]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Frontend/CompilerInstance.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r306956, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Frontend / CompilerInstance.cpp
1 //===--- CompilerInstance.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/Frontend/CompilerInstance.h"
11 #include "clang/AST/ASTConsumer.h"
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/Basic/CharInfo.h"
15 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/MemoryBufferCache.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Basic/Version.h"
21 #include "clang/Config/config.h"
22 #include "clang/Frontend/ChainedDiagnosticConsumer.h"
23 #include "clang/Frontend/FrontendAction.h"
24 #include "clang/Frontend/FrontendActions.h"
25 #include "clang/Frontend/FrontendDiagnostic.h"
26 #include "clang/Frontend/LogDiagnosticPrinter.h"
27 #include "clang/Frontend/SerializedDiagnosticPrinter.h"
28 #include "clang/Frontend/TextDiagnosticPrinter.h"
29 #include "clang/Frontend/Utils.h"
30 #include "clang/Frontend/VerifyDiagnosticConsumer.h"
31 #include "clang/Lex/HeaderSearch.h"
32 #include "clang/Lex/PTHManager.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Sema/CodeCompleteConsumer.h"
36 #include "clang/Sema/Sema.h"
37 #include "clang/Serialization/ASTReader.h"
38 #include "clang/Serialization/GlobalModuleIndex.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Errc.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/Host.h"
44 #include "llvm/Support/LockFileManager.h"
45 #include "llvm/Support/MemoryBuffer.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/Program.h"
48 #include "llvm/Support/Signals.h"
49 #include "llvm/Support/Timer.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <sys/stat.h>
52 #include <system_error>
53 #include <time.h>
54 #include <utility>
55
56 using namespace clang;
57
58 CompilerInstance::CompilerInstance(
59     std::shared_ptr<PCHContainerOperations> PCHContainerOps,
60     MemoryBufferCache *SharedPCMCache)
61     : ModuleLoader(/* BuildingModule = */ SharedPCMCache),
62       Invocation(new CompilerInvocation()),
63       PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache),
64       ThePCHContainerOperations(std::move(PCHContainerOps)) {
65   // Don't allow this to invalidate buffers in use by others.
66   if (SharedPCMCache)
67     getPCMCache().finalizeCurrentBuffers();
68 }
69
70 CompilerInstance::~CompilerInstance() {
71   assert(OutputFiles.empty() && "Still output files in flight?");
72 }
73
74 void CompilerInstance::setInvocation(
75     std::shared_ptr<CompilerInvocation> Value) {
76   Invocation = std::move(Value);
77 }
78
79 bool CompilerInstance::shouldBuildGlobalModuleIndex() const {
80   return (BuildGlobalModuleIndex ||
81           (ModuleManager && ModuleManager->isGlobalIndexUnavailable() &&
82            getFrontendOpts().GenerateGlobalModuleIndex)) &&
83          !ModuleBuildFailed;
84 }
85
86 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) {
87   Diagnostics = Value;
88 }
89
90 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; }
91 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; }
92
93 void CompilerInstance::setFileManager(FileManager *Value) {
94   FileMgr = Value;
95   if (Value)
96     VirtualFileSystem = Value->getVirtualFileSystem();
97   else
98     VirtualFileSystem.reset();
99 }
100
101 void CompilerInstance::setSourceManager(SourceManager *Value) {
102   SourceMgr = Value;
103 }
104
105 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) {
106   PP = std::move(Value);
107 }
108
109 void CompilerInstance::setASTContext(ASTContext *Value) {
110   Context = Value;
111
112   if (Context && Consumer)
113     getASTConsumer().Initialize(getASTContext());
114 }
115
116 void CompilerInstance::setSema(Sema *S) {
117   TheSema.reset(S);
118 }
119
120 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) {
121   Consumer = std::move(Value);
122
123   if (Context && Consumer)
124     getASTConsumer().Initialize(getASTContext());
125 }
126
127 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) {
128   CompletionConsumer.reset(Value);
129 }
130
131 std::unique_ptr<Sema> CompilerInstance::takeSema() {
132   return std::move(TheSema);
133 }
134
135 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const {
136   return ModuleManager;
137 }
138 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) {
139   assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() &&
140          "Expected ASTReader to use the same PCM cache");
141   ModuleManager = std::move(Reader);
142 }
143
144 std::shared_ptr<ModuleDependencyCollector>
145 CompilerInstance::getModuleDepCollector() const {
146   return ModuleDepCollector;
147 }
148
149 void CompilerInstance::setModuleDepCollector(
150     std::shared_ptr<ModuleDependencyCollector> Collector) {
151   ModuleDepCollector = std::move(Collector);
152 }
153
154 static void collectHeaderMaps(const HeaderSearch &HS,
155                               std::shared_ptr<ModuleDependencyCollector> MDC) {
156   SmallVector<std::string, 4> HeaderMapFileNames;
157   HS.getHeaderMapFileNames(HeaderMapFileNames);
158   for (auto &Name : HeaderMapFileNames)
159     MDC->addFile(Name);
160 }
161
162 static void collectIncludePCH(CompilerInstance &CI,
163                               std::shared_ptr<ModuleDependencyCollector> MDC) {
164   const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
165   if (PPOpts.ImplicitPCHInclude.empty())
166     return;
167
168   StringRef PCHInclude = PPOpts.ImplicitPCHInclude;
169   FileManager &FileMgr = CI.getFileManager();
170   const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude);
171   if (!PCHDir) {
172     MDC->addFile(PCHInclude);
173     return;
174   }
175
176   std::error_code EC;
177   SmallString<128> DirNative;
178   llvm::sys::path::native(PCHDir->getName(), DirNative);
179   vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem();
180   SimpleASTReaderListener Validator(CI.getPreprocessor());
181   for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd;
182        Dir != DirEnd && !EC; Dir.increment(EC)) {
183     // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not
184     // used here since we're not interested in validating the PCH at this time,
185     // but only to check whether this is a file containing an AST.
186     if (!ASTReader::readASTFileControlBlock(
187             Dir->getName(), FileMgr, CI.getPCHContainerReader(),
188             /*FindModuleFileExtensions=*/false, Validator,
189             /*ValidateDiagnosticOptions=*/false))
190       MDC->addFile(Dir->getName());
191   }
192 }
193
194 static void collectVFSEntries(CompilerInstance &CI,
195                               std::shared_ptr<ModuleDependencyCollector> MDC) {
196   if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty())
197     return;
198
199   // Collect all VFS found.
200   SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries;
201   for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) {
202     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
203         llvm::MemoryBuffer::getFile(VFSFile);
204     if (!Buffer)
205       return;
206     vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr,
207                             VFSFile, VFSEntries);
208   }
209
210   for (auto &E : VFSEntries)
211     MDC->addFile(E.VPath, E.RPath);
212 }
213
214 // Diagnostics
215 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts,
216                                const CodeGenOptions *CodeGenOpts,
217                                DiagnosticsEngine &Diags) {
218   std::error_code EC;
219   std::unique_ptr<raw_ostream> StreamOwner;
220   raw_ostream *OS = &llvm::errs();
221   if (DiagOpts->DiagnosticLogFile != "-") {
222     // Create the output stream.
223     auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>(
224         DiagOpts->DiagnosticLogFile, EC,
225         llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
226     if (EC) {
227       Diags.Report(diag::warn_fe_cc_log_diagnostics_failure)
228           << DiagOpts->DiagnosticLogFile << EC.message();
229     } else {
230       FileOS->SetUnbuffered();
231       OS = FileOS.get();
232       StreamOwner = std::move(FileOS);
233     }
234   }
235
236   // Chain in the diagnostic client which will log the diagnostics.
237   auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts,
238                                                         std::move(StreamOwner));
239   if (CodeGenOpts)
240     Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags);
241   assert(Diags.ownsClient());
242   Diags.setClient(
243       new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger)));
244 }
245
246 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts,
247                                        DiagnosticsEngine &Diags,
248                                        StringRef OutputFile) {
249   auto SerializedConsumer =
250       clang::serialized_diags::create(OutputFile, DiagOpts);
251
252   if (Diags.ownsClient()) {
253     Diags.setClient(new ChainedDiagnosticConsumer(
254         Diags.takeClient(), std::move(SerializedConsumer)));
255   } else {
256     Diags.setClient(new ChainedDiagnosticConsumer(
257         Diags.getClient(), std::move(SerializedConsumer)));
258   }
259 }
260
261 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client,
262                                          bool ShouldOwnClient) {
263   Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client,
264                                   ShouldOwnClient, &getCodeGenOpts());
265 }
266
267 IntrusiveRefCntPtr<DiagnosticsEngine>
268 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts,
269                                     DiagnosticConsumer *Client,
270                                     bool ShouldOwnClient,
271                                     const CodeGenOptions *CodeGenOpts) {
272   IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
273   IntrusiveRefCntPtr<DiagnosticsEngine>
274       Diags(new DiagnosticsEngine(DiagID, Opts));
275
276   // Create the diagnostic client for reporting errors or for
277   // implementing -verify.
278   if (Client) {
279     Diags->setClient(Client, ShouldOwnClient);
280   } else
281     Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts));
282
283   // Chain in -verify checker, if requested.
284   if (Opts->VerifyDiagnostics)
285     Diags->setClient(new VerifyDiagnosticConsumer(*Diags));
286
287   // Chain in -diagnostic-log-file dumper, if requested.
288   if (!Opts->DiagnosticLogFile.empty())
289     SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags);
290
291   if (!Opts->DiagnosticSerializationFile.empty())
292     SetupSerializedDiagnostics(Opts, *Diags,
293                                Opts->DiagnosticSerializationFile);
294   
295   // Configure our handling of diagnostics.
296   ProcessWarningOptions(*Diags, *Opts);
297
298   return Diags;
299 }
300
301 // File Manager
302
303 void CompilerInstance::createFileManager() {
304   if (!hasVirtualFileSystem()) {
305     // TODO: choose the virtual file system based on the CompilerInvocation.
306     setVirtualFileSystem(vfs::getRealFileSystem());
307   }
308   FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem);
309 }
310
311 // Source Manager
312
313 void CompilerInstance::createSourceManager(FileManager &FileMgr) {
314   SourceMgr = new SourceManager(getDiagnostics(), FileMgr);
315 }
316
317 // Initialize the remapping of files to alternative contents, e.g.,
318 // those specified through other files.
319 static void InitializeFileRemapping(DiagnosticsEngine &Diags,
320                                     SourceManager &SourceMgr,
321                                     FileManager &FileMgr,
322                                     const PreprocessorOptions &InitOpts) {
323   // Remap files in the source manager (with buffers).
324   for (const auto &RB : InitOpts.RemappedFileBuffers) {
325     // Create the file entry for the file that we're mapping from.
326     const FileEntry *FromFile =
327         FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0);
328     if (!FromFile) {
329       Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first;
330       if (!InitOpts.RetainRemappedFileBuffers)
331         delete RB.second;
332       continue;
333     }
334
335     // Override the contents of the "from" file with the contents of
336     // the "to" file.
337     SourceMgr.overrideFileContents(FromFile, RB.second,
338                                    InitOpts.RetainRemappedFileBuffers);
339   }
340
341   // Remap files in the source manager (with other files).
342   for (const auto &RF : InitOpts.RemappedFiles) {
343     // Find the file that we're mapping to.
344     const FileEntry *ToFile = FileMgr.getFile(RF.second);
345     if (!ToFile) {
346       Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second;
347       continue;
348     }
349
350     // Create the file entry for the file that we're mapping from.
351     const FileEntry *FromFile =
352         FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0);
353     if (!FromFile) {
354       Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first;
355       continue;
356     }
357
358     // Override the contents of the "from" file with the contents of
359     // the "to" file.
360     SourceMgr.overrideFileContents(FromFile, ToFile);
361   }
362
363   SourceMgr.setOverridenFilesKeepOriginalName(
364       InitOpts.RemappedFilesKeepOriginalName);
365 }
366
367 // Preprocessor
368
369 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) {
370   const PreprocessorOptions &PPOpts = getPreprocessorOpts();
371
372   // Create a PTH manager if we are using some form of a token cache.
373   PTHManager *PTHMgr = nullptr;
374   if (!PPOpts.TokenCache.empty())
375     PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics());
376
377   // Create the Preprocessor.
378   HeaderSearch *HeaderInfo =
379       new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(),
380                        getDiagnostics(), getLangOpts(), &getTarget());
381   PP = std::make_shared<Preprocessor>(
382       Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(),
383       getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr,
384       /*OwnsHeaderSearch=*/true, TUKind);
385   PP->Initialize(getTarget(), getAuxTarget());
386
387   // Note that this is different then passing PTHMgr to Preprocessor's ctor.
388   // That argument is used as the IdentifierInfoLookup argument to
389   // IdentifierTable's ctor.
390   if (PTHMgr) {
391     PTHMgr->setPreprocessor(&*PP);
392     PP->setPTHManager(PTHMgr);
393   }
394
395   if (PPOpts.DetailedRecord)
396     PP->createPreprocessingRecord();
397
398   // Apply remappings to the source manager.
399   InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(),
400                           PP->getFileManager(), PPOpts);
401
402   // Predefine macros and configure the preprocessor.
403   InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(),
404                          getFrontendOpts());
405
406   // Initialize the header search object.  In CUDA compilations, we use the aux
407   // triple (the host triple) to initialize our header search, since we need to
408   // find the host headers in order to compile the CUDA code.
409   const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple();
410   if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA &&
411       PP->getAuxTargetInfo())
412     HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple();
413
414   ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(),
415                            PP->getLangOpts(), *HeaderSearchTriple);
416
417   PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP);
418
419   if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules)
420     PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath());
421
422   // Handle generating dependencies, if requested.
423   const DependencyOutputOptions &DepOpts = getDependencyOutputOpts();
424   if (!DepOpts.OutputFile.empty())
425     TheDependencyFileGenerator.reset(
426         DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts));
427   if (!DepOpts.DOTOutputFile.empty())
428     AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile,
429                              getHeaderSearchOpts().Sysroot);
430
431   // If we don't have a collector, but we are collecting module dependencies,
432   // then we're the top level compiler instance and need to create one.
433   if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) {
434     ModuleDepCollector = std::make_shared<ModuleDependencyCollector>(
435         DepOpts.ModuleDependencyOutputDir);
436   }
437
438   // If there is a module dep collector, register with other dep collectors
439   // and also (a) collect header maps and (b) TODO: input vfs overlay files.
440   if (ModuleDepCollector) {
441     addDependencyCollector(ModuleDepCollector);
442     collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector);
443     collectIncludePCH(*this, ModuleDepCollector);
444     collectVFSEntries(*this, ModuleDepCollector);
445   }
446
447   for (auto &Listener : DependencyCollectors)
448     Listener->attachToPreprocessor(*PP);
449
450   // Handle generating header include information, if requested.
451   if (DepOpts.ShowHeaderIncludes)
452     AttachHeaderIncludeGen(*PP, DepOpts);
453   if (!DepOpts.HeaderIncludeOutputFile.empty()) {
454     StringRef OutputPath = DepOpts.HeaderIncludeOutputFile;
455     if (OutputPath == "-")
456       OutputPath = "";
457     AttachHeaderIncludeGen(*PP, DepOpts,
458                            /*ShowAllHeaders=*/true, OutputPath,
459                            /*ShowDepth=*/false);
460   }
461
462   if (DepOpts.PrintShowIncludes) {
463     AttachHeaderIncludeGen(*PP, DepOpts,
464                            /*ShowAllHeaders=*/true, /*OutputPath=*/"",
465                            /*ShowDepth=*/true, /*MSStyle=*/true);
466   }
467 }
468
469 std::string CompilerInstance::getSpecificModuleCachePath() {
470   // Set up the module path, including the hash for the
471   // module-creation options.
472   SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath);
473   if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash)
474     llvm::sys::path::append(SpecificModuleCache,
475                             getInvocation().getModuleHash());
476   return SpecificModuleCache.str();
477 }
478
479 // ASTContext
480
481 void CompilerInstance::createASTContext() {
482   Preprocessor &PP = getPreprocessor();
483   auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(),
484                                  PP.getIdentifierTable(), PP.getSelectorTable(),
485                                  PP.getBuiltinInfo());
486   Context->InitBuiltinTypes(getTarget(), getAuxTarget());
487   setASTContext(Context);
488 }
489
490 // ExternalASTSource
491
492 void CompilerInstance::createPCHExternalASTSource(
493     StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors,
494     void *DeserializationListener, bool OwnDeserializationListener) {
495   bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
496   ModuleManager = createPCHExternalASTSource(
497       Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation,
498       AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(),
499       getPCHContainerReader(),
500       getFrontendOpts().ModuleFileExtensions,
501       TheDependencyFileGenerator.get(),
502       DependencyCollectors,
503       DeserializationListener,
504       OwnDeserializationListener, Preamble,
505       getFrontendOpts().UseGlobalModuleIndex);
506 }
507
508 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource(
509     StringRef Path, StringRef Sysroot, bool DisablePCHValidation,
510     bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
511     const PCHContainerReader &PCHContainerRdr,
512     ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
513     DependencyFileGenerator *DependencyFile,
514     ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors,
515     void *DeserializationListener, bool OwnDeserializationListener,
516     bool Preamble, bool UseGlobalModuleIndex) {
517   HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts();
518
519   IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader(
520       PP, &Context, PCHContainerRdr, Extensions,
521       Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation,
522       AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false,
523       HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex));
524
525   // We need the external source to be set up before we read the AST, because
526   // eagerly-deserialized declarations may use it.
527   Context.setExternalSource(Reader.get());
528
529   Reader->setDeserializationListener(
530       static_cast<ASTDeserializationListener *>(DeserializationListener),
531       /*TakeOwnership=*/OwnDeserializationListener);
532
533   if (DependencyFile)
534     DependencyFile->AttachToASTReader(*Reader);
535   for (auto &Listener : DependencyCollectors)
536     Listener->attachToASTReader(*Reader);
537
538   switch (Reader->ReadAST(Path,
539                           Preamble ? serialization::MK_Preamble
540                                    : serialization::MK_PCH,
541                           SourceLocation(),
542                           ASTReader::ARR_None)) {
543   case ASTReader::Success:
544     // Set the predefines buffer as suggested by the PCH reader. Typically, the
545     // predefines buffer will be empty.
546     PP.setPredefines(Reader->getSuggestedPredefines());
547     return Reader;
548
549   case ASTReader::Failure:
550     // Unrecoverable failure: don't even try to process the input file.
551     break;
552
553   case ASTReader::Missing:
554   case ASTReader::OutOfDate:
555   case ASTReader::VersionMismatch:
556   case ASTReader::ConfigurationMismatch:
557   case ASTReader::HadErrors:
558     // No suitable PCH file could be found. Return an error.
559     break;
560   }
561
562   Context.setExternalSource(nullptr);
563   return nullptr;
564 }
565
566 // Code Completion
567
568 static bool EnableCodeCompletion(Preprocessor &PP,
569                                  StringRef Filename,
570                                  unsigned Line,
571                                  unsigned Column) {
572   // Tell the source manager to chop off the given file at a specific
573   // line and column.
574   const FileEntry *Entry = PP.getFileManager().getFile(Filename);
575   if (!Entry) {
576     PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file)
577       << Filename;
578     return true;
579   }
580
581   // Truncate the named file at the given line/column.
582   PP.SetCodeCompletionPoint(Entry, Line, Column);
583   return false;
584 }
585
586 void CompilerInstance::createCodeCompletionConsumer() {
587   const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt;
588   if (!CompletionConsumer) {
589     setCodeCompletionConsumer(
590       createCodeCompletionConsumer(getPreprocessor(),
591                                    Loc.FileName, Loc.Line, Loc.Column,
592                                    getFrontendOpts().CodeCompleteOpts,
593                                    llvm::outs()));
594     if (!CompletionConsumer)
595       return;
596   } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName,
597                                   Loc.Line, Loc.Column)) {
598     setCodeCompletionConsumer(nullptr);
599     return;
600   }
601
602   if (CompletionConsumer->isOutputBinary() &&
603       llvm::sys::ChangeStdoutToBinary()) {
604     getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary);
605     setCodeCompletionConsumer(nullptr);
606   }
607 }
608
609 void CompilerInstance::createFrontendTimer() {
610   FrontendTimerGroup.reset(
611       new llvm::TimerGroup("frontend", "Clang front-end time report"));
612   FrontendTimer.reset(
613       new llvm::Timer("frontend", "Clang front-end timer",
614                       *FrontendTimerGroup));
615 }
616
617 CodeCompleteConsumer *
618 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP,
619                                                StringRef Filename,
620                                                unsigned Line,
621                                                unsigned Column,
622                                                const CodeCompleteOptions &Opts,
623                                                raw_ostream &OS) {
624   if (EnableCodeCompletion(PP, Filename, Line, Column))
625     return nullptr;
626
627   // Set up the creation routine for code-completion.
628   return new PrintingCodeCompleteConsumer(Opts, OS);
629 }
630
631 void CompilerInstance::createSema(TranslationUnitKind TUKind,
632                                   CodeCompleteConsumer *CompletionConsumer) {
633   TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(),
634                          TUKind, CompletionConsumer));
635   // Attach the external sema source if there is any.
636   if (ExternalSemaSrc) {
637     TheSema->addExternalSource(ExternalSemaSrc.get());
638     ExternalSemaSrc->InitializeSema(*TheSema);
639   }
640 }
641
642 // Output Files
643
644 void CompilerInstance::addOutputFile(OutputFile &&OutFile) {
645   OutputFiles.push_back(std::move(OutFile));
646 }
647
648 void CompilerInstance::clearOutputFiles(bool EraseFiles) {
649   for (OutputFile &OF : OutputFiles) {
650     if (!OF.TempFilename.empty()) {
651       if (EraseFiles) {
652         llvm::sys::fs::remove(OF.TempFilename);
653       } else {
654         SmallString<128> NewOutFile(OF.Filename);
655
656         // If '-working-directory' was passed, the output filename should be
657         // relative to that.
658         FileMgr->FixupRelativePath(NewOutFile);
659         if (std::error_code ec =
660                 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) {
661           getDiagnostics().Report(diag::err_unable_to_rename_temp)
662             << OF.TempFilename << OF.Filename << ec.message();
663
664           llvm::sys::fs::remove(OF.TempFilename);
665         }
666       }
667     } else if (!OF.Filename.empty() && EraseFiles)
668       llvm::sys::fs::remove(OF.Filename);
669   }
670   OutputFiles.clear();
671   if (DeleteBuiltModules) {
672     for (auto &Module : BuiltModules)
673       llvm::sys::fs::remove(Module.second);
674     BuiltModules.clear();
675   }
676   NonSeekStream.reset();
677 }
678
679 std::unique_ptr<raw_pwrite_stream>
680 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile,
681                                           StringRef Extension) {
682   return createOutputFile(getFrontendOpts().OutputFile, Binary,
683                           /*RemoveFileOnSignal=*/true, InFile, Extension,
684                           /*UseTemporary=*/true);
685 }
686
687 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() {
688   return llvm::make_unique<llvm::raw_null_ostream>();
689 }
690
691 std::unique_ptr<raw_pwrite_stream>
692 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary,
693                                    bool RemoveFileOnSignal, StringRef InFile,
694                                    StringRef Extension, bool UseTemporary,
695                                    bool CreateMissingDirectories) {
696   std::string OutputPathName, TempPathName;
697   std::error_code EC;
698   std::unique_ptr<raw_pwrite_stream> OS = createOutputFile(
699       OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension,
700       UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName);
701   if (!OS) {
702     getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath
703                                                                 << EC.message();
704     return nullptr;
705   }
706
707   // Add the output file -- but don't try to remove "-", since this means we are
708   // using stdin.
709   addOutputFile(
710       OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName));
711
712   return OS;
713 }
714
715 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile(
716     StringRef OutputPath, std::error_code &Error, bool Binary,
717     bool RemoveFileOnSignal, StringRef InFile, StringRef Extension,
718     bool UseTemporary, bool CreateMissingDirectories,
719     std::string *ResultPathName, std::string *TempPathName) {
720   assert((!CreateMissingDirectories || UseTemporary) &&
721          "CreateMissingDirectories is only allowed when using temporary files");
722
723   std::string OutFile, TempFile;
724   if (!OutputPath.empty()) {
725     OutFile = OutputPath;
726   } else if (InFile == "-") {
727     OutFile = "-";
728   } else if (!Extension.empty()) {
729     SmallString<128> Path(InFile);
730     llvm::sys::path::replace_extension(Path, Extension);
731     OutFile = Path.str();
732   } else {
733     OutFile = "-";
734   }
735
736   std::unique_ptr<llvm::raw_fd_ostream> OS;
737   std::string OSFile;
738
739   if (UseTemporary) {
740     if (OutFile == "-")
741       UseTemporary = false;
742     else {
743       llvm::sys::fs::file_status Status;
744       llvm::sys::fs::status(OutputPath, Status);
745       if (llvm::sys::fs::exists(Status)) {
746         // Fail early if we can't write to the final destination.
747         if (!llvm::sys::fs::can_write(OutputPath)) {
748           Error = make_error_code(llvm::errc::operation_not_permitted);
749           return nullptr;
750         }
751
752         // Don't use a temporary if the output is a special file. This handles
753         // things like '-o /dev/null'
754         if (!llvm::sys::fs::is_regular_file(Status))
755           UseTemporary = false;
756       }
757     }
758   }
759
760   if (UseTemporary) {
761     // Create a temporary file.
762     SmallString<128> TempPath;
763     TempPath = OutFile;
764     TempPath += "-%%%%%%%%";
765     int fd;
766     std::error_code EC =
767         llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
768
769     if (CreateMissingDirectories &&
770         EC == llvm::errc::no_such_file_or_directory) {
771       StringRef Parent = llvm::sys::path::parent_path(OutputPath);
772       EC = llvm::sys::fs::create_directories(Parent);
773       if (!EC) {
774         EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
775       }
776     }
777
778     if (!EC) {
779       OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
780       OSFile = TempFile = TempPath.str();
781     }
782     // If we failed to create the temporary, fallback to writing to the file
783     // directly. This handles the corner case where we cannot write to the
784     // directory, but can write to the file.
785   }
786
787   if (!OS) {
788     OSFile = OutFile;
789     OS.reset(new llvm::raw_fd_ostream(
790         OSFile, Error,
791         (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text)));
792     if (Error)
793       return nullptr;
794   }
795
796   // Make sure the out stream file gets removed if we crash.
797   if (RemoveFileOnSignal)
798     llvm::sys::RemoveFileOnSignal(OSFile);
799
800   if (ResultPathName)
801     *ResultPathName = OutFile;
802   if (TempPathName)
803     *TempPathName = TempFile;
804
805   if (!Binary || OS->supportsSeeking())
806     return std::move(OS);
807
808   auto B = llvm::make_unique<llvm::buffer_ostream>(*OS);
809   assert(!NonSeekStream);
810   NonSeekStream = std::move(OS);
811   return std::move(B);
812 }
813
814 // Initialization Utilities
815
816 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){
817   return InitializeSourceManager(
818       Input, getDiagnostics(), getFileManager(), getSourceManager(),
819       hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr,
820       getDependencyOutputOpts(), getFrontendOpts());
821 }
822
823 // static
824 bool CompilerInstance::InitializeSourceManager(
825     const FrontendInputFile &Input, DiagnosticsEngine &Diags,
826     FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS,
827     DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) {
828   SrcMgr::CharacteristicKind Kind =
829       Input.getKind().getFormat() == InputKind::ModuleMap
830           ? Input.isSystem() ? SrcMgr::C_System_ModuleMap
831                              : SrcMgr::C_User_ModuleMap
832           : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;
833
834   if (Input.isBuffer()) {
835     SourceMgr.setMainFileID(SourceMgr.createFileID(
836         std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind));
837     assert(SourceMgr.getMainFileID().isValid() &&
838            "Couldn't establish MainFileID!");
839     return true;
840   }
841
842   StringRef InputFile = Input.getFile();
843
844   // Figure out where to get and map in the main file.
845   if (InputFile != "-") {
846     const FileEntry *File;
847     if (Opts.FindPchSource.empty()) {
848       File = FileMgr.getFile(InputFile, /*OpenFile=*/true);
849     } else {
850       // When building a pch file in clang-cl mode, the .h file is built as if
851       // it was included by a cc file.  Since the driver doesn't know about
852       // all include search directories, the frontend must search the input
853       // file through HeaderSearch here, as if it had been included by the
854       // cc file at Opts.FindPchSource.
855       const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource);
856       if (!FindFile) {
857         Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource;
858         return false;
859       }
860       const DirectoryLookup *UnusedCurDir;
861       SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16>
862           Includers;
863       Includers.push_back(std::make_pair(FindFile, FindFile->getDir()));
864       File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false,
865                             /*FromDir=*/nullptr,
866                             /*CurDir=*/UnusedCurDir, Includers,
867                             /*SearchPath=*/nullptr,
868                             /*RelativePath=*/nullptr,
869                             /*RequestingModule=*/nullptr,
870                             /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
871                             /*SkipCache=*/true);
872       // Also add the header to /showIncludes output.
873       if (File)
874         DepOpts.ShowIncludesPretendHeader = File->getName();
875     }
876     if (!File) {
877       Diags.Report(diag::err_fe_error_reading) << InputFile;
878       return false;
879     }
880
881     // The natural SourceManager infrastructure can't currently handle named
882     // pipes, but we would at least like to accept them for the main
883     // file. Detect them here, read them with the volatile flag so FileMgr will
884     // pick up the correct size, and simply override their contents as we do for
885     // STDIN.
886     if (File->isNamedPipe()) {
887       auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
888       if (MB) {
889         // Create a new virtual file that will have the correct size.
890         File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0);
891         SourceMgr.overrideFileContents(File, std::move(*MB));
892       } else {
893         Diags.Report(diag::err_cannot_open_file) << InputFile
894                                                  << MB.getError().message();
895         return false;
896       }
897     }
898
899     SourceMgr.setMainFileID(
900         SourceMgr.createFileID(File, SourceLocation(), Kind));
901   } else {
902     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr =
903         llvm::MemoryBuffer::getSTDIN();
904     if (std::error_code EC = SBOrErr.getError()) {
905       Diags.Report(diag::err_fe_error_reading_stdin) << EC.message();
906       return false;
907     }
908     std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get());
909
910     const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
911                                                    SB->getBufferSize(), 0);
912     SourceMgr.setMainFileID(
913         SourceMgr.createFileID(File, SourceLocation(), Kind));
914     SourceMgr.overrideFileContents(File, std::move(SB));
915   }
916
917   assert(SourceMgr.getMainFileID().isValid() &&
918          "Couldn't establish MainFileID!");
919   return true;
920 }
921
922 // High-Level Operations
923
924 bool CompilerInstance::ExecuteAction(FrontendAction &Act) {
925   assert(hasDiagnostics() && "Diagnostics engine is not initialized!");
926   assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!");
927   assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!");
928
929   // FIXME: Take this as an argument, once all the APIs we used have moved to
930   // taking it as an input instead of hard-coding llvm::errs.
931   raw_ostream &OS = llvm::errs();
932
933   // Create the target instance.
934   setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(),
935                                          getInvocation().TargetOpts));
936   if (!hasTarget())
937     return false;
938
939   // Create TargetInfo for the other side of CUDA and OpenMP compilation.
940   if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) &&
941       !getFrontendOpts().AuxTriple.empty()) {
942     auto TO = std::make_shared<TargetOptions>();
943     TO->Triple = getFrontendOpts().AuxTriple;
944     TO->HostTriple = getTarget().getTriple().str();
945     setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO));
946   }
947
948   // Inform the target of the language options.
949   //
950   // FIXME: We shouldn't need to do this, the target should be immutable once
951   // created. This complexity should be lifted elsewhere.
952   getTarget().adjust(getLangOpts());
953
954   // Adjust target options based on codegen options.
955   getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts());
956
957   // rewriter project will change target built-in bool type from its default. 
958   if (getFrontendOpts().ProgramAction == frontend::RewriteObjC)
959     getTarget().noSignedCharForObjCBool();
960
961   // Validate/process some options.
962   if (getHeaderSearchOpts().Verbose)
963     OS << "clang -cc1 version " CLANG_VERSION_STRING
964        << " based upon " << BACKEND_PACKAGE_STRING
965        << " default target " << llvm::sys::getDefaultTargetTriple() << "\n";
966
967   if (getFrontendOpts().ShowTimers)
968     createFrontendTimer();
969
970   if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty())
971     llvm::EnableStatistics(false);
972
973   for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) {
974     // Reset the ID tables if we are reusing the SourceManager and parsing
975     // regular files.
976     if (hasSourceManager() && !Act.isModelParsingAction())
977       getSourceManager().clearIDTables();
978
979     if (Act.BeginSourceFile(*this, FIF)) {
980       Act.Execute();
981       Act.EndSourceFile();
982     }
983   }
984
985   // Notify the diagnostic client that all files were processed.
986   getDiagnostics().getClient()->finish();
987
988   if (getDiagnosticOpts().ShowCarets) {
989     // We can have multiple diagnostics sharing one diagnostic client.
990     // Get the total number of warnings/errors from the client.
991     unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings();
992     unsigned NumErrors = getDiagnostics().getClient()->getNumErrors();
993
994     if (NumWarnings)
995       OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s");
996     if (NumWarnings && NumErrors)
997       OS << " and ";
998     if (NumErrors)
999       OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s");
1000     if (NumWarnings || NumErrors)
1001       OS << " generated.\n";
1002   }
1003
1004   if (getFrontendOpts().ShowStats) {
1005     if (hasFileManager()) {
1006       getFileManager().PrintStats();
1007       OS << '\n';
1008     }
1009     llvm::PrintStatistics(OS);
1010   }
1011   StringRef StatsFile = getFrontendOpts().StatsFile;
1012   if (!StatsFile.empty()) {
1013     std::error_code EC;
1014     auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC,
1015                                                          llvm::sys::fs::F_Text);
1016     if (EC) {
1017       getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file)
1018           << StatsFile << EC.message();
1019     } else {
1020       llvm::PrintStatisticsJSON(*StatS);
1021     }
1022   }
1023
1024   return !getDiagnostics().getClient()->getNumErrors();
1025 }
1026
1027 /// \brief Determine the appropriate source input kind based on language
1028 /// options.
1029 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) {
1030   if (LangOpts.OpenCL)
1031     return InputKind::OpenCL;
1032   if (LangOpts.CUDA)
1033     return InputKind::CUDA;
1034   if (LangOpts.ObjC1)
1035     return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC;
1036   return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C;
1037 }
1038
1039 /// \brief Compile a module file for the given module, using the options 
1040 /// provided by the importing compiler instance. Returns true if the module
1041 /// was built without errors.
1042 static bool
1043 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc,
1044                   StringRef ModuleName, FrontendInputFile Input,
1045                   StringRef OriginalModuleMapFile, StringRef ModuleFileName,
1046                   llvm::function_ref<void(CompilerInstance &)> PreBuildStep =
1047                       [](CompilerInstance &) {},
1048                   llvm::function_ref<void(CompilerInstance &)> PostBuildStep =
1049                       [](CompilerInstance &) {}) {
1050   // Construct a compiler invocation for creating this module.
1051   auto Invocation =
1052       std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation());
1053
1054   PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
1055   
1056   // For any options that aren't intended to affect how a module is built,
1057   // reset them to their default values.
1058   Invocation->getLangOpts()->resetNonModularOptions();
1059   PPOpts.resetNonModularOptions();
1060
1061   // Remove any macro definitions that are explicitly ignored by the module.
1062   // They aren't supposed to affect how the module is built anyway.
1063   HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts();
1064   PPOpts.Macros.erase(
1065       std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(),
1066                      [&HSOpts](const std::pair<std::string, bool> &def) {
1067         StringRef MacroDef = def.first;
1068         return HSOpts.ModulesIgnoreMacros.count(
1069                    llvm::CachedHashString(MacroDef.split('=').first)) > 0;
1070       }),
1071       PPOpts.Macros.end());
1072
1073   // Note the name of the module we're building.
1074   Invocation->getLangOpts()->CurrentModule = ModuleName;
1075
1076   // Make sure that the failed-module structure has been allocated in
1077   // the importing instance, and propagate the pointer to the newly-created
1078   // instance.
1079   PreprocessorOptions &ImportingPPOpts
1080     = ImportingInstance.getInvocation().getPreprocessorOpts();
1081   if (!ImportingPPOpts.FailedModules)
1082     ImportingPPOpts.FailedModules =
1083         std::make_shared<PreprocessorOptions::FailedModulesSet>();
1084   PPOpts.FailedModules = ImportingPPOpts.FailedModules;
1085
1086   // If there is a module map file, build the module using the module map.
1087   // Set up the inputs/outputs so that we build the module from its umbrella
1088   // header.
1089   FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
1090   FrontendOpts.OutputFile = ModuleFileName.str();
1091   FrontendOpts.DisableFree = false;
1092   FrontendOpts.GenerateGlobalModuleIndex = false;
1093   FrontendOpts.BuildingImplicitModule = true;
1094   FrontendOpts.OriginalModuleMap = OriginalModuleMapFile;
1095   // Force implicitly-built modules to hash the content of the module file.
1096   HSOpts.ModulesHashContent = true;
1097   FrontendOpts.Inputs = {Input};
1098
1099   // Don't free the remapped file buffers; they are owned by our caller.
1100   PPOpts.RetainRemappedFileBuffers = true;
1101     
1102   Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
1103   assert(ImportingInstance.getInvocation().getModuleHash() ==
1104          Invocation->getModuleHash() && "Module hash mismatch!");
1105   
1106   // Construct a compiler instance that will be used to actually create the
1107   // module.  Since we're sharing a PCMCache,
1108   // CompilerInstance::CompilerInstance is responsible for finalizing the
1109   // buffers to prevent use-after-frees.
1110   CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(),
1111                             &ImportingInstance.getPreprocessor().getPCMCache());
1112   auto &Inv = *Invocation;
1113   Instance.setInvocation(std::move(Invocation));
1114
1115   Instance.createDiagnostics(new ForwardingDiagnosticConsumer(
1116                                    ImportingInstance.getDiagnosticClient()),
1117                              /*ShouldOwnClient=*/true);
1118
1119   Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem());
1120
1121   // Note that this module is part of the module build stack, so that we
1122   // can detect cycles in the module graph.
1123   Instance.setFileManager(&ImportingInstance.getFileManager());
1124   Instance.createSourceManager(Instance.getFileManager());
1125   SourceManager &SourceMgr = Instance.getSourceManager();
1126   SourceMgr.setModuleBuildStack(
1127     ImportingInstance.getSourceManager().getModuleBuildStack());
1128   SourceMgr.pushModuleBuildStack(ModuleName,
1129     FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager()));
1130
1131   // If we're collecting module dependencies, we need to share a collector
1132   // between all of the module CompilerInstances. Other than that, we don't
1133   // want to produce any dependency output from the module build.
1134   Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector());
1135   Inv.getDependencyOutputOpts() = DependencyOutputOptions();
1136
1137   ImportingInstance.getDiagnostics().Report(ImportLoc,
1138                                             diag::remark_module_build)
1139     << ModuleName << ModuleFileName;
1140
1141   PreBuildStep(Instance);
1142
1143   // Execute the action to actually build the module in-place. Use a separate
1144   // thread so that we get a stack large enough.
1145   const unsigned ThreadStackSize = 8 << 20;
1146   llvm::CrashRecoveryContext CRC;
1147   CRC.RunSafelyOnThread(
1148       [&]() {
1149         GenerateModuleFromModuleMapAction Action;
1150         Instance.ExecuteAction(Action);
1151       },
1152       ThreadStackSize);
1153
1154   PostBuildStep(Instance);
1155
1156   ImportingInstance.getDiagnostics().Report(ImportLoc,
1157                                             diag::remark_module_build_done)
1158     << ModuleName;
1159
1160   // Delete the temporary module map file.
1161   // FIXME: Even though we're executing under crash protection, it would still
1162   // be nice to do this with RemoveFileOnSignal when we can. However, that
1163   // doesn't make sense for all clients, so clean this up manually.
1164   Instance.clearOutputFiles(/*EraseFiles=*/true);
1165
1166   return !Instance.getDiagnostics().hasErrorOccurred();
1167 }
1168
1169 /// \brief Compile a module file for the given module, using the options 
1170 /// provided by the importing compiler instance. Returns true if the module
1171 /// was built without errors.
1172 static bool compileModuleImpl(CompilerInstance &ImportingInstance,
1173                               SourceLocation ImportLoc,
1174                               Module *Module,
1175                               StringRef ModuleFileName) {
1176   InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()),
1177                InputKind::ModuleMap);
1178
1179   // Get or create the module map that we'll use to build this module.
1180   ModuleMap &ModMap 
1181     = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap();
1182   bool Result;
1183   if (const FileEntry *ModuleMapFile =
1184           ModMap.getContainingModuleMapFile(Module)) {
1185     // Use the module map where this module resides.
1186     Result = compileModuleImpl(
1187         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1188         FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem),
1189         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1190         ModuleFileName);
1191   } else {
1192     // FIXME: We only need to fake up an input file here as a way of
1193     // transporting the module's directory to the module map parser. We should
1194     // be able to do that more directly, and parse from a memory buffer without
1195     // inventing this file.
1196     SmallString<128> FakeModuleMapFile(Module->Directory->getName());
1197     llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map");
1198
1199     std::string InferredModuleMapContent;
1200     llvm::raw_string_ostream OS(InferredModuleMapContent);
1201     Module->print(OS);
1202     OS.flush();
1203
1204     Result = compileModuleImpl(
1205         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1206         FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem),
1207         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1208         ModuleFileName,
1209         [&](CompilerInstance &Instance) {
1210       std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer =
1211           llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent);
1212       ModuleMapFile = Instance.getFileManager().getVirtualFile(
1213           FakeModuleMapFile, InferredModuleMapContent.size(), 0);
1214       Instance.getSourceManager().overrideFileContents(
1215           ModuleMapFile, std::move(ModuleMapBuffer));
1216     });
1217   }
1218
1219   // We've rebuilt a module. If we're allowed to generate or update the global
1220   // module index, record that fact in the importing compiler instance.
1221   if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) {
1222     ImportingInstance.setBuildGlobalModuleIndex(true);
1223   }
1224
1225   return Result;
1226 }
1227
1228 static bool compileAndLoadModule(CompilerInstance &ImportingInstance,
1229                                  SourceLocation ImportLoc,
1230                                  SourceLocation ModuleNameLoc, Module *Module,
1231                                  StringRef ModuleFileName) {
1232   DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics();
1233
1234   auto diagnoseBuildFailure = [&] {
1235     Diags.Report(ModuleNameLoc, diag::err_module_not_built)
1236         << Module->Name << SourceRange(ImportLoc, ModuleNameLoc);
1237   };
1238
1239   // FIXME: have LockFileManager return an error_code so that we can
1240   // avoid the mkdir when the directory already exists.
1241   StringRef Dir = llvm::sys::path::parent_path(ModuleFileName);
1242   llvm::sys::fs::create_directories(Dir);
1243
1244   while (1) {
1245     unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing;
1246     llvm::LockFileManager Locked(ModuleFileName);
1247     switch (Locked) {
1248     case llvm::LockFileManager::LFS_Error:
1249       // PCMCache takes care of correctness and locks are only necessary for
1250       // performance. Fallback to building the module in case of any lock
1251       // related errors.
1252       Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure)
1253           << Module->Name << Locked.getErrorMessage();
1254       // Clear out any potential leftover.
1255       Locked.unsafeRemoveLockFile();
1256       // FALLTHROUGH
1257     case llvm::LockFileManager::LFS_Owned:
1258       // We're responsible for building the module ourselves.
1259       if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module,
1260                              ModuleFileName)) {
1261         diagnoseBuildFailure();
1262         return false;
1263       }
1264       break;
1265
1266     case llvm::LockFileManager::LFS_Shared:
1267       // Someone else is responsible for building the module. Wait for them to
1268       // finish.
1269       switch (Locked.waitForUnlock()) {
1270       case llvm::LockFileManager::Res_Success:
1271         ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate;
1272         break;
1273       case llvm::LockFileManager::Res_OwnerDied:
1274         continue; // try again to get the lock.
1275       case llvm::LockFileManager::Res_Timeout:
1276         // Since PCMCache takes care of correctness, we try waiting for another
1277         // process to complete the build so clang does not do it done twice. If
1278         // case of timeout, build it ourselves.
1279         Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout)
1280             << Module->Name;
1281         // Clear the lock file so that future invokations can make progress.
1282         Locked.unsafeRemoveLockFile();
1283         continue;
1284       }
1285       break;
1286     }
1287
1288     // Try to read the module file, now that we've compiled it.
1289     ASTReader::ASTReadResult ReadResult =
1290         ImportingInstance.getModuleManager()->ReadAST(
1291             ModuleFileName, serialization::MK_ImplicitModule, ImportLoc,
1292             ModuleLoadCapabilities);
1293
1294     if (ReadResult == ASTReader::OutOfDate &&
1295         Locked == llvm::LockFileManager::LFS_Shared) {
1296       // The module may be out of date in the presence of file system races,
1297       // or if one of its imports depends on header search paths that are not
1298       // consistent with this ImportingInstance.  Try again...
1299       continue;
1300     } else if (ReadResult == ASTReader::Missing) {
1301       diagnoseBuildFailure();
1302     } else if (ReadResult != ASTReader::Success &&
1303                !Diags.hasErrorOccurred()) {
1304       // The ASTReader didn't diagnose the error, so conservatively report it.
1305       diagnoseBuildFailure();
1306     }
1307     return ReadResult == ASTReader::Success;
1308   }
1309 }
1310
1311 /// \brief Diagnose differences between the current definition of the given
1312 /// configuration macro and the definition provided on the command line.
1313 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro,
1314                              Module *Mod, SourceLocation ImportLoc) {
1315   IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro);
1316   SourceManager &SourceMgr = PP.getSourceManager();
1317   
1318   // If this identifier has never had a macro definition, then it could
1319   // not have changed.
1320   if (!Id->hadMacroDefinition())
1321     return;
1322   auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id);
1323
1324   // Find the macro definition from the command line.
1325   MacroInfo *CmdLineDefinition = nullptr;
1326   for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) {
1327     // We only care about the predefines buffer.
1328     FileID FID = SourceMgr.getFileID(MD->getLocation());
1329     if (FID.isInvalid() || FID != PP.getPredefinesFileID())
1330       continue;
1331     if (auto *DMD = dyn_cast<DefMacroDirective>(MD))
1332       CmdLineDefinition = DMD->getMacroInfo();
1333     break;
1334   }
1335
1336   auto *CurrentDefinition = PP.getMacroInfo(Id);
1337   if (CurrentDefinition == CmdLineDefinition) {
1338     // Macro matches. Nothing to do.
1339   } else if (!CurrentDefinition) {
1340     // This macro was defined on the command line, then #undef'd later.
1341     // Complain.
1342     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1343       << true << ConfigMacro << Mod->getFullModuleName();
1344     auto LatestDef = LatestLocalMD->getDefinition();
1345     assert(LatestDef.isUndefined() &&
1346            "predefined macro went away with no #undef?");
1347     PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here)
1348       << true;
1349     return;
1350   } else if (!CmdLineDefinition) {
1351     // There was no definition for this macro in the predefines buffer,
1352     // but there was a local definition. Complain.
1353     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1354       << false << ConfigMacro << Mod->getFullModuleName();
1355     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1356             diag::note_module_def_undef_here)
1357       << false;
1358   } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP,
1359                                                /*Syntactically=*/true)) {
1360     // The macro definitions differ.
1361     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1362       << false << ConfigMacro << Mod->getFullModuleName();
1363     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1364             diag::note_module_def_undef_here)
1365       << false;
1366   }
1367 }
1368
1369 /// \brief Write a new timestamp file with the given path.
1370 static void writeTimestampFile(StringRef TimestampFile) {
1371   std::error_code EC;
1372   llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None);
1373 }
1374
1375 /// \brief Prune the module cache of modules that haven't been accessed in
1376 /// a long time.
1377 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) {
1378   struct stat StatBuf;
1379   llvm::SmallString<128> TimestampFile;
1380   TimestampFile = HSOpts.ModuleCachePath;
1381   assert(!TimestampFile.empty());
1382   llvm::sys::path::append(TimestampFile, "modules.timestamp");
1383
1384   // Try to stat() the timestamp file.
1385   if (::stat(TimestampFile.c_str(), &StatBuf)) {
1386     // If the timestamp file wasn't there, create one now.
1387     if (errno == ENOENT) {
1388       writeTimestampFile(TimestampFile);
1389     }
1390     return;
1391   }
1392
1393   // Check whether the time stamp is older than our pruning interval.
1394   // If not, do nothing.
1395   time_t TimeStampModTime = StatBuf.st_mtime;
1396   time_t CurrentTime = time(nullptr);
1397   if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval))
1398     return;
1399
1400   // Write a new timestamp file so that nobody else attempts to prune.
1401   // There is a benign race condition here, if two Clang instances happen to
1402   // notice at the same time that the timestamp is out-of-date.
1403   writeTimestampFile(TimestampFile);
1404
1405   // Walk the entire module cache, looking for unused module files and module
1406   // indices.
1407   std::error_code EC;
1408   SmallString<128> ModuleCachePathNative;
1409   llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative);
1410   for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd;
1411        Dir != DirEnd && !EC; Dir.increment(EC)) {
1412     // If we don't have a directory, there's nothing to look into.
1413     if (!llvm::sys::fs::is_directory(Dir->path()))
1414       continue;
1415
1416     // Walk all of the files within this directory.
1417     for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd;
1418          File != FileEnd && !EC; File.increment(EC)) {
1419       // We only care about module and global module index files.
1420       StringRef Extension = llvm::sys::path::extension(File->path());
1421       if (Extension != ".pcm" && Extension != ".timestamp" &&
1422           llvm::sys::path::filename(File->path()) != "modules.idx")
1423         continue;
1424
1425       // Look at this file. If we can't stat it, there's nothing interesting
1426       // there.
1427       if (::stat(File->path().c_str(), &StatBuf))
1428         continue;
1429
1430       // If the file has been used recently enough, leave it there.
1431       time_t FileAccessTime = StatBuf.st_atime;
1432       if (CurrentTime - FileAccessTime <=
1433               time_t(HSOpts.ModuleCachePruneAfter)) {
1434         continue;
1435       }
1436
1437       // Remove the file.
1438       llvm::sys::fs::remove(File->path());
1439
1440       // Remove the timestamp file.
1441       std::string TimpestampFilename = File->path() + ".timestamp";
1442       llvm::sys::fs::remove(TimpestampFilename);
1443     }
1444
1445     // If we removed all of the files in the directory, remove the directory
1446     // itself.
1447     if (llvm::sys::fs::directory_iterator(Dir->path(), EC) ==
1448             llvm::sys::fs::directory_iterator() && !EC)
1449       llvm::sys::fs::remove(Dir->path());
1450   }
1451 }
1452
1453 void CompilerInstance::createModuleManager() {
1454   if (!ModuleManager) {
1455     if (!hasASTContext())
1456       createASTContext();
1457
1458     // If we're implicitly building modules but not currently recursively
1459     // building a module, check whether we need to prune the module cache.
1460     if (getSourceManager().getModuleBuildStack().empty() &&
1461         !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() &&
1462         getHeaderSearchOpts().ModuleCachePruneInterval > 0 &&
1463         getHeaderSearchOpts().ModuleCachePruneAfter > 0) {
1464       pruneModuleCache(getHeaderSearchOpts());
1465     }
1466
1467     HeaderSearchOptions &HSOpts = getHeaderSearchOpts();
1468     std::string Sysroot = HSOpts.Sysroot;
1469     const PreprocessorOptions &PPOpts = getPreprocessorOpts();
1470     std::unique_ptr<llvm::Timer> ReadTimer;
1471     if (FrontendTimerGroup)
1472       ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules",
1473                                                  "Reading modules",
1474                                                  *FrontendTimerGroup);
1475     ModuleManager = new ASTReader(
1476         getPreprocessor(), &getASTContext(), getPCHContainerReader(),
1477         getFrontendOpts().ModuleFileExtensions,
1478         Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation,
1479         /*AllowASTWithCompilerErrors=*/false,
1480         /*AllowConfigurationMismatch=*/false,
1481         HSOpts.ModulesValidateSystemHeaders,
1482         getFrontendOpts().UseGlobalModuleIndex,
1483         std::move(ReadTimer));
1484     if (hasASTConsumer()) {
1485       ModuleManager->setDeserializationListener(
1486         getASTConsumer().GetASTDeserializationListener());
1487       getASTContext().setASTMutationListener(
1488         getASTConsumer().GetASTMutationListener());
1489     }
1490     getASTContext().setExternalSource(ModuleManager);
1491     if (hasSema())
1492       ModuleManager->InitializeSema(getSema());
1493     if (hasASTConsumer())
1494       ModuleManager->StartTranslationUnit(&getASTConsumer());
1495
1496     if (TheDependencyFileGenerator)
1497       TheDependencyFileGenerator->AttachToASTReader(*ModuleManager);
1498     for (auto &Listener : DependencyCollectors)
1499       Listener->attachToASTReader(*ModuleManager);
1500   }
1501 }
1502
1503 bool CompilerInstance::loadModuleFile(StringRef FileName) {
1504   llvm::Timer Timer;
1505   if (FrontendTimerGroup)
1506     Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(),
1507                *FrontendTimerGroup);
1508   llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1509
1510   // Helper to recursively read the module names for all modules we're adding.
1511   // We mark these as known and redirect any attempt to load that module to
1512   // the files we were handed.
1513   struct ReadModuleNames : ASTReaderListener {
1514     CompilerInstance &CI;
1515     llvm::SmallVector<IdentifierInfo*, 8> LoadedModules;
1516
1517     ReadModuleNames(CompilerInstance &CI) : CI(CI) {}
1518
1519     void ReadModuleName(StringRef ModuleName) override {
1520       LoadedModules.push_back(
1521           CI.getPreprocessor().getIdentifierInfo(ModuleName));
1522     }
1523
1524     void registerAll() {
1525       for (auto *II : LoadedModules) {
1526         CI.KnownModules[II] = CI.getPreprocessor()
1527                                   .getHeaderSearchInfo()
1528                                   .getModuleMap()
1529                                   .findModule(II->getName());
1530       }
1531       LoadedModules.clear();
1532     }
1533
1534     void markAllUnavailable() {
1535       for (auto *II : LoadedModules) {
1536         if (Module *M = CI.getPreprocessor()
1537                             .getHeaderSearchInfo()
1538                             .getModuleMap()
1539                             .findModule(II->getName())) {
1540           M->HasIncompatibleModuleFile = true;
1541
1542           // Mark module as available if the only reason it was unavailable
1543           // was missing headers.
1544           SmallVector<Module *, 2> Stack;
1545           Stack.push_back(M);
1546           while (!Stack.empty()) {
1547             Module *Current = Stack.pop_back_val();
1548             if (Current->IsMissingRequirement) continue;
1549             Current->IsAvailable = true;
1550             Stack.insert(Stack.end(),
1551                          Current->submodule_begin(), Current->submodule_end());
1552           }
1553         }
1554       }
1555       LoadedModules.clear();
1556     }
1557   };
1558
1559   // If we don't already have an ASTReader, create one now.
1560   if (!ModuleManager)
1561     createModuleManager();
1562
1563   auto Listener = llvm::make_unique<ReadModuleNames>(*this);
1564   auto &ListenerRef = *Listener;
1565   ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager,
1566                                                    std::move(Listener));
1567
1568   // Try to load the module file.
1569   switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule,
1570                                  SourceLocation(),
1571                                  ASTReader::ARR_ConfigurationMismatch)) {
1572   case ASTReader::Success:
1573     // We successfully loaded the module file; remember the set of provided
1574     // modules so that we don't try to load implicit modules for them.
1575     ListenerRef.registerAll();
1576     return true;
1577
1578   case ASTReader::ConfigurationMismatch:
1579     // Ignore unusable module files.
1580     getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch)
1581         << FileName;
1582     // All modules provided by any files we tried and failed to load are now
1583     // unavailable; includes of those modules should now be handled textually.
1584     ListenerRef.markAllUnavailable();
1585     return true;
1586
1587   default:
1588     return false;
1589   }
1590 }
1591
1592 ModuleLoadResult
1593 CompilerInstance::loadModule(SourceLocation ImportLoc,
1594                              ModuleIdPath Path,
1595                              Module::NameVisibilityKind Visibility,
1596                              bool IsInclusionDirective) {
1597   // Determine what file we're searching from.
1598   StringRef ModuleName = Path[0].first->getName();
1599   SourceLocation ModuleNameLoc = Path[0].second;
1600
1601   // If we've already handled this import, just return the cached result.
1602   // This one-element cache is important to eliminate redundant diagnostics
1603   // when both the preprocessor and parser see the same import declaration.
1604   if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) {
1605     // Make the named module visible.
1606     if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule)
1607       ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility,
1608                                        ImportLoc);
1609     return LastModuleImportResult;
1610   }
1611
1612   clang::Module *Module = nullptr;
1613
1614   // If we don't already have information on this module, load the module now.
1615   llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known
1616     = KnownModules.find(Path[0].first);
1617   if (Known != KnownModules.end()) {
1618     // Retrieve the cached top-level module.
1619     Module = Known->second;    
1620   } else if (ModuleName == getLangOpts().CurrentModule) {
1621     // This is the module we're building. 
1622     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1623     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1624   } else {
1625     // Search for a module with the given name.
1626     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1627     HeaderSearchOptions &HSOpts =
1628         PP->getHeaderSearchInfo().getHeaderSearchOpts();
1629
1630     std::string ModuleFileName;
1631     enum ModuleSource {
1632       ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma
1633     } Source = ModuleNotFound;
1634
1635     // Check to see if the module has been built as part of this compilation
1636     // via a module build pragma.
1637     auto BuiltModuleIt = BuiltModules.find(ModuleName);
1638     if (BuiltModuleIt != BuiltModules.end()) {
1639       ModuleFileName = BuiltModuleIt->second;
1640       Source = ModuleBuildPragma;
1641     }
1642
1643     // Try to load the module from the prebuilt module path.
1644     if (Source == ModuleNotFound && !HSOpts.PrebuiltModulePaths.empty()) {
1645       ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(
1646           ModuleName, "", /*UsePrebuiltPath*/ true);
1647       if (!ModuleFileName.empty())
1648         Source = PrebuiltModulePath;
1649     }
1650
1651     // Try to load the module from the module cache.
1652     if (Source == ModuleNotFound && Module) {
1653       ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module);
1654       Source = ModuleCache;
1655     }
1656
1657     if (Source == ModuleNotFound) {
1658       // We can't find a module, error out here.
1659       getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1660           << ModuleName << SourceRange(ImportLoc, ModuleNameLoc);
1661       ModuleBuildFailed = true;
1662       return ModuleLoadResult();
1663     }
1664
1665     if (ModuleFileName.empty()) {
1666       if (Module && Module->HasIncompatibleModuleFile) {
1667         // We tried and failed to load a module file for this module. Fall
1668         // back to textual inclusion for its headers.
1669         return ModuleLoadResult::ConfigMismatch;
1670       }
1671
1672       getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled)
1673           << ModuleName;
1674       ModuleBuildFailed = true;
1675       return ModuleLoadResult();
1676     }
1677
1678     // If we don't already have an ASTReader, create one now.
1679     if (!ModuleManager)
1680       createModuleManager();
1681
1682     llvm::Timer Timer;
1683     if (FrontendTimerGroup)
1684       Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName,
1685                  *FrontendTimerGroup);
1686     llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1687
1688     // Try to load the module file. If we are not trying to load from the
1689     // module cache, we don't know how to rebuild modules.
1690     unsigned ARRFlags = Source == ModuleCache ?
1691                         ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing :
1692                         ASTReader::ARR_ConfigurationMismatch;
1693     switch (ModuleManager->ReadAST(ModuleFileName,
1694                                    Source == PrebuiltModulePath
1695                                        ? serialization::MK_PrebuiltModule
1696                                        : Source == ModuleBuildPragma
1697                                              ? serialization::MK_ExplicitModule
1698                                              : serialization::MK_ImplicitModule,
1699                                    ImportLoc, ARRFlags)) {
1700     case ASTReader::Success: {
1701       if (Source != ModuleCache && !Module) {
1702         Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1703         if (!Module || !Module->getASTFile() ||
1704             FileMgr->getFile(ModuleFileName) != Module->getASTFile()) {
1705           // Error out if Module does not refer to the file in the prebuilt
1706           // module path.
1707           getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt)
1708               << ModuleName;
1709           ModuleBuildFailed = true;
1710           KnownModules[Path[0].first] = nullptr;
1711           return ModuleLoadResult();
1712         }
1713       }
1714       break;
1715     }
1716
1717     case ASTReader::OutOfDate:
1718     case ASTReader::Missing: {
1719       if (Source != ModuleCache) {
1720         // We don't know the desired configuration for this module and don't
1721         // necessarily even have a module map. Since ReadAST already produces
1722         // diagnostics for these two cases, we simply error out here.
1723         ModuleBuildFailed = true;
1724         KnownModules[Path[0].first] = nullptr;
1725         return ModuleLoadResult();
1726       }
1727
1728       // The module file is missing or out-of-date. Build it.
1729       assert(Module && "missing module file");
1730       // Check whether there is a cycle in the module graph.
1731       ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack();
1732       ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end();
1733       for (; Pos != PosEnd; ++Pos) {
1734         if (Pos->first == ModuleName)
1735           break;
1736       }
1737
1738       if (Pos != PosEnd) {
1739         SmallString<256> CyclePath;
1740         for (; Pos != PosEnd; ++Pos) {
1741           CyclePath += Pos->first;
1742           CyclePath += " -> ";
1743         }
1744         CyclePath += ModuleName;
1745
1746         getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle)
1747           << ModuleName << CyclePath;
1748         return ModuleLoadResult();
1749       }
1750
1751       // Check whether we have already attempted to build this module (but
1752       // failed).
1753       if (getPreprocessorOpts().FailedModules &&
1754           getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) {
1755         getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built)
1756           << ModuleName
1757           << SourceRange(ImportLoc, ModuleNameLoc);
1758         ModuleBuildFailed = true;
1759         return ModuleLoadResult();
1760       }
1761
1762       // Try to compile and then load the module.
1763       if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module,
1764                                 ModuleFileName)) {
1765         assert(getDiagnostics().hasErrorOccurred() &&
1766                "undiagnosed error in compileAndLoadModule");
1767         if (getPreprocessorOpts().FailedModules)
1768           getPreprocessorOpts().FailedModules->addFailed(ModuleName);
1769         KnownModules[Path[0].first] = nullptr;
1770         ModuleBuildFailed = true;
1771         return ModuleLoadResult();
1772       }
1773
1774       // Okay, we've rebuilt and now loaded the module.
1775       break;
1776     }
1777
1778     case ASTReader::ConfigurationMismatch:
1779       if (Source == PrebuiltModulePath)
1780         // FIXME: We shouldn't be setting HadFatalFailure below if we only
1781         // produce a warning here!
1782         getDiagnostics().Report(SourceLocation(),
1783                                 diag::warn_module_config_mismatch)
1784             << ModuleFileName;
1785       // Fall through to error out.
1786       LLVM_FALLTHROUGH;
1787     case ASTReader::VersionMismatch:
1788     case ASTReader::HadErrors:
1789       ModuleLoader::HadFatalFailure = true;
1790       // FIXME: The ASTReader will already have complained, but can we shoehorn
1791       // that diagnostic information into a more useful form?
1792       KnownModules[Path[0].first] = nullptr;
1793       return ModuleLoadResult();
1794
1795     case ASTReader::Failure:
1796       ModuleLoader::HadFatalFailure = true;
1797       // Already complained, but note now that we failed.
1798       KnownModules[Path[0].first] = nullptr;
1799       ModuleBuildFailed = true;
1800       return ModuleLoadResult();
1801     }
1802
1803     // Cache the result of this top-level module lookup for later.
1804     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1805   }
1806   
1807   // If we never found the module, fail.
1808   if (!Module)
1809     return ModuleLoadResult();
1810
1811   // Verify that the rest of the module path actually corresponds to
1812   // a submodule.
1813   if (Path.size() > 1) {
1814     for (unsigned I = 1, N = Path.size(); I != N; ++I) {
1815       StringRef Name = Path[I].first->getName();
1816       clang::Module *Sub = Module->findSubmodule(Name);
1817       
1818       if (!Sub) {
1819         // Attempt to perform typo correction to find a module name that works.
1820         SmallVector<StringRef, 2> Best;
1821         unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)();
1822         
1823         for (clang::Module::submodule_iterator J = Module->submodule_begin(), 
1824                                             JEnd = Module->submodule_end();
1825              J != JEnd; ++J) {
1826           unsigned ED = Name.edit_distance((*J)->Name,
1827                                            /*AllowReplacements=*/true,
1828                                            BestEditDistance);
1829           if (ED <= BestEditDistance) {
1830             if (ED < BestEditDistance) {
1831               Best.clear();
1832               BestEditDistance = ED;
1833             }
1834             
1835             Best.push_back((*J)->Name);
1836           }
1837         }
1838         
1839         // If there was a clear winner, user it.
1840         if (Best.size() == 1) {
1841           getDiagnostics().Report(Path[I].second, 
1842                                   diag::err_no_submodule_suggest)
1843             << Path[I].first << Module->getFullModuleName() << Best[0]
1844             << SourceRange(Path[0].second, Path[I-1].second)
1845             << FixItHint::CreateReplacement(SourceRange(Path[I].second),
1846                                             Best[0]);
1847           
1848           Sub = Module->findSubmodule(Best[0]);
1849         }
1850       }
1851       
1852       if (!Sub) {
1853         // No submodule by this name. Complain, and don't look for further
1854         // submodules.
1855         getDiagnostics().Report(Path[I].second, diag::err_no_submodule)
1856           << Path[I].first << Module->getFullModuleName()
1857           << SourceRange(Path[0].second, Path[I-1].second);
1858         break;
1859       }
1860       
1861       Module = Sub;
1862     }
1863   }
1864
1865   // Make the named module visible, if it's not already part of the module
1866   // we are parsing.
1867   if (ModuleName != getLangOpts().CurrentModule) {
1868     if (!Module->IsFromModuleFile) {
1869       // We have an umbrella header or directory that doesn't actually include
1870       // all of the headers within the directory it covers. Complain about
1871       // this missing submodule and recover by forgetting that we ever saw
1872       // this submodule.
1873       // FIXME: Should we detect this at module load time? It seems fairly
1874       // expensive (and rare).
1875       getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule)
1876         << Module->getFullModuleName()
1877         << SourceRange(Path.front().second, Path.back().second);
1878
1879       return ModuleLoadResult::MissingExpected;
1880     }
1881
1882     // Check whether this module is available.
1883     if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(),
1884                                              getDiagnostics(), Module)) {
1885       getDiagnostics().Report(ImportLoc, diag::note_module_import_here)
1886         << SourceRange(Path.front().second, Path.back().second);
1887       LastModuleImportLoc = ImportLoc;
1888       LastModuleImportResult = ModuleLoadResult();
1889       return ModuleLoadResult();
1890     }
1891
1892     ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc);
1893   }
1894
1895   // Check for any configuration macros that have changed.
1896   clang::Module *TopModule = Module->getTopLevelModule();
1897   for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) {
1898     checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I],
1899                      Module, ImportLoc);
1900   }
1901
1902   LastModuleImportLoc = ImportLoc;
1903   LastModuleImportResult = ModuleLoadResult(Module);
1904   return LastModuleImportResult;
1905 }
1906
1907 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc,
1908                                             StringRef ModuleName,
1909                                             StringRef Source) {
1910   // Avoid creating filenames with special characters.
1911   SmallString<128> CleanModuleName(ModuleName);
1912   for (auto &C : CleanModuleName)
1913     if (!isAlphanumeric(C))
1914       C = '_';
1915
1916   // FIXME: Using a randomized filename here means that our intermediate .pcm
1917   // output is nondeterministic (as .pcm files refer to each other by name).
1918   // Can this affect the output in any way?
1919   SmallString<128> ModuleFileName;
1920   if (std::error_code EC = llvm::sys::fs::createTemporaryFile(
1921           CleanModuleName, "pcm", ModuleFileName)) {
1922     getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output)
1923         << ModuleFileName << EC.message();
1924     return;
1925   }
1926   std::string ModuleMapFileName = (CleanModuleName + ".map").str();
1927
1928   FrontendInputFile Input(
1929       ModuleMapFileName,
1930       InputKind(getLanguageFromOptions(*Invocation->getLangOpts()),
1931                 InputKind::ModuleMap, /*Preprocessed*/true));
1932
1933   std::string NullTerminatedSource(Source.str());
1934
1935   auto PreBuildStep = [&](CompilerInstance &Other) {
1936     // Create a virtual file containing our desired source.
1937     // FIXME: We shouldn't need to do this.
1938     const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile(
1939         ModuleMapFileName, NullTerminatedSource.size(), 0);
1940     Other.getSourceManager().overrideFileContents(
1941         ModuleMapFile,
1942         llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str()));
1943
1944     Other.BuiltModules = std::move(BuiltModules);
1945     Other.DeleteBuiltModules = false;
1946   };
1947
1948   auto PostBuildStep = [this](CompilerInstance &Other) {
1949     BuiltModules = std::move(Other.BuiltModules);
1950   };
1951
1952   // Build the module, inheriting any modules that we've built locally.
1953   if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(),
1954                         ModuleFileName, PreBuildStep, PostBuildStep)) {
1955     BuiltModules[ModuleName] = ModuleFileName.str();
1956     llvm::sys::RemoveFileOnSignal(ModuleFileName);
1957   }
1958 }
1959
1960 void CompilerInstance::makeModuleVisible(Module *Mod,
1961                                          Module::NameVisibilityKind Visibility,
1962                                          SourceLocation ImportLoc) {
1963   if (!ModuleManager)
1964     createModuleManager();
1965   if (!ModuleManager)
1966     return;
1967
1968   ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc);
1969 }
1970
1971 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex(
1972     SourceLocation TriggerLoc) {
1973   if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty())
1974     return nullptr;
1975   if (!ModuleManager)
1976     createModuleManager();
1977   // Can't do anything if we don't have the module manager.
1978   if (!ModuleManager)
1979     return nullptr;
1980   // Get an existing global index.  This loads it if not already
1981   // loaded.
1982   ModuleManager->loadGlobalIndex();
1983   GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex();
1984   // If the global index doesn't exist, create it.
1985   if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() &&
1986       hasPreprocessor()) {
1987     llvm::sys::fs::create_directories(
1988       getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
1989     GlobalModuleIndex::writeIndex(
1990         getFileManager(), getPCHContainerReader(),
1991         getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
1992     ModuleManager->resetForReload();
1993     ModuleManager->loadGlobalIndex();
1994     GlobalIndex = ModuleManager->getGlobalIndex();
1995   }
1996   // For finding modules needing to be imported for fixit messages,
1997   // we need to make the global index cover all modules, so we do that here.
1998   if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) {
1999     ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap();
2000     bool RecreateIndex = false;
2001     for (ModuleMap::module_iterator I = MMap.module_begin(),
2002         E = MMap.module_end(); I != E; ++I) {
2003       Module *TheModule = I->second;
2004       const FileEntry *Entry = TheModule->getASTFile();
2005       if (!Entry) {
2006         SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
2007         Path.push_back(std::make_pair(
2008             getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc));
2009         std::reverse(Path.begin(), Path.end());
2010         // Load a module as hidden.  This also adds it to the global index.
2011         loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false);
2012         RecreateIndex = true;
2013       }
2014     }
2015     if (RecreateIndex) {
2016       GlobalModuleIndex::writeIndex(
2017           getFileManager(), getPCHContainerReader(),
2018           getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2019       ModuleManager->resetForReload();
2020       ModuleManager->loadGlobalIndex();
2021       GlobalIndex = ModuleManager->getGlobalIndex();
2022     }
2023     HaveFullGlobalModuleIndex = true;
2024   }
2025   return GlobalIndex;
2026 }
2027
2028 // Check global module index for missing imports.
2029 bool
2030 CompilerInstance::lookupMissingImports(StringRef Name,
2031                                        SourceLocation TriggerLoc) {
2032   // Look for the symbol in non-imported modules, but only if an error
2033   // actually occurred.
2034   if (!buildingModule()) {
2035     // Load global module index, or retrieve a previously loaded one.
2036     GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex(
2037       TriggerLoc);
2038
2039     // Only if we have a global index.
2040     if (GlobalIndex) {
2041       GlobalModuleIndex::HitSet FoundModules;
2042
2043       // Find the modules that reference the identifier.
2044       // Note that this only finds top-level modules.
2045       // We'll let diagnoseTypo find the actual declaration module.
2046       if (GlobalIndex->lookupIdentifier(Name, FoundModules))
2047         return true;
2048     }
2049   }
2050
2051   return false;
2052 }
2053 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); }
2054
2055 void CompilerInstance::setExternalSemaSource(
2056     IntrusiveRefCntPtr<ExternalSemaSource> ESS) {
2057   ExternalSemaSrc = std::move(ESS);
2058 }