]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.h
MFV: tcpdump 4.4.0.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenFunction.h
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/ABI.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ValueHandle.h"
33
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80
81 /// The kind of evaluation to perform on values of a particular
82 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
83 /// CGExprAgg?
84 ///
85 /// TODO: should vectors maybe be split out into their own thing?
86 enum TypeEvaluationKind {
87   TEK_Scalar,
88   TEK_Complex,
89   TEK_Aggregate
90 };
91
92 /// A branch fixup.  These are required when emitting a goto to a
93 /// label which hasn't been emitted yet.  The goto is optimistically
94 /// emitted as a branch to the basic block for the label, and (if it
95 /// occurs in a scope with non-trivial cleanups) a fixup is added to
96 /// the innermost cleanup.  When a (normal) cleanup is popped, any
97 /// unresolved fixups in that scope are threaded through the cleanup.
98 struct BranchFixup {
99   /// The block containing the terminator which needs to be modified
100   /// into a switch if this fixup is resolved into the current scope.
101   /// If null, LatestBranch points directly to the destination.
102   llvm::BasicBlock *OptimisticBranchBlock;
103
104   /// The ultimate destination of the branch.
105   ///
106   /// This can be set to null to indicate that this fixup was
107   /// successfully resolved.
108   llvm::BasicBlock *Destination;
109
110   /// The destination index value.
111   unsigned DestinationIndex;
112
113   /// The initial branch of the fixup.
114   llvm::BranchInst *InitialBranch;
115 };
116
117 template <class T> struct InvariantValue {
118   typedef T type;
119   typedef T saved_type;
120   static bool needsSaving(type value) { return false; }
121   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
122   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
123 };
124
125 /// A metaprogramming class for ensuring that a value will dominate an
126 /// arbitrary position in a function.
127 template <class T> struct DominatingValue : InvariantValue<T> {};
128
129 template <class T, bool mightBeInstruction =
130             llvm::is_base_of<llvm::Value, T>::value &&
131             !llvm::is_base_of<llvm::Constant, T>::value &&
132             !llvm::is_base_of<llvm::BasicBlock, T>::value>
133 struct DominatingPointer;
134 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
135 // template <class T> struct DominatingPointer<T,true> at end of file
136
137 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
138
139 enum CleanupKind {
140   EHCleanup = 0x1,
141   NormalCleanup = 0x2,
142   NormalAndEHCleanup = EHCleanup | NormalCleanup,
143
144   InactiveCleanup = 0x4,
145   InactiveEHCleanup = EHCleanup | InactiveCleanup,
146   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
147   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
148 };
149
150 /// A stack of scopes which respond to exceptions, including cleanups
151 /// and catch blocks.
152 class EHScopeStack {
153 public:
154   /// A saved depth on the scope stack.  This is necessary because
155   /// pushing scopes onto the stack invalidates iterators.
156   class stable_iterator {
157     friend class EHScopeStack;
158
159     /// Offset from StartOfData to EndOfBuffer.
160     ptrdiff_t Size;
161
162     stable_iterator(ptrdiff_t Size) : Size(Size) {}
163
164   public:
165     static stable_iterator invalid() { return stable_iterator(-1); }
166     stable_iterator() : Size(-1) {}
167
168     bool isValid() const { return Size >= 0; }
169
170     /// Returns true if this scope encloses I.
171     /// Returns false if I is invalid.
172     /// This scope must be valid.
173     bool encloses(stable_iterator I) const { return Size <= I.Size; }
174
175     /// Returns true if this scope strictly encloses I: that is,
176     /// if it encloses I and is not I.
177     /// Returns false is I is invalid.
178     /// This scope must be valid.
179     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
180
181     friend bool operator==(stable_iterator A, stable_iterator B) {
182       return A.Size == B.Size;
183     }
184     friend bool operator!=(stable_iterator A, stable_iterator B) {
185       return A.Size != B.Size;
186     }
187   };
188
189   /// Information for lazily generating a cleanup.  Subclasses must be
190   /// POD-like: cleanups will not be destructed, and they will be
191   /// allocated on the cleanup stack and freely copied and moved
192   /// around.
193   ///
194   /// Cleanup implementations should generally be declared in an
195   /// anonymous namespace.
196   class Cleanup {
197     // Anchor the construction vtable.
198     virtual void anchor();
199   public:
200     /// Generation flags.
201     class Flags {
202       enum {
203         F_IsForEH             = 0x1,
204         F_IsNormalCleanupKind = 0x2,
205         F_IsEHCleanupKind     = 0x4
206       };
207       unsigned flags;
208
209     public:
210       Flags() : flags(0) {}
211
212       /// isForEH - true if the current emission is for an EH cleanup.
213       bool isForEHCleanup() const { return flags & F_IsForEH; }
214       bool isForNormalCleanup() const { return !isForEHCleanup(); }
215       void setIsForEHCleanup() { flags |= F_IsForEH; }
216
217       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
218       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
219
220       /// isEHCleanupKind - true if the cleanup was pushed as an EH
221       /// cleanup.
222       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
223       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
224     };
225
226     // Provide a virtual destructor to suppress a very common warning
227     // that unfortunately cannot be suppressed without this.  Cleanups
228     // should not rely on this destructor ever being called.
229     virtual ~Cleanup() {}
230
231     /// Emit the cleanup.  For normal cleanups, this is run in the
232     /// same EH context as when the cleanup was pushed, i.e. the
233     /// immediately-enclosing context of the cleanup scope.  For
234     /// EH cleanups, this is run in a terminate context.
235     ///
236     // \param flags cleanup kind.
237     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
238   };
239
240   /// ConditionalCleanupN stores the saved form of its N parameters,
241   /// then restores them and performs the cleanup.
242   template <class T, class A0>
243   class ConditionalCleanup1 : public Cleanup {
244     typedef typename DominatingValue<A0>::saved_type A0_saved;
245     A0_saved a0_saved;
246
247     void Emit(CodeGenFunction &CGF, Flags flags) {
248       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
249       T(a0).Emit(CGF, flags);
250     }
251
252   public:
253     ConditionalCleanup1(A0_saved a0)
254       : a0_saved(a0) {}
255   };
256
257   template <class T, class A0, class A1>
258   class ConditionalCleanup2 : public Cleanup {
259     typedef typename DominatingValue<A0>::saved_type A0_saved;
260     typedef typename DominatingValue<A1>::saved_type A1_saved;
261     A0_saved a0_saved;
262     A1_saved a1_saved;
263
264     void Emit(CodeGenFunction &CGF, Flags flags) {
265       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
266       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
267       T(a0, a1).Emit(CGF, flags);
268     }
269
270   public:
271     ConditionalCleanup2(A0_saved a0, A1_saved a1)
272       : a0_saved(a0), a1_saved(a1) {}
273   };
274
275   template <class T, class A0, class A1, class A2>
276   class ConditionalCleanup3 : public Cleanup {
277     typedef typename DominatingValue<A0>::saved_type A0_saved;
278     typedef typename DominatingValue<A1>::saved_type A1_saved;
279     typedef typename DominatingValue<A2>::saved_type A2_saved;
280     A0_saved a0_saved;
281     A1_saved a1_saved;
282     A2_saved a2_saved;
283     
284     void Emit(CodeGenFunction &CGF, Flags flags) {
285       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
286       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
287       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
288       T(a0, a1, a2).Emit(CGF, flags);
289     }
290     
291   public:
292     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
293       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
294   };
295
296   template <class T, class A0, class A1, class A2, class A3>
297   class ConditionalCleanup4 : public Cleanup {
298     typedef typename DominatingValue<A0>::saved_type A0_saved;
299     typedef typename DominatingValue<A1>::saved_type A1_saved;
300     typedef typename DominatingValue<A2>::saved_type A2_saved;
301     typedef typename DominatingValue<A3>::saved_type A3_saved;
302     A0_saved a0_saved;
303     A1_saved a1_saved;
304     A2_saved a2_saved;
305     A3_saved a3_saved;
306     
307     void Emit(CodeGenFunction &CGF, Flags flags) {
308       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
309       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
310       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
311       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
312       T(a0, a1, a2, a3).Emit(CGF, flags);
313     }
314     
315   public:
316     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
317       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
318   };
319
320 private:
321   // The implementation for this class is in CGException.h and
322   // CGException.cpp; the definition is here because it's used as a
323   // member of CodeGenFunction.
324
325   /// The start of the scope-stack buffer, i.e. the allocated pointer
326   /// for the buffer.  All of these pointers are either simultaneously
327   /// null or simultaneously valid.
328   char *StartOfBuffer;
329
330   /// The end of the buffer.
331   char *EndOfBuffer;
332
333   /// The first valid entry in the buffer.
334   char *StartOfData;
335
336   /// The innermost normal cleanup on the stack.
337   stable_iterator InnermostNormalCleanup;
338
339   /// The innermost EH scope on the stack.
340   stable_iterator InnermostEHScope;
341
342   /// The current set of branch fixups.  A branch fixup is a jump to
343   /// an as-yet unemitted label, i.e. a label for which we don't yet
344   /// know the EH stack depth.  Whenever we pop a cleanup, we have
345   /// to thread all the current branch fixups through it.
346   ///
347   /// Fixups are recorded as the Use of the respective branch or
348   /// switch statement.  The use points to the final destination.
349   /// When popping out of a cleanup, these uses are threaded through
350   /// the cleanup and adjusted to point to the new cleanup.
351   ///
352   /// Note that branches are allowed to jump into protected scopes
353   /// in certain situations;  e.g. the following code is legal:
354   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
355   ///     goto foo;
356   ///     A a;
357   ///    foo:
358   ///     bar();
359   SmallVector<BranchFixup, 8> BranchFixups;
360
361   char *allocate(size_t Size);
362
363   void *pushCleanup(CleanupKind K, size_t DataSize);
364
365 public:
366   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
367                    InnermostNormalCleanup(stable_end()),
368                    InnermostEHScope(stable_end()) {}
369   ~EHScopeStack() { delete[] StartOfBuffer; }
370
371   // Variadic templates would make this not terrible.
372
373   /// Push a lazily-created cleanup on the stack.
374   template <class T>
375   void pushCleanup(CleanupKind Kind) {
376     void *Buffer = pushCleanup(Kind, sizeof(T));
377     Cleanup *Obj = new(Buffer) T();
378     (void) Obj;
379   }
380
381   /// Push a lazily-created cleanup on the stack.
382   template <class T, class A0>
383   void pushCleanup(CleanupKind Kind, A0 a0) {
384     void *Buffer = pushCleanup(Kind, sizeof(T));
385     Cleanup *Obj = new(Buffer) T(a0);
386     (void) Obj;
387   }
388
389   /// Push a lazily-created cleanup on the stack.
390   template <class T, class A0, class A1>
391   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
392     void *Buffer = pushCleanup(Kind, sizeof(T));
393     Cleanup *Obj = new(Buffer) T(a0, a1);
394     (void) Obj;
395   }
396
397   /// Push a lazily-created cleanup on the stack.
398   template <class T, class A0, class A1, class A2>
399   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
400     void *Buffer = pushCleanup(Kind, sizeof(T));
401     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
402     (void) Obj;
403   }
404
405   /// Push a lazily-created cleanup on the stack.
406   template <class T, class A0, class A1, class A2, class A3>
407   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
408     void *Buffer = pushCleanup(Kind, sizeof(T));
409     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
410     (void) Obj;
411   }
412
413   /// Push a lazily-created cleanup on the stack.
414   template <class T, class A0, class A1, class A2, class A3, class A4>
415   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
416     void *Buffer = pushCleanup(Kind, sizeof(T));
417     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
418     (void) Obj;
419   }
420
421   // Feel free to add more variants of the following:
422
423   /// Push a cleanup with non-constant storage requirements on the
424   /// stack.  The cleanup type must provide an additional static method:
425   ///   static size_t getExtraSize(size_t);
426   /// The argument to this method will be the value N, which will also
427   /// be passed as the first argument to the constructor.
428   ///
429   /// The data stored in the extra storage must obey the same
430   /// restrictions as normal cleanup member data.
431   ///
432   /// The pointer returned from this method is valid until the cleanup
433   /// stack is modified.
434   template <class T, class A0, class A1, class A2>
435   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
436     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
437     return new (Buffer) T(N, a0, a1, a2);
438   }
439
440   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
441   void popCleanup();
442
443   /// Push a set of catch handlers on the stack.  The catch is
444   /// uninitialized and will need to have the given number of handlers
445   /// set on it.
446   class EHCatchScope *pushCatch(unsigned NumHandlers);
447
448   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
449   void popCatch();
450
451   /// Push an exceptions filter on the stack.
452   class EHFilterScope *pushFilter(unsigned NumFilters);
453
454   /// Pops an exceptions filter off the stack.
455   void popFilter();
456
457   /// Push a terminate handler on the stack.
458   void pushTerminate();
459
460   /// Pops a terminate handler off the stack.
461   void popTerminate();
462
463   /// Determines whether the exception-scopes stack is empty.
464   bool empty() const { return StartOfData == EndOfBuffer; }
465
466   bool requiresLandingPad() const {
467     return InnermostEHScope != stable_end();
468   }
469
470   /// Determines whether there are any normal cleanups on the stack.
471   bool hasNormalCleanups() const {
472     return InnermostNormalCleanup != stable_end();
473   }
474
475   /// Returns the innermost normal cleanup on the stack, or
476   /// stable_end() if there are no normal cleanups.
477   stable_iterator getInnermostNormalCleanup() const {
478     return InnermostNormalCleanup;
479   }
480   stable_iterator getInnermostActiveNormalCleanup() const;
481
482   stable_iterator getInnermostEHScope() const {
483     return InnermostEHScope;
484   }
485
486   stable_iterator getInnermostActiveEHScope() const;
487
488   /// An unstable reference to a scope-stack depth.  Invalidated by
489   /// pushes but not pops.
490   class iterator;
491
492   /// Returns an iterator pointing to the innermost EH scope.
493   iterator begin() const;
494
495   /// Returns an iterator pointing to the outermost EH scope.
496   iterator end() const;
497
498   /// Create a stable reference to the top of the EH stack.  The
499   /// returned reference is valid until that scope is popped off the
500   /// stack.
501   stable_iterator stable_begin() const {
502     return stable_iterator(EndOfBuffer - StartOfData);
503   }
504
505   /// Create a stable reference to the bottom of the EH stack.
506   static stable_iterator stable_end() {
507     return stable_iterator(0);
508   }
509
510   /// Translates an iterator into a stable_iterator.
511   stable_iterator stabilize(iterator it) const;
512
513   /// Turn a stable reference to a scope depth into a unstable pointer
514   /// to the EH stack.
515   iterator find(stable_iterator save) const;
516
517   /// Removes the cleanup pointed to by the given stable_iterator.
518   void removeCleanup(stable_iterator save);
519
520   /// Add a branch fixup to the current cleanup scope.
521   BranchFixup &addBranchFixup() {
522     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
523     BranchFixups.push_back(BranchFixup());
524     return BranchFixups.back();
525   }
526
527   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
528   BranchFixup &getBranchFixup(unsigned I) {
529     assert(I < getNumBranchFixups());
530     return BranchFixups[I];
531   }
532
533   /// Pops lazily-removed fixups from the end of the list.  This
534   /// should only be called by procedures which have just popped a
535   /// cleanup or resolved one or more fixups.
536   void popNullFixups();
537
538   /// Clears the branch-fixups list.  This should only be called by
539   /// ResolveAllBranchFixups.
540   void clearFixups() { BranchFixups.clear(); }
541 };
542
543 /// CodeGenFunction - This class organizes the per-function state that is used
544 /// while generating LLVM code.
545 class CodeGenFunction : public CodeGenTypeCache {
546   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
547   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
548
549   friend class CGCXXABI;
550 public:
551   /// A jump destination is an abstract label, branching to which may
552   /// require a jump out through normal cleanups.
553   struct JumpDest {
554     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
555     JumpDest(llvm::BasicBlock *Block,
556              EHScopeStack::stable_iterator Depth,
557              unsigned Index)
558       : Block(Block), ScopeDepth(Depth), Index(Index) {}
559
560     bool isValid() const { return Block != 0; }
561     llvm::BasicBlock *getBlock() const { return Block; }
562     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
563     unsigned getDestIndex() const { return Index; }
564
565     // This should be used cautiously.
566     void setScopeDepth(EHScopeStack::stable_iterator depth) {
567       ScopeDepth = depth;
568     }
569
570   private:
571     llvm::BasicBlock *Block;
572     EHScopeStack::stable_iterator ScopeDepth;
573     unsigned Index;
574   };
575
576   CodeGenModule &CGM;  // Per-module state.
577   const TargetInfo &Target;
578
579   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
580   CGBuilderTy Builder;
581
582   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
583   /// This excludes BlockDecls.
584   const Decl *CurFuncDecl;
585   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
586   const Decl *CurCodeDecl;
587   const CGFunctionInfo *CurFnInfo;
588   QualType FnRetTy;
589   llvm::Function *CurFn;
590
591   /// CurGD - The GlobalDecl for the current function being compiled.
592   GlobalDecl CurGD;
593
594   /// PrologueCleanupDepth - The cleanup depth enclosing all the
595   /// cleanups associated with the parameters.
596   EHScopeStack::stable_iterator PrologueCleanupDepth;
597
598   /// ReturnBlock - Unified return block.
599   JumpDest ReturnBlock;
600
601   /// ReturnValue - The temporary alloca to hold the return value. This is null
602   /// iff the function has no return value.
603   llvm::Value *ReturnValue;
604
605   /// AllocaInsertPoint - This is an instruction in the entry block before which
606   /// we prefer to insert allocas.
607   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
608
609   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
610   /// potentially higher performance penalties.
611   unsigned char BoundsChecking;
612
613   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
614   /// calls to EmitTypeCheck can be skipped.
615   bool SanitizePerformTypeCheck;
616
617   /// \brief Sanitizer options to use for this function.
618   const SanitizerOptions *SanOpts;
619
620   /// In ARC, whether we should autorelease the return value.
621   bool AutoreleaseResult;
622
623   const CodeGen::CGBlockInfo *BlockInfo;
624   llvm::Value *BlockPointer;
625
626   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
627   FieldDecl *LambdaThisCaptureField;
628
629   /// \brief A mapping from NRVO variables to the flags used to indicate
630   /// when the NRVO has been applied to this variable.
631   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
632
633   EHScopeStack EHStack;
634
635   /// i32s containing the indexes of the cleanup destinations.
636   llvm::AllocaInst *NormalCleanupDest;
637
638   unsigned NextCleanupDestIndex;
639
640   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
641   CGBlockInfo *FirstBlockInfo;
642
643   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
644   llvm::BasicBlock *EHResumeBlock;
645
646   /// The exception slot.  All landing pads write the current exception pointer
647   /// into this alloca.
648   llvm::Value *ExceptionSlot;
649
650   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
651   /// write the current selector value into this alloca.
652   llvm::AllocaInst *EHSelectorSlot;
653
654   /// Emits a landing pad for the current EH stack.
655   llvm::BasicBlock *EmitLandingPad();
656
657   llvm::BasicBlock *getInvokeDestImpl();
658
659   template <class T>
660   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
661     return DominatingValue<T>::save(*this, value);
662   }
663
664 public:
665   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
666   /// rethrows.
667   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
668
669   /// A class controlling the emission of a finally block.
670   class FinallyInfo {
671     /// Where the catchall's edge through the cleanup should go.
672     JumpDest RethrowDest;
673
674     /// A function to call to enter the catch.
675     llvm::Constant *BeginCatchFn;
676
677     /// An i1 variable indicating whether or not the @finally is
678     /// running for an exception.
679     llvm::AllocaInst *ForEHVar;
680
681     /// An i8* variable into which the exception pointer to rethrow
682     /// has been saved.
683     llvm::AllocaInst *SavedExnVar;
684
685   public:
686     void enter(CodeGenFunction &CGF, const Stmt *Finally,
687                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
688                llvm::Constant *rethrowFn);
689     void exit(CodeGenFunction &CGF);
690   };
691
692   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
693   /// current full-expression.  Safe against the possibility that
694   /// we're currently inside a conditionally-evaluated expression.
695   template <class T, class A0>
696   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
697     // If we're not in a conditional branch, or if none of the
698     // arguments requires saving, then use the unconditional cleanup.
699     if (!isInConditionalBranch())
700       return EHStack.pushCleanup<T>(kind, a0);
701
702     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
703
704     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
705     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
706     initFullExprCleanup();
707   }
708
709   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
710   /// current full-expression.  Safe against the possibility that
711   /// we're currently inside a conditionally-evaluated expression.
712   template <class T, class A0, class A1>
713   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
714     // If we're not in a conditional branch, or if none of the
715     // arguments requires saving, then use the unconditional cleanup.
716     if (!isInConditionalBranch())
717       return EHStack.pushCleanup<T>(kind, a0, a1);
718
719     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721
722     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
723     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
724     initFullExprCleanup();
725   }
726
727   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
728   /// current full-expression.  Safe against the possibility that
729   /// we're currently inside a conditionally-evaluated expression.
730   template <class T, class A0, class A1, class A2>
731   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
732     // If we're not in a conditional branch, or if none of the
733     // arguments requires saving, then use the unconditional cleanup.
734     if (!isInConditionalBranch()) {
735       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
736     }
737     
738     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
739     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
740     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
741     
742     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
743     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
744     initFullExprCleanup();
745   }
746
747   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
748   /// current full-expression.  Safe against the possibility that
749   /// we're currently inside a conditionally-evaluated expression.
750   template <class T, class A0, class A1, class A2, class A3>
751   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
752     // If we're not in a conditional branch, or if none of the
753     // arguments requires saving, then use the unconditional cleanup.
754     if (!isInConditionalBranch()) {
755       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
756     }
757     
758     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
759     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
760     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
761     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
762     
763     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
764     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
765                                      a2_saved, a3_saved);
766     initFullExprCleanup();
767   }
768
769   /// Set up the last cleaup that was pushed as a conditional
770   /// full-expression cleanup.
771   void initFullExprCleanup();
772
773   /// PushDestructorCleanup - Push a cleanup to call the
774   /// complete-object destructor of an object of the given type at the
775   /// given address.  Does nothing if T is not a C++ class type with a
776   /// non-trivial destructor.
777   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
778
779   /// PushDestructorCleanup - Push a cleanup to call the
780   /// complete-object variant of the given destructor on the object at
781   /// the given address.
782   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
783                              llvm::Value *Addr);
784
785   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
786   /// process all branch fixups.
787   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
788
789   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
790   /// The block cannot be reactivated.  Pops it if it's the top of the
791   /// stack.
792   ///
793   /// \param DominatingIP - An instruction which is known to
794   ///   dominate the current IP (if set) and which lies along
795   ///   all paths of execution between the current IP and the
796   ///   the point at which the cleanup comes into scope.
797   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
798                               llvm::Instruction *DominatingIP);
799
800   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
801   /// Cannot be used to resurrect a deactivated cleanup.
802   ///
803   /// \param DominatingIP - An instruction which is known to
804   ///   dominate the current IP (if set) and which lies along
805   ///   all paths of execution between the current IP and the
806   ///   the point at which the cleanup comes into scope.
807   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
808                             llvm::Instruction *DominatingIP);
809
810   /// \brief Enters a new scope for capturing cleanups, all of which
811   /// will be executed once the scope is exited.
812   class RunCleanupsScope {
813     EHScopeStack::stable_iterator CleanupStackDepth;
814     bool OldDidCallStackSave;
815   protected:
816     bool PerformCleanup;
817   private:
818
819     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
820     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
821
822   protected:
823     CodeGenFunction& CGF;
824
825   public:
826     /// \brief Enter a new cleanup scope.
827     explicit RunCleanupsScope(CodeGenFunction &CGF)
828       : PerformCleanup(true), CGF(CGF)
829     {
830       CleanupStackDepth = CGF.EHStack.stable_begin();
831       OldDidCallStackSave = CGF.DidCallStackSave;
832       CGF.DidCallStackSave = false;
833     }
834
835     /// \brief Exit this cleanup scope, emitting any accumulated
836     /// cleanups.
837     ~RunCleanupsScope() {
838       if (PerformCleanup) {
839         CGF.DidCallStackSave = OldDidCallStackSave;
840         CGF.PopCleanupBlocks(CleanupStackDepth);
841       }
842     }
843
844     /// \brief Determine whether this scope requires any cleanups.
845     bool requiresCleanups() const {
846       return CGF.EHStack.stable_begin() != CleanupStackDepth;
847     }
848
849     /// \brief Force the emission of cleanups now, instead of waiting
850     /// until this object is destroyed.
851     void ForceCleanup() {
852       assert(PerformCleanup && "Already forced cleanup");
853       CGF.DidCallStackSave = OldDidCallStackSave;
854       CGF.PopCleanupBlocks(CleanupStackDepth);
855       PerformCleanup = false;
856     }
857   };
858
859   class LexicalScope: protected RunCleanupsScope {
860     SourceRange Range;
861     SmallVector<const LabelDecl*, 4> Labels;
862     LexicalScope *ParentScope;
863
864     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
865     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
866
867   public:
868     /// \brief Enter a new cleanup scope.
869     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
870       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
871       CGF.CurLexicalScope = this;
872       if (CGDebugInfo *DI = CGF.getDebugInfo())
873         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
874     }
875
876     void addLabel(const LabelDecl *label) {
877       assert(PerformCleanup && "adding label to dead scope?");
878       Labels.push_back(label);
879     }
880
881     /// \brief Exit this cleanup scope, emitting any accumulated
882     /// cleanups.
883     ~LexicalScope() {
884       if (CGDebugInfo *DI = CGF.getDebugInfo())
885         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
886
887       // If we should perform a cleanup, force them now.  Note that
888       // this ends the cleanup scope before rescoping any labels.
889       if (PerformCleanup) ForceCleanup();
890     }
891
892     /// \brief Force the emission of cleanups now, instead of waiting
893     /// until this object is destroyed.
894     void ForceCleanup() {
895       CGF.CurLexicalScope = ParentScope;
896       RunCleanupsScope::ForceCleanup();
897
898       if (!Labels.empty())
899         rescopeLabels();
900     }
901
902     void rescopeLabels();
903   };
904
905
906   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
907   /// the cleanup blocks that have been added.
908   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
909
910   void ResolveBranchFixups(llvm::BasicBlock *Target);
911
912   /// The given basic block lies in the current EH scope, but may be a
913   /// target of a potentially scope-crossing jump; get a stable handle
914   /// to which we can perform this jump later.
915   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
916     return JumpDest(Target,
917                     EHStack.getInnermostNormalCleanup(),
918                     NextCleanupDestIndex++);
919   }
920
921   /// The given basic block lies in the current EH scope, but may be a
922   /// target of a potentially scope-crossing jump; get a stable handle
923   /// to which we can perform this jump later.
924   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
925     return getJumpDestInCurrentScope(createBasicBlock(Name));
926   }
927
928   /// EmitBranchThroughCleanup - Emit a branch from the current insert
929   /// block through the normal cleanup handling code (if any) and then
930   /// on to \arg Dest.
931   void EmitBranchThroughCleanup(JumpDest Dest);
932   
933   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
934   /// specified destination obviously has no cleanups to run.  'false' is always
935   /// a conservatively correct answer for this method.
936   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
937
938   /// popCatchScope - Pops the catch scope at the top of the EHScope
939   /// stack, emitting any required code (other than the catch handlers
940   /// themselves).
941   void popCatchScope();
942
943   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
944   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
945
946   /// An object to manage conditionally-evaluated expressions.
947   class ConditionalEvaluation {
948     llvm::BasicBlock *StartBB;
949
950   public:
951     ConditionalEvaluation(CodeGenFunction &CGF)
952       : StartBB(CGF.Builder.GetInsertBlock()) {}
953
954     void begin(CodeGenFunction &CGF) {
955       assert(CGF.OutermostConditional != this);
956       if (!CGF.OutermostConditional)
957         CGF.OutermostConditional = this;
958     }
959
960     void end(CodeGenFunction &CGF) {
961       assert(CGF.OutermostConditional != 0);
962       if (CGF.OutermostConditional == this)
963         CGF.OutermostConditional = 0;
964     }
965
966     /// Returns a block which will be executed prior to each
967     /// evaluation of the conditional code.
968     llvm::BasicBlock *getStartingBlock() const {
969       return StartBB;
970     }
971   };
972
973   /// isInConditionalBranch - Return true if we're currently emitting
974   /// one branch or the other of a conditional expression.
975   bool isInConditionalBranch() const { return OutermostConditional != 0; }
976
977   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
978     assert(isInConditionalBranch());
979     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
980     new llvm::StoreInst(value, addr, &block->back());    
981   }
982
983   /// An RAII object to record that we're evaluating a statement
984   /// expression.
985   class StmtExprEvaluation {
986     CodeGenFunction &CGF;
987
988     /// We have to save the outermost conditional: cleanups in a
989     /// statement expression aren't conditional just because the
990     /// StmtExpr is.
991     ConditionalEvaluation *SavedOutermostConditional;
992
993   public:
994     StmtExprEvaluation(CodeGenFunction &CGF)
995       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
996       CGF.OutermostConditional = 0;
997     }
998
999     ~StmtExprEvaluation() {
1000       CGF.OutermostConditional = SavedOutermostConditional;
1001       CGF.EnsureInsertPoint();
1002     }
1003   };
1004
1005   /// An object which temporarily prevents a value from being
1006   /// destroyed by aggressive peephole optimizations that assume that
1007   /// all uses of a value have been realized in the IR.
1008   class PeepholeProtection {
1009     llvm::Instruction *Inst;
1010     friend class CodeGenFunction;
1011
1012   public:
1013     PeepholeProtection() : Inst(0) {}
1014   };
1015
1016   /// A non-RAII class containing all the information about a bound
1017   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1018   /// this which makes individual mappings very simple; using this
1019   /// class directly is useful when you have a variable number of
1020   /// opaque values or don't want the RAII functionality for some
1021   /// reason.
1022   class OpaqueValueMappingData {
1023     const OpaqueValueExpr *OpaqueValue;
1024     bool BoundLValue;
1025     CodeGenFunction::PeepholeProtection Protection;
1026
1027     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1028                            bool boundLValue)
1029       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1030   public:
1031     OpaqueValueMappingData() : OpaqueValue(0) {}
1032
1033     static bool shouldBindAsLValue(const Expr *expr) {
1034       // gl-values should be bound as l-values for obvious reasons.
1035       // Records should be bound as l-values because IR generation
1036       // always keeps them in memory.  Expressions of function type
1037       // act exactly like l-values but are formally required to be
1038       // r-values in C.
1039       return expr->isGLValue() ||
1040              expr->getType()->isRecordType() ||
1041              expr->getType()->isFunctionType();
1042     }
1043
1044     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1045                                        const OpaqueValueExpr *ov,
1046                                        const Expr *e) {
1047       if (shouldBindAsLValue(ov))
1048         return bind(CGF, ov, CGF.EmitLValue(e));
1049       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1050     }
1051
1052     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1053                                        const OpaqueValueExpr *ov,
1054                                        const LValue &lv) {
1055       assert(shouldBindAsLValue(ov));
1056       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1057       return OpaqueValueMappingData(ov, true);
1058     }
1059
1060     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1061                                        const OpaqueValueExpr *ov,
1062                                        const RValue &rv) {
1063       assert(!shouldBindAsLValue(ov));
1064       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1065
1066       OpaqueValueMappingData data(ov, false);
1067
1068       // Work around an extremely aggressive peephole optimization in
1069       // EmitScalarConversion which assumes that all other uses of a
1070       // value are extant.
1071       data.Protection = CGF.protectFromPeepholes(rv);
1072
1073       return data;
1074     }
1075
1076     bool isValid() const { return OpaqueValue != 0; }
1077     void clear() { OpaqueValue = 0; }
1078
1079     void unbind(CodeGenFunction &CGF) {
1080       assert(OpaqueValue && "no data to unbind!");
1081
1082       if (BoundLValue) {
1083         CGF.OpaqueLValues.erase(OpaqueValue);
1084       } else {
1085         CGF.OpaqueRValues.erase(OpaqueValue);
1086         CGF.unprotectFromPeepholes(Protection);
1087       }
1088     }
1089   };
1090
1091   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1092   class OpaqueValueMapping {
1093     CodeGenFunction &CGF;
1094     OpaqueValueMappingData Data;
1095
1096   public:
1097     static bool shouldBindAsLValue(const Expr *expr) {
1098       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1099     }
1100
1101     /// Build the opaque value mapping for the given conditional
1102     /// operator if it's the GNU ?: extension.  This is a common
1103     /// enough pattern that the convenience operator is really
1104     /// helpful.
1105     ///
1106     OpaqueValueMapping(CodeGenFunction &CGF,
1107                        const AbstractConditionalOperator *op) : CGF(CGF) {
1108       if (isa<ConditionalOperator>(op))
1109         // Leave Data empty.
1110         return;
1111
1112       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1113       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1114                                           e->getCommon());
1115     }
1116
1117     OpaqueValueMapping(CodeGenFunction &CGF,
1118                        const OpaqueValueExpr *opaqueValue,
1119                        LValue lvalue)
1120       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1121     }
1122
1123     OpaqueValueMapping(CodeGenFunction &CGF,
1124                        const OpaqueValueExpr *opaqueValue,
1125                        RValue rvalue)
1126       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1127     }
1128
1129     void pop() {
1130       Data.unbind(CGF);
1131       Data.clear();
1132     }
1133
1134     ~OpaqueValueMapping() {
1135       if (Data.isValid()) Data.unbind(CGF);
1136     }
1137   };
1138   
1139   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1140   /// number that holds the value.
1141   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1142
1143   /// BuildBlockByrefAddress - Computes address location of the
1144   /// variable which is declared as __block.
1145   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1146                                       const VarDecl *V);
1147 private:
1148   CGDebugInfo *DebugInfo;
1149   bool DisableDebugInfo;
1150
1151   /// If the current function returns 'this', use the field to keep track of
1152   /// the callee that returns 'this'.
1153   llvm::Value *CalleeWithThisReturn;
1154
1155   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1156   /// calling llvm.stacksave for multiple VLAs in the same scope.
1157   bool DidCallStackSave;
1158
1159   /// IndirectBranch - The first time an indirect goto is seen we create a block
1160   /// with an indirect branch.  Every time we see the address of a label taken,
1161   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1162   /// codegen'd as a jump to the IndirectBranch's basic block.
1163   llvm::IndirectBrInst *IndirectBranch;
1164
1165   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1166   /// decls.
1167   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1168   DeclMapTy LocalDeclMap;
1169
1170   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1171   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1172
1173   // BreakContinueStack - This keeps track of where break and continue
1174   // statements should jump to.
1175   struct BreakContinue {
1176     BreakContinue(JumpDest Break, JumpDest Continue)
1177       : BreakBlock(Break), ContinueBlock(Continue) {}
1178
1179     JumpDest BreakBlock;
1180     JumpDest ContinueBlock;
1181   };
1182   SmallVector<BreakContinue, 8> BreakContinueStack;
1183
1184   /// SwitchInsn - This is nearest current switch instruction. It is null if
1185   /// current context is not in a switch.
1186   llvm::SwitchInst *SwitchInsn;
1187
1188   /// CaseRangeBlock - This block holds if condition check for last case
1189   /// statement range in current switch instruction.
1190   llvm::BasicBlock *CaseRangeBlock;
1191
1192   /// OpaqueLValues - Keeps track of the current set of opaque value
1193   /// expressions.
1194   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1195   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1196
1197   // VLASizeMap - This keeps track of the associated size for each VLA type.
1198   // We track this by the size expression rather than the type itself because
1199   // in certain situations, like a const qualifier applied to an VLA typedef,
1200   // multiple VLA types can share the same size expression.
1201   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1202   // enter/leave scopes.
1203   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1204
1205   /// A block containing a single 'unreachable' instruction.  Created
1206   /// lazily by getUnreachableBlock().
1207   llvm::BasicBlock *UnreachableBlock;
1208
1209   /// CXXThisDecl - When generating code for a C++ member function,
1210   /// this will hold the implicit 'this' declaration.
1211   ImplicitParamDecl *CXXABIThisDecl;
1212   llvm::Value *CXXABIThisValue;
1213   llvm::Value *CXXThisValue;
1214
1215   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1216   /// destructor, this will hold the implicit argument (e.g. VTT).
1217   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1218   llvm::Value *CXXStructorImplicitParamValue;
1219
1220   /// OutermostConditional - Points to the outermost active
1221   /// conditional control.  This is used so that we know if a
1222   /// temporary should be destroyed conditionally.
1223   ConditionalEvaluation *OutermostConditional;
1224
1225   /// The current lexical scope.
1226   LexicalScope *CurLexicalScope;
1227
1228   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1229   /// type as well as the field number that contains the actual data.
1230   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1231                                               unsigned> > ByRefValueInfo;
1232
1233   llvm::BasicBlock *TerminateLandingPad;
1234   llvm::BasicBlock *TerminateHandler;
1235   llvm::BasicBlock *TrapBB;
1236
1237   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1238   /// In the kernel metadata node, reference the kernel function and metadata 
1239   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1240   /// - A node for the vec_type_hint(<type>) qualifier contains string
1241   ///   "vec_type_hint", an undefined value of the <type> data type,
1242   ///   and a Boolean that is true if the <type> is integer and signed.
1243   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 
1244   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1245   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 
1246   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1247   void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 
1248                                 llvm::Function *Fn);
1249
1250 public:
1251   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1252   ~CodeGenFunction();
1253
1254   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1255   ASTContext &getContext() const { return CGM.getContext(); }
1256   /// Returns true if DebugInfo is actually initialized.
1257   bool maybeInitializeDebugInfo() {
1258     if (CGM.getModuleDebugInfo()) {
1259       DebugInfo = CGM.getModuleDebugInfo();
1260       return true;
1261     }
1262     return false;
1263   }
1264   CGDebugInfo *getDebugInfo() { 
1265     if (DisableDebugInfo) 
1266       return NULL;
1267     return DebugInfo; 
1268   }
1269   void disableDebugInfo() { DisableDebugInfo = true; }
1270   void enableDebugInfo() { DisableDebugInfo = false; }
1271
1272   bool shouldUseFusedARCCalls() {
1273     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1274   }
1275
1276   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1277
1278   /// Returns a pointer to the function's exception object and selector slot,
1279   /// which is assigned in every landing pad.
1280   llvm::Value *getExceptionSlot();
1281   llvm::Value *getEHSelectorSlot();
1282
1283   /// Returns the contents of the function's exception object and selector
1284   /// slots.
1285   llvm::Value *getExceptionFromSlot();
1286   llvm::Value *getSelectorFromSlot();
1287
1288   llvm::Value *getNormalCleanupDestSlot();
1289
1290   llvm::BasicBlock *getUnreachableBlock() {
1291     if (!UnreachableBlock) {
1292       UnreachableBlock = createBasicBlock("unreachable");
1293       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1294     }
1295     return UnreachableBlock;
1296   }
1297
1298   llvm::BasicBlock *getInvokeDest() {
1299     if (!EHStack.requiresLandingPad()) return 0;
1300     return getInvokeDestImpl();
1301   }
1302
1303   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1304
1305   //===--------------------------------------------------------------------===//
1306   //                                  Cleanups
1307   //===--------------------------------------------------------------------===//
1308
1309   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1310
1311   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1312                                         llvm::Value *arrayEndPointer,
1313                                         QualType elementType,
1314                                         Destroyer *destroyer);
1315   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1316                                       llvm::Value *arrayEnd,
1317                                       QualType elementType,
1318                                       Destroyer *destroyer);
1319
1320   void pushDestroy(QualType::DestructionKind dtorKind,
1321                    llvm::Value *addr, QualType type);
1322   void pushEHDestroy(QualType::DestructionKind dtorKind,
1323                      llvm::Value *addr, QualType type);
1324   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1325                    Destroyer *destroyer, bool useEHCleanupForArray);
1326   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1327                    bool useEHCleanupForArray);
1328   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1329                                         QualType type,
1330                                         Destroyer *destroyer,
1331                                         bool useEHCleanupForArray);
1332   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1333                         QualType type, Destroyer *destroyer,
1334                         bool checkZeroLength, bool useEHCleanup);
1335
1336   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1337
1338   /// Determines whether an EH cleanup is required to destroy a type
1339   /// with the given destruction kind.
1340   bool needsEHCleanup(QualType::DestructionKind kind) {
1341     switch (kind) {
1342     case QualType::DK_none:
1343       return false;
1344     case QualType::DK_cxx_destructor:
1345     case QualType::DK_objc_weak_lifetime:
1346       return getLangOpts().Exceptions;
1347     case QualType::DK_objc_strong_lifetime:
1348       return getLangOpts().Exceptions &&
1349              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1350     }
1351     llvm_unreachable("bad destruction kind");
1352   }
1353
1354   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1355     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1356   }
1357
1358   //===--------------------------------------------------------------------===//
1359   //                                  Objective-C
1360   //===--------------------------------------------------------------------===//
1361
1362   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1363
1364   void StartObjCMethod(const ObjCMethodDecl *MD,
1365                        const ObjCContainerDecl *CD,
1366                        SourceLocation StartLoc);
1367
1368   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1369   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1370                           const ObjCPropertyImplDecl *PID);
1371   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1372                               const ObjCPropertyImplDecl *propImpl,
1373                               const ObjCMethodDecl *GetterMothodDecl,
1374                               llvm::Constant *AtomicHelperFn);
1375
1376   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1377                                   ObjCMethodDecl *MD, bool ctor);
1378
1379   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1380   /// for the given property.
1381   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1382                           const ObjCPropertyImplDecl *PID);
1383   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1384                               const ObjCPropertyImplDecl *propImpl,
1385                               llvm::Constant *AtomicHelperFn);
1386   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1387   bool IvarTypeWithAggrGCObjects(QualType Ty);
1388
1389   //===--------------------------------------------------------------------===//
1390   //                                  Block Bits
1391   //===--------------------------------------------------------------------===//
1392
1393   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1394   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1395   static void destroyBlockInfos(CGBlockInfo *info);
1396   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1397                                            const CGBlockInfo &Info,
1398                                            llvm::StructType *,
1399                                            llvm::Constant *BlockVarLayout);
1400
1401   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1402                                         const CGBlockInfo &Info,
1403                                         const Decl *OuterFuncDecl,
1404                                         const DeclMapTy &ldm,
1405                                         bool IsLambdaConversionToBlock);
1406
1407   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1408   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1409   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1410                                              const ObjCPropertyImplDecl *PID);
1411   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1412                                              const ObjCPropertyImplDecl *PID);
1413   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1414
1415   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1416
1417   class AutoVarEmission;
1418
1419   void emitByrefStructureInit(const AutoVarEmission &emission);
1420   void enterByrefCleanup(const AutoVarEmission &emission);
1421
1422   llvm::Value *LoadBlockStruct() {
1423     assert(BlockPointer && "no block pointer set!");
1424     return BlockPointer;
1425   }
1426
1427   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1428   void AllocateBlockDecl(const DeclRefExpr *E);
1429   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1430   llvm::Type *BuildByRefType(const VarDecl *var);
1431
1432   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1433                     const CGFunctionInfo &FnInfo);
1434   void StartFunction(GlobalDecl GD, QualType RetTy,
1435                      llvm::Function *Fn,
1436                      const CGFunctionInfo &FnInfo,
1437                      const FunctionArgList &Args,
1438                      SourceLocation StartLoc);
1439
1440   void EmitConstructorBody(FunctionArgList &Args);
1441   void EmitDestructorBody(FunctionArgList &Args);
1442   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1443   void EmitFunctionBody(FunctionArgList &Args);
1444
1445   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1446                                   CallArgList &CallArgs);
1447   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1448   void EmitLambdaBlockInvokeBody();
1449   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1450   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1451
1452   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1453   /// emission when possible.
1454   void EmitReturnBlock();
1455
1456   /// FinishFunction - Complete IR generation of the current function. It is
1457   /// legal to call this function even if there is no current insertion point.
1458   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1459
1460   /// GenerateThunk - Generate a thunk for the given method.
1461   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1462                      GlobalDecl GD, const ThunkInfo &Thunk);
1463
1464   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1465                             GlobalDecl GD, const ThunkInfo &Thunk);
1466
1467   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1468                         FunctionArgList &Args);
1469
1470   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1471                                ArrayRef<VarDecl *> ArrayIndexes);
1472
1473   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1474   /// subobject.
1475   ///
1476   void InitializeVTablePointer(BaseSubobject Base,
1477                                const CXXRecordDecl *NearestVBase,
1478                                CharUnits OffsetFromNearestVBase,
1479                                llvm::Constant *VTable,
1480                                const CXXRecordDecl *VTableClass);
1481
1482   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1483   void InitializeVTablePointers(BaseSubobject Base,
1484                                 const CXXRecordDecl *NearestVBase,
1485                                 CharUnits OffsetFromNearestVBase,
1486                                 bool BaseIsNonVirtualPrimaryBase,
1487                                 llvm::Constant *VTable,
1488                                 const CXXRecordDecl *VTableClass,
1489                                 VisitedVirtualBasesSetTy& VBases);
1490
1491   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1492
1493   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1494   /// to by This.
1495   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1496
1497   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1498   /// given phase of destruction for a destructor.  The end result
1499   /// should call destructors on members and base classes in reverse
1500   /// order of their construction.
1501   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1502
1503   /// ShouldInstrumentFunction - Return true if the current function should be
1504   /// instrumented with __cyg_profile_func_* calls
1505   bool ShouldInstrumentFunction();
1506
1507   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1508   /// instrumentation function with the current function and the call site, if
1509   /// function instrumentation is enabled.
1510   void EmitFunctionInstrumentation(const char *Fn);
1511
1512   /// EmitMCountInstrumentation - Emit call to .mcount.
1513   void EmitMCountInstrumentation();
1514
1515   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1516   /// arguments for the given function. This is also responsible for naming the
1517   /// LLVM function arguments.
1518   void EmitFunctionProlog(const CGFunctionInfo &FI,
1519                           llvm::Function *Fn,
1520                           const FunctionArgList &Args);
1521
1522   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1523   /// given temporary.
1524   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1525
1526   /// EmitStartEHSpec - Emit the start of the exception spec.
1527   void EmitStartEHSpec(const Decl *D);
1528
1529   /// EmitEndEHSpec - Emit the end of the exception spec.
1530   void EmitEndEHSpec(const Decl *D);
1531
1532   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1533   llvm::BasicBlock *getTerminateLandingPad();
1534
1535   /// getTerminateHandler - Return a handler (not a landing pad, just
1536   /// a catch handler) that just calls terminate.  This is used when
1537   /// a terminate scope encloses a try.
1538   llvm::BasicBlock *getTerminateHandler();
1539
1540   llvm::Type *ConvertTypeForMem(QualType T);
1541   llvm::Type *ConvertType(QualType T);
1542   llvm::Type *ConvertType(const TypeDecl *T) {
1543     return ConvertType(getContext().getTypeDeclType(T));
1544   }
1545
1546   /// LoadObjCSelf - Load the value of self. This function is only valid while
1547   /// generating code for an Objective-C method.
1548   llvm::Value *LoadObjCSelf();
1549
1550   /// TypeOfSelfObject - Return type of object that this self represents.
1551   QualType TypeOfSelfObject();
1552
1553   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1554   /// an aggregate LLVM type or is void.
1555   static TypeEvaluationKind getEvaluationKind(QualType T);
1556
1557   static bool hasScalarEvaluationKind(QualType T) {
1558     return getEvaluationKind(T) == TEK_Scalar;
1559   }
1560
1561   static bool hasAggregateEvaluationKind(QualType T) {
1562     return getEvaluationKind(T) == TEK_Aggregate;
1563   }
1564
1565   /// createBasicBlock - Create an LLVM basic block.
1566   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1567                                      llvm::Function *parent = 0,
1568                                      llvm::BasicBlock *before = 0) {
1569 #ifdef NDEBUG
1570     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1571 #else
1572     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1573 #endif
1574   }
1575
1576   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1577   /// label maps to.
1578   JumpDest getJumpDestForLabel(const LabelDecl *S);
1579
1580   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1581   /// another basic block, simplify it. This assumes that no other code could
1582   /// potentially reference the basic block.
1583   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1584
1585   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1586   /// adding a fall-through branch from the current insert block if
1587   /// necessary. It is legal to call this function even if there is no current
1588   /// insertion point.
1589   ///
1590   /// IsFinished - If true, indicates that the caller has finished emitting
1591   /// branches to the given block and does not expect to emit code into it. This
1592   /// means the block can be ignored if it is unreachable.
1593   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1594
1595   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1596   /// near its uses, and leave the insertion point in it.
1597   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1598
1599   /// EmitBranch - Emit a branch to the specified basic block from the current
1600   /// insert block, taking care to avoid creation of branches from dummy
1601   /// blocks. It is legal to call this function even if there is no current
1602   /// insertion point.
1603   ///
1604   /// This function clears the current insertion point. The caller should follow
1605   /// calls to this function with calls to Emit*Block prior to generation new
1606   /// code.
1607   void EmitBranch(llvm::BasicBlock *Block);
1608
1609   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1610   /// indicates that the current code being emitted is unreachable.
1611   bool HaveInsertPoint() const {
1612     return Builder.GetInsertBlock() != 0;
1613   }
1614
1615   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1616   /// emitted IR has a place to go. Note that by definition, if this function
1617   /// creates a block then that block is unreachable; callers may do better to
1618   /// detect when no insertion point is defined and simply skip IR generation.
1619   void EnsureInsertPoint() {
1620     if (!HaveInsertPoint())
1621       EmitBlock(createBasicBlock());
1622   }
1623
1624   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1625   /// specified stmt yet.
1626   void ErrorUnsupported(const Stmt *S, const char *Type,
1627                         bool OmitOnError=false);
1628
1629   //===--------------------------------------------------------------------===//
1630   //                                  Helpers
1631   //===--------------------------------------------------------------------===//
1632
1633   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1634                         CharUnits Alignment = CharUnits()) {
1635     return LValue::MakeAddr(V, T, Alignment, getContext(),
1636                             CGM.getTBAAInfo(T));
1637   }
1638
1639   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1640     CharUnits Alignment;
1641     if (!T->isIncompleteType())
1642       Alignment = getContext().getTypeAlignInChars(T);
1643     return LValue::MakeAddr(V, T, Alignment, getContext(),
1644                             CGM.getTBAAInfo(T));
1645   }
1646
1647   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1648   /// block. The caller is responsible for setting an appropriate alignment on
1649   /// the alloca.
1650   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1651                                      const Twine &Name = "tmp");
1652
1653   /// InitTempAlloca - Provide an initial value for the given alloca.
1654   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1655
1656   /// CreateIRTemp - Create a temporary IR object of the given type, with
1657   /// appropriate alignment. This routine should only be used when an temporary
1658   /// value needs to be stored into an alloca (for example, to avoid explicit
1659   /// PHI construction), but the type is the IR type, not the type appropriate
1660   /// for storing in memory.
1661   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1662
1663   /// CreateMemTemp - Create a temporary memory object of the given type, with
1664   /// appropriate alignment.
1665   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1666
1667   /// CreateAggTemp - Create a temporary memory object for the given
1668   /// aggregate type.
1669   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1670     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1671     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1672                                  T.getQualifiers(),
1673                                  AggValueSlot::IsNotDestructed,
1674                                  AggValueSlot::DoesNotNeedGCBarriers,
1675                                  AggValueSlot::IsNotAliased);
1676   }
1677
1678   /// Emit a cast to void* in the appropriate address space.
1679   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1680
1681   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1682   /// expression and compare the result against zero, returning an Int1Ty value.
1683   llvm::Value *EvaluateExprAsBool(const Expr *E);
1684
1685   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1686   void EmitIgnoredExpr(const Expr *E);
1687
1688   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1689   /// any type.  The result is returned as an RValue struct.  If this is an
1690   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1691   /// the result should be returned.
1692   ///
1693   /// \param ignoreResult True if the resulting value isn't used.
1694   RValue EmitAnyExpr(const Expr *E,
1695                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1696                      bool ignoreResult = false);
1697
1698   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1699   // or the value of the expression, depending on how va_list is defined.
1700   llvm::Value *EmitVAListRef(const Expr *E);
1701
1702   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1703   /// always be accessible even if no aggregate location is provided.
1704   RValue EmitAnyExprToTemp(const Expr *E);
1705
1706   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1707   /// arbitrary expression into the given memory location.
1708   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1709                         Qualifiers Quals, bool IsInitializer);
1710
1711   /// EmitExprAsInit - Emits the code necessary to initialize a
1712   /// location in memory with the given initializer.
1713   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1714                       LValue lvalue, bool capturedByInit);
1715
1716   /// hasVolatileMember - returns true if aggregate type has a volatile
1717   /// member.
1718   bool hasVolatileMember(QualType T) {
1719     if (const RecordType *RT = T->getAs<RecordType>()) {
1720       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1721       return RD->hasVolatileMember();
1722     }
1723     return false;
1724   }
1725   /// EmitAggregateCopy - Emit an aggregate assignment.
1726   ///
1727   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1728   /// This is required for correctness when assigning non-POD structures in C++.
1729   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1730                            QualType EltTy) {
1731     bool IsVolatile = hasVolatileMember(EltTy);
1732     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1733                       true);
1734   }
1735
1736   /// EmitAggregateCopy - Emit an aggregate copy.
1737   ///
1738   /// \param isVolatile - True iff either the source or the destination is
1739   /// volatile.
1740   /// \param isAssignment - If false, allow padding to be copied.  This often
1741   /// yields more efficient.
1742   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1743                          QualType EltTy, bool isVolatile=false,
1744                          CharUnits Alignment = CharUnits::Zero(),
1745                          bool isAssignment = false);
1746
1747   /// StartBlock - Start new block named N. If insert block is a dummy block
1748   /// then reuse it.
1749   void StartBlock(const char *N);
1750
1751   /// GetAddrOfLocalVar - Return the address of a local variable.
1752   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1753     llvm::Value *Res = LocalDeclMap[VD];
1754     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1755     return Res;
1756   }
1757
1758   /// getOpaqueLValueMapping - Given an opaque value expression (which
1759   /// must be mapped to an l-value), return its mapping.
1760   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1761     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1762
1763     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1764       it = OpaqueLValues.find(e);
1765     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1766     return it->second;
1767   }
1768
1769   /// getOpaqueRValueMapping - Given an opaque value expression (which
1770   /// must be mapped to an r-value), return its mapping.
1771   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1772     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1773
1774     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1775       it = OpaqueRValues.find(e);
1776     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1777     return it->second;
1778   }
1779
1780   /// getAccessedFieldNo - Given an encoded value and a result number, return
1781   /// the input field number being accessed.
1782   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1783
1784   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1785   llvm::BasicBlock *GetIndirectGotoBlock();
1786
1787   /// EmitNullInitialization - Generate code to set a value of the given type to
1788   /// null, If the type contains data member pointers, they will be initialized
1789   /// to -1 in accordance with the Itanium C++ ABI.
1790   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1791
1792   // EmitVAArg - Generate code to get an argument from the passed in pointer
1793   // and update it accordingly. The return value is a pointer to the argument.
1794   // FIXME: We should be able to get rid of this method and use the va_arg
1795   // instruction in LLVM instead once it works well enough.
1796   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1797
1798   /// emitArrayLength - Compute the length of an array, even if it's a
1799   /// VLA, and drill down to the base element type.
1800   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1801                                QualType &baseType,
1802                                llvm::Value *&addr);
1803
1804   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1805   /// the given variably-modified type and store them in the VLASizeMap.
1806   ///
1807   /// This function can be called with a null (unreachable) insert point.
1808   void EmitVariablyModifiedType(QualType Ty);
1809
1810   /// getVLASize - Returns an LLVM value that corresponds to the size,
1811   /// in non-variably-sized elements, of a variable length array type,
1812   /// plus that largest non-variably-sized element type.  Assumes that
1813   /// the type has already been emitted with EmitVariablyModifiedType.
1814   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1815   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1816
1817   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1818   /// generating code for an C++ member function.
1819   llvm::Value *LoadCXXThis() {
1820     assert(CXXThisValue && "no 'this' value for this function");
1821     return CXXThisValue;
1822   }
1823
1824   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1825   /// virtual bases.
1826   // FIXME: Every place that calls LoadCXXVTT is something
1827   // that needs to be abstracted properly.
1828   llvm::Value *LoadCXXVTT() {
1829     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1830     return CXXStructorImplicitParamValue;
1831   }
1832
1833   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1834   /// for a constructor/destructor.
1835   llvm::Value *LoadCXXStructorImplicitParam() {
1836     assert(CXXStructorImplicitParamValue &&
1837            "no implicit argument value for this function");
1838     return CXXStructorImplicitParamValue;
1839   }
1840
1841   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1842   /// complete class to the given direct base.
1843   llvm::Value *
1844   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1845                                         const CXXRecordDecl *Derived,
1846                                         const CXXRecordDecl *Base,
1847                                         bool BaseIsVirtual);
1848
1849   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1850   /// load of 'this' and returns address of the base class.
1851   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1852                                      const CXXRecordDecl *Derived,
1853                                      CastExpr::path_const_iterator PathBegin,
1854                                      CastExpr::path_const_iterator PathEnd,
1855                                      bool NullCheckValue);
1856
1857   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1858                                         const CXXRecordDecl *Derived,
1859                                         CastExpr::path_const_iterator PathBegin,
1860                                         CastExpr::path_const_iterator PathEnd,
1861                                         bool NullCheckValue);
1862
1863   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1864                                          const CXXRecordDecl *ClassDecl,
1865                                          const CXXRecordDecl *BaseClassDecl);
1866
1867   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1868   /// base constructor/destructor with virtual bases.
1869   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1870   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1871   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1872                                bool Delegating);
1873
1874   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1875                                       CXXCtorType CtorType,
1876                                       const FunctionArgList &Args);
1877   // It's important not to confuse this and the previous function. Delegating
1878   // constructors are the C++0x feature. The constructor delegate optimization
1879   // is used to reduce duplication in the base and complete consturctors where
1880   // they are substantially the same.
1881   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1882                                         const FunctionArgList &Args);
1883   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1884                               bool ForVirtualBase, bool Delegating,
1885                               llvm::Value *This,
1886                               CallExpr::const_arg_iterator ArgBeg,
1887                               CallExpr::const_arg_iterator ArgEnd);
1888   
1889   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1890                               llvm::Value *This, llvm::Value *Src,
1891                               CallExpr::const_arg_iterator ArgBeg,
1892                               CallExpr::const_arg_iterator ArgEnd);
1893
1894   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1895                                   const ConstantArrayType *ArrayTy,
1896                                   llvm::Value *ArrayPtr,
1897                                   CallExpr::const_arg_iterator ArgBeg,
1898                                   CallExpr::const_arg_iterator ArgEnd,
1899                                   bool ZeroInitialization = false);
1900
1901   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1902                                   llvm::Value *NumElements,
1903                                   llvm::Value *ArrayPtr,
1904                                   CallExpr::const_arg_iterator ArgBeg,
1905                                   CallExpr::const_arg_iterator ArgEnd,
1906                                   bool ZeroInitialization = false);
1907
1908   static Destroyer destroyCXXObject;
1909
1910   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1911                              bool ForVirtualBase, bool Delegating,
1912                              llvm::Value *This);
1913
1914   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1915                                llvm::Value *NewPtr, llvm::Value *NumElements);
1916
1917   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1918                         llvm::Value *Ptr);
1919
1920   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1921   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1922
1923   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1924                       QualType DeleteTy);
1925
1926   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1927   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1928   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1929
1930   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1931   void EmitStdInitializerListCleanup(llvm::Value *loc,
1932                                      const InitListExpr *init);
1933
1934   /// \brief Situations in which we might emit a check for the suitability of a
1935   ///        pointer or glvalue.
1936   enum TypeCheckKind {
1937     /// Checking the operand of a load. Must be suitably sized and aligned.
1938     TCK_Load,
1939     /// Checking the destination of a store. Must be suitably sized and aligned.
1940     TCK_Store,
1941     /// Checking the bound value in a reference binding. Must be suitably sized
1942     /// and aligned, but is not required to refer to an object (until the
1943     /// reference is used), per core issue 453.
1944     TCK_ReferenceBinding,
1945     /// Checking the object expression in a non-static data member access. Must
1946     /// be an object within its lifetime.
1947     TCK_MemberAccess,
1948     /// Checking the 'this' pointer for a call to a non-static member function.
1949     /// Must be an object within its lifetime.
1950     TCK_MemberCall,
1951     /// Checking the 'this' pointer for a constructor call.
1952     TCK_ConstructorCall,
1953     /// Checking the operand of a static_cast to a derived pointer type. Must be
1954     /// null or an object within its lifetime.
1955     TCK_DowncastPointer,
1956     /// Checking the operand of a static_cast to a derived reference type. Must
1957     /// be an object within its lifetime.
1958     TCK_DowncastReference
1959   };
1960
1961   /// \brief Emit a check that \p V is the address of storage of the
1962   /// appropriate size and alignment for an object of type \p Type.
1963   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1964                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1965
1966   /// \brief Emit a check that \p Base points into an array object, which
1967   /// we can access at index \p Index. \p Accessed should be \c false if we
1968   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1969   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1970                        QualType IndexType, bool Accessed);
1971
1972   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1973                                        bool isInc, bool isPre);
1974   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1975                                          bool isInc, bool isPre);
1976   //===--------------------------------------------------------------------===//
1977   //                            Declaration Emission
1978   //===--------------------------------------------------------------------===//
1979
1980   /// EmitDecl - Emit a declaration.
1981   ///
1982   /// This function can be called with a null (unreachable) insert point.
1983   void EmitDecl(const Decl &D);
1984
1985   /// EmitVarDecl - Emit a local variable declaration.
1986   ///
1987   /// This function can be called with a null (unreachable) insert point.
1988   void EmitVarDecl(const VarDecl &D);
1989
1990   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1991                       LValue lvalue, bool capturedByInit);
1992   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1993
1994   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1995                              llvm::Value *Address);
1996
1997   /// EmitAutoVarDecl - Emit an auto variable declaration.
1998   ///
1999   /// This function can be called with a null (unreachable) insert point.
2000   void EmitAutoVarDecl(const VarDecl &D);
2001
2002   class AutoVarEmission {
2003     friend class CodeGenFunction;
2004
2005     const VarDecl *Variable;
2006
2007     /// The alignment of the variable.
2008     CharUnits Alignment;
2009
2010     /// The address of the alloca.  Null if the variable was emitted
2011     /// as a global constant.
2012     llvm::Value *Address;
2013
2014     llvm::Value *NRVOFlag;
2015
2016     /// True if the variable is a __block variable.
2017     bool IsByRef;
2018
2019     /// True if the variable is of aggregate type and has a constant
2020     /// initializer.
2021     bool IsConstantAggregate;
2022
2023     /// Non-null if we should use lifetime annotations.
2024     llvm::Value *SizeForLifetimeMarkers;
2025
2026     struct Invalid {};
2027     AutoVarEmission(Invalid) : Variable(0) {}
2028
2029     AutoVarEmission(const VarDecl &variable)
2030       : Variable(&variable), Address(0), NRVOFlag(0),
2031         IsByRef(false), IsConstantAggregate(false),
2032         SizeForLifetimeMarkers(0) {}
2033
2034     bool wasEmittedAsGlobal() const { return Address == 0; }
2035
2036   public:
2037     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2038
2039     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
2040     llvm::Value *getSizeForLifetimeMarkers() const {
2041       assert(useLifetimeMarkers());
2042       return SizeForLifetimeMarkers;
2043     }
2044
2045     /// Returns the raw, allocated address, which is not necessarily
2046     /// the address of the object itself.
2047     llvm::Value *getAllocatedAddress() const {
2048       return Address;
2049     }
2050
2051     /// Returns the address of the object within this declaration.
2052     /// Note that this does not chase the forwarding pointer for
2053     /// __block decls.
2054     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
2055       if (!IsByRef) return Address;
2056
2057       return CGF.Builder.CreateStructGEP(Address,
2058                                          CGF.getByRefValueLLVMField(Variable),
2059                                          Variable->getNameAsString());
2060     }
2061   };
2062   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2063   void EmitAutoVarInit(const AutoVarEmission &emission);
2064   void EmitAutoVarCleanups(const AutoVarEmission &emission);  
2065   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2066                               QualType::DestructionKind dtorKind);
2067
2068   void EmitStaticVarDecl(const VarDecl &D,
2069                          llvm::GlobalValue::LinkageTypes Linkage);
2070
2071   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2072   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
2073
2074   /// protectFromPeepholes - Protect a value that we're intending to
2075   /// store to the side, but which will probably be used later, from
2076   /// aggressive peepholing optimizations that might delete it.
2077   ///
2078   /// Pass the result to unprotectFromPeepholes to declare that
2079   /// protection is no longer required.
2080   ///
2081   /// There's no particular reason why this shouldn't apply to
2082   /// l-values, it's just that no existing peepholes work on pointers.
2083   PeepholeProtection protectFromPeepholes(RValue rvalue);
2084   void unprotectFromPeepholes(PeepholeProtection protection);
2085
2086   //===--------------------------------------------------------------------===//
2087   //                             Statement Emission
2088   //===--------------------------------------------------------------------===//
2089
2090   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2091   void EmitStopPoint(const Stmt *S);
2092
2093   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2094   /// this function even if there is no current insertion point.
2095   ///
2096   /// This function may clear the current insertion point; callers should use
2097   /// EnsureInsertPoint if they wish to subsequently generate code without first
2098   /// calling EmitBlock, EmitBranch, or EmitStmt.
2099   void EmitStmt(const Stmt *S);
2100
2101   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2102   /// necessarily require an insertion point or debug information; typically
2103   /// because the statement amounts to a jump or a container of other
2104   /// statements.
2105   ///
2106   /// \return True if the statement was handled.
2107   bool EmitSimpleStmt(const Stmt *S);
2108
2109   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2110                           AggValueSlot AVS = AggValueSlot::ignored());
2111   RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2112                                       bool GetLast = false, AggValueSlot AVS =
2113                                           AggValueSlot::ignored());
2114
2115   /// EmitLabel - Emit the block for the given label. It is legal to call this
2116   /// function even if there is no current insertion point.
2117   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2118
2119   void EmitLabelStmt(const LabelStmt &S);
2120   void EmitAttributedStmt(const AttributedStmt &S);
2121   void EmitGotoStmt(const GotoStmt &S);
2122   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2123   void EmitIfStmt(const IfStmt &S);
2124   void EmitWhileStmt(const WhileStmt &S);
2125   void EmitDoStmt(const DoStmt &S);
2126   void EmitForStmt(const ForStmt &S);
2127   void EmitReturnStmt(const ReturnStmt &S);
2128   void EmitDeclStmt(const DeclStmt &S);
2129   void EmitBreakStmt(const BreakStmt &S);
2130   void EmitContinueStmt(const ContinueStmt &S);
2131   void EmitSwitchStmt(const SwitchStmt &S);
2132   void EmitDefaultStmt(const DefaultStmt &S);
2133   void EmitCaseStmt(const CaseStmt &S);
2134   void EmitCaseStmtRange(const CaseStmt &S);
2135   void EmitAsmStmt(const AsmStmt &S);
2136
2137   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2138   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2139   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2140   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2141   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2142
2143   llvm::Constant *getUnwindResumeFn();
2144   llvm::Constant *getUnwindResumeOrRethrowFn();
2145   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2146   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2147
2148   void EmitCXXTryStmt(const CXXTryStmt &S);
2149   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2150
2151   //===--------------------------------------------------------------------===//
2152   //                         LValue Expression Emission
2153   //===--------------------------------------------------------------------===//
2154
2155   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2156   RValue GetUndefRValue(QualType Ty);
2157
2158   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2159   /// and issue an ErrorUnsupported style diagnostic (using the
2160   /// provided Name).
2161   RValue EmitUnsupportedRValue(const Expr *E,
2162                                const char *Name);
2163
2164   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2165   /// an ErrorUnsupported style diagnostic (using the provided Name).
2166   LValue EmitUnsupportedLValue(const Expr *E,
2167                                const char *Name);
2168
2169   /// EmitLValue - Emit code to compute a designator that specifies the location
2170   /// of the expression.
2171   ///
2172   /// This can return one of two things: a simple address or a bitfield
2173   /// reference.  In either case, the LLVM Value* in the LValue structure is
2174   /// guaranteed to be an LLVM pointer type.
2175   ///
2176   /// If this returns a bitfield reference, nothing about the pointee type of
2177   /// the LLVM value is known: For example, it may not be a pointer to an
2178   /// integer.
2179   ///
2180   /// If this returns a normal address, and if the lvalue's C type is fixed
2181   /// size, this method guarantees that the returned pointer type will point to
2182   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2183   /// variable length type, this is not possible.
2184   ///
2185   LValue EmitLValue(const Expr *E);
2186
2187   /// \brief Same as EmitLValue but additionally we generate checking code to
2188   /// guard against undefined behavior.  This is only suitable when we know
2189   /// that the address will be used to access the object.
2190   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2191
2192   RValue convertTempToRValue(llvm::Value *addr, QualType type);
2193
2194   void EmitAtomicInit(Expr *E, LValue lvalue);
2195
2196   RValue EmitAtomicLoad(LValue lvalue,
2197                         AggValueSlot slot = AggValueSlot::ignored());
2198
2199   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2200
2201   /// EmitToMemory - Change a scalar value from its value
2202   /// representation to its in-memory representation.
2203   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2204
2205   /// EmitFromMemory - Change a scalar value from its memory
2206   /// representation to its value representation.
2207   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2208
2209   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2210   /// care to appropriately convert from the memory representation to
2211   /// the LLVM value representation.
2212   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2213                                 unsigned Alignment, QualType Ty,
2214                                 llvm::MDNode *TBAAInfo = 0,
2215                                 QualType TBAABaseTy = QualType(),
2216                                 uint64_t TBAAOffset = 0);
2217
2218   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2219   /// care to appropriately convert from the memory representation to
2220   /// the LLVM value representation.  The l-value must be a simple
2221   /// l-value.
2222   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2223
2224   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2225   /// care to appropriately convert from the memory representation to
2226   /// the LLVM value representation.
2227   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2228                          bool Volatile, unsigned Alignment, QualType Ty,
2229                          llvm::MDNode *TBAAInfo = 0, bool isInit = false,
2230                          QualType TBAABaseTy = QualType(),
2231                          uint64_t TBAAOffset = 0);
2232
2233   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2234   /// care to appropriately convert from the memory representation to
2235   /// the LLVM value representation.  The l-value must be a simple
2236   /// l-value.  The isInit flag indicates whether this is an initialization.
2237   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2238   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2239
2240   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2241   /// this method emits the address of the lvalue, then loads the result as an
2242   /// rvalue, returning the rvalue.
2243   RValue EmitLoadOfLValue(LValue V);
2244   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2245   RValue EmitLoadOfBitfieldLValue(LValue LV);
2246
2247   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2248   /// lvalue, where both are guaranteed to the have the same type, and that type
2249   /// is 'Ty'.
2250   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2251   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2252
2253   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2254   /// EmitStoreThroughLValue.
2255   ///
2256   /// \param Result [out] - If non-null, this will be set to a Value* for the
2257   /// bit-field contents after the store, appropriate for use as the result of
2258   /// an assignment to the bit-field.
2259   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2260                                       llvm::Value **Result=0);
2261
2262   /// Emit an l-value for an assignment (simple or compound) of complex type.
2263   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2264   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2265
2266   // Note: only available for agg return types
2267   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2268   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2269   // Note: only available for agg return types
2270   LValue EmitCallExprLValue(const CallExpr *E);
2271   // Note: only available for agg return types
2272   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2273   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2274   LValue EmitStringLiteralLValue(const StringLiteral *E);
2275   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2276   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2277   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2278   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2279                                 bool Accessed = false);
2280   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2281   LValue EmitMemberExpr(const MemberExpr *E);
2282   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2283   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2284   LValue EmitInitListLValue(const InitListExpr *E);
2285   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2286   LValue EmitCastLValue(const CastExpr *E);
2287   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2288   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2289   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2290
2291   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2292
2293   class ConstantEmission {
2294     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2295     ConstantEmission(llvm::Constant *C, bool isReference)
2296       : ValueAndIsReference(C, isReference) {}
2297   public:
2298     ConstantEmission() {}
2299     static ConstantEmission forReference(llvm::Constant *C) {
2300       return ConstantEmission(C, true);
2301     }
2302     static ConstantEmission forValue(llvm::Constant *C) {
2303       return ConstantEmission(C, false);
2304     }
2305
2306     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2307
2308     bool isReference() const { return ValueAndIsReference.getInt(); }
2309     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2310       assert(isReference());
2311       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2312                                             refExpr->getType());
2313     }
2314
2315     llvm::Constant *getValue() const {
2316       assert(!isReference());
2317       return ValueAndIsReference.getPointer();
2318     }
2319   };
2320
2321   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2322
2323   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2324                                 AggValueSlot slot = AggValueSlot::ignored());
2325   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2326
2327   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2328                               const ObjCIvarDecl *Ivar);
2329   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2330
2331   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2332   /// if the Field is a reference, this will return the address of the reference
2333   /// and not the address of the value stored in the reference.
2334   LValue EmitLValueForFieldInitialization(LValue Base,
2335                                           const FieldDecl* Field);
2336
2337   LValue EmitLValueForIvar(QualType ObjectTy,
2338                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2339                            unsigned CVRQualifiers);
2340
2341   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2342   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2343   LValue EmitLambdaLValue(const LambdaExpr *E);
2344   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2345   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2346
2347   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2348   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2349   LValue EmitStmtExprLValue(const StmtExpr *E);
2350   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2351   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2352   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2353
2354   //===--------------------------------------------------------------------===//
2355   //                         Scalar Expression Emission
2356   //===--------------------------------------------------------------------===//
2357
2358   /// EmitCall - Generate a call of the given function, expecting the given
2359   /// result type, and using the given argument list which specifies both the
2360   /// LLVM arguments and the types they were derived from.
2361   ///
2362   /// \param TargetDecl - If given, the decl of the function in a direct call;
2363   /// used to set attributes on the call (noreturn, etc.).
2364   RValue EmitCall(const CGFunctionInfo &FnInfo,
2365                   llvm::Value *Callee,
2366                   ReturnValueSlot ReturnValue,
2367                   const CallArgList &Args,
2368                   const Decl *TargetDecl = 0,
2369                   llvm::Instruction **callOrInvoke = 0);
2370
2371   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2372                   ReturnValueSlot ReturnValue,
2373                   CallExpr::const_arg_iterator ArgBeg,
2374                   CallExpr::const_arg_iterator ArgEnd,
2375                   const Decl *TargetDecl = 0);
2376   RValue EmitCallExpr(const CallExpr *E,
2377                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2378
2379   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2380                                   const Twine &name = "");
2381   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2382                                   ArrayRef<llvm::Value*> args,
2383                                   const Twine &name = "");
2384   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2385                                           const Twine &name = "");
2386   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2387                                           ArrayRef<llvm::Value*> args,
2388                                           const Twine &name = "");
2389
2390   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2391                                   ArrayRef<llvm::Value *> Args,
2392                                   const Twine &Name = "");
2393   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2394                                   const Twine &Name = "");
2395   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2396                                          ArrayRef<llvm::Value*> args,
2397                                          const Twine &name = "");
2398   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2399                                          const Twine &name = "");
2400   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2401                                        ArrayRef<llvm::Value*> args);
2402
2403   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2404                                 llvm::Type *Ty);
2405   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2406                                 llvm::Value *This, llvm::Type *Ty);
2407   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 
2408                                          NestedNameSpecifier *Qual,
2409                                          llvm::Type *Ty);
2410   
2411   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2412                                                    CXXDtorType Type, 
2413                                                    const CXXRecordDecl *RD);
2414
2415   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2416                            SourceLocation CallLoc,
2417                            llvm::Value *Callee,
2418                            ReturnValueSlot ReturnValue,
2419                            llvm::Value *This,
2420                            llvm::Value *ImplicitParam,
2421                            QualType ImplicitParamTy,
2422                            CallExpr::const_arg_iterator ArgBeg,
2423                            CallExpr::const_arg_iterator ArgEnd);
2424   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2425                                ReturnValueSlot ReturnValue);
2426   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2427                                       ReturnValueSlot ReturnValue);
2428
2429   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2430                                            const CXXMethodDecl *MD,
2431                                            llvm::Value *This);
2432   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2433                                        const CXXMethodDecl *MD,
2434                                        ReturnValueSlot ReturnValue);
2435
2436   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2437                                 ReturnValueSlot ReturnValue);
2438
2439
2440   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2441                          unsigned BuiltinID, const CallExpr *E);
2442
2443   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2444
2445   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2446   /// is unhandled by the current target.
2447   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2448
2449   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2450   llvm::Value *EmitNeonCall(llvm::Function *F,
2451                             SmallVectorImpl<llvm::Value*> &O,
2452                             const char *name,
2453                             unsigned shift = 0, bool rightshift = false);
2454   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2455   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2456                                    bool negateForRightShift);
2457
2458   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2459   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2460   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2461
2462   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2463   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2464   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2465   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2466   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2467   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2468                                 const ObjCMethodDecl *MethodWithObjects);
2469   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2470   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2471                              ReturnValueSlot Return = ReturnValueSlot());
2472
2473   /// Retrieves the default cleanup kind for an ARC cleanup.
2474   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2475   CleanupKind getARCCleanupKind() {
2476     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2477              ? NormalAndEHCleanup : NormalCleanup;
2478   }
2479
2480   // ARC primitives.
2481   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2482   void EmitARCDestroyWeak(llvm::Value *addr);
2483   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2484   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2485   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2486                                 bool ignored);
2487   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2488   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2489   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2490   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2491   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2492                                   bool resultIgnored);
2493   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2494                                       bool resultIgnored);
2495   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2496   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2497   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2498   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2499   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2500   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2501   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2502   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2503   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2504
2505   std::pair<LValue,llvm::Value*>
2506   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2507   std::pair<LValue,llvm::Value*>
2508   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2509
2510   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2511
2512   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2513   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2514   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2515
2516   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2517   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2518   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2519
2520   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2521
2522   static Destroyer destroyARCStrongImprecise;
2523   static Destroyer destroyARCStrongPrecise;
2524   static Destroyer destroyARCWeak;
2525
2526   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 
2527   llvm::Value *EmitObjCAutoreleasePoolPush();
2528   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2529   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2530   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 
2531
2532   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2533   /// expression. Will emit a temporary variable if E is not an LValue.
2534   RValue EmitReferenceBindingToExpr(const Expr* E,
2535                                     const NamedDecl *InitializedDecl);
2536
2537   //===--------------------------------------------------------------------===//
2538   //                           Expression Emission
2539   //===--------------------------------------------------------------------===//
2540
2541   // Expressions are broken into three classes: scalar, complex, aggregate.
2542
2543   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2544   /// scalar type, returning the result.
2545   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2546
2547   /// EmitScalarConversion - Emit a conversion from the specified type to the
2548   /// specified destination type, both of which are LLVM scalar types.
2549   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2550                                     QualType DstTy);
2551
2552   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2553   /// complex type to the specified destination type, where the destination type
2554   /// is an LLVM scalar type.
2555   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2556                                              QualType DstTy);
2557
2558
2559   /// EmitAggExpr - Emit the computation of the specified expression
2560   /// of aggregate type.  The result is computed into the given slot,
2561   /// which may be null to indicate that the value is not needed.
2562   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2563
2564   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2565   /// aggregate type into a temporary LValue.
2566   LValue EmitAggExprToLValue(const Expr *E);
2567
2568   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2569   /// pointers.
2570   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2571                                 QualType Ty);
2572
2573   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2574   /// make sure it survives garbage collection until this point.
2575   void EmitExtendGCLifetime(llvm::Value *object);
2576
2577   /// EmitComplexExpr - Emit the computation of the specified expression of
2578   /// complex type, returning the result.
2579   ComplexPairTy EmitComplexExpr(const Expr *E,
2580                                 bool IgnoreReal = false,
2581                                 bool IgnoreImag = false);
2582
2583   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2584   /// type and place its result into the specified l-value.
2585   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2586
2587   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2588   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2589
2590   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2591   ComplexPairTy EmitLoadOfComplex(LValue src);
2592
2593   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2594   /// a static local variable.
2595   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2596                                             const char *Separator,
2597                                        llvm::GlobalValue::LinkageTypes Linkage);
2598
2599   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2600   /// global variable that has already been created for it.  If the initializer
2601   /// has a different type than GV does, this may free GV and return a different
2602   /// one.  Otherwise it just returns GV.
2603   llvm::GlobalVariable *
2604   AddInitializerToStaticVarDecl(const VarDecl &D,
2605                                 llvm::GlobalVariable *GV);
2606
2607
2608   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2609   /// variable with global storage.
2610   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2611                                 bool PerformInit);
2612
2613   /// Call atexit() with a function that passes the given argument to
2614   /// the given function.
2615   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2616
2617   /// Emit code in this function to perform a guarded variable
2618   /// initialization.  Guarded initializations are used when it's not
2619   /// possible to prove that an initialization will be done exactly
2620   /// once, e.g. with a static local variable or a static data member
2621   /// of a class template.
2622   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2623                           bool PerformInit);
2624
2625   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2626   /// variables.
2627   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2628                                  llvm::Constant **Decls,
2629                                  unsigned NumDecls);
2630
2631   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2632   /// variables.
2633   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2634                                   const std::vector<std::pair<llvm::WeakVH,
2635                                   llvm::Constant*> > &DtorsAndObjects);
2636
2637   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2638                                         const VarDecl *D,
2639                                         llvm::GlobalVariable *Addr,
2640                                         bool PerformInit);
2641
2642   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2643   
2644   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2645                                   const Expr *Exp);
2646
2647   void enterFullExpression(const ExprWithCleanups *E) {
2648     if (E->getNumObjects() == 0) return;
2649     enterNonTrivialFullExpression(E);
2650   }
2651   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2652
2653   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2654
2655   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2656
2657   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2658
2659   //===--------------------------------------------------------------------===//
2660   //                         Annotations Emission
2661   //===--------------------------------------------------------------------===//
2662
2663   /// Emit an annotation call (intrinsic or builtin).
2664   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2665                                   llvm::Value *AnnotatedVal,
2666                                   StringRef AnnotationStr,
2667                                   SourceLocation Location);
2668
2669   /// Emit local annotations for the local variable V, declared by D.
2670   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2671
2672   /// Emit field annotations for the given field & value. Returns the
2673   /// annotation result.
2674   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2675
2676   //===--------------------------------------------------------------------===//
2677   //                             Internal Helpers
2678   //===--------------------------------------------------------------------===//
2679
2680   /// ContainsLabel - Return true if the statement contains a label in it.  If
2681   /// this statement is not executed normally, it not containing a label means
2682   /// that we can just remove the code.
2683   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2684
2685   /// containsBreak - Return true if the statement contains a break out of it.
2686   /// If the statement (recursively) contains a switch or loop with a break
2687   /// inside of it, this is fine.
2688   static bool containsBreak(const Stmt *S);
2689   
2690   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2691   /// to a constant, or if it does but contains a label, return false.  If it
2692   /// constant folds return true and set the boolean result in Result.
2693   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2694
2695   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2696   /// to a constant, or if it does but contains a label, return false.  If it
2697   /// constant folds return true and set the folded value.
2698   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2699   
2700   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2701   /// if statement) to the specified blocks.  Based on the condition, this might
2702   /// try to simplify the codegen of the conditional based on the branch.
2703   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2704                             llvm::BasicBlock *FalseBlock);
2705
2706   /// \brief Emit a description of a type in a format suitable for passing to
2707   /// a runtime sanitizer handler.
2708   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2709
2710   /// \brief Convert a value into a format suitable for passing to a runtime
2711   /// sanitizer handler.
2712   llvm::Value *EmitCheckValue(llvm::Value *V);
2713
2714   /// \brief Emit a description of a source location in a format suitable for
2715   /// passing to a runtime sanitizer handler.
2716   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2717
2718   /// \brief Specify under what conditions this check can be recovered
2719   enum CheckRecoverableKind {
2720     /// Always terminate program execution if this check fails
2721     CRK_Unrecoverable,
2722     /// Check supports recovering, allows user to specify which
2723     CRK_Recoverable,
2724     /// Runtime conditionally aborts, always need to support recovery.
2725     CRK_AlwaysRecoverable
2726   };
2727
2728   /// \brief Create a basic block that will call a handler function in a
2729   /// sanitizer runtime with the provided arguments, and create a conditional
2730   /// branch to it.
2731   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2732                  ArrayRef<llvm::Constant *> StaticArgs,
2733                  ArrayRef<llvm::Value *> DynamicArgs,
2734                  CheckRecoverableKind Recoverable);
2735
2736   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2737   /// conditional branch to it, for the -ftrapv checks.
2738   void EmitTrapCheck(llvm::Value *Checked);
2739
2740   /// EmitCallArg - Emit a single call argument.
2741   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2742
2743   /// EmitDelegateCallArg - We are performing a delegate call; that
2744   /// is, the current function is delegating to another one.  Produce
2745   /// a r-value suitable for passing the given parameter.
2746   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2747
2748   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2749   /// point operation, expressed as the maximum relative error in ulp.
2750   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2751
2752 private:
2753   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2754   void EmitReturnOfRValue(RValue RV, QualType Ty);
2755
2756   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2757   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2758   ///
2759   /// \param AI - The first function argument of the expansion.
2760   /// \return The argument following the last expanded function
2761   /// argument.
2762   llvm::Function::arg_iterator
2763   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2764                      llvm::Function::arg_iterator AI);
2765
2766   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2767   /// Ty, into individual arguments on the provided vector \arg Args. See
2768   /// ABIArgInfo::Expand.
2769   void ExpandTypeToArgs(QualType Ty, RValue Src,
2770                         SmallVector<llvm::Value*, 16> &Args,
2771                         llvm::FunctionType *IRFuncTy);
2772
2773   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2774                             const Expr *InputExpr, std::string &ConstraintStr);
2775
2776   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2777                                   LValue InputValue, QualType InputType,
2778                                   std::string &ConstraintStr);
2779
2780   /// EmitCallArgs - Emit call arguments for a function.
2781   /// The CallArgTypeInfo parameter is used for iterating over the known
2782   /// argument types of the function being called.
2783   template<typename T>
2784   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2785                     CallExpr::const_arg_iterator ArgBeg,
2786                     CallExpr::const_arg_iterator ArgEnd) {
2787       CallExpr::const_arg_iterator Arg = ArgBeg;
2788
2789     // First, use the argument types that the type info knows about
2790     if (CallArgTypeInfo) {
2791       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2792            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2793         assert(Arg != ArgEnd && "Running over edge of argument list!");
2794         QualType ArgType = *I;
2795 #ifndef NDEBUG
2796         QualType ActualArgType = Arg->getType();
2797         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2798           QualType ActualBaseType =
2799             ActualArgType->getAs<PointerType>()->getPointeeType();
2800           QualType ArgBaseType =
2801             ArgType->getAs<PointerType>()->getPointeeType();
2802           if (ArgBaseType->isVariableArrayType()) {
2803             if (const VariableArrayType *VAT =
2804                 getContext().getAsVariableArrayType(ActualBaseType)) {
2805               if (!VAT->getSizeExpr())
2806                 ActualArgType = ArgType;
2807             }
2808           }
2809         }
2810         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2811                getTypePtr() ==
2812                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2813                "type mismatch in call argument!");
2814 #endif
2815         EmitCallArg(Args, *Arg, ArgType);
2816       }
2817
2818       // Either we've emitted all the call args, or we have a call to a
2819       // variadic function.
2820       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2821              "Extra arguments in non-variadic function!");
2822
2823     }
2824
2825     // If we still have any arguments, emit them using the type of the argument.
2826     for (; Arg != ArgEnd; ++Arg)
2827       EmitCallArg(Args, *Arg, Arg->getType());
2828   }
2829
2830   const TargetCodeGenInfo &getTargetHooks() const {
2831     return CGM.getTargetCodeGenInfo();
2832   }
2833
2834   void EmitDeclMetadata();
2835
2836   CodeGenModule::ByrefHelpers *
2837   buildByrefHelpers(llvm::StructType &byrefType,
2838                     const AutoVarEmission &emission);
2839
2840   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2841
2842   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2843   /// value and compute our best estimate of the alignment of the pointee.
2844   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2845 };
2846
2847 /// Helper class with most of the code for saving a value for a
2848 /// conditional expression cleanup.
2849 struct DominatingLLVMValue {
2850   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2851
2852   /// Answer whether the given value needs extra work to be saved.
2853   static bool needsSaving(llvm::Value *value) {
2854     // If it's not an instruction, we don't need to save.
2855     if (!isa<llvm::Instruction>(value)) return false;
2856
2857     // If it's an instruction in the entry block, we don't need to save.
2858     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2859     return (block != &block->getParent()->getEntryBlock());
2860   }
2861
2862   /// Try to save the given value.
2863   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2864     if (!needsSaving(value)) return saved_type(value, false);
2865
2866     // Otherwise we need an alloca.
2867     llvm::Value *alloca =
2868       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2869     CGF.Builder.CreateStore(value, alloca);
2870
2871     return saved_type(alloca, true);
2872   }
2873
2874   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2875     if (!value.getInt()) return value.getPointer();
2876     return CGF.Builder.CreateLoad(value.getPointer());
2877   }
2878 };
2879
2880 /// A partial specialization of DominatingValue for llvm::Values that
2881 /// might be llvm::Instructions.
2882 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2883   typedef T *type;
2884   static type restore(CodeGenFunction &CGF, saved_type value) {
2885     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2886   }
2887 };
2888
2889 /// A specialization of DominatingValue for RValue.
2890 template <> struct DominatingValue<RValue> {
2891   typedef RValue type;
2892   class saved_type {
2893     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2894                 AggregateAddress, ComplexAddress };
2895
2896     llvm::Value *Value;
2897     Kind K;
2898     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2899
2900   public:
2901     static bool needsSaving(RValue value);
2902     static saved_type save(CodeGenFunction &CGF, RValue value);
2903     RValue restore(CodeGenFunction &CGF);
2904
2905     // implementations in CGExprCXX.cpp
2906   };
2907
2908   static bool needsSaving(type value) {
2909     return saved_type::needsSaving(value);
2910   }
2911   static saved_type save(CodeGenFunction &CGF, type value) {
2912     return saved_type::save(CGF, value);
2913   }
2914   static type restore(CodeGenFunction &CGF, saved_type value) {
2915     return value.restore(CGF);
2916   }
2917 };
2918
2919 }  // end namespace CodeGen
2920 }  // end namespace clang
2921
2922 #endif