]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Headers/smmintrin.h
Merge ^/head r305220 through r305300.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Headers / smmintrin.h
1 /*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19  * THE SOFTWARE.
20  *
21  *===-----------------------------------------------------------------------===
22  */
23
24 #ifndef _SMMINTRIN_H
25 #define _SMMINTRIN_H
26
27 #include <tmmintrin.h>
28
29 /* Define the default attributes for the functions in this file. */
30 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.1")))
31
32 /* SSE4 Rounding macros. */
33 #define _MM_FROUND_TO_NEAREST_INT    0x00
34 #define _MM_FROUND_TO_NEG_INF        0x01
35 #define _MM_FROUND_TO_POS_INF        0x02
36 #define _MM_FROUND_TO_ZERO           0x03
37 #define _MM_FROUND_CUR_DIRECTION     0x04
38
39 #define _MM_FROUND_RAISE_EXC         0x00
40 #define _MM_FROUND_NO_EXC            0x08
41
42 #define _MM_FROUND_NINT      (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
43 #define _MM_FROUND_FLOOR     (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
44 #define _MM_FROUND_CEIL      (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
45 #define _MM_FROUND_TRUNC     (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
46 #define _MM_FROUND_RINT      (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
47 #define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
48
49 #define _mm_ceil_ps(X)       _mm_round_ps((X), _MM_FROUND_CEIL)
50 #define _mm_ceil_pd(X)       _mm_round_pd((X), _MM_FROUND_CEIL)
51 #define _mm_ceil_ss(X, Y)    _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
52 #define _mm_ceil_sd(X, Y)    _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
53
54 #define _mm_floor_ps(X)      _mm_round_ps((X), _MM_FROUND_FLOOR)
55 #define _mm_floor_pd(X)      _mm_round_pd((X), _MM_FROUND_FLOOR)
56 #define _mm_floor_ss(X, Y)   _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
57 #define _mm_floor_sd(X, Y)   _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
58
59 #define _mm_round_ps(X, M) __extension__ ({ \
60   (__m128)__builtin_ia32_roundps((__v4sf)(__m128)(X), (M)); })
61
62 #define _mm_round_ss(X, Y, M) __extension__ ({ \
63   (__m128)__builtin_ia32_roundss((__v4sf)(__m128)(X), \
64                                  (__v4sf)(__m128)(Y), (M)); })
65
66 #define _mm_round_pd(X, M) __extension__ ({ \
67   (__m128d)__builtin_ia32_roundpd((__v2df)(__m128d)(X), (M)); })
68
69 #define _mm_round_sd(X, Y, M) __extension__ ({ \
70   (__m128d)__builtin_ia32_roundsd((__v2df)(__m128d)(X), \
71                                   (__v2df)(__m128d)(Y), (M)); })
72
73 /* SSE4 Packed Blending Intrinsics.  */
74 #define _mm_blend_pd(V1, V2, M) __extension__ ({ \
75   (__m128d)__builtin_shufflevector((__v2df)(__m128d)(V1), \
76                                    (__v2df)(__m128d)(V2), \
77                                    (((M) & 0x01) ? 2 : 0), \
78                                    (((M) & 0x02) ? 3 : 1)); })
79
80 #define _mm_blend_ps(V1, V2, M) __extension__ ({ \
81   (__m128)__builtin_shufflevector((__v4sf)(__m128)(V1), (__v4sf)(__m128)(V2), \
82                                   (((M) & 0x01) ? 4 : 0), \
83                                   (((M) & 0x02) ? 5 : 1), \
84                                   (((M) & 0x04) ? 6 : 2), \
85                                   (((M) & 0x08) ? 7 : 3)); })
86
87 static __inline__ __m128d __DEFAULT_FN_ATTRS
88 _mm_blendv_pd (__m128d __V1, __m128d __V2, __m128d __M)
89 {
90   return (__m128d) __builtin_ia32_blendvpd ((__v2df)__V1, (__v2df)__V2,
91                                             (__v2df)__M);
92 }
93
94 static __inline__ __m128 __DEFAULT_FN_ATTRS
95 _mm_blendv_ps (__m128 __V1, __m128 __V2, __m128 __M)
96 {
97   return (__m128) __builtin_ia32_blendvps ((__v4sf)__V1, (__v4sf)__V2,
98                                            (__v4sf)__M);
99 }
100
101 static __inline__ __m128i __DEFAULT_FN_ATTRS
102 _mm_blendv_epi8 (__m128i __V1, __m128i __V2, __m128i __M)
103 {
104   return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__V1, (__v16qi)__V2,
105                                                (__v16qi)__M);
106 }
107
108 #define _mm_blend_epi16(V1, V2, M) __extension__ ({ \
109   (__m128i)__builtin_shufflevector((__v8hi)(__m128i)(V1), \
110                                    (__v8hi)(__m128i)(V2), \
111                                    (((M) & 0x01) ?  8 : 0), \
112                                    (((M) & 0x02) ?  9 : 1), \
113                                    (((M) & 0x04) ? 10 : 2), \
114                                    (((M) & 0x08) ? 11 : 3), \
115                                    (((M) & 0x10) ? 12 : 4), \
116                                    (((M) & 0x20) ? 13 : 5), \
117                                    (((M) & 0x40) ? 14 : 6), \
118                                    (((M) & 0x80) ? 15 : 7)); })
119
120 /* SSE4 Dword Multiply Instructions.  */
121 static __inline__  __m128i __DEFAULT_FN_ATTRS
122 _mm_mullo_epi32 (__m128i __V1, __m128i __V2)
123 {
124   return (__m128i) ((__v4su)__V1 * (__v4su)__V2);
125 }
126
127 static __inline__  __m128i __DEFAULT_FN_ATTRS
128 _mm_mul_epi32 (__m128i __V1, __m128i __V2)
129 {
130   return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__V1, (__v4si)__V2);
131 }
132
133 /* SSE4 Floating Point Dot Product Instructions.  */
134 #define _mm_dp_ps(X, Y, M) __extension__ ({ \
135   (__m128) __builtin_ia32_dpps((__v4sf)(__m128)(X), \
136                                (__v4sf)(__m128)(Y), (M)); })
137
138 #define _mm_dp_pd(X, Y, M) __extension__ ({\
139   (__m128d) __builtin_ia32_dppd((__v2df)(__m128d)(X), \
140                                 (__v2df)(__m128d)(Y), (M)); })
141
142 /* SSE4 Streaming Load Hint Instruction.  */
143 static __inline__  __m128i __DEFAULT_FN_ATTRS
144 _mm_stream_load_si128 (__m128i const *__V)
145 {
146   return (__m128i) __builtin_ia32_movntdqa ((const __v2di *) __V);
147 }
148
149 /* SSE4 Packed Integer Min/Max Instructions.  */
150 static __inline__  __m128i __DEFAULT_FN_ATTRS
151 _mm_min_epi8 (__m128i __V1, __m128i __V2)
152 {
153   return (__m128i) __builtin_ia32_pminsb128 ((__v16qi) __V1, (__v16qi) __V2);
154 }
155
156 static __inline__  __m128i __DEFAULT_FN_ATTRS
157 _mm_max_epi8 (__m128i __V1, __m128i __V2)
158 {
159   return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi) __V1, (__v16qi) __V2);
160 }
161
162 static __inline__  __m128i __DEFAULT_FN_ATTRS
163 _mm_min_epu16 (__m128i __V1, __m128i __V2)
164 {
165   return (__m128i) __builtin_ia32_pminuw128 ((__v8hi) __V1, (__v8hi) __V2);
166 }
167
168 static __inline__  __m128i __DEFAULT_FN_ATTRS
169 _mm_max_epu16 (__m128i __V1, __m128i __V2)
170 {
171   return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi) __V1, (__v8hi) __V2);
172 }
173
174 static __inline__  __m128i __DEFAULT_FN_ATTRS
175 _mm_min_epi32 (__m128i __V1, __m128i __V2)
176 {
177   return (__m128i) __builtin_ia32_pminsd128 ((__v4si) __V1, (__v4si) __V2);
178 }
179
180 static __inline__  __m128i __DEFAULT_FN_ATTRS
181 _mm_max_epi32 (__m128i __V1, __m128i __V2)
182 {
183   return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si) __V1, (__v4si) __V2);
184 }
185
186 static __inline__  __m128i __DEFAULT_FN_ATTRS
187 _mm_min_epu32 (__m128i __V1, __m128i __V2)
188 {
189   return (__m128i) __builtin_ia32_pminud128((__v4si) __V1, (__v4si) __V2);
190 }
191
192 static __inline__  __m128i __DEFAULT_FN_ATTRS
193 _mm_max_epu32 (__m128i __V1, __m128i __V2)
194 {
195   return (__m128i) __builtin_ia32_pmaxud128((__v4si) __V1, (__v4si) __V2);
196 }
197
198 /* SSE4 Insertion and Extraction from XMM Register Instructions.  */
199 #define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
200 #define _mm_extract_ps(X, N) (__extension__                      \
201                               ({ union { int __i; float __f; } __t;  \
202                                  __v4sf __a = (__v4sf)(__m128)(X);       \
203                                  __t.__f = __a[(N) & 3];                 \
204                                  __t.__i;}))
205
206 /* Miscellaneous insert and extract macros.  */
207 /* Extract a single-precision float from X at index N into D.  */
208 #define _MM_EXTRACT_FLOAT(D, X, N) (__extension__ ({ __v4sf __a = (__v4sf)(X); \
209                                                     (D) = __a[N]; }))
210
211 /* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
212    an index suitable for _mm_insert_ps.  */
213 #define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
214
215 /* Extract a float from X at index N into the first index of the return.  */
216 #define _MM_PICK_OUT_PS(X, N) _mm_insert_ps (_mm_setzero_ps(), (X),   \
217                                              _MM_MK_INSERTPS_NDX((N), 0, 0x0e))
218
219 /* Insert int into packed integer array at index.  */
220 #define _mm_insert_epi8(X, I, N) (__extension__                           \
221                                   ({ __v16qi __a = (__v16qi)(__m128i)(X); \
222                                      __a[(N) & 15] = (I);                 \
223                                      (__m128i)__a;}))
224 #define _mm_insert_epi32(X, I, N) (__extension__                         \
225                                    ({ __v4si __a = (__v4si)(__m128i)(X); \
226                                       __a[(N) & 3] = (I);                \
227                                       (__m128i)__a;}))
228 #ifdef __x86_64__
229 #define _mm_insert_epi64(X, I, N) (__extension__                         \
230                                    ({ __v2di __a = (__v2di)(__m128i)(X); \
231                                       __a[(N) & 1] = (I);                \
232                                       (__m128i)__a;}))
233 #endif /* __x86_64__ */
234
235 /* Extract int from packed integer array at index.  This returns the element
236  * as a zero extended value, so it is unsigned.
237  */
238 #define _mm_extract_epi8(X, N) (__extension__                           \
239                                 ({ __v16qi __a = (__v16qi)(__m128i)(X); \
240                                    (int)(unsigned char) __a[(N) & 15];}))
241 #define _mm_extract_epi32(X, N) (__extension__                         \
242                                  ({ __v4si __a = (__v4si)(__m128i)(X); \
243                                     (int)__a[(N) & 3];}))
244 #ifdef __x86_64__
245 #define _mm_extract_epi64(X, N) (__extension__                         \
246                                  ({ __v2di __a = (__v2di)(__m128i)(X); \
247                                     (long long)__a[(N) & 1];}))
248 #endif /* __x86_64 */
249
250 /* SSE4 128-bit Packed Integer Comparisons.  */
251 static __inline__ int __DEFAULT_FN_ATTRS
252 _mm_testz_si128(__m128i __M, __m128i __V)
253 {
254   return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V);
255 }
256
257 static __inline__ int __DEFAULT_FN_ATTRS
258 _mm_testc_si128(__m128i __M, __m128i __V)
259 {
260   return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V);
261 }
262
263 static __inline__ int __DEFAULT_FN_ATTRS
264 _mm_testnzc_si128(__m128i __M, __m128i __V)
265 {
266   return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V);
267 }
268
269 #define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_cmpeq_epi32((V), (V)))
270 #define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V))
271 #define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V))
272
273 /* SSE4 64-bit Packed Integer Comparisons.  */
274 static __inline__ __m128i __DEFAULT_FN_ATTRS
275 _mm_cmpeq_epi64(__m128i __V1, __m128i __V2)
276 {
277   return (__m128i)((__v2di)__V1 == (__v2di)__V2);
278 }
279
280 /* SSE4 Packed Integer Sign-Extension.  */
281 static __inline__ __m128i __DEFAULT_FN_ATTRS
282 _mm_cvtepi8_epi16(__m128i __V)
283 {
284   /* This function always performs a signed extension, but __v16qi is a char
285      which may be signed or unsigned, so use __v16qs. */
286   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi);
287 }
288
289 static __inline__ __m128i __DEFAULT_FN_ATTRS
290 _mm_cvtepi8_epi32(__m128i __V)
291 {
292   /* This function always performs a signed extension, but __v16qi is a char
293      which may be signed or unsigned, so use __v16qs. */
294   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4si);
295 }
296
297 static __inline__ __m128i __DEFAULT_FN_ATTRS
298 _mm_cvtepi8_epi64(__m128i __V)
299 {
300   /* This function always performs a signed extension, but __v16qi is a char
301      which may be signed or unsigned, so use __v16qs. */
302   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1), __v2di);
303 }
304
305 static __inline__ __m128i __DEFAULT_FN_ATTRS
306 _mm_cvtepi16_epi32(__m128i __V)
307 {
308   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4si);
309 }
310
311 static __inline__ __m128i __DEFAULT_FN_ATTRS
312 _mm_cvtepi16_epi64(__m128i __V)
313 {
314   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1), __v2di);
315 }
316
317 static __inline__ __m128i __DEFAULT_FN_ATTRS
318 _mm_cvtepi32_epi64(__m128i __V)
319 {
320   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4si)__V, (__v4si)__V, 0, 1), __v2di);
321 }
322
323 /* SSE4 Packed Integer Zero-Extension.  */
324 static __inline__ __m128i __DEFAULT_FN_ATTRS
325 _mm_cvtepu8_epi16(__m128i __V)
326 {
327   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi);
328 }
329
330 static __inline__ __m128i __DEFAULT_FN_ATTRS
331 _mm_cvtepu8_epi32(__m128i __V)
332 {
333   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3), __v4si);
334 }
335
336 static __inline__ __m128i __DEFAULT_FN_ATTRS
337 _mm_cvtepu8_epi64(__m128i __V)
338 {
339   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1), __v2di);
340 }
341
342 static __inline__ __m128i __DEFAULT_FN_ATTRS
343 _mm_cvtepu16_epi32(__m128i __V)
344 {
345   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1, 2, 3), __v4si);
346 }
347
348 static __inline__ __m128i __DEFAULT_FN_ATTRS
349 _mm_cvtepu16_epi64(__m128i __V)
350 {
351   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1), __v2di);
352 }
353
354 static __inline__ __m128i __DEFAULT_FN_ATTRS
355 _mm_cvtepu32_epi64(__m128i __V)
356 {
357   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4su)__V, (__v4su)__V, 0, 1), __v2di);
358 }
359
360 /* SSE4 Pack with Unsigned Saturation.  */
361 static __inline__ __m128i __DEFAULT_FN_ATTRS
362 _mm_packus_epi32(__m128i __V1, __m128i __V2)
363 {
364   return (__m128i) __builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2);
365 }
366
367 /* SSE4 Multiple Packed Sums of Absolute Difference.  */
368 #define _mm_mpsadbw_epu8(X, Y, M) __extension__ ({ \
369   (__m128i) __builtin_ia32_mpsadbw128((__v16qi)(__m128i)(X), \
370                                       (__v16qi)(__m128i)(Y), (M)); })
371
372 static __inline__ __m128i __DEFAULT_FN_ATTRS
373 _mm_minpos_epu16(__m128i __V)
374 {
375   return (__m128i) __builtin_ia32_phminposuw128((__v8hi)__V);
376 }
377
378 /* Handle the sse4.2 definitions here. */
379
380 /* These definitions are normally in nmmintrin.h, but gcc puts them in here
381    so we'll do the same.  */
382
383 #undef __DEFAULT_FN_ATTRS
384 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.2")))
385
386 /* These specify the type of data that we're comparing.  */
387 #define _SIDD_UBYTE_OPS                 0x00
388 #define _SIDD_UWORD_OPS                 0x01
389 #define _SIDD_SBYTE_OPS                 0x02
390 #define _SIDD_SWORD_OPS                 0x03
391
392 /* These specify the type of comparison operation.  */
393 #define _SIDD_CMP_EQUAL_ANY             0x00
394 #define _SIDD_CMP_RANGES                0x04
395 #define _SIDD_CMP_EQUAL_EACH            0x08
396 #define _SIDD_CMP_EQUAL_ORDERED         0x0c
397
398 /* These macros specify the polarity of the operation.  */
399 #define _SIDD_POSITIVE_POLARITY         0x00
400 #define _SIDD_NEGATIVE_POLARITY         0x10
401 #define _SIDD_MASKED_POSITIVE_POLARITY  0x20
402 #define _SIDD_MASKED_NEGATIVE_POLARITY  0x30
403
404 /* These macros are used in _mm_cmpXstri() to specify the return.  */
405 #define _SIDD_LEAST_SIGNIFICANT         0x00
406 #define _SIDD_MOST_SIGNIFICANT          0x40
407
408 /* These macros are used in _mm_cmpXstri() to specify the return.  */
409 #define _SIDD_BIT_MASK                  0x00
410 #define _SIDD_UNIT_MASK                 0x40
411
412 /* SSE4.2 Packed Comparison Intrinsics.  */
413 #define _mm_cmpistrm(A, B, M) \
414   (__m128i)__builtin_ia32_pcmpistrm128((__v16qi)(__m128i)(A), \
415                                        (__v16qi)(__m128i)(B), (int)(M))
416 #define _mm_cmpistri(A, B, M) \
417   (int)__builtin_ia32_pcmpistri128((__v16qi)(__m128i)(A), \
418                                    (__v16qi)(__m128i)(B), (int)(M))
419
420 #define _mm_cmpestrm(A, LA, B, LB, M) \
421   (__m128i)__builtin_ia32_pcmpestrm128((__v16qi)(__m128i)(A), (int)(LA), \
422                                        (__v16qi)(__m128i)(B), (int)(LB), \
423                                        (int)(M))
424 #define _mm_cmpestri(A, LA, B, LB, M) \
425   (int)__builtin_ia32_pcmpestri128((__v16qi)(__m128i)(A), (int)(LA), \
426                                    (__v16qi)(__m128i)(B), (int)(LB), \
427                                    (int)(M))
428
429 /* SSE4.2 Packed Comparison Intrinsics and EFlag Reading.  */
430 #define _mm_cmpistra(A, B, M) \
431   (int)__builtin_ia32_pcmpistria128((__v16qi)(__m128i)(A), \
432                                     (__v16qi)(__m128i)(B), (int)(M))
433 #define _mm_cmpistrc(A, B, M) \
434   (int)__builtin_ia32_pcmpistric128((__v16qi)(__m128i)(A), \
435                                     (__v16qi)(__m128i)(B), (int)(M))
436 #define _mm_cmpistro(A, B, M) \
437   (int)__builtin_ia32_pcmpistrio128((__v16qi)(__m128i)(A), \
438                                     (__v16qi)(__m128i)(B), (int)(M))
439 #define _mm_cmpistrs(A, B, M) \
440   (int)__builtin_ia32_pcmpistris128((__v16qi)(__m128i)(A), \
441                                     (__v16qi)(__m128i)(B), (int)(M))
442 #define _mm_cmpistrz(A, B, M) \
443   (int)__builtin_ia32_pcmpistriz128((__v16qi)(__m128i)(A), \
444                                     (__v16qi)(__m128i)(B), (int)(M))
445
446 #define _mm_cmpestra(A, LA, B, LB, M) \
447   (int)__builtin_ia32_pcmpestria128((__v16qi)(__m128i)(A), (int)(LA), \
448                                     (__v16qi)(__m128i)(B), (int)(LB), \
449                                     (int)(M))
450 #define _mm_cmpestrc(A, LA, B, LB, M) \
451   (int)__builtin_ia32_pcmpestric128((__v16qi)(__m128i)(A), (int)(LA), \
452                                     (__v16qi)(__m128i)(B), (int)(LB), \
453                                     (int)(M))
454 #define _mm_cmpestro(A, LA, B, LB, M) \
455   (int)__builtin_ia32_pcmpestrio128((__v16qi)(__m128i)(A), (int)(LA), \
456                                     (__v16qi)(__m128i)(B), (int)(LB), \
457                                     (int)(M))
458 #define _mm_cmpestrs(A, LA, B, LB, M) \
459   (int)__builtin_ia32_pcmpestris128((__v16qi)(__m128i)(A), (int)(LA), \
460                                     (__v16qi)(__m128i)(B), (int)(LB), \
461                                     (int)(M))
462 #define _mm_cmpestrz(A, LA, B, LB, M) \
463   (int)__builtin_ia32_pcmpestriz128((__v16qi)(__m128i)(A), (int)(LA), \
464                                     (__v16qi)(__m128i)(B), (int)(LB), \
465                                     (int)(M))
466
467 /* SSE4.2 Compare Packed Data -- Greater Than.  */
468 static __inline__ __m128i __DEFAULT_FN_ATTRS
469 _mm_cmpgt_epi64(__m128i __V1, __m128i __V2)
470 {
471   return (__m128i)((__v2di)__V1 > (__v2di)__V2);
472 }
473
474 /* SSE4.2 Accumulate CRC32.  */
475 static __inline__ unsigned int __DEFAULT_FN_ATTRS
476 _mm_crc32_u8(unsigned int __C, unsigned char __D)
477 {
478   return __builtin_ia32_crc32qi(__C, __D);
479 }
480
481 static __inline__ unsigned int __DEFAULT_FN_ATTRS
482 _mm_crc32_u16(unsigned int __C, unsigned short __D)
483 {
484   return __builtin_ia32_crc32hi(__C, __D);
485 }
486
487 static __inline__ unsigned int __DEFAULT_FN_ATTRS
488 _mm_crc32_u32(unsigned int __C, unsigned int __D)
489 {
490   return __builtin_ia32_crc32si(__C, __D);
491 }
492
493 #ifdef __x86_64__
494 static __inline__ unsigned long long __DEFAULT_FN_ATTRS
495 _mm_crc32_u64(unsigned long long __C, unsigned long long __D)
496 {
497   return __builtin_ia32_crc32di(__C, __D);
498 }
499 #endif /* __x86_64__ */
500
501 #undef __DEFAULT_FN_ATTRS
502
503 #ifdef __POPCNT__
504 #include <popcntintrin.h>
505 #endif
506
507 #endif /* _SMMINTRIN_H */