]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h
Upgrade our copy of llvm/clang to r168974, from upstream's release_32
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenFunction.h
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/Debug.h"
29 #include "CodeGenModule.h"
30 #include "CGBuilder.h"
31 #include "CGDebugInfo.h"
32 #include "CGValue.h"
33
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80
81 /// A branch fixup.  These are required when emitting a goto to a
82 /// label which hasn't been emitted yet.  The goto is optimistically
83 /// emitted as a branch to the basic block for the label, and (if it
84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
86 /// unresolved fixups in that scope are threaded through the cleanup.
87 struct BranchFixup {
88   /// The block containing the terminator which needs to be modified
89   /// into a switch if this fixup is resolved into the current scope.
90   /// If null, LatestBranch points directly to the destination.
91   llvm::BasicBlock *OptimisticBranchBlock;
92
93   /// The ultimate destination of the branch.
94   ///
95   /// This can be set to null to indicate that this fixup was
96   /// successfully resolved.
97   llvm::BasicBlock *Destination;
98
99   /// The destination index value.
100   unsigned DestinationIndex;
101
102   /// The initial branch of the fixup.
103   llvm::BranchInst *InitialBranch;
104 };
105
106 template <class T> struct InvariantValue {
107   typedef T type;
108   typedef T saved_type;
109   static bool needsSaving(type value) { return false; }
110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112 };
113
114 /// A metaprogramming class for ensuring that a value will dominate an
115 /// arbitrary position in a function.
116 template <class T> struct DominatingValue : InvariantValue<T> {};
117
118 template <class T, bool mightBeInstruction =
119             llvm::is_base_of<llvm::Value, T>::value &&
120             !llvm::is_base_of<llvm::Constant, T>::value &&
121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
122 struct DominatingPointer;
123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124 // template <class T> struct DominatingPointer<T,true> at end of file
125
126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127
128 enum CleanupKind {
129   EHCleanup = 0x1,
130   NormalCleanup = 0x2,
131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
132
133   InactiveCleanup = 0x4,
134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137 };
138
139 /// A stack of scopes which respond to exceptions, including cleanups
140 /// and catch blocks.
141 class EHScopeStack {
142 public:
143   /// A saved depth on the scope stack.  This is necessary because
144   /// pushing scopes onto the stack invalidates iterators.
145   class stable_iterator {
146     friend class EHScopeStack;
147
148     /// Offset from StartOfData to EndOfBuffer.
149     ptrdiff_t Size;
150
151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
152
153   public:
154     static stable_iterator invalid() { return stable_iterator(-1); }
155     stable_iterator() : Size(-1) {}
156
157     bool isValid() const { return Size >= 0; }
158
159     /// Returns true if this scope encloses I.
160     /// Returns false if I is invalid.
161     /// This scope must be valid.
162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
163
164     /// Returns true if this scope strictly encloses I: that is,
165     /// if it encloses I and is not I.
166     /// Returns false is I is invalid.
167     /// This scope must be valid.
168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169
170     friend bool operator==(stable_iterator A, stable_iterator B) {
171       return A.Size == B.Size;
172     }
173     friend bool operator!=(stable_iterator A, stable_iterator B) {
174       return A.Size != B.Size;
175     }
176   };
177
178   /// Information for lazily generating a cleanup.  Subclasses must be
179   /// POD-like: cleanups will not be destructed, and they will be
180   /// allocated on the cleanup stack and freely copied and moved
181   /// around.
182   ///
183   /// Cleanup implementations should generally be declared in an
184   /// anonymous namespace.
185   class Cleanup {
186     // Anchor the construction vtable.
187     virtual void anchor();
188   public:
189     /// Generation flags.
190     class Flags {
191       enum {
192         F_IsForEH             = 0x1,
193         F_IsNormalCleanupKind = 0x2,
194         F_IsEHCleanupKind     = 0x4
195       };
196       unsigned flags;
197
198     public:
199       Flags() : flags(0) {}
200
201       /// isForEH - true if the current emission is for an EH cleanup.
202       bool isForEHCleanup() const { return flags & F_IsForEH; }
203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
204       void setIsForEHCleanup() { flags |= F_IsForEH; }
205
206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208
209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
210       /// cleanup.
211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213     };
214
215     // Provide a virtual destructor to suppress a very common warning
216     // that unfortunately cannot be suppressed without this.  Cleanups
217     // should not rely on this destructor ever being called.
218     virtual ~Cleanup() {}
219
220     /// Emit the cleanup.  For normal cleanups, this is run in the
221     /// same EH context as when the cleanup was pushed, i.e. the
222     /// immediately-enclosing context of the cleanup scope.  For
223     /// EH cleanups, this is run in a terminate context.
224     ///
225     // \param flags cleanup kind.
226     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
227   };
228
229   /// ConditionalCleanupN stores the saved form of its N parameters,
230   /// then restores them and performs the cleanup.
231   template <class T, class A0>
232   class ConditionalCleanup1 : public Cleanup {
233     typedef typename DominatingValue<A0>::saved_type A0_saved;
234     A0_saved a0_saved;
235
236     void Emit(CodeGenFunction &CGF, Flags flags) {
237       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
238       T(a0).Emit(CGF, flags);
239     }
240
241   public:
242     ConditionalCleanup1(A0_saved a0)
243       : a0_saved(a0) {}
244   };
245
246   template <class T, class A0, class A1>
247   class ConditionalCleanup2 : public Cleanup {
248     typedef typename DominatingValue<A0>::saved_type A0_saved;
249     typedef typename DominatingValue<A1>::saved_type A1_saved;
250     A0_saved a0_saved;
251     A1_saved a1_saved;
252
253     void Emit(CodeGenFunction &CGF, Flags flags) {
254       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
255       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
256       T(a0, a1).Emit(CGF, flags);
257     }
258
259   public:
260     ConditionalCleanup2(A0_saved a0, A1_saved a1)
261       : a0_saved(a0), a1_saved(a1) {}
262   };
263
264   template <class T, class A0, class A1, class A2>
265   class ConditionalCleanup3 : public Cleanup {
266     typedef typename DominatingValue<A0>::saved_type A0_saved;
267     typedef typename DominatingValue<A1>::saved_type A1_saved;
268     typedef typename DominatingValue<A2>::saved_type A2_saved;
269     A0_saved a0_saved;
270     A1_saved a1_saved;
271     A2_saved a2_saved;
272     
273     void Emit(CodeGenFunction &CGF, Flags flags) {
274       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
275       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
276       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
277       T(a0, a1, a2).Emit(CGF, flags);
278     }
279     
280   public:
281     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
282       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
283   };
284
285   template <class T, class A0, class A1, class A2, class A3>
286   class ConditionalCleanup4 : public Cleanup {
287     typedef typename DominatingValue<A0>::saved_type A0_saved;
288     typedef typename DominatingValue<A1>::saved_type A1_saved;
289     typedef typename DominatingValue<A2>::saved_type A2_saved;
290     typedef typename DominatingValue<A3>::saved_type A3_saved;
291     A0_saved a0_saved;
292     A1_saved a1_saved;
293     A2_saved a2_saved;
294     A3_saved a3_saved;
295     
296     void Emit(CodeGenFunction &CGF, Flags flags) {
297       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
298       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
299       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
300       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
301       T(a0, a1, a2, a3).Emit(CGF, flags);
302     }
303     
304   public:
305     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
306       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
307   };
308
309 private:
310   // The implementation for this class is in CGException.h and
311   // CGException.cpp; the definition is here because it's used as a
312   // member of CodeGenFunction.
313
314   /// The start of the scope-stack buffer, i.e. the allocated pointer
315   /// for the buffer.  All of these pointers are either simultaneously
316   /// null or simultaneously valid.
317   char *StartOfBuffer;
318
319   /// The end of the buffer.
320   char *EndOfBuffer;
321
322   /// The first valid entry in the buffer.
323   char *StartOfData;
324
325   /// The innermost normal cleanup on the stack.
326   stable_iterator InnermostNormalCleanup;
327
328   /// The innermost EH scope on the stack.
329   stable_iterator InnermostEHScope;
330
331   /// The current set of branch fixups.  A branch fixup is a jump to
332   /// an as-yet unemitted label, i.e. a label for which we don't yet
333   /// know the EH stack depth.  Whenever we pop a cleanup, we have
334   /// to thread all the current branch fixups through it.
335   ///
336   /// Fixups are recorded as the Use of the respective branch or
337   /// switch statement.  The use points to the final destination.
338   /// When popping out of a cleanup, these uses are threaded through
339   /// the cleanup and adjusted to point to the new cleanup.
340   ///
341   /// Note that branches are allowed to jump into protected scopes
342   /// in certain situations;  e.g. the following code is legal:
343   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
344   ///     goto foo;
345   ///     A a;
346   ///    foo:
347   ///     bar();
348   SmallVector<BranchFixup, 8> BranchFixups;
349
350   char *allocate(size_t Size);
351
352   void *pushCleanup(CleanupKind K, size_t DataSize);
353
354 public:
355   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
356                    InnermostNormalCleanup(stable_end()),
357                    InnermostEHScope(stable_end()) {}
358   ~EHScopeStack() { delete[] StartOfBuffer; }
359
360   // Variadic templates would make this not terrible.
361
362   /// Push a lazily-created cleanup on the stack.
363   template <class T>
364   void pushCleanup(CleanupKind Kind) {
365     void *Buffer = pushCleanup(Kind, sizeof(T));
366     Cleanup *Obj = new(Buffer) T();
367     (void) Obj;
368   }
369
370   /// Push a lazily-created cleanup on the stack.
371   template <class T, class A0>
372   void pushCleanup(CleanupKind Kind, A0 a0) {
373     void *Buffer = pushCleanup(Kind, sizeof(T));
374     Cleanup *Obj = new(Buffer) T(a0);
375     (void) Obj;
376   }
377
378   /// Push a lazily-created cleanup on the stack.
379   template <class T, class A0, class A1>
380   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
381     void *Buffer = pushCleanup(Kind, sizeof(T));
382     Cleanup *Obj = new(Buffer) T(a0, a1);
383     (void) Obj;
384   }
385
386   /// Push a lazily-created cleanup on the stack.
387   template <class T, class A0, class A1, class A2>
388   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
389     void *Buffer = pushCleanup(Kind, sizeof(T));
390     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
391     (void) Obj;
392   }
393
394   /// Push a lazily-created cleanup on the stack.
395   template <class T, class A0, class A1, class A2, class A3>
396   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
397     void *Buffer = pushCleanup(Kind, sizeof(T));
398     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
399     (void) Obj;
400   }
401
402   /// Push a lazily-created cleanup on the stack.
403   template <class T, class A0, class A1, class A2, class A3, class A4>
404   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
405     void *Buffer = pushCleanup(Kind, sizeof(T));
406     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
407     (void) Obj;
408   }
409
410   // Feel free to add more variants of the following:
411
412   /// Push a cleanup with non-constant storage requirements on the
413   /// stack.  The cleanup type must provide an additional static method:
414   ///   static size_t getExtraSize(size_t);
415   /// The argument to this method will be the value N, which will also
416   /// be passed as the first argument to the constructor.
417   ///
418   /// The data stored in the extra storage must obey the same
419   /// restrictions as normal cleanup member data.
420   ///
421   /// The pointer returned from this method is valid until the cleanup
422   /// stack is modified.
423   template <class T, class A0, class A1, class A2>
424   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
425     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
426     return new (Buffer) T(N, a0, a1, a2);
427   }
428
429   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
430   void popCleanup();
431
432   /// Push a set of catch handlers on the stack.  The catch is
433   /// uninitialized and will need to have the given number of handlers
434   /// set on it.
435   class EHCatchScope *pushCatch(unsigned NumHandlers);
436
437   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
438   void popCatch();
439
440   /// Push an exceptions filter on the stack.
441   class EHFilterScope *pushFilter(unsigned NumFilters);
442
443   /// Pops an exceptions filter off the stack.
444   void popFilter();
445
446   /// Push a terminate handler on the stack.
447   void pushTerminate();
448
449   /// Pops a terminate handler off the stack.
450   void popTerminate();
451
452   /// Determines whether the exception-scopes stack is empty.
453   bool empty() const { return StartOfData == EndOfBuffer; }
454
455   bool requiresLandingPad() const {
456     return InnermostEHScope != stable_end();
457   }
458
459   /// Determines whether there are any normal cleanups on the stack.
460   bool hasNormalCleanups() const {
461     return InnermostNormalCleanup != stable_end();
462   }
463
464   /// Returns the innermost normal cleanup on the stack, or
465   /// stable_end() if there are no normal cleanups.
466   stable_iterator getInnermostNormalCleanup() const {
467     return InnermostNormalCleanup;
468   }
469   stable_iterator getInnermostActiveNormalCleanup() const;
470
471   stable_iterator getInnermostEHScope() const {
472     return InnermostEHScope;
473   }
474
475   stable_iterator getInnermostActiveEHScope() const;
476
477   /// An unstable reference to a scope-stack depth.  Invalidated by
478   /// pushes but not pops.
479   class iterator;
480
481   /// Returns an iterator pointing to the innermost EH scope.
482   iterator begin() const;
483
484   /// Returns an iterator pointing to the outermost EH scope.
485   iterator end() const;
486
487   /// Create a stable reference to the top of the EH stack.  The
488   /// returned reference is valid until that scope is popped off the
489   /// stack.
490   stable_iterator stable_begin() const {
491     return stable_iterator(EndOfBuffer - StartOfData);
492   }
493
494   /// Create a stable reference to the bottom of the EH stack.
495   static stable_iterator stable_end() {
496     return stable_iterator(0);
497   }
498
499   /// Translates an iterator into a stable_iterator.
500   stable_iterator stabilize(iterator it) const;
501
502   /// Turn a stable reference to a scope depth into a unstable pointer
503   /// to the EH stack.
504   iterator find(stable_iterator save) const;
505
506   /// Removes the cleanup pointed to by the given stable_iterator.
507   void removeCleanup(stable_iterator save);
508
509   /// Add a branch fixup to the current cleanup scope.
510   BranchFixup &addBranchFixup() {
511     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
512     BranchFixups.push_back(BranchFixup());
513     return BranchFixups.back();
514   }
515
516   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
517   BranchFixup &getBranchFixup(unsigned I) {
518     assert(I < getNumBranchFixups());
519     return BranchFixups[I];
520   }
521
522   /// Pops lazily-removed fixups from the end of the list.  This
523   /// should only be called by procedures which have just popped a
524   /// cleanup or resolved one or more fixups.
525   void popNullFixups();
526
527   /// Clears the branch-fixups list.  This should only be called by
528   /// ResolveAllBranchFixups.
529   void clearFixups() { BranchFixups.clear(); }
530 };
531
532 /// CodeGenFunction - This class organizes the per-function state that is used
533 /// while generating LLVM code.
534 class CodeGenFunction : public CodeGenTypeCache {
535   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
536   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
537
538   friend class CGCXXABI;
539 public:
540   /// A jump destination is an abstract label, branching to which may
541   /// require a jump out through normal cleanups.
542   struct JumpDest {
543     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
544     JumpDest(llvm::BasicBlock *Block,
545              EHScopeStack::stable_iterator Depth,
546              unsigned Index)
547       : Block(Block), ScopeDepth(Depth), Index(Index) {}
548
549     bool isValid() const { return Block != 0; }
550     llvm::BasicBlock *getBlock() const { return Block; }
551     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
552     unsigned getDestIndex() const { return Index; }
553
554   private:
555     llvm::BasicBlock *Block;
556     EHScopeStack::stable_iterator ScopeDepth;
557     unsigned Index;
558   };
559
560   CodeGenModule &CGM;  // Per-module state.
561   const TargetInfo &Target;
562
563   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
564   CGBuilderTy Builder;
565
566   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
567   /// This excludes BlockDecls.
568   const Decl *CurFuncDecl;
569   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
570   const Decl *CurCodeDecl;
571   const CGFunctionInfo *CurFnInfo;
572   QualType FnRetTy;
573   llvm::Function *CurFn;
574
575   /// CurGD - The GlobalDecl for the current function being compiled.
576   GlobalDecl CurGD;
577
578   /// PrologueCleanupDepth - The cleanup depth enclosing all the
579   /// cleanups associated with the parameters.
580   EHScopeStack::stable_iterator PrologueCleanupDepth;
581
582   /// ReturnBlock - Unified return block.
583   JumpDest ReturnBlock;
584
585   /// ReturnValue - The temporary alloca to hold the return value. This is null
586   /// iff the function has no return value.
587   llvm::Value *ReturnValue;
588
589   /// AllocaInsertPoint - This is an instruction in the entry block before which
590   /// we prefer to insert allocas.
591   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
592
593   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
594   /// potentially higher performance penalties.
595   unsigned char BoundsChecking;
596
597   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
598   /// calls to EmitTypeCheck can be skipped.
599   bool SanitizePerformTypeCheck;
600
601   /// In ARC, whether we should autorelease the return value.
602   bool AutoreleaseResult;
603
604   const CodeGen::CGBlockInfo *BlockInfo;
605   llvm::Value *BlockPointer;
606
607   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
608   FieldDecl *LambdaThisCaptureField;
609
610   /// \brief A mapping from NRVO variables to the flags used to indicate
611   /// when the NRVO has been applied to this variable.
612   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
613
614   EHScopeStack EHStack;
615
616   /// i32s containing the indexes of the cleanup destinations.
617   llvm::AllocaInst *NormalCleanupDest;
618
619   unsigned NextCleanupDestIndex;
620
621   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
622   CGBlockInfo *FirstBlockInfo;
623
624   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
625   llvm::BasicBlock *EHResumeBlock;
626
627   /// The exception slot.  All landing pads write the current exception pointer
628   /// into this alloca.
629   llvm::Value *ExceptionSlot;
630
631   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
632   /// write the current selector value into this alloca.
633   llvm::AllocaInst *EHSelectorSlot;
634
635   /// Emits a landing pad for the current EH stack.
636   llvm::BasicBlock *EmitLandingPad();
637
638   llvm::BasicBlock *getInvokeDestImpl();
639
640   template <class T>
641   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
642     return DominatingValue<T>::save(*this, value);
643   }
644
645 public:
646   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
647   /// rethrows.
648   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
649
650   /// A class controlling the emission of a finally block.
651   class FinallyInfo {
652     /// Where the catchall's edge through the cleanup should go.
653     JumpDest RethrowDest;
654
655     /// A function to call to enter the catch.
656     llvm::Constant *BeginCatchFn;
657
658     /// An i1 variable indicating whether or not the @finally is
659     /// running for an exception.
660     llvm::AllocaInst *ForEHVar;
661
662     /// An i8* variable into which the exception pointer to rethrow
663     /// has been saved.
664     llvm::AllocaInst *SavedExnVar;
665
666   public:
667     void enter(CodeGenFunction &CGF, const Stmt *Finally,
668                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
669                llvm::Constant *rethrowFn);
670     void exit(CodeGenFunction &CGF);
671   };
672
673   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
674   /// current full-expression.  Safe against the possibility that
675   /// we're currently inside a conditionally-evaluated expression.
676   template <class T, class A0>
677   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
678     // If we're not in a conditional branch, or if none of the
679     // arguments requires saving, then use the unconditional cleanup.
680     if (!isInConditionalBranch())
681       return EHStack.pushCleanup<T>(kind, a0);
682
683     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
684
685     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
686     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
687     initFullExprCleanup();
688   }
689
690   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
691   /// current full-expression.  Safe against the possibility that
692   /// we're currently inside a conditionally-evaluated expression.
693   template <class T, class A0, class A1>
694   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
695     // If we're not in a conditional branch, or if none of the
696     // arguments requires saving, then use the unconditional cleanup.
697     if (!isInConditionalBranch())
698       return EHStack.pushCleanup<T>(kind, a0, a1);
699
700     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
701     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
702
703     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
704     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
705     initFullExprCleanup();
706   }
707
708   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
709   /// current full-expression.  Safe against the possibility that
710   /// we're currently inside a conditionally-evaluated expression.
711   template <class T, class A0, class A1, class A2>
712   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
713     // If we're not in a conditional branch, or if none of the
714     // arguments requires saving, then use the unconditional cleanup.
715     if (!isInConditionalBranch()) {
716       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
717     }
718     
719     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
722     
723     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
724     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
725     initFullExprCleanup();
726   }
727
728   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
729   /// current full-expression.  Safe against the possibility that
730   /// we're currently inside a conditionally-evaluated expression.
731   template <class T, class A0, class A1, class A2, class A3>
732   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
733     // If we're not in a conditional branch, or if none of the
734     // arguments requires saving, then use the unconditional cleanup.
735     if (!isInConditionalBranch()) {
736       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
737     }
738     
739     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
740     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
741     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
742     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
743     
744     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
745     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
746                                      a2_saved, a3_saved);
747     initFullExprCleanup();
748   }
749
750   /// Set up the last cleaup that was pushed as a conditional
751   /// full-expression cleanup.
752   void initFullExprCleanup();
753
754   /// PushDestructorCleanup - Push a cleanup to call the
755   /// complete-object destructor of an object of the given type at the
756   /// given address.  Does nothing if T is not a C++ class type with a
757   /// non-trivial destructor.
758   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
759
760   /// PushDestructorCleanup - Push a cleanup to call the
761   /// complete-object variant of the given destructor on the object at
762   /// the given address.
763   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
764                              llvm::Value *Addr);
765
766   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
767   /// process all branch fixups.
768   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
769
770   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
771   /// The block cannot be reactivated.  Pops it if it's the top of the
772   /// stack.
773   ///
774   /// \param DominatingIP - An instruction which is known to
775   ///   dominate the current IP (if set) and which lies along
776   ///   all paths of execution between the current IP and the
777   ///   the point at which the cleanup comes into scope.
778   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
779                               llvm::Instruction *DominatingIP);
780
781   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
782   /// Cannot be used to resurrect a deactivated cleanup.
783   ///
784   /// \param DominatingIP - An instruction which is known to
785   ///   dominate the current IP (if set) and which lies along
786   ///   all paths of execution between the current IP and the
787   ///   the point at which the cleanup comes into scope.
788   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
789                             llvm::Instruction *DominatingIP);
790
791   /// \brief Enters a new scope for capturing cleanups, all of which
792   /// will be executed once the scope is exited.
793   class RunCleanupsScope {
794     EHScopeStack::stable_iterator CleanupStackDepth;
795     bool OldDidCallStackSave;
796     bool PerformCleanup;
797
798     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
799     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
800
801   protected:
802     CodeGenFunction& CGF;
803     
804   public:
805     /// \brief Enter a new cleanup scope.
806     explicit RunCleanupsScope(CodeGenFunction &CGF)
807       : PerformCleanup(true), CGF(CGF)
808     {
809       CleanupStackDepth = CGF.EHStack.stable_begin();
810       OldDidCallStackSave = CGF.DidCallStackSave;
811       CGF.DidCallStackSave = false;
812     }
813
814     /// \brief Exit this cleanup scope, emitting any accumulated
815     /// cleanups.
816     ~RunCleanupsScope() {
817       if (PerformCleanup) {
818         CGF.DidCallStackSave = OldDidCallStackSave;
819         CGF.PopCleanupBlocks(CleanupStackDepth);
820       }
821     }
822
823     /// \brief Determine whether this scope requires any cleanups.
824     bool requiresCleanups() const {
825       return CGF.EHStack.stable_begin() != CleanupStackDepth;
826     }
827
828     /// \brief Force the emission of cleanups now, instead of waiting
829     /// until this object is destroyed.
830     void ForceCleanup() {
831       assert(PerformCleanup && "Already forced cleanup");
832       CGF.DidCallStackSave = OldDidCallStackSave;
833       CGF.PopCleanupBlocks(CleanupStackDepth);
834       PerformCleanup = false;
835     }
836   };
837
838   class LexicalScope: protected RunCleanupsScope {
839     SourceRange Range;
840     bool PopDebugStack;
841
842     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
843     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
844
845   public:
846     /// \brief Enter a new cleanup scope.
847     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
848       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
849       if (CGDebugInfo *DI = CGF.getDebugInfo())
850         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
851     }
852
853     /// \brief Exit this cleanup scope, emitting any accumulated
854     /// cleanups.
855     ~LexicalScope() {
856       if (PopDebugStack) {
857         CGDebugInfo *DI = CGF.getDebugInfo();
858         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
859       }
860     }
861
862     /// \brief Force the emission of cleanups now, instead of waiting
863     /// until this object is destroyed.
864     void ForceCleanup() {
865       RunCleanupsScope::ForceCleanup();
866       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
867         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
868         PopDebugStack = false;
869       }
870     }
871   };
872
873
874   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
875   /// the cleanup blocks that have been added.
876   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
877
878   void ResolveBranchFixups(llvm::BasicBlock *Target);
879
880   /// The given basic block lies in the current EH scope, but may be a
881   /// target of a potentially scope-crossing jump; get a stable handle
882   /// to which we can perform this jump later.
883   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
884     return JumpDest(Target,
885                     EHStack.getInnermostNormalCleanup(),
886                     NextCleanupDestIndex++);
887   }
888
889   /// The given basic block lies in the current EH scope, but may be a
890   /// target of a potentially scope-crossing jump; get a stable handle
891   /// to which we can perform this jump later.
892   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
893     return getJumpDestInCurrentScope(createBasicBlock(Name));
894   }
895
896   /// EmitBranchThroughCleanup - Emit a branch from the current insert
897   /// block through the normal cleanup handling code (if any) and then
898   /// on to \arg Dest.
899   void EmitBranchThroughCleanup(JumpDest Dest);
900   
901   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
902   /// specified destination obviously has no cleanups to run.  'false' is always
903   /// a conservatively correct answer for this method.
904   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
905
906   /// popCatchScope - Pops the catch scope at the top of the EHScope
907   /// stack, emitting any required code (other than the catch handlers
908   /// themselves).
909   void popCatchScope();
910
911   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
912   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
913
914   /// An object to manage conditionally-evaluated expressions.
915   class ConditionalEvaluation {
916     llvm::BasicBlock *StartBB;
917
918   public:
919     ConditionalEvaluation(CodeGenFunction &CGF)
920       : StartBB(CGF.Builder.GetInsertBlock()) {}
921
922     void begin(CodeGenFunction &CGF) {
923       assert(CGF.OutermostConditional != this);
924       if (!CGF.OutermostConditional)
925         CGF.OutermostConditional = this;
926     }
927
928     void end(CodeGenFunction &CGF) {
929       assert(CGF.OutermostConditional != 0);
930       if (CGF.OutermostConditional == this)
931         CGF.OutermostConditional = 0;
932     }
933
934     /// Returns a block which will be executed prior to each
935     /// evaluation of the conditional code.
936     llvm::BasicBlock *getStartingBlock() const {
937       return StartBB;
938     }
939   };
940
941   /// isInConditionalBranch - Return true if we're currently emitting
942   /// one branch or the other of a conditional expression.
943   bool isInConditionalBranch() const { return OutermostConditional != 0; }
944
945   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
946     assert(isInConditionalBranch());
947     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
948     new llvm::StoreInst(value, addr, &block->back());    
949   }
950
951   /// An RAII object to record that we're evaluating a statement
952   /// expression.
953   class StmtExprEvaluation {
954     CodeGenFunction &CGF;
955
956     /// We have to save the outermost conditional: cleanups in a
957     /// statement expression aren't conditional just because the
958     /// StmtExpr is.
959     ConditionalEvaluation *SavedOutermostConditional;
960
961   public:
962     StmtExprEvaluation(CodeGenFunction &CGF)
963       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
964       CGF.OutermostConditional = 0;
965     }
966
967     ~StmtExprEvaluation() {
968       CGF.OutermostConditional = SavedOutermostConditional;
969       CGF.EnsureInsertPoint();
970     }
971   };
972
973   /// An object which temporarily prevents a value from being
974   /// destroyed by aggressive peephole optimizations that assume that
975   /// all uses of a value have been realized in the IR.
976   class PeepholeProtection {
977     llvm::Instruction *Inst;
978     friend class CodeGenFunction;
979
980   public:
981     PeepholeProtection() : Inst(0) {}
982   };
983
984   /// A non-RAII class containing all the information about a bound
985   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
986   /// this which makes individual mappings very simple; using this
987   /// class directly is useful when you have a variable number of
988   /// opaque values or don't want the RAII functionality for some
989   /// reason.
990   class OpaqueValueMappingData {
991     const OpaqueValueExpr *OpaqueValue;
992     bool BoundLValue;
993     CodeGenFunction::PeepholeProtection Protection;
994
995     OpaqueValueMappingData(const OpaqueValueExpr *ov,
996                            bool boundLValue)
997       : OpaqueValue(ov), BoundLValue(boundLValue) {}
998   public:
999     OpaqueValueMappingData() : OpaqueValue(0) {}
1000
1001     static bool shouldBindAsLValue(const Expr *expr) {
1002       // gl-values should be bound as l-values for obvious reasons.
1003       // Records should be bound as l-values because IR generation
1004       // always keeps them in memory.  Expressions of function type
1005       // act exactly like l-values but are formally required to be
1006       // r-values in C.
1007       return expr->isGLValue() ||
1008              expr->getType()->isRecordType() ||
1009              expr->getType()->isFunctionType();
1010     }
1011
1012     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1013                                        const OpaqueValueExpr *ov,
1014                                        const Expr *e) {
1015       if (shouldBindAsLValue(ov))
1016         return bind(CGF, ov, CGF.EmitLValue(e));
1017       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1018     }
1019
1020     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1021                                        const OpaqueValueExpr *ov,
1022                                        const LValue &lv) {
1023       assert(shouldBindAsLValue(ov));
1024       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1025       return OpaqueValueMappingData(ov, true);
1026     }
1027
1028     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1029                                        const OpaqueValueExpr *ov,
1030                                        const RValue &rv) {
1031       assert(!shouldBindAsLValue(ov));
1032       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1033
1034       OpaqueValueMappingData data(ov, false);
1035
1036       // Work around an extremely aggressive peephole optimization in
1037       // EmitScalarConversion which assumes that all other uses of a
1038       // value are extant.
1039       data.Protection = CGF.protectFromPeepholes(rv);
1040
1041       return data;
1042     }
1043
1044     bool isValid() const { return OpaqueValue != 0; }
1045     void clear() { OpaqueValue = 0; }
1046
1047     void unbind(CodeGenFunction &CGF) {
1048       assert(OpaqueValue && "no data to unbind!");
1049
1050       if (BoundLValue) {
1051         CGF.OpaqueLValues.erase(OpaqueValue);
1052       } else {
1053         CGF.OpaqueRValues.erase(OpaqueValue);
1054         CGF.unprotectFromPeepholes(Protection);
1055       }
1056     }
1057   };
1058
1059   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1060   class OpaqueValueMapping {
1061     CodeGenFunction &CGF;
1062     OpaqueValueMappingData Data;
1063
1064   public:
1065     static bool shouldBindAsLValue(const Expr *expr) {
1066       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1067     }
1068
1069     /// Build the opaque value mapping for the given conditional
1070     /// operator if it's the GNU ?: extension.  This is a common
1071     /// enough pattern that the convenience operator is really
1072     /// helpful.
1073     ///
1074     OpaqueValueMapping(CodeGenFunction &CGF,
1075                        const AbstractConditionalOperator *op) : CGF(CGF) {
1076       if (isa<ConditionalOperator>(op))
1077         // Leave Data empty.
1078         return;
1079
1080       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1081       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1082                                           e->getCommon());
1083     }
1084
1085     OpaqueValueMapping(CodeGenFunction &CGF,
1086                        const OpaqueValueExpr *opaqueValue,
1087                        LValue lvalue)
1088       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1089     }
1090
1091     OpaqueValueMapping(CodeGenFunction &CGF,
1092                        const OpaqueValueExpr *opaqueValue,
1093                        RValue rvalue)
1094       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1095     }
1096
1097     void pop() {
1098       Data.unbind(CGF);
1099       Data.clear();
1100     }
1101
1102     ~OpaqueValueMapping() {
1103       if (Data.isValid()) Data.unbind(CGF);
1104     }
1105   };
1106   
1107   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1108   /// number that holds the value.
1109   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1110
1111   /// BuildBlockByrefAddress - Computes address location of the
1112   /// variable which is declared as __block.
1113   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1114                                       const VarDecl *V);
1115 private:
1116   CGDebugInfo *DebugInfo;
1117   bool DisableDebugInfo;
1118
1119   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1120   /// calling llvm.stacksave for multiple VLAs in the same scope.
1121   bool DidCallStackSave;
1122
1123   /// IndirectBranch - The first time an indirect goto is seen we create a block
1124   /// with an indirect branch.  Every time we see the address of a label taken,
1125   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1126   /// codegen'd as a jump to the IndirectBranch's basic block.
1127   llvm::IndirectBrInst *IndirectBranch;
1128
1129   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1130   /// decls.
1131   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1132   DeclMapTy LocalDeclMap;
1133
1134   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1135   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1136
1137   // BreakContinueStack - This keeps track of where break and continue
1138   // statements should jump to.
1139   struct BreakContinue {
1140     BreakContinue(JumpDest Break, JumpDest Continue)
1141       : BreakBlock(Break), ContinueBlock(Continue) {}
1142
1143     JumpDest BreakBlock;
1144     JumpDest ContinueBlock;
1145   };
1146   SmallVector<BreakContinue, 8> BreakContinueStack;
1147
1148   /// SwitchInsn - This is nearest current switch instruction. It is null if
1149   /// current context is not in a switch.
1150   llvm::SwitchInst *SwitchInsn;
1151
1152   /// CaseRangeBlock - This block holds if condition check for last case
1153   /// statement range in current switch instruction.
1154   llvm::BasicBlock *CaseRangeBlock;
1155
1156   /// OpaqueLValues - Keeps track of the current set of opaque value
1157   /// expressions.
1158   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1159   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1160
1161   // VLASizeMap - This keeps track of the associated size for each VLA type.
1162   // We track this by the size expression rather than the type itself because
1163   // in certain situations, like a const qualifier applied to an VLA typedef,
1164   // multiple VLA types can share the same size expression.
1165   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1166   // enter/leave scopes.
1167   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1168
1169   /// A block containing a single 'unreachable' instruction.  Created
1170   /// lazily by getUnreachableBlock().
1171   llvm::BasicBlock *UnreachableBlock;
1172
1173   /// CXXThisDecl - When generating code for a C++ member function,
1174   /// this will hold the implicit 'this' declaration.
1175   ImplicitParamDecl *CXXABIThisDecl;
1176   llvm::Value *CXXABIThisValue;
1177   llvm::Value *CXXThisValue;
1178
1179   /// CXXVTTDecl - When generating code for a base object constructor or
1180   /// base object destructor with virtual bases, this will hold the implicit
1181   /// VTT parameter.
1182   ImplicitParamDecl *CXXVTTDecl;
1183   llvm::Value *CXXVTTValue;
1184
1185   /// OutermostConditional - Points to the outermost active
1186   /// conditional control.  This is used so that we know if a
1187   /// temporary should be destroyed conditionally.
1188   ConditionalEvaluation *OutermostConditional;
1189
1190
1191   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1192   /// type as well as the field number that contains the actual data.
1193   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1194                                               unsigned> > ByRefValueInfo;
1195
1196   llvm::BasicBlock *TerminateLandingPad;
1197   llvm::BasicBlock *TerminateHandler;
1198   llvm::BasicBlock *TrapBB;
1199
1200   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1201   /// In the kernel metadata node, reference the kernel function and metadata 
1202   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1203   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 
1204   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1205   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 
1206   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1207   void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 
1208                                 llvm::Function *Fn);
1209
1210 public:
1211   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1212   ~CodeGenFunction();
1213
1214   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1215   ASTContext &getContext() const { return CGM.getContext(); }
1216   /// Returns true if DebugInfo is actually initialized.
1217   bool maybeInitializeDebugInfo() {
1218     if (CGM.getModuleDebugInfo()) {
1219       DebugInfo = CGM.getModuleDebugInfo();
1220       return true;
1221     }
1222     return false;
1223   }
1224   CGDebugInfo *getDebugInfo() { 
1225     if (DisableDebugInfo) 
1226       return NULL;
1227     return DebugInfo; 
1228   }
1229   void disableDebugInfo() { DisableDebugInfo = true; }
1230   void enableDebugInfo() { DisableDebugInfo = false; }
1231
1232   bool shouldUseFusedARCCalls() {
1233     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1234   }
1235
1236   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1237
1238   /// Returns a pointer to the function's exception object and selector slot,
1239   /// which is assigned in every landing pad.
1240   llvm::Value *getExceptionSlot();
1241   llvm::Value *getEHSelectorSlot();
1242
1243   /// Returns the contents of the function's exception object and selector
1244   /// slots.
1245   llvm::Value *getExceptionFromSlot();
1246   llvm::Value *getSelectorFromSlot();
1247
1248   llvm::Value *getNormalCleanupDestSlot();
1249
1250   llvm::BasicBlock *getUnreachableBlock() {
1251     if (!UnreachableBlock) {
1252       UnreachableBlock = createBasicBlock("unreachable");
1253       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1254     }
1255     return UnreachableBlock;
1256   }
1257
1258   llvm::BasicBlock *getInvokeDest() {
1259     if (!EHStack.requiresLandingPad()) return 0;
1260     return getInvokeDestImpl();
1261   }
1262
1263   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1264
1265   //===--------------------------------------------------------------------===//
1266   //                                  Cleanups
1267   //===--------------------------------------------------------------------===//
1268
1269   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1270
1271   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1272                                         llvm::Value *arrayEndPointer,
1273                                         QualType elementType,
1274                                         Destroyer *destroyer);
1275   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1276                                       llvm::Value *arrayEnd,
1277                                       QualType elementType,
1278                                       Destroyer *destroyer);
1279
1280   void pushDestroy(QualType::DestructionKind dtorKind,
1281                    llvm::Value *addr, QualType type);
1282   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1283                    Destroyer *destroyer, bool useEHCleanupForArray);
1284   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1285                    bool useEHCleanupForArray);
1286   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1287                                         QualType type,
1288                                         Destroyer *destroyer,
1289                                         bool useEHCleanupForArray);
1290   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1291                         QualType type, Destroyer *destroyer,
1292                         bool checkZeroLength, bool useEHCleanup);
1293
1294   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1295
1296   /// Determines whether an EH cleanup is required to destroy a type
1297   /// with the given destruction kind.
1298   bool needsEHCleanup(QualType::DestructionKind kind) {
1299     switch (kind) {
1300     case QualType::DK_none:
1301       return false;
1302     case QualType::DK_cxx_destructor:
1303     case QualType::DK_objc_weak_lifetime:
1304       return getLangOpts().Exceptions;
1305     case QualType::DK_objc_strong_lifetime:
1306       return getLangOpts().Exceptions &&
1307              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1308     }
1309     llvm_unreachable("bad destruction kind");
1310   }
1311
1312   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1313     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1314   }
1315
1316   //===--------------------------------------------------------------------===//
1317   //                                  Objective-C
1318   //===--------------------------------------------------------------------===//
1319
1320   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1321
1322   void StartObjCMethod(const ObjCMethodDecl *MD,
1323                        const ObjCContainerDecl *CD,
1324                        SourceLocation StartLoc);
1325
1326   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1327   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1328                           const ObjCPropertyImplDecl *PID);
1329   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1330                               const ObjCPropertyImplDecl *propImpl,
1331                               const ObjCMethodDecl *GetterMothodDecl,
1332                               llvm::Constant *AtomicHelperFn);
1333
1334   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1335                                   ObjCMethodDecl *MD, bool ctor);
1336
1337   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1338   /// for the given property.
1339   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1340                           const ObjCPropertyImplDecl *PID);
1341   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1342                               const ObjCPropertyImplDecl *propImpl,
1343                               llvm::Constant *AtomicHelperFn);
1344   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1345   bool IvarTypeWithAggrGCObjects(QualType Ty);
1346
1347   //===--------------------------------------------------------------------===//
1348   //                                  Block Bits
1349   //===--------------------------------------------------------------------===//
1350
1351   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1352   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1353   static void destroyBlockInfos(CGBlockInfo *info);
1354   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1355                                            const CGBlockInfo &Info,
1356                                            llvm::StructType *,
1357                                            llvm::Constant *BlockVarLayout);
1358
1359   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1360                                         const CGBlockInfo &Info,
1361                                         const Decl *OuterFuncDecl,
1362                                         const DeclMapTy &ldm,
1363                                         bool IsLambdaConversionToBlock);
1364
1365   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1366   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1367   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1368                                              const ObjCPropertyImplDecl *PID);
1369   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1370                                              const ObjCPropertyImplDecl *PID);
1371   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1372
1373   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1374
1375   class AutoVarEmission;
1376
1377   void emitByrefStructureInit(const AutoVarEmission &emission);
1378   void enterByrefCleanup(const AutoVarEmission &emission);
1379
1380   llvm::Value *LoadBlockStruct() {
1381     assert(BlockPointer && "no block pointer set!");
1382     return BlockPointer;
1383   }
1384
1385   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1386   void AllocateBlockDecl(const DeclRefExpr *E);
1387   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1388   llvm::Type *BuildByRefType(const VarDecl *var);
1389
1390   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1391                     const CGFunctionInfo &FnInfo);
1392   void StartFunction(GlobalDecl GD, QualType RetTy,
1393                      llvm::Function *Fn,
1394                      const CGFunctionInfo &FnInfo,
1395                      const FunctionArgList &Args,
1396                      SourceLocation StartLoc);
1397
1398   void EmitConstructorBody(FunctionArgList &Args);
1399   void EmitDestructorBody(FunctionArgList &Args);
1400   void EmitFunctionBody(FunctionArgList &Args);
1401
1402   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1403                                   CallArgList &CallArgs);
1404   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1405   void EmitLambdaBlockInvokeBody();
1406   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1407   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1408
1409   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1410   /// emission when possible.
1411   void EmitReturnBlock();
1412
1413   /// FinishFunction - Complete IR generation of the current function. It is
1414   /// legal to call this function even if there is no current insertion point.
1415   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1416
1417   /// GenerateThunk - Generate a thunk for the given method.
1418   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1419                      GlobalDecl GD, const ThunkInfo &Thunk);
1420
1421   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1422                             GlobalDecl GD, const ThunkInfo &Thunk);
1423
1424   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1425                         FunctionArgList &Args);
1426
1427   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1428                                ArrayRef<VarDecl *> ArrayIndexes);
1429
1430   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1431   /// subobject.
1432   ///
1433   void InitializeVTablePointer(BaseSubobject Base,
1434                                const CXXRecordDecl *NearestVBase,
1435                                CharUnits OffsetFromNearestVBase,
1436                                llvm::Constant *VTable,
1437                                const CXXRecordDecl *VTableClass);
1438
1439   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1440   void InitializeVTablePointers(BaseSubobject Base,
1441                                 const CXXRecordDecl *NearestVBase,
1442                                 CharUnits OffsetFromNearestVBase,
1443                                 bool BaseIsNonVirtualPrimaryBase,
1444                                 llvm::Constant *VTable,
1445                                 const CXXRecordDecl *VTableClass,
1446                                 VisitedVirtualBasesSetTy& VBases);
1447
1448   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1449
1450   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1451   /// to by This.
1452   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1453
1454   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1455   /// given phase of destruction for a destructor.  The end result
1456   /// should call destructors on members and base classes in reverse
1457   /// order of their construction.
1458   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1459
1460   /// ShouldInstrumentFunction - Return true if the current function should be
1461   /// instrumented with __cyg_profile_func_* calls
1462   bool ShouldInstrumentFunction();
1463
1464   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1465   /// instrumentation function with the current function and the call site, if
1466   /// function instrumentation is enabled.
1467   void EmitFunctionInstrumentation(const char *Fn);
1468
1469   /// EmitMCountInstrumentation - Emit call to .mcount.
1470   void EmitMCountInstrumentation();
1471
1472   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1473   /// arguments for the given function. This is also responsible for naming the
1474   /// LLVM function arguments.
1475   void EmitFunctionProlog(const CGFunctionInfo &FI,
1476                           llvm::Function *Fn,
1477                           const FunctionArgList &Args);
1478
1479   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1480   /// given temporary.
1481   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1482
1483   /// EmitStartEHSpec - Emit the start of the exception spec.
1484   void EmitStartEHSpec(const Decl *D);
1485
1486   /// EmitEndEHSpec - Emit the end of the exception spec.
1487   void EmitEndEHSpec(const Decl *D);
1488
1489   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1490   llvm::BasicBlock *getTerminateLandingPad();
1491
1492   /// getTerminateHandler - Return a handler (not a landing pad, just
1493   /// a catch handler) that just calls terminate.  This is used when
1494   /// a terminate scope encloses a try.
1495   llvm::BasicBlock *getTerminateHandler();
1496
1497   llvm::Type *ConvertTypeForMem(QualType T);
1498   llvm::Type *ConvertType(QualType T);
1499   llvm::Type *ConvertType(const TypeDecl *T) {
1500     return ConvertType(getContext().getTypeDeclType(T));
1501   }
1502
1503   /// LoadObjCSelf - Load the value of self. This function is only valid while
1504   /// generating code for an Objective-C method.
1505   llvm::Value *LoadObjCSelf();
1506
1507   /// TypeOfSelfObject - Return type of object that this self represents.
1508   QualType TypeOfSelfObject();
1509
1510   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1511   /// an aggregate LLVM type or is void.
1512   static bool hasAggregateLLVMType(QualType T);
1513
1514   /// createBasicBlock - Create an LLVM basic block.
1515   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1516                                      llvm::Function *parent = 0,
1517                                      llvm::BasicBlock *before = 0) {
1518 #ifdef NDEBUG
1519     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1520 #else
1521     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1522 #endif
1523   }
1524
1525   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1526   /// label maps to.
1527   JumpDest getJumpDestForLabel(const LabelDecl *S);
1528
1529   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1530   /// another basic block, simplify it. This assumes that no other code could
1531   /// potentially reference the basic block.
1532   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1533
1534   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1535   /// adding a fall-through branch from the current insert block if
1536   /// necessary. It is legal to call this function even if there is no current
1537   /// insertion point.
1538   ///
1539   /// IsFinished - If true, indicates that the caller has finished emitting
1540   /// branches to the given block and does not expect to emit code into it. This
1541   /// means the block can be ignored if it is unreachable.
1542   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1543
1544   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1545   /// near its uses, and leave the insertion point in it.
1546   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1547
1548   /// EmitBranch - Emit a branch to the specified basic block from the current
1549   /// insert block, taking care to avoid creation of branches from dummy
1550   /// blocks. It is legal to call this function even if there is no current
1551   /// insertion point.
1552   ///
1553   /// This function clears the current insertion point. The caller should follow
1554   /// calls to this function with calls to Emit*Block prior to generation new
1555   /// code.
1556   void EmitBranch(llvm::BasicBlock *Block);
1557
1558   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1559   /// indicates that the current code being emitted is unreachable.
1560   bool HaveInsertPoint() const {
1561     return Builder.GetInsertBlock() != 0;
1562   }
1563
1564   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1565   /// emitted IR has a place to go. Note that by definition, if this function
1566   /// creates a block then that block is unreachable; callers may do better to
1567   /// detect when no insertion point is defined and simply skip IR generation.
1568   void EnsureInsertPoint() {
1569     if (!HaveInsertPoint())
1570       EmitBlock(createBasicBlock());
1571   }
1572
1573   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1574   /// specified stmt yet.
1575   void ErrorUnsupported(const Stmt *S, const char *Type,
1576                         bool OmitOnError=false);
1577
1578   //===--------------------------------------------------------------------===//
1579   //                                  Helpers
1580   //===--------------------------------------------------------------------===//
1581
1582   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1583                         CharUnits Alignment = CharUnits()) {
1584     return LValue::MakeAddr(V, T, Alignment, getContext(),
1585                             CGM.getTBAAInfo(T));
1586   }
1587
1588   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1589     CharUnits Alignment;
1590     if (!T->isIncompleteType())
1591       Alignment = getContext().getTypeAlignInChars(T);
1592     return LValue::MakeAddr(V, T, Alignment, getContext(),
1593                             CGM.getTBAAInfo(T));
1594   }
1595
1596   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1597   /// block. The caller is responsible for setting an appropriate alignment on
1598   /// the alloca.
1599   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1600                                      const Twine &Name = "tmp");
1601
1602   /// InitTempAlloca - Provide an initial value for the given alloca.
1603   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1604
1605   /// CreateIRTemp - Create a temporary IR object of the given type, with
1606   /// appropriate alignment. This routine should only be used when an temporary
1607   /// value needs to be stored into an alloca (for example, to avoid explicit
1608   /// PHI construction), but the type is the IR type, not the type appropriate
1609   /// for storing in memory.
1610   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1611
1612   /// CreateMemTemp - Create a temporary memory object of the given type, with
1613   /// appropriate alignment.
1614   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1615
1616   /// CreateAggTemp - Create a temporary memory object for the given
1617   /// aggregate type.
1618   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1619     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1620     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1621                                  T.getQualifiers(),
1622                                  AggValueSlot::IsNotDestructed,
1623                                  AggValueSlot::DoesNotNeedGCBarriers,
1624                                  AggValueSlot::IsNotAliased);
1625   }
1626
1627   /// Emit a cast to void* in the appropriate address space.
1628   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1629
1630   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1631   /// expression and compare the result against zero, returning an Int1Ty value.
1632   llvm::Value *EvaluateExprAsBool(const Expr *E);
1633
1634   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1635   void EmitIgnoredExpr(const Expr *E);
1636
1637   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1638   /// any type.  The result is returned as an RValue struct.  If this is an
1639   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1640   /// the result should be returned.
1641   ///
1642   /// \param ignoreResult True if the resulting value isn't used.
1643   RValue EmitAnyExpr(const Expr *E,
1644                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1645                      bool ignoreResult = false);
1646
1647   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1648   // or the value of the expression, depending on how va_list is defined.
1649   llvm::Value *EmitVAListRef(const Expr *E);
1650
1651   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1652   /// always be accessible even if no aggregate location is provided.
1653   RValue EmitAnyExprToTemp(const Expr *E);
1654
1655   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1656   /// arbitrary expression into the given memory location.
1657   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1658                         Qualifiers Quals, bool IsInitializer);
1659
1660   /// EmitExprAsInit - Emits the code necessary to initialize a
1661   /// location in memory with the given initializer.
1662   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1663                       LValue lvalue, bool capturedByInit);
1664
1665   /// EmitAggregateCopy - Emit an aggrate assignment.
1666   ///
1667   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1668   /// This is required for correctness when assigning non-POD structures in C++.
1669   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1670                            QualType EltTy, bool isVolatile=false,
1671                            CharUnits Alignment = CharUnits::Zero()) {
1672     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, isVolatile, Alignment, true);
1673   }
1674
1675   /// EmitAggregateCopy - Emit an aggrate copy.
1676   ///
1677   /// \param isVolatile - True iff either the source or the destination is
1678   /// volatile.
1679   /// \param isAssignment - If false, allow padding to be copied.  This often
1680   /// yields more efficient.
1681   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1682                          QualType EltTy, bool isVolatile=false,
1683                          CharUnits Alignment = CharUnits::Zero(),
1684                          bool isAssignment = false);
1685
1686   /// StartBlock - Start new block named N. If insert block is a dummy block
1687   /// then reuse it.
1688   void StartBlock(const char *N);
1689
1690   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1691   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1692     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1693   }
1694
1695   /// GetAddrOfLocalVar - Return the address of a local variable.
1696   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1697     llvm::Value *Res = LocalDeclMap[VD];
1698     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1699     return Res;
1700   }
1701
1702   /// getOpaqueLValueMapping - Given an opaque value expression (which
1703   /// must be mapped to an l-value), return its mapping.
1704   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1705     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1706
1707     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1708       it = OpaqueLValues.find(e);
1709     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1710     return it->second;
1711   }
1712
1713   /// getOpaqueRValueMapping - Given an opaque value expression (which
1714   /// must be mapped to an r-value), return its mapping.
1715   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1716     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1717
1718     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1719       it = OpaqueRValues.find(e);
1720     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1721     return it->second;
1722   }
1723
1724   /// getAccessedFieldNo - Given an encoded value and a result number, return
1725   /// the input field number being accessed.
1726   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1727
1728   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1729   llvm::BasicBlock *GetIndirectGotoBlock();
1730
1731   /// EmitNullInitialization - Generate code to set a value of the given type to
1732   /// null, If the type contains data member pointers, they will be initialized
1733   /// to -1 in accordance with the Itanium C++ ABI.
1734   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1735
1736   // EmitVAArg - Generate code to get an argument from the passed in pointer
1737   // and update it accordingly. The return value is a pointer to the argument.
1738   // FIXME: We should be able to get rid of this method and use the va_arg
1739   // instruction in LLVM instead once it works well enough.
1740   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1741
1742   /// emitArrayLength - Compute the length of an array, even if it's a
1743   /// VLA, and drill down to the base element type.
1744   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1745                                QualType &baseType,
1746                                llvm::Value *&addr);
1747
1748   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1749   /// the given variably-modified type and store them in the VLASizeMap.
1750   ///
1751   /// This function can be called with a null (unreachable) insert point.
1752   void EmitVariablyModifiedType(QualType Ty);
1753
1754   /// getVLASize - Returns an LLVM value that corresponds to the size,
1755   /// in non-variably-sized elements, of a variable length array type,
1756   /// plus that largest non-variably-sized element type.  Assumes that
1757   /// the type has already been emitted with EmitVariablyModifiedType.
1758   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1759   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1760
1761   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1762   /// generating code for an C++ member function.
1763   llvm::Value *LoadCXXThis() {
1764     assert(CXXThisValue && "no 'this' value for this function");
1765     return CXXThisValue;
1766   }
1767
1768   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1769   /// virtual bases.
1770   llvm::Value *LoadCXXVTT() {
1771     assert(CXXVTTValue && "no VTT value for this function");
1772     return CXXVTTValue;
1773   }
1774
1775   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1776   /// complete class to the given direct base.
1777   llvm::Value *
1778   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1779                                         const CXXRecordDecl *Derived,
1780                                         const CXXRecordDecl *Base,
1781                                         bool BaseIsVirtual);
1782
1783   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1784   /// load of 'this' and returns address of the base class.
1785   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1786                                      const CXXRecordDecl *Derived,
1787                                      CastExpr::path_const_iterator PathBegin,
1788                                      CastExpr::path_const_iterator PathEnd,
1789                                      bool NullCheckValue);
1790
1791   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1792                                         const CXXRecordDecl *Derived,
1793                                         CastExpr::path_const_iterator PathBegin,
1794                                         CastExpr::path_const_iterator PathEnd,
1795                                         bool NullCheckValue);
1796
1797   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1798                                          const CXXRecordDecl *ClassDecl,
1799                                          const CXXRecordDecl *BaseClassDecl);
1800
1801   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1802                                       CXXCtorType CtorType,
1803                                       const FunctionArgList &Args);
1804   // It's important not to confuse this and the previous function. Delegating
1805   // constructors are the C++0x feature. The constructor delegate optimization
1806   // is used to reduce duplication in the base and complete consturctors where
1807   // they are substantially the same.
1808   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1809                                         const FunctionArgList &Args);
1810   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1811                               bool ForVirtualBase, llvm::Value *This,
1812                               CallExpr::const_arg_iterator ArgBeg,
1813                               CallExpr::const_arg_iterator ArgEnd);
1814   
1815   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1816                               llvm::Value *This, llvm::Value *Src,
1817                               CallExpr::const_arg_iterator ArgBeg,
1818                               CallExpr::const_arg_iterator ArgEnd);
1819
1820   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1821                                   const ConstantArrayType *ArrayTy,
1822                                   llvm::Value *ArrayPtr,
1823                                   CallExpr::const_arg_iterator ArgBeg,
1824                                   CallExpr::const_arg_iterator ArgEnd,
1825                                   bool ZeroInitialization = false);
1826
1827   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1828                                   llvm::Value *NumElements,
1829                                   llvm::Value *ArrayPtr,
1830                                   CallExpr::const_arg_iterator ArgBeg,
1831                                   CallExpr::const_arg_iterator ArgEnd,
1832                                   bool ZeroInitialization = false);
1833
1834   static Destroyer destroyCXXObject;
1835
1836   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1837                              bool ForVirtualBase, llvm::Value *This);
1838
1839   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1840                                llvm::Value *NewPtr, llvm::Value *NumElements);
1841
1842   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1843                         llvm::Value *Ptr);
1844
1845   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1846   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1847
1848   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1849                       QualType DeleteTy);
1850
1851   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1852   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1853   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1854
1855   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1856   void EmitStdInitializerListCleanup(llvm::Value *loc,
1857                                      const InitListExpr *init);
1858
1859   /// \brief Situations in which we might emit a check for the suitability of a
1860   ///        pointer or glvalue.
1861   enum TypeCheckKind {
1862     /// Checking the operand of a load. Must be suitably sized and aligned.
1863     TCK_Load,
1864     /// Checking the destination of a store. Must be suitably sized and aligned.
1865     TCK_Store,
1866     /// Checking the bound value in a reference binding. Must be suitably sized
1867     /// and aligned, but is not required to refer to an object (until the
1868     /// reference is used), per core issue 453.
1869     TCK_ReferenceBinding,
1870     /// Checking the object expression in a non-static data member access. Must
1871     /// be an object within its lifetime.
1872     TCK_MemberAccess,
1873     /// Checking the 'this' pointer for a call to a non-static member function.
1874     /// Must be an object within its lifetime.
1875     TCK_MemberCall,
1876     /// Checking the 'this' pointer for a constructor call.
1877     TCK_ConstructorCall
1878   };
1879
1880   /// \brief Emit a check that \p V is the address of storage of the
1881   /// appropriate size and alignment for an object of type \p Type.
1882   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1883                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1884
1885   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1886                                        bool isInc, bool isPre);
1887   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1888                                          bool isInc, bool isPre);
1889   //===--------------------------------------------------------------------===//
1890   //                            Declaration Emission
1891   //===--------------------------------------------------------------------===//
1892
1893   /// EmitDecl - Emit a declaration.
1894   ///
1895   /// This function can be called with a null (unreachable) insert point.
1896   void EmitDecl(const Decl &D);
1897
1898   /// EmitVarDecl - Emit a local variable declaration.
1899   ///
1900   /// This function can be called with a null (unreachable) insert point.
1901   void EmitVarDecl(const VarDecl &D);
1902
1903   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1904                       LValue lvalue, bool capturedByInit);
1905   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1906
1907   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1908                              llvm::Value *Address);
1909
1910   /// EmitAutoVarDecl - Emit an auto variable declaration.
1911   ///
1912   /// This function can be called with a null (unreachable) insert point.
1913   void EmitAutoVarDecl(const VarDecl &D);
1914
1915   class AutoVarEmission {
1916     friend class CodeGenFunction;
1917
1918     const VarDecl *Variable;
1919
1920     /// The alignment of the variable.
1921     CharUnits Alignment;
1922
1923     /// The address of the alloca.  Null if the variable was emitted
1924     /// as a global constant.
1925     llvm::Value *Address;
1926
1927     llvm::Value *NRVOFlag;
1928
1929     /// True if the variable is a __block variable.
1930     bool IsByRef;
1931
1932     /// True if the variable is of aggregate type and has a constant
1933     /// initializer.
1934     bool IsConstantAggregate;
1935
1936     struct Invalid {};
1937     AutoVarEmission(Invalid) : Variable(0) {}
1938
1939     AutoVarEmission(const VarDecl &variable)
1940       : Variable(&variable), Address(0), NRVOFlag(0),
1941         IsByRef(false), IsConstantAggregate(false) {}
1942
1943     bool wasEmittedAsGlobal() const { return Address == 0; }
1944
1945   public:
1946     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1947
1948     /// Returns the address of the object within this declaration.
1949     /// Note that this does not chase the forwarding pointer for
1950     /// __block decls.
1951     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1952       if (!IsByRef) return Address;
1953
1954       return CGF.Builder.CreateStructGEP(Address,
1955                                          CGF.getByRefValueLLVMField(Variable),
1956                                          Variable->getNameAsString());
1957     }
1958   };
1959   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1960   void EmitAutoVarInit(const AutoVarEmission &emission);
1961   void EmitAutoVarCleanups(const AutoVarEmission &emission);  
1962   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1963                               QualType::DestructionKind dtorKind);
1964
1965   void EmitStaticVarDecl(const VarDecl &D,
1966                          llvm::GlobalValue::LinkageTypes Linkage);
1967
1968   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1969   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1970
1971   /// protectFromPeepholes - Protect a value that we're intending to
1972   /// store to the side, but which will probably be used later, from
1973   /// aggressive peepholing optimizations that might delete it.
1974   ///
1975   /// Pass the result to unprotectFromPeepholes to declare that
1976   /// protection is no longer required.
1977   ///
1978   /// There's no particular reason why this shouldn't apply to
1979   /// l-values, it's just that no existing peepholes work on pointers.
1980   PeepholeProtection protectFromPeepholes(RValue rvalue);
1981   void unprotectFromPeepholes(PeepholeProtection protection);
1982
1983   //===--------------------------------------------------------------------===//
1984   //                             Statement Emission
1985   //===--------------------------------------------------------------------===//
1986
1987   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1988   void EmitStopPoint(const Stmt *S);
1989
1990   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1991   /// this function even if there is no current insertion point.
1992   ///
1993   /// This function may clear the current insertion point; callers should use
1994   /// EnsureInsertPoint if they wish to subsequently generate code without first
1995   /// calling EmitBlock, EmitBranch, or EmitStmt.
1996   void EmitStmt(const Stmt *S);
1997
1998   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1999   /// necessarily require an insertion point or debug information; typically
2000   /// because the statement amounts to a jump or a container of other
2001   /// statements.
2002   ///
2003   /// \return True if the statement was handled.
2004   bool EmitSimpleStmt(const Stmt *S);
2005
2006   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2007                           AggValueSlot AVS = AggValueSlot::ignored());
2008
2009   /// EmitLabel - Emit the block for the given label. It is legal to call this
2010   /// function even if there is no current insertion point.
2011   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2012
2013   void EmitLabelStmt(const LabelStmt &S);
2014   void EmitAttributedStmt(const AttributedStmt &S);
2015   void EmitGotoStmt(const GotoStmt &S);
2016   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2017   void EmitIfStmt(const IfStmt &S);
2018   void EmitWhileStmt(const WhileStmt &S);
2019   void EmitDoStmt(const DoStmt &S);
2020   void EmitForStmt(const ForStmt &S);
2021   void EmitReturnStmt(const ReturnStmt &S);
2022   void EmitDeclStmt(const DeclStmt &S);
2023   void EmitBreakStmt(const BreakStmt &S);
2024   void EmitContinueStmt(const ContinueStmt &S);
2025   void EmitSwitchStmt(const SwitchStmt &S);
2026   void EmitDefaultStmt(const DefaultStmt &S);
2027   void EmitCaseStmt(const CaseStmt &S);
2028   void EmitCaseStmtRange(const CaseStmt &S);
2029   void EmitAsmStmt(const AsmStmt &S);
2030
2031   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2032   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2033   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2034   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2035   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2036
2037   llvm::Constant *getUnwindResumeFn();
2038   llvm::Constant *getUnwindResumeOrRethrowFn();
2039   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2040   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2041
2042   void EmitCXXTryStmt(const CXXTryStmt &S);
2043   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2044
2045   //===--------------------------------------------------------------------===//
2046   //                         LValue Expression Emission
2047   //===--------------------------------------------------------------------===//
2048
2049   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2050   RValue GetUndefRValue(QualType Ty);
2051
2052   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2053   /// and issue an ErrorUnsupported style diagnostic (using the
2054   /// provided Name).
2055   RValue EmitUnsupportedRValue(const Expr *E,
2056                                const char *Name);
2057
2058   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2059   /// an ErrorUnsupported style diagnostic (using the provided Name).
2060   LValue EmitUnsupportedLValue(const Expr *E,
2061                                const char *Name);
2062
2063   /// EmitLValue - Emit code to compute a designator that specifies the location
2064   /// of the expression.
2065   ///
2066   /// This can return one of two things: a simple address or a bitfield
2067   /// reference.  In either case, the LLVM Value* in the LValue structure is
2068   /// guaranteed to be an LLVM pointer type.
2069   ///
2070   /// If this returns a bitfield reference, nothing about the pointee type of
2071   /// the LLVM value is known: For example, it may not be a pointer to an
2072   /// integer.
2073   ///
2074   /// If this returns a normal address, and if the lvalue's C type is fixed
2075   /// size, this method guarantees that the returned pointer type will point to
2076   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2077   /// variable length type, this is not possible.
2078   ///
2079   LValue EmitLValue(const Expr *E);
2080
2081   /// \brief Same as EmitLValue but additionally we generate checking code to
2082   /// guard against undefined behavior.  This is only suitable when we know
2083   /// that the address will be used to access the object.
2084   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2085
2086   /// EmitToMemory - Change a scalar value from its value
2087   /// representation to its in-memory representation.
2088   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2089
2090   /// EmitFromMemory - Change a scalar value from its memory
2091   /// representation to its value representation.
2092   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2093
2094   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2095   /// care to appropriately convert from the memory representation to
2096   /// the LLVM value representation.
2097   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2098                                 unsigned Alignment, QualType Ty,
2099                                 llvm::MDNode *TBAAInfo = 0);
2100
2101   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2102   /// care to appropriately convert from the memory representation to
2103   /// the LLVM value representation.  The l-value must be a simple
2104   /// l-value.
2105   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2106
2107   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2108   /// care to appropriately convert from the memory representation to
2109   /// the LLVM value representation.
2110   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2111                          bool Volatile, unsigned Alignment, QualType Ty,
2112                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2113
2114   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2115   /// care to appropriately convert from the memory representation to
2116   /// the LLVM value representation.  The l-value must be a simple
2117   /// l-value.  The isInit flag indicates whether this is an initialization.
2118   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2119   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2120
2121   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2122   /// this method emits the address of the lvalue, then loads the result as an
2123   /// rvalue, returning the rvalue.
2124   RValue EmitLoadOfLValue(LValue V);
2125   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2126   RValue EmitLoadOfBitfieldLValue(LValue LV);
2127
2128   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2129   /// lvalue, where both are guaranteed to the have the same type, and that type
2130   /// is 'Ty'.
2131   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2132   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2133
2134   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2135   /// EmitStoreThroughLValue.
2136   ///
2137   /// \param Result [out] - If non-null, this will be set to a Value* for the
2138   /// bit-field contents after the store, appropriate for use as the result of
2139   /// an assignment to the bit-field.
2140   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2141                                       llvm::Value **Result=0);
2142
2143   /// Emit an l-value for an assignment (simple or compound) of complex type.
2144   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2145   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2146
2147   // Note: only available for agg return types
2148   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2149   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2150   // Note: only available for agg return types
2151   LValue EmitCallExprLValue(const CallExpr *E);
2152   // Note: only available for agg return types
2153   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2154   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2155   LValue EmitStringLiteralLValue(const StringLiteral *E);
2156   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2157   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2158   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2159   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2160   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2161   LValue EmitMemberExpr(const MemberExpr *E);
2162   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2163   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2164   LValue EmitInitListLValue(const InitListExpr *E);
2165   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2166   LValue EmitCastLValue(const CastExpr *E);
2167   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2168   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2169   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2170
2171   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2172
2173   class ConstantEmission {
2174     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2175     ConstantEmission(llvm::Constant *C, bool isReference)
2176       : ValueAndIsReference(C, isReference) {}
2177   public:
2178     ConstantEmission() {}
2179     static ConstantEmission forReference(llvm::Constant *C) {
2180       return ConstantEmission(C, true);
2181     }
2182     static ConstantEmission forValue(llvm::Constant *C) {
2183       return ConstantEmission(C, false);
2184     }
2185
2186     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2187
2188     bool isReference() const { return ValueAndIsReference.getInt(); }
2189     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2190       assert(isReference());
2191       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2192                                             refExpr->getType());
2193     }
2194
2195     llvm::Constant *getValue() const {
2196       assert(!isReference());
2197       return ValueAndIsReference.getPointer();
2198     }
2199   };
2200
2201   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2202
2203   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2204                                 AggValueSlot slot = AggValueSlot::ignored());
2205   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2206
2207   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2208                               const ObjCIvarDecl *Ivar);
2209   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2210
2211   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2212   /// if the Field is a reference, this will return the address of the reference
2213   /// and not the address of the value stored in the reference.
2214   LValue EmitLValueForFieldInitialization(LValue Base,
2215                                           const FieldDecl* Field);
2216
2217   LValue EmitLValueForIvar(QualType ObjectTy,
2218                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2219                            unsigned CVRQualifiers);
2220
2221   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2222   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2223   LValue EmitLambdaLValue(const LambdaExpr *E);
2224   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2225   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2226
2227   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2228   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2229   LValue EmitStmtExprLValue(const StmtExpr *E);
2230   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2231   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2232   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2233
2234   //===--------------------------------------------------------------------===//
2235   //                         Scalar Expression Emission
2236   //===--------------------------------------------------------------------===//
2237
2238   /// EmitCall - Generate a call of the given function, expecting the given
2239   /// result type, and using the given argument list which specifies both the
2240   /// LLVM arguments and the types they were derived from.
2241   ///
2242   /// \param TargetDecl - If given, the decl of the function in a direct call;
2243   /// used to set attributes on the call (noreturn, etc.).
2244   RValue EmitCall(const CGFunctionInfo &FnInfo,
2245                   llvm::Value *Callee,
2246                   ReturnValueSlot ReturnValue,
2247                   const CallArgList &Args,
2248                   const Decl *TargetDecl = 0,
2249                   llvm::Instruction **callOrInvoke = 0);
2250
2251   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2252                   ReturnValueSlot ReturnValue,
2253                   CallExpr::const_arg_iterator ArgBeg,
2254                   CallExpr::const_arg_iterator ArgEnd,
2255                   const Decl *TargetDecl = 0);
2256   RValue EmitCallExpr(const CallExpr *E,
2257                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2258
2259   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2260                                   ArrayRef<llvm::Value *> Args,
2261                                   const Twine &Name = "");
2262   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2263                                   const Twine &Name = "");
2264
2265   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2266                                 llvm::Type *Ty);
2267   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2268                                 llvm::Value *This, llvm::Type *Ty);
2269   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 
2270                                          NestedNameSpecifier *Qual,
2271                                          llvm::Type *Ty);
2272   
2273   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2274                                                    CXXDtorType Type, 
2275                                                    const CXXRecordDecl *RD);
2276
2277   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2278                            SourceLocation CallLoc,
2279                            llvm::Value *Callee,
2280                            ReturnValueSlot ReturnValue,
2281                            llvm::Value *This,
2282                            llvm::Value *VTT,
2283                            CallExpr::const_arg_iterator ArgBeg,
2284                            CallExpr::const_arg_iterator ArgEnd);
2285   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2286                                ReturnValueSlot ReturnValue);
2287   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2288                                       ReturnValueSlot ReturnValue);
2289
2290   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2291                                            const CXXMethodDecl *MD,
2292                                            llvm::Value *This);
2293   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2294                                        const CXXMethodDecl *MD,
2295                                        ReturnValueSlot ReturnValue);
2296
2297   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2298                                 ReturnValueSlot ReturnValue);
2299
2300
2301   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2302                          unsigned BuiltinID, const CallExpr *E);
2303
2304   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2305
2306   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2307   /// is unhandled by the current target.
2308   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2309
2310   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2311   llvm::Value *EmitNeonCall(llvm::Function *F,
2312                             SmallVectorImpl<llvm::Value*> &O,
2313                             const char *name,
2314                             unsigned shift = 0, bool rightshift = false);
2315   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2316   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2317                                    bool negateForRightShift);
2318
2319   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2320   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2321   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2322
2323   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2324   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2325   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2326   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2327   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2328   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2329                                 const ObjCMethodDecl *MethodWithObjects);
2330   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2331   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2332                              ReturnValueSlot Return = ReturnValueSlot());
2333
2334   /// Retrieves the default cleanup kind for an ARC cleanup.
2335   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2336   CleanupKind getARCCleanupKind() {
2337     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2338              ? NormalAndEHCleanup : NormalCleanup;
2339   }
2340
2341   // ARC primitives.
2342   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2343   void EmitARCDestroyWeak(llvm::Value *addr);
2344   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2345   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2346   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2347                                 bool ignored);
2348   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2349   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2350   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2351   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2352   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2353                                   bool ignored);
2354   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2355                                       bool ignored);
2356   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2357   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2358   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2359   void EmitARCDestroyStrong(llvm::Value *addr, bool precise);
2360   void EmitARCRelease(llvm::Value *value, bool precise);
2361   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2362   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2363   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2364   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2365
2366   std::pair<LValue,llvm::Value*>
2367   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2368   std::pair<LValue,llvm::Value*>
2369   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2370
2371   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2372
2373   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2374   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2375   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2376
2377   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2378   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2379   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2380
2381   static Destroyer destroyARCStrongImprecise;
2382   static Destroyer destroyARCStrongPrecise;
2383   static Destroyer destroyARCWeak;
2384
2385   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 
2386   llvm::Value *EmitObjCAutoreleasePoolPush();
2387   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2388   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2389   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 
2390
2391   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2392   /// expression. Will emit a temporary variable if E is not an LValue.
2393   RValue EmitReferenceBindingToExpr(const Expr* E,
2394                                     const NamedDecl *InitializedDecl);
2395
2396   //===--------------------------------------------------------------------===//
2397   //                           Expression Emission
2398   //===--------------------------------------------------------------------===//
2399
2400   // Expressions are broken into three classes: scalar, complex, aggregate.
2401
2402   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2403   /// scalar type, returning the result.
2404   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2405
2406   /// EmitScalarConversion - Emit a conversion from the specified type to the
2407   /// specified destination type, both of which are LLVM scalar types.
2408   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2409                                     QualType DstTy);
2410
2411   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2412   /// complex type to the specified destination type, where the destination type
2413   /// is an LLVM scalar type.
2414   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2415                                              QualType DstTy);
2416
2417
2418   /// EmitAggExpr - Emit the computation of the specified expression
2419   /// of aggregate type.  The result is computed into the given slot,
2420   /// which may be null to indicate that the value is not needed.
2421   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2422
2423   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2424   /// aggregate type into a temporary LValue.
2425   LValue EmitAggExprToLValue(const Expr *E);
2426
2427   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2428   /// pointers.
2429   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2430                                 QualType Ty);
2431
2432   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2433   /// make sure it survives garbage collection until this point.
2434   void EmitExtendGCLifetime(llvm::Value *object);
2435
2436   /// EmitComplexExpr - Emit the computation of the specified expression of
2437   /// complex type, returning the result.
2438   ComplexPairTy EmitComplexExpr(const Expr *E,
2439                                 bool IgnoreReal = false,
2440                                 bool IgnoreImag = false);
2441
2442   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2443   /// of complex type, storing into the specified Value*.
2444   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2445                                bool DestIsVolatile);
2446
2447   /// StoreComplexToAddr - Store a complex number into the specified address.
2448   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2449                           bool DestIsVolatile);
2450   /// LoadComplexFromAddr - Load a complex number from the specified address.
2451   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2452
2453   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2454   /// a static local variable.
2455   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2456                                             const char *Separator,
2457                                        llvm::GlobalValue::LinkageTypes Linkage);
2458
2459   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2460   /// global variable that has already been created for it.  If the initializer
2461   /// has a different type than GV does, this may free GV and return a different
2462   /// one.  Otherwise it just returns GV.
2463   llvm::GlobalVariable *
2464   AddInitializerToStaticVarDecl(const VarDecl &D,
2465                                 llvm::GlobalVariable *GV);
2466
2467
2468   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2469   /// variable with global storage.
2470   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2471                                 bool PerformInit);
2472
2473   /// Call atexit() with a function that passes the given argument to
2474   /// the given function.
2475   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2476
2477   /// Emit code in this function to perform a guarded variable
2478   /// initialization.  Guarded initializations are used when it's not
2479   /// possible to prove that an initialization will be done exactly
2480   /// once, e.g. with a static local variable or a static data member
2481   /// of a class template.
2482   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2483                           bool PerformInit);
2484
2485   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2486   /// variables.
2487   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2488                                  llvm::Constant **Decls,
2489                                  unsigned NumDecls);
2490
2491   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2492   /// variables.
2493   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2494                                   const std::vector<std::pair<llvm::WeakVH,
2495                                   llvm::Constant*> > &DtorsAndObjects);
2496
2497   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2498                                         const VarDecl *D,
2499                                         llvm::GlobalVariable *Addr,
2500                                         bool PerformInit);
2501
2502   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2503   
2504   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2505                                   const Expr *Exp);
2506
2507   void enterFullExpression(const ExprWithCleanups *E) {
2508     if (E->getNumObjects() == 0) return;
2509     enterNonTrivialFullExpression(E);
2510   }
2511   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2512
2513   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2514
2515   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2516
2517   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2518
2519   //===--------------------------------------------------------------------===//
2520   //                         Annotations Emission
2521   //===--------------------------------------------------------------------===//
2522
2523   /// Emit an annotation call (intrinsic or builtin).
2524   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2525                                   llvm::Value *AnnotatedVal,
2526                                   llvm::StringRef AnnotationStr,
2527                                   SourceLocation Location);
2528
2529   /// Emit local annotations for the local variable V, declared by D.
2530   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2531
2532   /// Emit field annotations for the given field & value. Returns the
2533   /// annotation result.
2534   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2535
2536   //===--------------------------------------------------------------------===//
2537   //                             Internal Helpers
2538   //===--------------------------------------------------------------------===//
2539
2540   /// ContainsLabel - Return true if the statement contains a label in it.  If
2541   /// this statement is not executed normally, it not containing a label means
2542   /// that we can just remove the code.
2543   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2544
2545   /// containsBreak - Return true if the statement contains a break out of it.
2546   /// If the statement (recursively) contains a switch or loop with a break
2547   /// inside of it, this is fine.
2548   static bool containsBreak(const Stmt *S);
2549   
2550   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2551   /// to a constant, or if it does but contains a label, return false.  If it
2552   /// constant folds return true and set the boolean result in Result.
2553   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2554
2555   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2556   /// to a constant, or if it does but contains a label, return false.  If it
2557   /// constant folds return true and set the folded value.
2558   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2559   
2560   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2561   /// if statement) to the specified blocks.  Based on the condition, this might
2562   /// try to simplify the codegen of the conditional based on the branch.
2563   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2564                             llvm::BasicBlock *FalseBlock);
2565
2566   /// \brief Emit a description of a type in a format suitable for passing to
2567   /// a runtime sanitizer handler.
2568   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2569
2570   /// \brief Convert a value into a format suitable for passing to a runtime
2571   /// sanitizer handler.
2572   llvm::Value *EmitCheckValue(llvm::Value *V);
2573
2574   /// \brief Emit a description of a source location in a format suitable for
2575   /// passing to a runtime sanitizer handler.
2576   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2577
2578   /// \brief Create a basic block that will call a handler function in a
2579   /// sanitizer runtime with the provided arguments, and create a conditional
2580   /// branch to it.
2581   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2582                  llvm::ArrayRef<llvm::Constant *> StaticArgs,
2583                  llvm::ArrayRef<llvm::Value *> DynamicArgs,
2584                  bool Recoverable = false);
2585
2586   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2587   /// conditional branch to it, for the -ftrapv checks.
2588   void EmitTrapvCheck(llvm::Value *Checked);
2589
2590   /// EmitCallArg - Emit a single call argument.
2591   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2592
2593   /// EmitDelegateCallArg - We are performing a delegate call; that
2594   /// is, the current function is delegating to another one.  Produce
2595   /// a r-value suitable for passing the given parameter.
2596   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2597
2598   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2599   /// point operation, expressed as the maximum relative error in ulp.
2600   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2601
2602 private:
2603   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2604   void EmitReturnOfRValue(RValue RV, QualType Ty);
2605
2606   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2607   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2608   ///
2609   /// \param AI - The first function argument of the expansion.
2610   /// \return The argument following the last expanded function
2611   /// argument.
2612   llvm::Function::arg_iterator
2613   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2614                      llvm::Function::arg_iterator AI);
2615
2616   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2617   /// Ty, into individual arguments on the provided vector \arg Args. See
2618   /// ABIArgInfo::Expand.
2619   void ExpandTypeToArgs(QualType Ty, RValue Src,
2620                         SmallVector<llvm::Value*, 16> &Args,
2621                         llvm::FunctionType *IRFuncTy);
2622
2623   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2624                             const Expr *InputExpr, std::string &ConstraintStr);
2625
2626   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2627                                   LValue InputValue, QualType InputType,
2628                                   std::string &ConstraintStr);
2629
2630   /// EmitCallArgs - Emit call arguments for a function.
2631   /// The CallArgTypeInfo parameter is used for iterating over the known
2632   /// argument types of the function being called.
2633   template<typename T>
2634   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2635                     CallExpr::const_arg_iterator ArgBeg,
2636                     CallExpr::const_arg_iterator ArgEnd) {
2637       CallExpr::const_arg_iterator Arg = ArgBeg;
2638
2639     // First, use the argument types that the type info knows about
2640     if (CallArgTypeInfo) {
2641       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2642            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2643         assert(Arg != ArgEnd && "Running over edge of argument list!");
2644         QualType ArgType = *I;
2645 #ifndef NDEBUG
2646         QualType ActualArgType = Arg->getType();
2647         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2648           QualType ActualBaseType =
2649             ActualArgType->getAs<PointerType>()->getPointeeType();
2650           QualType ArgBaseType =
2651             ArgType->getAs<PointerType>()->getPointeeType();
2652           if (ArgBaseType->isVariableArrayType()) {
2653             if (const VariableArrayType *VAT =
2654                 getContext().getAsVariableArrayType(ActualBaseType)) {
2655               if (!VAT->getSizeExpr())
2656                 ActualArgType = ArgType;
2657             }
2658           }
2659         }
2660         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2661                getTypePtr() ==
2662                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2663                "type mismatch in call argument!");
2664 #endif
2665         EmitCallArg(Args, *Arg, ArgType);
2666       }
2667
2668       // Either we've emitted all the call args, or we have a call to a
2669       // variadic function.
2670       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2671              "Extra arguments in non-variadic function!");
2672
2673     }
2674
2675     // If we still have any arguments, emit them using the type of the argument.
2676     for (; Arg != ArgEnd; ++Arg)
2677       EmitCallArg(Args, *Arg, Arg->getType());
2678   }
2679
2680   const TargetCodeGenInfo &getTargetHooks() const {
2681     return CGM.getTargetCodeGenInfo();
2682   }
2683
2684   void EmitDeclMetadata();
2685
2686   CodeGenModule::ByrefHelpers *
2687   buildByrefHelpers(llvm::StructType &byrefType,
2688                     const AutoVarEmission &emission);
2689
2690   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2691
2692   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2693   /// value and compute our best estimate of the alignment of the pointee.
2694   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2695 };
2696
2697 /// Helper class with most of the code for saving a value for a
2698 /// conditional expression cleanup.
2699 struct DominatingLLVMValue {
2700   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2701
2702   /// Answer whether the given value needs extra work to be saved.
2703   static bool needsSaving(llvm::Value *value) {
2704     // If it's not an instruction, we don't need to save.
2705     if (!isa<llvm::Instruction>(value)) return false;
2706
2707     // If it's an instruction in the entry block, we don't need to save.
2708     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2709     return (block != &block->getParent()->getEntryBlock());
2710   }
2711
2712   /// Try to save the given value.
2713   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2714     if (!needsSaving(value)) return saved_type(value, false);
2715
2716     // Otherwise we need an alloca.
2717     llvm::Value *alloca =
2718       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2719     CGF.Builder.CreateStore(value, alloca);
2720
2721     return saved_type(alloca, true);
2722   }
2723
2724   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2725     if (!value.getInt()) return value.getPointer();
2726     return CGF.Builder.CreateLoad(value.getPointer());
2727   }
2728 };
2729
2730 /// A partial specialization of DominatingValue for llvm::Values that
2731 /// might be llvm::Instructions.
2732 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2733   typedef T *type;
2734   static type restore(CodeGenFunction &CGF, saved_type value) {
2735     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2736   }
2737 };
2738
2739 /// A specialization of DominatingValue for RValue.
2740 template <> struct DominatingValue<RValue> {
2741   typedef RValue type;
2742   class saved_type {
2743     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2744                 AggregateAddress, ComplexAddress };
2745
2746     llvm::Value *Value;
2747     Kind K;
2748     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2749
2750   public:
2751     static bool needsSaving(RValue value);
2752     static saved_type save(CodeGenFunction &CGF, RValue value);
2753     RValue restore(CodeGenFunction &CGF);
2754
2755     // implementations in CGExprCXX.cpp
2756   };
2757
2758   static bool needsSaving(type value) {
2759     return saved_type::needsSaving(value);
2760   }
2761   static saved_type save(CodeGenFunction &CGF, type value) {
2762     return saved_type::save(CGF, value);
2763   }
2764   static type restore(CodeGenFunction &CGF, saved_type value) {
2765     return value.restore(CGF);
2766   }
2767 };
2768
2769 }  // end namespace CodeGen
2770 }  // end namespace clang
2771
2772 #endif