non-POD structures in C++.
1688   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1689                            QualType EltTy) {
1690     bool IsVolatile = hasVolatileMember(EltTy);
1691     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1692   }
1693
1694   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1695                              QualType DestTy, QualType SrcTy) {
1696     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1697                       /*IsAssignment=*/false);
1698   }
1699
1700   /// EmitAggregateCopy - Emit an aggregate copy.
1701   ///
1702   /// \param isVolatile - True iff either the source or the destination is
1703   /// volatile.
1704   /// \param isAssignment - If false, allow padding to be copied.  This often
1705   /// yields more efficient.
1706   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1707                          QualType EltTy, bool isVolatile=false,
1708                          bool isAssignment = false);
1709
1710   /// GetAddrOfLocalVar - Return the address of a local variable.
1711   Address GetAddrOfLocalVar(const VarDecl *VD) {
1712     auto it = LocalDeclMap.find(VD);
1713     assert(it != LocalDeclMap.end() &&
1714            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1715     return it->second;
1716   }
1717
1718   /// getOpaqueLValueMapping - Given an opaque value expression (which
1719   /// must be mapped to an l-value), return its mapping.
1720   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1721     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1722
1723     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1724       it = OpaqueLValues.find(e);
1725     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1726     return it->second;
1727   }
1728
1729   /// getOpaqueRValueMapping - Given an opaque value expression (which
1730   /// must be mapped to an r-value), return its mapping.
1731   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1732     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1733
1734     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1735       it = OpaqueRValues.find(e);
1736     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1737     return it->second;
1738   }
1739
1740   /// getAccessedFieldNo - Given an encoded value and a result number, return
1741   /// the input field number being accessed.
1742   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1743
1744   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1745   llvm::BasicBlock *GetIndirectGotoBlock();
1746
1747   /// EmitNullInitialization - Generate code to set a value of the given type to
1748   /// null, If the type contains data member pointers, they will be initialized
1749   /// to -1 in accordance with the Itanium C++ ABI.
1750   void EmitNullInitialization(Address DestPtr, QualType Ty);
1751
1752   /// Emits a call to an LLVM variable-argument intrinsic, either
1753   /// \c llvm.va_start or \c llvm.va_end.
1754   /// \param ArgValue A reference to the \c va_list as emitted by either
1755   /// \c EmitVAListRef or \c EmitMSVAListRef.
1756   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1757   /// calls \c llvm.va_end.
1758   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1759
1760   /// Generate code to get an argument from the passed in pointer
1761   /// and update it accordingly.
1762   /// \param VE The \c VAArgExpr for which to generate code.
1763   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1764   /// either \c EmitVAListRef or \c EmitMSVAListRef.
1765   /// \returns A pointer to the argument.
1766   // FIXME: We should be able to get rid of this method and use the va_arg
1767   // instruction in LLVM instead once it works well enough.
1768   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1769
1770   /// emitArrayLength - Compute the length of an array, even if it's a
1771   /// VLA, and drill down to the base element type.
1772   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1773                                QualType &baseType,
1774                                Address &addr);
1775
1776   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1777   /// the given variably-modified type and store them in the VLASizeMap.
1778   ///
1779   /// This function can be called with a null (unreachable) insert point.
1780   void EmitVariablyModifiedType(QualType Ty);
1781
1782   /// getVLASize - Returns an LLVM value that corresponds to the size,
1783   /// in non-variably-sized elements, of a variable length array type,
1784   /// plus that largest non-variably-sized element type.  Assumes that
1785   /// the type has already been emitted with EmitVariablyModifiedType.
1786   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1787   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1788
1789   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1790   /// generating code for an C++ member function.
1791   llvm::Value *LoadCXXThis() {
1792     assert(CXXThisValue && "no 'this' value for this function");
1793     return CXXThisValue;
1794   }
1795   Address LoadCXXThisAddress();
1796
1797   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1798   /// virtual bases.
1799   // FIXME: Every place that calls LoadCXXVTT is something
1800   // that needs to be abstracted properly.
1801   llvm::Value *LoadCXXVTT() {
1802     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1803     return CXXStructorImplicitParamValue;
1804   }
1805
1806   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1807   /// complete class to the given direct base.
1808   Address
1809   GetAddressOfDirectBaseInCompleteClass(Address Value,
1810                                         const CXXRecordDecl *Derived,
1811                                         const CXXRecordDecl *Base,
1812                                         bool BaseIsVirtual);
1813
1814   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1815
1816   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1817   /// load of 'this' and returns address of the base class.
1818   Address GetAddressOfBaseClass(Address Value,
1819                                 const CXXRecordDecl *Derived,
1820                                 CastExpr::path_const_iterator PathBegin,
1821                                 CastExpr::path_const_iterator PathEnd,
1822                                 bool NullCheckValue, SourceLocation Loc);
1823
1824   Address GetAddressOfDerivedClass(Address Value,
1825                                    const CXXRecordDecl *Derived,
1826                                    CastExpr::path_const_iterator PathBegin,
1827                                    CastExpr::path_const_iterator PathEnd,
1828                                    bool NullCheckValue);
1829
1830   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1831   /// base constructor/destructor with virtual bases.
1832   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1833   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1834   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1835                                bool Delegating);
1836
1837   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1838                                       CXXCtorType CtorType,
1839                                       const FunctionArgList &Args,
1840                                       SourceLocation Loc);
1841   // It's important not to confuse this and the previous function. Delegating
1842   // constructors are the C++0x feature. The constructor delegate optimization
1843   // is used to reduce duplication in the base and complete consturctors where
1844   // they are substantially the same.
1845   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1846                                         const FunctionArgList &Args);
1847
1848   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1849                               bool ForVirtualBase, bool Delegating,
1850                               Address This, const CXXConstructExpr *E);
1851
1852   /// Emit assumption load for all bases. Requires to be be called only on
1853   /// most-derived class and not under construction of the object.
1854   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1855
1856   /// Emit assumption that vptr load == global vtable.
1857   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1858
1859   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1860                                       Address This, Address Src,
1861                                       const CXXConstructExpr *E);
1862
1863   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1864                                   const ConstantArrayType *ArrayTy,
1865                                   Address ArrayPtr,
1866                                   const CXXConstructExpr *E,
1867                                   bool ZeroInitialization = false);
1868
1869   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1870                                   llvm::Value *NumElements,
1871                                   Address ArrayPtr,
1872                                   const CXXConstructExpr *E,
1873                                   bool ZeroInitialization = false);
1874
1875   static Destroyer destroyCXXObject;
1876
1877   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1878                              bool ForVirtualBase, bool Delegating,
1879                              Address This);
1880
1881   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1882                                llvm::Type *ElementTy, Address NewPtr,
1883                                llvm::Value *NumElements,
1884                                llvm::Value *AllocSizeWithoutCookie);
1885
1886   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1887                         Address Ptr);
1888
1889   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1890   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1891
1892   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1893   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1894
1895   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1896                       QualType DeleteTy);
1897
1898   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1899                                   const Expr *Arg, bool IsDelete);
1900
1901   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1902   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
1903   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1904
1905   /// \brief Situations in which we might emit a check for the suitability of a
1906   ///        pointer or glvalue.
1907   enum TypeCheckKind {
1908     /// Checking the operand of a load. Must be suitably sized and aligned.
1909     TCK_Load,
1910     /// Checking the destination of a store. Must be suitably sized and aligned.
1911     TCK_Store,
1912     /// Checking the bound value in a reference binding. Must be suitably sized
1913     /// and aligned, but is not required to refer to an object (until the
1914     /// reference is used), per core issue 453.
1915     TCK_ReferenceBinding,
1916     /// Checking the object expression in a non-static data member access. Must
1917     /// be an object within its lifetime.
1918     TCK_MemberAccess,
1919     /// Checking the 'this' pointer for a call to a non-static member function.
1920     /// Must be an object within its lifetime.
1921     TCK_MemberCall,
1922     /// Checking the 'this' pointer for a constructor call.
1923     TCK_ConstructorCall,
1924     /// Checking the operand of a static_cast to a derived pointer type. Must be
1925     /// null or an object within its lifetime.
1926     TCK_DowncastPointer,
1927     /// Checking the operand of a static_cast to a derived reference type. Must
1928     /// be an object within its lifetime.
1929     TCK_DowncastReference,
1930     /// Checking the operand of a cast to a base object. Must be suitably sized
1931     /// and aligned.
1932     TCK_Upcast,
1933     /// Checking the operand of a cast to a virtual base object. Must be an
1934     /// object within its lifetime.
1935     TCK_UpcastToVirtualBase
1936   };
1937
1938   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1939   /// calls to EmitTypeCheck can be skipped.
1940   bool sanitizePerformTypeCheck() const;
1941
1942   /// \brief Emit a check that \p V is the address of storage of the
1943   /// appropriate size and alignment for an object of type \p Type.
1944   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1945                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1946                      bool SkipNullCheck = false);
1947
1948   /// \brief Emit a check that \p Base points into an array object, which
1949   /// we can access at index \p Index. \p Accessed should be \c false if we
1950   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1951   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1952                        QualType IndexType, bool Accessed);
1953
1954   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1955                                        bool isInc, bool isPre);
1956   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1957                                          bool isInc, bool isPre);
1958
1959   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1960                                llvm::Value *OffsetValue = nullptr) {
1961     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1962                                       OffsetValue);
1963   }
1964
1965   //===--------------------------------------------------------------------===//
1966   //                            Declaration Emission
1967   //===--------------------------------------------------------------------===//
1968
1969   /// EmitDecl - Emit a declaration.
1970   ///
1971   /// This function can be called with a null (unreachable) insert point.
1972   void EmitDecl(const Decl &D);
1973
1974   /// EmitVarDecl - Emit a local variable declaration.
1975   ///
1976   /// This function can be called with a null (unreachable) insert point.
1977   void EmitVarDecl(const VarDecl &D);
1978
1979   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1980                       bool capturedByInit);
1981   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1982
1983   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1984                              llvm::Value *Address);
1985
1986   /// \brief Determine whether the given initializer is trivial in the sense
1987   /// that it requires no code to be generated.
1988   bool isTrivialInitializer(const Expr *Init);
1989
1990   /// EmitAutoVarDecl - Emit an auto variable declaration.
1991   ///
1992   /// This function can be called with a null (unreachable) insert point.
1993   void EmitAutoVarDecl(const VarDecl &D);
1994
1995   class AutoVarEmission {
1996     friend class CodeGenFunction;
1997
1998     const VarDecl *Variable;
1999
2000     /// The address of the alloca.  Invalid if the variable was emitted
2001     /// as a global constant.
2002     Address Addr;
2003
2004     llvm::Value *NRVOFlag;
2005
2006     /// True if the variable is a __block variable.
2007     bool IsByRef;
2008
2009     /// True if the variable is of aggregate type and has a constant
2010     /// initializer.
2011     bool IsConstantAggregate;
2012
2013     /// Non-null if we should use lifetime annotations.
2014     llvm::Value *SizeForLifetimeMarkers;
2015
2016     struct Invalid {};
2017     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2018
2019     AutoVarEmission(const VarDecl &variable)
2020       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2021         IsByRef(false), IsConstantAggregate(false),
2022         SizeForLifetimeMarkers(nullptr) {}
2023
2024     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2025
2026   public:
2027     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2028
2029     bool useLifetimeMarkers() const {
2030       return SizeForLifetimeMarkers != nullptr;
2031     }
2032     llvm::Value *getSizeForLifetimeMarkers() const {
2033       assert(useLifetimeMarkers());
2034       return SizeForLifetimeMarkers;
2035     }
2036
2037     /// Returns the raw, allocated address, which is not necessarily
2038     /// the address of the object itself.
2039     Address getAllocatedAddress() const {
2040       return Addr;
2041     }
2042
2043     /// Returns the address of the object within this declaration.
2044     /// Note that this does not chase the forwarding pointer for
2045     /// __block decls.
2046     Address getObjectAddress(CodeGenFunction &CGF) const {
2047       if (!IsByRef) return Addr;
2048
2049       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2050     }
2051   };
2052   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2053   void EmitAutoVarInit(const AutoVarEmission &emission);
2054   void EmitAutoVarCleanups(const AutoVarEmission &emission);  
2055   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2056                               QualType::DestructionKind dtorKind);
2057
2058   void EmitStaticVarDecl(const VarDecl &D,
2059                          llvm::GlobalValue::LinkageTypes Linkage);
2060
2061   class ParamValue {
2062     llvm::Value *Value;
2063     unsigned Alignment;
2064     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2065   public:
2066     static ParamValue forDirect(llvm::Value *value) {
2067       return ParamValue(value, 0);
2068     }
2069     static ParamValue forIndirect(Address addr) {
2070       assert(!addr.getAlignment().isZero());
2071       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2072     }
2073
2074     bool isIndirect() const { return Alignment != 0; }
2075     llvm::Value *getAnyValue() const { return Value; }
2076     
2077     llvm::Value *getDirectValue() const {
2078       assert(!isIndirect());
2079       return Value;
2080     }
2081
2082     Address getIndirectAddress() const {
2083       assert(isIndirect());
2084       return Address(Value, CharUnits::fromQuantity(Alignment));
2085     }
2086   };
2087
2088   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2089   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2090
2091   /// protectFromPeepholes - Protect a value that we're intending to
2092   /// store to the side, but which will probably be used later, from
2093   /// aggressive peepholing optimizations that might delete it.
2094   ///
2095   /// Pass the result to unprotectFromPeepholes to declare that
2096   /// protection is no longer required.
2097   ///
2098   /// There's no particular reason why this shouldn't apply to
2099   /// l-values, it's just that no existing peepholes work on pointers.
2100   PeepholeProtection protectFromPeepholes(RValue rvalue);
2101   void unprotectFromPeepholes(PeepholeProtection protection);
2102
2103   //===--------------------------------------------------------------------===//
2104   //                             Statement Emission
2105   //===--------------------------------------------------------------------===//
2106
2107   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2108   void EmitStopPoint(const Stmt *S);
2109
2110   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2111   /// this function even if there is no current insertion point.
2112   ///
2113   /// This function may clear the current insertion point; callers should use
2114   /// EnsureInsertPoint if they wish to subsequently generate code without first
2115   /// calling EmitBlock, EmitBranch, or EmitStmt.
2116   void EmitStmt(const Stmt *S);
2117
2118   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2119   /// necessarily require an insertion point or debug information; typically
2120   /// because the statement amounts to a jump or a container of other
2121   /// statements.
2122   ///
2123   /// \return True if the statement was handled.
2124   bool EmitSimpleStmt(const Stmt *S);
2125
2126   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2127                            AggValueSlot AVS = AggValueSlot::ignored());
2128   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2129                                        bool GetLast = false,
2130                                        AggValueSlot AVS =
2131                                                 AggValueSlot::ignored());
2132
2133   /// EmitLabel - Emit the block for the given label. It is legal to call this
2134   /// function even if there is no current insertion point.
2135   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2136
2137   void EmitLabelStmt(const LabelStmt &S);
2138   void EmitAttributedStmt(const AttributedStmt &S);
2139   void EmitGotoStmt(const GotoStmt &S);
2140   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2141   void EmitIfStmt(const IfStmt &S);
2142
2143   void EmitWhileStmt(const WhileStmt &S,
2144                      ArrayRef<const Attr *> Attrs = None);
2145   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2146   void EmitForStmt(const ForStmt &S,
2147                    ArrayRef<const Attr *> Attrs = None);
2148   void EmitReturnStmt(const ReturnStmt &S);
2149   void EmitDeclStmt(const DeclStmt &S);
2150   void EmitBreakStmt(const BreakStmt &S);
2151   void EmitContinueStmt(const ContinueStmt &S);
2152   void EmitSwitchStmt(const SwitchStmt &S);
2153   void EmitDefaultStmt(const DefaultStmt &S);
2154   void EmitCaseStmt(const CaseStmt &S);
2155   void EmitCaseStmtRange(const CaseStmt &S);
2156   void EmitAsmStmt(const AsmStmt &S);
2157
2158   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2159   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2160   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2161   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2162   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2163
2164   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2165   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2166
2167   void EmitCXXTryStmt(const CXXTryStmt &S);
2168   void EmitSEHTryStmt(const SEHTryStmt &S);
2169   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2170   void EnterSEHTryStmt(const SEHTryStmt &S);
2171   void ExitSEHTryStmt(const SEHTryStmt &S);
2172
2173   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2174                               const Stmt *OutlinedStmt);
2175
2176   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2177                                             const SEHExceptStmt &Except);
2178
2179   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2180                                              const SEHFinallyStmt &Finally);
2181
2182   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2183                                 llvm::Value *ParentFP,
2184                                 llvm::Value *EntryEBP);
2185   llvm::Value *EmitSEHExceptionCode();
2186   llvm::Value *EmitSEHExceptionInfo();
2187   llvm::Value *EmitSEHAbnormalTermination();
2188
2189   /// Scan the outlined statement for captures from the parent function. For
2190   /// each capture, mark the capture as escaped and emit a call to
2191   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2192   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2193                           bool IsFilter);
2194
2195   /// Recovers the address of a local in a parent function. ParentVar is the
2196   /// address of the variable used in the immediate parent function. It can
2197   /// either be an alloca or a call to llvm.localrecover if there are nested
2198   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2199   /// frame.
2200   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2201                                     Address ParentVar,
2202                                     llvm::Value *ParentFP);
2203
2204   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2205                            ArrayRef<const Attr *> Attrs = None);
2206
2207   LValue InitCapturedStruct(const CapturedStmt &S);
2208   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2209   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2210   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2211   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2212   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2213                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2214   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2215                           SourceLocation Loc);
2216   /// \brief Perform element by element copying of arrays with type \a
2217   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2218   /// generated by \a CopyGen.
2219   ///
2220   /// \param DestAddr Address of the destination array.
2221   /// \param SrcAddr Address of the source array.
2222   /// \param OriginalType Type of destination and source arrays.
2223   /// \param CopyGen Copying procedure that copies value of single array element
2224   /// to another single array element.
2225   void EmitOMPAggregateAssign(
2226       Address DestAddr, Address SrcAddr, QualType OriginalType,
2227       const llvm::function_ref<void(Address, Address)> &CopyGen);
2228   /// \brief Emit proper copying of data from one variable to another.
2229   ///
2230   /// \param OriginalType Original type of the copied variables.
2231   /// \param DestAddr Destination address.
2232   /// \param SrcAddr Source address.
2233   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2234   /// type of the base array element).
2235   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2236   /// the base array element).
2237   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2238   /// DestVD.
2239   void EmitOMPCopy(QualType OriginalType,
2240                    Address DestAddr, Address SrcAddr,
2241                    const VarDecl *DestVD, const VarDecl *SrcVD,
2242                    const Expr *Copy);
2243   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2244   /// \a X = \a E \a BO \a E.
2245   ///
2246   /// \param X Value to be updated.
2247   /// \param E Update value.
2248   /// \param BO Binary operation for update operation.
2249   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2250   /// expression, false otherwise.
2251   /// \param AO Atomic ordering of the generated atomic instructions.
2252   /// \param CommonGen Code generator for complex expressions that cannot be
2253   /// expressed through atomicrmw instruction.
2254   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2255   /// generated, <false, RValue::get(nullptr)> otherwise.
2256   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2257       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2258       llvm::AtomicOrdering AO, SourceLocation Loc,
2259       const llvm::function_ref<RValue(RValue)> &CommonGen);
2260   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2261                                  OMPPrivateScope &PrivateScope);
2262   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2263                             OMPPrivateScope &PrivateScope);
2264   /// \brief Emit code for copyin clause in \a D directive. The next code is
2265   /// generated at the start of outlined functions for directives:
2266   /// \code
2267   /// threadprivate_var1 = master_threadprivate_var1;
2268   /// operator=(threadprivate_var2, master_threadprivate_var2);
2269   /// ...
2270   /// __kmpc_barrier(&loc, global_tid);
2271   /// \endcode
2272   ///
2273   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2274   /// \returns true if at least one copyin variable is found, false otherwise.
2275   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2276   /// \brief Emit initial code for lastprivate variables. If some variable is
2277   /// not also firstprivate, then the default initialization is used. Otherwise
2278   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2279   /// method.
2280   ///
2281   /// \param D Directive that may have 'lastprivate' directives.
2282   /// \param PrivateScope Private scope for capturing lastprivate variables for
2283   /// proper codegen in internal captured statement.
2284   ///
2285   /// \returns true if there is at least one lastprivate variable, false
2286   /// otherwise.
2287   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2288                                     OMPPrivateScope &PrivateScope);
2289   /// \brief Emit final copying of lastprivate values to original variables at
2290   /// the end of the worksharing or simd directive.
2291   ///
2292   /// \param D Directive that has at least one 'lastprivate' directives.
2293   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2294   /// it is the last iteration of the loop code in associated directive, or to
2295   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2296   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2297                                      llvm::Value *IsLastIterCond = nullptr);
2298   /// \brief Emit initial code for reduction variables. Creates reduction copies
2299   /// and initializes them with the values according to OpenMP standard.
2300   ///
2301   /// \param D Directive (possibly) with the 'reduction' clause.
2302   /// \param PrivateScope Private scope for capturing reduction variables for
2303   /// proper codegen in internal captured statement.
2304   ///
2305   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2306                                   OMPPrivateScope &PrivateScope);
2307   /// \brief Emit final update of reduction values to original variables at
2308   /// the end of the directive.
2309   ///
2310   /// \param D Directive that has at least one 'reduction' directives.
2311   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2312   /// \brief Emit initial code for linear variables. Creates private copies
2313   /// and initializes them with the values according to OpenMP standard.
2314   ///
2315   /// \param D Directive (possibly) with the 'linear' clause.
2316   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2317
2318   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2319   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2320   void EmitOMPForDirective(const OMPForDirective &S);
2321   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2322   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2323   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2324   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2325   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2326   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2327   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2328   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2329   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2330   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2331   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2332   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2333   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2334   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2335   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2336   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2337   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2338   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2339   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2340   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2341   void
2342   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2343   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2344   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2345   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2346   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2347
2348   /// \brief Emit inner loop of the worksharing/simd construct.
2349   ///
2350   /// \param S Directive, for which the inner loop must be emitted.
2351   /// \param RequiresCleanup true, if directive has some associated private
2352   /// variables.
2353   /// \param LoopCond Bollean condition for loop continuation.
2354   /// \param IncExpr Increment expression for loop control variable.
2355   /// \param BodyGen Generator for the inner body of the inner loop.
2356   /// \param PostIncGen Genrator for post-increment code (required for ordered
2357   /// loop directvies).
2358   void EmitOMPInnerLoop(
2359       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2360       const Expr *IncExpr,
2361       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2362       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2363
2364   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2365
2366 private:
2367
2368   /// Helpers for the OpenMP loop directives.
2369   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2370   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2371   void EmitOMPSimdFinal(const OMPLoopDirective &D);
2372   /// \brief Emit code for the worksharing loop-based directive.
2373   /// \return true, if this construct has any lastprivate clause, false -
2374   /// otherwise.
2375   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2376   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2377                            bool IsMonotonic, const OMPLoopDirective &S,
2378                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2379                            Address UB, Address ST, Address IL,
2380                            llvm::Value *Chunk);
2381   /// \brief Emit code for sections directive.
2382   OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
2383
2384 public:
2385
2386   //===--------------------------------------------------------------------===//
2387   //                         LValue Expression Emission
2388   //===--------------------------------------------------------------------===//
2389
2390   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2391   RValue GetUndefRValue(QualType Ty);
2392
2393   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2394   /// and issue an ErrorUnsupported style diagnostic (using the
2395   /// provided Name).
2396   RValue EmitUnsupportedRValue(const Expr *E,
2397                                const char *Name);
2398
2399   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2400   /// an ErrorUnsupported style diagnostic (using the provided Name).
2401   LValue EmitUnsupportedLValue(const Expr *E,
2402                                const char *Name);
2403
2404   /// EmitLValue - Emit code to compute a designator that specifies the location
2405   /// of the expression.
2406   ///
2407   /// This can return one of two things: a simple address or a bitfield
2408   /// reference.  In either case, the LLVM Value* in the LValue structure is
2409   /// guaranteed to be an LLVM pointer type.
2410   ///
2411   /// If this returns a bitfield reference, nothing about the pointee type of
2412   /// the LLVM value is known: For example, it may not be a pointer to an
2413   /// integer.
2414   ///
2415   /// If this returns a normal address, and if the lvalue's C type is fixed
2416   /// size, this method guarantees that the returned pointer type will point to
2417   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2418   /// variable length type, this is not possible.
2419   ///
2420   LValue EmitLValue(const Expr *E);
2421
2422   /// \brief Same as EmitLValue but additionally we generate checking code to
2423   /// guard against undefined behavior.  This is only suitable when we know
2424   /// that the address will be used to access the object.
2425   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2426
2427   RValue convertTempToRValue(Address addr, QualType type,
2428                              SourceLocation Loc);
2429
2430   void EmitAtomicInit(Expr *E, LValue lvalue);
2431
2432   bool LValueIsSuitableForInlineAtomic(LValue Src);
2433   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2434
2435   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2436                         AggValueSlot Slot = AggValueSlot::ignored());
2437
2438   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2439                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2440                         AggValueSlot slot = AggValueSlot::ignored());
2441
2442   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2443
2444   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2445                        bool IsVolatile, bool isInit);
2446
2447   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2448       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2449       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2450       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2451       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2452
2453   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2454                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2455                         bool IsVolatile);
2456
2457   /// EmitToMemory - Change a scalar value from its value
2458   /// representation to its in-memory representation.
2459   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2460
2461   /// EmitFromMemory - Change a scalar value from its memory
2462   /// representation to its value representation.
2463   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2464
2465   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2466   /// care to appropriately convert from the memory representation to
2467   /// the LLVM value representation.
2468   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2469                                 SourceLocation Loc,
2470                                 AlignmentSource AlignSource =
2471                                   AlignmentSource::Type,
2472                                 llvm::MDNode *TBAAInfo = nullptr,
2473                                 QualType TBAABaseTy = QualType(),
2474                                 uint64_t TBAAOffset = 0,
2475                                 bool isNontemporal = false);
2476
2477   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2478   /// care to appropriately convert from the memory representation to
2479   /// the LLVM value representation.  The l-value must be a simple
2480   /// l-value.
2481   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2482
2483   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2484   /// care to appropriately convert from the memory representation to
2485   /// the LLVM value representation.
2486   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2487                          bool Volatile, QualType Ty,
2488                          AlignmentSource AlignSource = AlignmentSource::Type,
2489                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2490                          QualType TBAABaseTy = QualType(),
2491                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2492
2493   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2494   /// care to appropriately convert from the memory representation to
2495   /// the LLVM value representation.  The l-value must be a simple
2496   /// l-value.  The isInit flag indicates whether this is an initialization.
2497   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2498   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2499
2500   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2501   /// this method emits the address of the lvalue, then loads the result as an
2502   /// rvalue, returning the rvalue.
2503   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2504   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2505   RValue EmitLoadOfBitfieldLValue(LValue LV);
2506   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2507
2508   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2509   /// lvalue, where both are guaranteed to the have the same type, and that type
2510   /// is 'Ty'.
2511   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2512   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2513   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2514
2515   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2516   /// as EmitStoreThroughLValue.
2517   ///
2518   /// \param Result [out] - If non-null, this will be set to a Value* for the
2519   /// bit-field contents after the store, appropriate for use as the result of
2520   /// an assignment to the bit-field.
2521   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2522                                       llvm::Value **Result=nullptr);
2523
2524   /// Emit an l-value for an assignment (simple or compound) of complex type.
2525   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2526   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2527   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2528                                              llvm::Value *&Result);
2529
2530   // Note: only available for agg return types
2531   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2532   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2533   // Note: only available for agg return types
2534   LValue EmitCallExprLValue(const CallExpr *E);
2535   // Note: only available for agg return types
2536   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2537   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2538   LValue EmitStringLiteralLValue(const StringLiteral *E);
2539   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2540   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2541   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2542   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2543                                 bool Accessed = false);
2544   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2545                                  bool IsLowerBound = true);
2546   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2547   LValue EmitMemberExpr(const MemberExpr *E);
2548   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2549   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2550   LValue EmitInitListLValue(const InitListExpr *E);
2551   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2552   LValue EmitCastLValue(const CastExpr *E);
2553   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2554   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2555   
2556   Address EmitExtVectorElementLValue(LValue V);
2557
2558   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2559
2560   Address EmitArrayToPointerDecay(const Expr *Array,
2561                                   AlignmentSource *AlignSource = nullptr);
2562
2563   class ConstantEmission {
2564     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2565     ConstantEmission(llvm::Constant *C, bool isReference)
2566       : ValueAndIsReference(C, isReference) {}
2567   public:
2568     ConstantEmission() {}
2569     static ConstantEmission forReference(llvm::Constant *C) {
2570       return ConstantEmission(C, true);
2571     }
2572     static ConstantEmission forValue(llvm::Constant *C) {
2573       return ConstantEmission(C, false);
2574     }
2575
2576     explicit operator bool() const {
2577       return ValueAndIsReference.getOpaqueValue() != nullptr;
2578     }
2579
2580     bool isReference() const { return ValueAndIsReference.getInt(); }
2581     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2582       assert(isReference());
2583       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2584                                             refExpr->getType());
2585     }
2586
2587     llvm::Constant *getValue() const {
2588       assert(!isReference());
2589       return ValueAndIsReference.getPointer();
2590     }
2591   };
2592
2593   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2594
2595   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2596                                 AggValueSlot slot = AggValueSlot::ignored());
2597   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2598
2599   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2600                               const ObjCIvarDecl *Ivar);
2601   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2602   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2603
2604   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2605   /// if the Field is a reference, this will return the address of the reference
2606   /// and not the address of the value stored in the reference.
2607   LValue EmitLValueForFieldInitialization(LValue Base,
2608                                           const FieldDecl* Field);
2609
2610   LValue EmitLValueForIvar(QualType ObjectTy,
2611                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2612                            unsigned CVRQualifiers);
2613
2614   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2615   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2616   LValue EmitLambdaLValue(const LambdaExpr *E);
2617   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2618   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2619
2620   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2621   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2622   LValue EmitStmtExprLValue(const StmtExpr *E);
2623   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2624   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2625   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2626
2627   //===--------------------------------------------------------------------===//
2628   //                         Scalar Expression Emission
2629   //===--------------------------------------------------------------------===//
2630
2631   /// EmitCall - Generate a call of the given function, expecting the given
2632   /// result type, and using the given argument list which specifies both the
2633   /// LLVM arguments and the types they were derived from.
2634   RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
2635                   ReturnValueSlot ReturnValue, const CallArgList &Args,
2636                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2637                   llvm::Instruction **callOrInvoke = nullptr);
2638
2639   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2640                   ReturnValueSlot ReturnValue,
2641                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2642                   llvm::Value *Chain = nullptr);
2643   RValue EmitCallExpr(const CallExpr *E,
2644                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2645
2646   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2647
2648   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2649                                   const Twine &name = "");
2650   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2651                                   ArrayRef<llvm::Value*> args,
2652                                   const Twine &name = "");
2653   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2654                                           const Twine &name = "");
2655   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2656                                           ArrayRef<llvm::Value*> args,
2657                                           const Twine &name = "");
2658
2659   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2660                                   ArrayRef<llvm::Value *> Args,
2661                                   const Twine &Name = "");
2662   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2663                                          ArrayRef<llvm::Value*> args,
2664                                          const Twine &name = "");
2665   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2666                                          const Twine &name = "");
2667   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2668                                        ArrayRef<llvm::Value*> args);
2669
2670   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 
2671                                          NestedNameSpecifier *Qual,
2672                                          llvm::Type *Ty);
2673   
2674   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2675                                                    CXXDtorType Type, 
2676                                                    const CXXRecordDecl *RD);
2677
2678   RValue
2679   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2680                               ReturnValueSlot ReturnValue, llvm::Value *This,
2681                               llvm::Value *ImplicitParam,
2682                               QualType ImplicitParamTy, const CallExpr *E);
2683   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2684                              ReturnValueSlot ReturnValue, llvm::Value *This,
2685                              llvm::Value *ImplicitParam,
2686                              QualType ImplicitParamTy, const CallExpr *E,
2687                              StructorType Type);
2688   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2689                                ReturnValueSlot ReturnValue);
2690   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2691                                                const CXXMethodDecl *MD,
2692                                                ReturnValueSlot ReturnValue,
2693                                                bool HasQualifier,
2694                                                NestedNameSpecifier *Qualifier,
2695                                                bool IsArrow, const Expr *Base);
2696   // Compute the object pointer.
2697   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2698                                           llvm::Value *memberPtr,
2699                                           const MemberPointerType *memberPtrType,
2700                                           AlignmentSource *AlignSource = nullptr);
2701   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2702                                       ReturnValueSlot ReturnValue);
2703
2704   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2705                                        const CXXMethodDecl *MD,
2706                                        ReturnValueSlot ReturnValue);
2707
2708   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2709                                 ReturnValueSlot ReturnValue);
2710
2711
2712   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2713                          unsigned BuiltinID, const CallExpr *E,
2714                          ReturnValueSlot ReturnValue);
2715
2716   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2717
2718   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2719   /// is unhandled by the current target.
2720   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2721
2722   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2723                                              const llvm::CmpInst::Predicate Fp,
2724                                              const llvm::CmpInst::Predicate Ip,
2725                                              const llvm::Twine &Name = "");
2726   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2727
2728   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2729                                          unsigned LLVMIntrinsic,
2730                                          unsigned AltLLVMIntrinsic,
2731                                          const char *NameHint,
2732                                          unsigned Modifier,
2733                                          const CallExpr *E,
2734                                          SmallVectorImpl<llvm::Value *> &Ops,
2735                                          Address PtrOp0, Address PtrOp1);
2736   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2737                                           unsigned Modifier, llvm::Type *ArgTy,
2738                                           const CallExpr *E);
2739   llvm::Value *EmitNeonCall(llvm::Function *F,
2740                             SmallVectorImpl<llvm::Value*> &O,
2741                             const char *name,
2742                             unsigned shift = 0, bool rightshift = false);
2743   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2744   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2745                                    bool negateForRightShift);
2746   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2747                                  llvm::Type *Ty, bool usgn, const char *name);
2748   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2749   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2750
2751   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2752   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2753   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2754   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2755   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2756   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2757   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2758                                           const CallExpr *E);
2759
2760   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2761   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2762   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2763   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2764   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2765   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2766                                 const ObjCMethodDecl *MethodWithObjects);
2767   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2768   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2769                              ReturnValueSlot Return = ReturnValueSlot());
2770
2771   /// Retrieves the default cleanup kind for an ARC cleanup.
2772   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2773   CleanupKind getARCCleanupKind() {
2774     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2775              ? NormalAndEHCleanup : NormalCleanup;
2776   }
2777
2778   // ARC primitives.
2779   void EmitARCInitWeak(Address addr, llvm::Value *value);
2780   void EmitARCDestroyWeak(Address addr);
2781   llvm::Value *EmitARCLoadWeak(Address addr);
2782   llvm::Value *EmitARCLoadWeakRetained(Address addr);
2783   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2784   void EmitARCCopyWeak(Address dst, Address src);
2785   void EmitARCMoveWeak(Address dst, Address src);
2786   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2787   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2788   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2789                                   bool resultIgnored);
2790   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2791                                       bool resultIgnored);
2792   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2793   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2794   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2795   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2796   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2797   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2798   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2799   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2800   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2801
2802   std::pair<LValue,llvm::Value*>
2803   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2804   std::pair<LValue,llvm::Value*>
2805   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2806
2807   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2808   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2809   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2810
2811   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2812   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2813   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2814
2815   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2816
2817   static Destroyer destroyARCStrongImprecise;
2818   static Destroyer destroyARCStrongPrecise;
2819   static Destroyer destroyARCWeak;
2820
2821   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 
2822   llvm::Value *EmitObjCAutoreleasePoolPush();
2823   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2824   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2825   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 
2826
2827   /// \brief Emits a reference binding to the passed in expression.
2828   RValue EmitReferenceBindingToExpr(const Expr *E);
2829
2830   //===--------------------------------------------------------------------===//
2831   //                           Expression Emission
2832   //===--------------------------------------------------------------------===//
2833
2834   // Expressions are broken into three classes: scalar, complex, aggregate.
2835
2836   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2837   /// scalar type, returning the result.
2838   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2839
2840   /// Emit a conversion from the specified type to the specified destination
2841   /// type, both of which are LLVM scalar types.
2842   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2843                                     QualType DstTy, SourceLocation Loc);
2844
2845   /// Emit a conversion from the specified complex type to the specified
2846   /// destination type, where the destination type is an LLVM scalar type.
2847   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2848                                              QualType DstTy,
2849                                              SourceLocation Loc);
2850
2851   /// EmitAggExpr - Emit the computation of the specified expression
2852   /// of aggregate type.  The result is computed into the given slot,
2853   /// which may be null to indicate that the value is not needed.
2854   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2855
2856   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2857   /// aggregate type into a temporary LValue.
2858   LValue EmitAggExprToLValue(const Expr *E);
2859
2860   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2861   /// make sure it survives garbage collection until this point.
2862   void EmitExtendGCLifetime(llvm::Value *object);
2863
2864   /// EmitComplexExpr - Emit the computation of the specified expression of
2865   /// complex type, returning the result.
2866   ComplexPairTy EmitComplexExpr(const Expr *E,
2867                                 bool IgnoreReal = false,
2868                                 bool IgnoreImag = false);
2869
2870   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2871   /// type and place its result into the specified l-value.
2872   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2873
2874   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2875   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2876
2877   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2878   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2879
2880   Address emitAddrOfRealComponent(Address complex, QualType complexType);
2881   Address emitAddrOfImagComponent(Address complex, QualType complexType);
2882
2883   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2884   /// global variable that has already been created for it.  If the initializer
2885   /// has a different type than GV does, this may free GV and return a different
2886   /// one.  Otherwise it just returns GV.
2887   llvm::GlobalVariable *
2888   AddInitializerToStaticVarDecl(const VarDecl &D,
2889                                 llvm::GlobalVariable *GV);
2890
2891
2892   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2893   /// variable with global storage.
2894   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2895                                 bool PerformInit);
2896
2897   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2898                                    llvm::Constant *Addr);
2899
2900   /// Call atexit() with a function that passes the given argument to
2901   /// the given function.
2902   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2903                                     llvm::Constant *addr);
2904
2905   /// Emit code in this function to perform a guarded variable
2906   /// initialization.  Guarded initializations are used when it's not
2907   /// possible to prove that an initialization will be done exactly
2908   /// once, e.g. with a static local variable or a static data member
2909   /// of a class template.
2910   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2911                           bool PerformInit);
2912
2913   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2914   /// variables.
2915   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2916                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2917                                  Address Guard = Address::invalid());
2918
2919   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2920   /// variables.
2921   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2922                                   const std::vector<std::pair<llvm::WeakVH,
2923                                   llvm::Constant*> > &DtorsAndObjects);
2924
2925   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2926                                         const VarDecl *D,
2927                                         llvm::GlobalVariable *Addr,
2928                                         bool PerformInit);
2929
2930   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2931   
2932   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
2933
2934   void enterFullExpression(const ExprWithCleanups *E) {
2935     if (E->getNumObjects() == 0) return;
2936     enterNonTrivialFullExpression(E);
2937   }
2938   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2939
2940   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2941
2942   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2943
2944   RValue EmitAtomicExpr(AtomicExpr *E);
2945
2946   //===--------------------------------------------------------------------===//
2947   //                         Annotations Emission
2948   //===--------------------------------------------------------------------===//
2949
2950   /// Emit an annotation call (intrinsic or builtin).
2951   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2952                                   llvm::Value *AnnotatedVal,
2953                                   StringRef AnnotationStr,
2954                                   SourceLocation Location);
2955
2956   /// Emit local annotations for the local variable V, declared by D.
2957   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2958
2959   /// Emit field annotations for the given field & value. Returns the
2960   /// annotation result.
2961   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
2962
2963   //===--------------------------------------------------------------------===//
2964   //                             Internal Helpers
2965   //===--------------------------------------------------------------------===//
2966
2967   /// ContainsLabel - Return true if the statement contains a label in it.  If
2968   /// this statement is not executed normally, it not containing a label means
2969   /// that we can just remove the code.
2970   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2971
2972   /// containsBreak - Return true if the statement contains a break out of it.
2973   /// If the statement (recursively) contains a switch or loop with a break
2974   /// inside of it, this is fine.
2975   static bool containsBreak(const Stmt *S);
2976   
2977   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2978   /// to a constant, or if it does but contains a label, return false.  If it
2979   /// constant folds return true and set the boolean result in Result.
2980   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2981
2982   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2983   /// to a constant, or if it does but contains a label, return false.  If it
2984   /// constant folds return true and set the folded value.
2985   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2986   
2987   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2988   /// if statement) to the specified blocks.  Based on the condition, this might
2989   /// try to simplify the codegen of the conditional based on the branch.
2990   /// TrueCount should be the number of times we expect the condition to
2991   /// evaluate to true based on PGO data.
2992   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2993                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2994
2995   /// \brief Emit a description of a type in a format suitable for passing to
2996   /// a runtime sanitizer handler.
2997   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2998
2999   /// \brief Convert a value into a format suitable for passing to a runtime
3000   /// sanitizer handler.
3001   llvm::Value *EmitCheckValue(llvm::Value *V);
3002
3003   /// \brief Emit a description of a source location in a format suitable for
3004   /// passing to a runtime sanitizer handler.
3005   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3006
3007   /// \brief Create a basic block that will call a handler function in a
3008   /// sanitizer runtime with the provided arguments, and create a conditional
3009   /// branch to it.
3010   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3011                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3012                  ArrayRef<llvm::Value *> DynamicArgs);
3013
3014   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3015   /// if Cond if false.
3016   void EmitCfiSlowPathCheck(llvm::Value *Cond, llvm::ConstantInt *TypeId,
3017                             llvm::Value *Ptr);
3018
3019   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3020   /// conditional branch to it, for the -ftrapv checks.
3021   void EmitTrapCheck(llvm::Value *Checked);
3022
3023   /// \brief Emit a call to trap or debugtrap and attach function attribute
3024   /// "trap-func-name" if specified.
3025   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3026
3027   /// \brief Create a check for a function parameter that may potentially be
3028   /// declared as non-null.
3029   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3030                            const FunctionDecl *FD, unsigned ParmNum);
3031
3032   /// EmitCallArg - Emit a single call argument.
3033   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3034
3035   /// EmitDelegateCallArg - We are performing a delegate call; that
3036   /// is, the current function is delegating to another one.  Produce
3037   /// a r-value suitable for passing the given parameter.
3038   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3039                            SourceLocation loc);
3040
3041   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3042   /// point operation, expressed as the maximum relative error in ulp.
3043   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3044
3045 private:
3046   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3047   void EmitReturnOfRValue(RValue RV, QualType Ty);
3048
3049   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3050
3051   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3052   DeferredReplacements;
3053
3054   /// Set the address of a local variable.
3055   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3056     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3057     LocalDeclMap.insert({VD, Addr});
3058   }
3059
3060   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3061   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3062   ///
3063   /// \param AI - The first function argument of the expansion.
3064   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3065                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
3066
3067   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3068   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3069   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3070   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3071                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3072                         unsigned &IRCallArgPos);
3073
3074   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3075                             const Expr *InputExpr, std::string &ConstraintStr);
3076
3077   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3078                                   LValue InputValue, QualType InputType,
3079                                   std::string &ConstraintStr,
3080                                   SourceLocation Loc);
3081
3082   /// \brief Attempts to statically evaluate the object size of E. If that
3083   /// fails, emits code to figure the size of E out for us. This is
3084   /// pass_object_size aware.
3085   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3086                                                llvm::IntegerType *ResType);
3087
3088   /// \brief Emits the size of E, as required by __builtin_object_size. This
3089   /// function is aware of pass_object_size parameters, and will act accordingly
3090   /// if E is a parameter with the pass_object_size attribute.
3091   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3092                                      llvm::IntegerType *ResType);
3093
3094 public:
3095 #ifndef NDEBUG
3096   // Determine whether the given argument is an Objective-C method
3097   // that may have type parameters in its signature.
3098   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3099     const DeclContext *dc = method->getDeclContext();
3100     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3101       return classDecl->getTypeParamListAsWritten();
3102     }
3103
3104     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3105       return catDecl->getTypeParamList();
3106     }
3107
3108     return false;
3109   }
3110
3111   template<typename T>
3112   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3113 #endif
3114
3115   /// EmitCallArgs - Emit call arguments for a function.
3116   template <typename T>
3117   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3118                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3119                     const FunctionDecl *CalleeDecl = nullptr,
3120                     unsigned ParamsToSkip = 0) {
3121     SmallVector<QualType, 16> ArgTypes;
3122     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3123
3124     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3125            "Can't skip parameters if type info is not provided");
3126     if (CallArgTypeInfo) {
3127 #ifndef NDEBUG
3128       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3129 #endif
3130
3131       // First, use the argument types that the type info knows about
3132       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3133                 E = CallArgTypeInfo->param_type_end();
3134            I != E; ++I, ++Arg) {
3135         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3136         assert((isGenericMethod ||
3137                 ((*I)->isVariablyModifiedType() ||
3138                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3139                  getContext()
3140                          .getCanonicalType((*I).getNonReferenceType())
3141                          .getTypePtr() ==
3142                      getContext()
3143                          .getCanonicalType((*Arg)->getType())
3144                          .getTypePtr())) &&
3145                "type mismatch in call argument!");
3146         ArgTypes.push_back(*I);
3147       }
3148     }
3149
3150     // Either we've emitted all the call args, or we have a call to variadic
3151     // function.
3152     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3153             CallArgTypeInfo->isVariadic()) &&
3154            "Extra arguments in non-variadic function!");
3155
3156     // If we still have any arguments, emit them using the type of the argument.
3157     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3158       ArgTypes.push_back(getVarArgType(A));
3159
3160     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3161   }
3162
3163   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3164                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3165                     const FunctionDecl *CalleeDecl = nullptr,
3166                     unsigned ParamsToSkip = 0);
3167
3168   /// EmitPointerWithAlignment - Given an expression with a pointer
3169   /// type, emit the value and compute our best estimate of the
3170   /// alignment of the pointee.
3171   ///
3172   /// Note that this function will conservatively fall back on the type
3173   /// when it doesn't 
3174   ///
3175   /// \param Source - If non-null, this will be initialized with
3176   ///   information about the source of the alignment.  Note that this
3177   ///   function will conservatively fall back on the type when it
3178   ///   doesn't recognize the expression, which means that sometimes
3179   ///   
3180   ///   a worst-case One
3181   ///   reasonable way to use this information is when there's a
3182   ///   language guarantee that the pointer must be aligned to some
3183   ///   stricter value, and we're simply trying to ensure that
3184   ///   sufficiently obvious uses of under-aligned objects don't get
3185   ///   miscompiled; for example, a placement new into the address of
3186   ///   a local variable.  In such a case, it's quite reasonable to
3187   ///   just ignore the returned alignment when it isn't from an
3188   ///   explicit source.
3189   Address EmitPointerWithAlignment(const Expr *Addr,
3190                                    AlignmentSource *Source = nullptr);
3191
3192 private:
3193   QualType getVarArgType(const Expr *Arg);
3194
3195   const TargetCodeGenInfo &getTargetHooks() const {
3196     return CGM.getTargetCodeGenInfo();
3197   }
3198
3199   void EmitDeclMetadata();
3200
3201   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3202                                   const AutoVarEmission &emission);
3203
3204   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3205
3206   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3207 };
3208
3209 /// Helper class with most of the code for saving a value for a
3210 /// conditional expression cleanup.
3211 struct DominatingLLVMValue {
3212   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3213
3214   /// Answer whether the given value needs extra work to be saved.
3215   static bool needsSaving(llvm::Value *value) {
3216     // If it's not an instruction, we don't need to save.
3217     if (!isa<llvm::Instruction>(value)) return false;
3218
3219     // If it's an instruction in the entry block, we don't need to save.
3220     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3221     return (block != &block->getParent()->getEntryBlock());
3222   }
3223
3224   /// Try to save the given value.
3225   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3226     if (!needsSaving(value)) return saved_type(value, false);
3227
3228     // Otherwise, we need an alloca.
3229     auto align = CharUnits::fromQuantity(
3230               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3231     Address alloca =
3232       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3233     CGF.Builder.CreateStore(value, alloca);
3234
3235     return saved_type(alloca.getPointer(), true);
3236   }
3237
3238   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3239     // If the value says it wasn't saved, trust that it's still dominating.
3240     if (!value.getInt()) return value.getPointer();
3241
3242     // Otherwise, it should be an alloca instruction, as set up in save().
3243     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3244     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3245   }
3246 };
3247
3248 /// A partial specialization of DominatingValue for llvm::Values that
3249 /// might be llvm::Instructions.
3250 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3251   typedef T *type;
3252   static type restore(CodeGenFunction &CGF, saved_type value) {
3253     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3254   }
3255 };
3256
3257 /// A specialization of DominatingValue for Address.
3258 template <> struct DominatingValue<Address> {
3259   typedef Address type;
3260
3261   struct saved_type {
3262     DominatingLLVMValue::saved_type SavedValue;
3263     CharUnits Alignment;
3264   };
3265
3266   static bool needsSaving(type value) {
3267     return DominatingLLVMValue::needsSaving(value.getPointer());
3268   }
3269   static saved_type save(CodeGenFunction &CGF, type value) {
3270     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3271              value.getAlignment() };
3272   }
3273   static type restore(CodeGenFunction &CGF, saved_type value) {
3274     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3275                    value.Alignment);
3276   }
3277 };
3278
3279 /// A specialization of DominatingValue for RValue.
3280 template <> struct DominatingValue<RValue> {
3281   typedef RValue type;
3282   class saved_type {
3283     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3284                 AggregateAddress, ComplexAddress };
3285
3286     llvm::Value *Value;
3287     unsigned K : 3;
3288     unsigned Align : 29;
3289     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3290       : Value(v), K(k), Align(a) {}
3291
3292   public:
3293     static bool needsSaving(RValue value);
3294     static saved_type save(CodeGenFunction &CGF, RValue value);
3295     RValue restore(CodeGenFunction &CGF);
3296
3297     // implementations in CGCleanup.cpp
3298   };
3299
3300   static bool needsSaving(type value) {
3301     return saved_type::needsSaving(value);
3302   }
3303   static saved_type save(CodeGenFunction &CGF, type value) {
3304     return saved_type::save(CGF, value);
3305   }
3306   static type restore(CodeGenFunction &CGF, saved_type value) {
3307     return value.restore(CGF);
3308   }
3309 };
3310
3311 }  // end namespace CodeGen
3312 }  // end namespace clang
3313
3314 #endif