]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Headers/avxintrin.h
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Headers / avxintrin.h
1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19  * THE SOFTWARE.
20  *
21  *===-----------------------------------------------------------------------===
22  */
23
24 #ifndef __IMMINTRIN_H
25 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
26 #endif
27
28 #ifndef __AVXINTRIN_H
29 #define __AVXINTRIN_H
30
31 typedef double __v4df __attribute__ ((__vector_size__ (32)));
32 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
33 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
34 typedef int __v8si __attribute__ ((__vector_size__ (32)));
35 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
36 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
37
38 /* Unsigned types */
39 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
40 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
41 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
42 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
43
44 /* We need an explicitly signed variant for char. Note that this shouldn't
45  * appear in the interface though. */
46 typedef signed char __v32qs __attribute__((__vector_size__(32)));
47
48 typedef float __m256 __attribute__ ((__vector_size__ (32)));
49 typedef double __m256d __attribute__((__vector_size__(32)));
50 typedef long long __m256i __attribute__((__vector_size__(32)));
51
52 /* Define the default attributes for the functions in this file. */
53 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(256)))
54 #define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(128)))
55
56 /* Arithmetic */
57 /// Adds two 256-bit vectors of [4 x double].
58 ///
59 /// \headerfile <x86intrin.h>
60 ///
61 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
62 ///
63 /// \param __a
64 ///    A 256-bit vector of [4 x double] containing one of the source operands.
65 /// \param __b
66 ///    A 256-bit vector of [4 x double] containing one of the source operands.
67 /// \returns A 256-bit vector of [4 x double] containing the sums of both
68 ///    operands.
69 static __inline __m256d __DEFAULT_FN_ATTRS
70 _mm256_add_pd(__m256d __a, __m256d __b)
71 {
72   return (__m256d)((__v4df)__a+(__v4df)__b);
73 }
74
75 /// Adds two 256-bit vectors of [8 x float].
76 ///
77 /// \headerfile <x86intrin.h>
78 ///
79 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
80 ///
81 /// \param __a
82 ///    A 256-bit vector of [8 x float] containing one of the source operands.
83 /// \param __b
84 ///    A 256-bit vector of [8 x float] containing one of the source operands.
85 /// \returns A 256-bit vector of [8 x float] containing the sums of both
86 ///    operands.
87 static __inline __m256 __DEFAULT_FN_ATTRS
88 _mm256_add_ps(__m256 __a, __m256 __b)
89 {
90   return (__m256)((__v8sf)__a+(__v8sf)__b);
91 }
92
93 /// Subtracts two 256-bit vectors of [4 x double].
94 ///
95 /// \headerfile <x86intrin.h>
96 ///
97 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
98 ///
99 /// \param __a
100 ///    A 256-bit vector of [4 x double] containing the minuend.
101 /// \param __b
102 ///    A 256-bit vector of [4 x double] containing the subtrahend.
103 /// \returns A 256-bit vector of [4 x double] containing the differences between
104 ///    both operands.
105 static __inline __m256d __DEFAULT_FN_ATTRS
106 _mm256_sub_pd(__m256d __a, __m256d __b)
107 {
108   return (__m256d)((__v4df)__a-(__v4df)__b);
109 }
110
111 /// Subtracts two 256-bit vectors of [8 x float].
112 ///
113 /// \headerfile <x86intrin.h>
114 ///
115 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
116 ///
117 /// \param __a
118 ///    A 256-bit vector of [8 x float] containing the minuend.
119 /// \param __b
120 ///    A 256-bit vector of [8 x float] containing the subtrahend.
121 /// \returns A 256-bit vector of [8 x float] containing the differences between
122 ///    both operands.
123 static __inline __m256 __DEFAULT_FN_ATTRS
124 _mm256_sub_ps(__m256 __a, __m256 __b)
125 {
126   return (__m256)((__v8sf)__a-(__v8sf)__b);
127 }
128
129 /// Adds the even-indexed values and subtracts the odd-indexed values of
130 ///    two 256-bit vectors of [4 x double].
131 ///
132 /// \headerfile <x86intrin.h>
133 ///
134 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
135 ///
136 /// \param __a
137 ///    A 256-bit vector of [4 x double] containing the left source operand.
138 /// \param __b
139 ///    A 256-bit vector of [4 x double] containing the right source operand.
140 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
141 ///    and differences between both operands.
142 static __inline __m256d __DEFAULT_FN_ATTRS
143 _mm256_addsub_pd(__m256d __a, __m256d __b)
144 {
145   return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
146 }
147
148 /// Adds the even-indexed values and subtracts the odd-indexed values of
149 ///    two 256-bit vectors of [8 x float].
150 ///
151 /// \headerfile <x86intrin.h>
152 ///
153 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
154 ///
155 /// \param __a
156 ///    A 256-bit vector of [8 x float] containing the left source operand.
157 /// \param __b
158 ///    A 256-bit vector of [8 x float] containing the right source operand.
159 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
160 ///    differences between both operands.
161 static __inline __m256 __DEFAULT_FN_ATTRS
162 _mm256_addsub_ps(__m256 __a, __m256 __b)
163 {
164   return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
165 }
166
167 /// Divides two 256-bit vectors of [4 x double].
168 ///
169 /// \headerfile <x86intrin.h>
170 ///
171 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
172 ///
173 /// \param __a
174 ///    A 256-bit vector of [4 x double] containing the dividend.
175 /// \param __b
176 ///    A 256-bit vector of [4 x double] containing the divisor.
177 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
178 ///    operands.
179 static __inline __m256d __DEFAULT_FN_ATTRS
180 _mm256_div_pd(__m256d __a, __m256d __b)
181 {
182   return (__m256d)((__v4df)__a/(__v4df)__b);
183 }
184
185 /// Divides two 256-bit vectors of [8 x float].
186 ///
187 /// \headerfile <x86intrin.h>
188 ///
189 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
190 ///
191 /// \param __a
192 ///    A 256-bit vector of [8 x float] containing the dividend.
193 /// \param __b
194 ///    A 256-bit vector of [8 x float] containing the divisor.
195 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
196 ///    operands.
197 static __inline __m256 __DEFAULT_FN_ATTRS
198 _mm256_div_ps(__m256 __a, __m256 __b)
199 {
200   return (__m256)((__v8sf)__a/(__v8sf)__b);
201 }
202
203 /// Compares two 256-bit vectors of [4 x double] and returns the greater
204 ///    of each pair of values.
205 ///
206 /// \headerfile <x86intrin.h>
207 ///
208 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
209 ///
210 /// \param __a
211 ///    A 256-bit vector of [4 x double] containing one of the operands.
212 /// \param __b
213 ///    A 256-bit vector of [4 x double] containing one of the operands.
214 /// \returns A 256-bit vector of [4 x double] containing the maximum values
215 ///    between both operands.
216 static __inline __m256d __DEFAULT_FN_ATTRS
217 _mm256_max_pd(__m256d __a, __m256d __b)
218 {
219   return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
220 }
221
222 /// Compares two 256-bit vectors of [8 x float] and returns the greater
223 ///    of each pair of values.
224 ///
225 /// \headerfile <x86intrin.h>
226 ///
227 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
228 ///
229 /// \param __a
230 ///    A 256-bit vector of [8 x float] containing one of the operands.
231 /// \param __b
232 ///    A 256-bit vector of [8 x float] containing one of the operands.
233 /// \returns A 256-bit vector of [8 x float] containing the maximum values
234 ///    between both operands.
235 static __inline __m256 __DEFAULT_FN_ATTRS
236 _mm256_max_ps(__m256 __a, __m256 __b)
237 {
238   return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
239 }
240
241 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
242 ///    of each pair of values.
243 ///
244 /// \headerfile <x86intrin.h>
245 ///
246 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
247 ///
248 /// \param __a
249 ///    A 256-bit vector of [4 x double] containing one of the operands.
250 /// \param __b
251 ///    A 256-bit vector of [4 x double] containing one of the operands.
252 /// \returns A 256-bit vector of [4 x double] containing the minimum values
253 ///    between both operands.
254 static __inline __m256d __DEFAULT_FN_ATTRS
255 _mm256_min_pd(__m256d __a, __m256d __b)
256 {
257   return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
258 }
259
260 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
261 ///    of each pair of values.
262 ///
263 /// \headerfile <x86intrin.h>
264 ///
265 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
266 ///
267 /// \param __a
268 ///    A 256-bit vector of [8 x float] containing one of the operands.
269 /// \param __b
270 ///    A 256-bit vector of [8 x float] containing one of the operands.
271 /// \returns A 256-bit vector of [8 x float] containing the minimum values
272 ///    between both operands.
273 static __inline __m256 __DEFAULT_FN_ATTRS
274 _mm256_min_ps(__m256 __a, __m256 __b)
275 {
276   return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
277 }
278
279 /// Multiplies two 256-bit vectors of [4 x double].
280 ///
281 /// \headerfile <x86intrin.h>
282 ///
283 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
284 ///
285 /// \param __a
286 ///    A 256-bit vector of [4 x double] containing one of the operands.
287 /// \param __b
288 ///    A 256-bit vector of [4 x double] containing one of the operands.
289 /// \returns A 256-bit vector of [4 x double] containing the products of both
290 ///    operands.
291 static __inline __m256d __DEFAULT_FN_ATTRS
292 _mm256_mul_pd(__m256d __a, __m256d __b)
293 {
294   return (__m256d)((__v4df)__a * (__v4df)__b);
295 }
296
297 /// Multiplies two 256-bit vectors of [8 x float].
298 ///
299 /// \headerfile <x86intrin.h>
300 ///
301 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
302 ///
303 /// \param __a
304 ///    A 256-bit vector of [8 x float] containing one of the operands.
305 /// \param __b
306 ///    A 256-bit vector of [8 x float] containing one of the operands.
307 /// \returns A 256-bit vector of [8 x float] containing the products of both
308 ///    operands.
309 static __inline __m256 __DEFAULT_FN_ATTRS
310 _mm256_mul_ps(__m256 __a, __m256 __b)
311 {
312   return (__m256)((__v8sf)__a * (__v8sf)__b);
313 }
314
315 /// Calculates the square roots of the values in a 256-bit vector of
316 ///    [4 x double].
317 ///
318 /// \headerfile <x86intrin.h>
319 ///
320 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
321 ///
322 /// \param __a
323 ///    A 256-bit vector of [4 x double].
324 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
325 ///    values in the operand.
326 static __inline __m256d __DEFAULT_FN_ATTRS
327 _mm256_sqrt_pd(__m256d __a)
328 {
329   return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
330 }
331
332 /// Calculates the square roots of the values in a 256-bit vector of
333 ///    [8 x float].
334 ///
335 /// \headerfile <x86intrin.h>
336 ///
337 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
338 ///
339 /// \param __a
340 ///    A 256-bit vector of [8 x float].
341 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
342 ///    values in the operand.
343 static __inline __m256 __DEFAULT_FN_ATTRS
344 _mm256_sqrt_ps(__m256 __a)
345 {
346   return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
347 }
348
349 /// Calculates the reciprocal square roots of the values in a 256-bit
350 ///    vector of [8 x float].
351 ///
352 /// \headerfile <x86intrin.h>
353 ///
354 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
355 ///
356 /// \param __a
357 ///    A 256-bit vector of [8 x float].
358 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
359 ///    roots of the values in the operand.
360 static __inline __m256 __DEFAULT_FN_ATTRS
361 _mm256_rsqrt_ps(__m256 __a)
362 {
363   return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
364 }
365
366 /// Calculates the reciprocals of the values in a 256-bit vector of
367 ///    [8 x float].
368 ///
369 /// \headerfile <x86intrin.h>
370 ///
371 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
372 ///
373 /// \param __a
374 ///    A 256-bit vector of [8 x float].
375 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
376 ///    values in the operand.
377 static __inline __m256 __DEFAULT_FN_ATTRS
378 _mm256_rcp_ps(__m256 __a)
379 {
380   return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
381 }
382
383 /// Rounds the values in a 256-bit vector of [4 x double] as specified
384 ///    by the byte operand. The source values are rounded to integer values and
385 ///    returned as 64-bit double-precision floating-point values.
386 ///
387 /// \headerfile <x86intrin.h>
388 ///
389 /// \code
390 /// __m256d _mm256_round_pd(__m256d V, const int M);
391 /// \endcode
392 ///
393 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
394 ///
395 /// \param V
396 ///    A 256-bit vector of [4 x double].
397 /// \param M
398 ///    An integer value that specifies the rounding operation. \n
399 ///    Bits [7:4] are reserved. \n
400 ///    Bit [3] is a precision exception value: \n
401 ///      0: A normal PE exception is used. \n
402 ///      1: The PE field is not updated. \n
403 ///    Bit [2] is the rounding control source: \n
404 ///      0: Use bits [1:0] of \a M. \n
405 ///      1: Use the current MXCSR setting. \n
406 ///    Bits [1:0] contain the rounding control definition: \n
407 ///      00: Nearest. \n
408 ///      01: Downward (toward negative infinity). \n
409 ///      10: Upward (toward positive infinity). \n
410 ///      11: Truncated.
411 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
412 #define _mm256_round_pd(V, M) \
413     (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M))
414
415 /// Rounds the values stored in a 256-bit vector of [8 x float] as
416 ///    specified by the byte operand. The source values are rounded to integer
417 ///    values and returned as floating-point values.
418 ///
419 /// \headerfile <x86intrin.h>
420 ///
421 /// \code
422 /// __m256 _mm256_round_ps(__m256 V, const int M);
423 /// \endcode
424 ///
425 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
426 ///
427 /// \param V
428 ///    A 256-bit vector of [8 x float].
429 /// \param M
430 ///    An integer value that specifies the rounding operation. \n
431 ///    Bits [7:4] are reserved. \n
432 ///    Bit [3] is a precision exception value: \n
433 ///      0: A normal PE exception is used. \n
434 ///      1: The PE field is not updated. \n
435 ///    Bit [2] is the rounding control source: \n
436 ///      0: Use bits [1:0] of \a M. \n
437 ///      1: Use the current MXCSR setting. \n
438 ///    Bits [1:0] contain the rounding control definition: \n
439 ///      00: Nearest. \n
440 ///      01: Downward (toward negative infinity). \n
441 ///      10: Upward (toward positive infinity). \n
442 ///      11: Truncated.
443 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
444 #define _mm256_round_ps(V, M) \
445   (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M))
446
447 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
448 ///    source values are rounded up to integer values and returned as 64-bit
449 ///    double-precision floating-point values.
450 ///
451 /// \headerfile <x86intrin.h>
452 ///
453 /// \code
454 /// __m256d _mm256_ceil_pd(__m256d V);
455 /// \endcode
456 ///
457 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
458 ///
459 /// \param V
460 ///    A 256-bit vector of [4 x double].
461 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
462 #define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
463
464 /// Rounds down the values stored in a 256-bit vector of [4 x double].
465 ///    The source values are rounded down to integer values and returned as
466 ///    64-bit double-precision floating-point values.
467 ///
468 /// \headerfile <x86intrin.h>
469 ///
470 /// \code
471 /// __m256d _mm256_floor_pd(__m256d V);
472 /// \endcode
473 ///
474 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
475 ///
476 /// \param V
477 ///    A 256-bit vector of [4 x double].
478 /// \returns A 256-bit vector of [4 x double] containing the rounded down
479 ///    values.
480 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
481
482 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
483 ///    source values are rounded up to integer values and returned as
484 ///    floating-point values.
485 ///
486 /// \headerfile <x86intrin.h>
487 ///
488 /// \code
489 /// __m256 _mm256_ceil_ps(__m256 V);
490 /// \endcode
491 ///
492 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
493 ///
494 /// \param V
495 ///    A 256-bit vector of [8 x float].
496 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
497 #define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
498
499 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
500 ///    source values are rounded down to integer values and returned as
501 ///    floating-point values.
502 ///
503 /// \headerfile <x86intrin.h>
504 ///
505 /// \code
506 /// __m256 _mm256_floor_ps(__m256 V);
507 /// \endcode
508 ///
509 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
510 ///
511 /// \param V
512 ///    A 256-bit vector of [8 x float].
513 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
514 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
515
516 /* Logical */
517 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
518 ///
519 /// \headerfile <x86intrin.h>
520 ///
521 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
522 ///
523 /// \param __a
524 ///    A 256-bit vector of [4 x double] containing one of the source operands.
525 /// \param __b
526 ///    A 256-bit vector of [4 x double] containing one of the source operands.
527 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
528 ///    values between both operands.
529 static __inline __m256d __DEFAULT_FN_ATTRS
530 _mm256_and_pd(__m256d __a, __m256d __b)
531 {
532   return (__m256d)((__v4du)__a & (__v4du)__b);
533 }
534
535 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
536 ///
537 /// \headerfile <x86intrin.h>
538 ///
539 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
540 ///
541 /// \param __a
542 ///    A 256-bit vector of [8 x float] containing one of the source operands.
543 /// \param __b
544 ///    A 256-bit vector of [8 x float] containing one of the source operands.
545 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
546 ///    values between both operands.
547 static __inline __m256 __DEFAULT_FN_ATTRS
548 _mm256_and_ps(__m256 __a, __m256 __b)
549 {
550   return (__m256)((__v8su)__a & (__v8su)__b);
551 }
552
553 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
554 ///    the one's complement of the values contained in the first source operand.
555 ///
556 /// \headerfile <x86intrin.h>
557 ///
558 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
559 ///
560 /// \param __a
561 ///    A 256-bit vector of [4 x double] containing the left source operand. The
562 ///    one's complement of this value is used in the bitwise AND.
563 /// \param __b
564 ///    A 256-bit vector of [4 x double] containing the right source operand.
565 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
566 ///    values of the second operand and the one's complement of the first
567 ///    operand.
568 static __inline __m256d __DEFAULT_FN_ATTRS
569 _mm256_andnot_pd(__m256d __a, __m256d __b)
570 {
571   return (__m256d)(~(__v4du)__a & (__v4du)__b);
572 }
573
574 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
575 ///    the one's complement of the values contained in the first source operand.
576 ///
577 /// \headerfile <x86intrin.h>
578 ///
579 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
580 ///
581 /// \param __a
582 ///    A 256-bit vector of [8 x float] containing the left source operand. The
583 ///    one's complement of this value is used in the bitwise AND.
584 /// \param __b
585 ///    A 256-bit vector of [8 x float] containing the right source operand.
586 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
587 ///    values of the second operand and the one's complement of the first
588 ///    operand.
589 static __inline __m256 __DEFAULT_FN_ATTRS
590 _mm256_andnot_ps(__m256 __a, __m256 __b)
591 {
592   return (__m256)(~(__v8su)__a & (__v8su)__b);
593 }
594
595 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
596 ///
597 /// \headerfile <x86intrin.h>
598 ///
599 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
600 ///
601 /// \param __a
602 ///    A 256-bit vector of [4 x double] containing one of the source operands.
603 /// \param __b
604 ///    A 256-bit vector of [4 x double] containing one of the source operands.
605 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
606 ///    values between both operands.
607 static __inline __m256d __DEFAULT_FN_ATTRS
608 _mm256_or_pd(__m256d __a, __m256d __b)
609 {
610   return (__m256d)((__v4du)__a | (__v4du)__b);
611 }
612
613 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
614 ///
615 /// \headerfile <x86intrin.h>
616 ///
617 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
618 ///
619 /// \param __a
620 ///    A 256-bit vector of [8 x float] containing one of the source operands.
621 /// \param __b
622 ///    A 256-bit vector of [8 x float] containing one of the source operands.
623 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
624 ///    values between both operands.
625 static __inline __m256 __DEFAULT_FN_ATTRS
626 _mm256_or_ps(__m256 __a, __m256 __b)
627 {
628   return (__m256)((__v8su)__a | (__v8su)__b);
629 }
630
631 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
632 ///
633 /// \headerfile <x86intrin.h>
634 ///
635 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
636 ///
637 /// \param __a
638 ///    A 256-bit vector of [4 x double] containing one of the source operands.
639 /// \param __b
640 ///    A 256-bit vector of [4 x double] containing one of the source operands.
641 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
642 ///    values between both operands.
643 static __inline __m256d __DEFAULT_FN_ATTRS
644 _mm256_xor_pd(__m256d __a, __m256d __b)
645 {
646   return (__m256d)((__v4du)__a ^ (__v4du)__b);
647 }
648
649 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
650 ///
651 /// \headerfile <x86intrin.h>
652 ///
653 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
654 ///
655 /// \param __a
656 ///    A 256-bit vector of [8 x float] containing one of the source operands.
657 /// \param __b
658 ///    A 256-bit vector of [8 x float] containing one of the source operands.
659 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
660 ///    values between both operands.
661 static __inline __m256 __DEFAULT_FN_ATTRS
662 _mm256_xor_ps(__m256 __a, __m256 __b)
663 {
664   return (__m256)((__v8su)__a ^ (__v8su)__b);
665 }
666
667 /* Horizontal arithmetic */
668 /// Horizontally adds the adjacent pairs of values contained in two
669 ///    256-bit vectors of [4 x double].
670 ///
671 /// \headerfile <x86intrin.h>
672 ///
673 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
674 ///
675 /// \param __a
676 ///    A 256-bit vector of [4 x double] containing one of the source operands.
677 ///    The horizontal sums of the values are returned in the even-indexed
678 ///    elements of a vector of [4 x double].
679 /// \param __b
680 ///    A 256-bit vector of [4 x double] containing one of the source operands.
681 ///    The horizontal sums of the values are returned in the odd-indexed
682 ///    elements of a vector of [4 x double].
683 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
684 ///    both operands.
685 static __inline __m256d __DEFAULT_FN_ATTRS
686 _mm256_hadd_pd(__m256d __a, __m256d __b)
687 {
688   return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
689 }
690
691 /// Horizontally adds the adjacent pairs of values contained in two
692 ///    256-bit vectors of [8 x float].
693 ///
694 /// \headerfile <x86intrin.h>
695 ///
696 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
697 ///
698 /// \param __a
699 ///    A 256-bit vector of [8 x float] containing one of the source operands.
700 ///    The horizontal sums of the values are returned in the elements with
701 ///    index 0, 1, 4, 5 of a vector of [8 x float].
702 /// \param __b
703 ///    A 256-bit vector of [8 x float] containing one of the source operands.
704 ///    The horizontal sums of the values are returned in the elements with
705 ///    index 2, 3, 6, 7 of a vector of [8 x float].
706 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
707 ///    both operands.
708 static __inline __m256 __DEFAULT_FN_ATTRS
709 _mm256_hadd_ps(__m256 __a, __m256 __b)
710 {
711   return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
712 }
713
714 /// Horizontally subtracts the adjacent pairs of values contained in two
715 ///    256-bit vectors of [4 x double].
716 ///
717 /// \headerfile <x86intrin.h>
718 ///
719 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
720 ///
721 /// \param __a
722 ///    A 256-bit vector of [4 x double] containing one of the source operands.
723 ///    The horizontal differences between the values are returned in the
724 ///    even-indexed elements of a vector of [4 x double].
725 /// \param __b
726 ///    A 256-bit vector of [4 x double] containing one of the source operands.
727 ///    The horizontal differences between the values are returned in the
728 ///    odd-indexed elements of a vector of [4 x double].
729 /// \returns A 256-bit vector of [4 x double] containing the horizontal
730 ///    differences of both operands.
731 static __inline __m256d __DEFAULT_FN_ATTRS
732 _mm256_hsub_pd(__m256d __a, __m256d __b)
733 {
734   return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
735 }
736
737 /// Horizontally subtracts the adjacent pairs of values contained in two
738 ///    256-bit vectors of [8 x float].
739 ///
740 /// \headerfile <x86intrin.h>
741 ///
742 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
743 ///
744 /// \param __a
745 ///    A 256-bit vector of [8 x float] containing one of the source operands.
746 ///    The horizontal differences between the values are returned in the
747 ///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
748 /// \param __b
749 ///    A 256-bit vector of [8 x float] containing one of the source operands.
750 ///    The horizontal differences between the values are returned in the
751 ///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
752 /// \returns A 256-bit vector of [8 x float] containing the horizontal
753 ///    differences of both operands.
754 static __inline __m256 __DEFAULT_FN_ATTRS
755 _mm256_hsub_ps(__m256 __a, __m256 __b)
756 {
757   return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
758 }
759
760 /* Vector permutations */
761 /// Copies the values in a 128-bit vector of [2 x double] as specified
762 ///    by the 128-bit integer vector operand.
763 ///
764 /// \headerfile <x86intrin.h>
765 ///
766 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
767 ///
768 /// \param __a
769 ///    A 128-bit vector of [2 x double].
770 /// \param __c
771 ///    A 128-bit integer vector operand specifying how the values are to be
772 ///    copied. \n
773 ///    Bit [1]: \n
774 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
775 ///         vector. \n
776 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
777 ///         returned vector. \n
778 ///    Bit [65]: \n
779 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
780 ///         returned vector. \n
781 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
782 ///         returned vector.
783 /// \returns A 128-bit vector of [2 x double] containing the copied values.
784 static __inline __m128d __DEFAULT_FN_ATTRS128
785 _mm_permutevar_pd(__m128d __a, __m128i __c)
786 {
787   return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
788 }
789
790 /// Copies the values in a 256-bit vector of [4 x double] as specified
791 ///    by the 256-bit integer vector operand.
792 ///
793 /// \headerfile <x86intrin.h>
794 ///
795 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
796 ///
797 /// \param __a
798 ///    A 256-bit vector of [4 x double].
799 /// \param __c
800 ///    A 256-bit integer vector operand specifying how the values are to be
801 ///    copied. \n
802 ///    Bit [1]: \n
803 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
804 ///         vector. \n
805 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
806 ///         returned vector. \n
807 ///    Bit [65]: \n
808 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
809 ///         returned vector. \n
810 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
811 ///         returned vector. \n
812 ///    Bit [129]: \n
813 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
814 ///         returned vector. \n
815 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
816 ///         returned vector. \n
817 ///    Bit [193]: \n
818 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
819 ///         returned vector. \n
820 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
821 ///    returned vector.
822 /// \returns A 256-bit vector of [4 x double] containing the copied values.
823 static __inline __m256d __DEFAULT_FN_ATTRS
824 _mm256_permutevar_pd(__m256d __a, __m256i __c)
825 {
826   return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
827 }
828
829 /// Copies the values stored in a 128-bit vector of [4 x float] as
830 ///    specified by the 128-bit integer vector operand.
831 /// \headerfile <x86intrin.h>
832 ///
833 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
834 ///
835 /// \param __a
836 ///    A 128-bit vector of [4 x float].
837 /// \param __c
838 ///    A 128-bit integer vector operand specifying how the values are to be
839 ///    copied. \n
840 ///    Bits [1:0]: \n
841 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
842 ///          returned vector. \n
843 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
844 ///          returned vector. \n
845 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
846 ///          returned vector. \n
847 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
848 ///          returned vector. \n
849 ///    Bits [33:32]: \n
850 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
851 ///          returned vector. \n
852 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
853 ///          returned vector. \n
854 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
855 ///          returned vector. \n
856 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
857 ///          returned vector. \n
858 ///    Bits [65:64]: \n
859 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
860 ///          returned vector. \n
861 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
862 ///          returned vector. \n
863 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
864 ///          returned vector. \n
865 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
866 ///          returned vector. \n
867 ///    Bits [97:96]: \n
868 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
869 ///          returned vector. \n
870 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
871 ///          returned vector. \n
872 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
873 ///          returned vector. \n
874 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
875 ///          returned vector.
876 /// \returns A 128-bit vector of [4 x float] containing the copied values.
877 static __inline __m128 __DEFAULT_FN_ATTRS128
878 _mm_permutevar_ps(__m128 __a, __m128i __c)
879 {
880   return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
881 }
882
883 /// Copies the values stored in a 256-bit vector of [8 x float] as
884 ///    specified by the 256-bit integer vector operand.
885 ///
886 /// \headerfile <x86intrin.h>
887 ///
888 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
889 ///
890 /// \param __a
891 ///    A 256-bit vector of [8 x float].
892 /// \param __c
893 ///    A 256-bit integer vector operand specifying how the values are to be
894 ///    copied. \n
895 ///    Bits [1:0]: \n
896 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
897 ///          returned vector. \n
898 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
899 ///          returned vector. \n
900 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
901 ///          returned vector. \n
902 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
903 ///          returned vector. \n
904 ///    Bits [33:32]: \n
905 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
906 ///          returned vector. \n
907 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
908 ///          returned vector. \n
909 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
910 ///          returned vector. \n
911 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
912 ///          returned vector. \n
913 ///    Bits [65:64]: \n
914 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
915 ///          returned vector. \n
916 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
917 ///          returned vector. \n
918 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
919 ///          returned vector. \n
920 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
921 ///          returned vector. \n
922 ///    Bits [97:96]: \n
923 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
924 ///          returned vector. \n
925 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
926 ///          returned vector. \n
927 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
928 ///          returned vector. \n
929 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
930 ///          returned vector. \n
931 ///    Bits [129:128]: \n
932 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
933 ///          returned vector. \n
934 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
935 ///          returned vector. \n
936 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
937 ///          returned vector. \n
938 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
939 ///          returned vector. \n
940 ///    Bits [161:160]: \n
941 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
942 ///          returned vector. \n
943 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
944 ///          returned vector. \n
945 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
946 ///          returned vector. \n
947 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
948 ///          returned vector. \n
949 ///    Bits [193:192]: \n
950 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
951 ///          returned vector. \n
952 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
953 ///          returned vector. \n
954 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
955 ///          returned vector. \n
956 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
957 ///          returned vector. \n
958 ///    Bits [225:224]: \n
959 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
960 ///          returned vector. \n
961 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
962 ///          returned vector. \n
963 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
964 ///          returned vector. \n
965 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
966 ///          returned vector.
967 /// \returns A 256-bit vector of [8 x float] containing the copied values.
968 static __inline __m256 __DEFAULT_FN_ATTRS
969 _mm256_permutevar_ps(__m256 __a, __m256i __c)
970 {
971   return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
972 }
973
974 /// Copies the values in a 128-bit vector of [2 x double] as specified
975 ///    by the immediate integer operand.
976 ///
977 /// \headerfile <x86intrin.h>
978 ///
979 /// \code
980 /// __m128d _mm_permute_pd(__m128d A, const int C);
981 /// \endcode
982 ///
983 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
984 ///
985 /// \param A
986 ///    A 128-bit vector of [2 x double].
987 /// \param C
988 ///    An immediate integer operand specifying how the values are to be
989 ///    copied. \n
990 ///    Bit [0]: \n
991 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
992 ///         vector. \n
993 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
994 ///         returned vector. \n
995 ///    Bit [1]: \n
996 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
997 ///         returned vector. \n
998 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
999 ///         returned vector.
1000 /// \returns A 128-bit vector of [2 x double] containing the copied values.
1001 #define _mm_permute_pd(A, C) \
1002   (__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C))
1003
1004 /// Copies the values in a 256-bit vector of [4 x double] as specified by
1005 ///    the immediate integer operand.
1006 ///
1007 /// \headerfile <x86intrin.h>
1008 ///
1009 /// \code
1010 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1011 /// \endcode
1012 ///
1013 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1014 ///
1015 /// \param A
1016 ///    A 256-bit vector of [4 x double].
1017 /// \param C
1018 ///    An immediate integer operand specifying how the values are to be
1019 ///    copied. \n
1020 ///    Bit [0]: \n
1021 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1022 ///         vector. \n
1023 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
1024 ///         returned vector. \n
1025 ///    Bit [1]: \n
1026 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
1027 ///         returned vector. \n
1028 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
1029 ///         returned vector. \n
1030 ///    Bit [2]: \n
1031 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
1032 ///         returned vector. \n
1033 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
1034 ///         returned vector. \n
1035 ///    Bit [3]: \n
1036 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
1037 ///         returned vector. \n
1038 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
1039 ///         returned vector.
1040 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1041 #define _mm256_permute_pd(A, C) \
1042   (__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C))
1043
1044 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1045 ///    the immediate integer operand.
1046 ///
1047 /// \headerfile <x86intrin.h>
1048 ///
1049 /// \code
1050 /// __m128 _mm_permute_ps(__m128 A, const int C);
1051 /// \endcode
1052 ///
1053 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1054 ///
1055 /// \param A
1056 ///    A 128-bit vector of [4 x float].
1057 /// \param C
1058 ///    An immediate integer operand specifying how the values are to be
1059 ///    copied. \n
1060 ///    Bits [1:0]: \n
1061 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1062 ///          returned vector. \n
1063 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1064 ///          returned vector. \n
1065 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1066 ///          returned vector. \n
1067 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1068 ///          returned vector. \n
1069 ///    Bits [3:2]: \n
1070 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1071 ///          returned vector. \n
1072 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1073 ///          returned vector. \n
1074 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1075 ///          returned vector. \n
1076 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1077 ///          returned vector. \n
1078 ///    Bits [5:4]: \n
1079 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1080 ///          returned vector. \n
1081 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1082 ///          returned vector. \n
1083 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1084 ///          returned vector. \n
1085 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1086 ///          returned vector. \n
1087 ///    Bits [7:6]: \n
1088 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1089 ///          returned vector. \n
1090 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1091 ///          returned vector. \n
1092 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1093 ///          returned vector. \n
1094 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1095 ///          returned vector.
1096 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1097 #define _mm_permute_ps(A, C) \
1098   (__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C))
1099
1100 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1101 ///    the immediate integer operand.
1102 ///
1103 /// \headerfile <x86intrin.h>
1104 ///
1105 /// \code
1106 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1107 /// \endcode
1108 ///
1109 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1110 ///
1111 /// \param A
1112 ///    A 256-bit vector of [8 x float].
1113 /// \param C
1114 ///    An immediate integer operand specifying how the values are to be
1115 ///    copied. \n
1116 ///    Bits [1:0]: \n
1117 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1118 ///          returned vector. \n
1119 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1120 ///          returned vector. \n
1121 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1122 ///          returned vector. \n
1123 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1124 ///          returned vector. \n
1125 ///    Bits [3:2]: \n
1126 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1127 ///          returned vector. \n
1128 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1129 ///          returned vector. \n
1130 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1131 ///          returned vector. \n
1132 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1133 ///          returned vector. \n
1134 ///    Bits [5:4]: \n
1135 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1136 ///          returned vector. \n
1137 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1138 ///          returned vector. \n
1139 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1140 ///          returned vector. \n
1141 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1142 ///          returned vector. \n
1143 ///    Bits [7:6]: \n
1144 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1145 ///          returned vector. \n
1146 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1147 ///          returned vector. \n
1148 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1149 ///          returned vector. \n
1150 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1151 ///          returned vector. \n
1152 ///    Bits [1:0]: \n
1153 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
1154 ///          returned vector. \n
1155 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
1156 ///          returned vector. \n
1157 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
1158 ///          returned vector. \n
1159 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
1160 ///          returned vector. \n
1161 ///    Bits [3:2]: \n
1162 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
1163 ///          returned vector. \n
1164 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
1165 ///          returned vector. \n
1166 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
1167 ///          returned vector. \n
1168 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
1169 ///          returned vector. \n
1170 ///    Bits [5:4]: \n
1171 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
1172 ///          returned vector. \n
1173 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
1174 ///          returned vector. \n
1175 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
1176 ///          returned vector. \n
1177 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
1178 ///          returned vector. \n
1179 ///    Bits [7:6]: \n
1180 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
1181 ///          returned vector. \n
1182 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
1183 ///          returned vector. \n
1184 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
1185 ///          returned vector. \n
1186 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
1187 ///          returned vector.
1188 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1189 #define _mm256_permute_ps(A, C) \
1190   (__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C))
1191
1192 /// Permutes 128-bit data values stored in two 256-bit vectors of
1193 ///    [4 x double], as specified by the immediate integer operand.
1194 ///
1195 /// \headerfile <x86intrin.h>
1196 ///
1197 /// \code
1198 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1199 /// \endcode
1200 ///
1201 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1202 ///
1203 /// \param V1
1204 ///    A 256-bit vector of [4 x double].
1205 /// \param V2
1206 ///    A 256-bit vector of [4 x double.
1207 /// \param M
1208 ///    An immediate integer operand specifying how the values are to be
1209 ///    permuted. \n
1210 ///    Bits [1:0]: \n
1211 ///      00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1212 ///          destination. \n
1213 ///      01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1214 ///          destination. \n
1215 ///      10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1216 ///          destination. \n
1217 ///      11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1218 ///          destination. \n
1219 ///    Bits [5:4]: \n
1220 ///      00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1221 ///          destination. \n
1222 ///      01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1223 ///          destination. \n
1224 ///      10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1225 ///          destination. \n
1226 ///      11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1227 ///          destination.
1228 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1229 #define _mm256_permute2f128_pd(V1, V2, M) \
1230   (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1231                                            (__v4df)(__m256d)(V2), (int)(M))
1232
1233 /// Permutes 128-bit data values stored in two 256-bit vectors of
1234 ///    [8 x float], as specified by the immediate integer operand.
1235 ///
1236 /// \headerfile <x86intrin.h>
1237 ///
1238 /// \code
1239 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1240 /// \endcode
1241 ///
1242 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1243 ///
1244 /// \param V1
1245 ///    A 256-bit vector of [8 x float].
1246 /// \param V2
1247 ///    A 256-bit vector of [8 x float].
1248 /// \param M
1249 ///    An immediate integer operand specifying how the values are to be
1250 ///    permuted. \n
1251 ///    Bits [1:0]: \n
1252 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1253 ///    destination. \n
1254 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1255 ///    destination. \n
1256 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1257 ///    destination. \n
1258 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1259 ///    destination. \n
1260 ///    Bits [5:4]: \n
1261 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1262 ///    destination. \n
1263 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1264 ///    destination. \n
1265 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1266 ///    destination. \n
1267 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1268 ///    destination.
1269 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1270 #define _mm256_permute2f128_ps(V1, V2, M) \
1271   (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1272                                           (__v8sf)(__m256)(V2), (int)(M))
1273
1274 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1275 ///    as specified by the immediate integer operand.
1276 ///
1277 /// \headerfile <x86intrin.h>
1278 ///
1279 /// \code
1280 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1281 /// \endcode
1282 ///
1283 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1284 ///
1285 /// \param V1
1286 ///    A 256-bit integer vector.
1287 /// \param V2
1288 ///    A 256-bit integer vector.
1289 /// \param M
1290 ///    An immediate integer operand specifying how the values are to be copied.
1291 ///    Bits [1:0]: \n
1292 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1293 ///    destination. \n
1294 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1295 ///    destination. \n
1296 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1297 ///    destination. \n
1298 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1299 ///    destination. \n
1300 ///    Bits [5:4]: \n
1301 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1302 ///    destination. \n
1303 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1304 ///    destination. \n
1305 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1306 ///    destination. \n
1307 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1308 ///    destination.
1309 /// \returns A 256-bit integer vector containing the copied values.
1310 #define _mm256_permute2f128_si256(V1, V2, M) \
1311   (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1312                                            (__v8si)(__m256i)(V2), (int)(M))
1313
1314 /* Vector Blend */
1315 /// Merges 64-bit double-precision data values stored in either of the
1316 ///    two 256-bit vectors of [4 x double], as specified by the immediate
1317 ///    integer operand.
1318 ///
1319 /// \headerfile <x86intrin.h>
1320 ///
1321 /// \code
1322 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1323 /// \endcode
1324 ///
1325 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1326 ///
1327 /// \param V1
1328 ///    A 256-bit vector of [4 x double].
1329 /// \param V2
1330 ///    A 256-bit vector of [4 x double].
1331 /// \param M
1332 ///    An immediate integer operand, with mask bits [3:0] specifying how the
1333 ///    values are to be copied. The position of the mask bit corresponds to the
1334 ///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
1335 ///    element in operand \a V1 is copied to the same position in the
1336 ///    destination. When a mask bit is 1, the corresponding 64-bit element in
1337 ///    operand \a V2 is copied to the same position in the destination.
1338 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1339 #define _mm256_blend_pd(V1, V2, M) \
1340   (__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1341                                      (__v4df)(__m256d)(V2), (int)(M))
1342
1343 /// Merges 32-bit single-precision data values stored in either of the
1344 ///    two 256-bit vectors of [8 x float], as specified by the immediate
1345 ///    integer operand.
1346 ///
1347 /// \headerfile <x86intrin.h>
1348 ///
1349 /// \code
1350 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1351 /// \endcode
1352 ///
1353 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1354 ///
1355 /// \param V1
1356 ///    A 256-bit vector of [8 x float].
1357 /// \param V2
1358 ///    A 256-bit vector of [8 x float].
1359 /// \param M
1360 ///    An immediate integer operand, with mask bits [7:0] specifying how the
1361 ///    values are to be copied. The position of the mask bit corresponds to the
1362 ///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
1363 ///    element in operand \a V1 is copied to the same position in the
1364 ///    destination. When a mask bit is 1, the corresponding 32-bit element in
1365 ///    operand \a V2 is copied to the same position in the destination.
1366 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1367 #define _mm256_blend_ps(V1, V2, M) \
1368   (__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1369                                     (__v8sf)(__m256)(V2), (int)(M))
1370
1371 /// Merges 64-bit double-precision data values stored in either of the
1372 ///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1373 ///    operand.
1374 ///
1375 /// \headerfile <x86intrin.h>
1376 ///
1377 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1378 ///
1379 /// \param __a
1380 ///    A 256-bit vector of [4 x double].
1381 /// \param __b
1382 ///    A 256-bit vector of [4 x double].
1383 /// \param __c
1384 ///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1385 ///    how the values are to be copied. The position of the mask bit corresponds
1386 ///    to the most significant bit of a copied value. When a mask bit is 0, the
1387 ///    corresponding 64-bit element in operand \a __a is copied to the same
1388 ///    position in the destination. When a mask bit is 1, the corresponding
1389 ///    64-bit element in operand \a __b is copied to the same position in the
1390 ///    destination.
1391 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1392 static __inline __m256d __DEFAULT_FN_ATTRS
1393 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1394 {
1395   return (__m256d)__builtin_ia32_blendvpd256(
1396     (__v4df)__a, (__v4df)__b, (__v4df)__c);
1397 }
1398
1399 /// Merges 32-bit single-precision data values stored in either of the
1400 ///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1401 ///    operand.
1402 ///
1403 /// \headerfile <x86intrin.h>
1404 ///
1405 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1406 ///
1407 /// \param __a
1408 ///    A 256-bit vector of [8 x float].
1409 /// \param __b
1410 ///    A 256-bit vector of [8 x float].
1411 /// \param __c
1412 ///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1413 ///    and 31 specifying how the values are to be copied. The position of the
1414 ///    mask bit corresponds to the most significant bit of a copied value. When
1415 ///    a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1416 ///    copied to the same position in the destination. When a mask bit is 1, the
1417 ///    corresponding 32-bit element in operand \a __b is copied to the same
1418 ///    position in the destination.
1419 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1420 static __inline __m256 __DEFAULT_FN_ATTRS
1421 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1422 {
1423   return (__m256)__builtin_ia32_blendvps256(
1424     (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1425 }
1426
1427 /* Vector Dot Product */
1428 /// Computes two dot products in parallel, using the lower and upper
1429 ///    halves of two [8 x float] vectors as input to the two computations, and
1430 ///    returning the two dot products in the lower and upper halves of the
1431 ///    [8 x float] result.
1432 ///
1433 ///    The immediate integer operand controls which input elements will
1434 ///    contribute to the dot product, and where the final results are returned.
1435 ///    In general, for each dot product, the four corresponding elements of the
1436 ///    input vectors are multiplied; the first two and second two products are
1437 ///    summed, then the two sums are added to form the final result.
1438 ///
1439 /// \headerfile <x86intrin.h>
1440 ///
1441 /// \code
1442 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1443 /// \endcode
1444 ///
1445 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1446 ///
1447 /// \param V1
1448 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1449 /// \param V2
1450 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1451 /// \param M
1452 ///    An immediate integer argument. Bits [7:4] determine which elements of
1453 ///    the input vectors are used, with bit [4] corresponding to the lowest
1454 ///    element and bit [7] corresponding to the highest element of each [4 x
1455 ///    float] subvector. If a bit is set, the corresponding elements from the
1456 ///    two input vectors are used as an input for dot product; otherwise that
1457 ///    input is treated as zero. Bits [3:0] determine which elements of the
1458 ///    result will receive a copy of the final dot product, with bit [0]
1459 ///    corresponding to the lowest element and bit [3] corresponding to the
1460 ///    highest element of each [4 x float] subvector. If a bit is set, the dot
1461 ///    product is returned in the corresponding element; otherwise that element
1462 ///    is set to zero. The bitmask is applied in the same way to each of the
1463 ///    two parallel dot product computations.
1464 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1465 #define _mm256_dp_ps(V1, V2, M) \
1466   (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1467                                  (__v8sf)(__m256)(V2), (M))
1468
1469 /* Vector shuffle */
1470 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1471 ///    specified by the immediate value operand.
1472 ///
1473 ///    The four selected elements in each operand are copied to the destination
1474 ///    according to the bits specified in the immediate operand. The selected
1475 ///    elements from the first 256-bit operand are copied to bits [63:0] and
1476 ///    bits [191:128] of the destination, and the selected elements from the
1477 ///    second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1478 ///    the destination. For example, if bits [7:0] of the immediate operand
1479 ///    contain a value of 0xFF, the 256-bit destination vector would contain the
1480 ///    following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1481 ///
1482 /// \headerfile <x86intrin.h>
1483 ///
1484 /// \code
1485 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1486 /// \endcode
1487 ///
1488 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1489 ///
1490 /// \param a
1491 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1492 ///    operand are copied to bits [63:0] and bits [191:128] in the destination,
1493 ///    according to the bits specified in the immediate operand.
1494 /// \param b
1495 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1496 ///    operand are copied to bits [127:64] and bits [255:192] in the
1497 ///    destination, according to the bits specified in the immediate operand.
1498 /// \param mask
1499 ///    An immediate value containing an 8-bit value specifying which elements to
1500 ///    copy from \a a and \a b \n.
1501 ///    Bits [3:0] specify the values copied from operand \a a. \n
1502 ///    Bits [7:4] specify the values copied from operand \a b. \n
1503 ///    The destinations within the 256-bit destination are assigned values as
1504 ///    follows, according to the bit value assignments described below: \n
1505 ///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1506 ///    destination. \n
1507 ///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1508 ///    destination. \n
1509 ///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1510 ///    destination. \n
1511 ///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1512 ///    the destination. \n
1513 ///    Bit value assignments: \n
1514 ///    00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1515 ///    01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1516 ///    10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1517 ///    11: Bits [127:96] and [255:224] are copied from the selected operand.
1518 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1519 #define _mm256_shuffle_ps(a, b, mask) \
1520   (__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1521                                    (__v8sf)(__m256)(b), (int)(mask))
1522
1523 /// Selects four double-precision values from the 256-bit operands of
1524 ///    [4 x double], as specified by the immediate value operand.
1525 ///
1526 ///    The selected elements from the first 256-bit operand are copied to bits
1527 ///    [63:0] and bits [191:128] in the destination, and the selected elements
1528 ///    from the second 256-bit operand are copied to bits [127:64] and bits
1529 ///    [255:192] in the destination. For example, if bits [3:0] of the immediate
1530 ///    operand contain a value of 0xF, the 256-bit destination vector would
1531 ///    contain the following values: b[3], a[3], b[1], a[1].
1532 ///
1533 /// \headerfile <x86intrin.h>
1534 ///
1535 /// \code
1536 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1537 /// \endcode
1538 ///
1539 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1540 ///
1541 /// \param a
1542 ///    A 256-bit vector of [4 x double].
1543 /// \param b
1544 ///    A 256-bit vector of [4 x double].
1545 /// \param mask
1546 ///    An immediate value containing 8-bit values specifying which elements to
1547 ///    copy from \a a and \a b: \n
1548 ///    Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1549 ///    destination. \n
1550 ///    Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1551 ///    destination. \n
1552 ///    Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1553 ///    destination. \n
1554 ///    Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1555 ///    destination. \n
1556 ///    Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1557 ///    destination. \n
1558 ///    Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1559 ///    destination. \n
1560 ///    Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1561 ///    destination. \n
1562 ///    Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1563 ///    destination.
1564 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1565 #define _mm256_shuffle_pd(a, b, mask) \
1566   (__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1567                                     (__v4df)(__m256d)(b), (int)(mask))
1568
1569 /* Compare */
1570 #define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
1571 #define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
1572 #define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
1573 #define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
1574 #define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
1575 #define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
1576 #define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
1577 #define _CMP_ORD_Q    0x07 /* Ordered (non-signaling)   */
1578 #define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
1579 #define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unordered, signaling)  */
1580 #define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
1581 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
1582 #define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
1583 #define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
1584 #define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
1585 #define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
1586 #define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
1587 #define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
1588 #define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
1589 #define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
1590 #define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
1591 #define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
1592 #define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unordered, non-signaling)  */
1593 #define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
1594 #define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
1595 #define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unordered, non-signaling)  */
1596 #define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
1597 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
1598 #define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
1599 #define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
1600 #define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
1601 #define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
1602
1603 /// Compares each of the corresponding double-precision values of two
1604 ///    128-bit vectors of [2 x double], using the operation specified by the
1605 ///    immediate integer operand.
1606 ///
1607 ///    Returns a [2 x double] vector consisting of two doubles corresponding to
1608 ///    the two comparison results: zero if the comparison is false, and all 1's
1609 ///    if the comparison is true.
1610 ///
1611 /// \headerfile <x86intrin.h>
1612 ///
1613 /// \code
1614 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1615 /// \endcode
1616 ///
1617 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1618 ///
1619 /// \param a
1620 ///    A 128-bit vector of [2 x double].
1621 /// \param b
1622 ///    A 128-bit vector of [2 x double].
1623 /// \param c
1624 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1625 ///    operation to use: \n
1626 ///    0x00: Equal (ordered, non-signaling) \n
1627 ///    0x01: Less-than (ordered, signaling) \n
1628 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1629 ///    0x03: Unordered (non-signaling) \n
1630 ///    0x04: Not-equal (unordered, non-signaling) \n
1631 ///    0x05: Not-less-than (unordered, signaling) \n
1632 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1633 ///    0x07: Ordered (non-signaling) \n
1634 ///    0x08: Equal (unordered, non-signaling) \n
1635 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1636 ///    0x0A: Not-greater-than (unordered, signaling) \n
1637 ///    0x0B: False (ordered, non-signaling) \n
1638 ///    0x0C: Not-equal (ordered, non-signaling) \n
1639 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1640 ///    0x0E: Greater-than (ordered, signaling) \n
1641 ///    0x0F: True (unordered, non-signaling) \n
1642 ///    0x10: Equal (ordered, signaling) \n
1643 ///    0x11: Less-than (ordered, non-signaling) \n
1644 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1645 ///    0x13: Unordered (signaling) \n
1646 ///    0x14: Not-equal (unordered, signaling) \n
1647 ///    0x15: Not-less-than (unordered, non-signaling) \n
1648 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1649 ///    0x17: Ordered (signaling) \n
1650 ///    0x18: Equal (unordered, signaling) \n
1651 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1652 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1653 ///    0x1B: False (ordered, signaling) \n
1654 ///    0x1C: Not-equal (ordered, signaling) \n
1655 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1656 ///    0x1E: Greater-than (ordered, non-signaling) \n
1657 ///    0x1F: True (unordered, signaling)
1658 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1659 #define _mm_cmp_pd(a, b, c) \
1660   (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1661                                 (__v2df)(__m128d)(b), (c))
1662
1663 /// Compares each of the corresponding values of two 128-bit vectors of
1664 ///    [4 x float], using the operation specified by the immediate integer
1665 ///    operand.
1666 ///
1667 ///    Returns a [4 x float] vector consisting of four floats corresponding to
1668 ///    the four comparison results: zero if the comparison is false, and all 1's
1669 ///    if the comparison is true.
1670 ///
1671 /// \headerfile <x86intrin.h>
1672 ///
1673 /// \code
1674 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1675 /// \endcode
1676 ///
1677 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1678 ///
1679 /// \param a
1680 ///    A 128-bit vector of [4 x float].
1681 /// \param b
1682 ///    A 128-bit vector of [4 x float].
1683 /// \param c
1684 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1685 ///    operation to use: \n
1686 ///    0x00: Equal (ordered, non-signaling) \n
1687 ///    0x01: Less-than (ordered, signaling) \n
1688 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1689 ///    0x03: Unordered (non-signaling) \n
1690 ///    0x04: Not-equal (unordered, non-signaling) \n
1691 ///    0x05: Not-less-than (unordered, signaling) \n
1692 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1693 ///    0x07: Ordered (non-signaling) \n
1694 ///    0x08: Equal (unordered, non-signaling) \n
1695 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1696 ///    0x0A: Not-greater-than (unordered, signaling) \n
1697 ///    0x0B: False (ordered, non-signaling) \n
1698 ///    0x0C: Not-equal (ordered, non-signaling) \n
1699 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1700 ///    0x0E: Greater-than (ordered, signaling) \n
1701 ///    0x0F: True (unordered, non-signaling) \n
1702 ///    0x10: Equal (ordered, signaling) \n
1703 ///    0x11: Less-than (ordered, non-signaling) \n
1704 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1705 ///    0x13: Unordered (signaling) \n
1706 ///    0x14: Not-equal (unordered, signaling) \n
1707 ///    0x15: Not-less-than (unordered, non-signaling) \n
1708 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1709 ///    0x17: Ordered (signaling) \n
1710 ///    0x18: Equal (unordered, signaling) \n
1711 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1712 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1713 ///    0x1B: False (ordered, signaling) \n
1714 ///    0x1C: Not-equal (ordered, signaling) \n
1715 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1716 ///    0x1E: Greater-than (ordered, non-signaling) \n
1717 ///    0x1F: True (unordered, signaling)
1718 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1719 #define _mm_cmp_ps(a, b, c) \
1720   (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1721                                (__v4sf)(__m128)(b), (c))
1722
1723 /// Compares each of the corresponding double-precision values of two
1724 ///    256-bit vectors of [4 x double], using the operation specified by the
1725 ///    immediate integer operand.
1726 ///
1727 ///    Returns a [4 x double] vector consisting of four doubles corresponding to
1728 ///    the four comparison results: zero if the comparison is false, and all 1's
1729 ///    if the comparison is true.
1730 ///
1731 /// \headerfile <x86intrin.h>
1732 ///
1733 /// \code
1734 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1735 /// \endcode
1736 ///
1737 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1738 ///
1739 /// \param a
1740 ///    A 256-bit vector of [4 x double].
1741 /// \param b
1742 ///    A 256-bit vector of [4 x double].
1743 /// \param c
1744 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1745 ///    operation to use: \n
1746 ///    0x00: Equal (ordered, non-signaling) \n
1747 ///    0x01: Less-than (ordered, signaling) \n
1748 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1749 ///    0x03: Unordered (non-signaling) \n
1750 ///    0x04: Not-equal (unordered, non-signaling) \n
1751 ///    0x05: Not-less-than (unordered, signaling) \n
1752 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1753 ///    0x07: Ordered (non-signaling) \n
1754 ///    0x08: Equal (unordered, non-signaling) \n
1755 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1756 ///    0x0A: Not-greater-than (unordered, signaling) \n
1757 ///    0x0B: False (ordered, non-signaling) \n
1758 ///    0x0C: Not-equal (ordered, non-signaling) \n
1759 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1760 ///    0x0E: Greater-than (ordered, signaling) \n
1761 ///    0x0F: True (unordered, non-signaling) \n
1762 ///    0x10: Equal (ordered, signaling) \n
1763 ///    0x11: Less-than (ordered, non-signaling) \n
1764 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1765 ///    0x13: Unordered (signaling) \n
1766 ///    0x14: Not-equal (unordered, signaling) \n
1767 ///    0x15: Not-less-than (unordered, non-signaling) \n
1768 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1769 ///    0x17: Ordered (signaling) \n
1770 ///    0x18: Equal (unordered, signaling) \n
1771 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1772 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1773 ///    0x1B: False (ordered, signaling) \n
1774 ///    0x1C: Not-equal (ordered, signaling) \n
1775 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1776 ///    0x1E: Greater-than (ordered, non-signaling) \n
1777 ///    0x1F: True (unordered, signaling)
1778 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1779 #define _mm256_cmp_pd(a, b, c) \
1780   (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1781                                    (__v4df)(__m256d)(b), (c))
1782
1783 /// Compares each of the corresponding values of two 256-bit vectors of
1784 ///    [8 x float], using the operation specified by the immediate integer
1785 ///    operand.
1786 ///
1787 ///    Returns a [8 x float] vector consisting of eight floats corresponding to
1788 ///    the eight comparison results: zero if the comparison is false, and all
1789 ///    1's if the comparison is true.
1790 ///
1791 /// \headerfile <x86intrin.h>
1792 ///
1793 /// \code
1794 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1795 /// \endcode
1796 ///
1797 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1798 ///
1799 /// \param a
1800 ///    A 256-bit vector of [8 x float].
1801 /// \param b
1802 ///    A 256-bit vector of [8 x float].
1803 /// \param c
1804 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1805 ///    operation to use: \n
1806 ///    0x00: Equal (ordered, non-signaling) \n
1807 ///    0x01: Less-than (ordered, signaling) \n
1808 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1809 ///    0x03: Unordered (non-signaling) \n
1810 ///    0x04: Not-equal (unordered, non-signaling) \n
1811 ///    0x05: Not-less-than (unordered, signaling) \n
1812 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1813 ///    0x07: Ordered (non-signaling) \n
1814 ///    0x08: Equal (unordered, non-signaling) \n
1815 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1816 ///    0x0A: Not-greater-than (unordered, signaling) \n
1817 ///    0x0B: False (ordered, non-signaling) \n
1818 ///    0x0C: Not-equal (ordered, non-signaling) \n
1819 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1820 ///    0x0E: Greater-than (ordered, signaling) \n
1821 ///    0x0F: True (unordered, non-signaling) \n
1822 ///    0x10: Equal (ordered, signaling) \n
1823 ///    0x11: Less-than (ordered, non-signaling) \n
1824 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1825 ///    0x13: Unordered (signaling) \n
1826 ///    0x14: Not-equal (unordered, signaling) \n
1827 ///    0x15: Not-less-than (unordered, non-signaling) \n
1828 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1829 ///    0x17: Ordered (signaling) \n
1830 ///    0x18: Equal (unordered, signaling) \n
1831 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1832 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1833 ///    0x1B: False (ordered, signaling) \n
1834 ///    0x1C: Not-equal (ordered, signaling) \n
1835 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1836 ///    0x1E: Greater-than (ordered, non-signaling) \n
1837 ///    0x1F: True (unordered, signaling)
1838 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1839 #define _mm256_cmp_ps(a, b, c) \
1840   (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1841                                   (__v8sf)(__m256)(b), (c))
1842
1843 /// Compares each of the corresponding scalar double-precision values of
1844 ///    two 128-bit vectors of [2 x double], using the operation specified by the
1845 ///    immediate integer operand.
1846 ///
1847 ///    If the result is true, all 64 bits of the destination vector are set;
1848 ///    otherwise they are cleared.
1849 ///
1850 /// \headerfile <x86intrin.h>
1851 ///
1852 /// \code
1853 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1854 /// \endcode
1855 ///
1856 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1857 ///
1858 /// \param a
1859 ///    A 128-bit vector of [2 x double].
1860 /// \param b
1861 ///    A 128-bit vector of [2 x double].
1862 /// \param c
1863 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1864 ///    operation to use: \n
1865 ///    0x00: Equal (ordered, non-signaling) \n
1866 ///    0x01: Less-than (ordered, signaling) \n
1867 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1868 ///    0x03: Unordered (non-signaling) \n
1869 ///    0x04: Not-equal (unordered, non-signaling) \n
1870 ///    0x05: Not-less-than (unordered, signaling) \n
1871 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1872 ///    0x07: Ordered (non-signaling) \n
1873 ///    0x08: Equal (unordered, non-signaling) \n
1874 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1875 ///    0x0A: Not-greater-than (unordered, signaling) \n
1876 ///    0x0B: False (ordered, non-signaling) \n
1877 ///    0x0C: Not-equal (ordered, non-signaling) \n
1878 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1879 ///    0x0E: Greater-than (ordered, signaling) \n
1880 ///    0x0F: True (unordered, non-signaling) \n
1881 ///    0x10: Equal (ordered, signaling) \n
1882 ///    0x11: Less-than (ordered, non-signaling) \n
1883 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1884 ///    0x13: Unordered (signaling) \n
1885 ///    0x14: Not-equal (unordered, signaling) \n
1886 ///    0x15: Not-less-than (unordered, non-signaling) \n
1887 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1888 ///    0x17: Ordered (signaling) \n
1889 ///    0x18: Equal (unordered, signaling) \n
1890 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1891 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1892 ///    0x1B: False (ordered, signaling) \n
1893 ///    0x1C: Not-equal (ordered, signaling) \n
1894 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1895 ///    0x1E: Greater-than (ordered, non-signaling) \n
1896 ///    0x1F: True (unordered, signaling)
1897 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1898 #define _mm_cmp_sd(a, b, c) \
1899   (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1900                                 (__v2df)(__m128d)(b), (c))
1901
1902 /// Compares each of the corresponding scalar values of two 128-bit
1903 ///    vectors of [4 x float], using the operation specified by the immediate
1904 ///    integer operand.
1905 ///
1906 ///    If the result is true, all 32 bits of the destination vector are set;
1907 ///    otherwise they are cleared.
1908 ///
1909 /// \headerfile <x86intrin.h>
1910 ///
1911 /// \code
1912 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1913 /// \endcode
1914 ///
1915 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1916 ///
1917 /// \param a
1918 ///    A 128-bit vector of [4 x float].
1919 /// \param b
1920 ///    A 128-bit vector of [4 x float].
1921 /// \param c
1922 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1923 ///    operation to use: \n
1924 ///    0x00: Equal (ordered, non-signaling) \n
1925 ///    0x01: Less-than (ordered, signaling) \n
1926 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1927 ///    0x03: Unordered (non-signaling) \n
1928 ///    0x04: Not-equal (unordered, non-signaling) \n
1929 ///    0x05: Not-less-than (unordered, signaling) \n
1930 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1931 ///    0x07: Ordered (non-signaling) \n
1932 ///    0x08: Equal (unordered, non-signaling) \n
1933 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1934 ///    0x0A: Not-greater-than (unordered, signaling) \n
1935 ///    0x0B: False (ordered, non-signaling) \n
1936 ///    0x0C: Not-equal (ordered, non-signaling) \n
1937 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1938 ///    0x0E: Greater-than (ordered, signaling) \n
1939 ///    0x0F: True (unordered, non-signaling) \n
1940 ///    0x10: Equal (ordered, signaling) \n
1941 ///    0x11: Less-than (ordered, non-signaling) \n
1942 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1943 ///    0x13: Unordered (signaling) \n
1944 ///    0x14: Not-equal (unordered, signaling) \n
1945 ///    0x15: Not-less-than (unordered, non-signaling) \n
1946 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1947 ///    0x17: Ordered (signaling) \n
1948 ///    0x18: Equal (unordered, signaling) \n
1949 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1950 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1951 ///    0x1B: False (ordered, signaling) \n
1952 ///    0x1C: Not-equal (ordered, signaling) \n
1953 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1954 ///    0x1E: Greater-than (ordered, non-signaling) \n
1955 ///    0x1F: True (unordered, signaling)
1956 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1957 #define _mm_cmp_ss(a, b, c) \
1958   (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1959                                (__v4sf)(__m128)(b), (c))
1960
1961 /// Takes a [8 x i32] vector and returns the vector element value
1962 ///    indexed by the immediate constant operand.
1963 ///
1964 /// \headerfile <x86intrin.h>
1965 ///
1966 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1967 ///   instruction.
1968 ///
1969 /// \param __a
1970 ///    A 256-bit vector of [8 x i32].
1971 /// \param __imm
1972 ///    An immediate integer operand with bits [2:0] determining which vector
1973 ///    element is extracted and returned.
1974 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1975 ///    packed data.
1976 #define _mm256_extract_epi32(X, N) \
1977   (int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N))
1978
1979 /// Takes a [16 x i16] vector and returns the vector element value
1980 ///    indexed by the immediate constant operand.
1981 ///
1982 /// \headerfile <x86intrin.h>
1983 ///
1984 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1985 ///   instruction.
1986 ///
1987 /// \param __a
1988 ///    A 256-bit integer vector of [16 x i16].
1989 /// \param __imm
1990 ///    An immediate integer operand with bits [3:0] determining which vector
1991 ///    element is extracted and returned.
1992 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
1993 ///    packed data.
1994 #define _mm256_extract_epi16(X, N) \
1995   (int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
1996                                                     (int)(N))
1997
1998 /// Takes a [32 x i8] vector and returns the vector element value
1999 ///    indexed by the immediate constant operand.
2000 ///
2001 /// \headerfile <x86intrin.h>
2002 ///
2003 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2004 ///   instruction.
2005 ///
2006 /// \param __a
2007 ///    A 256-bit integer vector of [32 x i8].
2008 /// \param __imm
2009 ///    An immediate integer operand with bits [4:0] determining which vector
2010 ///    element is extracted and returned.
2011 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2012 ///    packed data.
2013 #define _mm256_extract_epi8(X, N) \
2014   (int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2015                                                    (int)(N))
2016
2017 #ifdef __x86_64__
2018 /// Takes a [4 x i64] vector and returns the vector element value
2019 ///    indexed by the immediate constant operand.
2020 ///
2021 /// \headerfile <x86intrin.h>
2022 ///
2023 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2024 ///   instruction.
2025 ///
2026 /// \param __a
2027 ///    A 256-bit integer vector of [4 x i64].
2028 /// \param __imm
2029 ///    An immediate integer operand with bits [1:0] determining which vector
2030 ///    element is extracted and returned.
2031 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2032 ///    packed data.
2033 #define _mm256_extract_epi64(X, N) \
2034   (long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N))
2035 #endif
2036
2037 /// Takes a [8 x i32] vector and replaces the vector element value
2038 ///    indexed by the immediate constant operand by a new value. Returns the
2039 ///    modified vector.
2040 ///
2041 /// \headerfile <x86intrin.h>
2042 ///
2043 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2044 ///   instruction.
2045 ///
2046 /// \param __a
2047 ///    A vector of [8 x i32] to be used by the insert operation.
2048 /// \param __b
2049 ///    An integer value. The replacement value for the insert operation.
2050 /// \param __imm
2051 ///    An immediate integer specifying the index of the vector element to be
2052 ///    replaced.
2053 /// \returns A copy of vector \a __a, after replacing its element indexed by
2054 ///    \a __imm with \a __b.
2055 #define _mm256_insert_epi32(X, I, N) \
2056   (__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2057                                        (int)(I), (int)(N))
2058
2059
2060 /// Takes a [16 x i16] vector and replaces the vector element value
2061 ///    indexed by the immediate constant operand with a new value. Returns the
2062 ///    modified vector.
2063 ///
2064 /// \headerfile <x86intrin.h>
2065 ///
2066 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2067 ///   instruction.
2068 ///
2069 /// \param __a
2070 ///    A vector of [16 x i16] to be used by the insert operation.
2071 /// \param __b
2072 ///    An i16 integer value. The replacement value for the insert operation.
2073 /// \param __imm
2074 ///    An immediate integer specifying the index of the vector element to be
2075 ///    replaced.
2076 /// \returns A copy of vector \a __a, after replacing its element indexed by
2077 ///    \a __imm with \a __b.
2078 #define _mm256_insert_epi16(X, I, N) \
2079   (__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2080                                         (int)(I), (int)(N))
2081
2082 /// Takes a [32 x i8] vector and replaces the vector element value
2083 ///    indexed by the immediate constant operand with a new value. Returns the
2084 ///    modified vector.
2085 ///
2086 /// \headerfile <x86intrin.h>
2087 ///
2088 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2089 ///   instruction.
2090 ///
2091 /// \param __a
2092 ///    A vector of [32 x i8] to be used by the insert operation.
2093 /// \param __b
2094 ///    An i8 integer value. The replacement value for the insert operation.
2095 /// \param __imm
2096 ///    An immediate integer specifying the index of the vector element to be
2097 ///    replaced.
2098 /// \returns A copy of vector \a __a, after replacing its element indexed by
2099 ///    \a __imm with \a __b.
2100 #define _mm256_insert_epi8(X, I, N) \
2101   (__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2102                                         (int)(I), (int)(N))
2103
2104 #ifdef __x86_64__
2105 /// Takes a [4 x i64] vector and replaces the vector element value
2106 ///    indexed by the immediate constant operand with a new value. Returns the
2107 ///    modified vector.
2108 ///
2109 /// \headerfile <x86intrin.h>
2110 ///
2111 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2112 ///   instruction.
2113 ///
2114 /// \param __a
2115 ///    A vector of [4 x i64] to be used by the insert operation.
2116 /// \param __b
2117 ///    A 64-bit integer value. The replacement value for the insert operation.
2118 /// \param __imm
2119 ///    An immediate integer specifying the index of the vector element to be
2120 ///    replaced.
2121 /// \returns A copy of vector \a __a, after replacing its element indexed by
2122 ///     \a __imm with \a __b.
2123 #define _mm256_insert_epi64(X, I, N) \
2124   (__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2125                                        (long long)(I), (int)(N))
2126 #endif
2127
2128 /* Conversion */
2129 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2130 ///
2131 /// \headerfile <x86intrin.h>
2132 ///
2133 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2134 ///
2135 /// \param __a
2136 ///    A 128-bit integer vector of [4 x i32].
2137 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2138 static __inline __m256d __DEFAULT_FN_ATTRS
2139 _mm256_cvtepi32_pd(__m128i __a)
2140 {
2141   return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2142 }
2143
2144 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2145 ///
2146 /// \headerfile <x86intrin.h>
2147 ///
2148 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2149 ///
2150 /// \param __a
2151 ///    A 256-bit integer vector.
2152 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2153 static __inline __m256 __DEFAULT_FN_ATTRS
2154 _mm256_cvtepi32_ps(__m256i __a)
2155 {
2156   return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2157 }
2158
2159 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2160 ///    [4 x float].
2161 ///
2162 /// \headerfile <x86intrin.h>
2163 ///
2164 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2165 ///
2166 /// \param __a
2167 ///    A 256-bit vector of [4 x double].
2168 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2169 static __inline __m128 __DEFAULT_FN_ATTRS
2170 _mm256_cvtpd_ps(__m256d __a)
2171 {
2172   return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2173 }
2174
2175 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2176 ///
2177 /// \headerfile <x86intrin.h>
2178 ///
2179 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2180 ///
2181 /// \param __a
2182 ///    A 256-bit vector of [8 x float].
2183 /// \returns A 256-bit integer vector containing the converted values.
2184 static __inline __m256i __DEFAULT_FN_ATTRS
2185 _mm256_cvtps_epi32(__m256 __a)
2186 {
2187   return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2188 }
2189
2190 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2191 ///    x double].
2192 ///
2193 /// \headerfile <x86intrin.h>
2194 ///
2195 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2196 ///
2197 /// \param __a
2198 ///    A 128-bit vector of [4 x float].
2199 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2200 static __inline __m256d __DEFAULT_FN_ATTRS
2201 _mm256_cvtps_pd(__m128 __a)
2202 {
2203   return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2204 }
2205
2206 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2207 ///    x i32], truncating the result by rounding towards zero when it is
2208 ///    inexact.
2209 ///
2210 /// \headerfile <x86intrin.h>
2211 ///
2212 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2213 ///
2214 /// \param __a
2215 ///    A 256-bit vector of [4 x double].
2216 /// \returns A 128-bit integer vector containing the converted values.
2217 static __inline __m128i __DEFAULT_FN_ATTRS
2218 _mm256_cvttpd_epi32(__m256d __a)
2219 {
2220   return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2221 }
2222
2223 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2224 ///    x i32]. When a conversion is inexact, the value returned is rounded
2225 ///    according to the rounding control bits in the MXCSR register.
2226 ///
2227 /// \headerfile <x86intrin.h>
2228 ///
2229 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2230 ///
2231 /// \param __a
2232 ///    A 256-bit vector of [4 x double].
2233 /// \returns A 128-bit integer vector containing the converted values.
2234 static __inline __m128i __DEFAULT_FN_ATTRS
2235 _mm256_cvtpd_epi32(__m256d __a)
2236 {
2237   return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2238 }
2239
2240 /// Converts a vector of [8 x float] into a vector of [8 x i32],
2241 ///    truncating the result by rounding towards zero when it is inexact.
2242 ///
2243 /// \headerfile <x86intrin.h>
2244 ///
2245 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2246 ///
2247 /// \param __a
2248 ///    A 256-bit vector of [8 x float].
2249 /// \returns A 256-bit integer vector containing the converted values.
2250 static __inline __m256i __DEFAULT_FN_ATTRS
2251 _mm256_cvttps_epi32(__m256 __a)
2252 {
2253   return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2254 }
2255
2256 /// Returns the first element of the input vector of [4 x double].
2257 ///
2258 /// \headerfile <avxintrin.h>
2259 ///
2260 /// This intrinsic is a utility function and does not correspond to a specific
2261 ///    instruction.
2262 ///
2263 /// \param __a
2264 ///    A 256-bit vector of [4 x double].
2265 /// \returns A 64 bit double containing the first element of the input vector.
2266 static __inline double __DEFAULT_FN_ATTRS
2267 _mm256_cvtsd_f64(__m256d __a)
2268 {
2269  return __a[0];
2270 }
2271
2272 /// Returns the first element of the input vector of [8 x i32].
2273 ///
2274 /// \headerfile <avxintrin.h>
2275 ///
2276 /// This intrinsic is a utility function and does not correspond to a specific
2277 ///    instruction.
2278 ///
2279 /// \param __a
2280 ///    A 256-bit vector of [8 x i32].
2281 /// \returns A 32 bit integer containing the first element of the input vector.
2282 static __inline int __DEFAULT_FN_ATTRS
2283 _mm256_cvtsi256_si32(__m256i __a)
2284 {
2285  __v8si __b = (__v8si)__a;
2286  return __b[0];
2287 }
2288
2289 /// Returns the first element of the input vector of [8 x float].
2290 ///
2291 /// \headerfile <avxintrin.h>
2292 ///
2293 /// This intrinsic is a utility function and does not correspond to a specific
2294 ///    instruction.
2295 ///
2296 /// \param __a
2297 ///    A 256-bit vector of [8 x float].
2298 /// \returns A 32 bit float containing the first element of the input vector.
2299 static __inline float __DEFAULT_FN_ATTRS
2300 _mm256_cvtss_f32(__m256 __a)
2301 {
2302  return __a[0];
2303 }
2304
2305 /* Vector replicate */
2306 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2307 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2308 ///
2309 /// \headerfile <x86intrin.h>
2310 ///
2311 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2312 ///
2313 /// \param __a
2314 ///    A 256-bit vector of [8 x float]. \n
2315 ///    Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2316 ///    the return value. \n
2317 ///    Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2318 ///    the return value. \n
2319 ///    Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2320 ///    return value. \n
2321 ///    Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2322 ///    return value.
2323 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2324 ///    values.
2325 static __inline __m256 __DEFAULT_FN_ATTRS
2326 _mm256_movehdup_ps(__m256 __a)
2327 {
2328   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2329 }
2330
2331 /// Moves and duplicates even-indexed values from a 256-bit vector of
2332 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2333 ///
2334 /// \headerfile <x86intrin.h>
2335 ///
2336 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2337 ///
2338 /// \param __a
2339 ///    A 256-bit vector of [8 x float]. \n
2340 ///    Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2341 ///    the return value. \n
2342 ///    Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2343 ///    the return value. \n
2344 ///    Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2345 ///    return value. \n
2346 ///    Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2347 ///    return value.
2348 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2349 ///    values.
2350 static __inline __m256 __DEFAULT_FN_ATTRS
2351 _mm256_moveldup_ps(__m256 __a)
2352 {
2353   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2354 }
2355
2356 /// Moves and duplicates double-precision floating point values from a
2357 ///    256-bit vector of [4 x double] to double-precision values in a 256-bit
2358 ///    vector of [4 x double].
2359 ///
2360 /// \headerfile <x86intrin.h>
2361 ///
2362 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2363 ///
2364 /// \param __a
2365 ///    A 256-bit vector of [4 x double]. \n
2366 ///    Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2367 ///    return value. \n
2368 ///    Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2369 ///    the return value.
2370 /// \returns A 256-bit vector of [4 x double] containing the moved and
2371 ///    duplicated values.
2372 static __inline __m256d __DEFAULT_FN_ATTRS
2373 _mm256_movedup_pd(__m256d __a)
2374 {
2375   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2376 }
2377
2378 /* Unpack and Interleave */
2379 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2380 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2381 ///
2382 /// \headerfile <x86intrin.h>
2383 ///
2384 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2385 ///
2386 /// \param __a
2387 ///    A 256-bit floating-point vector of [4 x double]. \n
2388 ///    Bits [127:64] are written to bits [63:0] of the return value. \n
2389 ///    Bits [255:192] are written to bits [191:128] of the return value. \n
2390 /// \param __b
2391 ///    A 256-bit floating-point vector of [4 x double]. \n
2392 ///    Bits [127:64] are written to bits [127:64] of the return value. \n
2393 ///    Bits [255:192] are written to bits [255:192] of the return value. \n
2394 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2395 static __inline __m256d __DEFAULT_FN_ATTRS
2396 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2397 {
2398   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2399 }
2400
2401 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2402 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2403 ///
2404 /// \headerfile <x86intrin.h>
2405 ///
2406 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2407 ///
2408 /// \param __a
2409 ///    A 256-bit floating-point vector of [4 x double]. \n
2410 ///    Bits [63:0] are written to bits [63:0] of the return value. \n
2411 ///    Bits [191:128] are written to bits [191:128] of the return value.
2412 /// \param __b
2413 ///    A 256-bit floating-point vector of [4 x double]. \n
2414 ///    Bits [63:0] are written to bits [127:64] of the return value. \n
2415 ///    Bits [191:128] are written to bits [255:192] of the return value. \n
2416 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2417 static __inline __m256d __DEFAULT_FN_ATTRS
2418 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2419 {
2420   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2421 }
2422
2423 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2424 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2425 ///    vector of [8 x float].
2426 ///
2427 /// \headerfile <x86intrin.h>
2428 ///
2429 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2430 ///
2431 /// \param __a
2432 ///    A 256-bit vector of [8 x float]. \n
2433 ///    Bits [95:64] are written to bits [31:0] of the return value. \n
2434 ///    Bits [127:96] are written to bits [95:64] of the return value. \n
2435 ///    Bits [223:192] are written to bits [159:128] of the return value. \n
2436 ///    Bits [255:224] are written to bits [223:192] of the return value.
2437 /// \param __b
2438 ///    A 256-bit vector of [8 x float]. \n
2439 ///    Bits [95:64] are written to bits [63:32] of the return value. \n
2440 ///    Bits [127:96] are written to bits [127:96] of the return value. \n
2441 ///    Bits [223:192] are written to bits [191:160] of the return value. \n
2442 ///    Bits [255:224] are written to bits [255:224] of the return value.
2443 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2444 static __inline __m256 __DEFAULT_FN_ATTRS
2445 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2446 {
2447   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2448 }
2449
2450 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2451 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2452 ///    vector of [8 x float].
2453 ///
2454 /// \headerfile <x86intrin.h>
2455 ///
2456 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2457 ///
2458 /// \param __a
2459 ///    A 256-bit vector of [8 x float]. \n
2460 ///    Bits [31:0] are written to bits [31:0] of the return value. \n
2461 ///    Bits [63:32] are written to bits [95:64] of the return value. \n
2462 ///    Bits [159:128] are written to bits [159:128] of the return value. \n
2463 ///    Bits [191:160] are written to bits [223:192] of the return value.
2464 /// \param __b
2465 ///    A 256-bit vector of [8 x float]. \n
2466 ///    Bits [31:0] are written to bits [63:32] of the return value. \n
2467 ///    Bits [63:32] are written to bits [127:96] of the return value. \n
2468 ///    Bits [159:128] are written to bits [191:160] of the return value. \n
2469 ///    Bits [191:160] are written to bits [255:224] of the return value.
2470 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2471 static __inline __m256 __DEFAULT_FN_ATTRS
2472 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2473 {
2474   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2475 }
2476
2477 /* Bit Test */
2478 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2479 ///    element-by-element comparison of the double-precision element in the
2480 ///    first source vector and the corresponding element in the second source
2481 ///    vector.
2482 ///
2483 ///    The EFLAGS register is updated as follows: \n
2484 ///    If there is at least one pair of double-precision elements where the
2485 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2486 ///    ZF flag is set to 1. \n
2487 ///    If there is at least one pair of double-precision elements where the
2488 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2489 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2490 ///    This intrinsic returns the value of the ZF flag.
2491 ///
2492 /// \headerfile <x86intrin.h>
2493 ///
2494 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2495 ///
2496 /// \param __a
2497 ///    A 128-bit vector of [2 x double].
2498 /// \param __b
2499 ///    A 128-bit vector of [2 x double].
2500 /// \returns the ZF flag in the EFLAGS register.
2501 static __inline int __DEFAULT_FN_ATTRS128
2502 _mm_testz_pd(__m128d __a, __m128d __b)
2503 {
2504   return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2505 }
2506
2507 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2508 ///    element-by-element comparison of the double-precision element in the
2509 ///    first source vector and the corresponding element in the second source
2510 ///    vector.
2511 ///
2512 ///    The EFLAGS register is updated as follows: \n
2513 ///    If there is at least one pair of double-precision elements where the
2514 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2515 ///    ZF flag is set to 1. \n
2516 ///    If there is at least one pair of double-precision elements where the
2517 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2518 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2519 ///    This intrinsic returns the value of the CF flag.
2520 ///
2521 /// \headerfile <x86intrin.h>
2522 ///
2523 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2524 ///
2525 /// \param __a
2526 ///    A 128-bit vector of [2 x double].
2527 /// \param __b
2528 ///    A 128-bit vector of [2 x double].
2529 /// \returns the CF flag in the EFLAGS register.
2530 static __inline int __DEFAULT_FN_ATTRS128
2531 _mm_testc_pd(__m128d __a, __m128d __b)
2532 {
2533   return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2534 }
2535
2536 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2537 ///    element-by-element comparison of the double-precision element in the
2538 ///    first source vector and the corresponding element in the second source
2539 ///    vector.
2540 ///
2541 ///    The EFLAGS register is updated as follows: \n
2542 ///    If there is at least one pair of double-precision elements where the
2543 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2544 ///    ZF flag is set to 1. \n
2545 ///    If there is at least one pair of double-precision elements where the
2546 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2547 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2548 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2549 ///    otherwise it returns 0.
2550 ///
2551 /// \headerfile <x86intrin.h>
2552 ///
2553 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2554 ///
2555 /// \param __a
2556 ///    A 128-bit vector of [2 x double].
2557 /// \param __b
2558 ///    A 128-bit vector of [2 x double].
2559 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2560 static __inline int __DEFAULT_FN_ATTRS128
2561 _mm_testnzc_pd(__m128d __a, __m128d __b)
2562 {
2563   return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2564 }
2565
2566 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2567 ///    element-by-element comparison of the single-precision element in the
2568 ///    first source vector and the corresponding element in the second source
2569 ///    vector.
2570 ///
2571 ///    The EFLAGS register is updated as follows: \n
2572 ///    If there is at least one pair of single-precision elements where the
2573 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2574 ///    ZF flag is set to 1. \n
2575 ///    If there is at least one pair of single-precision elements where the
2576 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2577 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2578 ///    This intrinsic returns the value of the ZF flag.
2579 ///
2580 /// \headerfile <x86intrin.h>
2581 ///
2582 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2583 ///
2584 /// \param __a
2585 ///    A 128-bit vector of [4 x float].
2586 /// \param __b
2587 ///    A 128-bit vector of [4 x float].
2588 /// \returns the ZF flag.
2589 static __inline int __DEFAULT_FN_ATTRS128
2590 _mm_testz_ps(__m128 __a, __m128 __b)
2591 {
2592   return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2593 }
2594
2595 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2596 ///    element-by-element comparison of the single-precision element in the
2597 ///    first source vector and the corresponding element in the second source
2598 ///    vector.
2599 ///
2600 ///    The EFLAGS register is updated as follows: \n
2601 ///    If there is at least one pair of single-precision elements where the
2602 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2603 ///    ZF flag is set to 1. \n
2604 ///    If there is at least one pair of single-precision elements where the
2605 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2606 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2607 ///    This intrinsic returns the value of the CF flag.
2608 ///
2609 /// \headerfile <x86intrin.h>
2610 ///
2611 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2612 ///
2613 /// \param __a
2614 ///    A 128-bit vector of [4 x float].
2615 /// \param __b
2616 ///    A 128-bit vector of [4 x float].
2617 /// \returns the CF flag.
2618 static __inline int __DEFAULT_FN_ATTRS128
2619 _mm_testc_ps(__m128 __a, __m128 __b)
2620 {
2621   return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2622 }
2623
2624 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2625 ///    element-by-element comparison of the single-precision element in the
2626 ///    first source vector and the corresponding element in the second source
2627 ///    vector.
2628 ///
2629 ///    The EFLAGS register is updated as follows: \n
2630 ///    If there is at least one pair of single-precision elements where the
2631 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2632 ///    ZF flag is set to 1. \n
2633 ///    If there is at least one pair of single-precision elements where the
2634 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2635 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2636 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2637 ///    otherwise it returns 0.
2638 ///
2639 /// \headerfile <x86intrin.h>
2640 ///
2641 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2642 ///
2643 /// \param __a
2644 ///    A 128-bit vector of [4 x float].
2645 /// \param __b
2646 ///    A 128-bit vector of [4 x float].
2647 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2648 static __inline int __DEFAULT_FN_ATTRS128
2649 _mm_testnzc_ps(__m128 __a, __m128 __b)
2650 {
2651   return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2652 }
2653
2654 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2655 ///    element-by-element comparison of the double-precision elements in the
2656 ///    first source vector and the corresponding elements in the second source
2657 ///    vector.
2658 ///
2659 ///    The EFLAGS register is updated as follows: \n
2660 ///    If there is at least one pair of double-precision elements where the
2661 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2662 ///    ZF flag is set to 1. \n
2663 ///    If there is at least one pair of double-precision elements where the
2664 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2665 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2666 ///    This intrinsic returns the value of the ZF flag.
2667 ///
2668 /// \headerfile <x86intrin.h>
2669 ///
2670 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2671 ///
2672 /// \param __a
2673 ///    A 256-bit vector of [4 x double].
2674 /// \param __b
2675 ///    A 256-bit vector of [4 x double].
2676 /// \returns the ZF flag.
2677 static __inline int __DEFAULT_FN_ATTRS
2678 _mm256_testz_pd(__m256d __a, __m256d __b)
2679 {
2680   return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2681 }
2682
2683 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2684 ///    element-by-element comparison of the double-precision elements in the
2685 ///    first source vector and the corresponding elements in the second source
2686 ///    vector.
2687 ///
2688 ///    The EFLAGS register is updated as follows: \n
2689 ///    If there is at least one pair of double-precision elements where the
2690 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2691 ///    ZF flag is set to 1. \n
2692 ///    If there is at least one pair of double-precision elements where the
2693 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2694 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2695 ///    This intrinsic returns the value of the CF flag.
2696 ///
2697 /// \headerfile <x86intrin.h>
2698 ///
2699 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2700 ///
2701 /// \param __a
2702 ///    A 256-bit vector of [4 x double].
2703 /// \param __b
2704 ///    A 256-bit vector of [4 x double].
2705 /// \returns the CF flag.
2706 static __inline int __DEFAULT_FN_ATTRS
2707 _mm256_testc_pd(__m256d __a, __m256d __b)
2708 {
2709   return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2710 }
2711
2712 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2713 ///    element-by-element comparison of the double-precision elements in the
2714 ///    first source vector and the corresponding elements in the second source
2715 ///    vector.
2716 ///
2717 ///    The EFLAGS register is updated as follows: \n
2718 ///    If there is at least one pair of double-precision elements where the
2719 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2720 ///    ZF flag is set to 1. \n
2721 ///    If there is at least one pair of double-precision elements where the
2722 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2723 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2724 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2725 ///    otherwise it returns 0.
2726 ///
2727 /// \headerfile <x86intrin.h>
2728 ///
2729 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2730 ///
2731 /// \param __a
2732 ///    A 256-bit vector of [4 x double].
2733 /// \param __b
2734 ///    A 256-bit vector of [4 x double].
2735 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2736 static __inline int __DEFAULT_FN_ATTRS
2737 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2738 {
2739   return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2740 }
2741
2742 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2743 ///    element-by-element comparison of the single-precision element in the
2744 ///    first source vector and the corresponding element in the second source
2745 ///    vector.
2746 ///
2747 ///    The EFLAGS register is updated as follows: \n
2748 ///    If there is at least one pair of single-precision elements where the
2749 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2750 ///    ZF flag is set to 1. \n
2751 ///    If there is at least one pair of single-precision elements where the
2752 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2753 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2754 ///    This intrinsic returns the value of the ZF flag.
2755 ///
2756 /// \headerfile <x86intrin.h>
2757 ///
2758 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2759 ///
2760 /// \param __a
2761 ///    A 256-bit vector of [8 x float].
2762 /// \param __b
2763 ///    A 256-bit vector of [8 x float].
2764 /// \returns the ZF flag.
2765 static __inline int __DEFAULT_FN_ATTRS
2766 _mm256_testz_ps(__m256 __a, __m256 __b)
2767 {
2768   return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2769 }
2770
2771 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2772 ///    element-by-element comparison of the single-precision element in the
2773 ///    first source vector and the corresponding element in the second source
2774 ///    vector.
2775 ///
2776 ///    The EFLAGS register is updated as follows: \n
2777 ///    If there is at least one pair of single-precision elements where the
2778 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2779 ///    ZF flag is set to 1. \n
2780 ///    If there is at least one pair of single-precision elements where the
2781 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2782 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2783 ///    This intrinsic returns the value of the CF flag.
2784 ///
2785 /// \headerfile <x86intrin.h>
2786 ///
2787 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2788 ///
2789 /// \param __a
2790 ///    A 256-bit vector of [8 x float].
2791 /// \param __b
2792 ///    A 256-bit vector of [8 x float].
2793 /// \returns the CF flag.
2794 static __inline int __DEFAULT_FN_ATTRS
2795 _mm256_testc_ps(__m256 __a, __m256 __b)
2796 {
2797   return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2798 }
2799
2800 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2801 ///    element-by-element comparison of the single-precision elements in the
2802 ///    first source vector and the corresponding elements in the second source
2803 ///    vector.
2804 ///
2805 ///    The EFLAGS register is updated as follows: \n
2806 ///    If there is at least one pair of single-precision elements where the
2807 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2808 ///    ZF flag is set to 1. \n
2809 ///    If there is at least one pair of single-precision elements where the
2810 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2811 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2812 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2813 ///    otherwise it returns 0.
2814 ///
2815 /// \headerfile <x86intrin.h>
2816 ///
2817 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2818 ///
2819 /// \param __a
2820 ///    A 256-bit vector of [8 x float].
2821 /// \param __b
2822 ///    A 256-bit vector of [8 x float].
2823 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2824 static __inline int __DEFAULT_FN_ATTRS
2825 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2826 {
2827   return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2828 }
2829
2830 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2831 ///    of the two source vectors.
2832 ///
2833 ///    The EFLAGS register is updated as follows: \n
2834 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2835 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2836 ///    If there is at least one pair of bits where the bit from the first source
2837 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2838 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2839 ///    This intrinsic returns the value of the ZF flag.
2840 ///
2841 /// \headerfile <x86intrin.h>
2842 ///
2843 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2844 ///
2845 /// \param __a
2846 ///    A 256-bit integer vector.
2847 /// \param __b
2848 ///    A 256-bit integer vector.
2849 /// \returns the ZF flag.
2850 static __inline int __DEFAULT_FN_ATTRS
2851 _mm256_testz_si256(__m256i __a, __m256i __b)
2852 {
2853   return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2854 }
2855
2856 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2857 ///    of the two source vectors.
2858 ///
2859 ///    The EFLAGS register is updated as follows: \n
2860 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2861 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2862 ///    If there is at least one pair of bits where the bit from the first source
2863 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2864 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2865 ///    This intrinsic returns the value of the CF flag.
2866 ///
2867 /// \headerfile <x86intrin.h>
2868 ///
2869 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2870 ///
2871 /// \param __a
2872 ///    A 256-bit integer vector.
2873 /// \param __b
2874 ///    A 256-bit integer vector.
2875 /// \returns the CF flag.
2876 static __inline int __DEFAULT_FN_ATTRS
2877 _mm256_testc_si256(__m256i __a, __m256i __b)
2878 {
2879   return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2880 }
2881
2882 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2883 ///    of the two source vectors.
2884 ///
2885 ///    The EFLAGS register is updated as follows: \n
2886 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2887 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2888 ///    If there is at least one pair of bits where the bit from the first source
2889 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2890 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2891 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2892 ///    otherwise it returns 0.
2893 ///
2894 /// \headerfile <x86intrin.h>
2895 ///
2896 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2897 ///
2898 /// \param __a
2899 ///    A 256-bit integer vector.
2900 /// \param __b
2901 ///    A 256-bit integer vector.
2902 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2903 static __inline int __DEFAULT_FN_ATTRS
2904 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2905 {
2906   return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2907 }
2908
2909 /* Vector extract sign mask */
2910 /// Extracts the sign bits of double-precision floating point elements
2911 ///    in a 256-bit vector of [4 x double] and writes them to the lower order
2912 ///    bits of the return value.
2913 ///
2914 /// \headerfile <x86intrin.h>
2915 ///
2916 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2917 ///
2918 /// \param __a
2919 ///    A 256-bit vector of [4 x double] containing the double-precision
2920 ///    floating point values with sign bits to be extracted.
2921 /// \returns The sign bits from the operand, written to bits [3:0].
2922 static __inline int __DEFAULT_FN_ATTRS
2923 _mm256_movemask_pd(__m256d __a)
2924 {
2925   return __builtin_ia32_movmskpd256((__v4df)__a);
2926 }
2927
2928 /// Extracts the sign bits of single-precision floating point elements
2929 ///    in a 256-bit vector of [8 x float] and writes them to the lower order
2930 ///    bits of the return value.
2931 ///
2932 /// \headerfile <x86intrin.h>
2933 ///
2934 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2935 ///
2936 /// \param __a
2937 ///    A 256-bit vector of [8 x float] containing the single-precision floating
2938 ///    point values with sign bits to be extracted.
2939 /// \returns The sign bits from the operand, written to bits [7:0].
2940 static __inline int __DEFAULT_FN_ATTRS
2941 _mm256_movemask_ps(__m256 __a)
2942 {
2943   return __builtin_ia32_movmskps256((__v8sf)__a);
2944 }
2945
2946 /* Vector __zero */
2947 /// Zeroes the contents of all XMM or YMM registers.
2948 ///
2949 /// \headerfile <x86intrin.h>
2950 ///
2951 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
2952 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
2953 _mm256_zeroall(void)
2954 {
2955   __builtin_ia32_vzeroall();
2956 }
2957
2958 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
2959 ///
2960 /// \headerfile <x86intrin.h>
2961 ///
2962 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
2963 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
2964 _mm256_zeroupper(void)
2965 {
2966   __builtin_ia32_vzeroupper();
2967 }
2968
2969 /* Vector load with broadcast */
2970 /// Loads a scalar single-precision floating point value from the
2971 ///    specified address pointed to by \a __a and broadcasts it to the elements
2972 ///    of a [4 x float] vector.
2973 ///
2974 /// \headerfile <x86intrin.h>
2975 ///
2976 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
2977 ///
2978 /// \param __a
2979 ///    The single-precision floating point value to be broadcast.
2980 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
2981 ///    equal to the broadcast value.
2982 static __inline __m128 __DEFAULT_FN_ATTRS128
2983 _mm_broadcast_ss(float const *__a)
2984 {
2985   float __f = *__a;
2986   return __extension__ (__m128)(__v4sf){ __f, __f, __f, __f };
2987 }
2988
2989 /// Loads a scalar double-precision floating point value from the
2990 ///    specified address pointed to by \a __a and broadcasts it to the elements
2991 ///    of a [4 x double] vector.
2992 ///
2993 /// \headerfile <x86intrin.h>
2994 ///
2995 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
2996 ///
2997 /// \param __a
2998 ///    The double-precision floating point value to be broadcast.
2999 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3000 ///    equal to the broadcast value.
3001 static __inline __m256d __DEFAULT_FN_ATTRS
3002 _mm256_broadcast_sd(double const *__a)
3003 {
3004   double __d = *__a;
3005   return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3006 }
3007
3008 /// Loads a scalar single-precision floating point value from the
3009 ///    specified address pointed to by \a __a and broadcasts it to the elements
3010 ///    of a [8 x float] vector.
3011 ///
3012 /// \headerfile <x86intrin.h>
3013 ///
3014 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3015 ///
3016 /// \param __a
3017 ///    The single-precision floating point value to be broadcast.
3018 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3019 ///    equal to the broadcast value.
3020 static __inline __m256 __DEFAULT_FN_ATTRS
3021 _mm256_broadcast_ss(float const *__a)
3022 {
3023   float __f = *__a;
3024   return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3025 }
3026
3027 /// Loads the data from a 128-bit vector of [2 x double] from the
3028 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3029 ///    elements in a 256-bit vector of [4 x double].
3030 ///
3031 /// \headerfile <x86intrin.h>
3032 ///
3033 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3034 ///
3035 /// \param __a
3036 ///    The 128-bit vector of [2 x double] to be broadcast.
3037 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3038 ///    equal to the broadcast value.
3039 static __inline __m256d __DEFAULT_FN_ATTRS
3040 _mm256_broadcast_pd(__m128d const *__a)
3041 {
3042   __m128d __b = _mm_loadu_pd((const double *)__a);
3043   return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3044                                           0, 1, 0, 1);
3045 }
3046
3047 /// Loads the data from a 128-bit vector of [4 x float] from the
3048 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3049 ///    elements in a 256-bit vector of [8 x float].
3050 ///
3051 /// \headerfile <x86intrin.h>
3052 ///
3053 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3054 ///
3055 /// \param __a
3056 ///    The 128-bit vector of [4 x float] to be broadcast.
3057 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3058 ///    equal to the broadcast value.
3059 static __inline __m256 __DEFAULT_FN_ATTRS
3060 _mm256_broadcast_ps(__m128 const *__a)
3061 {
3062   __m128 __b = _mm_loadu_ps((const float *)__a);
3063   return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3064                                          0, 1, 2, 3, 0, 1, 2, 3);
3065 }
3066
3067 /* SIMD load ops */
3068 /// Loads 4 double-precision floating point values from a 32-byte aligned
3069 ///    memory location pointed to by \a __p into a vector of [4 x double].
3070 ///
3071 /// \headerfile <x86intrin.h>
3072 ///
3073 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3074 ///
3075 /// \param __p
3076 ///    A 32-byte aligned pointer to a memory location containing
3077 ///    double-precision floating point values.
3078 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3079 static __inline __m256d __DEFAULT_FN_ATTRS
3080 _mm256_load_pd(double const *__p)
3081 {
3082   return *(__m256d *)__p;
3083 }
3084
3085 /// Loads 8 single-precision floating point values from a 32-byte aligned
3086 ///    memory location pointed to by \a __p into a vector of [8 x float].
3087 ///
3088 /// \headerfile <x86intrin.h>
3089 ///
3090 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3091 ///
3092 /// \param __p
3093 ///    A 32-byte aligned pointer to a memory location containing float values.
3094 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3095 static __inline __m256 __DEFAULT_FN_ATTRS
3096 _mm256_load_ps(float const *__p)
3097 {
3098   return *(__m256 *)__p;
3099 }
3100
3101 /// Loads 4 double-precision floating point values from an unaligned
3102 ///    memory location pointed to by \a __p into a vector of [4 x double].
3103 ///
3104 /// \headerfile <x86intrin.h>
3105 ///
3106 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3107 ///
3108 /// \param __p
3109 ///    A pointer to a memory location containing double-precision floating
3110 ///    point values.
3111 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3112 static __inline __m256d __DEFAULT_FN_ATTRS
3113 _mm256_loadu_pd(double const *__p)
3114 {
3115   struct __loadu_pd {
3116     __m256d __v;
3117   } __attribute__((__packed__, __may_alias__));
3118   return ((struct __loadu_pd*)__p)->__v;
3119 }
3120
3121 /// Loads 8 single-precision floating point values from an unaligned
3122 ///    memory location pointed to by \a __p into a vector of [8 x float].
3123 ///
3124 /// \headerfile <x86intrin.h>
3125 ///
3126 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3127 ///
3128 /// \param __p
3129 ///    A pointer to a memory location containing single-precision floating
3130 ///    point values.
3131 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3132 static __inline __m256 __DEFAULT_FN_ATTRS
3133 _mm256_loadu_ps(float const *__p)
3134 {
3135   struct __loadu_ps {
3136     __m256 __v;
3137   } __attribute__((__packed__, __may_alias__));
3138   return ((struct __loadu_ps*)__p)->__v;
3139 }
3140
3141 /// Loads 256 bits of integer data from a 32-byte aligned memory
3142 ///    location pointed to by \a __p into elements of a 256-bit integer vector.
3143 ///
3144 /// \headerfile <x86intrin.h>
3145 ///
3146 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3147 ///
3148 /// \param __p
3149 ///    A 32-byte aligned pointer to a 256-bit integer vector containing integer
3150 ///    values.
3151 /// \returns A 256-bit integer vector containing the moved values.
3152 static __inline __m256i __DEFAULT_FN_ATTRS
3153 _mm256_load_si256(__m256i const *__p)
3154 {
3155   return *__p;
3156 }
3157
3158 /// Loads 256 bits of integer data from an unaligned memory location
3159 ///    pointed to by \a __p into a 256-bit integer vector.
3160 ///
3161 /// \headerfile <x86intrin.h>
3162 ///
3163 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3164 ///
3165 /// \param __p
3166 ///    A pointer to a 256-bit integer vector containing integer values.
3167 /// \returns A 256-bit integer vector containing the moved values.
3168 static __inline __m256i __DEFAULT_FN_ATTRS
3169 _mm256_loadu_si256(__m256i const *__p)
3170 {
3171   struct __loadu_si256 {
3172     __m256i __v;
3173   } __attribute__((__packed__, __may_alias__));
3174   return ((struct __loadu_si256*)__p)->__v;
3175 }
3176
3177 /// Loads 256 bits of integer data from an unaligned memory location
3178 ///    pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3179 ///    perform better than \c _mm256_loadu_si256 when the data crosses a cache
3180 ///    line boundary.
3181 ///
3182 /// \headerfile <x86intrin.h>
3183 ///
3184 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3185 ///
3186 /// \param __p
3187 ///    A pointer to a 256-bit integer vector containing integer values.
3188 /// \returns A 256-bit integer vector containing the moved values.
3189 static __inline __m256i __DEFAULT_FN_ATTRS
3190 _mm256_lddqu_si256(__m256i const *__p)
3191 {
3192   return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3193 }
3194
3195 /* SIMD store ops */
3196 /// Stores double-precision floating point values from a 256-bit vector
3197 ///    of [4 x double] to a 32-byte aligned memory location pointed to by
3198 ///    \a __p.
3199 ///
3200 /// \headerfile <x86intrin.h>
3201 ///
3202 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3203 ///
3204 /// \param __p
3205 ///    A 32-byte aligned pointer to a memory location that will receive the
3206 ///    double-precision floaing point values.
3207 /// \param __a
3208 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3209 static __inline void __DEFAULT_FN_ATTRS
3210 _mm256_store_pd(double *__p, __m256d __a)
3211 {
3212   *(__m256d *)__p = __a;
3213 }
3214
3215 /// Stores single-precision floating point values from a 256-bit vector
3216 ///    of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3217 ///
3218 /// \headerfile <x86intrin.h>
3219 ///
3220 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3221 ///
3222 /// \param __p
3223 ///    A 32-byte aligned pointer to a memory location that will receive the
3224 ///    float values.
3225 /// \param __a
3226 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3227 static __inline void __DEFAULT_FN_ATTRS
3228 _mm256_store_ps(float *__p, __m256 __a)
3229 {
3230   *(__m256 *)__p = __a;
3231 }
3232
3233 /// Stores double-precision floating point values from a 256-bit vector
3234 ///    of [4 x double] to an unaligned memory location pointed to by \a __p.
3235 ///
3236 /// \headerfile <x86intrin.h>
3237 ///
3238 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3239 ///
3240 /// \param __p
3241 ///    A pointer to a memory location that will receive the double-precision
3242 ///    floating point values.
3243 /// \param __a
3244 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3245 static __inline void __DEFAULT_FN_ATTRS
3246 _mm256_storeu_pd(double *__p, __m256d __a)
3247 {
3248   struct __storeu_pd {
3249     __m256d __v;
3250   } __attribute__((__packed__, __may_alias__));
3251   ((struct __storeu_pd*)__p)->__v = __a;
3252 }
3253
3254 /// Stores single-precision floating point values from a 256-bit vector
3255 ///    of [8 x float] to an unaligned memory location pointed to by \a __p.
3256 ///
3257 /// \headerfile <x86intrin.h>
3258 ///
3259 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3260 ///
3261 /// \param __p
3262 ///    A pointer to a memory location that will receive the float values.
3263 /// \param __a
3264 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3265 static __inline void __DEFAULT_FN_ATTRS
3266 _mm256_storeu_ps(float *__p, __m256 __a)
3267 {
3268   struct __storeu_ps {
3269     __m256 __v;
3270   } __attribute__((__packed__, __may_alias__));
3271   ((struct __storeu_ps*)__p)->__v = __a;
3272 }
3273
3274 /// Stores integer values from a 256-bit integer vector to a 32-byte
3275 ///    aligned memory location pointed to by \a __p.
3276 ///
3277 /// \headerfile <x86intrin.h>
3278 ///
3279 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3280 ///
3281 /// \param __p
3282 ///    A 32-byte aligned pointer to a memory location that will receive the
3283 ///    integer values.
3284 /// \param __a
3285 ///    A 256-bit integer vector containing the values to be moved.
3286 static __inline void __DEFAULT_FN_ATTRS
3287 _mm256_store_si256(__m256i *__p, __m256i __a)
3288 {
3289   *__p = __a;
3290 }
3291
3292 /// Stores integer values from a 256-bit integer vector to an unaligned
3293 ///    memory location pointed to by \a __p.
3294 ///
3295 /// \headerfile <x86intrin.h>
3296 ///
3297 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3298 ///
3299 /// \param __p
3300 ///    A pointer to a memory location that will receive the integer values.
3301 /// \param __a
3302 ///    A 256-bit integer vector containing the values to be moved.
3303 static __inline void __DEFAULT_FN_ATTRS
3304 _mm256_storeu_si256(__m256i *__p, __m256i __a)
3305 {
3306   struct __storeu_si256 {
3307     __m256i __v;
3308   } __attribute__((__packed__, __may_alias__));
3309   ((struct __storeu_si256*)__p)->__v = __a;
3310 }
3311
3312 /* Conditional load ops */
3313 /// Conditionally loads double-precision floating point elements from a
3314 ///    memory location pointed to by \a __p into a 128-bit vector of
3315 ///    [2 x double], depending on the mask bits associated with each data
3316 ///    element.
3317 ///
3318 /// \headerfile <x86intrin.h>
3319 ///
3320 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3321 ///
3322 /// \param __p
3323 ///    A pointer to a memory location that contains the double-precision
3324 ///    floating point values.
3325 /// \param __m
3326 ///    A 128-bit integer vector containing the mask. The most significant bit of
3327 ///    each data element represents the mask bits. If a mask bit is zero, the
3328 ///    corresponding value in the memory location is not loaded and the
3329 ///    corresponding field in the return value is set to zero.
3330 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3331 static __inline __m128d __DEFAULT_FN_ATTRS128
3332 _mm_maskload_pd(double const *__p, __m128i __m)
3333 {
3334   return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3335 }
3336
3337 /// Conditionally loads double-precision floating point elements from a
3338 ///    memory location pointed to by \a __p into a 256-bit vector of
3339 ///    [4 x double], depending on the mask bits associated with each data
3340 ///    element.
3341 ///
3342 /// \headerfile <x86intrin.h>
3343 ///
3344 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3345 ///
3346 /// \param __p
3347 ///    A pointer to a memory location that contains the double-precision
3348 ///    floating point values.
3349 /// \param __m
3350 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3351 ///    significant bit of each quadword element represents the mask bits. If a
3352 ///    mask bit is zero, the corresponding value in the memory location is not
3353 ///    loaded and the corresponding field in the return value is set to zero.
3354 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3355 static __inline __m256d __DEFAULT_FN_ATTRS
3356 _mm256_maskload_pd(double const *__p, __m256i __m)
3357 {
3358   return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3359                                                (__v4di)__m);
3360 }
3361
3362 /// Conditionally loads single-precision floating point elements from a
3363 ///    memory location pointed to by \a __p into a 128-bit vector of
3364 ///    [4 x float], depending on the mask bits associated with each data
3365 ///    element.
3366 ///
3367 /// \headerfile <x86intrin.h>
3368 ///
3369 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3370 ///
3371 /// \param __p
3372 ///    A pointer to a memory location that contains the single-precision
3373 ///    floating point values.
3374 /// \param __m
3375 ///    A 128-bit integer vector containing the mask. The most significant bit of
3376 ///    each data element represents the mask bits. If a mask bit is zero, the
3377 ///    corresponding value in the memory location is not loaded and the
3378 ///    corresponding field in the return value is set to zero.
3379 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3380 static __inline __m128 __DEFAULT_FN_ATTRS128
3381 _mm_maskload_ps(float const *__p, __m128i __m)
3382 {
3383   return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3384 }
3385
3386 /// Conditionally loads single-precision floating point elements from a
3387 ///    memory location pointed to by \a __p into a 256-bit vector of
3388 ///    [8 x float], depending on the mask bits associated with each data
3389 ///    element.
3390 ///
3391 /// \headerfile <x86intrin.h>
3392 ///
3393 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3394 ///
3395 /// \param __p
3396 ///    A pointer to a memory location that contains the single-precision
3397 ///    floating point values.
3398 /// \param __m
3399 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3400 ///    significant bit of each dword element represents the mask bits. If a mask
3401 ///    bit is zero, the corresponding value in the memory location is not loaded
3402 ///    and the corresponding field in the return value is set to zero.
3403 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3404 static __inline __m256 __DEFAULT_FN_ATTRS
3405 _mm256_maskload_ps(float const *__p, __m256i __m)
3406 {
3407   return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3408 }
3409
3410 /* Conditional store ops */
3411 /// Moves single-precision floating point values from a 256-bit vector
3412 ///    of [8 x float] to a memory location pointed to by \a __p, according to
3413 ///    the specified mask.
3414 ///
3415 /// \headerfile <x86intrin.h>
3416 ///
3417 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3418 ///
3419 /// \param __p
3420 ///    A pointer to a memory location that will receive the float values.
3421 /// \param __m
3422 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3423 ///    significant bit of each dword element in the mask vector represents the
3424 ///    mask bits. If a mask bit is zero, the corresponding value from vector
3425 ///    \a __a is not stored and the corresponding field in the memory location
3426 ///    pointed to by \a __p is not changed.
3427 /// \param __a
3428 ///    A 256-bit vector of [8 x float] containing the values to be stored.
3429 static __inline void __DEFAULT_FN_ATTRS
3430 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3431 {
3432   __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3433 }
3434
3435 /// Moves double-precision values from a 128-bit vector of [2 x double]
3436 ///    to a memory location pointed to by \a __p, according to the specified
3437 ///    mask.
3438 ///
3439 /// \headerfile <x86intrin.h>
3440 ///
3441 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3442 ///
3443 /// \param __p
3444 ///    A pointer to a memory location that will receive the float values.
3445 /// \param __m
3446 ///    A 128-bit integer vector containing the mask. The most significant bit of
3447 ///    each field in the mask vector represents the mask bits. If a mask bit is
3448 ///    zero, the corresponding value from vector \a __a is not stored and the
3449 ///    corresponding field in the memory location pointed to by \a __p is not
3450 ///    changed.
3451 /// \param __a
3452 ///    A 128-bit vector of [2 x double] containing the values to be stored.
3453 static __inline void __DEFAULT_FN_ATTRS128
3454 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3455 {
3456   __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3457 }
3458
3459 /// Moves double-precision values from a 256-bit vector of [4 x double]
3460 ///    to a memory location pointed to by \a __p, according to the specified
3461 ///    mask.
3462 ///
3463 /// \headerfile <x86intrin.h>
3464 ///
3465 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3466 ///
3467 /// \param __p
3468 ///    A pointer to a memory location that will receive the float values.
3469 /// \param __m
3470 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3471 ///    significant bit of each quadword element in the mask vector represents
3472 ///    the mask bits. If a mask bit is zero, the corresponding value from vector
3473 ///    __a is not stored and the corresponding field in the memory location
3474 ///    pointed to by \a __p is not changed.
3475 /// \param __a
3476 ///    A 256-bit vector of [4 x double] containing the values to be stored.
3477 static __inline void __DEFAULT_FN_ATTRS
3478 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3479 {
3480   __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3481 }
3482
3483 /// Moves single-precision floating point values from a 128-bit vector
3484 ///    of [4 x float] to a memory location pointed to by \a __p, according to
3485 ///    the specified mask.
3486 ///
3487 /// \headerfile <x86intrin.h>
3488 ///
3489 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3490 ///
3491 /// \param __p
3492 ///    A pointer to a memory location that will receive the float values.
3493 /// \param __m
3494 ///    A 128-bit integer vector containing the mask. The most significant bit of
3495 ///    each field in the mask vector represents the mask bits. If a mask bit is
3496 ///    zero, the corresponding value from vector __a is not stored and the
3497 ///    corresponding field in the memory location pointed to by \a __p is not
3498 ///    changed.
3499 /// \param __a
3500 ///    A 128-bit vector of [4 x float] containing the values to be stored.
3501 static __inline void __DEFAULT_FN_ATTRS128
3502 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3503 {
3504   __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3505 }
3506
3507 /* Cacheability support ops */
3508 /// Moves integer data from a 256-bit integer vector to a 32-byte
3509 ///    aligned memory location. To minimize caching, the data is flagged as
3510 ///    non-temporal (unlikely to be used again soon).
3511 ///
3512 /// \headerfile <x86intrin.h>
3513 ///
3514 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3515 ///
3516 /// \param __a
3517 ///    A pointer to a 32-byte aligned memory location that will receive the
3518 ///    integer values.
3519 /// \param __b
3520 ///    A 256-bit integer vector containing the values to be moved.
3521 static __inline void __DEFAULT_FN_ATTRS
3522 _mm256_stream_si256(__m256i *__a, __m256i __b)
3523 {
3524   typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3525   __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3526 }
3527
3528 /// Moves double-precision values from a 256-bit vector of [4 x double]
3529 ///    to a 32-byte aligned memory location. To minimize caching, the data is
3530 ///    flagged as non-temporal (unlikely to be used again soon).
3531 ///
3532 /// \headerfile <x86intrin.h>
3533 ///
3534 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3535 ///
3536 /// \param __a
3537 ///    A pointer to a 32-byte aligned memory location that will receive the
3538 ///    double-precision floating-point values.
3539 /// \param __b
3540 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3541 static __inline void __DEFAULT_FN_ATTRS
3542 _mm256_stream_pd(double *__a, __m256d __b)
3543 {
3544   typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3545   __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3546 }
3547
3548 /// Moves single-precision floating point values from a 256-bit vector
3549 ///    of [8 x float] to a 32-byte aligned memory location. To minimize
3550 ///    caching, the data is flagged as non-temporal (unlikely to be used again
3551 ///    soon).
3552 ///
3553 /// \headerfile <x86intrin.h>
3554 ///
3555 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3556 ///
3557 /// \param __p
3558 ///    A pointer to a 32-byte aligned memory location that will receive the
3559 ///    single-precision floating point values.
3560 /// \param __a
3561 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3562 static __inline void __DEFAULT_FN_ATTRS
3563 _mm256_stream_ps(float *__p, __m256 __a)
3564 {
3565   typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3566   __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3567 }
3568
3569 /* Create vectors */
3570 /// Create a 256-bit vector of [4 x double] with undefined values.
3571 ///
3572 /// \headerfile <x86intrin.h>
3573 ///
3574 /// This intrinsic has no corresponding instruction.
3575 ///
3576 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3577 static __inline__ __m256d __DEFAULT_FN_ATTRS
3578 _mm256_undefined_pd(void)
3579 {
3580   return (__m256d)__builtin_ia32_undef256();
3581 }
3582
3583 /// Create a 256-bit vector of [8 x float] with undefined values.
3584 ///
3585 /// \headerfile <x86intrin.h>
3586 ///
3587 /// This intrinsic has no corresponding instruction.
3588 ///
3589 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3590 static __inline__ __m256 __DEFAULT_FN_ATTRS
3591 _mm256_undefined_ps(void)
3592 {
3593   return (__m256)__builtin_ia32_undef256();
3594 }
3595
3596 /// Create a 256-bit integer vector with undefined values.
3597 ///
3598 /// \headerfile <x86intrin.h>
3599 ///
3600 /// This intrinsic has no corresponding instruction.
3601 ///
3602 /// \returns A 256-bit integer vector containing undefined values.
3603 static __inline__ __m256i __DEFAULT_FN_ATTRS
3604 _mm256_undefined_si256(void)
3605 {
3606   return (__m256i)__builtin_ia32_undef256();
3607 }
3608
3609 /// Constructs a 256-bit floating-point vector of [4 x double]
3610 ///    initialized with the specified double-precision floating-point values.
3611 ///
3612 /// \headerfile <x86intrin.h>
3613 ///
3614 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3615 ///   instruction.
3616 ///
3617 /// \param __a
3618 ///    A double-precision floating-point value used to initialize bits [255:192]
3619 ///    of the result.
3620 /// \param __b
3621 ///    A double-precision floating-point value used to initialize bits [191:128]
3622 ///    of the result.
3623 /// \param __c
3624 ///    A double-precision floating-point value used to initialize bits [127:64]
3625 ///    of the result.
3626 /// \param __d
3627 ///    A double-precision floating-point value used to initialize bits [63:0]
3628 ///    of the result.
3629 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3630 static __inline __m256d __DEFAULT_FN_ATTRS
3631 _mm256_set_pd(double __a, double __b, double __c, double __d)
3632 {
3633   return __extension__ (__m256d){ __d, __c, __b, __a };
3634 }
3635
3636 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3637 ///    with the specified single-precision floating-point values.
3638 ///
3639 /// \headerfile <x86intrin.h>
3640 ///
3641 /// This intrinsic is a utility function and does not correspond to a specific
3642 ///   instruction.
3643 ///
3644 /// \param __a
3645 ///    A single-precision floating-point value used to initialize bits [255:224]
3646 ///    of the result.
3647 /// \param __b
3648 ///    A single-precision floating-point value used to initialize bits [223:192]
3649 ///    of the result.
3650 /// \param __c
3651 ///    A single-precision floating-point value used to initialize bits [191:160]
3652 ///    of the result.
3653 /// \param __d
3654 ///    A single-precision floating-point value used to initialize bits [159:128]
3655 ///    of the result.
3656 /// \param __e
3657 ///    A single-precision floating-point value used to initialize bits [127:96]
3658 ///    of the result.
3659 /// \param __f
3660 ///    A single-precision floating-point value used to initialize bits [95:64]
3661 ///    of the result.
3662 /// \param __g
3663 ///    A single-precision floating-point value used to initialize bits [63:32]
3664 ///    of the result.
3665 /// \param __h
3666 ///    A single-precision floating-point value used to initialize bits [31:0]
3667 ///    of the result.
3668 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3669 static __inline __m256 __DEFAULT_FN_ATTRS
3670 _mm256_set_ps(float __a, float __b, float __c, float __d,
3671               float __e, float __f, float __g, float __h)
3672 {
3673   return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3674 }
3675
3676 /// Constructs a 256-bit integer vector initialized with the specified
3677 ///    32-bit integral values.
3678 ///
3679 /// \headerfile <x86intrin.h>
3680 ///
3681 /// This intrinsic is a utility function and does not correspond to a specific
3682 ///   instruction.
3683 ///
3684 /// \param __i0
3685 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
3686 /// \param __i1
3687 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
3688 /// \param __i2
3689 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
3690 /// \param __i3
3691 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
3692 /// \param __i4
3693 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
3694 /// \param __i5
3695 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
3696 /// \param __i6
3697 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
3698 /// \param __i7
3699 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
3700 /// \returns An initialized 256-bit integer vector.
3701 static __inline __m256i __DEFAULT_FN_ATTRS
3702 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3703                  int __i4, int __i5, int __i6, int __i7)
3704 {
3705   return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3706 }
3707
3708 /// Constructs a 256-bit integer vector initialized with the specified
3709 ///    16-bit integral values.
3710 ///
3711 /// \headerfile <x86intrin.h>
3712 ///
3713 /// This intrinsic is a utility function and does not correspond to a specific
3714 ///   instruction.
3715 ///
3716 /// \param __w15
3717 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
3718 /// \param __w14
3719 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
3720 /// \param __w13
3721 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
3722 /// \param __w12
3723 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
3724 /// \param __w11
3725 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
3726 /// \param __w10
3727 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
3728 /// \param __w09
3729 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
3730 /// \param __w08
3731 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
3732 /// \param __w07
3733 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
3734 /// \param __w06
3735 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
3736 /// \param __w05
3737 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
3738 /// \param __w04
3739 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
3740 /// \param __w03
3741 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
3742 /// \param __w02
3743 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
3744 /// \param __w01
3745 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
3746 /// \param __w00
3747 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
3748 /// \returns An initialized 256-bit integer vector.
3749 static __inline __m256i __DEFAULT_FN_ATTRS
3750 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3751                  short __w11, short __w10, short __w09, short __w08,
3752                  short __w07, short __w06, short __w05, short __w04,
3753                  short __w03, short __w02, short __w01, short __w00)
3754 {
3755   return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3756     __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3757 }
3758
3759 /// Constructs a 256-bit integer vector initialized with the specified
3760 ///    8-bit integral values.
3761 ///
3762 /// \headerfile <x86intrin.h>
3763 ///
3764 /// This intrinsic is a utility function and does not correspond to a specific
3765 ///   instruction.
3766 ///
3767 /// \param __b31
3768 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
3769 /// \param __b30
3770 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
3771 /// \param __b29
3772 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
3773 /// \param __b28
3774 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
3775 /// \param __b27
3776 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
3777 /// \param __b26
3778 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
3779 /// \param __b25
3780 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
3781 /// \param __b24
3782 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
3783 /// \param __b23
3784 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
3785 /// \param __b22
3786 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
3787 /// \param __b21
3788 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
3789 /// \param __b20
3790 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
3791 /// \param __b19
3792 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
3793 /// \param __b18
3794 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
3795 /// \param __b17
3796 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
3797 /// \param __b16
3798 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
3799 /// \param __b15
3800 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
3801 /// \param __b14
3802 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
3803 /// \param __b13
3804 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
3805 /// \param __b12
3806 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
3807 /// \param __b11
3808 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
3809 /// \param __b10
3810 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
3811 /// \param __b09
3812 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
3813 /// \param __b08
3814 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
3815 /// \param __b07
3816 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
3817 /// \param __b06
3818 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
3819 /// \param __b05
3820 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
3821 /// \param __b04
3822 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
3823 /// \param __b03
3824 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
3825 /// \param __b02
3826 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
3827 /// \param __b01
3828 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
3829 /// \param __b00
3830 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
3831 /// \returns An initialized 256-bit integer vector.
3832 static __inline __m256i __DEFAULT_FN_ATTRS
3833 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3834                 char __b27, char __b26, char __b25, char __b24,
3835                 char __b23, char __b22, char __b21, char __b20,
3836                 char __b19, char __b18, char __b17, char __b16,
3837                 char __b15, char __b14, char __b13, char __b12,
3838                 char __b11, char __b10, char __b09, char __b08,
3839                 char __b07, char __b06, char __b05, char __b04,
3840                 char __b03, char __b02, char __b01, char __b00)
3841 {
3842   return __extension__ (__m256i)(__v32qi){
3843     __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3844     __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3845     __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3846     __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3847   };
3848 }
3849
3850 /// Constructs a 256-bit integer vector initialized with the specified
3851 ///    64-bit integral values.
3852 ///
3853 /// \headerfile <x86intrin.h>
3854 ///
3855 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3856 ///   instruction.
3857 ///
3858 /// \param __a
3859 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
3860 /// \param __b
3861 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
3862 /// \param __c
3863 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
3864 /// \param __d
3865 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
3866 /// \returns An initialized 256-bit integer vector.
3867 static __inline __m256i __DEFAULT_FN_ATTRS
3868 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3869 {
3870   return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3871 }
3872
3873 /* Create vectors with elements in reverse order */
3874 /// Constructs a 256-bit floating-point vector of [4 x double],
3875 ///    initialized in reverse order with the specified double-precision
3876 ///    floating-point values.
3877 ///
3878 /// \headerfile <x86intrin.h>
3879 ///
3880 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3881 ///   instruction.
3882 ///
3883 /// \param __a
3884 ///    A double-precision floating-point value used to initialize bits [63:0]
3885 ///    of the result.
3886 /// \param __b
3887 ///    A double-precision floating-point value used to initialize bits [127:64]
3888 ///    of the result.
3889 /// \param __c
3890 ///    A double-precision floating-point value used to initialize bits [191:128]
3891 ///    of the result.
3892 /// \param __d
3893 ///    A double-precision floating-point value used to initialize bits [255:192]
3894 ///    of the result.
3895 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3896 static __inline __m256d __DEFAULT_FN_ATTRS
3897 _mm256_setr_pd(double __a, double __b, double __c, double __d)
3898 {
3899   return _mm256_set_pd(__d, __c, __b, __a);
3900 }
3901
3902 /// Constructs a 256-bit floating-point vector of [8 x float],
3903 ///    initialized in reverse order with the specified single-precision
3904 ///    float-point values.
3905 ///
3906 /// \headerfile <x86intrin.h>
3907 ///
3908 /// This intrinsic is a utility function and does not correspond to a specific
3909 ///   instruction.
3910 ///
3911 /// \param __a
3912 ///    A single-precision floating-point value used to initialize bits [31:0]
3913 ///    of the result.
3914 /// \param __b
3915 ///    A single-precision floating-point value used to initialize bits [63:32]
3916 ///    of the result.
3917 /// \param __c
3918 ///    A single-precision floating-point value used to initialize bits [95:64]
3919 ///    of the result.
3920 /// \param __d
3921 ///    A single-precision floating-point value used to initialize bits [127:96]
3922 ///    of the result.
3923 /// \param __e
3924 ///    A single-precision floating-point value used to initialize bits [159:128]
3925 ///    of the result.
3926 /// \param __f
3927 ///    A single-precision floating-point value used to initialize bits [191:160]
3928 ///    of the result.
3929 /// \param __g
3930 ///    A single-precision floating-point value used to initialize bits [223:192]
3931 ///    of the result.
3932 /// \param __h
3933 ///    A single-precision floating-point value used to initialize bits [255:224]
3934 ///    of the result.
3935 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3936 static __inline __m256 __DEFAULT_FN_ATTRS
3937 _mm256_setr_ps(float __a, float __b, float __c, float __d,
3938                float __e, float __f, float __g, float __h)
3939 {
3940   return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
3941 }
3942
3943 /// Constructs a 256-bit integer vector, initialized in reverse order
3944 ///    with the specified 32-bit integral values.
3945 ///
3946 /// \headerfile <x86intrin.h>
3947 ///
3948 /// This intrinsic is a utility function and does not correspond to a specific
3949 ///   instruction.
3950 ///
3951 /// \param __i0
3952 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
3953 /// \param __i1
3954 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
3955 /// \param __i2
3956 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
3957 /// \param __i3
3958 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
3959 /// \param __i4
3960 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
3961 /// \param __i5
3962 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
3963 /// \param __i6
3964 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
3965 /// \param __i7
3966 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
3967 /// \returns An initialized 256-bit integer vector.
3968 static __inline __m256i __DEFAULT_FN_ATTRS
3969 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
3970                   int __i4, int __i5, int __i6, int __i7)
3971 {
3972   return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
3973 }
3974
3975 /// Constructs a 256-bit integer vector, initialized in reverse order
3976 ///    with the specified 16-bit integral values.
3977 ///
3978 /// \headerfile <x86intrin.h>
3979 ///
3980 /// This intrinsic is a utility function and does not correspond to a specific
3981 ///   instruction.
3982 ///
3983 /// \param __w15
3984 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
3985 /// \param __w14
3986 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
3987 /// \param __w13
3988 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
3989 /// \param __w12
3990 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
3991 /// \param __w11
3992 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
3993 /// \param __w10
3994 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
3995 /// \param __w09
3996 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
3997 /// \param __w08
3998 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
3999 /// \param __w07
4000 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
4001 /// \param __w06
4002 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
4003 /// \param __w05
4004 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
4005 /// \param __w04
4006 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
4007 /// \param __w03
4008 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
4009 /// \param __w02
4010 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
4011 /// \param __w01
4012 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
4013 /// \param __w00
4014 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
4015 /// \returns An initialized 256-bit integer vector.
4016 static __inline __m256i __DEFAULT_FN_ATTRS
4017 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4018        short __w11, short __w10, short __w09, short __w08,
4019        short __w07, short __w06, short __w05, short __w04,
4020        short __w03, short __w02, short __w01, short __w00)
4021 {
4022   return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4023                           __w04, __w05, __w06, __w07,
4024                           __w08, __w09, __w10, __w11,
4025                           __w12, __w13, __w14, __w15);
4026 }
4027
4028 /// Constructs a 256-bit integer vector, initialized in reverse order
4029 ///    with the specified 8-bit integral values.
4030 ///
4031 /// \headerfile <x86intrin.h>
4032 ///
4033 /// This intrinsic is a utility function and does not correspond to a specific
4034 ///   instruction.
4035 ///
4036 /// \param __b31
4037 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
4038 /// \param __b30
4039 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
4040 /// \param __b29
4041 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
4042 /// \param __b28
4043 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
4044 /// \param __b27
4045 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
4046 /// \param __b26
4047 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
4048 /// \param __b25
4049 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
4050 /// \param __b24
4051 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
4052 /// \param __b23
4053 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
4054 /// \param __b22
4055 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
4056 /// \param __b21
4057 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
4058 /// \param __b20
4059 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
4060 /// \param __b19
4061 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
4062 /// \param __b18
4063 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
4064 /// \param __b17
4065 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
4066 /// \param __b16
4067 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
4068 /// \param __b15
4069 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
4070 /// \param __b14
4071 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
4072 /// \param __b13
4073 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
4074 /// \param __b12
4075 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
4076 /// \param __b11
4077 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
4078 /// \param __b10
4079 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
4080 /// \param __b09
4081 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
4082 /// \param __b08
4083 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
4084 /// \param __b07
4085 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
4086 /// \param __b06
4087 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
4088 /// \param __b05
4089 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
4090 /// \param __b04
4091 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
4092 /// \param __b03
4093 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
4094 /// \param __b02
4095 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
4096 /// \param __b01
4097 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
4098 /// \param __b00
4099 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
4100 /// \returns An initialized 256-bit integer vector.
4101 static __inline __m256i __DEFAULT_FN_ATTRS
4102 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4103                  char __b27, char __b26, char __b25, char __b24,
4104                  char __b23, char __b22, char __b21, char __b20,
4105                  char __b19, char __b18, char __b17, char __b16,
4106                  char __b15, char __b14, char __b13, char __b12,
4107                  char __b11, char __b10, char __b09, char __b08,
4108                  char __b07, char __b06, char __b05, char __b04,
4109                  char __b03, char __b02, char __b01, char __b00)
4110 {
4111   return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4112                          __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4113                          __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4114                          __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4115 }
4116
4117 /// Constructs a 256-bit integer vector, initialized in reverse order
4118 ///    with the specified 64-bit integral values.
4119 ///
4120 /// \headerfile <x86intrin.h>
4121 ///
4122 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4123 ///   instruction.
4124 ///
4125 /// \param __a
4126 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
4127 /// \param __b
4128 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
4129 /// \param __c
4130 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
4131 /// \param __d
4132 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
4133 /// \returns An initialized 256-bit integer vector.
4134 static __inline __m256i __DEFAULT_FN_ATTRS
4135 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4136 {
4137   return _mm256_set_epi64x(__d, __c, __b, __a);
4138 }
4139
4140 /* Create vectors with repeated elements */
4141 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4142 ///    of the four double-precision floating-point vector elements set to the
4143 ///    specified double-precision floating-point value.
4144 ///
4145 /// \headerfile <x86intrin.h>
4146 ///
4147 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4148 ///
4149 /// \param __w
4150 ///    A double-precision floating-point value used to initialize each vector
4151 ///    element of the result.
4152 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4153 static __inline __m256d __DEFAULT_FN_ATTRS
4154 _mm256_set1_pd(double __w)
4155 {
4156   return _mm256_set_pd(__w, __w, __w, __w);
4157 }
4158
4159 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4160 ///    of the eight single-precision floating-point vector elements set to the
4161 ///    specified single-precision floating-point value.
4162 ///
4163 /// \headerfile <x86intrin.h>
4164 ///
4165 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4166 ///   instruction.
4167 ///
4168 /// \param __w
4169 ///    A single-precision floating-point value used to initialize each vector
4170 ///    element of the result.
4171 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4172 static __inline __m256 __DEFAULT_FN_ATTRS
4173 _mm256_set1_ps(float __w)
4174 {
4175   return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4176 }
4177
4178 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4179 ///    32-bit integral vector elements set to the specified 32-bit integral
4180 ///    value.
4181 ///
4182 /// \headerfile <x86intrin.h>
4183 ///
4184 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4185 ///   instruction.
4186 ///
4187 /// \param __i
4188 ///    A 32-bit integral value used to initialize each vector element of the
4189 ///    result.
4190 /// \returns An initialized 256-bit integer vector of [8 x i32].
4191 static __inline __m256i __DEFAULT_FN_ATTRS
4192 _mm256_set1_epi32(int __i)
4193 {
4194   return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4195 }
4196
4197 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4198 ///    16-bit integral vector elements set to the specified 16-bit integral
4199 ///    value.
4200 ///
4201 /// \headerfile <x86intrin.h>
4202 ///
4203 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4204 ///
4205 /// \param __w
4206 ///    A 16-bit integral value used to initialize each vector element of the
4207 ///    result.
4208 /// \returns An initialized 256-bit integer vector of [16 x i16].
4209 static __inline __m256i __DEFAULT_FN_ATTRS
4210 _mm256_set1_epi16(short __w)
4211 {
4212   return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4213                           __w, __w, __w, __w, __w, __w, __w, __w);
4214 }
4215
4216 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4217 ///    8-bit integral vector elements set to the specified 8-bit integral value.
4218 ///
4219 /// \headerfile <x86intrin.h>
4220 ///
4221 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4222 ///
4223 /// \param __b
4224 ///    An 8-bit integral value used to initialize each vector element of the
4225 ///    result.
4226 /// \returns An initialized 256-bit integer vector of [32 x i8].
4227 static __inline __m256i __DEFAULT_FN_ATTRS
4228 _mm256_set1_epi8(char __b)
4229 {
4230   return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4231                          __b, __b, __b, __b, __b, __b, __b, __b,
4232                          __b, __b, __b, __b, __b, __b, __b, __b,
4233                          __b, __b, __b, __b, __b, __b, __b, __b);
4234 }
4235
4236 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4237 ///    64-bit integral vector elements set to the specified 64-bit integral
4238 ///    value.
4239 ///
4240 /// \headerfile <x86intrin.h>
4241 ///
4242 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4243 ///
4244 /// \param __q
4245 ///    A 64-bit integral value used to initialize each vector element of the
4246 ///    result.
4247 /// \returns An initialized 256-bit integer vector of [4 x i64].
4248 static __inline __m256i __DEFAULT_FN_ATTRS
4249 _mm256_set1_epi64x(long long __q)
4250 {
4251   return _mm256_set_epi64x(__q, __q, __q, __q);
4252 }
4253
4254 /* Create __zeroed vectors */
4255 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4256 ///    vector elements initialized to zero.
4257 ///
4258 /// \headerfile <x86intrin.h>
4259 ///
4260 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4261 ///
4262 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4263 static __inline __m256d __DEFAULT_FN_ATTRS
4264 _mm256_setzero_pd(void)
4265 {
4266   return __extension__ (__m256d){ 0, 0, 0, 0 };
4267 }
4268
4269 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4270 ///    vector elements initialized to zero.
4271 ///
4272 /// \headerfile <x86intrin.h>
4273 ///
4274 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4275 ///
4276 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4277 static __inline __m256 __DEFAULT_FN_ATTRS
4278 _mm256_setzero_ps(void)
4279 {
4280   return __extension__ (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
4281 }
4282
4283 /// Constructs a 256-bit integer vector initialized to zero.
4284 ///
4285 /// \headerfile <x86intrin.h>
4286 ///
4287 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4288 ///
4289 /// \returns A 256-bit integer vector initialized to zero.
4290 static __inline __m256i __DEFAULT_FN_ATTRS
4291 _mm256_setzero_si256(void)
4292 {
4293   return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4294 }
4295
4296 /* Cast between vector types */
4297 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4298 ///    floating-point vector of [8 x float].
4299 ///
4300 /// \headerfile <x86intrin.h>
4301 ///
4302 /// This intrinsic has no corresponding instruction.
4303 ///
4304 /// \param __a
4305 ///    A 256-bit floating-point vector of [4 x double].
4306 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4307 ///    bitwise pattern as the parameter.
4308 static __inline __m256 __DEFAULT_FN_ATTRS
4309 _mm256_castpd_ps(__m256d __a)
4310 {
4311   return (__m256)__a;
4312 }
4313
4314 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4315 ///    integer vector.
4316 ///
4317 /// \headerfile <x86intrin.h>
4318 ///
4319 /// This intrinsic has no corresponding instruction.
4320 ///
4321 /// \param __a
4322 ///    A 256-bit floating-point vector of [4 x double].
4323 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4324 ///    parameter.
4325 static __inline __m256i __DEFAULT_FN_ATTRS
4326 _mm256_castpd_si256(__m256d __a)
4327 {
4328   return (__m256i)__a;
4329 }
4330
4331 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4332 ///    floating-point vector of [4 x double].
4333 ///
4334 /// \headerfile <x86intrin.h>
4335 ///
4336 /// This intrinsic has no corresponding instruction.
4337 ///
4338 /// \param __a
4339 ///    A 256-bit floating-point vector of [8 x float].
4340 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4341 ///    bitwise pattern as the parameter.
4342 static __inline __m256d __DEFAULT_FN_ATTRS
4343 _mm256_castps_pd(__m256 __a)
4344 {
4345   return (__m256d)__a;
4346 }
4347
4348 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4349 ///    integer vector.
4350 ///
4351 /// \headerfile <x86intrin.h>
4352 ///
4353 /// This intrinsic has no corresponding instruction.
4354 ///
4355 /// \param __a
4356 ///    A 256-bit floating-point vector of [8 x float].
4357 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4358 ///    parameter.
4359 static __inline __m256i __DEFAULT_FN_ATTRS
4360 _mm256_castps_si256(__m256 __a)
4361 {
4362   return (__m256i)__a;
4363 }
4364
4365 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4366 ///    of [8 x float].
4367 ///
4368 /// \headerfile <x86intrin.h>
4369 ///
4370 /// This intrinsic has no corresponding instruction.
4371 ///
4372 /// \param __a
4373 ///    A 256-bit integer vector.
4374 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4375 ///    bitwise pattern as the parameter.
4376 static __inline __m256 __DEFAULT_FN_ATTRS
4377 _mm256_castsi256_ps(__m256i __a)
4378 {
4379   return (__m256)__a;
4380 }
4381
4382 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4383 ///    of [4 x double].
4384 ///
4385 /// \headerfile <x86intrin.h>
4386 ///
4387 /// This intrinsic has no corresponding instruction.
4388 ///
4389 /// \param __a
4390 ///    A 256-bit integer vector.
4391 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4392 ///    bitwise pattern as the parameter.
4393 static __inline __m256d __DEFAULT_FN_ATTRS
4394 _mm256_castsi256_pd(__m256i __a)
4395 {
4396   return (__m256d)__a;
4397 }
4398
4399 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4400 ///    [4 x double] as a 128-bit floating-point vector of [2 x double].
4401 ///
4402 /// \headerfile <x86intrin.h>
4403 ///
4404 /// This intrinsic has no corresponding instruction.
4405 ///
4406 /// \param __a
4407 ///    A 256-bit floating-point vector of [4 x double].
4408 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4409 ///    lower 128 bits of the parameter.
4410 static __inline __m128d __DEFAULT_FN_ATTRS
4411 _mm256_castpd256_pd128(__m256d __a)
4412 {
4413   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4414 }
4415
4416 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4417 ///    [8 x float] as a 128-bit floating-point vector of [4 x float].
4418 ///
4419 /// \headerfile <x86intrin.h>
4420 ///
4421 /// This intrinsic has no corresponding instruction.
4422 ///
4423 /// \param __a
4424 ///    A 256-bit floating-point vector of [8 x float].
4425 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4426 ///    lower 128 bits of the parameter.
4427 static __inline __m128 __DEFAULT_FN_ATTRS
4428 _mm256_castps256_ps128(__m256 __a)
4429 {
4430   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4431 }
4432
4433 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4434 ///
4435 /// \headerfile <x86intrin.h>
4436 ///
4437 /// This intrinsic has no corresponding instruction.
4438 ///
4439 /// \param __a
4440 ///    A 256-bit integer vector.
4441 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4442 ///    parameter.
4443 static __inline __m128i __DEFAULT_FN_ATTRS
4444 _mm256_castsi256_si128(__m256i __a)
4445 {
4446   return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4447 }
4448
4449 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4450 ///    128-bit floating-point vector of [2 x double].
4451 ///
4452 ///    The lower 128 bits contain the value of the source vector. The contents
4453 ///    of the upper 128 bits are undefined.
4454 ///
4455 /// \headerfile <x86intrin.h>
4456 ///
4457 /// This intrinsic has no corresponding instruction.
4458 ///
4459 /// \param __a
4460 ///    A 128-bit vector of [2 x double].
4461 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4462 ///    contain the value of the parameter. The contents of the upper 128 bits
4463 ///    are undefined.
4464 static __inline __m256d __DEFAULT_FN_ATTRS
4465 _mm256_castpd128_pd256(__m128d __a)
4466 {
4467   return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
4468 }
4469
4470 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4471 ///    128-bit floating-point vector of [4 x float].
4472 ///
4473 ///    The lower 128 bits contain the value of the source vector. The contents
4474 ///    of the upper 128 bits are undefined.
4475 ///
4476 /// \headerfile <x86intrin.h>
4477 ///
4478 /// This intrinsic has no corresponding instruction.
4479 ///
4480 /// \param __a
4481 ///    A 128-bit vector of [4 x float].
4482 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4483 ///    contain the value of the parameter. The contents of the upper 128 bits
4484 ///    are undefined.
4485 static __inline __m256 __DEFAULT_FN_ATTRS
4486 _mm256_castps128_ps256(__m128 __a)
4487 {
4488   return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
4489 }
4490
4491 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4492 ///
4493 ///    The lower 128 bits contain the value of the source vector. The contents
4494 ///    of the upper 128 bits are undefined.
4495 ///
4496 /// \headerfile <x86intrin.h>
4497 ///
4498 /// This intrinsic has no corresponding instruction.
4499 ///
4500 /// \param __a
4501 ///    A 128-bit integer vector.
4502 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4503 ///    the parameter. The contents of the upper 128 bits are undefined.
4504 static __inline __m256i __DEFAULT_FN_ATTRS
4505 _mm256_castsi128_si256(__m128i __a)
4506 {
4507   return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
4508 }
4509
4510 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4511 ///    128-bit floating-point vector of [2 x double]. The lower 128 bits
4512 ///    contain the value of the source vector. The upper 128 bits are set
4513 ///    to zero.
4514 ///
4515 /// \headerfile <x86intrin.h>
4516 ///
4517 /// This intrinsic has no corresponding instruction.
4518 ///
4519 /// \param __a
4520 ///    A 128-bit vector of [2 x double].
4521 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4522 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4523 static __inline __m256d __DEFAULT_FN_ATTRS
4524 _mm256_zextpd128_pd256(__m128d __a)
4525 {
4526   return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4527 }
4528
4529 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4530 ///    128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4531 ///    the value of the source vector. The upper 128 bits are set to zero.
4532 ///
4533 /// \headerfile <x86intrin.h>
4534 ///
4535 /// This intrinsic has no corresponding instruction.
4536 ///
4537 /// \param __a
4538 ///    A 128-bit vector of [4 x float].
4539 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4540 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4541 static __inline __m256 __DEFAULT_FN_ATTRS
4542 _mm256_zextps128_ps256(__m128 __a)
4543 {
4544   return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4545 }
4546
4547 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4548 ///    The lower 128 bits contain the value of the source vector. The upper
4549 ///    128 bits are set to zero.
4550 ///
4551 /// \headerfile <x86intrin.h>
4552 ///
4553 /// This intrinsic has no corresponding instruction.
4554 ///
4555 /// \param __a
4556 ///    A 128-bit integer vector.
4557 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4558 ///    the parameter. The upper 128 bits are set to zero.
4559 static __inline __m256i __DEFAULT_FN_ATTRS
4560 _mm256_zextsi128_si256(__m128i __a)
4561 {
4562   return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4563 }
4564
4565 /*
4566    Vector insert.
4567    We use macros rather than inlines because we only want to accept
4568    invocations where the immediate M is a constant expression.
4569 */
4570 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4571 ///    a 256-bit vector of [8 x float] given in the first parameter, and then
4572 ///    replacing either the upper or the lower 128 bits with the contents of a
4573 ///    128-bit vector of [4 x float] in the second parameter.
4574 ///
4575 ///    The immediate integer parameter determines between the upper or the lower
4576 ///    128 bits.
4577 ///
4578 /// \headerfile <x86intrin.h>
4579 ///
4580 /// \code
4581 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4582 /// \endcode
4583 ///
4584 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4585 ///
4586 /// \param V1
4587 ///    A 256-bit vector of [8 x float]. This vector is copied to the result
4588 ///    first, and then either the upper or the lower 128 bits of the result will
4589 ///    be replaced by the contents of \a V2.
4590 /// \param V2
4591 ///    A 128-bit vector of [4 x float]. The contents of this parameter are
4592 ///    written to either the upper or the lower 128 bits of the result depending
4593 ///    on the value of parameter \a M.
4594 /// \param M
4595 ///    An immediate integer. The least significant bit determines how the values
4596 ///    from the two parameters are interleaved: \n
4597 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4598 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4599 ///    result. \n
4600 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4601 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4602 ///    result.
4603 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4604 #define _mm256_insertf128_ps(V1, V2, M) \
4605   (__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4606                                            (__v4sf)(__m128)(V2), (int)(M))
4607
4608 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4609 ///    a 256-bit vector of [4 x double] given in the first parameter, and then
4610 ///    replacing either the upper or the lower 128 bits with the contents of a
4611 ///    128-bit vector of [2 x double] in the second parameter.
4612 ///
4613 ///    The immediate integer parameter determines between the upper or the lower
4614 ///    128 bits.
4615 ///
4616 /// \headerfile <x86intrin.h>
4617 ///
4618 /// \code
4619 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4620 /// \endcode
4621 ///
4622 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4623 ///
4624 /// \param V1
4625 ///    A 256-bit vector of [4 x double]. This vector is copied to the result
4626 ///    first, and then either the upper or the lower 128 bits of the result will
4627 ///    be replaced by the contents of \a V2.
4628 /// \param V2
4629 ///    A 128-bit vector of [2 x double]. The contents of this parameter are
4630 ///    written to either the upper or the lower 128 bits of the result depending
4631 ///    on the value of parameter \a M.
4632 /// \param M
4633 ///    An immediate integer. The least significant bit determines how the values
4634 ///    from the two parameters are interleaved: \n
4635 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4636 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4637 ///    result. \n
4638 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4639 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4640 ///    result.
4641 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4642 #define _mm256_insertf128_pd(V1, V2, M) \
4643   (__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4644                                             (__v2df)(__m128d)(V2), (int)(M))
4645
4646 /// Constructs a new 256-bit integer vector by first duplicating a
4647 ///    256-bit integer vector given in the first parameter, and then replacing
4648 ///    either the upper or the lower 128 bits with the contents of a 128-bit
4649 ///    integer vector in the second parameter.
4650 ///
4651 ///    The immediate integer parameter determines between the upper or the lower
4652 ///    128 bits.
4653 ///
4654 /// \headerfile <x86intrin.h>
4655 ///
4656 /// \code
4657 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4658 /// \endcode
4659 ///
4660 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4661 ///
4662 /// \param V1
4663 ///    A 256-bit integer vector. This vector is copied to the result first, and
4664 ///    then either the upper or the lower 128 bits of the result will be
4665 ///    replaced by the contents of \a V2.
4666 /// \param V2
4667 ///    A 128-bit integer vector. The contents of this parameter are written to
4668 ///    either the upper or the lower 128 bits of the result depending on the
4669 ///     value of parameter \a M.
4670 /// \param M
4671 ///    An immediate integer. The least significant bit determines how the values
4672 ///    from the two parameters are interleaved: \n
4673 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4674 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4675 ///    result. \n
4676 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4677 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4678 ///    result.
4679 /// \returns A 256-bit integer vector containing the interleaved values.
4680 #define _mm256_insertf128_si256(V1, V2, M) \
4681   (__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4682                                             (__v4si)(__m128i)(V2), (int)(M))
4683
4684 /*
4685    Vector extract.
4686    We use macros rather than inlines because we only want to accept
4687    invocations where the immediate M is a constant expression.
4688 */
4689 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4690 ///    of [8 x float], as determined by the immediate integer parameter, and
4691 ///    returns the extracted bits as a 128-bit vector of [4 x float].
4692 ///
4693 /// \headerfile <x86intrin.h>
4694 ///
4695 /// \code
4696 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4697 /// \endcode
4698 ///
4699 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4700 ///
4701 /// \param V
4702 ///    A 256-bit vector of [8 x float].
4703 /// \param M
4704 ///    An immediate integer. The least significant bit determines which bits are
4705 ///    extracted from the first parameter: \n
4706 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4707 ///    result. \n
4708 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4709 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4710 #define _mm256_extractf128_ps(V, M) \
4711   (__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M))
4712
4713 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4714 ///    of [4 x double], as determined by the immediate integer parameter, and
4715 ///    returns the extracted bits as a 128-bit vector of [2 x double].
4716 ///
4717 /// \headerfile <x86intrin.h>
4718 ///
4719 /// \code
4720 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4721 /// \endcode
4722 ///
4723 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4724 ///
4725 /// \param V
4726 ///    A 256-bit vector of [4 x double].
4727 /// \param M
4728 ///    An immediate integer. The least significant bit determines which bits are
4729 ///    extracted from the first parameter: \n
4730 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4731 ///    result. \n
4732 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4733 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4734 #define _mm256_extractf128_pd(V, M) \
4735   (__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M))
4736
4737 /// Extracts either the upper or the lower 128 bits from a 256-bit
4738 ///    integer vector, as determined by the immediate integer parameter, and
4739 ///    returns the extracted bits as a 128-bit integer vector.
4740 ///
4741 /// \headerfile <x86intrin.h>
4742 ///
4743 /// \code
4744 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4745 /// \endcode
4746 ///
4747 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4748 ///
4749 /// \param V
4750 ///    A 256-bit integer vector.
4751 /// \param M
4752 ///    An immediate integer. The least significant bit determines which bits are
4753 ///    extracted from the first parameter:  \n
4754 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4755 ///    result. \n
4756 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4757 /// \returns A 128-bit integer vector containing the extracted bits.
4758 #define _mm256_extractf128_si256(V, M) \
4759   (__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M))
4760
4761 /* SIMD load ops (unaligned) */
4762 /// Loads two 128-bit floating-point vectors of [4 x float] from
4763 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4764 ///    of [8 x float] by concatenating the two 128-bit vectors.
4765 ///
4766 /// \headerfile <x86intrin.h>
4767 ///
4768 /// This intrinsic corresponds to load instructions followed by the
4769 ///   <c> VINSERTF128 </c> instruction.
4770 ///
4771 /// \param __addr_hi
4772 ///    A pointer to a 128-bit memory location containing 4 consecutive
4773 ///    single-precision floating-point values. These values are to be copied to
4774 ///    bits[255:128] of the result. The address of the memory location does not
4775 ///    have to be aligned.
4776 /// \param __addr_lo
4777 ///    A pointer to a 128-bit memory location containing 4 consecutive
4778 ///    single-precision floating-point values. These values are to be copied to
4779 ///    bits[127:0] of the result. The address of the memory location does not
4780 ///    have to be aligned.
4781 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4782 ///    concatenated result.
4783 static __inline __m256 __DEFAULT_FN_ATTRS
4784 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4785 {
4786   __m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
4787   return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
4788 }
4789
4790 /// Loads two 128-bit floating-point vectors of [2 x double] from
4791 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4792 ///    of [4 x double] by concatenating the two 128-bit vectors.
4793 ///
4794 /// \headerfile <x86intrin.h>
4795 ///
4796 /// This intrinsic corresponds to load instructions followed by the
4797 ///   <c> VINSERTF128 </c> instruction.
4798 ///
4799 /// \param __addr_hi
4800 ///    A pointer to a 128-bit memory location containing two consecutive
4801 ///    double-precision floating-point values. These values are to be copied to
4802 ///    bits[255:128] of the result. The address of the memory location does not
4803 ///    have to be aligned.
4804 /// \param __addr_lo
4805 ///    A pointer to a 128-bit memory location containing two consecutive
4806 ///    double-precision floating-point values. These values are to be copied to
4807 ///    bits[127:0] of the result. The address of the memory location does not
4808 ///    have to be aligned.
4809 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4810 ///    concatenated result.
4811 static __inline __m256d __DEFAULT_FN_ATTRS
4812 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
4813 {
4814   __m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo));
4815   return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1);
4816 }
4817
4818 /// Loads two 128-bit integer vectors from unaligned memory locations and
4819 ///    constructs a 256-bit integer vector by concatenating the two 128-bit
4820 ///    vectors.
4821 ///
4822 /// \headerfile <x86intrin.h>
4823 ///
4824 /// This intrinsic corresponds to load instructions followed by the
4825 ///   <c> VINSERTF128 </c> instruction.
4826 ///
4827 /// \param __addr_hi
4828 ///    A pointer to a 128-bit memory location containing a 128-bit integer
4829 ///    vector. This vector is to be copied to bits[255:128] of the result. The
4830 ///    address of the memory location does not have to be aligned.
4831 /// \param __addr_lo
4832 ///    A pointer to a 128-bit memory location containing a 128-bit integer
4833 ///    vector. This vector is to be copied to bits[127:0] of the result. The
4834 ///    address of the memory location does not have to be aligned.
4835 /// \returns A 256-bit integer vector containing the concatenated result.
4836 static __inline __m256i __DEFAULT_FN_ATTRS
4837 _mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
4838 {
4839   __m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo));
4840   return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1);
4841 }
4842
4843 /* SIMD store ops (unaligned) */
4844 /// Stores the upper and lower 128 bits of a 256-bit floating-point
4845 ///    vector of [8 x float] into two different unaligned memory locations.
4846 ///
4847 /// \headerfile <x86intrin.h>
4848 ///
4849 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
4850 ///   store instructions.
4851 ///
4852 /// \param __addr_hi
4853 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
4854 ///    copied to this memory location. The address of this memory location does
4855 ///    not have to be aligned.
4856 /// \param __addr_lo
4857 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
4858 ///    copied to this memory location. The address of this memory location does
4859 ///    not have to be aligned.
4860 /// \param __a
4861 ///    A 256-bit floating-point vector of [8 x float].
4862 static __inline void __DEFAULT_FN_ATTRS
4863 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
4864 {
4865   __m128 __v128;
4866
4867   __v128 = _mm256_castps256_ps128(__a);
4868   _mm_storeu_ps(__addr_lo, __v128);
4869   __v128 = _mm256_extractf128_ps(__a, 1);
4870   _mm_storeu_ps(__addr_hi, __v128);
4871 }
4872
4873 /// Stores the upper and lower 128 bits of a 256-bit floating-point
4874 ///    vector of [4 x double] into two different unaligned memory locations.
4875 ///
4876 /// \headerfile <x86intrin.h>
4877 ///
4878 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
4879 ///   store instructions.
4880 ///
4881 /// \param __addr_hi
4882 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
4883 ///    copied to this memory location. The address of this memory location does
4884 ///    not have to be aligned.
4885 /// \param __addr_lo
4886 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
4887 ///    copied to this memory location. The address of this memory location does
4888 ///    not have to be aligned.
4889 /// \param __a
4890 ///    A 256-bit floating-point vector of [4 x double].
4891 static __inline void __DEFAULT_FN_ATTRS
4892 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
4893 {
4894   __m128d __v128;
4895
4896   __v128 = _mm256_castpd256_pd128(__a);
4897   _mm_storeu_pd(__addr_lo, __v128);
4898   __v128 = _mm256_extractf128_pd(__a, 1);
4899   _mm_storeu_pd(__addr_hi, __v128);
4900 }
4901
4902 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
4903 ///    two different unaligned memory locations.
4904 ///
4905 /// \headerfile <x86intrin.h>
4906 ///
4907 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
4908 ///   store instructions.
4909 ///
4910 /// \param __addr_hi
4911 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
4912 ///    copied to this memory location. The address of this memory location does
4913 ///    not have to be aligned.
4914 /// \param __addr_lo
4915 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
4916 ///    copied to this memory location. The address of this memory location does
4917 ///    not have to be aligned.
4918 /// \param __a
4919 ///    A 256-bit integer vector.
4920 static __inline void __DEFAULT_FN_ATTRS
4921 _mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
4922 {
4923   __m128i __v128;
4924
4925   __v128 = _mm256_castsi256_si128(__a);
4926   _mm_storeu_si128(__addr_lo, __v128);
4927   __v128 = _mm256_extractf128_si256(__a, 1);
4928   _mm_storeu_si128(__addr_hi, __v128);
4929 }
4930
4931 /// Constructs a 256-bit floating-point vector of [8 x float] by
4932 ///    concatenating two 128-bit floating-point vectors of [4 x float].
4933 ///
4934 /// \headerfile <x86intrin.h>
4935 ///
4936 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4937 ///
4938 /// \param __hi
4939 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4940 ///    128 bits of the result.
4941 /// \param __lo
4942 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4943 ///    128 bits of the result.
4944 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4945 ///    concatenated result.
4946 static __inline __m256 __DEFAULT_FN_ATTRS
4947 _mm256_set_m128 (__m128 __hi, __m128 __lo)
4948 {
4949   return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4950 }
4951
4952 /// Constructs a 256-bit floating-point vector of [4 x double] by
4953 ///    concatenating two 128-bit floating-point vectors of [2 x double].
4954 ///
4955 /// \headerfile <x86intrin.h>
4956 ///
4957 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4958 ///
4959 /// \param __hi
4960 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4961 ///    128 bits of the result.
4962 /// \param __lo
4963 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4964 ///    128 bits of the result.
4965 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4966 ///    concatenated result.
4967 static __inline __m256d __DEFAULT_FN_ATTRS
4968 _mm256_set_m128d (__m128d __hi, __m128d __lo)
4969 {
4970   return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4971 }
4972
4973 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4974 ///    integer vectors.
4975 ///
4976 /// \headerfile <x86intrin.h>
4977 ///
4978 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4979 ///
4980 /// \param __hi
4981 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
4982 ///    result.
4983 /// \param __lo
4984 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
4985 ///    result.
4986 /// \returns A 256-bit integer vector containing the concatenated result.
4987 static __inline __m256i __DEFAULT_FN_ATTRS
4988 _mm256_set_m128i (__m128i __hi, __m128i __lo)
4989 {
4990   return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4991 }
4992
4993 /// Constructs a 256-bit floating-point vector of [8 x float] by
4994 ///    concatenating two 128-bit floating-point vectors of [4 x float]. This is
4995 ///    similar to _mm256_set_m128, but the order of the input parameters is
4996 ///    swapped.
4997 ///
4998 /// \headerfile <x86intrin.h>
4999 ///
5000 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
5001 ///
5002 /// \param __lo
5003 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
5004 ///    128 bits of the result.
5005 /// \param __hi
5006 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
5007 ///    128 bits of the result.
5008 /// \returns A 256-bit floating-point vector of [8 x float] containing the
5009 ///    concatenated result.
5010 static __inline __m256 __DEFAULT_FN_ATTRS
5011 _mm256_setr_m128 (__m128 __lo, __m128 __hi)
5012 {
5013   return _mm256_set_m128(__hi, __lo);
5014 }
5015
5016 /// Constructs a 256-bit floating-point vector of [4 x double] by
5017 ///    concatenating two 128-bit floating-point vectors of [2 x double]. This is
5018 ///    similar to _mm256_set_m128d, but the order of the input parameters is
5019 ///    swapped.
5020 ///
5021 /// \headerfile <x86intrin.h>
5022 ///
5023 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
5024 ///
5025 /// \param __lo
5026 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
5027 ///    128 bits of the result.
5028 /// \param __hi
5029 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
5030 ///    128 bits of the result.
5031 /// \returns A 256-bit floating-point vector of [4 x double] containing the
5032 ///    concatenated result.
5033 static __inline __m256d __DEFAULT_FN_ATTRS
5034 _mm256_setr_m128d (__m128d __lo, __m128d __hi)
5035 {
5036   return (__m256d)_mm256_set_m128d(__hi, __lo);
5037 }
5038
5039 /// Constructs a 256-bit integer vector by concatenating two 128-bit
5040 ///    integer vectors. This is similar to _mm256_set_m128i, but the order of
5041 ///    the input parameters is swapped.
5042 ///
5043 /// \headerfile <x86intrin.h>
5044 ///
5045 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
5046 ///
5047 /// \param __lo
5048 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
5049 ///    result.
5050 /// \param __hi
5051 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
5052 ///    result.
5053 /// \returns A 256-bit integer vector containing the concatenated result.
5054 static __inline __m256i __DEFAULT_FN_ATTRS
5055 _mm256_setr_m128i (__m128i __lo, __m128i __hi)
5056 {
5057   return (__m256i)_mm256_set_m128i(__hi, __lo);
5058 }
5059
5060 #undef __DEFAULT_FN_ATTRS
5061 #undef __DEFAULT_FN_ATTRS128
5062
5063 #endif /* __AVXINTRIN_H */