]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Headers/smmintrin.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Headers / smmintrin.h
1 /*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9
10 #ifndef __SMMINTRIN_H
11 #define __SMMINTRIN_H
12
13 #include <tmmintrin.h>
14
15 /* Define the default attributes for the functions in this file. */
16 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.1"), __min_vector_width__(128)))
17
18 /* SSE4 Rounding macros. */
19 #define _MM_FROUND_TO_NEAREST_INT    0x00
20 #define _MM_FROUND_TO_NEG_INF        0x01
21 #define _MM_FROUND_TO_POS_INF        0x02
22 #define _MM_FROUND_TO_ZERO           0x03
23 #define _MM_FROUND_CUR_DIRECTION     0x04
24
25 #define _MM_FROUND_RAISE_EXC         0x00
26 #define _MM_FROUND_NO_EXC            0x08
27
28 #define _MM_FROUND_NINT      (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
29 #define _MM_FROUND_FLOOR     (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
30 #define _MM_FROUND_CEIL      (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
31 #define _MM_FROUND_TRUNC     (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
32 #define _MM_FROUND_RINT      (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
33 #define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
34
35 /// Rounds up each element of the 128-bit vector of [4 x float] to an
36 ///    integer and returns the rounded values in a 128-bit vector of
37 ///    [4 x float].
38 ///
39 /// \headerfile <x86intrin.h>
40 ///
41 /// \code
42 /// __m128 _mm_ceil_ps(__m128 X);
43 /// \endcode
44 ///
45 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
46 ///
47 /// \param X
48 ///    A 128-bit vector of [4 x float] values to be rounded up.
49 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
50 #define _mm_ceil_ps(X)       _mm_round_ps((X), _MM_FROUND_CEIL)
51
52 /// Rounds up each element of the 128-bit vector of [2 x double] to an
53 ///    integer and returns the rounded values in a 128-bit vector of
54 ///    [2 x double].
55 ///
56 /// \headerfile <x86intrin.h>
57 ///
58 /// \code
59 /// __m128d _mm_ceil_pd(__m128d X);
60 /// \endcode
61 ///
62 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
63 ///
64 /// \param X
65 ///    A 128-bit vector of [2 x double] values to be rounded up.
66 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
67 #define _mm_ceil_pd(X)       _mm_round_pd((X), _MM_FROUND_CEIL)
68
69 /// Copies three upper elements of the first 128-bit vector operand to
70 ///    the corresponding three upper elements of the 128-bit result vector of
71 ///    [4 x float]. Rounds up the lowest element of the second 128-bit vector
72 ///    operand to an integer and copies it to the lowest element of the 128-bit
73 ///    result vector of [4 x float].
74 ///
75 /// \headerfile <x86intrin.h>
76 ///
77 /// \code
78 /// __m128 _mm_ceil_ss(__m128 X, __m128 Y);
79 /// \endcode
80 ///
81 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
82 ///
83 /// \param X
84 ///    A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
85 ///    copied to the corresponding bits of the result.
86 /// \param Y
87 ///    A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
88 ///    rounded up to the nearest integer and copied to the corresponding bits
89 ///    of the result.
90 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
91 ///    values.
92 #define _mm_ceil_ss(X, Y)    _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
93
94 /// Copies the upper element of the first 128-bit vector operand to the
95 ///    corresponding upper element of the 128-bit result vector of [2 x double].
96 ///    Rounds up the lower element of the second 128-bit vector operand to an
97 ///    integer and copies it to the lower element of the 128-bit result vector
98 ///    of [2 x double].
99 ///
100 /// \headerfile <x86intrin.h>
101 ///
102 /// \code
103 /// __m128d _mm_ceil_sd(__m128d X, __m128d Y);
104 /// \endcode
105 ///
106 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
107 ///
108 /// \param X
109 ///    A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
110 ///    copied to the corresponding bits of the result.
111 /// \param Y
112 ///    A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
113 ///    rounded up to the nearest integer and copied to the corresponding bits
114 ///    of the result.
115 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
116 ///    values.
117 #define _mm_ceil_sd(X, Y)    _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
118
119 /// Rounds down each element of the 128-bit vector of [4 x float] to an
120 ///    an integer and returns the rounded values in a 128-bit vector of
121 ///    [4 x float].
122 ///
123 /// \headerfile <x86intrin.h>
124 ///
125 /// \code
126 /// __m128 _mm_floor_ps(__m128 X);
127 /// \endcode
128 ///
129 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
130 ///
131 /// \param X
132 ///    A 128-bit vector of [4 x float] values to be rounded down.
133 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
134 #define _mm_floor_ps(X)      _mm_round_ps((X), _MM_FROUND_FLOOR)
135
136 /// Rounds down each element of the 128-bit vector of [2 x double] to an
137 ///    integer and returns the rounded values in a 128-bit vector of
138 ///    [2 x double].
139 ///
140 /// \headerfile <x86intrin.h>
141 ///
142 /// \code
143 /// __m128d _mm_floor_pd(__m128d X);
144 /// \endcode
145 ///
146 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
147 ///
148 /// \param X
149 ///    A 128-bit vector of [2 x double].
150 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
151 #define _mm_floor_pd(X)      _mm_round_pd((X), _MM_FROUND_FLOOR)
152
153 /// Copies three upper elements of the first 128-bit vector operand to
154 ///    the corresponding three upper elements of the 128-bit result vector of
155 ///    [4 x float]. Rounds down the lowest element of the second 128-bit vector
156 ///    operand to an integer and copies it to the lowest element of the 128-bit
157 ///    result vector of [4 x float].
158 ///
159 /// \headerfile <x86intrin.h>
160 ///
161 /// \code
162 /// __m128 _mm_floor_ss(__m128 X, __m128 Y);
163 /// \endcode
164 ///
165 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
166 ///
167 /// \param X
168 ///    A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
169 ///    copied to the corresponding bits of the result.
170 /// \param Y
171 ///    A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
172 ///    rounded down to the nearest integer and copied to the corresponding bits
173 ///    of the result.
174 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
175 ///    values.
176 #define _mm_floor_ss(X, Y)   _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
177
178 /// Copies the upper element of the first 128-bit vector operand to the
179 ///    corresponding upper element of the 128-bit result vector of [2 x double].
180 ///    Rounds down the lower element of the second 128-bit vector operand to an
181 ///    integer and copies it to the lower element of the 128-bit result vector
182 ///    of [2 x double].
183 ///
184 /// \headerfile <x86intrin.h>
185 ///
186 /// \code
187 /// __m128d _mm_floor_sd(__m128d X, __m128d Y);
188 /// \endcode
189 ///
190 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
191 ///
192 /// \param X
193 ///    A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
194 ///    copied to the corresponding bits of the result.
195 /// \param Y
196 ///    A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
197 ///    rounded down to the nearest integer and copied to the corresponding bits
198 ///    of the result.
199 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
200 ///    values.
201 #define _mm_floor_sd(X, Y)   _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
202
203 /// Rounds each element of the 128-bit vector of [4 x float] to an
204 ///    integer value according to the rounding control specified by the second
205 ///    argument and returns the rounded values in a 128-bit vector of
206 ///    [4 x float].
207 ///
208 /// \headerfile <x86intrin.h>
209 ///
210 /// \code
211 /// __m128 _mm_round_ps(__m128 X, const int M);
212 /// \endcode
213 ///
214 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
215 ///
216 /// \param X
217 ///    A 128-bit vector of [4 x float].
218 /// \param M
219 ///    An integer value that specifies the rounding operation. \n
220 ///    Bits [7:4] are reserved. \n
221 ///    Bit [3] is a precision exception value: \n
222 ///      0: A normal PE exception is used \n
223 ///      1: The PE field is not updated \n
224 ///    Bit [2] is the rounding control source: \n
225 ///      0: Use bits [1:0] of \a M \n
226 ///      1: Use the current MXCSR setting \n
227 ///    Bits [1:0] contain the rounding control definition: \n
228 ///      00: Nearest \n
229 ///      01: Downward (toward negative infinity) \n
230 ///      10: Upward (toward positive infinity) \n
231 ///      11: Truncated
232 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
233 #define _mm_round_ps(X, M) \
234   (__m128)__builtin_ia32_roundps((__v4sf)(__m128)(X), (M))
235
236 /// Copies three upper elements of the first 128-bit vector operand to
237 ///    the corresponding three upper elements of the 128-bit result vector of
238 ///    [4 x float]. Rounds the lowest element of the second 128-bit vector
239 ///    operand to an integer value according to the rounding control specified
240 ///    by the third argument and copies it to the lowest element of the 128-bit
241 ///    result vector of [4 x float].
242 ///
243 /// \headerfile <x86intrin.h>
244 ///
245 /// \code
246 /// __m128 _mm_round_ss(__m128 X, __m128 Y, const int M);
247 /// \endcode
248 ///
249 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
250 ///
251 /// \param X
252 ///    A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
253 ///    copied to the corresponding bits of the result.
254 /// \param Y
255 ///    A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
256 ///    rounded to the nearest integer using the specified rounding control and
257 ///    copied to the corresponding bits of the result.
258 /// \param M
259 ///    An integer value that specifies the rounding operation. \n
260 ///    Bits [7:4] are reserved. \n
261 ///    Bit [3] is a precision exception value: \n
262 ///      0: A normal PE exception is used \n
263 ///      1: The PE field is not updated \n
264 ///    Bit [2] is the rounding control source: \n
265 ///      0: Use bits [1:0] of \a M \n
266 ///      1: Use the current MXCSR setting \n
267 ///    Bits [1:0] contain the rounding control definition: \n
268 ///      00: Nearest \n
269 ///      01: Downward (toward negative infinity) \n
270 ///      10: Upward (toward positive infinity) \n
271 ///      11: Truncated
272 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
273 ///    values.
274 #define _mm_round_ss(X, Y, M) \
275   (__m128)__builtin_ia32_roundss((__v4sf)(__m128)(X), \
276                                  (__v4sf)(__m128)(Y), (M))
277
278 /// Rounds each element of the 128-bit vector of [2 x double] to an
279 ///    integer value according to the rounding control specified by the second
280 ///    argument and returns the rounded values in a 128-bit vector of
281 ///    [2 x double].
282 ///
283 /// \headerfile <x86intrin.h>
284 ///
285 /// \code
286 /// __m128d _mm_round_pd(__m128d X, const int M);
287 /// \endcode
288 ///
289 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
290 ///
291 /// \param X
292 ///    A 128-bit vector of [2 x double].
293 /// \param M
294 ///    An integer value that specifies the rounding operation. \n
295 ///    Bits [7:4] are reserved. \n
296 ///    Bit [3] is a precision exception value: \n
297 ///      0: A normal PE exception is used \n
298 ///      1: The PE field is not updated \n
299 ///    Bit [2] is the rounding control source: \n
300 ///      0: Use bits [1:0] of \a M \n
301 ///      1: Use the current MXCSR setting \n
302 ///    Bits [1:0] contain the rounding control definition: \n
303 ///      00: Nearest \n
304 ///      01: Downward (toward negative infinity) \n
305 ///      10: Upward (toward positive infinity) \n
306 ///      11: Truncated
307 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
308 #define _mm_round_pd(X, M) \
309   (__m128d)__builtin_ia32_roundpd((__v2df)(__m128d)(X), (M))
310
311 /// Copies the upper element of the first 128-bit vector operand to the
312 ///    corresponding upper element of the 128-bit result vector of [2 x double].
313 ///    Rounds the lower element of the second 128-bit vector operand to an
314 ///    integer value according to the rounding control specified by the third
315 ///    argument and copies it to the lower element of the 128-bit result vector
316 ///    of [2 x double].
317 ///
318 /// \headerfile <x86intrin.h>
319 ///
320 /// \code
321 /// __m128d _mm_round_sd(__m128d X, __m128d Y, const int M);
322 /// \endcode
323 ///
324 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
325 ///
326 /// \param X
327 ///    A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
328 ///    copied to the corresponding bits of the result.
329 /// \param Y
330 ///    A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
331 ///    rounded to the nearest integer using the specified rounding control and
332 ///    copied to the corresponding bits of the result.
333 /// \param M
334 ///    An integer value that specifies the rounding operation. \n
335 ///    Bits [7:4] are reserved. \n
336 ///    Bit [3] is a precision exception value: \n
337 ///      0: A normal PE exception is used \n
338 ///      1: The PE field is not updated \n
339 ///    Bit [2] is the rounding control source: \n
340 ///      0: Use bits [1:0] of \a M \n
341 ///      1: Use the current MXCSR setting \n
342 ///    Bits [1:0] contain the rounding control definition: \n
343 ///      00: Nearest \n
344 ///      01: Downward (toward negative infinity) \n
345 ///      10: Upward (toward positive infinity) \n
346 ///      11: Truncated
347 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
348 ///    values.
349 #define _mm_round_sd(X, Y, M) \
350   (__m128d)__builtin_ia32_roundsd((__v2df)(__m128d)(X), \
351                                   (__v2df)(__m128d)(Y), (M))
352
353 /* SSE4 Packed Blending Intrinsics.  */
354 /// Returns a 128-bit vector of [2 x double] where the values are
355 ///    selected from either the first or second operand as specified by the
356 ///    third operand, the control mask.
357 ///
358 /// \headerfile <x86intrin.h>
359 ///
360 /// \code
361 /// __m128d _mm_blend_pd(__m128d V1, __m128d V2, const int M);
362 /// \endcode
363 ///
364 /// This intrinsic corresponds to the <c> VBLENDPD / BLENDPD </c> instruction.
365 ///
366 /// \param V1
367 ///    A 128-bit vector of [2 x double].
368 /// \param V2
369 ///    A 128-bit vector of [2 x double].
370 /// \param M
371 ///    An immediate integer operand, with mask bits [1:0] specifying how the
372 ///    values are to be copied. The position of the mask bit corresponds to the
373 ///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
374 ///    element in operand \a V1 is copied to the same position in the result.
375 ///    When a mask bit is 1, the corresponding 64-bit element in operand \a V2
376 ///    is copied to the same position in the result.
377 /// \returns A 128-bit vector of [2 x double] containing the copied values.
378 #define _mm_blend_pd(V1, V2, M) \
379   (__m128d) __builtin_ia32_blendpd ((__v2df)(__m128d)(V1), \
380                                     (__v2df)(__m128d)(V2), (int)(M))
381
382 /// Returns a 128-bit vector of [4 x float] where the values are selected
383 ///    from either the first or second operand as specified by the third
384 ///    operand, the control mask.
385 ///
386 /// \headerfile <x86intrin.h>
387 ///
388 /// \code
389 /// __m128 _mm_blend_ps(__m128 V1, __m128 V2, const int M);
390 /// \endcode
391 ///
392 /// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS </c> instruction.
393 ///
394 /// \param V1
395 ///    A 128-bit vector of [4 x float].
396 /// \param V2
397 ///    A 128-bit vector of [4 x float].
398 /// \param M
399 ///    An immediate integer operand, with mask bits [3:0] specifying how the
400 ///    values are to be copied. The position of the mask bit corresponds to the
401 ///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
402 ///    element in operand \a V1 is copied to the same position in the result.
403 ///    When a mask bit is 1, the corresponding 32-bit element in operand \a V2
404 ///    is copied to the same position in the result.
405 /// \returns A 128-bit vector of [4 x float] containing the copied values.
406 #define _mm_blend_ps(V1, V2, M) \
407   (__m128) __builtin_ia32_blendps ((__v4sf)(__m128)(V1), \
408                                    (__v4sf)(__m128)(V2), (int)(M))
409
410 /// Returns a 128-bit vector of [2 x double] where the values are
411 ///    selected from either the first or second operand as specified by the
412 ///    third operand, the control mask.
413 ///
414 /// \headerfile <x86intrin.h>
415 ///
416 /// This intrinsic corresponds to the <c> VBLENDVPD / BLENDVPD </c> instruction.
417 ///
418 /// \param __V1
419 ///    A 128-bit vector of [2 x double].
420 /// \param __V2
421 ///    A 128-bit vector of [2 x double].
422 /// \param __M
423 ///    A 128-bit vector operand, with mask bits 127 and 63 specifying how the
424 ///    values are to be copied. The position of the mask bit corresponds to the
425 ///    most significant bit of a copied value. When a mask bit is 0, the
426 ///    corresponding 64-bit element in operand \a __V1 is copied to the same
427 ///    position in the result. When a mask bit is 1, the corresponding 64-bit
428 ///    element in operand \a __V2 is copied to the same position in the result.
429 /// \returns A 128-bit vector of [2 x double] containing the copied values.
430 static __inline__ __m128d __DEFAULT_FN_ATTRS
431 _mm_blendv_pd (__m128d __V1, __m128d __V2, __m128d __M)
432 {
433   return (__m128d) __builtin_ia32_blendvpd ((__v2df)__V1, (__v2df)__V2,
434                                             (__v2df)__M);
435 }
436
437 /// Returns a 128-bit vector of [4 x float] where the values are
438 ///    selected from either the first or second operand as specified by the
439 ///    third operand, the control mask.
440 ///
441 /// \headerfile <x86intrin.h>
442 ///
443 /// This intrinsic corresponds to the <c> VBLENDVPS / BLENDVPS </c> instruction.
444 ///
445 /// \param __V1
446 ///    A 128-bit vector of [4 x float].
447 /// \param __V2
448 ///    A 128-bit vector of [4 x float].
449 /// \param __M
450 ///    A 128-bit vector operand, with mask bits 127, 95, 63, and 31 specifying
451 ///    how the values are to be copied. The position of the mask bit corresponds
452 ///    to the most significant bit of a copied value. When a mask bit is 0, the
453 ///    corresponding 32-bit element in operand \a __V1 is copied to the same
454 ///    position in the result. When a mask bit is 1, the corresponding 32-bit
455 ///    element in operand \a __V2 is copied to the same position in the result.
456 /// \returns A 128-bit vector of [4 x float] containing the copied values.
457 static __inline__ __m128 __DEFAULT_FN_ATTRS
458 _mm_blendv_ps (__m128 __V1, __m128 __V2, __m128 __M)
459 {
460   return (__m128) __builtin_ia32_blendvps ((__v4sf)__V1, (__v4sf)__V2,
461                                            (__v4sf)__M);
462 }
463
464 /// Returns a 128-bit vector of [16 x i8] where the values are selected
465 ///    from either of the first or second operand as specified by the third
466 ///    operand, the control mask.
467 ///
468 /// \headerfile <x86intrin.h>
469 ///
470 /// This intrinsic corresponds to the <c> VPBLENDVB / PBLENDVB </c> instruction.
471 ///
472 /// \param __V1
473 ///    A 128-bit vector of [16 x i8].
474 /// \param __V2
475 ///    A 128-bit vector of [16 x i8].
476 /// \param __M
477 ///    A 128-bit vector operand, with mask bits 127, 119, 111...7 specifying
478 ///    how the values are to be copied. The position of the mask bit corresponds
479 ///    to the most significant bit of a copied value. When a mask bit is 0, the
480 ///    corresponding 8-bit element in operand \a __V1 is copied to the same
481 ///    position in the result. When a mask bit is 1, the corresponding 8-bit
482 ///    element in operand \a __V2 is copied to the same position in the result.
483 /// \returns A 128-bit vector of [16 x i8] containing the copied values.
484 static __inline__ __m128i __DEFAULT_FN_ATTRS
485 _mm_blendv_epi8 (__m128i __V1, __m128i __V2, __m128i __M)
486 {
487   return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__V1, (__v16qi)__V2,
488                                                (__v16qi)__M);
489 }
490
491 /// Returns a 128-bit vector of [8 x i16] where the values are selected
492 ///    from either of the first or second operand as specified by the third
493 ///    operand, the control mask.
494 ///
495 /// \headerfile <x86intrin.h>
496 ///
497 /// \code
498 /// __m128i _mm_blend_epi16(__m128i V1, __m128i V2, const int M);
499 /// \endcode
500 ///
501 /// This intrinsic corresponds to the <c> VPBLENDW / PBLENDW </c> instruction.
502 ///
503 /// \param V1
504 ///    A 128-bit vector of [8 x i16].
505 /// \param V2
506 ///    A 128-bit vector of [8 x i16].
507 /// \param M
508 ///    An immediate integer operand, with mask bits [7:0] specifying how the
509 ///    values are to be copied. The position of the mask bit corresponds to the
510 ///    index of a copied value. When a mask bit is 0, the corresponding 16-bit
511 ///    element in operand \a V1 is copied to the same position in the result.
512 ///    When a mask bit is 1, the corresponding 16-bit element in operand \a V2
513 ///    is copied to the same position in the result.
514 /// \returns A 128-bit vector of [8 x i16] containing the copied values.
515 #define _mm_blend_epi16(V1, V2, M) \
516   (__m128i) __builtin_ia32_pblendw128 ((__v8hi)(__m128i)(V1), \
517                                        (__v8hi)(__m128i)(V2), (int)(M))
518
519 /* SSE4 Dword Multiply Instructions.  */
520 /// Multiples corresponding elements of two 128-bit vectors of [4 x i32]
521 ///    and returns the lower 32 bits of the each product in a 128-bit vector of
522 ///    [4 x i32].
523 ///
524 /// \headerfile <x86intrin.h>
525 ///
526 /// This intrinsic corresponds to the <c> VPMULLD / PMULLD </c> instruction.
527 ///
528 /// \param __V1
529 ///    A 128-bit integer vector.
530 /// \param __V2
531 ///    A 128-bit integer vector.
532 /// \returns A 128-bit integer vector containing the products of both operands.
533 static __inline__  __m128i __DEFAULT_FN_ATTRS
534 _mm_mullo_epi32 (__m128i __V1, __m128i __V2)
535 {
536   return (__m128i) ((__v4su)__V1 * (__v4su)__V2);
537 }
538
539 /// Multiplies corresponding even-indexed elements of two 128-bit
540 ///    vectors of [4 x i32] and returns a 128-bit vector of [2 x i64]
541 ///    containing the products.
542 ///
543 /// \headerfile <x86intrin.h>
544 ///
545 /// This intrinsic corresponds to the <c> VPMULDQ / PMULDQ </c> instruction.
546 ///
547 /// \param __V1
548 ///    A 128-bit vector of [4 x i32].
549 /// \param __V2
550 ///    A 128-bit vector of [4 x i32].
551 /// \returns A 128-bit vector of [2 x i64] containing the products of both
552 ///    operands.
553 static __inline__  __m128i __DEFAULT_FN_ATTRS
554 _mm_mul_epi32 (__m128i __V1, __m128i __V2)
555 {
556   return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__V1, (__v4si)__V2);
557 }
558
559 /* SSE4 Floating Point Dot Product Instructions.  */
560 /// Computes the dot product of the two 128-bit vectors of [4 x float]
561 ///    and returns it in the elements of the 128-bit result vector of
562 ///    [4 x float].
563 ///
564 ///    The immediate integer operand controls which input elements
565 ///    will contribute to the dot product, and where the final results are
566 ///    returned.
567 ///
568 /// \headerfile <x86intrin.h>
569 ///
570 /// \code
571 /// __m128 _mm_dp_ps(__m128 X, __m128 Y, const int M);
572 /// \endcode
573 ///
574 /// This intrinsic corresponds to the <c> VDPPS / DPPS </c> instruction.
575 ///
576 /// \param X
577 ///    A 128-bit vector of [4 x float].
578 /// \param Y
579 ///    A 128-bit vector of [4 x float].
580 /// \param M
581 ///    An immediate integer operand. Mask bits [7:4] determine which elements
582 ///    of the input vectors are used, with bit [4] corresponding to the lowest
583 ///    element and bit [7] corresponding to the highest element of each [4 x
584 ///    float] vector. If a bit is set, the corresponding elements from the two
585 ///    input vectors are used as an input for dot product; otherwise that input
586 ///    is treated as zero. Bits [3:0] determine which elements of the result
587 ///    will receive a copy of the final dot product, with bit [0] corresponding
588 ///    to the lowest element and bit [3] corresponding to the highest element of
589 ///    each [4 x float] subvector. If a bit is set, the dot product is returned
590 ///    in the corresponding element; otherwise that element is set to zero.
591 /// \returns A 128-bit vector of [4 x float] containing the dot product.
592 #define _mm_dp_ps(X, Y, M) \
593   (__m128) __builtin_ia32_dpps((__v4sf)(__m128)(X), \
594                                (__v4sf)(__m128)(Y), (M))
595
596 /// Computes the dot product of the two 128-bit vectors of [2 x double]
597 ///    and returns it in the elements of the 128-bit result vector of
598 ///    [2 x double].
599 ///
600 ///    The immediate integer operand controls which input
601 ///    elements will contribute to the dot product, and where the final results
602 ///    are returned.
603 ///
604 /// \headerfile <x86intrin.h>
605 ///
606 /// \code
607 /// __m128d _mm_dp_pd(__m128d X, __m128d Y, const int M);
608 /// \endcode
609 ///
610 /// This intrinsic corresponds to the <c> VDPPD / DPPD </c> instruction.
611 ///
612 /// \param X
613 ///    A 128-bit vector of [2 x double].
614 /// \param Y
615 ///    A 128-bit vector of [2 x double].
616 /// \param M
617 ///    An immediate integer operand. Mask bits [5:4] determine which elements
618 ///    of the input vectors are used, with bit [4] corresponding to the lowest
619 ///    element and bit [5] corresponding to the highest element of each of [2 x
620 ///    double] vector. If a bit is set, the corresponding elements from the two
621 ///    input vectors are used as an input for dot product; otherwise that input
622 ///    is treated as zero. Bits [1:0] determine which elements of the result
623 ///    will receive a copy of the final dot product, with bit [0] corresponding
624 ///    to the lowest element and bit [1] corresponding to the highest element of
625 ///    each [2 x double] vector. If a bit is set, the dot product is returned in
626 ///    the corresponding element; otherwise that element is set to zero.
627 #define _mm_dp_pd(X, Y, M) \
628   (__m128d) __builtin_ia32_dppd((__v2df)(__m128d)(X), \
629                                 (__v2df)(__m128d)(Y), (M))
630
631 /* SSE4 Streaming Load Hint Instruction.  */
632 /// Loads integer values from a 128-bit aligned memory location to a
633 ///    128-bit integer vector.
634 ///
635 /// \headerfile <x86intrin.h>
636 ///
637 /// This intrinsic corresponds to the <c> VMOVNTDQA / MOVNTDQA </c> instruction.
638 ///
639 /// \param __V
640 ///    A pointer to a 128-bit aligned memory location that contains the integer
641 ///    values.
642 /// \returns A 128-bit integer vector containing the data stored at the
643 ///    specified memory location.
644 static __inline__  __m128i __DEFAULT_FN_ATTRS
645 _mm_stream_load_si128 (__m128i const *__V)
646 {
647   return (__m128i) __builtin_nontemporal_load ((const __v2di *) __V);
648 }
649
650 /* SSE4 Packed Integer Min/Max Instructions.  */
651 /// Compares the corresponding elements of two 128-bit vectors of
652 ///    [16 x i8] and returns a 128-bit vector of [16 x i8] containing the lesser
653 ///    of the two values.
654 ///
655 /// \headerfile <x86intrin.h>
656 ///
657 /// This intrinsic corresponds to the <c> VPMINSB / PMINSB </c> instruction.
658 ///
659 /// \param __V1
660 ///    A 128-bit vector of [16 x i8].
661 /// \param __V2
662 ///    A 128-bit vector of [16 x i8]
663 /// \returns A 128-bit vector of [16 x i8] containing the lesser values.
664 static __inline__  __m128i __DEFAULT_FN_ATTRS
665 _mm_min_epi8 (__m128i __V1, __m128i __V2)
666 {
667   return (__m128i) __builtin_ia32_pminsb128 ((__v16qi) __V1, (__v16qi) __V2);
668 }
669
670 /// Compares the corresponding elements of two 128-bit vectors of
671 ///    [16 x i8] and returns a 128-bit vector of [16 x i8] containing the
672 ///    greater value of the two.
673 ///
674 /// \headerfile <x86intrin.h>
675 ///
676 /// This intrinsic corresponds to the <c> VPMAXSB / PMAXSB </c> instruction.
677 ///
678 /// \param __V1
679 ///    A 128-bit vector of [16 x i8].
680 /// \param __V2
681 ///    A 128-bit vector of [16 x i8].
682 /// \returns A 128-bit vector of [16 x i8] containing the greater values.
683 static __inline__  __m128i __DEFAULT_FN_ATTRS
684 _mm_max_epi8 (__m128i __V1, __m128i __V2)
685 {
686   return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi) __V1, (__v16qi) __V2);
687 }
688
689 /// Compares the corresponding elements of two 128-bit vectors of
690 ///    [8 x u16] and returns a 128-bit vector of [8 x u16] containing the lesser
691 ///    value of the two.
692 ///
693 /// \headerfile <x86intrin.h>
694 ///
695 /// This intrinsic corresponds to the <c> VPMINUW / PMINUW </c> instruction.
696 ///
697 /// \param __V1
698 ///    A 128-bit vector of [8 x u16].
699 /// \param __V2
700 ///    A 128-bit vector of [8 x u16].
701 /// \returns A 128-bit vector of [8 x u16] containing the lesser values.
702 static __inline__  __m128i __DEFAULT_FN_ATTRS
703 _mm_min_epu16 (__m128i __V1, __m128i __V2)
704 {
705   return (__m128i) __builtin_ia32_pminuw128 ((__v8hi) __V1, (__v8hi) __V2);
706 }
707
708 /// Compares the corresponding elements of two 128-bit vectors of
709 ///    [8 x u16] and returns a 128-bit vector of [8 x u16] containing the
710 ///    greater value of the two.
711 ///
712 /// \headerfile <x86intrin.h>
713 ///
714 /// This intrinsic corresponds to the <c> VPMAXUW / PMAXUW </c> instruction.
715 ///
716 /// \param __V1
717 ///    A 128-bit vector of [8 x u16].
718 /// \param __V2
719 ///    A 128-bit vector of [8 x u16].
720 /// \returns A 128-bit vector of [8 x u16] containing the greater values.
721 static __inline__  __m128i __DEFAULT_FN_ATTRS
722 _mm_max_epu16 (__m128i __V1, __m128i __V2)
723 {
724   return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi) __V1, (__v8hi) __V2);
725 }
726
727 /// Compares the corresponding elements of two 128-bit vectors of
728 ///    [4 x i32] and returns a 128-bit vector of [4 x i32] containing the lesser
729 ///    value of the two.
730 ///
731 /// \headerfile <x86intrin.h>
732 ///
733 /// This intrinsic corresponds to the <c> VPMINSD / PMINSD </c> instruction.
734 ///
735 /// \param __V1
736 ///    A 128-bit vector of [4 x i32].
737 /// \param __V2
738 ///    A 128-bit vector of [4 x i32].
739 /// \returns A 128-bit vector of [4 x i32] containing the lesser values.
740 static __inline__  __m128i __DEFAULT_FN_ATTRS
741 _mm_min_epi32 (__m128i __V1, __m128i __V2)
742 {
743   return (__m128i) __builtin_ia32_pminsd128 ((__v4si) __V1, (__v4si) __V2);
744 }
745
746 /// Compares the corresponding elements of two 128-bit vectors of
747 ///    [4 x i32] and returns a 128-bit vector of [4 x i32] containing the
748 ///    greater value of the two.
749 ///
750 /// \headerfile <x86intrin.h>
751 ///
752 /// This intrinsic corresponds to the <c> VPMAXSD / PMAXSD </c> instruction.
753 ///
754 /// \param __V1
755 ///    A 128-bit vector of [4 x i32].
756 /// \param __V2
757 ///    A 128-bit vector of [4 x i32].
758 /// \returns A 128-bit vector of [4 x i32] containing the greater values.
759 static __inline__  __m128i __DEFAULT_FN_ATTRS
760 _mm_max_epi32 (__m128i __V1, __m128i __V2)
761 {
762   return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si) __V1, (__v4si) __V2);
763 }
764
765 /// Compares the corresponding elements of two 128-bit vectors of
766 ///    [4 x u32] and returns a 128-bit vector of [4 x u32] containing the lesser
767 ///    value of the two.
768 ///
769 /// \headerfile <x86intrin.h>
770 ///
771 /// This intrinsic corresponds to the <c> VPMINUD / PMINUD </c>  instruction.
772 ///
773 /// \param __V1
774 ///    A 128-bit vector of [4 x u32].
775 /// \param __V2
776 ///    A 128-bit vector of [4 x u32].
777 /// \returns A 128-bit vector of [4 x u32] containing the lesser values.
778 static __inline__  __m128i __DEFAULT_FN_ATTRS
779 _mm_min_epu32 (__m128i __V1, __m128i __V2)
780 {
781   return (__m128i) __builtin_ia32_pminud128((__v4si) __V1, (__v4si) __V2);
782 }
783
784 /// Compares the corresponding elements of two 128-bit vectors of
785 ///    [4 x u32] and returns a 128-bit vector of [4 x u32] containing the
786 ///    greater value of the two.
787 ///
788 /// \headerfile <x86intrin.h>
789 ///
790 /// This intrinsic corresponds to the <c> VPMAXUD / PMAXUD </c> instruction.
791 ///
792 /// \param __V1
793 ///    A 128-bit vector of [4 x u32].
794 /// \param __V2
795 ///    A 128-bit vector of [4 x u32].
796 /// \returns A 128-bit vector of [4 x u32] containing the greater values.
797 static __inline__  __m128i __DEFAULT_FN_ATTRS
798 _mm_max_epu32 (__m128i __V1, __m128i __V2)
799 {
800   return (__m128i) __builtin_ia32_pmaxud128((__v4si) __V1, (__v4si) __V2);
801 }
802
803 /* SSE4 Insertion and Extraction from XMM Register Instructions.  */
804 /// Takes the first argument \a X and inserts an element from the second
805 ///    argument \a Y as selected by the third argument \a N. That result then
806 ///    has elements zeroed out also as selected by the third argument \a N. The
807 ///    resulting 128-bit vector of [4 x float] is then returned.
808 ///
809 /// \headerfile <x86intrin.h>
810 ///
811 /// \code
812 /// __m128 _mm_insert_ps(__m128 X, __m128 Y, const int N);
813 /// \endcode
814 ///
815 /// This intrinsic corresponds to the <c> VINSERTPS </c> instruction.
816 ///
817 /// \param X
818 ///    A 128-bit vector source operand of [4 x float]. With the exception of
819 ///    those bits in the result copied from parameter \a Y and zeroed by bits
820 ///    [3:0] of \a N, all bits from this parameter are copied to the result.
821 /// \param Y
822 ///    A 128-bit vector source operand of [4 x float]. One single-precision
823 ///    floating-point element from this source, as determined by the immediate
824 ///    parameter, is copied to the result.
825 /// \param N
826 ///    Specifies which bits from operand \a Y will be copied, which bits in the
827 ///    result they will be be copied to, and which bits in the result will be
828 ///    cleared. The following assignments are made: \n
829 ///    Bits [7:6] specify the bits to copy from operand \a Y: \n
830 ///      00: Selects bits [31:0] from operand \a Y. \n
831 ///      01: Selects bits [63:32] from operand \a Y. \n
832 ///      10: Selects bits [95:64] from operand \a Y. \n
833 ///      11: Selects bits [127:96] from operand \a Y. \n
834 ///    Bits [5:4] specify the bits in the result to which the selected bits
835 ///    from operand \a Y are copied: \n
836 ///      00: Copies the selected bits from \a Y to result bits [31:0]. \n
837 ///      01: Copies the selected bits from \a Y to result bits [63:32]. \n
838 ///      10: Copies the selected bits from \a Y to result bits [95:64]. \n
839 ///      11: Copies the selected bits from \a Y to result bits [127:96]. \n
840 ///    Bits[3:0]: If any of these bits are set, the corresponding result
841 ///    element is cleared.
842 /// \returns A 128-bit vector of [4 x float] containing the copied
843 ///    single-precision floating point elements from the operands.
844 #define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
845
846 /// Extracts a 32-bit integer from a 128-bit vector of [4 x float] and
847 ///    returns it, using the immediate value parameter \a N as a selector.
848 ///
849 /// \headerfile <x86intrin.h>
850 ///
851 /// \code
852 /// int _mm_extract_ps(__m128 X, const int N);
853 /// \endcode
854 ///
855 /// This intrinsic corresponds to the <c> VEXTRACTPS / EXTRACTPS </c>
856 /// instruction.
857 ///
858 /// \param X
859 ///    A 128-bit vector of [4 x float].
860 /// \param N
861 ///    An immediate value. Bits [1:0] determines which bits from the argument
862 ///    \a X are extracted and returned: \n
863 ///    00: Bits [31:0] of parameter \a X are returned. \n
864 ///    01: Bits [63:32] of parameter \a X are returned. \n
865 ///    10: Bits [95:64] of parameter \a X are returned. \n
866 ///    11: Bits [127:96] of parameter \a X are returned.
867 /// \returns A 32-bit integer containing the extracted 32 bits of float data.
868 #define _mm_extract_ps(X, N) (__extension__                      \
869   ({ union { int __i; float __f; } __t;  \
870      __t.__f = __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)); \
871      __t.__i;}))
872
873 /* Miscellaneous insert and extract macros.  */
874 /* Extract a single-precision float from X at index N into D.  */
875 #define _MM_EXTRACT_FLOAT(D, X, N) \
876   { (D) = __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)); }
877
878 /* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
879    an index suitable for _mm_insert_ps.  */
880 #define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
881
882 /* Extract a float from X at index N into the first index of the return.  */
883 #define _MM_PICK_OUT_PS(X, N) _mm_insert_ps (_mm_setzero_ps(), (X),   \
884                                              _MM_MK_INSERTPS_NDX((N), 0, 0x0e))
885
886 /* Insert int into packed integer array at index.  */
887 /// Constructs a 128-bit vector of [16 x i8] by first making a copy of
888 ///    the 128-bit integer vector parameter, and then inserting the lower 8 bits
889 ///    of an integer parameter \a I into an offset specified by the immediate
890 ///    value parameter \a N.
891 ///
892 /// \headerfile <x86intrin.h>
893 ///
894 /// \code
895 /// __m128i _mm_insert_epi8(__m128i X, int I, const int N);
896 /// \endcode
897 ///
898 /// This intrinsic corresponds to the <c> VPINSRB / PINSRB </c> instruction.
899 ///
900 /// \param X
901 ///    A 128-bit integer vector of [16 x i8]. This vector is copied to the
902 ///    result and then one of the sixteen elements in the result vector is
903 ///    replaced by the lower 8 bits of \a I.
904 /// \param I
905 ///    An integer. The lower 8 bits of this operand are written to the result
906 ///    beginning at the offset specified by \a N.
907 /// \param N
908 ///    An immediate value. Bits [3:0] specify the bit offset in the result at
909 ///    which the lower 8 bits of \a I are written. \n
910 ///    0000: Bits [7:0] of the result are used for insertion. \n
911 ///    0001: Bits [15:8] of the result are used for insertion. \n
912 ///    0010: Bits [23:16] of the result are used for insertion. \n
913 ///    0011: Bits [31:24] of the result are used for insertion. \n
914 ///    0100: Bits [39:32] of the result are used for insertion. \n
915 ///    0101: Bits [47:40] of the result are used for insertion. \n
916 ///    0110: Bits [55:48] of the result are used for insertion. \n
917 ///    0111: Bits [63:56] of the result are used for insertion. \n
918 ///    1000: Bits [71:64] of the result are used for insertion. \n
919 ///    1001: Bits [79:72] of the result are used for insertion. \n
920 ///    1010: Bits [87:80] of the result are used for insertion. \n
921 ///    1011: Bits [95:88] of the result are used for insertion. \n
922 ///    1100: Bits [103:96] of the result are used for insertion. \n
923 ///    1101: Bits [111:104] of the result are used for insertion. \n
924 ///    1110: Bits [119:112] of the result are used for insertion. \n
925 ///    1111: Bits [127:120] of the result are used for insertion.
926 /// \returns A 128-bit integer vector containing the constructed values.
927 #define _mm_insert_epi8(X, I, N) \
928   (__m128i)__builtin_ia32_vec_set_v16qi((__v16qi)(__m128i)(X), \
929                                         (int)(I), (int)(N))
930
931 /// Constructs a 128-bit vector of [4 x i32] by first making a copy of
932 ///    the 128-bit integer vector parameter, and then inserting the 32-bit
933 ///    integer parameter \a I at the offset specified by the immediate value
934 ///    parameter \a N.
935 ///
936 /// \headerfile <x86intrin.h>
937 ///
938 /// \code
939 /// __m128i _mm_insert_epi32(__m128i X, int I, const int N);
940 /// \endcode
941 ///
942 /// This intrinsic corresponds to the <c> VPINSRD / PINSRD </c> instruction.
943 ///
944 /// \param X
945 ///    A 128-bit integer vector of [4 x i32]. This vector is copied to the
946 ///    result and then one of the four elements in the result vector is
947 ///    replaced by \a I.
948 /// \param I
949 ///    A 32-bit integer that is written to the result beginning at the offset
950 ///    specified by \a N.
951 /// \param N
952 ///    An immediate value. Bits [1:0] specify the bit offset in the result at
953 ///    which the integer \a I is written. \n
954 ///    00: Bits [31:0] of the result are used for insertion. \n
955 ///    01: Bits [63:32] of the result are used for insertion. \n
956 ///    10: Bits [95:64] of the result are used for insertion. \n
957 ///    11: Bits [127:96] of the result are used for insertion.
958 /// \returns A 128-bit integer vector containing the constructed values.
959 #define _mm_insert_epi32(X, I, N) \
960   (__m128i)__builtin_ia32_vec_set_v4si((__v4si)(__m128i)(X), \
961                                        (int)(I), (int)(N))
962
963 #ifdef __x86_64__
964 /// Constructs a 128-bit vector of [2 x i64] by first making a copy of
965 ///    the 128-bit integer vector parameter, and then inserting the 64-bit
966 ///    integer parameter \a I, using the immediate value parameter \a N as an
967 ///    insertion location selector.
968 ///
969 /// \headerfile <x86intrin.h>
970 ///
971 /// \code
972 /// __m128i _mm_insert_epi64(__m128i X, long long I, const int N);
973 /// \endcode
974 ///
975 /// This intrinsic corresponds to the <c> VPINSRQ / PINSRQ </c> instruction.
976 ///
977 /// \param X
978 ///    A 128-bit integer vector of [2 x i64]. This vector is copied to the
979 ///    result and then one of the two elements in the result vector is replaced
980 ///    by \a I.
981 /// \param I
982 ///    A 64-bit integer that is written to the result beginning at the offset
983 ///    specified by \a N.
984 /// \param N
985 ///    An immediate value. Bit [0] specifies the bit offset in the result at
986 ///    which the integer \a I is written. \n
987 ///    0: Bits [63:0] of the result are used for insertion. \n
988 ///    1: Bits [127:64] of the result are used for insertion. \n
989 /// \returns A 128-bit integer vector containing the constructed values.
990 #define _mm_insert_epi64(X, I, N) \
991   (__m128i)__builtin_ia32_vec_set_v2di((__v2di)(__m128i)(X), \
992                                        (long long)(I), (int)(N))
993 #endif /* __x86_64__ */
994
995 /* Extract int from packed integer array at index.  This returns the element
996  * as a zero extended value, so it is unsigned.
997  */
998 /// Extracts an 8-bit element from the 128-bit integer vector of
999 ///    [16 x i8], using the immediate value parameter \a N as a selector.
1000 ///
1001 /// \headerfile <x86intrin.h>
1002 ///
1003 /// \code
1004 /// int _mm_extract_epi8(__m128i X, const int N);
1005 /// \endcode
1006 ///
1007 /// This intrinsic corresponds to the <c> VPEXTRB / PEXTRB </c> instruction.
1008 ///
1009 /// \param X
1010 ///    A 128-bit integer vector.
1011 /// \param N
1012 ///    An immediate value. Bits [3:0] specify which 8-bit vector element from
1013 ///    the argument \a X to extract and copy to the result. \n
1014 ///    0000: Bits [7:0] of parameter \a X are extracted. \n
1015 ///    0001: Bits [15:8] of the parameter \a X are extracted. \n
1016 ///    0010: Bits [23:16] of the parameter \a X are extracted. \n
1017 ///    0011: Bits [31:24] of the parameter \a X are extracted. \n
1018 ///    0100: Bits [39:32] of the parameter \a X are extracted. \n
1019 ///    0101: Bits [47:40] of the parameter \a X are extracted. \n
1020 ///    0110: Bits [55:48] of the parameter \a X are extracted. \n
1021 ///    0111: Bits [63:56] of the parameter \a X are extracted. \n
1022 ///    1000: Bits [71:64] of the parameter \a X are extracted. \n
1023 ///    1001: Bits [79:72] of the parameter \a X are extracted. \n
1024 ///    1010: Bits [87:80] of the parameter \a X are extracted. \n
1025 ///    1011: Bits [95:88] of the parameter \a X are extracted. \n
1026 ///    1100: Bits [103:96] of the parameter \a X are extracted. \n
1027 ///    1101: Bits [111:104] of the parameter \a X are extracted. \n
1028 ///    1110: Bits [119:112] of the parameter \a X are extracted. \n
1029 ///    1111: Bits [127:120] of the parameter \a X are extracted.
1030 /// \returns  An unsigned integer, whose lower 8 bits are selected from the
1031 ///    128-bit integer vector parameter and the remaining bits are assigned
1032 ///    zeros.
1033 #define _mm_extract_epi8(X, N) \
1034   (int)(unsigned char)__builtin_ia32_vec_ext_v16qi((__v16qi)(__m128i)(X), \
1035                                                    (int)(N))
1036
1037 /// Extracts a 32-bit element from the 128-bit integer vector of
1038 ///    [4 x i32], using the immediate value parameter \a N as a selector.
1039 ///
1040 /// \headerfile <x86intrin.h>
1041 ///
1042 /// \code
1043 /// int _mm_extract_epi32(__m128i X, const int N);
1044 /// \endcode
1045 ///
1046 /// This intrinsic corresponds to the <c> VPEXTRD / PEXTRD </c> instruction.
1047 ///
1048 /// \param X
1049 ///    A 128-bit integer vector.
1050 /// \param N
1051 ///    An immediate value. Bits [1:0] specify which 32-bit vector element from
1052 ///    the argument \a X to extract and copy to the result. \n
1053 ///    00: Bits [31:0] of the parameter \a X are extracted. \n
1054 ///    01: Bits [63:32] of the parameter \a X are extracted. \n
1055 ///    10: Bits [95:64] of the parameter \a X are extracted. \n
1056 ///    11: Bits [127:96] of the parameter \a X are exracted.
1057 /// \returns  An integer, whose lower 32 bits are selected from the 128-bit
1058 ///    integer vector parameter and the remaining bits are assigned zeros.
1059 #define _mm_extract_epi32(X, N) \
1060   (int)__builtin_ia32_vec_ext_v4si((__v4si)(__m128i)(X), (int)(N))
1061
1062 #ifdef __x86_64__
1063 /// Extracts a 64-bit element from the 128-bit integer vector of
1064 ///    [2 x i64], using the immediate value parameter \a N as a selector.
1065 ///
1066 /// \headerfile <x86intrin.h>
1067 ///
1068 /// \code
1069 /// long long _mm_extract_epi64(__m128i X, const int N);
1070 /// \endcode
1071 ///
1072 /// This intrinsic corresponds to the <c> VPEXTRQ / PEXTRQ </c> instruction.
1073 ///
1074 /// \param X
1075 ///    A 128-bit integer vector.
1076 /// \param N
1077 ///    An immediate value. Bit [0] specifies which 64-bit vector element from
1078 ///    the argument \a X to return. \n
1079 ///    0: Bits [63:0] are returned. \n
1080 ///    1: Bits [127:64] are returned. \n
1081 /// \returns  A 64-bit integer.
1082 #define _mm_extract_epi64(X, N) \
1083   (long long)__builtin_ia32_vec_ext_v2di((__v2di)(__m128i)(X), (int)(N))
1084 #endif /* __x86_64 */
1085
1086 /* SSE4 128-bit Packed Integer Comparisons.  */
1087 /// Tests whether the specified bits in a 128-bit integer vector are all
1088 ///    zeros.
1089 ///
1090 /// \headerfile <x86intrin.h>
1091 ///
1092 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1093 ///
1094 /// \param __M
1095 ///    A 128-bit integer vector containing the bits to be tested.
1096 /// \param __V
1097 ///    A 128-bit integer vector selecting which bits to test in operand \a __M.
1098 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
1099 static __inline__ int __DEFAULT_FN_ATTRS
1100 _mm_testz_si128(__m128i __M, __m128i __V)
1101 {
1102   return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V);
1103 }
1104
1105 /// Tests whether the specified bits in a 128-bit integer vector are all
1106 ///    ones.
1107 ///
1108 /// \headerfile <x86intrin.h>
1109 ///
1110 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1111 ///
1112 /// \param __M
1113 ///    A 128-bit integer vector containing the bits to be tested.
1114 /// \param __V
1115 ///    A 128-bit integer vector selecting which bits to test in operand \a __M.
1116 /// \returns TRUE if the specified bits are all ones; FALSE otherwise.
1117 static __inline__ int __DEFAULT_FN_ATTRS
1118 _mm_testc_si128(__m128i __M, __m128i __V)
1119 {
1120   return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V);
1121 }
1122
1123 /// Tests whether the specified bits in a 128-bit integer vector are
1124 ///    neither all zeros nor all ones.
1125 ///
1126 /// \headerfile <x86intrin.h>
1127 ///
1128 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1129 ///
1130 /// \param __M
1131 ///    A 128-bit integer vector containing the bits to be tested.
1132 /// \param __V
1133 ///    A 128-bit integer vector selecting which bits to test in operand \a __M.
1134 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1135 ///    FALSE otherwise.
1136 static __inline__ int __DEFAULT_FN_ATTRS
1137 _mm_testnzc_si128(__m128i __M, __m128i __V)
1138 {
1139   return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V);
1140 }
1141
1142 /// Tests whether the specified bits in a 128-bit integer vector are all
1143 ///    ones.
1144 ///
1145 /// \headerfile <x86intrin.h>
1146 ///
1147 /// \code
1148 /// int _mm_test_all_ones(__m128i V);
1149 /// \endcode
1150 ///
1151 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1152 ///
1153 /// \param V
1154 ///    A 128-bit integer vector containing the bits to be tested.
1155 /// \returns TRUE if the bits specified in the operand are all set to 1; FALSE
1156 ///    otherwise.
1157 #define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_cmpeq_epi32((V), (V)))
1158
1159 /// Tests whether the specified bits in a 128-bit integer vector are
1160 ///    neither all zeros nor all ones.
1161 ///
1162 /// \headerfile <x86intrin.h>
1163 ///
1164 /// \code
1165 /// int _mm_test_mix_ones_zeros(__m128i M, __m128i V);
1166 /// \endcode
1167 ///
1168 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1169 ///
1170 /// \param M
1171 ///    A 128-bit integer vector containing the bits to be tested.
1172 /// \param V
1173 ///    A 128-bit integer vector selecting which bits to test in operand \a M.
1174 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1175 ///    FALSE otherwise.
1176 #define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V))
1177
1178 /// Tests whether the specified bits in a 128-bit integer vector are all
1179 ///    zeros.
1180 ///
1181 /// \headerfile <x86intrin.h>
1182 ///
1183 /// \code
1184 /// int _mm_test_all_zeros(__m128i M, __m128i V);
1185 /// \endcode
1186 ///
1187 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1188 ///
1189 /// \param M
1190 ///    A 128-bit integer vector containing the bits to be tested.
1191 /// \param V
1192 ///    A 128-bit integer vector selecting which bits to test in operand \a M.
1193 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
1194 #define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V))
1195
1196 /* SSE4 64-bit Packed Integer Comparisons.  */
1197 /// Compares each of the corresponding 64-bit values of the 128-bit
1198 ///    integer vectors for equality.
1199 ///
1200 /// \headerfile <x86intrin.h>
1201 ///
1202 /// This intrinsic corresponds to the <c> VPCMPEQQ / PCMPEQQ </c> instruction.
1203 ///
1204 /// \param __V1
1205 ///    A 128-bit integer vector.
1206 /// \param __V2
1207 ///    A 128-bit integer vector.
1208 /// \returns A 128-bit integer vector containing the comparison results.
1209 static __inline__ __m128i __DEFAULT_FN_ATTRS
1210 _mm_cmpeq_epi64(__m128i __V1, __m128i __V2)
1211 {
1212   return (__m128i)((__v2di)__V1 == (__v2di)__V2);
1213 }
1214
1215 /* SSE4 Packed Integer Sign-Extension.  */
1216 /// Sign-extends each of the lower eight 8-bit integer elements of a
1217 ///    128-bit vector of [16 x i8] to 16-bit values and returns them in a
1218 ///    128-bit vector of [8 x i16]. The upper eight elements of the input vector
1219 ///    are unused.
1220 ///
1221 /// \headerfile <x86intrin.h>
1222 ///
1223 /// This intrinsic corresponds to the <c> VPMOVSXBW / PMOVSXBW </c> instruction.
1224 ///
1225 /// \param __V
1226 ///    A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are sign-
1227 ///    extended to 16-bit values.
1228 /// \returns A 128-bit vector of [8 x i16] containing the sign-extended values.
1229 static __inline__ __m128i __DEFAULT_FN_ATTRS
1230 _mm_cvtepi8_epi16(__m128i __V)
1231 {
1232   /* This function always performs a signed extension, but __v16qi is a char
1233      which may be signed or unsigned, so use __v16qs. */
1234   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi);
1235 }
1236
1237 /// Sign-extends each of the lower four 8-bit integer elements of a
1238 ///    128-bit vector of [16 x i8] to 32-bit values and returns them in a
1239 ///    128-bit vector of [4 x i32]. The upper twelve elements of the input
1240 ///    vector are unused.
1241 ///
1242 /// \headerfile <x86intrin.h>
1243 ///
1244 /// This intrinsic corresponds to the <c> VPMOVSXBD / PMOVSXBD </c> instruction.
1245 ///
1246 /// \param __V
1247 ///    A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1248 ///    sign-extended to 32-bit values.
1249 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
1250 static __inline__ __m128i __DEFAULT_FN_ATTRS
1251 _mm_cvtepi8_epi32(__m128i __V)
1252 {
1253   /* This function always performs a signed extension, but __v16qi is a char
1254      which may be signed or unsigned, so use __v16qs. */
1255   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4si);
1256 }
1257
1258 /// Sign-extends each of the lower two 8-bit integer elements of a
1259 ///    128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1260 ///    a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1261 ///    vector are unused.
1262 ///
1263 /// \headerfile <x86intrin.h>
1264 ///
1265 /// This intrinsic corresponds to the <c> VPMOVSXBQ / PMOVSXBQ </c> instruction.
1266 ///
1267 /// \param __V
1268 ///    A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1269 ///    sign-extended to 64-bit values.
1270 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1271 static __inline__ __m128i __DEFAULT_FN_ATTRS
1272 _mm_cvtepi8_epi64(__m128i __V)
1273 {
1274   /* This function always performs a signed extension, but __v16qi is a char
1275      which may be signed or unsigned, so use __v16qs. */
1276   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1), __v2di);
1277 }
1278
1279 /// Sign-extends each of the lower four 16-bit integer elements of a
1280 ///    128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1281 ///    a 128-bit vector of [4 x i32]. The upper four elements of the input
1282 ///    vector are unused.
1283 ///
1284 /// \headerfile <x86intrin.h>
1285 ///
1286 /// This intrinsic corresponds to the <c> VPMOVSXWD / PMOVSXWD </c> instruction.
1287 ///
1288 /// \param __V
1289 ///    A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1290 ///    sign-extended to 32-bit values.
1291 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
1292 static __inline__ __m128i __DEFAULT_FN_ATTRS
1293 _mm_cvtepi16_epi32(__m128i __V)
1294 {
1295   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4si);
1296 }
1297
1298 /// Sign-extends each of the lower two 16-bit integer elements of a
1299 ///    128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1300 ///    a 128-bit vector of [2 x i64]. The upper six elements of the input
1301 ///    vector are unused.
1302 ///
1303 /// \headerfile <x86intrin.h>
1304 ///
1305 /// This intrinsic corresponds to the <c> VPMOVSXWQ / PMOVSXWQ </c> instruction.
1306 ///
1307 /// \param __V
1308 ///    A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1309 ///     sign-extended to 64-bit values.
1310 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1311 static __inline__ __m128i __DEFAULT_FN_ATTRS
1312 _mm_cvtepi16_epi64(__m128i __V)
1313 {
1314   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1), __v2di);
1315 }
1316
1317 /// Sign-extends each of the lower two 32-bit integer elements of a
1318 ///    128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1319 ///    a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1320 ///    are unused.
1321 ///
1322 /// \headerfile <x86intrin.h>
1323 ///
1324 /// This intrinsic corresponds to the <c> VPMOVSXDQ / PMOVSXDQ </c> instruction.
1325 ///
1326 /// \param __V
1327 ///    A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1328 ///    sign-extended to 64-bit values.
1329 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1330 static __inline__ __m128i __DEFAULT_FN_ATTRS
1331 _mm_cvtepi32_epi64(__m128i __V)
1332 {
1333   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4si)__V, (__v4si)__V, 0, 1), __v2di);
1334 }
1335
1336 /* SSE4 Packed Integer Zero-Extension.  */
1337 /// Zero-extends each of the lower eight 8-bit integer elements of a
1338 ///    128-bit vector of [16 x i8] to 16-bit values and returns them in a
1339 ///    128-bit vector of [8 x i16]. The upper eight elements of the input vector
1340 ///    are unused.
1341 ///
1342 /// \headerfile <x86intrin.h>
1343 ///
1344 /// This intrinsic corresponds to the <c> VPMOVZXBW / PMOVZXBW </c> instruction.
1345 ///
1346 /// \param __V
1347 ///    A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are
1348 ///    zero-extended to 16-bit values.
1349 /// \returns A 128-bit vector of [8 x i16] containing the zero-extended values.
1350 static __inline__ __m128i __DEFAULT_FN_ATTRS
1351 _mm_cvtepu8_epi16(__m128i __V)
1352 {
1353   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi);
1354 }
1355
1356 /// Zero-extends each of the lower four 8-bit integer elements of a
1357 ///    128-bit vector of [16 x i8] to 32-bit values and returns them in a
1358 ///    128-bit vector of [4 x i32]. The upper twelve elements of the input
1359 ///    vector are unused.
1360 ///
1361 /// \headerfile <x86intrin.h>
1362 ///
1363 /// This intrinsic corresponds to the <c> VPMOVZXBD / PMOVZXBD </c> instruction.
1364 ///
1365 /// \param __V
1366 ///    A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1367 ///    zero-extended to 32-bit values.
1368 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
1369 static __inline__ __m128i __DEFAULT_FN_ATTRS
1370 _mm_cvtepu8_epi32(__m128i __V)
1371 {
1372   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3), __v4si);
1373 }
1374
1375 /// Zero-extends each of the lower two 8-bit integer elements of a
1376 ///    128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1377 ///    a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1378 ///    vector are unused.
1379 ///
1380 /// \headerfile <x86intrin.h>
1381 ///
1382 /// This intrinsic corresponds to the <c> VPMOVZXBQ / PMOVZXBQ </c> instruction.
1383 ///
1384 /// \param __V
1385 ///    A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1386 ///    zero-extended to 64-bit values.
1387 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1388 static __inline__ __m128i __DEFAULT_FN_ATTRS
1389 _mm_cvtepu8_epi64(__m128i __V)
1390 {
1391   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1), __v2di);
1392 }
1393
1394 /// Zero-extends each of the lower four 16-bit integer elements of a
1395 ///    128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1396 ///    a 128-bit vector of [4 x i32]. The upper four elements of the input
1397 ///    vector are unused.
1398 ///
1399 /// \headerfile <x86intrin.h>
1400 ///
1401 /// This intrinsic corresponds to the <c> VPMOVZXWD / PMOVZXWD </c> instruction.
1402 ///
1403 /// \param __V
1404 ///    A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1405 ///    zero-extended to 32-bit values.
1406 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
1407 static __inline__ __m128i __DEFAULT_FN_ATTRS
1408 _mm_cvtepu16_epi32(__m128i __V)
1409 {
1410   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1, 2, 3), __v4si);
1411 }
1412
1413 /// Zero-extends each of the lower two 16-bit integer elements of a
1414 ///    128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1415 ///    a 128-bit vector of [2 x i64]. The upper six elements of the input vector
1416 ///    are unused.
1417 ///
1418 /// \headerfile <x86intrin.h>
1419 ///
1420 /// This intrinsic corresponds to the <c> VPMOVZXWQ / PMOVZXWQ </c> instruction.
1421 ///
1422 /// \param __V
1423 ///    A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1424 ///    zero-extended to 64-bit values.
1425 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1426 static __inline__ __m128i __DEFAULT_FN_ATTRS
1427 _mm_cvtepu16_epi64(__m128i __V)
1428 {
1429   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1), __v2di);
1430 }
1431
1432 /// Zero-extends each of the lower two 32-bit integer elements of a
1433 ///    128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1434 ///    a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1435 ///    are unused.
1436 ///
1437 /// \headerfile <x86intrin.h>
1438 ///
1439 /// This intrinsic corresponds to the <c> VPMOVZXDQ / PMOVZXDQ </c> instruction.
1440 ///
1441 /// \param __V
1442 ///    A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1443 ///    zero-extended to 64-bit values.
1444 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1445 static __inline__ __m128i __DEFAULT_FN_ATTRS
1446 _mm_cvtepu32_epi64(__m128i __V)
1447 {
1448   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4su)__V, (__v4su)__V, 0, 1), __v2di);
1449 }
1450
1451 /* SSE4 Pack with Unsigned Saturation.  */
1452 /// Converts 32-bit signed integers from both 128-bit integer vector
1453 ///    operands into 16-bit unsigned integers, and returns the packed result.
1454 ///    Values greater than 0xFFFF are saturated to 0xFFFF. Values less than
1455 ///    0x0000 are saturated to 0x0000.
1456 ///
1457 /// \headerfile <x86intrin.h>
1458 ///
1459 /// This intrinsic corresponds to the <c> VPACKUSDW / PACKUSDW </c> instruction.
1460 ///
1461 /// \param __V1
1462 ///    A 128-bit vector of [4 x i32]. Each 32-bit element is treated as a
1463 ///    signed integer and is converted to a 16-bit unsigned integer with
1464 ///    saturation. Values greater than 0xFFFF are saturated to 0xFFFF. Values
1465 ///    less than 0x0000 are saturated to 0x0000. The converted [4 x i16] values
1466 ///    are written to the lower 64 bits of the result.
1467 /// \param __V2
1468 ///    A 128-bit vector of [4 x i32]. Each 32-bit element is treated as a
1469 ///    signed integer and is converted to a 16-bit unsigned integer with
1470 ///    saturation. Values greater than 0xFFFF are saturated to 0xFFFF. Values
1471 ///    less than 0x0000 are saturated to 0x0000. The converted [4 x i16] values
1472 ///    are written to the higher 64 bits of the result.
1473 /// \returns A 128-bit vector of [8 x i16] containing the converted values.
1474 static __inline__ __m128i __DEFAULT_FN_ATTRS
1475 _mm_packus_epi32(__m128i __V1, __m128i __V2)
1476 {
1477   return (__m128i) __builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2);
1478 }
1479
1480 /* SSE4 Multiple Packed Sums of Absolute Difference.  */
1481 /// Subtracts 8-bit unsigned integer values and computes the absolute
1482 ///    values of the differences to the corresponding bits in the destination.
1483 ///    Then sums of the absolute differences are returned according to the bit
1484 ///    fields in the immediate operand.
1485 ///
1486 /// \headerfile <x86intrin.h>
1487 ///
1488 /// \code
1489 /// __m128i _mm_mpsadbw_epu8(__m128i X, __m128i Y, const int M);
1490 /// \endcode
1491 ///
1492 /// This intrinsic corresponds to the <c> VMPSADBW / MPSADBW </c> instruction.
1493 ///
1494 /// \param X
1495 ///    A 128-bit vector of [16 x i8].
1496 /// \param Y
1497 ///    A 128-bit vector of [16 x i8].
1498 /// \param M
1499 ///    An 8-bit immediate operand specifying how the absolute differences are to
1500 ///    be calculated, according to the following algorithm:
1501 ///    \code
1502 ///    // M2 represents bit 2 of the immediate operand
1503 ///    // M10 represents bits [1:0] of the immediate operand
1504 ///    i = M2 * 4;
1505 ///    j = M10 * 4;
1506 ///    for (k = 0; k < 8; k = k + 1) {
1507 ///      d0 = abs(X[i + k + 0] - Y[j + 0]);
1508 ///      d1 = abs(X[i + k + 1] - Y[j + 1]);
1509 ///      d2 = abs(X[i + k + 2] - Y[j + 2]);
1510 ///      d3 = abs(X[i + k + 3] - Y[j + 3]);
1511 ///      r[k] = d0 + d1 + d2 + d3;
1512 ///    }
1513 ///    \endcode
1514 /// \returns A 128-bit integer vector containing the sums of the sets of
1515 ///    absolute differences between both operands.
1516 #define _mm_mpsadbw_epu8(X, Y, M) \
1517   (__m128i) __builtin_ia32_mpsadbw128((__v16qi)(__m128i)(X), \
1518                                       (__v16qi)(__m128i)(Y), (M))
1519
1520 /// Finds the minimum unsigned 16-bit element in the input 128-bit
1521 ///    vector of [8 x u16] and returns it and along with its index.
1522 ///
1523 /// \headerfile <x86intrin.h>
1524 ///
1525 /// This intrinsic corresponds to the <c> VPHMINPOSUW / PHMINPOSUW </c>
1526 /// instruction.
1527 ///
1528 /// \param __V
1529 ///    A 128-bit vector of [8 x u16].
1530 /// \returns A 128-bit value where bits [15:0] contain the minimum value found
1531 ///    in parameter \a __V, bits [18:16] contain the index of the minimum value
1532 ///    and the remaining bits are set to 0.
1533 static __inline__ __m128i __DEFAULT_FN_ATTRS
1534 _mm_minpos_epu16(__m128i __V)
1535 {
1536   return (__m128i) __builtin_ia32_phminposuw128((__v8hi)__V);
1537 }
1538
1539 /* Handle the sse4.2 definitions here. */
1540
1541 /* These definitions are normally in nmmintrin.h, but gcc puts them in here
1542    so we'll do the same.  */
1543
1544 #undef __DEFAULT_FN_ATTRS
1545 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.2")))
1546
1547 /* These specify the type of data that we're comparing.  */
1548 #define _SIDD_UBYTE_OPS                 0x00
1549 #define _SIDD_UWORD_OPS                 0x01
1550 #define _SIDD_SBYTE_OPS                 0x02
1551 #define _SIDD_SWORD_OPS                 0x03
1552
1553 /* These specify the type of comparison operation.  */
1554 #define _SIDD_CMP_EQUAL_ANY             0x00
1555 #define _SIDD_CMP_RANGES                0x04
1556 #define _SIDD_CMP_EQUAL_EACH            0x08
1557 #define _SIDD_CMP_EQUAL_ORDERED         0x0c
1558
1559 /* These macros specify the polarity of the operation.  */
1560 #define _SIDD_POSITIVE_POLARITY         0x00
1561 #define _SIDD_NEGATIVE_POLARITY         0x10
1562 #define _SIDD_MASKED_POSITIVE_POLARITY  0x20
1563 #define _SIDD_MASKED_NEGATIVE_POLARITY  0x30
1564
1565 /* These macros are used in _mm_cmpXstri() to specify the return.  */
1566 #define _SIDD_LEAST_SIGNIFICANT         0x00
1567 #define _SIDD_MOST_SIGNIFICANT          0x40
1568
1569 /* These macros are used in _mm_cmpXstri() to specify the return.  */
1570 #define _SIDD_BIT_MASK                  0x00
1571 #define _SIDD_UNIT_MASK                 0x40
1572
1573 /* SSE4.2 Packed Comparison Intrinsics.  */
1574 /// Uses the immediate operand \a M to perform a comparison of string
1575 ///    data with implicitly defined lengths that is contained in source operands
1576 ///    \a A and \a B. Returns a 128-bit integer vector representing the result
1577 ///    mask of the comparison.
1578 ///
1579 /// \headerfile <x86intrin.h>
1580 ///
1581 /// \code
1582 /// __m128i _mm_cmpistrm(__m128i A, __m128i B, const int M);
1583 /// \endcode
1584 ///
1585 /// This intrinsic corresponds to the <c> VPCMPISTRM / PCMPISTRM </c>
1586 /// instruction.
1587 ///
1588 /// \param A
1589 ///    A 128-bit integer vector containing one of the source operands to be
1590 ///    compared.
1591 /// \param B
1592 ///    A 128-bit integer vector containing one of the source operands to be
1593 ///    compared.
1594 /// \param M
1595 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1596 ///    words, the type of comparison to perform, and the format of the return
1597 ///    value. \n
1598 ///    Bits [1:0]: Determine source data format. \n
1599 ///      00: 16 unsigned bytes \n
1600 ///      01: 8 unsigned words \n
1601 ///      10: 16 signed bytes \n
1602 ///      11: 8 signed words \n
1603 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1604 ///      00: Subset: Each character in \a B is compared for equality with all
1605 ///          the characters in \a A. \n
1606 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1607 ///          basis is greater than or equal for even-indexed elements in \a A,
1608 ///          and less than or equal for odd-indexed elements in \a A. \n
1609 ///      10: Match: Compare each pair of corresponding characters in \a A and
1610 ///          \a B for equality. \n
1611 ///      11: Substring: Search \a B for substring matches of \a A. \n
1612 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1613 ///                mask of the comparison results. \n
1614 ///      00: No effect. \n
1615 ///      01: Negate the bit mask. \n
1616 ///      10: No effect. \n
1617 ///      11: Negate the bit mask only for bits with an index less than or equal
1618 ///          to the size of \a A or \a B. \n
1619 ///    Bit [6]: Determines whether the result is zero-extended or expanded to 16
1620 ///             bytes. \n
1621 ///      0: The result is zero-extended to 16 bytes. \n
1622 ///      1: The result is expanded to 16 bytes (this expansion is performed by
1623 ///         repeating each bit 8 or 16 times).
1624 /// \returns Returns a 128-bit integer vector representing the result mask of
1625 ///    the comparison.
1626 #define _mm_cmpistrm(A, B, M) \
1627   (__m128i)__builtin_ia32_pcmpistrm128((__v16qi)(__m128i)(A), \
1628                                        (__v16qi)(__m128i)(B), (int)(M))
1629
1630 /// Uses the immediate operand \a M to perform a comparison of string
1631 ///    data with implicitly defined lengths that is contained in source operands
1632 ///    \a A and \a B. Returns an integer representing the result index of the
1633 ///    comparison.
1634 ///
1635 /// \headerfile <x86intrin.h>
1636 ///
1637 /// \code
1638 /// int _mm_cmpistri(__m128i A, __m128i B, const int M);
1639 /// \endcode
1640 ///
1641 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1642 /// instruction.
1643 ///
1644 /// \param A
1645 ///    A 128-bit integer vector containing one of the source operands to be
1646 ///    compared.
1647 /// \param B
1648 ///    A 128-bit integer vector containing one of the source operands to be
1649 ///    compared.
1650 /// \param M
1651 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1652 ///    words, the type of comparison to perform, and the format of the return
1653 ///    value. \n
1654 ///    Bits [1:0]: Determine source data format. \n
1655 ///      00: 16 unsigned bytes \n
1656 ///      01: 8 unsigned words \n
1657 ///      10: 16 signed bytes \n
1658 ///      11: 8 signed words \n
1659 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1660 ///      00: Subset: Each character in \a B is compared for equality with all
1661 ///          the characters in \a A. \n
1662 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1663 ///          basis is greater than or equal for even-indexed elements in \a A,
1664 ///          and less than or equal for odd-indexed elements in \a A. \n
1665 ///      10: Match: Compare each pair of corresponding characters in \a A and
1666 ///          \a B for equality. \n
1667 ///      11: Substring: Search B for substring matches of \a A. \n
1668 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1669 ///                mask of the comparison results. \n
1670 ///      00: No effect. \n
1671 ///      01: Negate the bit mask. \n
1672 ///      10: No effect. \n
1673 ///      11: Negate the bit mask only for bits with an index less than or equal
1674 ///          to the size of \a A or \a B. \n
1675 ///    Bit [6]: Determines whether the index of the lowest set bit or the
1676 ///             highest set bit is returned. \n
1677 ///      0: The index of the least significant set bit. \n
1678 ///      1: The index of the most significant set bit. \n
1679 /// \returns Returns an integer representing the result index of the comparison.
1680 #define _mm_cmpistri(A, B, M) \
1681   (int)__builtin_ia32_pcmpistri128((__v16qi)(__m128i)(A), \
1682                                    (__v16qi)(__m128i)(B), (int)(M))
1683
1684 /// Uses the immediate operand \a M to perform a comparison of string
1685 ///    data with explicitly defined lengths that is contained in source operands
1686 ///    \a A and \a B. Returns a 128-bit integer vector representing the result
1687 ///    mask of the comparison.
1688 ///
1689 /// \headerfile <x86intrin.h>
1690 ///
1691 /// \code
1692 /// __m128i _mm_cmpestrm(__m128i A, int LA, __m128i B, int LB, const int M);
1693 /// \endcode
1694 ///
1695 /// This intrinsic corresponds to the <c> VPCMPESTRM / PCMPESTRM </c>
1696 /// instruction.
1697 ///
1698 /// \param A
1699 ///    A 128-bit integer vector containing one of the source operands to be
1700 ///    compared.
1701 /// \param LA
1702 ///    An integer that specifies the length of the string in \a A.
1703 /// \param B
1704 ///    A 128-bit integer vector containing one of the source operands to be
1705 ///    compared.
1706 /// \param LB
1707 ///    An integer that specifies the length of the string in \a B.
1708 /// \param M
1709 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1710 ///    words, the type of comparison to perform, and the format of the return
1711 ///    value. \n
1712 ///    Bits [1:0]: Determine source data format. \n
1713 ///      00: 16 unsigned bytes \n
1714 ///      01: 8 unsigned words \n
1715 ///      10: 16 signed bytes \n
1716 ///      11: 8 signed words \n
1717 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1718 ///      00: Subset: Each character in \a B is compared for equality with all
1719 ///          the characters in \a A. \n
1720 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1721 ///          basis is greater than or equal for even-indexed elements in \a A,
1722 ///          and less than or equal for odd-indexed elements in \a A. \n
1723 ///      10: Match: Compare each pair of corresponding characters in \a A and
1724 ///          \a B for equality. \n
1725 ///      11: Substring: Search \a B for substring matches of \a A. \n
1726 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1727 ///                mask of the comparison results. \n
1728 ///      00: No effect. \n
1729 ///      01: Negate the bit mask. \n
1730 ///      10: No effect. \n
1731 ///      11: Negate the bit mask only for bits with an index less than or equal
1732 ///          to the size of \a A or \a B. \n
1733 ///    Bit [6]: Determines whether the result is zero-extended or expanded to 16
1734 ///             bytes. \n
1735 ///      0: The result is zero-extended to 16 bytes. \n
1736 ///      1: The result is expanded to 16 bytes (this expansion is performed by
1737 ///         repeating each bit 8 or 16 times). \n
1738 /// \returns Returns a 128-bit integer vector representing the result mask of
1739 ///    the comparison.
1740 #define _mm_cmpestrm(A, LA, B, LB, M) \
1741   (__m128i)__builtin_ia32_pcmpestrm128((__v16qi)(__m128i)(A), (int)(LA), \
1742                                        (__v16qi)(__m128i)(B), (int)(LB), \
1743                                        (int)(M))
1744
1745 /// Uses the immediate operand \a M to perform a comparison of string
1746 ///    data with explicitly defined lengths that is contained in source operands
1747 ///    \a A and \a B. Returns an integer representing the result index of the
1748 ///    comparison.
1749 ///
1750 /// \headerfile <x86intrin.h>
1751 ///
1752 /// \code
1753 /// int _mm_cmpestri(__m128i A, int LA, __m128i B, int LB, const int M);
1754 /// \endcode
1755 ///
1756 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
1757 /// instruction.
1758 ///
1759 /// \param A
1760 ///    A 128-bit integer vector containing one of the source operands to be
1761 ///    compared.
1762 /// \param LA
1763 ///    An integer that specifies the length of the string in \a A.
1764 /// \param B
1765 ///    A 128-bit integer vector containing one of the source operands to be
1766 ///    compared.
1767 /// \param LB
1768 ///    An integer that specifies the length of the string in \a B.
1769 /// \param M
1770 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1771 ///    words, the type of comparison to perform, and the format of the return
1772 ///    value. \n
1773 ///    Bits [1:0]: Determine source data format. \n
1774 ///      00: 16 unsigned bytes \n
1775 ///      01: 8 unsigned words \n
1776 ///      10: 16 signed bytes \n
1777 ///      11: 8 signed words \n
1778 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1779 ///      00: Subset: Each character in \a B is compared for equality with all
1780 ///          the characters in \a A. \n
1781 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1782 ///          basis is greater than or equal for even-indexed elements in \a A,
1783 ///          and less than or equal for odd-indexed elements in \a A. \n
1784 ///      10: Match: Compare each pair of corresponding characters in \a A and
1785 ///          \a B for equality. \n
1786 ///      11: Substring: Search B for substring matches of \a A. \n
1787 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1788 ///                mask of the comparison results. \n
1789 ///      00: No effect. \n
1790 ///      01: Negate the bit mask. \n
1791 ///      10: No effect. \n
1792 ///      11: Negate the bit mask only for bits with an index less than or equal
1793 ///          to the size of \a A or \a B. \n
1794 ///    Bit [6]: Determines whether the index of the lowest set bit or the
1795 ///             highest set bit is returned. \n
1796 ///      0: The index of the least significant set bit. \n
1797 ///      1: The index of the most significant set bit. \n
1798 /// \returns Returns an integer representing the result index of the comparison.
1799 #define _mm_cmpestri(A, LA, B, LB, M) \
1800   (int)__builtin_ia32_pcmpestri128((__v16qi)(__m128i)(A), (int)(LA), \
1801                                    (__v16qi)(__m128i)(B), (int)(LB), \
1802                                    (int)(M))
1803
1804 /* SSE4.2 Packed Comparison Intrinsics and EFlag Reading.  */
1805 /// Uses the immediate operand \a M to perform a comparison of string
1806 ///    data with implicitly defined lengths that is contained in source operands
1807 ///    \a A and \a B. Returns 1 if the bit mask is zero and the length of the
1808 ///    string in \a B is the maximum, otherwise, returns 0.
1809 ///
1810 /// \headerfile <x86intrin.h>
1811 ///
1812 /// \code
1813 /// int _mm_cmpistra(__m128i A, __m128i B, const int M);
1814 /// \endcode
1815 ///
1816 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1817 /// instruction.
1818 ///
1819 /// \param A
1820 ///    A 128-bit integer vector containing one of the source operands to be
1821 ///    compared.
1822 /// \param B
1823 ///    A 128-bit integer vector containing one of the source operands to be
1824 ///    compared.
1825 /// \param M
1826 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1827 ///    words and the type of comparison to perform. \n
1828 ///    Bits [1:0]: Determine source data format. \n
1829 ///      00: 16 unsigned bytes \n
1830 ///      01: 8 unsigned words \n
1831 ///      10: 16 signed bytes \n
1832 ///      11: 8 signed words \n
1833 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1834 ///      00: Subset: Each character in \a B is compared for equality with all
1835 ///          the characters in \a A. \n
1836 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1837 ///          basis is greater than or equal for even-indexed elements in \a A,
1838 ///          and less than or equal for odd-indexed elements in \a A. \n
1839 ///      10: Match: Compare each pair of corresponding characters in \a A and
1840 ///          \a B for equality. \n
1841 ///      11: Substring: Search \a B for substring matches of \a A. \n
1842 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1843 ///                mask of the comparison results. \n
1844 ///      00: No effect. \n
1845 ///      01: Negate the bit mask. \n
1846 ///      10: No effect. \n
1847 ///      11: Negate the bit mask only for bits with an index less than or equal
1848 ///          to the size of \a A or \a B. \n
1849 /// \returns Returns 1 if the bit mask is zero and the length of the string in
1850 ///    \a B is the maximum; otherwise, returns 0.
1851 #define _mm_cmpistra(A, B, M) \
1852   (int)__builtin_ia32_pcmpistria128((__v16qi)(__m128i)(A), \
1853                                     (__v16qi)(__m128i)(B), (int)(M))
1854
1855 /// Uses the immediate operand \a M to perform a comparison of string
1856 ///    data with implicitly defined lengths that is contained in source operands
1857 ///    \a A and \a B. Returns 1 if the bit mask is non-zero, otherwise, returns
1858 ///    0.
1859 ///
1860 /// \headerfile <x86intrin.h>
1861 ///
1862 /// \code
1863 /// int _mm_cmpistrc(__m128i A, __m128i B, const int M);
1864 /// \endcode
1865 ///
1866 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1867 /// instruction.
1868 ///
1869 /// \param A
1870 ///    A 128-bit integer vector containing one of the source operands to be
1871 ///    compared.
1872 /// \param B
1873 ///    A 128-bit integer vector containing one of the source operands to be
1874 ///    compared.
1875 /// \param M
1876 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1877 ///    words and the type of comparison to perform. \n
1878 ///    Bits [1:0]: Determine source data format. \n
1879 ///      00: 16 unsigned bytes \n
1880 ///      01: 8 unsigned words \n
1881 ///      10: 16 signed bytes \n
1882 ///      11: 8 signed words \n
1883 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1884 ///      00: Subset: Each character in \a B is compared for equality with all
1885 ///          the characters in \a A. \n
1886 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1887 ///          basis is greater than or equal for even-indexed elements in \a A,
1888 ///          and less than or equal for odd-indexed elements in \a A. \n
1889 ///      10: Match: Compare each pair of corresponding characters in \a A and
1890 ///          \a B for equality. \n
1891 ///      11: Substring: Search B for substring matches of \a A. \n
1892 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1893 ///                mask of the comparison results. \n
1894 ///      00: No effect. \n
1895 ///      01: Negate the bit mask. \n
1896 ///      10: No effect. \n
1897 ///      11: Negate the bit mask only for bits with an index less than or equal
1898 ///          to the size of \a A or \a B.
1899 /// \returns Returns 1 if the bit mask is non-zero, otherwise, returns 0.
1900 #define _mm_cmpistrc(A, B, M) \
1901   (int)__builtin_ia32_pcmpistric128((__v16qi)(__m128i)(A), \
1902                                     (__v16qi)(__m128i)(B), (int)(M))
1903
1904 /// Uses the immediate operand \a M to perform a comparison of string
1905 ///    data with implicitly defined lengths that is contained in source operands
1906 ///    \a A and \a B. Returns bit 0 of the resulting bit mask.
1907 ///
1908 /// \headerfile <x86intrin.h>
1909 ///
1910 /// \code
1911 /// int _mm_cmpistro(__m128i A, __m128i B, const int M);
1912 /// \endcode
1913 ///
1914 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1915 /// instruction.
1916 ///
1917 /// \param A
1918 ///    A 128-bit integer vector containing one of the source operands to be
1919 ///    compared.
1920 /// \param B
1921 ///    A 128-bit integer vector containing one of the source operands to be
1922 ///    compared.
1923 /// \param M
1924 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1925 ///    words and the type of comparison to perform. \n
1926 ///    Bits [1:0]: Determine source data format. \n
1927 ///      00: 16 unsigned bytes \n
1928 ///      01: 8 unsigned words \n
1929 ///      10: 16 signed bytes \n
1930 ///      11: 8 signed words \n
1931 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1932 ///      00: Subset: Each character in \a B is compared for equality with all
1933 ///          the characters in \a A. \n
1934 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1935 ///          basis is greater than or equal for even-indexed elements in \a A,
1936 ///          and less than or equal for odd-indexed elements in \a A. \n
1937 ///      10: Match: Compare each pair of corresponding characters in \a A and
1938 ///          \a B for equality. \n
1939 ///      11: Substring: Search B for substring matches of \a A. \n
1940 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1941 ///                mask of the comparison results. \n
1942 ///      00: No effect. \n
1943 ///      01: Negate the bit mask. \n
1944 ///      10: No effect. \n
1945 ///      11: Negate the bit mask only for bits with an index less than or equal
1946 ///          to the size of \a A or \a B. \n
1947 /// \returns Returns bit 0 of the resulting bit mask.
1948 #define _mm_cmpistro(A, B, M) \
1949   (int)__builtin_ia32_pcmpistrio128((__v16qi)(__m128i)(A), \
1950                                     (__v16qi)(__m128i)(B), (int)(M))
1951
1952 /// Uses the immediate operand \a M to perform a comparison of string
1953 ///    data with implicitly defined lengths that is contained in source operands
1954 ///    \a A and \a B. Returns 1 if the length of the string in \a A is less than
1955 ///    the maximum, otherwise, returns 0.
1956 ///
1957 /// \headerfile <x86intrin.h>
1958 ///
1959 /// \code
1960 /// int _mm_cmpistrs(__m128i A, __m128i B, const int M);
1961 /// \endcode
1962 ///
1963 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1964 /// instruction.
1965 ///
1966 /// \param A
1967 ///    A 128-bit integer vector containing one of the source operands to be
1968 ///    compared.
1969 /// \param B
1970 ///    A 128-bit integer vector containing one of the source operands to be
1971 ///    compared.
1972 /// \param M
1973 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1974 ///    words and the type of comparison to perform. \n
1975 ///    Bits [1:0]: Determine source data format. \n
1976 ///      00: 16 unsigned bytes \n
1977 ///      01: 8 unsigned words \n
1978 ///      10: 16 signed bytes \n
1979 ///      11: 8 signed words \n
1980 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1981 ///      00: Subset: Each character in \a B is compared for equality with all
1982 ///          the characters in \a A. \n
1983 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1984 ///          basis is greater than or equal for even-indexed elements in \a A,
1985 ///          and less than or equal for odd-indexed elements in \a A. \n
1986 ///      10: Match: Compare each pair of corresponding characters in \a A and
1987 ///          \a B for equality. \n
1988 ///      11: Substring: Search \a B for substring matches of \a A. \n
1989 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1990 ///                mask of the comparison results. \n
1991 ///      00: No effect. \n
1992 ///      01: Negate the bit mask. \n
1993 ///      10: No effect. \n
1994 ///      11: Negate the bit mask only for bits with an index less than or equal
1995 ///          to the size of \a A or \a B. \n
1996 /// \returns Returns 1 if the length of the string in \a A is less than the
1997 ///    maximum, otherwise, returns 0.
1998 #define _mm_cmpistrs(A, B, M) \
1999   (int)__builtin_ia32_pcmpistris128((__v16qi)(__m128i)(A), \
2000                                     (__v16qi)(__m128i)(B), (int)(M))
2001
2002 /// Uses the immediate operand \a M to perform a comparison of string
2003 ///    data with implicitly defined lengths that is contained in source operands
2004 ///    \a A and \a B. Returns 1 if the length of the string in \a B is less than
2005 ///    the maximum, otherwise, returns 0.
2006 ///
2007 /// \headerfile <x86intrin.h>
2008 ///
2009 /// \code
2010 /// int _mm_cmpistrz(__m128i A, __m128i B, const int M);
2011 /// \endcode
2012 ///
2013 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
2014 /// instruction.
2015 ///
2016 /// \param A
2017 ///    A 128-bit integer vector containing one of the source operands to be
2018 ///    compared.
2019 /// \param B
2020 ///    A 128-bit integer vector containing one of the source operands to be
2021 ///    compared.
2022 /// \param M
2023 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2024 ///    words and the type of comparison to perform. \n
2025 ///    Bits [1:0]: Determine source data format. \n
2026 ///      00: 16 unsigned bytes \n
2027 ///      01: 8 unsigned words \n
2028 ///      10: 16 signed bytes \n
2029 ///      11: 8 signed words \n
2030 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2031 ///      00: Subset: Each character in \a B is compared for equality with all
2032 ///          the characters in \a A. \n
2033 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2034 ///          basis is greater than or equal for even-indexed elements in \a A,
2035 ///          and less than or equal for odd-indexed elements in \a A. \n
2036 ///      10: Match: Compare each pair of corresponding characters in \a A and
2037 ///          \a B for equality. \n
2038 ///      11: Substring: Search \a B for substring matches of \a A. \n
2039 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2040 ///                mask of the comparison results. \n
2041 ///      00: No effect. \n
2042 ///      01: Negate the bit mask. \n
2043 ///      10: No effect. \n
2044 ///      11: Negate the bit mask only for bits with an index less than or equal
2045 ///          to the size of \a A or \a B.
2046 /// \returns Returns 1 if the length of the string in \a B is less than the
2047 ///    maximum, otherwise, returns 0.
2048 #define _mm_cmpistrz(A, B, M) \
2049   (int)__builtin_ia32_pcmpistriz128((__v16qi)(__m128i)(A), \
2050                                     (__v16qi)(__m128i)(B), (int)(M))
2051
2052 /// Uses the immediate operand \a M to perform a comparison of string
2053 ///    data with explicitly defined lengths that is contained in source operands
2054 ///    \a A and \a B. Returns 1 if the bit mask is zero and the length of the
2055 ///    string in \a B is the maximum, otherwise, returns 0.
2056 ///
2057 /// \headerfile <x86intrin.h>
2058 ///
2059 /// \code
2060 /// int _mm_cmpestra(__m128i A, int LA, __m128i B, int LB, const int M);
2061 /// \endcode
2062 ///
2063 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2064 /// instruction.
2065 ///
2066 /// \param A
2067 ///    A 128-bit integer vector containing one of the source operands to be
2068 ///    compared.
2069 /// \param LA
2070 ///    An integer that specifies the length of the string in \a A.
2071 /// \param B
2072 ///    A 128-bit integer vector containing one of the source operands to be
2073 ///    compared.
2074 /// \param LB
2075 ///    An integer that specifies the length of the string in \a B.
2076 /// \param M
2077 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2078 ///    words and the type of comparison to perform. \n
2079 ///    Bits [1:0]: Determine source data format. \n
2080 ///      00: 16 unsigned bytes \n
2081 ///      01: 8 unsigned words \n
2082 ///      10: 16 signed bytes \n
2083 ///      11: 8 signed words \n
2084 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2085 ///      00: Subset: Each character in \a B is compared for equality with all
2086 ///          the characters in \a A. \n
2087 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2088 ///          basis is greater than or equal for even-indexed elements in \a A,
2089 ///          and less than or equal for odd-indexed elements in \a A. \n
2090 ///      10: Match: Compare each pair of corresponding characters in \a A and
2091 ///          \a B for equality. \n
2092 ///      11: Substring: Search \a B for substring matches of \a A. \n
2093 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2094 ///                mask of the comparison results. \n
2095 ///      00: No effect. \n
2096 ///      01: Negate the bit mask. \n
2097 ///      10: No effect. \n
2098 ///      11: Negate the bit mask only for bits with an index less than or equal
2099 ///          to the size of \a A or \a B.
2100 /// \returns Returns 1 if the bit mask is zero and the length of the string in
2101 ///    \a B is the maximum, otherwise, returns 0.
2102 #define _mm_cmpestra(A, LA, B, LB, M) \
2103   (int)__builtin_ia32_pcmpestria128((__v16qi)(__m128i)(A), (int)(LA), \
2104                                     (__v16qi)(__m128i)(B), (int)(LB), \
2105                                     (int)(M))
2106
2107 /// Uses the immediate operand \a M to perform a comparison of string
2108 ///    data with explicitly defined lengths that is contained in source operands
2109 ///    \a A and \a B. Returns 1 if the resulting mask is non-zero, otherwise,
2110 ///    returns 0.
2111 ///
2112 /// \headerfile <x86intrin.h>
2113 ///
2114 /// \code
2115 /// int _mm_cmpestrc(__m128i A, int LA, __m128i B, int LB, const int M);
2116 /// \endcode
2117 ///
2118 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2119 /// instruction.
2120 ///
2121 /// \param A
2122 ///    A 128-bit integer vector containing one of the source operands to be
2123 ///    compared.
2124 /// \param LA
2125 ///    An integer that specifies the length of the string in \a A.
2126 /// \param B
2127 ///    A 128-bit integer vector containing one of the source operands to be
2128 ///    compared.
2129 /// \param LB
2130 ///    An integer that specifies the length of the string in \a B.
2131 /// \param M
2132 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2133 ///    words and the type of comparison to perform. \n
2134 ///    Bits [1:0]: Determine source data format. \n
2135 ///      00: 16 unsigned bytes \n
2136 ///      01: 8 unsigned words \n
2137 ///      10: 16 signed bytes \n
2138 ///      11: 8 signed words \n
2139 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2140 ///      00: Subset: Each character in \a B is compared for equality with all
2141 ///          the characters in \a A. \n
2142 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2143 ///          basis is greater than or equal for even-indexed elements in \a A,
2144 ///          and less than or equal for odd-indexed elements in \a A. \n
2145 ///      10: Match: Compare each pair of corresponding characters in \a A and
2146 ///          \a B for equality. \n
2147 ///      11: Substring: Search \a B for substring matches of \a A. \n
2148 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2149 ///                mask of the comparison results. \n
2150 ///      00: No effect. \n
2151 ///      01: Negate the bit mask. \n
2152 ///      10: No effect. \n
2153 ///      11: Negate the bit mask only for bits with an index less than or equal
2154 ///          to the size of \a A or \a B. \n
2155 /// \returns Returns 1 if the resulting mask is non-zero, otherwise, returns 0.
2156 #define _mm_cmpestrc(A, LA, B, LB, M) \
2157   (int)__builtin_ia32_pcmpestric128((__v16qi)(__m128i)(A), (int)(LA), \
2158                                     (__v16qi)(__m128i)(B), (int)(LB), \
2159                                     (int)(M))
2160
2161 /// Uses the immediate operand \a M to perform a comparison of string
2162 ///    data with explicitly defined lengths that is contained in source operands
2163 ///    \a A and \a B. Returns bit 0 of the resulting bit mask.
2164 ///
2165 /// \headerfile <x86intrin.h>
2166 ///
2167 /// \code
2168 /// int _mm_cmpestro(__m128i A, int LA, __m128i B, int LB, const int M);
2169 /// \endcode
2170 ///
2171 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2172 /// instruction.
2173 ///
2174 /// \param A
2175 ///    A 128-bit integer vector containing one of the source operands to be
2176 ///    compared.
2177 /// \param LA
2178 ///    An integer that specifies the length of the string in \a A.
2179 /// \param B
2180 ///    A 128-bit integer vector containing one of the source operands to be
2181 ///    compared.
2182 /// \param LB
2183 ///    An integer that specifies the length of the string in \a B.
2184 /// \param M
2185 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2186 ///    words and the type of comparison to perform. \n
2187 ///    Bits [1:0]: Determine source data format. \n
2188 ///      00: 16 unsigned bytes \n
2189 ///      01: 8 unsigned words \n
2190 ///      10: 16 signed bytes \n
2191 ///      11: 8 signed words \n
2192 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2193 ///      00: Subset: Each character in \a B is compared for equality with all
2194 ///          the characters in \a A. \n
2195 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2196 ///          basis is greater than or equal for even-indexed elements in \a A,
2197 ///          and less than or equal for odd-indexed elements in \a A. \n
2198 ///      10: Match: Compare each pair of corresponding characters in \a A and
2199 ///          \a B for equality. \n
2200 ///      11: Substring: Search \a B for substring matches of \a A. \n
2201 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2202 ///                mask of the comparison results. \n
2203 ///      00: No effect. \n
2204 ///      01: Negate the bit mask. \n
2205 ///      10: No effect. \n
2206 ///      11: Negate the bit mask only for bits with an index less than or equal
2207 ///          to the size of \a A or \a B.
2208 /// \returns Returns bit 0 of the resulting bit mask.
2209 #define _mm_cmpestro(A, LA, B, LB, M) \
2210   (int)__builtin_ia32_pcmpestrio128((__v16qi)(__m128i)(A), (int)(LA), \
2211                                     (__v16qi)(__m128i)(B), (int)(LB), \
2212                                     (int)(M))
2213
2214 /// Uses the immediate operand \a M to perform a comparison of string
2215 ///    data with explicitly defined lengths that is contained in source operands
2216 ///    \a A and \a B. Returns 1 if the length of the string in \a A is less than
2217 ///    the maximum, otherwise, returns 0.
2218 ///
2219 /// \headerfile <x86intrin.h>
2220 ///
2221 /// \code
2222 /// int _mm_cmpestrs(__m128i A, int LA, __m128i B, int LB, const int M);
2223 /// \endcode
2224 ///
2225 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2226 /// instruction.
2227 ///
2228 /// \param A
2229 ///    A 128-bit integer vector containing one of the source operands to be
2230 ///    compared.
2231 /// \param LA
2232 ///    An integer that specifies the length of the string in \a A.
2233 /// \param B
2234 ///    A 128-bit integer vector containing one of the source operands to be
2235 ///    compared.
2236 /// \param LB
2237 ///    An integer that specifies the length of the string in \a B.
2238 /// \param M
2239 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2240 ///    words and the type of comparison to perform. \n
2241 ///    Bits [1:0]: Determine source data format. \n
2242 ///      00: 16 unsigned bytes \n
2243 ///      01: 8 unsigned words \n
2244 ///      10: 16 signed bytes \n
2245 ///      11: 8 signed words \n
2246 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2247 ///      00: Subset: Each character in \a B is compared for equality with all
2248 ///          the characters in \a A. \n
2249 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2250 ///          basis is greater than or equal for even-indexed elements in \a A,
2251 ///          and less than or equal for odd-indexed elements in \a A. \n
2252 ///      10: Match: Compare each pair of corresponding characters in \a A and
2253 ///          \a B for equality. \n
2254 ///      11: Substring: Search \a B for substring matches of \a A. \n
2255 ///    Bits [5:4]: Determine whether to perform a one's complement in the bit
2256 ///                mask of the comparison results. \n
2257 ///      00: No effect. \n
2258 ///      01: Negate the bit mask. \n
2259 ///      10: No effect. \n
2260 ///      11: Negate the bit mask only for bits with an index less than or equal
2261 ///          to the size of \a A or \a B. \n
2262 /// \returns Returns 1 if the length of the string in \a A is less than the
2263 ///    maximum, otherwise, returns 0.
2264 #define _mm_cmpestrs(A, LA, B, LB, M) \
2265   (int)__builtin_ia32_pcmpestris128((__v16qi)(__m128i)(A), (int)(LA), \
2266                                     (__v16qi)(__m128i)(B), (int)(LB), \
2267                                     (int)(M))
2268
2269 /// Uses the immediate operand \a M to perform a comparison of string
2270 ///    data with explicitly defined lengths that is contained in source operands
2271 ///    \a A and \a B. Returns 1 if the length of the string in \a B is less than
2272 ///    the maximum, otherwise, returns 0.
2273 ///
2274 /// \headerfile <x86intrin.h>
2275 ///
2276 /// \code
2277 /// int _mm_cmpestrz(__m128i A, int LA, __m128i B, int LB, const int M);
2278 /// \endcode
2279 ///
2280 /// This intrinsic corresponds to the <c> VPCMPESTRI </c> instruction.
2281 ///
2282 /// \param A
2283 ///    A 128-bit integer vector containing one of the source operands to be
2284 ///    compared.
2285 /// \param LA
2286 ///    An integer that specifies the length of the string in \a A.
2287 /// \param B
2288 ///    A 128-bit integer vector containing one of the source operands to be
2289 ///    compared.
2290 /// \param LB
2291 ///    An integer that specifies the length of the string in \a B.
2292 /// \param M
2293 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2294 ///    words and the type of comparison to perform. \n
2295 ///    Bits [1:0]: Determine source data format. \n
2296 ///      00: 16 unsigned bytes  \n
2297 ///      01: 8 unsigned words \n
2298 ///      10: 16 signed bytes \n
2299 ///      11: 8 signed words \n
2300 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2301 ///      00: Subset: Each character in \a B is compared for equality with all
2302 ///          the characters in \a A. \n
2303 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2304 ///          basis is greater than or equal for even-indexed elements in \a A,
2305 ///          and less than or equal for odd-indexed elements in \a A. \n
2306 ///      10: Match: Compare each pair of corresponding characters in \a A and
2307 ///          \a B for equality. \n
2308 ///      11: Substring: Search \a B for substring matches of \a A. \n
2309 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2310 ///                mask of the comparison results. \n
2311 ///      00: No effect. \n
2312 ///      01: Negate the bit mask. \n
2313 ///      10: No effect. \n
2314 ///      11: Negate the bit mask only for bits with an index less than or equal
2315 ///          to the size of \a A or \a B.
2316 /// \returns Returns 1 if the length of the string in \a B is less than the
2317 ///    maximum, otherwise, returns 0.
2318 #define _mm_cmpestrz(A, LA, B, LB, M) \
2319   (int)__builtin_ia32_pcmpestriz128((__v16qi)(__m128i)(A), (int)(LA), \
2320                                     (__v16qi)(__m128i)(B), (int)(LB), \
2321                                     (int)(M))
2322
2323 /* SSE4.2 Compare Packed Data -- Greater Than.  */
2324 /// Compares each of the corresponding 64-bit values of the 128-bit
2325 ///    integer vectors to determine if the values in the first operand are
2326 ///    greater than those in the second operand.
2327 ///
2328 /// \headerfile <x86intrin.h>
2329 ///
2330 /// This intrinsic corresponds to the <c> VPCMPGTQ / PCMPGTQ </c> instruction.
2331 ///
2332 /// \param __V1
2333 ///    A 128-bit integer vector.
2334 /// \param __V2
2335 ///    A 128-bit integer vector.
2336 /// \returns A 128-bit integer vector containing the comparison results.
2337 static __inline__ __m128i __DEFAULT_FN_ATTRS
2338 _mm_cmpgt_epi64(__m128i __V1, __m128i __V2)
2339 {
2340   return (__m128i)((__v2di)__V1 > (__v2di)__V2);
2341 }
2342
2343 /* SSE4.2 Accumulate CRC32.  */
2344 /// Adds the unsigned integer operand to the CRC-32C checksum of the
2345 ///    unsigned char operand.
2346 ///
2347 /// \headerfile <x86intrin.h>
2348 ///
2349 /// This intrinsic corresponds to the <c> CRC32B </c> instruction.
2350 ///
2351 /// \param __C
2352 ///    An unsigned integer operand to add to the CRC-32C checksum of operand
2353 ///    \a  __D.
2354 /// \param __D
2355 ///    An unsigned 8-bit integer operand used to compute the CRC-32C checksum.
2356 /// \returns The result of adding operand \a __C to the CRC-32C checksum of
2357 ///    operand \a __D.
2358 static __inline__ unsigned int __DEFAULT_FN_ATTRS
2359 _mm_crc32_u8(unsigned int __C, unsigned char __D)
2360 {
2361   return __builtin_ia32_crc32qi(__C, __D);
2362 }
2363
2364 /// Adds the unsigned integer operand to the CRC-32C checksum of the
2365 ///    unsigned short operand.
2366 ///
2367 /// \headerfile <x86intrin.h>
2368 ///
2369 /// This intrinsic corresponds to the <c> CRC32W </c> instruction.
2370 ///
2371 /// \param __C
2372 ///    An unsigned integer operand to add to the CRC-32C checksum of operand
2373 ///    \a __D.
2374 /// \param __D
2375 ///    An unsigned 16-bit integer operand used to compute the CRC-32C checksum.
2376 /// \returns The result of adding operand \a __C to the CRC-32C checksum of
2377 ///    operand \a __D.
2378 static __inline__ unsigned int __DEFAULT_FN_ATTRS
2379 _mm_crc32_u16(unsigned int __C, unsigned short __D)
2380 {
2381   return __builtin_ia32_crc32hi(__C, __D);
2382 }
2383
2384 /// Adds the first unsigned integer operand to the CRC-32C checksum of
2385 ///    the second unsigned integer operand.
2386 ///
2387 /// \headerfile <x86intrin.h>
2388 ///
2389 /// This intrinsic corresponds to the <c> CRC32L </c> instruction.
2390 ///
2391 /// \param __C
2392 ///    An unsigned integer operand to add to the CRC-32C checksum of operand
2393 ///    \a __D.
2394 /// \param __D
2395 ///    An unsigned 32-bit integer operand used to compute the CRC-32C checksum.
2396 /// \returns The result of adding operand \a __C to the CRC-32C checksum of
2397 ///    operand \a __D.
2398 static __inline__ unsigned int __DEFAULT_FN_ATTRS
2399 _mm_crc32_u32(unsigned int __C, unsigned int __D)
2400 {
2401   return __builtin_ia32_crc32si(__C, __D);
2402 }
2403
2404 #ifdef __x86_64__
2405 /// Adds the unsigned integer operand to the CRC-32C checksum of the
2406 ///    unsigned 64-bit integer operand.
2407 ///
2408 /// \headerfile <x86intrin.h>
2409 ///
2410 /// This intrinsic corresponds to the <c> CRC32Q </c> instruction.
2411 ///
2412 /// \param __C
2413 ///    An unsigned integer operand to add to the CRC-32C checksum of operand
2414 ///    \a __D.
2415 /// \param __D
2416 ///    An unsigned 64-bit integer operand used to compute the CRC-32C checksum.
2417 /// \returns The result of adding operand \a __C to the CRC-32C checksum of
2418 ///    operand \a __D.
2419 static __inline__ unsigned long long __DEFAULT_FN_ATTRS
2420 _mm_crc32_u64(unsigned long long __C, unsigned long long __D)
2421 {
2422   return __builtin_ia32_crc32di(__C, __D);
2423 }
2424 #endif /* __x86_64__ */
2425
2426 #undef __DEFAULT_FN_ATTRS
2427
2428 #include <popcntintrin.h>
2429
2430 #endif /* __SMMINTRIN_H */