]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CodeGenModule.cpp
Update clang to trunk r256633.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CodeGenModule.cpp
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "CodeGenTBAA.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/Basic/Builtins.h"
37 #include "clang/Basic/CharInfo.h"
38 #include "clang/Basic/Diagnostic.h"
39 #include "clang/Basic/Module.h"
40 #include "clang/Basic/SourceManager.h"
41 #include "clang/Basic/TargetInfo.h"
42 #include "clang/Basic/Version.h"
43 #include "clang/Frontend/CodeGenOptions.h"
44 #include "clang/Sema/SemaDiagnostic.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57
58 using namespace clang;
59 using namespace CodeGen;
60
61 static const char AnnotationSection[] = "llvm.metadata";
62
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
90       Types(*this), VTables(*this), ObjCRuntime(nullptr),
91       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
92       DebugInfo(nullptr), ObjCData(nullptr),
93       NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr),
94       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
95       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
96       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
97       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
98       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
99       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
100
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   FloatTy = llvm::Type::getFloatTy(LLVMContext);
109   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
110   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
111   PointerAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
113   IntAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
115   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
116   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
117   Int8PtrTy = Int8Ty->getPointerTo(0);
118   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
119
120   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
121   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
122
123   if (LangOpts.ObjC1)
124     createObjCRuntime();
125   if (LangOpts.OpenCL)
126     createOpenCLRuntime();
127   if (LangOpts.OpenMP)
128     createOpenMPRuntime();
129   if (LangOpts.CUDA)
130     createCUDARuntime();
131
132   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
133   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
134       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
135     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
136                            getCXXABI().getMangleContext());
137
138   // If debug info or coverage generation is enabled, create the CGDebugInfo
139   // object.
140   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
141       CodeGenOpts.EmitGcovArcs ||
142       CodeGenOpts.EmitGcovNotes)
143     DebugInfo = new CGDebugInfo(*this);
144
145   Block.GlobalUniqueCount = 0;
146
147   if (C.getLangOpts().ObjC1)
148     ObjCData = new ObjCEntrypoints();
149
150   if (!CodeGenOpts.InstrProfileInput.empty()) {
151     auto ReaderOrErr =
152         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
153     if (std::error_code EC = ReaderOrErr.getError()) {
154       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
155                                               "Could not read profile %0: %1");
156       getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput
157                                 << EC.message();
158     } else
159       PGOReader = std::move(ReaderOrErr.get());
160   }
161
162   // If coverage mapping generation is enabled, create the
163   // CoverageMappingModuleGen object.
164   if (CodeGenOpts.CoverageMapping)
165     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
166 }
167
168 CodeGenModule::~CodeGenModule() {
169   delete ObjCRuntime;
170   delete OpenCLRuntime;
171   delete OpenMPRuntime;
172   delete CUDARuntime;
173   delete TheTargetCodeGenInfo;
174   delete TBAA;
175   delete DebugInfo;
176   delete ObjCData;
177 }
178
179 void CodeGenModule::createObjCRuntime() {
180   // This is just isGNUFamily(), but we want to force implementors of
181   // new ABIs to decide how best to do this.
182   switch (LangOpts.ObjCRuntime.getKind()) {
183   case ObjCRuntime::GNUstep:
184   case ObjCRuntime::GCC:
185   case ObjCRuntime::ObjFW:
186     ObjCRuntime = CreateGNUObjCRuntime(*this);
187     return;
188
189   case ObjCRuntime::FragileMacOSX:
190   case ObjCRuntime::MacOSX:
191   case ObjCRuntime::iOS:
192   case ObjCRuntime::WatchOS:
193     ObjCRuntime = CreateMacObjCRuntime(*this);
194     return;
195   }
196   llvm_unreachable("bad runtime kind");
197 }
198
199 void CodeGenModule::createOpenCLRuntime() {
200   OpenCLRuntime = new CGOpenCLRuntime(*this);
201 }
202
203 void CodeGenModule::createOpenMPRuntime() {
204   OpenMPRuntime = new CGOpenMPRuntime(*this);
205 }
206
207 void CodeGenModule::createCUDARuntime() {
208   CUDARuntime = CreateNVCUDARuntime(*this);
209 }
210
211 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
212   Replacements[Name] = C;
213 }
214
215 void CodeGenModule::applyReplacements() {
216   for (auto &I : Replacements) {
217     StringRef MangledName = I.first();
218     llvm::Constant *Replacement = I.second;
219     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
220     if (!Entry)
221       continue;
222     auto *OldF = cast<llvm::Function>(Entry);
223     auto *NewF = dyn_cast<llvm::Function>(Replacement);
224     if (!NewF) {
225       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
226         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
227       } else {
228         auto *CE = cast<llvm::ConstantExpr>(Replacement);
229         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
230                CE->getOpcode() == llvm::Instruction::GetElementPtr);
231         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
232       }
233     }
234
235     // Replace old with new, but keep the old order.
236     OldF->replaceAllUsesWith(Replacement);
237     if (NewF) {
238       NewF->removeFromParent();
239       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
240                                                        NewF);
241     }
242     OldF->eraseFromParent();
243   }
244 }
245
246 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
247   GlobalValReplacements.push_back(std::make_pair(GV, C));
248 }
249
250 void CodeGenModule::applyGlobalValReplacements() {
251   for (auto &I : GlobalValReplacements) {
252     llvm::GlobalValue *GV = I.first;
253     llvm::Constant *C = I.second;
254
255     GV->replaceAllUsesWith(C);
256     GV->eraseFromParent();
257   }
258 }
259
260 // This is only used in aliases that we created and we know they have a
261 // linear structure.
262 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
263   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
264   const llvm::Constant *C = &GA;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
271     if (!GA2)
272       return nullptr;
273     if (!Visited.insert(GA2).second)
274       return nullptr;
275     C = GA2->getAliasee();
276   }
277 }
278
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     const AliasAttr *AA = D->getAttr<AliasAttr>();
288     StringRef MangledName = getMangledName(GD);
289     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290     auto *Alias = cast<llvm::GlobalAlias>(Entry);
291     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
292     if (!GV) {
293       Error = true;
294       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
295     } else if (GV->isDeclaration()) {
296       Error = true;
297       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
298     }
299
300     llvm::Constant *Aliasee = Alias->getAliasee();
301     llvm::GlobalValue *AliaseeGV;
302     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
303       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
304     else
305       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
306
307     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
308       StringRef AliasSection = SA->getName();
309       if (AliasSection != AliaseeGV->getSection())
310         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
311             << AliasSection;
312     }
313
314     // We have to handle alias to weak aliases in here. LLVM itself disallows
315     // this since the object semantics would not match the IL one. For
316     // compatibility with gcc we implement it by just pointing the alias
317     // to its aliasee's aliasee. We also warn, since the user is probably
318     // expecting the link to be weak.
319     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
320       if (GA->mayBeOverridden()) {
321         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
322             << GV->getName() << GA->getName();
323         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
324             GA->getAliasee(), Alias->getType());
325         Alias->setAliasee(Aliasee);
326       }
327     }
328   }
329   if (!Error)
330     return;
331
332   for (const GlobalDecl &GD : Aliases) {
333     StringRef MangledName = getMangledName(GD);
334     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
335     auto *Alias = cast<llvm::GlobalAlias>(Entry);
336     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
337     Alias->eraseFromParent();
338   }
339 }
340
341 void CodeGenModule::clear() {
342   DeferredDeclsToEmit.clear();
343   if (OpenMPRuntime)
344     OpenMPRuntime->clear();
345 }
346
347 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
348                                        StringRef MainFile) {
349   if (!hasDiagnostics())
350     return;
351   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
352     if (MainFile.empty())
353       MainFile = "<stdin>";
354     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
355   } else
356     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
357                                                       << Mismatched;
358 }
359
360 void CodeGenModule::Release() {
361   EmitDeferred();
362   applyGlobalValReplacements();
363   applyReplacements();
364   checkAliases();
365   EmitCXXGlobalInitFunc();
366   EmitCXXGlobalDtorFunc();
367   EmitCXXThreadLocalInitFunc();
368   if (ObjCRuntime)
369     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
370       AddGlobalCtor(ObjCInitFunction);
371   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
372       CUDARuntime) {
373     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
374       AddGlobalCtor(CudaCtorFunction);
375     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
376       AddGlobalDtor(CudaDtorFunction);
377   }
378   if (PGOReader) {
379     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
380     if (PGOStats.hasDiagnostics())
381       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
382   }
383   EmitCtorList(GlobalCtors, "llvm.global_ctors");
384   EmitCtorList(GlobalDtors, "llvm.global_dtors");
385   EmitGlobalAnnotations();
386   EmitStaticExternCAliases();
387   EmitDeferredUnusedCoverageMappings();
388   if (CoverageMapping)
389     CoverageMapping->emit();
390   emitLLVMUsed();
391
392   if (CodeGenOpts.Autolink &&
393       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
394     EmitModuleLinkOptions();
395   }
396   if (CodeGenOpts.DwarfVersion) {
397     // We actually want the latest version when there are conflicts.
398     // We can change from Warning to Latest if such mode is supported.
399     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
400                               CodeGenOpts.DwarfVersion);
401   }
402   if (CodeGenOpts.EmitCodeView) {
403     // Indicate that we want CodeView in the metadata.
404     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
405   }
406   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
407     // We don't support LTO with 2 with different StrictVTablePointers
408     // FIXME: we could support it by stripping all the information introduced
409     // by StrictVTablePointers.
410
411     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
412
413     llvm::Metadata *Ops[2] = {
414               llvm::MDString::get(VMContext, "StrictVTablePointers"),
415               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
416                   llvm::Type::getInt32Ty(VMContext), 1))};
417
418     getModule().addModuleFlag(llvm::Module::Require,
419                               "StrictVTablePointersRequirement",
420                               llvm::MDNode::get(VMContext, Ops));
421   }
422   if (DebugInfo)
423     // We support a single version in the linked module. The LLVM
424     // parser will drop debug info with a different version number
425     // (and warn about it, too).
426     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
427                               llvm::DEBUG_METADATA_VERSION);
428
429   // We need to record the widths of enums and wchar_t, so that we can generate
430   // the correct build attributes in the ARM backend.
431   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
432   if (   Arch == llvm::Triple::arm
433       || Arch == llvm::Triple::armeb
434       || Arch == llvm::Triple::thumb
435       || Arch == llvm::Triple::thumbeb) {
436     // Width of wchar_t in bytes
437     uint64_t WCharWidth =
438         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
439     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
440
441     // The minimum width of an enum in bytes
442     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
443     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
444   }
445
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     // Indicate that we want cross-DSO control flow integrity checks.
448     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
449   }
450
451   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
452     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
453     switch (PLevel) {
454     case 0: break;
455     case 1: PL = llvm::PICLevel::Small; break;
456     case 2: PL = llvm::PICLevel::Large; break;
457     default: llvm_unreachable("Invalid PIC Level");
458     }
459
460     getModule().setPICLevel(PL);
461   }
462
463   SimplifyPersonality();
464
465   if (getCodeGenOpts().EmitDeclMetadata)
466     EmitDeclMetadata();
467
468   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
469     EmitCoverageFile();
470
471   if (DebugInfo)
472     DebugInfo->finalize();
473
474   EmitVersionIdentMetadata();
475
476   EmitTargetMetadata();
477 }
478
479 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
480   // Make sure that this type is translated.
481   Types.UpdateCompletedType(TD);
482 }
483
484 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
485   if (!TBAA)
486     return nullptr;
487   return TBAA->getTBAAInfo(QTy);
488 }
489
490 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
491   if (!TBAA)
492     return nullptr;
493   return TBAA->getTBAAInfoForVTablePtr();
494 }
495
496 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
497   if (!TBAA)
498     return nullptr;
499   return TBAA->getTBAAStructInfo(QTy);
500 }
501
502 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
503                                                   llvm::MDNode *AccessN,
504                                                   uint64_t O) {
505   if (!TBAA)
506     return nullptr;
507   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
508 }
509
510 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
511 /// and struct-path aware TBAA, the tag has the same format:
512 /// base type, access type and offset.
513 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
514 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
515                                                 llvm::MDNode *TBAAInfo,
516                                                 bool ConvertTypeToTag) {
517   if (ConvertTypeToTag && TBAA)
518     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
519                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
520   else
521     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
522 }
523
524 void CodeGenModule::DecorateInstructionWithInvariantGroup(
525     llvm::Instruction *I, const CXXRecordDecl *RD) {
526   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
527   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
528   // Check if we have to wrap MDString in MDNode.
529   if (!MetaDataNode)
530     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
531   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
532 }
533
534 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
535   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
536   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
537 }
538
539 /// ErrorUnsupported - Print out an error that codegen doesn't support the
540 /// specified stmt yet.
541 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
542   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
543                                                "cannot compile this %0 yet");
544   std::string Msg = Type;
545   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
546     << Msg << S->getSourceRange();
547 }
548
549 /// ErrorUnsupported - Print out an error that codegen doesn't support the
550 /// specified decl yet.
551 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
552   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
553                                                "cannot compile this %0 yet");
554   std::string Msg = Type;
555   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
556 }
557
558 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
559   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
560 }
561
562 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
563                                         const NamedDecl *D) const {
564   // Internal definitions always have default visibility.
565   if (GV->hasLocalLinkage()) {
566     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
567     return;
568   }
569
570   // Set visibility for definitions.
571   LinkageInfo LV = D->getLinkageAndVisibility();
572   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
573     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
574 }
575
576 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
577   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
578       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
579       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
580       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
581       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
582 }
583
584 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
585     CodeGenOptions::TLSModel M) {
586   switch (M) {
587   case CodeGenOptions::GeneralDynamicTLSModel:
588     return llvm::GlobalVariable::GeneralDynamicTLSModel;
589   case CodeGenOptions::LocalDynamicTLSModel:
590     return llvm::GlobalVariable::LocalDynamicTLSModel;
591   case CodeGenOptions::InitialExecTLSModel:
592     return llvm::GlobalVariable::InitialExecTLSModel;
593   case CodeGenOptions::LocalExecTLSModel:
594     return llvm::GlobalVariable::LocalExecTLSModel;
595   }
596   llvm_unreachable("Invalid TLS model!");
597 }
598
599 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
600   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
601
602   llvm::GlobalValue::ThreadLocalMode TLM;
603   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
604
605   // Override the TLS model if it is explicitly specified.
606   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
607     TLM = GetLLVMTLSModel(Attr->getModel());
608   }
609
610   GV->setThreadLocalMode(TLM);
611 }
612
613 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
614   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
615   if (!FoundStr.empty())
616     return FoundStr;
617
618   const auto *ND = cast<NamedDecl>(GD.getDecl());
619   SmallString<256> Buffer;
620   StringRef Str;
621   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
622     llvm::raw_svector_ostream Out(Buffer);
623     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
624       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
625     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
626       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
627     else
628       getCXXABI().getMangleContext().mangleName(ND, Out);
629     Str = Out.str();
630   } else {
631     IdentifierInfo *II = ND->getIdentifier();
632     assert(II && "Attempt to mangle unnamed decl.");
633     Str = II->getName();
634   }
635
636   // Keep the first result in the case of a mangling collision.
637   auto Result = Manglings.insert(std::make_pair(Str, GD));
638   return FoundStr = Result.first->first();
639 }
640
641 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
642                                              const BlockDecl *BD) {
643   MangleContext &MangleCtx = getCXXABI().getMangleContext();
644   const Decl *D = GD.getDecl();
645
646   SmallString<256> Buffer;
647   llvm::raw_svector_ostream Out(Buffer);
648   if (!D)
649     MangleCtx.mangleGlobalBlock(BD, 
650       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
651   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
652     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
653   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
654     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
655   else
656     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
657
658   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
659   return Result.first->first();
660 }
661
662 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
663   return getModule().getNamedValue(Name);
664 }
665
666 /// AddGlobalCtor - Add a function to the list that will be called before
667 /// main() runs.
668 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
669                                   llvm::Constant *AssociatedData) {
670   // FIXME: Type coercion of void()* types.
671   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
672 }
673
674 /// AddGlobalDtor - Add a function to the list that will be called
675 /// when the module is unloaded.
676 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
677   // FIXME: Type coercion of void()* types.
678   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
679 }
680
681 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
682   // Ctor function type is void()*.
683   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
684   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
685
686   // Get the type of a ctor entry, { i32, void ()*, i8* }.
687   llvm::StructType *CtorStructTy = llvm::StructType::get(
688       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
689
690   // Construct the constructor and destructor arrays.
691   SmallVector<llvm::Constant *, 8> Ctors;
692   for (const auto &I : Fns) {
693     llvm::Constant *S[] = {
694         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
695         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
696         (I.AssociatedData
697              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
698              : llvm::Constant::getNullValue(VoidPtrTy))};
699     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
700   }
701
702   if (!Ctors.empty()) {
703     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
704     new llvm::GlobalVariable(TheModule, AT, false,
705                              llvm::GlobalValue::AppendingLinkage,
706                              llvm::ConstantArray::get(AT, Ctors),
707                              GlobalName);
708   }
709 }
710
711 llvm::GlobalValue::LinkageTypes
712 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
713   const auto *D = cast<FunctionDecl>(GD.getDecl());
714
715   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
716
717   if (isa<CXXDestructorDecl>(D) &&
718       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
719                                          GD.getDtorType())) {
720     // Destructor variants in the Microsoft C++ ABI are always internal or
721     // linkonce_odr thunks emitted on an as-needed basis.
722     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
723                                    : llvm::GlobalValue::LinkOnceODRLinkage;
724   }
725
726   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
727 }
728
729 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
730   const auto *FD = cast<FunctionDecl>(GD.getDecl());
731
732   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
733     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
734       // Don't dllexport/import destructor thunks.
735       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
736       return;
737     }
738   }
739
740   if (FD->hasAttr<DLLImportAttr>())
741     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
742   else if (FD->hasAttr<DLLExportAttr>())
743     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
744   else
745     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
746 }
747
748 llvm::ConstantInt *
749 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
750   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
751   if (!MDS) return nullptr;
752
753   llvm::MD5 md5;
754   llvm::MD5::MD5Result result;
755   md5.update(MDS->getString());
756   md5.final(result);
757   uint64_t id = 0;
758   for (int i = 0; i < 8; ++i)
759     id |= static_cast<uint64_t>(result[i]) << (i * 8);
760   return llvm::ConstantInt::get(Int64Ty, id);
761 }
762
763 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
764                                                     llvm::Function *F) {
765   setNonAliasAttributes(D, F);
766 }
767
768 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
769                                               const CGFunctionInfo &Info,
770                                               llvm::Function *F) {
771   unsigned CallingConv;
772   AttributeListType AttributeList;
773   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
774   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
775   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
776 }
777
778 /// Determines whether the language options require us to model
779 /// unwind exceptions.  We treat -fexceptions as mandating this
780 /// except under the fragile ObjC ABI with only ObjC exceptions
781 /// enabled.  This means, for example, that C with -fexceptions
782 /// enables this.
783 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
784   // If exceptions are completely disabled, obviously this is false.
785   if (!LangOpts.Exceptions) return false;
786
787   // If C++ exceptions are enabled, this is true.
788   if (LangOpts.CXXExceptions) return true;
789
790   // If ObjC exceptions are enabled, this depends on the ABI.
791   if (LangOpts.ObjCExceptions) {
792     return LangOpts.ObjCRuntime.hasUnwindExceptions();
793   }
794
795   return true;
796 }
797
798 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
799                                                            llvm::Function *F) {
800   llvm::AttrBuilder B;
801
802   if (CodeGenOpts.UnwindTables)
803     B.addAttribute(llvm::Attribute::UWTable);
804
805   if (!hasUnwindExceptions(LangOpts))
806     B.addAttribute(llvm::Attribute::NoUnwind);
807
808   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
809     B.addAttribute(llvm::Attribute::StackProtect);
810   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
811     B.addAttribute(llvm::Attribute::StackProtectStrong);
812   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
813     B.addAttribute(llvm::Attribute::StackProtectReq);
814
815   if (!D) {
816     F->addAttributes(llvm::AttributeSet::FunctionIndex,
817                      llvm::AttributeSet::get(
818                          F->getContext(),
819                          llvm::AttributeSet::FunctionIndex, B));
820     return;
821   }
822
823   if (D->hasAttr<NakedAttr>()) {
824     // Naked implies noinline: we should not be inlining such functions.
825     B.addAttribute(llvm::Attribute::Naked);
826     B.addAttribute(llvm::Attribute::NoInline);
827   } else if (D->hasAttr<NoDuplicateAttr>()) {
828     B.addAttribute(llvm::Attribute::NoDuplicate);
829   } else if (D->hasAttr<NoInlineAttr>()) {
830     B.addAttribute(llvm::Attribute::NoInline);
831   } else if (D->hasAttr<AlwaysInlineAttr>() &&
832              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
833                                               llvm::Attribute::NoInline)) {
834     // (noinline wins over always_inline, and we can't specify both in IR)
835     B.addAttribute(llvm::Attribute::AlwaysInline);
836   }
837
838   if (D->hasAttr<ColdAttr>()) {
839     if (!D->hasAttr<OptimizeNoneAttr>())
840       B.addAttribute(llvm::Attribute::OptimizeForSize);
841     B.addAttribute(llvm::Attribute::Cold);
842   }
843
844   if (D->hasAttr<MinSizeAttr>())
845     B.addAttribute(llvm::Attribute::MinSize);
846
847   F->addAttributes(llvm::AttributeSet::FunctionIndex,
848                    llvm::AttributeSet::get(
849                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
850
851   if (D->hasAttr<OptimizeNoneAttr>()) {
852     // OptimizeNone implies noinline; we should not be inlining such functions.
853     F->addFnAttr(llvm::Attribute::OptimizeNone);
854     F->addFnAttr(llvm::Attribute::NoInline);
855
856     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
857     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
858     F->removeFnAttr(llvm::Attribute::MinSize);
859     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
860            "OptimizeNone and AlwaysInline on same function!");
861
862     // Attribute 'inlinehint' has no effect on 'optnone' functions.
863     // Explicitly remove it from the set of function attributes.
864     F->removeFnAttr(llvm::Attribute::InlineHint);
865   }
866
867   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
868     F->setUnnamedAddr(true);
869   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
870     if (MD->isVirtual())
871       F->setUnnamedAddr(true);
872
873   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
874   if (alignment)
875     F->setAlignment(alignment);
876
877   // Some C++ ABIs require 2-byte alignment for member functions, in order to
878   // reserve a bit for differentiating between virtual and non-virtual member
879   // functions. If the current target's C++ ABI requires this and this is a
880   // member function, set its alignment accordingly.
881   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
882     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
883       F->setAlignment(2);
884   }
885 }
886
887 void CodeGenModule::SetCommonAttributes(const Decl *D,
888                                         llvm::GlobalValue *GV) {
889   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
890     setGlobalVisibility(GV, ND);
891   else
892     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
893
894   if (D && D->hasAttr<UsedAttr>())
895     addUsedGlobal(GV);
896 }
897
898 void CodeGenModule::setAliasAttributes(const Decl *D,
899                                        llvm::GlobalValue *GV) {
900   SetCommonAttributes(D, GV);
901
902   // Process the dllexport attribute based on whether the original definition
903   // (not necessarily the aliasee) was exported.
904   if (D->hasAttr<DLLExportAttr>())
905     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
906 }
907
908 void CodeGenModule::setNonAliasAttributes(const Decl *D,
909                                           llvm::GlobalObject *GO) {
910   SetCommonAttributes(D, GO);
911
912   if (D)
913     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
914       GO->setSection(SA->getName());
915
916   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
917 }
918
919 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
920                                                   llvm::Function *F,
921                                                   const CGFunctionInfo &FI) {
922   SetLLVMFunctionAttributes(D, FI, F);
923   SetLLVMFunctionAttributesForDefinition(D, F);
924
925   F->setLinkage(llvm::Function::InternalLinkage);
926
927   setNonAliasAttributes(D, F);
928 }
929
930 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
931                                          const NamedDecl *ND) {
932   // Set linkage and visibility in case we never see a definition.
933   LinkageInfo LV = ND->getLinkageAndVisibility();
934   if (LV.getLinkage() != ExternalLinkage) {
935     // Don't set internal linkage on declarations.
936   } else {
937     if (ND->hasAttr<DLLImportAttr>()) {
938       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
939       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
940     } else if (ND->hasAttr<DLLExportAttr>()) {
941       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
942       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
943     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
944       // "extern_weak" is overloaded in LLVM; we probably should have
945       // separate linkage types for this.
946       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
947     }
948
949     // Set visibility on a declaration only if it's explicit.
950     if (LV.isVisibilityExplicit())
951       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
952   }
953 }
954
955 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
956                                               llvm::Function *F) {
957   // Only if we are checking indirect calls.
958   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
959     return;
960
961   // Non-static class methods are handled via vtable pointer checks elsewhere.
962   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
963     return;
964
965   // Additionally, if building with cross-DSO support...
966   if (CodeGenOpts.SanitizeCfiCrossDso) {
967     // Don't emit entries for function declarations. In cross-DSO mode these are
968     // handled with better precision at run time.
969     if (!FD->hasBody())
970       return;
971     // Skip available_externally functions. They won't be codegen'ed in the
972     // current module anyway.
973     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
974       return;
975   }
976
977   llvm::NamedMDNode *BitsetsMD =
978       getModule().getOrInsertNamedMetadata("llvm.bitsets");
979
980   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
981   llvm::Metadata *BitsetOps[] = {
982       MD, llvm::ConstantAsMetadata::get(F),
983       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
984   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
985
986   // Emit a hash-based bit set entry for cross-DSO calls.
987   if (CodeGenOpts.SanitizeCfiCrossDso) {
988     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
989       llvm::Metadata *BitsetOps2[] = {
990           llvm::ConstantAsMetadata::get(TypeId),
991           llvm::ConstantAsMetadata::get(F),
992           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
993       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
994     }
995   }
996 }
997
998 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
999                                           bool IsIncompleteFunction,
1000                                           bool IsThunk) {
1001   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1002     // If this is an intrinsic function, set the function's attributes
1003     // to the intrinsic's attributes.
1004     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1005     return;
1006   }
1007
1008   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1009
1010   if (!IsIncompleteFunction)
1011     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1012
1013   // Add the Returned attribute for "this", except for iOS 5 and earlier
1014   // where substantial code, including the libstdc++ dylib, was compiled with
1015   // GCC and does not actually return "this".
1016   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1017       !(getTarget().getTriple().isiOS() &&
1018         getTarget().getTriple().isOSVersionLT(6))) {
1019     assert(!F->arg_empty() &&
1020            F->arg_begin()->getType()
1021              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1022            "unexpected this return");
1023     F->addAttribute(1, llvm::Attribute::Returned);
1024   }
1025
1026   // Only a few attributes are set on declarations; these may later be
1027   // overridden by a definition.
1028
1029   setLinkageAndVisibilityForGV(F, FD);
1030
1031   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1032     F->setSection(SA->getName());
1033
1034   // A replaceable global allocation function does not act like a builtin by
1035   // default, only if it is invoked by a new-expression or delete-expression.
1036   if (FD->isReplaceableGlobalAllocationFunction())
1037     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1038                     llvm::Attribute::NoBuiltin);
1039
1040   CreateFunctionBitSetEntry(FD, F);
1041 }
1042
1043 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1044   assert(!GV->isDeclaration() &&
1045          "Only globals with definition can force usage.");
1046   LLVMUsed.emplace_back(GV);
1047 }
1048
1049 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1050   assert(!GV->isDeclaration() &&
1051          "Only globals with definition can force usage.");
1052   LLVMCompilerUsed.emplace_back(GV);
1053 }
1054
1055 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1056                      std::vector<llvm::WeakVH> &List) {
1057   // Don't create llvm.used if there is no need.
1058   if (List.empty())
1059     return;
1060
1061   // Convert List to what ConstantArray needs.
1062   SmallVector<llvm::Constant*, 8> UsedArray;
1063   UsedArray.resize(List.size());
1064   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1065     UsedArray[i] =
1066         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1067             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1068   }
1069
1070   if (UsedArray.empty())
1071     return;
1072   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1073
1074   auto *GV = new llvm::GlobalVariable(
1075       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1076       llvm::ConstantArray::get(ATy, UsedArray), Name);
1077
1078   GV->setSection("llvm.metadata");
1079 }
1080
1081 void CodeGenModule::emitLLVMUsed() {
1082   emitUsed(*this, "llvm.used", LLVMUsed);
1083   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1084 }
1085
1086 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1087   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1088   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1089 }
1090
1091 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1092   llvm::SmallString<32> Opt;
1093   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1094   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1095   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1096 }
1097
1098 void CodeGenModule::AddDependentLib(StringRef Lib) {
1099   llvm::SmallString<24> Opt;
1100   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1101   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1102   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1103 }
1104
1105 /// \brief Add link options implied by the given module, including modules
1106 /// it depends on, using a postorder walk.
1107 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1108                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1109                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1110   // Import this module's parent.
1111   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1112     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1113   }
1114
1115   // Import this module's dependencies.
1116   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1117     if (Visited.insert(Mod->Imports[I - 1]).second)
1118       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1119   }
1120
1121   // Add linker options to link against the libraries/frameworks
1122   // described by this module.
1123   llvm::LLVMContext &Context = CGM.getLLVMContext();
1124   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1125     // Link against a framework.  Frameworks are currently Darwin only, so we
1126     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1127     if (Mod->LinkLibraries[I-1].IsFramework) {
1128       llvm::Metadata *Args[2] = {
1129           llvm::MDString::get(Context, "-framework"),
1130           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1131
1132       Metadata.push_back(llvm::MDNode::get(Context, Args));
1133       continue;
1134     }
1135
1136     // Link against a library.
1137     llvm::SmallString<24> Opt;
1138     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1139       Mod->LinkLibraries[I-1].Library, Opt);
1140     auto *OptString = llvm::MDString::get(Context, Opt);
1141     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1142   }
1143 }
1144
1145 void CodeGenModule::EmitModuleLinkOptions() {
1146   // Collect the set of all of the modules we want to visit to emit link
1147   // options, which is essentially the imported modules and all of their
1148   // non-explicit child modules.
1149   llvm::SetVector<clang::Module *> LinkModules;
1150   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1151   SmallVector<clang::Module *, 16> Stack;
1152
1153   // Seed the stack with imported modules.
1154   for (Module *M : ImportedModules)
1155     if (Visited.insert(M).second)
1156       Stack.push_back(M);
1157
1158   // Find all of the modules to import, making a little effort to prune
1159   // non-leaf modules.
1160   while (!Stack.empty()) {
1161     clang::Module *Mod = Stack.pop_back_val();
1162
1163     bool AnyChildren = false;
1164
1165     // Visit the submodules of this module.
1166     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1167                                         SubEnd = Mod->submodule_end();
1168          Sub != SubEnd; ++Sub) {
1169       // Skip explicit children; they need to be explicitly imported to be
1170       // linked against.
1171       if ((*Sub)->IsExplicit)
1172         continue;
1173
1174       if (Visited.insert(*Sub).second) {
1175         Stack.push_back(*Sub);
1176         AnyChildren = true;
1177       }
1178     }
1179
1180     // We didn't find any children, so add this module to the list of
1181     // modules to link against.
1182     if (!AnyChildren) {
1183       LinkModules.insert(Mod);
1184     }
1185   }
1186
1187   // Add link options for all of the imported modules in reverse topological
1188   // order.  We don't do anything to try to order import link flags with respect
1189   // to linker options inserted by things like #pragma comment().
1190   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1191   Visited.clear();
1192   for (Module *M : LinkModules)
1193     if (Visited.insert(M).second)
1194       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1195   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1196   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1197
1198   // Add the linker options metadata flag.
1199   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1200                             llvm::MDNode::get(getLLVMContext(),
1201                                               LinkerOptionsMetadata));
1202 }
1203
1204 void CodeGenModule::EmitDeferred() {
1205   // Emit code for any potentially referenced deferred decls.  Since a
1206   // previously unused static decl may become used during the generation of code
1207   // for a static function, iterate until no changes are made.
1208
1209   if (!DeferredVTables.empty()) {
1210     EmitDeferredVTables();
1211
1212     // Emitting a v-table doesn't directly cause more v-tables to
1213     // become deferred, although it can cause functions to be
1214     // emitted that then need those v-tables.
1215     assert(DeferredVTables.empty());
1216   }
1217
1218   // Stop if we're out of both deferred v-tables and deferred declarations.
1219   if (DeferredDeclsToEmit.empty())
1220     return;
1221
1222   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1223   // work, it will not interfere with this.
1224   std::vector<DeferredGlobal> CurDeclsToEmit;
1225   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1226
1227   for (DeferredGlobal &G : CurDeclsToEmit) {
1228     GlobalDecl D = G.GD;
1229     llvm::GlobalValue *GV = G.GV;
1230     G.GV = nullptr;
1231
1232     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1233     // to get GlobalValue with exactly the type we need, not something that
1234     // might had been created for another decl with the same mangled name but
1235     // different type.
1236     // FIXME: Support for variables is not implemented yet.
1237     if (isa<FunctionDecl>(D.getDecl()))
1238       GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1239     else
1240       if (!GV)
1241         GV = GetGlobalValue(getMangledName(D));
1242
1243     // Check to see if we've already emitted this.  This is necessary
1244     // for a couple of reasons: first, decls can end up in the
1245     // deferred-decls queue multiple times, and second, decls can end
1246     // up with definitions in unusual ways (e.g. by an extern inline
1247     // function acquiring a strong function redefinition).  Just
1248     // ignore these cases.
1249     if (GV && !GV->isDeclaration())
1250       continue;
1251
1252     // Otherwise, emit the definition and move on to the next one.
1253     EmitGlobalDefinition(D, GV);
1254
1255     // If we found out that we need to emit more decls, do that recursively.
1256     // This has the advantage that the decls are emitted in a DFS and related
1257     // ones are close together, which is convenient for testing.
1258     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1259       EmitDeferred();
1260       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1261     }
1262   }
1263 }
1264
1265 void CodeGenModule::EmitGlobalAnnotations() {
1266   if (Annotations.empty())
1267     return;
1268
1269   // Create a new global variable for the ConstantStruct in the Module.
1270   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1271     Annotations[0]->getType(), Annotations.size()), Annotations);
1272   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1273                                       llvm::GlobalValue::AppendingLinkage,
1274                                       Array, "llvm.global.annotations");
1275   gv->setSection(AnnotationSection);
1276 }
1277
1278 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1279   llvm::Constant *&AStr = AnnotationStrings[Str];
1280   if (AStr)
1281     return AStr;
1282
1283   // Not found yet, create a new global.
1284   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1285   auto *gv =
1286       new llvm::GlobalVariable(getModule(), s->getType(), true,
1287                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1288   gv->setSection(AnnotationSection);
1289   gv->setUnnamedAddr(true);
1290   AStr = gv;
1291   return gv;
1292 }
1293
1294 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1295   SourceManager &SM = getContext().getSourceManager();
1296   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1297   if (PLoc.isValid())
1298     return EmitAnnotationString(PLoc.getFilename());
1299   return EmitAnnotationString(SM.getBufferName(Loc));
1300 }
1301
1302 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1303   SourceManager &SM = getContext().getSourceManager();
1304   PresumedLoc PLoc = SM.getPresumedLoc(L);
1305   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1306     SM.getExpansionLineNumber(L);
1307   return llvm::ConstantInt::get(Int32Ty, LineNo);
1308 }
1309
1310 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1311                                                 const AnnotateAttr *AA,
1312                                                 SourceLocation L) {
1313   // Get the globals for file name, annotation, and the line number.
1314   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1315                  *UnitGV = EmitAnnotationUnit(L),
1316                  *LineNoCst = EmitAnnotationLineNo(L);
1317
1318   // Create the ConstantStruct for the global annotation.
1319   llvm::Constant *Fields[4] = {
1320     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1321     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1322     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1323     LineNoCst
1324   };
1325   return llvm::ConstantStruct::getAnon(Fields);
1326 }
1327
1328 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1329                                          llvm::GlobalValue *GV) {
1330   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1331   // Get the struct elements for these annotations.
1332   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1333     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1334 }
1335
1336 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1337                                            SourceLocation Loc) const {
1338   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1339   // Blacklist by function name.
1340   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1341     return true;
1342   // Blacklist by location.
1343   if (Loc.isValid())
1344     return SanitizerBL.isBlacklistedLocation(Loc);
1345   // If location is unknown, this may be a compiler-generated function. Assume
1346   // it's located in the main file.
1347   auto &SM = Context.getSourceManager();
1348   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1349     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1350   }
1351   return false;
1352 }
1353
1354 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1355                                            SourceLocation Loc, QualType Ty,
1356                                            StringRef Category) const {
1357   // For now globals can be blacklisted only in ASan and KASan.
1358   if (!LangOpts.Sanitize.hasOneOf(
1359           SanitizerKind::Address | SanitizerKind::KernelAddress))
1360     return false;
1361   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1362   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1363     return true;
1364   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1365     return true;
1366   // Check global type.
1367   if (!Ty.isNull()) {
1368     // Drill down the array types: if global variable of a fixed type is
1369     // blacklisted, we also don't instrument arrays of them.
1370     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1371       Ty = AT->getElementType();
1372     Ty = Ty.getCanonicalType().getUnqualifiedType();
1373     // We allow to blacklist only record types (classes, structs etc.)
1374     if (Ty->isRecordType()) {
1375       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1376       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1377         return true;
1378     }
1379   }
1380   return false;
1381 }
1382
1383 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1384   // Never defer when EmitAllDecls is specified.
1385   if (LangOpts.EmitAllDecls)
1386     return true;
1387
1388   return getContext().DeclMustBeEmitted(Global);
1389 }
1390
1391 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1392   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1393     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1394       // Implicit template instantiations may change linkage if they are later
1395       // explicitly instantiated, so they should not be emitted eagerly.
1396       return false;
1397   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1398   // codegen for global variables, because they may be marked as threadprivate.
1399   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1400       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1401     return false;
1402
1403   return true;
1404 }
1405
1406 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1407     const CXXUuidofExpr* E) {
1408   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1409   // well-formed.
1410   StringRef Uuid = E->getUuidAsStringRef(Context);
1411   std::string Name = "_GUID_" + Uuid.lower();
1412   std::replace(Name.begin(), Name.end(), '-', '_');
1413
1414   // Contains a 32-bit field.
1415   CharUnits Alignment = CharUnits::fromQuantity(4);
1416
1417   // Look for an existing global.
1418   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1419     return ConstantAddress(GV, Alignment);
1420
1421   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1422   assert(Init && "failed to initialize as constant");
1423
1424   auto *GV = new llvm::GlobalVariable(
1425       getModule(), Init->getType(),
1426       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1427   if (supportsCOMDAT())
1428     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1429   return ConstantAddress(GV, Alignment);
1430 }
1431
1432 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1433   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1434   assert(AA && "No alias?");
1435
1436   CharUnits Alignment = getContext().getDeclAlign(VD);
1437   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1438
1439   // See if there is already something with the target's name in the module.
1440   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1441   if (Entry) {
1442     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1443     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1444     return ConstantAddress(Ptr, Alignment);
1445   }
1446
1447   llvm::Constant *Aliasee;
1448   if (isa<llvm::FunctionType>(DeclTy))
1449     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1450                                       GlobalDecl(cast<FunctionDecl>(VD)),
1451                                       /*ForVTable=*/false);
1452   else
1453     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1454                                     llvm::PointerType::getUnqual(DeclTy),
1455                                     nullptr);
1456
1457   auto *F = cast<llvm::GlobalValue>(Aliasee);
1458   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1459   WeakRefReferences.insert(F);
1460
1461   return ConstantAddress(Aliasee, Alignment);
1462 }
1463
1464 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1465   const auto *Global = cast<ValueDecl>(GD.getDecl());
1466
1467   // Weak references don't produce any output by themselves.
1468   if (Global->hasAttr<WeakRefAttr>())
1469     return;
1470
1471   // If this is an alias definition (which otherwise looks like a declaration)
1472   // emit it now.
1473   if (Global->hasAttr<AliasAttr>())
1474     return EmitAliasDefinition(GD);
1475
1476   // If this is CUDA, be selective about which declarations we emit.
1477   if (LangOpts.CUDA) {
1478     if (LangOpts.CUDAIsDevice) {
1479       if (!Global->hasAttr<CUDADeviceAttr>() &&
1480           !Global->hasAttr<CUDAGlobalAttr>() &&
1481           !Global->hasAttr<CUDAConstantAttr>() &&
1482           !Global->hasAttr<CUDASharedAttr>())
1483         return;
1484     } else {
1485       if (!Global->hasAttr<CUDAHostAttr>() && (
1486             Global->hasAttr<CUDADeviceAttr>() ||
1487             Global->hasAttr<CUDAConstantAttr>() ||
1488             Global->hasAttr<CUDASharedAttr>()))
1489         return;
1490     }
1491   }
1492
1493   // Ignore declarations, they will be emitted on their first use.
1494   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1495     // Forward declarations are emitted lazily on first use.
1496     if (!FD->doesThisDeclarationHaveABody()) {
1497       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1498         return;
1499
1500       StringRef MangledName = getMangledName(GD);
1501
1502       // Compute the function info and LLVM type.
1503       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1504       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1505
1506       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1507                               /*DontDefer=*/false);
1508       return;
1509     }
1510   } else {
1511     const auto *VD = cast<VarDecl>(Global);
1512     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1513
1514     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1515         !Context.isMSStaticDataMemberInlineDefinition(VD))
1516       return;
1517   }
1518
1519   // Defer code generation to first use when possible, e.g. if this is an inline
1520   // function. If the global must always be emitted, do it eagerly if possible
1521   // to benefit from cache locality.
1522   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1523     // Emit the definition if it can't be deferred.
1524     EmitGlobalDefinition(GD);
1525     return;
1526   }
1527
1528   // If we're deferring emission of a C++ variable with an
1529   // initializer, remember the order in which it appeared in the file.
1530   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1531       cast<VarDecl>(Global)->hasInit()) {
1532     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1533     CXXGlobalInits.push_back(nullptr);
1534   }
1535
1536   StringRef MangledName = getMangledName(GD);
1537   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1538     // The value has already been used and should therefore be emitted.
1539     addDeferredDeclToEmit(GV, GD);
1540   } else if (MustBeEmitted(Global)) {
1541     // The value must be emitted, but cannot be emitted eagerly.
1542     assert(!MayBeEmittedEagerly(Global));
1543     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1544   } else {
1545     // Otherwise, remember that we saw a deferred decl with this name.  The
1546     // first use of the mangled name will cause it to move into
1547     // DeferredDeclsToEmit.
1548     DeferredDecls[MangledName] = GD;
1549   }
1550 }
1551
1552 namespace {
1553   struct FunctionIsDirectlyRecursive :
1554     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1555     const StringRef Name;
1556     const Builtin::Context &BI;
1557     bool Result;
1558     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1559       Name(N), BI(C), Result(false) {
1560     }
1561     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1562
1563     bool TraverseCallExpr(CallExpr *E) {
1564       const FunctionDecl *FD = E->getDirectCallee();
1565       if (!FD)
1566         return true;
1567       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1568       if (Attr && Name == Attr->getLabel()) {
1569         Result = true;
1570         return false;
1571       }
1572       unsigned BuiltinID = FD->getBuiltinID();
1573       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1574         return true;
1575       StringRef BuiltinName = BI.getName(BuiltinID);
1576       if (BuiltinName.startswith("__builtin_") &&
1577           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1578         Result = true;
1579         return false;
1580       }
1581       return true;
1582     }
1583   };
1584
1585   struct DLLImportFunctionVisitor
1586       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1587     bool SafeToInline = true;
1588
1589     bool VisitVarDecl(VarDecl *VD) {
1590       // A thread-local variable cannot be imported.
1591       SafeToInline = !VD->getTLSKind();
1592       return SafeToInline;
1593     }
1594
1595     // Make sure we're not referencing non-imported vars or functions.
1596     bool VisitDeclRefExpr(DeclRefExpr *E) {
1597       ValueDecl *VD = E->getDecl();
1598       if (isa<FunctionDecl>(VD))
1599         SafeToInline = VD->hasAttr<DLLImportAttr>();
1600       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1601         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1602       return SafeToInline;
1603     }
1604     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1605       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1606       return SafeToInline;
1607     }
1608     bool VisitCXXNewExpr(CXXNewExpr *E) {
1609       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1610       return SafeToInline;
1611     }
1612   };
1613 }
1614
1615 // isTriviallyRecursive - Check if this function calls another
1616 // decl that, because of the asm attribute or the other decl being a builtin,
1617 // ends up pointing to itself.
1618 bool
1619 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1620   StringRef Name;
1621   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1622     // asm labels are a special kind of mangling we have to support.
1623     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1624     if (!Attr)
1625       return false;
1626     Name = Attr->getLabel();
1627   } else {
1628     Name = FD->getName();
1629   }
1630
1631   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1632   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1633   return Walker.Result;
1634 }
1635
1636 bool
1637 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1638   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1639     return true;
1640   const auto *F = cast<FunctionDecl>(GD.getDecl());
1641   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1642     return false;
1643
1644   if (F->hasAttr<DLLImportAttr>()) {
1645     // Check whether it would be safe to inline this dllimport function.
1646     DLLImportFunctionVisitor Visitor;
1647     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1648     if (!Visitor.SafeToInline)
1649       return false;
1650   }
1651
1652   // PR9614. Avoid cases where the source code is lying to us. An available
1653   // externally function should have an equivalent function somewhere else,
1654   // but a function that calls itself is clearly not equivalent to the real
1655   // implementation.
1656   // This happens in glibc's btowc and in some configure checks.
1657   return !isTriviallyRecursive(F);
1658 }
1659
1660 /// If the type for the method's class was generated by
1661 /// CGDebugInfo::createContextChain(), the cache contains only a
1662 /// limited DIType without any declarations. Since EmitFunctionStart()
1663 /// needs to find the canonical declaration for each method, we need
1664 /// to construct the complete type prior to emitting the method.
1665 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1666   if (!D->isInstance())
1667     return;
1668
1669   if (CGDebugInfo *DI = getModuleDebugInfo())
1670     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1671       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1672       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1673     }
1674 }
1675
1676 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1677   const auto *D = cast<ValueDecl>(GD.getDecl());
1678
1679   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 
1680                                  Context.getSourceManager(),
1681                                  "Generating code for declaration");
1682   
1683   if (isa<FunctionDecl>(D)) {
1684     // At -O0, don't generate IR for functions with available_externally 
1685     // linkage.
1686     if (!shouldEmitFunction(GD))
1687       return;
1688
1689     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1690       CompleteDIClassType(Method);
1691       // Make sure to emit the definition(s) before we emit the thunks.
1692       // This is necessary for the generation of certain thunks.
1693       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1694         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1695       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1696         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1697       else
1698         EmitGlobalFunctionDefinition(GD, GV);
1699
1700       if (Method->isVirtual())
1701         getVTables().EmitThunks(GD);
1702
1703       return;
1704     }
1705
1706     return EmitGlobalFunctionDefinition(GD, GV);
1707   }
1708
1709   if (const auto *VD = dyn_cast<VarDecl>(D))
1710     return EmitGlobalVarDefinition(VD);
1711   
1712   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1713 }
1714
1715 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1716                                                       llvm::Function *NewFn);
1717
1718 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1719 /// module, create and return an llvm Function with the specified type. If there
1720 /// is something in the module with the specified name, return it potentially
1721 /// bitcasted to the right type.
1722 ///
1723 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1724 /// to set the attributes on the function when it is first created.
1725 llvm::Constant *
1726 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1727                                        llvm::Type *Ty,
1728                                        GlobalDecl GD, bool ForVTable,
1729                                        bool DontDefer, bool IsThunk,
1730                                        llvm::AttributeSet ExtraAttrs,
1731                                        bool IsForDefinition) {
1732   const Decl *D = GD.getDecl();
1733
1734   // Lookup the entry, lazily creating it if necessary.
1735   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1736   if (Entry) {
1737     if (WeakRefReferences.erase(Entry)) {
1738       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1739       if (FD && !FD->hasAttr<WeakAttr>())
1740         Entry->setLinkage(llvm::Function::ExternalLinkage);
1741     }
1742
1743     // Handle dropped DLL attributes.
1744     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1745       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1746
1747     // If there are two attempts to define the same mangled name, issue an
1748     // error.
1749     if (IsForDefinition && !Entry->isDeclaration()) {
1750       GlobalDecl OtherGD;
1751       // Check that GD is not yet in ExplicitDefinitions is required to make
1752       // sure that we issue an error only once.
1753       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1754           (GD.getCanonicalDecl().getDecl() !=
1755            OtherGD.getCanonicalDecl().getDecl()) &&
1756           DiagnosedConflictingDefinitions.insert(GD).second) {
1757         getDiags().Report(D->getLocation(),
1758                           diag::err_duplicate_mangled_name);
1759         getDiags().Report(OtherGD.getDecl()->getLocation(),
1760                           diag::note_previous_definition);
1761       }
1762     }
1763
1764     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1765         (Entry->getType()->getElementType() == Ty)) {
1766       return Entry;
1767     }
1768
1769     // Make sure the result is of the correct type.
1770     // (If function is requested for a definition, we always need to create a new
1771     // function, not just return a bitcast.)
1772     if (!IsForDefinition)
1773       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1774   }
1775
1776   // This function doesn't have a complete type (for example, the return
1777   // type is an incomplete struct). Use a fake type instead, and make
1778   // sure not to try to set attributes.
1779   bool IsIncompleteFunction = false;
1780
1781   llvm::FunctionType *FTy;
1782   if (isa<llvm::FunctionType>(Ty)) {
1783     FTy = cast<llvm::FunctionType>(Ty);
1784   } else {
1785     FTy = llvm::FunctionType::get(VoidTy, false);
1786     IsIncompleteFunction = true;
1787   }
1788
1789   llvm::Function *F =
1790       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1791                              Entry ? StringRef() : MangledName, &getModule());
1792
1793   // If we already created a function with the same mangled name (but different
1794   // type) before, take its name and add it to the list of functions to be
1795   // replaced with F at the end of CodeGen.
1796   //
1797   // This happens if there is a prototype for a function (e.g. "int f()") and
1798   // then a definition of a different type (e.g. "int f(int x)").
1799   if (Entry) {
1800     F->takeName(Entry);
1801
1802     // This might be an implementation of a function without a prototype, in
1803     // which case, try to do special replacement of calls which match the new
1804     // prototype.  The really key thing here is that we also potentially drop
1805     // arguments from the call site so as to make a direct call, which makes the
1806     // inliner happier and suppresses a number of optimizer warnings (!) about
1807     // dropping arguments.
1808     if (!Entry->use_empty()) {
1809       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1810       Entry->removeDeadConstantUsers();
1811     }
1812
1813     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1814         F, Entry->getType()->getElementType()->getPointerTo());
1815     addGlobalValReplacement(Entry, BC);
1816   }
1817
1818   assert(F->getName() == MangledName && "name was uniqued!");
1819   if (D)
1820     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1821   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1822     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1823     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1824                      llvm::AttributeSet::get(VMContext,
1825                                              llvm::AttributeSet::FunctionIndex,
1826                                              B));
1827   }
1828
1829   if (!DontDefer) {
1830     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1831     // each other bottoming out with the base dtor.  Therefore we emit non-base
1832     // dtors on usage, even if there is no dtor definition in the TU.
1833     if (D && isa<CXXDestructorDecl>(D) &&
1834         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1835                                            GD.getDtorType()))
1836       addDeferredDeclToEmit(F, GD);
1837
1838     // This is the first use or definition of a mangled name.  If there is a
1839     // deferred decl with this name, remember that we need to emit it at the end
1840     // of the file.
1841     auto DDI = DeferredDecls.find(MangledName);
1842     if (DDI != DeferredDecls.end()) {
1843       // Move the potentially referenced deferred decl to the
1844       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1845       // don't need it anymore).
1846       addDeferredDeclToEmit(F, DDI->second);
1847       DeferredDecls.erase(DDI);
1848
1849       // Otherwise, there are cases we have to worry about where we're
1850       // using a declaration for which we must emit a definition but where
1851       // we might not find a top-level definition:
1852       //   - member functions defined inline in their classes
1853       //   - friend functions defined inline in some class
1854       //   - special member functions with implicit definitions
1855       // If we ever change our AST traversal to walk into class methods,
1856       // this will be unnecessary.
1857       //
1858       // We also don't emit a definition for a function if it's going to be an
1859       // entry in a vtable, unless it's already marked as used.
1860     } else if (getLangOpts().CPlusPlus && D) {
1861       // Look for a declaration that's lexically in a record.
1862       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1863            FD = FD->getPreviousDecl()) {
1864         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1865           if (FD->doesThisDeclarationHaveABody()) {
1866             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1867             break;
1868           }
1869         }
1870       }
1871     }
1872   }
1873
1874   // Make sure the result is of the requested type.
1875   if (!IsIncompleteFunction) {
1876     assert(F->getType()->getElementType() == Ty);
1877     return F;
1878   }
1879
1880   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1881   return llvm::ConstantExpr::getBitCast(F, PTy);
1882 }
1883
1884 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1885 /// non-null, then this function will use the specified type if it has to
1886 /// create it (this occurs when we see a definition of the function).
1887 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1888                                                  llvm::Type *Ty,
1889                                                  bool ForVTable,
1890                                                  bool DontDefer,
1891                                                  bool IsForDefinition) {
1892   // If there was no specific requested type, just convert it now.
1893   if (!Ty) {
1894     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1895     auto CanonTy = Context.getCanonicalType(FD->getType());
1896     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1897   }
1898
1899   StringRef MangledName = getMangledName(GD);
1900   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1901                                  /*IsThunk=*/false, llvm::AttributeSet(),
1902                                  IsForDefinition);
1903 }
1904
1905 /// CreateRuntimeFunction - Create a new runtime function with the specified
1906 /// type and name.
1907 llvm::Constant *
1908 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1909                                      StringRef Name,
1910                                      llvm::AttributeSet ExtraAttrs) {
1911   llvm::Constant *C =
1912       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1913                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1914   if (auto *F = dyn_cast<llvm::Function>(C))
1915     if (F->empty())
1916       F->setCallingConv(getRuntimeCC());
1917   return C;
1918 }
1919
1920 /// CreateBuiltinFunction - Create a new builtin function with the specified
1921 /// type and name.
1922 llvm::Constant *
1923 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1924                                      StringRef Name,
1925                                      llvm::AttributeSet ExtraAttrs) {
1926   llvm::Constant *C =
1927       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1928                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1929   if (auto *F = dyn_cast<llvm::Function>(C))
1930     if (F->empty())
1931       F->setCallingConv(getBuiltinCC());
1932   return C;
1933 }
1934
1935 /// isTypeConstant - Determine whether an object of this type can be emitted
1936 /// as a constant.
1937 ///
1938 /// If ExcludeCtor is true, the duration when the object's constructor runs
1939 /// will not be considered. The caller will need to verify that the object is
1940 /// not written to during its construction.
1941 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1942   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1943     return false;
1944
1945   if (Context.getLangOpts().CPlusPlus) {
1946     if (const CXXRecordDecl *Record
1947           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1948       return ExcludeCtor && !Record->hasMutableFields() &&
1949              Record->hasTrivialDestructor();
1950   }
1951
1952   return true;
1953 }
1954
1955 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1956 /// create and return an llvm GlobalVariable with the specified type.  If there
1957 /// is something in the module with the specified name, return it potentially
1958 /// bitcasted to the right type.
1959 ///
1960 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1961 /// to set the attributes on the global when it is first created.
1962 llvm::Constant *
1963 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1964                                      llvm::PointerType *Ty,
1965                                      const VarDecl *D) {
1966   // Lookup the entry, lazily creating it if necessary.
1967   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1968   if (Entry) {
1969     if (WeakRefReferences.erase(Entry)) {
1970       if (D && !D->hasAttr<WeakAttr>())
1971         Entry->setLinkage(llvm::Function::ExternalLinkage);
1972     }
1973
1974     // Handle dropped DLL attributes.
1975     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1976       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1977
1978     if (Entry->getType() == Ty)
1979       return Entry;
1980
1981     // Make sure the result is of the correct type.
1982     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1983       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1984
1985     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1986   }
1987
1988   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1989   auto *GV = new llvm::GlobalVariable(
1990       getModule(), Ty->getElementType(), false,
1991       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1992       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1993
1994   // This is the first use or definition of a mangled name.  If there is a
1995   // deferred decl with this name, remember that we need to emit it at the end
1996   // of the file.
1997   auto DDI = DeferredDecls.find(MangledName);
1998   if (DDI != DeferredDecls.end()) {
1999     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2000     // list, and remove it from DeferredDecls (since we don't need it anymore).
2001     addDeferredDeclToEmit(GV, DDI->second);
2002     DeferredDecls.erase(DDI);
2003   }
2004
2005   // Handle things which are present even on external declarations.
2006   if (D) {
2007     // FIXME: This code is overly simple and should be merged with other global
2008     // handling.
2009     GV->setConstant(isTypeConstant(D->getType(), false));
2010
2011     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2012
2013     setLinkageAndVisibilityForGV(GV, D);
2014
2015     if (D->getTLSKind()) {
2016       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2017         CXXThreadLocals.push_back(D);
2018       setTLSMode(GV, *D);
2019     }
2020
2021     // If required by the ABI, treat declarations of static data members with
2022     // inline initializers as definitions.
2023     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2024       EmitGlobalVarDefinition(D);
2025     }
2026
2027     // Handle XCore specific ABI requirements.
2028     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2029         D->getLanguageLinkage() == CLanguageLinkage &&
2030         D->getType().isConstant(Context) &&
2031         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2032       GV->setSection(".cp.rodata");
2033   }
2034
2035   if (AddrSpace != Ty->getAddressSpace())
2036     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2037
2038   return GV;
2039 }
2040
2041 llvm::Constant *
2042 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2043                                bool IsForDefinition) {
2044   if (isa<CXXConstructorDecl>(GD.getDecl()))
2045     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2046                                 getFromCtorType(GD.getCtorType()),
2047                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2048                                 /*DontDefer=*/false, IsForDefinition);
2049   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2050     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2051                                 getFromDtorType(GD.getDtorType()),
2052                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2053                                 /*DontDefer=*/false, IsForDefinition);
2054   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2055     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2056         cast<CXXMethodDecl>(GD.getDecl()));
2057     auto Ty = getTypes().GetFunctionType(*FInfo);
2058     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2059                              IsForDefinition);
2060   } else if (isa<FunctionDecl>(GD.getDecl())) {
2061     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2062     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2063     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2064                              IsForDefinition);
2065   } else
2066     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()));
2067 }
2068
2069 llvm::GlobalVariable *
2070 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 
2071                                       llvm::Type *Ty,
2072                                       llvm::GlobalValue::LinkageTypes Linkage) {
2073   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2074   llvm::GlobalVariable *OldGV = nullptr;
2075
2076   if (GV) {
2077     // Check if the variable has the right type.
2078     if (GV->getType()->getElementType() == Ty)
2079       return GV;
2080
2081     // Because C++ name mangling, the only way we can end up with an already
2082     // existing global with the same name is if it has been declared extern "C".
2083     assert(GV->isDeclaration() && "Declaration has wrong type!");
2084     OldGV = GV;
2085   }
2086   
2087   // Create a new variable.
2088   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2089                                 Linkage, nullptr, Name);
2090
2091   if (OldGV) {
2092     // Replace occurrences of the old variable if needed.
2093     GV->takeName(OldGV);
2094     
2095     if (!OldGV->use_empty()) {
2096       llvm::Constant *NewPtrForOldDecl =
2097       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2098       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2099     }
2100     
2101     OldGV->eraseFromParent();
2102   }
2103
2104   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2105       !GV->hasAvailableExternallyLinkage())
2106     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2107
2108   return GV;
2109 }
2110
2111 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2112 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2113 /// then it will be created with the specified type instead of whatever the
2114 /// normal requested type would be.
2115 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2116                                                   llvm::Type *Ty) {
2117   assert(D->hasGlobalStorage() && "Not a global variable");
2118   QualType ASTTy = D->getType();
2119   if (!Ty)
2120     Ty = getTypes().ConvertTypeForMem(ASTTy);
2121
2122   llvm::PointerType *PTy =
2123     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2124
2125   StringRef MangledName = getMangledName(D);
2126   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
2127 }
2128
2129 /// CreateRuntimeVariable - Create a new runtime global variable with the
2130 /// specified type and name.
2131 llvm::Constant *
2132 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2133                                      StringRef Name) {
2134   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2135 }
2136
2137 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2138   assert(!D->getInit() && "Cannot emit definite definitions here!");
2139
2140   if (!MustBeEmitted(D)) {
2141     // If we have not seen a reference to this variable yet, place it
2142     // into the deferred declarations table to be emitted if needed
2143     // later.
2144     StringRef MangledName = getMangledName(D);
2145     if (!GetGlobalValue(MangledName)) {
2146       DeferredDecls[MangledName] = D;
2147       return;
2148     }
2149   }
2150
2151   // The tentative definition is the only definition.
2152   EmitGlobalVarDefinition(D);
2153 }
2154
2155 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2156   return Context.toCharUnitsFromBits(
2157       getDataLayout().getTypeStoreSizeInBits(Ty));
2158 }
2159
2160 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2161                                                  unsigned AddrSpace) {
2162   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2163     if (D->hasAttr<CUDAConstantAttr>())
2164       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2165     else if (D->hasAttr<CUDASharedAttr>())
2166       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2167     else
2168       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2169   }
2170
2171   return AddrSpace;
2172 }
2173
2174 template<typename SomeDecl>
2175 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2176                                                llvm::GlobalValue *GV) {
2177   if (!getLangOpts().CPlusPlus)
2178     return;
2179
2180   // Must have 'used' attribute, or else inline assembly can't rely on
2181   // the name existing.
2182   if (!D->template hasAttr<UsedAttr>())
2183     return;
2184
2185   // Must have internal linkage and an ordinary name.
2186   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2187     return;
2188
2189   // Must be in an extern "C" context. Entities declared directly within
2190   // a record are not extern "C" even if the record is in such a context.
2191   const SomeDecl *First = D->getFirstDecl();
2192   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2193     return;
2194
2195   // OK, this is an internal linkage entity inside an extern "C" linkage
2196   // specification. Make a note of that so we can give it the "expected"
2197   // mangled name if nothing else is using that name.
2198   std::pair<StaticExternCMap::iterator, bool> R =
2199       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2200
2201   // If we have multiple internal linkage entities with the same name
2202   // in extern "C" regions, none of them gets that name.
2203   if (!R.second)
2204     R.first->second = nullptr;
2205 }
2206
2207 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2208   if (!CGM.supportsCOMDAT())
2209     return false;
2210
2211   if (D.hasAttr<SelectAnyAttr>())
2212     return true;
2213
2214   GVALinkage Linkage;
2215   if (auto *VD = dyn_cast<VarDecl>(&D))
2216     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2217   else
2218     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2219
2220   switch (Linkage) {
2221   case GVA_Internal:
2222   case GVA_AvailableExternally:
2223   case GVA_StrongExternal:
2224     return false;
2225   case GVA_DiscardableODR:
2226   case GVA_StrongODR:
2227     return true;
2228   }
2229   llvm_unreachable("No such linkage");
2230 }
2231
2232 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2233                                           llvm::GlobalObject &GO) {
2234   if (!shouldBeInCOMDAT(*this, D))
2235     return;
2236   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2237 }
2238
2239 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
2240   llvm::Constant *Init = nullptr;
2241   QualType ASTTy = D->getType();
2242   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2243   bool NeedsGlobalCtor = false;
2244   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2245
2246   const VarDecl *InitDecl;
2247   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2248
2249   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part
2250   // of their declaration."
2251   if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice
2252       && D->hasAttr<CUDASharedAttr>()) {
2253     if (InitExpr) {
2254       const auto *C = dyn_cast<CXXConstructExpr>(InitExpr);
2255       if (C == nullptr || !C->getConstructor()->hasTrivialBody())
2256         Error(D->getLocation(),
2257               "__shared__ variable cannot have an initialization.");
2258     }
2259     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2260   } else if (!InitExpr) {
2261     // This is a tentative definition; tentative definitions are
2262     // implicitly initialized with { 0 }.
2263     //
2264     // Note that tentative definitions are only emitted at the end of
2265     // a translation unit, so they should never have incomplete
2266     // type. In addition, EmitTentativeDefinition makes sure that we
2267     // never attempt to emit a tentative definition if a real one
2268     // exists. A use may still exists, however, so we still may need
2269     // to do a RAUW.
2270     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2271     Init = EmitNullConstant(D->getType());
2272   } else {
2273     initializedGlobalDecl = GlobalDecl(D);
2274     Init = EmitConstantInit(*InitDecl);
2275
2276     if (!Init) {
2277       QualType T = InitExpr->getType();
2278       if (D->getType()->isReferenceType())
2279         T = D->getType();
2280
2281       if (getLangOpts().CPlusPlus) {
2282         Init = EmitNullConstant(T);
2283         NeedsGlobalCtor = true;
2284       } else {
2285         ErrorUnsupported(D, "static initializer");
2286         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2287       }
2288     } else {
2289       // We don't need an initializer, so remove the entry for the delayed
2290       // initializer position (just in case this entry was delayed) if we
2291       // also don't need to register a destructor.
2292       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2293         DelayedCXXInitPosition.erase(D);
2294     }
2295   }
2296
2297   llvm::Type* InitType = Init->getType();
2298   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2299
2300   // Strip off a bitcast if we got one back.
2301   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2302     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2303            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2304            // All zero index gep.
2305            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2306     Entry = CE->getOperand(0);
2307   }
2308
2309   // Entry is now either a Function or GlobalVariable.
2310   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2311
2312   // We have a definition after a declaration with the wrong type.
2313   // We must make a new GlobalVariable* and update everything that used OldGV
2314   // (a declaration or tentative definition) with the new GlobalVariable*
2315   // (which will be a definition).
2316   //
2317   // This happens if there is a prototype for a global (e.g.
2318   // "extern int x[];") and then a definition of a different type (e.g.
2319   // "int x[10];"). This also happens when an initializer has a different type
2320   // from the type of the global (this happens with unions).
2321   if (!GV ||
2322       GV->getType()->getElementType() != InitType ||
2323       GV->getType()->getAddressSpace() !=
2324        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2325
2326     // Move the old entry aside so that we'll create a new one.
2327     Entry->setName(StringRef());
2328
2329     // Make a new global with the correct type, this is now guaranteed to work.
2330     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2331
2332     // Replace all uses of the old global with the new global
2333     llvm::Constant *NewPtrForOldDecl =
2334         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2335     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2336
2337     // Erase the old global, since it is no longer used.
2338     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2339   }
2340
2341   MaybeHandleStaticInExternC(D, GV);
2342
2343   if (D->hasAttr<AnnotateAttr>())
2344     AddGlobalAnnotations(D, GV);
2345
2346   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2347   // the device. [...]"
2348   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2349   // __device__, declares a variable that: [...]
2350   // Is accessible from all the threads within the grid and from the host
2351   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2352   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2353   if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice &&
2354       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) {
2355     GV->setExternallyInitialized(true);
2356   }
2357   GV->setInitializer(Init);
2358
2359   // If it is safe to mark the global 'constant', do so now.
2360   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2361                   isTypeConstant(D->getType(), true));
2362
2363   // If it is in a read-only section, mark it 'constant'.
2364   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2365     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2366     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2367       GV->setConstant(true);
2368   }
2369
2370   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2371
2372   // Set the llvm linkage type as appropriate.
2373   llvm::GlobalValue::LinkageTypes Linkage =
2374       getLLVMLinkageVarDefinition(D, GV->isConstant());
2375
2376   // On Darwin, if the normal linkage of a C++ thread_local variable is
2377   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2378   // copies within a linkage unit; otherwise, the backing variable has
2379   // internal linkage and all accesses should just be calls to the
2380   // Itanium-specified entry point, which has the normal linkage of the
2381   // variable. This is to preserve the ability to change the implementation
2382   // behind the scenes.
2383   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2384       Context.getTargetInfo().getTriple().isOSDarwin() &&
2385       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2386       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2387     Linkage = llvm::GlobalValue::InternalLinkage;
2388
2389   GV->setLinkage(Linkage);
2390   if (D->hasAttr<DLLImportAttr>())
2391     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2392   else if (D->hasAttr<DLLExportAttr>())
2393     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2394   else
2395     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2396
2397   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2398     // common vars aren't constant even if declared const.
2399     GV->setConstant(false);
2400
2401   setNonAliasAttributes(D, GV);
2402
2403   if (D->getTLSKind() && !GV->isThreadLocal()) {
2404     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2405       CXXThreadLocals.push_back(D);
2406     setTLSMode(GV, *D);
2407   }
2408
2409   maybeSetTrivialComdat(*D, *GV);
2410
2411   // Emit the initializer function if necessary.
2412   if (NeedsGlobalCtor || NeedsGlobalDtor)
2413     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2414
2415   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2416
2417   // Emit global variable debug information.
2418   if (CGDebugInfo *DI = getModuleDebugInfo())
2419     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2420       DI->EmitGlobalVariable(GV, D);
2421 }
2422
2423 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2424                                       CodeGenModule &CGM, const VarDecl *D,
2425                                       bool NoCommon) {
2426   // Don't give variables common linkage if -fno-common was specified unless it
2427   // was overridden by a NoCommon attribute.
2428   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2429     return true;
2430
2431   // C11 6.9.2/2:
2432   //   A declaration of an identifier for an object that has file scope without
2433   //   an initializer, and without a storage-class specifier or with the
2434   //   storage-class specifier static, constitutes a tentative definition.
2435   if (D->getInit() || D->hasExternalStorage())
2436     return true;
2437
2438   // A variable cannot be both common and exist in a section.
2439   if (D->hasAttr<SectionAttr>())
2440     return true;
2441
2442   // Thread local vars aren't considered common linkage.
2443   if (D->getTLSKind())
2444     return true;
2445
2446   // Tentative definitions marked with WeakImportAttr are true definitions.
2447   if (D->hasAttr<WeakImportAttr>())
2448     return true;
2449
2450   // A variable cannot be both common and exist in a comdat.
2451   if (shouldBeInCOMDAT(CGM, *D))
2452     return true;
2453
2454   // Declarations with a required alignment do not have common linakge in MSVC
2455   // mode.
2456   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2457     if (D->hasAttr<AlignedAttr>())
2458       return true;
2459     QualType VarType = D->getType();
2460     if (Context.isAlignmentRequired(VarType))
2461       return true;
2462
2463     if (const auto *RT = VarType->getAs<RecordType>()) {
2464       const RecordDecl *RD = RT->getDecl();
2465       for (const FieldDecl *FD : RD->fields()) {
2466         if (FD->isBitField())
2467           continue;
2468         if (FD->hasAttr<AlignedAttr>())
2469           return true;
2470         if (Context.isAlignmentRequired(FD->getType()))
2471           return true;
2472       }
2473     }
2474   }
2475
2476   return false;
2477 }
2478
2479 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2480     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2481   if (Linkage == GVA_Internal)
2482     return llvm::Function::InternalLinkage;
2483
2484   if (D->hasAttr<WeakAttr>()) {
2485     if (IsConstantVariable)
2486       return llvm::GlobalVariable::WeakODRLinkage;
2487     else
2488       return llvm::GlobalVariable::WeakAnyLinkage;
2489   }
2490
2491   // We are guaranteed to have a strong definition somewhere else,
2492   // so we can use available_externally linkage.
2493   if (Linkage == GVA_AvailableExternally)
2494     return llvm::Function::AvailableExternallyLinkage;
2495
2496   // Note that Apple's kernel linker doesn't support symbol
2497   // coalescing, so we need to avoid linkonce and weak linkages there.
2498   // Normally, this means we just map to internal, but for explicit
2499   // instantiations we'll map to external.
2500
2501   // In C++, the compiler has to emit a definition in every translation unit
2502   // that references the function.  We should use linkonce_odr because
2503   // a) if all references in this translation unit are optimized away, we
2504   // don't need to codegen it.  b) if the function persists, it needs to be
2505   // merged with other definitions. c) C++ has the ODR, so we know the
2506   // definition is dependable.
2507   if (Linkage == GVA_DiscardableODR)
2508     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2509                                             : llvm::Function::InternalLinkage;
2510
2511   // An explicit instantiation of a template has weak linkage, since
2512   // explicit instantiations can occur in multiple translation units
2513   // and must all be equivalent. However, we are not allowed to
2514   // throw away these explicit instantiations.
2515   if (Linkage == GVA_StrongODR)
2516     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2517                                             : llvm::Function::ExternalLinkage;
2518
2519   // C++ doesn't have tentative definitions and thus cannot have common
2520   // linkage.
2521   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2522       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2523                                  CodeGenOpts.NoCommon))
2524     return llvm::GlobalVariable::CommonLinkage;
2525
2526   // selectany symbols are externally visible, so use weak instead of
2527   // linkonce.  MSVC optimizes away references to const selectany globals, so
2528   // all definitions should be the same and ODR linkage should be used.
2529   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2530   if (D->hasAttr<SelectAnyAttr>())
2531     return llvm::GlobalVariable::WeakODRLinkage;
2532
2533   // Otherwise, we have strong external linkage.
2534   assert(Linkage == GVA_StrongExternal);
2535   return llvm::GlobalVariable::ExternalLinkage;
2536 }
2537
2538 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2539     const VarDecl *VD, bool IsConstant) {
2540   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2541   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2542 }
2543
2544 /// Replace the uses of a function that was declared with a non-proto type.
2545 /// We want to silently drop extra arguments from call sites
2546 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2547                                           llvm::Function *newFn) {
2548   // Fast path.
2549   if (old->use_empty()) return;
2550
2551   llvm::Type *newRetTy = newFn->getReturnType();
2552   SmallVector<llvm::Value*, 4> newArgs;
2553   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2554
2555   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2556          ui != ue; ) {
2557     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2558     llvm::User *user = use->getUser();
2559
2560     // Recognize and replace uses of bitcasts.  Most calls to
2561     // unprototyped functions will use bitcasts.
2562     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2563       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2564         replaceUsesOfNonProtoConstant(bitcast, newFn);
2565       continue;
2566     }
2567
2568     // Recognize calls to the function.
2569     llvm::CallSite callSite(user);
2570     if (!callSite) continue;
2571     if (!callSite.isCallee(&*use)) continue;
2572
2573     // If the return types don't match exactly, then we can't
2574     // transform this call unless it's dead.
2575     if (callSite->getType() != newRetTy && !callSite->use_empty())
2576       continue;
2577
2578     // Get the call site's attribute list.
2579     SmallVector<llvm::AttributeSet, 8> newAttrs;
2580     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2581
2582     // Collect any return attributes from the call.
2583     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2584       newAttrs.push_back(
2585         llvm::AttributeSet::get(newFn->getContext(),
2586                                 oldAttrs.getRetAttributes()));
2587
2588     // If the function was passed too few arguments, don't transform.
2589     unsigned newNumArgs = newFn->arg_size();
2590     if (callSite.arg_size() < newNumArgs) continue;
2591
2592     // If extra arguments were passed, we silently drop them.
2593     // If any of the types mismatch, we don't transform.
2594     unsigned argNo = 0;
2595     bool dontTransform = false;
2596     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2597            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2598       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2599         dontTransform = true;
2600         break;
2601       }
2602
2603       // Add any parameter attributes.
2604       if (oldAttrs.hasAttributes(argNo + 1))
2605         newAttrs.
2606           push_back(llvm::
2607                     AttributeSet::get(newFn->getContext(),
2608                                       oldAttrs.getParamAttributes(argNo + 1)));
2609     }
2610     if (dontTransform)
2611       continue;
2612
2613     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2614       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2615                                                  oldAttrs.getFnAttributes()));
2616
2617     // Okay, we can transform this.  Create the new call instruction and copy
2618     // over the required information.
2619     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2620
2621     // Copy over any operand bundles.
2622     callSite.getOperandBundlesAsDefs(newBundles);
2623
2624     llvm::CallSite newCall;
2625     if (callSite.isCall()) {
2626       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2627                                        callSite.getInstruction());
2628     } else {
2629       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2630       newCall = llvm::InvokeInst::Create(newFn,
2631                                          oldInvoke->getNormalDest(),
2632                                          oldInvoke->getUnwindDest(),
2633                                          newArgs, newBundles, "",
2634                                          callSite.getInstruction());
2635     }
2636     newArgs.clear(); // for the next iteration
2637
2638     if (!newCall->getType()->isVoidTy())
2639       newCall->takeName(callSite.getInstruction());
2640     newCall.setAttributes(
2641                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2642     newCall.setCallingConv(callSite.getCallingConv());
2643
2644     // Finally, remove the old call, replacing any uses with the new one.
2645     if (!callSite->use_empty())
2646       callSite->replaceAllUsesWith(newCall.getInstruction());
2647
2648     // Copy debug location attached to CI.
2649     if (callSite->getDebugLoc())
2650       newCall->setDebugLoc(callSite->getDebugLoc());
2651
2652     callSite->eraseFromParent();
2653   }
2654 }
2655
2656 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2657 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2658 /// existing call uses of the old function in the module, this adjusts them to
2659 /// call the new function directly.
2660 ///
2661 /// This is not just a cleanup: the always_inline pass requires direct calls to
2662 /// functions to be able to inline them.  If there is a bitcast in the way, it
2663 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2664 /// run at -O0.
2665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2666                                                       llvm::Function *NewFn) {
2667   // If we're redefining a global as a function, don't transform it.
2668   if (!isa<llvm::Function>(Old)) return;
2669
2670   replaceUsesOfNonProtoConstant(Old, NewFn);
2671 }
2672
2673 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2674   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2675   // If we have a definition, this might be a deferred decl. If the
2676   // instantiation is explicit, make sure we emit it at the end.
2677   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2678     GetAddrOfGlobalVar(VD);
2679
2680   EmitTopLevelDecl(VD);
2681 }
2682
2683 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2684                                                  llvm::GlobalValue *GV) {
2685   const auto *D = cast<FunctionDecl>(GD.getDecl());
2686
2687   // Compute the function info and LLVM type.
2688   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2689   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2690
2691   // Get or create the prototype for the function.
2692   if (!GV || (GV->getType()->getElementType() != Ty))
2693     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2694                                                    /*DontDefer=*/true,
2695                                                    /*IsForDefinition=*/true));
2696
2697   // Already emitted.
2698   if (!GV->isDeclaration())
2699     return;
2700
2701   // We need to set linkage and visibility on the function before
2702   // generating code for it because various parts of IR generation
2703   // want to propagate this information down (e.g. to local static
2704   // declarations).
2705   auto *Fn = cast<llvm::Function>(GV);
2706   setFunctionLinkage(GD, Fn);
2707   setFunctionDLLStorageClass(GD, Fn);
2708
2709   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2710   setGlobalVisibility(Fn, D);
2711
2712   MaybeHandleStaticInExternC(D, Fn);
2713
2714   maybeSetTrivialComdat(*D, *Fn);
2715
2716   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2717
2718   setFunctionDefinitionAttributes(D, Fn);
2719   SetLLVMFunctionAttributesForDefinition(D, Fn);
2720
2721   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2722     AddGlobalCtor(Fn, CA->getPriority());
2723   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2724     AddGlobalDtor(Fn, DA->getPriority());
2725   if (D->hasAttr<AnnotateAttr>())
2726     AddGlobalAnnotations(D, Fn);
2727 }
2728
2729 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2730   const auto *D = cast<ValueDecl>(GD.getDecl());
2731   const AliasAttr *AA = D->getAttr<AliasAttr>();
2732   assert(AA && "Not an alias?");
2733
2734   StringRef MangledName = getMangledName(GD);
2735
2736   if (AA->getAliasee() == MangledName) {
2737     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2738     return;
2739   }
2740
2741   // If there is a definition in the module, then it wins over the alias.
2742   // This is dubious, but allow it to be safe.  Just ignore the alias.
2743   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2744   if (Entry && !Entry->isDeclaration())
2745     return;
2746
2747   Aliases.push_back(GD);
2748
2749   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2750
2751   // Create a reference to the named value.  This ensures that it is emitted
2752   // if a deferred decl.
2753   llvm::Constant *Aliasee;
2754   if (isa<llvm::FunctionType>(DeclTy))
2755     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2756                                       /*ForVTable=*/false);
2757   else
2758     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2759                                     llvm::PointerType::getUnqual(DeclTy),
2760                                     /*D=*/nullptr);
2761
2762   // Create the new alias itself, but don't set a name yet.
2763   auto *GA = llvm::GlobalAlias::create(
2764       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2765
2766   if (Entry) {
2767     if (GA->getAliasee() == Entry) {
2768       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2769       return;
2770     }
2771
2772     assert(Entry->isDeclaration());
2773
2774     // If there is a declaration in the module, then we had an extern followed
2775     // by the alias, as in:
2776     //   extern int test6();
2777     //   ...
2778     //   int test6() __attribute__((alias("test7")));
2779     //
2780     // Remove it and replace uses of it with the alias.
2781     GA->takeName(Entry);
2782
2783     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2784                                                           Entry->getType()));
2785     Entry->eraseFromParent();
2786   } else {
2787     GA->setName(MangledName);
2788   }
2789
2790   // Set attributes which are particular to an alias; this is a
2791   // specialization of the attributes which may be set on a global
2792   // variable/function.
2793   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2794       D->isWeakImported()) {
2795     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2796   }
2797
2798   if (const auto *VD = dyn_cast<VarDecl>(D))
2799     if (VD->getTLSKind())
2800       setTLSMode(GA, *VD);
2801
2802   setAliasAttributes(D, GA);
2803 }
2804
2805 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2806                                             ArrayRef<llvm::Type*> Tys) {
2807   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2808                                          Tys);
2809 }
2810
2811 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2812 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2813                          const StringLiteral *Literal, bool TargetIsLSB,
2814                          bool &IsUTF16, unsigned &StringLength) {
2815   StringRef String = Literal->getString();
2816   unsigned NumBytes = String.size();
2817
2818   // Check for simple case.
2819   if (!Literal->containsNonAsciiOrNull()) {
2820     StringLength = NumBytes;
2821     return *Map.insert(std::make_pair(String, nullptr)).first;
2822   }
2823
2824   // Otherwise, convert the UTF8 literals into a string of shorts.
2825   IsUTF16 = true;
2826
2827   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2828   const UTF8 *FromPtr = (const UTF8 *)String.data();
2829   UTF16 *ToPtr = &ToBuf[0];
2830
2831   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2832                            &ToPtr, ToPtr + NumBytes,
2833                            strictConversion);
2834
2835   // ConvertUTF8toUTF16 returns the length in ToPtr.
2836   StringLength = ToPtr - &ToBuf[0];
2837
2838   // Add an explicit null.
2839   *ToPtr = 0;
2840   return *Map.insert(std::make_pair(
2841                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2842                                    (StringLength + 1) * 2),
2843                          nullptr)).first;
2844 }
2845
2846 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2847 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2848                        const StringLiteral *Literal, unsigned &StringLength) {
2849   StringRef String = Literal->getString();
2850   StringLength = String.size();
2851   return *Map.insert(std::make_pair(String, nullptr)).first;
2852 }
2853
2854 ConstantAddress
2855 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2856   unsigned StringLength = 0;
2857   bool isUTF16 = false;
2858   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2859       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2860                                getDataLayout().isLittleEndian(), isUTF16,
2861                                StringLength);
2862
2863   if (auto *C = Entry.second)
2864     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2865
2866   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2867   llvm::Constant *Zeros[] = { Zero, Zero };
2868   llvm::Value *V;
2869   
2870   // If we don't already have it, get __CFConstantStringClassReference.
2871   if (!CFConstantStringClassRef) {
2872     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2873     Ty = llvm::ArrayType::get(Ty, 0);
2874     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2875                                            "__CFConstantStringClassReference");
2876     // Decay array -> ptr
2877     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2878     CFConstantStringClassRef = V;
2879   }
2880   else
2881     V = CFConstantStringClassRef;
2882
2883   QualType CFTy = getContext().getCFConstantStringType();
2884
2885   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2886
2887   llvm::Constant *Fields[4];
2888
2889   // Class pointer.
2890   Fields[0] = cast<llvm::ConstantExpr>(V);
2891
2892   // Flags.
2893   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2894   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2895     llvm::ConstantInt::get(Ty, 0x07C8);
2896
2897   // String pointer.
2898   llvm::Constant *C = nullptr;
2899   if (isUTF16) {
2900     auto Arr = llvm::makeArrayRef(
2901         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2902         Entry.first().size() / 2);
2903     C = llvm::ConstantDataArray::get(VMContext, Arr);
2904   } else {
2905     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2906   }
2907
2908   // Note: -fwritable-strings doesn't make the backing store strings of
2909   // CFStrings writable. (See <rdar://problem/10657500>)
2910   auto *GV =
2911       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2912                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2913   GV->setUnnamedAddr(true);
2914   // Don't enforce the target's minimum global alignment, since the only use
2915   // of the string is via this class initializer.
2916   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2917   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2918   // that changes the section it ends in, which surprises ld64.
2919   if (isUTF16) {
2920     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2921     GV->setAlignment(Align.getQuantity());
2922     GV->setSection("__TEXT,__ustring");
2923   } else {
2924     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2925     GV->setAlignment(Align.getQuantity());
2926     GV->setSection("__TEXT,__cstring,cstring_literals");
2927   }
2928
2929   // String.
2930   Fields[2] =
2931       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2932
2933   if (isUTF16)
2934     // Cast the UTF16 string to the correct type.
2935     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2936
2937   // String length.
2938   Ty = getTypes().ConvertType(getContext().LongTy);
2939   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2940
2941   CharUnits Alignment = getPointerAlign();
2942
2943   // The struct.
2944   C = llvm::ConstantStruct::get(STy, Fields);
2945   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2946                                 llvm::GlobalVariable::PrivateLinkage, C,
2947                                 "_unnamed_cfstring_");
2948   GV->setSection("__DATA,__cfstring");
2949   GV->setAlignment(Alignment.getQuantity());
2950   Entry.second = GV;
2951
2952   return ConstantAddress(GV, Alignment);
2953 }
2954
2955 ConstantAddress
2956 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2957   unsigned StringLength = 0;
2958   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2959       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2960
2961   if (auto *C = Entry.second)
2962     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2963   
2964   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2965   llvm::Constant *Zeros[] = { Zero, Zero };
2966   llvm::Value *V;
2967   // If we don't already have it, get _NSConstantStringClassReference.
2968   if (!ConstantStringClassRef) {
2969     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2970     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2971     llvm::Constant *GV;
2972     if (LangOpts.ObjCRuntime.isNonFragile()) {
2973       std::string str = 
2974         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 
2975                             : "OBJC_CLASS_$_" + StringClass;
2976       GV = getObjCRuntime().GetClassGlobal(str);
2977       // Make sure the result is of the correct type.
2978       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2979       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2980       ConstantStringClassRef = V;
2981     } else {
2982       std::string str =
2983         StringClass.empty() ? "_NSConstantStringClassReference"
2984                             : "_" + StringClass + "ClassReference";
2985       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2986       GV = CreateRuntimeVariable(PTy, str);
2987       // Decay array -> ptr
2988       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
2989       ConstantStringClassRef = V;
2990     }
2991   } else
2992     V = ConstantStringClassRef;
2993
2994   if (!NSConstantStringType) {
2995     // Construct the type for a constant NSString.
2996     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2997     D->startDefinition();
2998       
2999     QualType FieldTypes[3];
3000     
3001     // const int *isa;
3002     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3003     // const char *str;
3004     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3005     // unsigned int length;
3006     FieldTypes[2] = Context.UnsignedIntTy;
3007     
3008     // Create fields
3009     for (unsigned i = 0; i < 3; ++i) {
3010       FieldDecl *Field = FieldDecl::Create(Context, D,
3011                                            SourceLocation(),
3012                                            SourceLocation(), nullptr,
3013                                            FieldTypes[i], /*TInfo=*/nullptr,
3014                                            /*BitWidth=*/nullptr,
3015                                            /*Mutable=*/false,
3016                                            ICIS_NoInit);
3017       Field->setAccess(AS_public);
3018       D->addDecl(Field);
3019     }
3020     
3021     D->completeDefinition();
3022     QualType NSTy = Context.getTagDeclType(D);
3023     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3024   }
3025   
3026   llvm::Constant *Fields[3];
3027   
3028   // Class pointer.
3029   Fields[0] = cast<llvm::ConstantExpr>(V);
3030   
3031   // String pointer.
3032   llvm::Constant *C =
3033       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3034
3035   llvm::GlobalValue::LinkageTypes Linkage;
3036   bool isConstant;
3037   Linkage = llvm::GlobalValue::PrivateLinkage;
3038   isConstant = !LangOpts.WritableStrings;
3039
3040   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3041                                       Linkage, C, ".str");
3042   GV->setUnnamedAddr(true);
3043   // Don't enforce the target's minimum global alignment, since the only use
3044   // of the string is via this class initializer.
3045   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3046   GV->setAlignment(Align.getQuantity());
3047   Fields[1] =
3048       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3049
3050   // String length.
3051   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3052   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3053   
3054   // The struct.
3055   CharUnits Alignment = getPointerAlign();
3056   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3057   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3058                                 llvm::GlobalVariable::PrivateLinkage, C,
3059                                 "_unnamed_nsstring_");
3060   GV->setAlignment(Alignment.getQuantity());
3061   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3062   const char *NSStringNonFragileABISection =
3063       "__DATA,__objc_stringobj,regular,no_dead_strip";
3064   // FIXME. Fix section.
3065   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3066                      ? NSStringNonFragileABISection
3067                      : NSStringSection);
3068   Entry.second = GV;
3069
3070   return ConstantAddress(GV, Alignment);
3071 }
3072
3073 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3074   if (ObjCFastEnumerationStateType.isNull()) {
3075     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3076     D->startDefinition();
3077     
3078     QualType FieldTypes[] = {
3079       Context.UnsignedLongTy,
3080       Context.getPointerType(Context.getObjCIdType()),
3081       Context.getPointerType(Context.UnsignedLongTy),
3082       Context.getConstantArrayType(Context.UnsignedLongTy,
3083                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3084     };
3085     
3086     for (size_t i = 0; i < 4; ++i) {
3087       FieldDecl *Field = FieldDecl::Create(Context,
3088                                            D,
3089                                            SourceLocation(),
3090                                            SourceLocation(), nullptr,
3091                                            FieldTypes[i], /*TInfo=*/nullptr,
3092                                            /*BitWidth=*/nullptr,
3093                                            /*Mutable=*/false,
3094                                            ICIS_NoInit);
3095       Field->setAccess(AS_public);
3096       D->addDecl(Field);
3097     }
3098     
3099     D->completeDefinition();
3100     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3101   }
3102   
3103   return ObjCFastEnumerationStateType;
3104 }
3105
3106 llvm::Constant *
3107 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3108   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3109   
3110   // Don't emit it as the address of the string, emit the string data itself
3111   // as an inline array.
3112   if (E->getCharByteWidth() == 1) {
3113     SmallString<64> Str(E->getString());
3114
3115     // Resize the string to the right size, which is indicated by its type.
3116     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3117     Str.resize(CAT->getSize().getZExtValue());
3118     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3119   }
3120
3121   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3122   llvm::Type *ElemTy = AType->getElementType();
3123   unsigned NumElements = AType->getNumElements();
3124
3125   // Wide strings have either 2-byte or 4-byte elements.
3126   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3127     SmallVector<uint16_t, 32> Elements;
3128     Elements.reserve(NumElements);
3129
3130     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3131       Elements.push_back(E->getCodeUnit(i));
3132     Elements.resize(NumElements);
3133     return llvm::ConstantDataArray::get(VMContext, Elements);
3134   }
3135   
3136   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3137   SmallVector<uint32_t, 32> Elements;
3138   Elements.reserve(NumElements);
3139   
3140   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3141     Elements.push_back(E->getCodeUnit(i));
3142   Elements.resize(NumElements);
3143   return llvm::ConstantDataArray::get(VMContext, Elements);
3144 }
3145
3146 static llvm::GlobalVariable *
3147 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3148                       CodeGenModule &CGM, StringRef GlobalName,
3149                       CharUnits Alignment) {
3150   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3151   unsigned AddrSpace = 0;
3152   if (CGM.getLangOpts().OpenCL)
3153     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3154
3155   llvm::Module &M = CGM.getModule();
3156   // Create a global variable for this string
3157   auto *GV = new llvm::GlobalVariable(
3158       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3159       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3160   GV->setAlignment(Alignment.getQuantity());
3161   GV->setUnnamedAddr(true);
3162   if (GV->isWeakForLinker()) {
3163     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3164     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3165   }
3166
3167   return GV;
3168 }
3169
3170 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3171 /// constant array for the given string literal.
3172 ConstantAddress
3173 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3174                                                   StringRef Name) {
3175   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3176
3177   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3178   llvm::GlobalVariable **Entry = nullptr;
3179   if (!LangOpts.WritableStrings) {
3180     Entry = &ConstantStringMap[C];
3181     if (auto GV = *Entry) {
3182       if (Alignment.getQuantity() > GV->getAlignment())
3183         GV->setAlignment(Alignment.getQuantity());
3184       return ConstantAddress(GV, Alignment);
3185     }
3186   }
3187
3188   SmallString<256> MangledNameBuffer;
3189   StringRef GlobalVariableName;
3190   llvm::GlobalValue::LinkageTypes LT;
3191
3192   // Mangle the string literal if the ABI allows for it.  However, we cannot
3193   // do this if  we are compiling with ASan or -fwritable-strings because they
3194   // rely on strings having normal linkage.
3195   if (!LangOpts.WritableStrings &&
3196       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3197       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3198     llvm::raw_svector_ostream Out(MangledNameBuffer);
3199     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3200
3201     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3202     GlobalVariableName = MangledNameBuffer;
3203   } else {
3204     LT = llvm::GlobalValue::PrivateLinkage;
3205     GlobalVariableName = Name;
3206   }
3207
3208   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3209   if (Entry)
3210     *Entry = GV;
3211
3212   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3213                                   QualType());
3214   return ConstantAddress(GV, Alignment);
3215 }
3216
3217 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3218 /// array for the given ObjCEncodeExpr node.
3219 ConstantAddress
3220 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3221   std::string Str;
3222   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3223
3224   return GetAddrOfConstantCString(Str);
3225 }
3226
3227 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3228 /// the literal and a terminating '\0' character.
3229 /// The result has pointer to array type.
3230 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3231     const std::string &Str, const char *GlobalName) {
3232   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3233   CharUnits Alignment =
3234     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3235
3236   llvm::Constant *C =
3237       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3238
3239   // Don't share any string literals if strings aren't constant.
3240   llvm::GlobalVariable **Entry = nullptr;
3241   if (!LangOpts.WritableStrings) {
3242     Entry = &ConstantStringMap[C];
3243     if (auto GV = *Entry) {
3244       if (Alignment.getQuantity() > GV->getAlignment())
3245         GV->setAlignment(Alignment.getQuantity());
3246       return ConstantAddress(GV, Alignment);
3247     }
3248   }
3249
3250   // Get the default prefix if a name wasn't specified.
3251   if (!GlobalName)
3252     GlobalName = ".str";
3253   // Create a global variable for this.
3254   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3255                                   GlobalName, Alignment);
3256   if (Entry)
3257     *Entry = GV;
3258   return ConstantAddress(GV, Alignment);
3259 }
3260
3261 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3262     const MaterializeTemporaryExpr *E, const Expr *Init) {
3263   assert((E->getStorageDuration() == SD_Static ||
3264           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3265   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3266
3267   // If we're not materializing a subobject of the temporary, keep the
3268   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3269   QualType MaterializedType = Init->getType();
3270   if (Init == E->GetTemporaryExpr())
3271     MaterializedType = E->getType();
3272
3273   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3274
3275   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3276     return ConstantAddress(Slot, Align);
3277
3278   // FIXME: If an externally-visible declaration extends multiple temporaries,
3279   // we need to give each temporary the same name in every translation unit (and
3280   // we also need to make the temporaries externally-visible).
3281   SmallString<256> Name;
3282   llvm::raw_svector_ostream Out(Name);
3283   getCXXABI().getMangleContext().mangleReferenceTemporary(
3284       VD, E->getManglingNumber(), Out);
3285
3286   APValue *Value = nullptr;
3287   if (E->getStorageDuration() == SD_Static) {
3288     // We might have a cached constant initializer for this temporary. Note
3289     // that this might have a different value from the value computed by
3290     // evaluating the initializer if the surrounding constant expression
3291     // modifies the temporary.
3292     Value = getContext().getMaterializedTemporaryValue(E, false);
3293     if (Value && Value->isUninit())
3294       Value = nullptr;
3295   }
3296
3297   // Try evaluating it now, it might have a constant initializer.
3298   Expr::EvalResult EvalResult;
3299   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3300       !EvalResult.hasSideEffects())
3301     Value = &EvalResult.Val;
3302
3303   llvm::Constant *InitialValue = nullptr;
3304   bool Constant = false;
3305   llvm::Type *Type;
3306   if (Value) {
3307     // The temporary has a constant initializer, use it.
3308     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3309     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3310     Type = InitialValue->getType();
3311   } else {
3312     // No initializer, the initialization will be provided when we
3313     // initialize the declaration which performed lifetime extension.
3314     Type = getTypes().ConvertTypeForMem(MaterializedType);
3315   }
3316
3317   // Create a global variable for this lifetime-extended temporary.
3318   llvm::GlobalValue::LinkageTypes Linkage =
3319       getLLVMLinkageVarDefinition(VD, Constant);
3320   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3321     const VarDecl *InitVD;
3322     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3323         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3324       // Temporaries defined inside a class get linkonce_odr linkage because the
3325       // class can be defined in multipe translation units.
3326       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3327     } else {
3328       // There is no need for this temporary to have external linkage if the
3329       // VarDecl has external linkage.
3330       Linkage = llvm::GlobalVariable::InternalLinkage;
3331     }
3332   }
3333   unsigned AddrSpace = GetGlobalVarAddressSpace(
3334       VD, getContext().getTargetAddressSpace(MaterializedType));
3335   auto *GV = new llvm::GlobalVariable(
3336       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3337       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3338       AddrSpace);
3339   setGlobalVisibility(GV, VD);
3340   GV->setAlignment(Align.getQuantity());
3341   if (supportsCOMDAT() && GV->isWeakForLinker())
3342     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3343   if (VD->getTLSKind())
3344     setTLSMode(GV, *VD);
3345   MaterializedGlobalTemporaryMap[E] = GV;
3346   return ConstantAddress(GV, Align);
3347 }
3348
3349 /// EmitObjCPropertyImplementations - Emit information for synthesized
3350 /// properties for an implementation.
3351 void CodeGenModule::EmitObjCPropertyImplementations(const
3352                                                     ObjCImplementationDecl *D) {
3353   for (const auto *PID : D->property_impls()) {
3354     // Dynamic is just for type-checking.
3355     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3356       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3357
3358       // Determine which methods need to be implemented, some may have
3359       // been overridden. Note that ::isPropertyAccessor is not the method
3360       // we want, that just indicates if the decl came from a
3361       // property. What we want to know is if the method is defined in
3362       // this implementation.
3363       if (!D->getInstanceMethod(PD->getGetterName()))
3364         CodeGenFunction(*this).GenerateObjCGetter(
3365                                  const_cast<ObjCImplementationDecl *>(D), PID);
3366       if (!PD->isReadOnly() &&
3367           !D->getInstanceMethod(PD->getSetterName()))
3368         CodeGenFunction(*this).GenerateObjCSetter(
3369                                  const_cast<ObjCImplementationDecl *>(D), PID);
3370     }
3371   }
3372 }
3373
3374 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3375   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3376   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3377        ivar; ivar = ivar->getNextIvar())
3378     if (ivar->getType().isDestructedType())
3379       return true;
3380
3381   return false;
3382 }
3383
3384 static bool AllTrivialInitializers(CodeGenModule &CGM,
3385                                    ObjCImplementationDecl *D) {
3386   CodeGenFunction CGF(CGM);
3387   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3388        E = D->init_end(); B != E; ++B) {
3389     CXXCtorInitializer *CtorInitExp = *B;
3390     Expr *Init = CtorInitExp->getInit();
3391     if (!CGF.isTrivialInitializer(Init))
3392       return false;
3393   }
3394   return true;
3395 }
3396
3397 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3398 /// for an implementation.
3399 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3400   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3401   if (needsDestructMethod(D)) {
3402     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3403     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3404     ObjCMethodDecl *DTORMethod =
3405       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3406                              cxxSelector, getContext().VoidTy, nullptr, D,
3407                              /*isInstance=*/true, /*isVariadic=*/false,
3408                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3409                              /*isDefined=*/false, ObjCMethodDecl::Required);
3410     D->addInstanceMethod(DTORMethod);
3411     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3412     D->setHasDestructors(true);
3413   }
3414
3415   // If the implementation doesn't have any ivar initializers, we don't need
3416   // a .cxx_construct.
3417   if (D->getNumIvarInitializers() == 0 ||
3418       AllTrivialInitializers(*this, D))
3419     return;
3420   
3421   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3422   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3423   // The constructor returns 'self'.
3424   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 
3425                                                 D->getLocation(),
3426                                                 D->getLocation(),
3427                                                 cxxSelector,
3428                                                 getContext().getObjCIdType(),
3429                                                 nullptr, D, /*isInstance=*/true,
3430                                                 /*isVariadic=*/false,
3431                                                 /*isPropertyAccessor=*/true,
3432                                                 /*isImplicitlyDeclared=*/true,
3433                                                 /*isDefined=*/false,
3434                                                 ObjCMethodDecl::Required);
3435   D->addInstanceMethod(CTORMethod);
3436   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3437   D->setHasNonZeroConstructors(true);
3438 }
3439
3440 /// EmitNamespace - Emit all declarations in a namespace.
3441 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3442   for (auto *I : ND->decls()) {
3443     if (const auto *VD = dyn_cast<VarDecl>(I))
3444       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3445           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3446         continue;
3447     EmitTopLevelDecl(I);
3448   }
3449 }
3450
3451 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3452 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3453   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3454       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3455     ErrorUnsupported(LSD, "linkage spec");
3456     return;
3457   }
3458
3459   for (auto *I : LSD->decls()) {
3460     // Meta-data for ObjC class includes references to implemented methods.
3461     // Generate class's method definitions first.
3462     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3463       for (auto *M : OID->methods())
3464         EmitTopLevelDecl(M);
3465     }
3466     EmitTopLevelDecl(I);
3467   }
3468 }
3469
3470 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3471 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3472   // Ignore dependent declarations.
3473   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3474     return;
3475
3476   switch (D->getKind()) {
3477   case Decl::CXXConversion:
3478   case Decl::CXXMethod:
3479   case Decl::Function:
3480     // Skip function templates
3481     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3482         cast<FunctionDecl>(D)->isLateTemplateParsed())
3483       return;
3484
3485     EmitGlobal(cast<FunctionDecl>(D));
3486     // Always provide some coverage mapping
3487     // even for the functions that aren't emitted.
3488     AddDeferredUnusedCoverageMapping(D);
3489     break;
3490
3491   case Decl::Var:
3492     // Skip variable templates
3493     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3494       return;
3495   case Decl::VarTemplateSpecialization:
3496     EmitGlobal(cast<VarDecl>(D));
3497     break;
3498
3499   // Indirect fields from global anonymous structs and unions can be
3500   // ignored; only the actual variable requires IR gen support.
3501   case Decl::IndirectField:
3502     break;
3503
3504   // C++ Decls
3505   case Decl::Namespace:
3506     EmitNamespace(cast<NamespaceDecl>(D));
3507     break;
3508     // No code generation needed.
3509   case Decl::UsingShadow:
3510   case Decl::ClassTemplate:
3511   case Decl::VarTemplate:
3512   case Decl::VarTemplatePartialSpecialization:
3513   case Decl::FunctionTemplate:
3514   case Decl::TypeAliasTemplate:
3515   case Decl::Block:
3516   case Decl::Empty:
3517     break;
3518   case Decl::Using:          // using X; [C++]
3519     if (CGDebugInfo *DI = getModuleDebugInfo())
3520         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3521     return;
3522   case Decl::NamespaceAlias:
3523     if (CGDebugInfo *DI = getModuleDebugInfo())
3524         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3525     return;
3526   case Decl::UsingDirective: // using namespace X; [C++]
3527     if (CGDebugInfo *DI = getModuleDebugInfo())
3528       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3529     return;
3530   case Decl::CXXConstructor:
3531     // Skip function templates
3532     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3533         cast<FunctionDecl>(D)->isLateTemplateParsed())
3534       return;
3535       
3536     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3537     break;
3538   case Decl::CXXDestructor:
3539     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3540       return;
3541     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3542     break;
3543
3544   case Decl::StaticAssert:
3545     // Nothing to do.
3546     break;
3547
3548   // Objective-C Decls
3549
3550   // Forward declarations, no (immediate) code generation.
3551   case Decl::ObjCInterface:
3552   case Decl::ObjCCategory:
3553     break;
3554
3555   case Decl::ObjCProtocol: {
3556     auto *Proto = cast<ObjCProtocolDecl>(D);
3557     if (Proto->isThisDeclarationADefinition())
3558       ObjCRuntime->GenerateProtocol(Proto);
3559     break;
3560   }
3561       
3562   case Decl::ObjCCategoryImpl:
3563     // Categories have properties but don't support synthesize so we
3564     // can ignore them here.
3565     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3566     break;
3567
3568   case Decl::ObjCImplementation: {
3569     auto *OMD = cast<ObjCImplementationDecl>(D);
3570     EmitObjCPropertyImplementations(OMD);
3571     EmitObjCIvarInitializations(OMD);
3572     ObjCRuntime->GenerateClass(OMD);
3573     // Emit global variable debug information.
3574     if (CGDebugInfo *DI = getModuleDebugInfo())
3575       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3576         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3577             OMD->getClassInterface()), OMD->getLocation());
3578     break;
3579   }
3580   case Decl::ObjCMethod: {
3581     auto *OMD = cast<ObjCMethodDecl>(D);
3582     // If this is not a prototype, emit the body.
3583     if (OMD->getBody())
3584       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3585     break;
3586   }
3587   case Decl::ObjCCompatibleAlias:
3588     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3589     break;
3590
3591   case Decl::LinkageSpec:
3592     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3593     break;
3594
3595   case Decl::FileScopeAsm: {
3596     // File-scope asm is ignored during device-side CUDA compilation.
3597     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3598       break;
3599     auto *AD = cast<FileScopeAsmDecl>(D);
3600     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3601     break;
3602   }
3603
3604   case Decl::Import: {
3605     auto *Import = cast<ImportDecl>(D);
3606
3607     // Ignore import declarations that come from imported modules.
3608     if (Import->getImportedOwningModule())
3609       break;
3610     if (CGDebugInfo *DI = getModuleDebugInfo())
3611       DI->EmitImportDecl(*Import);
3612
3613     ImportedModules.insert(Import->getImportedModule());
3614     break;
3615   }
3616
3617   case Decl::OMPThreadPrivate:
3618     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3619     break;
3620
3621   case Decl::ClassTemplateSpecialization: {
3622     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3623     if (DebugInfo &&
3624         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3625         Spec->hasDefinition())
3626       DebugInfo->completeTemplateDefinition(*Spec);
3627     break;
3628   }
3629
3630   default:
3631     // Make sure we handled everything we should, every other kind is a
3632     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3633     // function. Need to recode Decl::Kind to do that easily.
3634     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3635     break;
3636   }
3637 }
3638
3639 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3640   // Do we need to generate coverage mapping?
3641   if (!CodeGenOpts.CoverageMapping)
3642     return;
3643   switch (D->getKind()) {
3644   case Decl::CXXConversion:
3645   case Decl::CXXMethod:
3646   case Decl::Function:
3647   case Decl::ObjCMethod:
3648   case Decl::CXXConstructor:
3649   case Decl::CXXDestructor: {
3650     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3651       return;
3652     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3653     if (I == DeferredEmptyCoverageMappingDecls.end())
3654       DeferredEmptyCoverageMappingDecls[D] = true;
3655     break;
3656   }
3657   default:
3658     break;
3659   };
3660 }
3661
3662 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3663   // Do we need to generate coverage mapping?
3664   if (!CodeGenOpts.CoverageMapping)
3665     return;
3666   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3667     if (Fn->isTemplateInstantiation())
3668       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3669   }
3670   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3671   if (I == DeferredEmptyCoverageMappingDecls.end())
3672     DeferredEmptyCoverageMappingDecls[D] = false;
3673   else
3674     I->second = false;
3675 }
3676
3677 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3678   std::vector<const Decl *> DeferredDecls;
3679   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3680     if (!I.second)
3681       continue;
3682     DeferredDecls.push_back(I.first);
3683   }
3684   // Sort the declarations by their location to make sure that the tests get a
3685   // predictable order for the coverage mapping for the unused declarations.
3686   if (CodeGenOpts.DumpCoverageMapping)
3687     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3688               [] (const Decl *LHS, const Decl *RHS) {
3689       return LHS->getLocStart() < RHS->getLocStart();
3690     });
3691   for (const auto *D : DeferredDecls) {
3692     switch (D->getKind()) {
3693     case Decl::CXXConversion:
3694     case Decl::CXXMethod:
3695     case Decl::Function:
3696     case Decl::ObjCMethod: {
3697       CodeGenPGO PGO(*this);
3698       GlobalDecl GD(cast<FunctionDecl>(D));
3699       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3700                                   getFunctionLinkage(GD));
3701       break;
3702     }
3703     case Decl::CXXConstructor: {
3704       CodeGenPGO PGO(*this);
3705       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3706       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3707                                   getFunctionLinkage(GD));
3708       break;
3709     }
3710     case Decl::CXXDestructor: {
3711       CodeGenPGO PGO(*this);
3712       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3713       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3714                                   getFunctionLinkage(GD));
3715       break;
3716     }
3717     default:
3718       break;
3719     };
3720   }
3721 }
3722
3723 /// Turns the given pointer into a constant.
3724 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3725                                           const void *Ptr) {
3726   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3727   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3728   return llvm::ConstantInt::get(i64, PtrInt);
3729 }
3730
3731 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3732                                    llvm::NamedMDNode *&GlobalMetadata,
3733                                    GlobalDecl D,
3734                                    llvm::GlobalValue *Addr) {
3735   if (!GlobalMetadata)
3736     GlobalMetadata =
3737       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3738
3739   // TODO: should we report variant information for ctors/dtors?
3740   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3741                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3742                                CGM.getLLVMContext(), D.getDecl()))};
3743   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3744 }
3745
3746 /// For each function which is declared within an extern "C" region and marked
3747 /// as 'used', but has internal linkage, create an alias from the unmangled
3748 /// name to the mangled name if possible. People expect to be able to refer
3749 /// to such functions with an unmangled name from inline assembly within the
3750 /// same translation unit.
3751 void CodeGenModule::EmitStaticExternCAliases() {
3752   for (auto &I : StaticExternCValues) {
3753     IdentifierInfo *Name = I.first;
3754     llvm::GlobalValue *Val = I.second;
3755     if (Val && !getModule().getNamedValue(Name->getName()))
3756       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3757   }
3758 }
3759
3760 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3761                                              GlobalDecl &Result) const {
3762   auto Res = Manglings.find(MangledName);
3763   if (Res == Manglings.end())
3764     return false;
3765   Result = Res->getValue();
3766   return true;
3767 }
3768
3769 /// Emits metadata nodes associating all the global values in the
3770 /// current module with the Decls they came from.  This is useful for
3771 /// projects using IR gen as a subroutine.
3772 ///
3773 /// Since there's currently no way to associate an MDNode directly
3774 /// with an llvm::GlobalValue, we create a global named metadata
3775 /// with the name 'clang.global.decl.ptrs'.
3776 void CodeGenModule::EmitDeclMetadata() {
3777   llvm::NamedMDNode *GlobalMetadata = nullptr;
3778
3779   for (auto &I : MangledDeclNames) {
3780     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3781     // Some mangled names don't necessarily have an associated GlobalValue
3782     // in this module, e.g. if we mangled it for DebugInfo.
3783     if (Addr)
3784       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3785   }
3786 }
3787
3788 /// Emits metadata nodes for all the local variables in the current
3789 /// function.
3790 void CodeGenFunction::EmitDeclMetadata() {
3791   if (LocalDeclMap.empty()) return;
3792
3793   llvm::LLVMContext &Context = getLLVMContext();
3794
3795   // Find the unique metadata ID for this name.
3796   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3797
3798   llvm::NamedMDNode *GlobalMetadata = nullptr;
3799
3800   for (auto &I : LocalDeclMap) {
3801     const Decl *D = I.first;
3802     llvm::Value *Addr = I.second.getPointer();
3803     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3804       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3805       Alloca->setMetadata(
3806           DeclPtrKind, llvm::MDNode::get(
3807                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3808     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3809       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3810       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3811     }
3812   }
3813 }
3814
3815 void CodeGenModule::EmitVersionIdentMetadata() {
3816   llvm::NamedMDNode *IdentMetadata =
3817     TheModule.getOrInsertNamedMetadata("llvm.ident");
3818   std::string Version = getClangFullVersion();
3819   llvm::LLVMContext &Ctx = TheModule.getContext();
3820
3821   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3822   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3823 }
3824
3825 void CodeGenModule::EmitTargetMetadata() {
3826   // Warning, new MangledDeclNames may be appended within this loop.
3827   // We rely on MapVector insertions adding new elements to the end
3828   // of the container.
3829   // FIXME: Move this loop into the one target that needs it, and only
3830   // loop over those declarations for which we couldn't emit the target
3831   // metadata when we emitted the declaration.
3832   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3833     auto Val = *(MangledDeclNames.begin() + I);
3834     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3835     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3836     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3837   }
3838 }
3839
3840 void CodeGenModule::EmitCoverageFile() {
3841   if (!getCodeGenOpts().CoverageFile.empty()) {
3842     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3843       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3844       llvm::LLVMContext &Ctx = TheModule.getContext();
3845       llvm::MDString *CoverageFile =
3846           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3847       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3848         llvm::MDNode *CU = CUNode->getOperand(i);
3849         llvm::Metadata *Elts[] = {CoverageFile, CU};
3850         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3851       }
3852     }
3853   }
3854 }
3855
3856 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3857   // Sema has checked that all uuid strings are of the form
3858   // "12345678-1234-1234-1234-1234567890ab".
3859   assert(Uuid.size() == 36);
3860   for (unsigned i = 0; i < 36; ++i) {
3861     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3862     else                                         assert(isHexDigit(Uuid[i]));
3863   }
3864
3865   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3866   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3867
3868   llvm::Constant *Field3[8];
3869   for (unsigned Idx = 0; Idx < 8; ++Idx)
3870     Field3[Idx] = llvm::ConstantInt::get(
3871         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3872
3873   llvm::Constant *Fields[4] = {
3874     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3875     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3876     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3877     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3878   };
3879
3880   return llvm::ConstantStruct::getAnon(Fields);
3881 }
3882
3883 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3884                                                        bool ForEH) {
3885   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3886   // FIXME: should we even be calling this method if RTTI is disabled
3887   // and it's not for EH?
3888   if (!ForEH && !getLangOpts().RTTI)
3889     return llvm::Constant::getNullValue(Int8PtrTy);
3890   
3891   if (ForEH && Ty->isObjCObjectPointerType() &&
3892       LangOpts.ObjCRuntime.isGNUFamily())
3893     return ObjCRuntime->GetEHType(Ty);
3894
3895   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3896 }
3897
3898 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3899   for (auto RefExpr : D->varlists()) {
3900     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3901     bool PerformInit =
3902         VD->getAnyInitializer() &&
3903         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3904                                                         /*ForRef=*/false);
3905
3906     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
3907     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3908             VD, Addr, RefExpr->getLocStart(), PerformInit))
3909       CXXGlobalInits.push_back(InitFunction);
3910   }
3911 }
3912
3913 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
3914   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
3915   if (InternalId)
3916     return InternalId;
3917
3918   if (isExternallyVisible(T->getLinkage())) {
3919     std::string OutName;
3920     llvm::raw_string_ostream Out(OutName);
3921     getCXXABI().getMangleContext().mangleTypeName(T, Out);
3922
3923     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
3924   } else {
3925     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
3926                                            llvm::ArrayRef<llvm::Metadata *>());
3927   }
3928
3929   return InternalId;
3930 }
3931
3932 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
3933                                             llvm::GlobalVariable *VTable,
3934                                             CharUnits Offset,
3935                                             const CXXRecordDecl *RD) {
3936   llvm::Metadata *MD =
3937       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
3938   llvm::Metadata *BitsetOps[] = {
3939       MD, llvm::ConstantAsMetadata::get(VTable),
3940       llvm::ConstantAsMetadata::get(
3941           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
3942   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
3943
3944   if (CodeGenOpts.SanitizeCfiCrossDso) {
3945     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
3946       llvm::Metadata *BitsetOps2[] = {
3947           llvm::ConstantAsMetadata::get(TypeId),
3948           llvm::ConstantAsMetadata::get(VTable),
3949           llvm::ConstantAsMetadata::get(
3950               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
3951       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
3952     }
3953   }
3954 }
3955
3956 // Fills in the supplied string map with the set of target features for the
3957 // passed in function.
3958 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3959                                           const FunctionDecl *FD) {
3960   StringRef TargetCPU = Target.getTargetOpts().CPU;
3961   if (const auto *TD = FD->getAttr<TargetAttr>()) {
3962     // If we have a TargetAttr build up the feature map based on that.
3963     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
3964
3965     // Make a copy of the features as passed on the command line into the
3966     // beginning of the additional features from the function to override.
3967     ParsedAttr.first.insert(ParsedAttr.first.begin(),
3968                             Target.getTargetOpts().FeaturesAsWritten.begin(),
3969                             Target.getTargetOpts().FeaturesAsWritten.end());
3970
3971     if (ParsedAttr.second != "")
3972       TargetCPU = ParsedAttr.second;
3973
3974     // Now populate the feature map, first with the TargetCPU which is either
3975     // the default or a new one from the target attribute string. Then we'll use
3976     // the passed in features (FeaturesAsWritten) along with the new ones from
3977     // the attribute.
3978     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
3979   } else {
3980     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
3981                           Target.getTargetOpts().Features);
3982   }
3983 }