]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Lex/LiteralSupport.cpp
Merge OpenBSM 1.2 alpha 4.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Lex / LiteralSupport.cpp
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Lex/LiteralSupport.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/LexDiagnostic.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/ConvertUTF.h"
22 #include "llvm/Support/ErrorHandling.h"
23
24 using namespace clang;
25
26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
27   switch (kind) {
28   default: llvm_unreachable("Unknown token type!");
29   case tok::char_constant:
30   case tok::string_literal:
31   case tok::utf8_char_constant:
32   case tok::utf8_string_literal:
33     return Target.getCharWidth();
34   case tok::wide_char_constant:
35   case tok::wide_string_literal:
36     return Target.getWCharWidth();
37   case tok::utf16_char_constant:
38   case tok::utf16_string_literal:
39     return Target.getChar16Width();
40   case tok::utf32_char_constant:
41   case tok::utf32_string_literal:
42     return Target.getChar32Width();
43   }
44 }
45
46 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
47                                            FullSourceLoc TokLoc,
48                                            const char *TokBegin,
49                                            const char *TokRangeBegin,
50                                            const char *TokRangeEnd) {
51   SourceLocation Begin =
52     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
53                                    TokLoc.getManager(), Features);
54   SourceLocation End =
55     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
56                                    TokLoc.getManager(), Features);
57   return CharSourceRange::getCharRange(Begin, End);
58 }
59
60 /// \brief Produce a diagnostic highlighting some portion of a literal.
61 ///
62 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
63 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
64 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
65 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
66                               const LangOptions &Features, FullSourceLoc TokLoc,
67                               const char *TokBegin, const char *TokRangeBegin,
68                               const char *TokRangeEnd, unsigned DiagID) {
69   SourceLocation Begin =
70     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
71                                    TokLoc.getManager(), Features);
72   return Diags->Report(Begin, DiagID) <<
73     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
74 }
75
76 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
77 /// either a character or a string literal.
78 static unsigned ProcessCharEscape(const char *ThisTokBegin,
79                                   const char *&ThisTokBuf,
80                                   const char *ThisTokEnd, bool &HadError,
81                                   FullSourceLoc Loc, unsigned CharWidth,
82                                   DiagnosticsEngine *Diags,
83                                   const LangOptions &Features) {
84   const char *EscapeBegin = ThisTokBuf;
85
86   // Skip the '\' char.
87   ++ThisTokBuf;
88
89   // We know that this character can't be off the end of the buffer, because
90   // that would have been \", which would not have been the end of string.
91   unsigned ResultChar = *ThisTokBuf++;
92   switch (ResultChar) {
93   // These map to themselves.
94   case '\\': case '\'': case '"': case '?': break;
95
96     // These have fixed mappings.
97   case 'a':
98     // TODO: K&R: the meaning of '\\a' is different in traditional C
99     ResultChar = 7;
100     break;
101   case 'b':
102     ResultChar = 8;
103     break;
104   case 'e':
105     if (Diags)
106       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
107            diag::ext_nonstandard_escape) << "e";
108     ResultChar = 27;
109     break;
110   case 'E':
111     if (Diags)
112       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
113            diag::ext_nonstandard_escape) << "E";
114     ResultChar = 27;
115     break;
116   case 'f':
117     ResultChar = 12;
118     break;
119   case 'n':
120     ResultChar = 10;
121     break;
122   case 'r':
123     ResultChar = 13;
124     break;
125   case 't':
126     ResultChar = 9;
127     break;
128   case 'v':
129     ResultChar = 11;
130     break;
131   case 'x': { // Hex escape.
132     ResultChar = 0;
133     if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
134       if (Diags)
135         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
136              diag::err_hex_escape_no_digits) << "x";
137       HadError = 1;
138       break;
139     }
140
141     // Hex escapes are a maximal series of hex digits.
142     bool Overflow = false;
143     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
144       int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
145       if (CharVal == -1) break;
146       // About to shift out a digit?
147       if (ResultChar & 0xF0000000)
148         Overflow = true;
149       ResultChar <<= 4;
150       ResultChar |= CharVal;
151     }
152
153     // See if any bits will be truncated when evaluated as a character.
154     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
155       Overflow = true;
156       ResultChar &= ~0U >> (32-CharWidth);
157     }
158
159     // Check for overflow.
160     if (Overflow && Diags)   // Too many digits to fit in
161       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
162            diag::err_hex_escape_too_large);
163     break;
164   }
165   case '0': case '1': case '2': case '3':
166   case '4': case '5': case '6': case '7': {
167     // Octal escapes.
168     --ThisTokBuf;
169     ResultChar = 0;
170
171     // Octal escapes are a series of octal digits with maximum length 3.
172     // "\0123" is a two digit sequence equal to "\012" "3".
173     unsigned NumDigits = 0;
174     do {
175       ResultChar <<= 3;
176       ResultChar |= *ThisTokBuf++ - '0';
177       ++NumDigits;
178     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
179              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
180
181     // Check for overflow.  Reject '\777', but not L'\777'.
182     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
183       if (Diags)
184         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
185              diag::err_octal_escape_too_large);
186       ResultChar &= ~0U >> (32-CharWidth);
187     }
188     break;
189   }
190
191     // Otherwise, these are not valid escapes.
192   case '(': case '{': case '[': case '%':
193     // GCC accepts these as extensions.  We warn about them as such though.
194     if (Diags)
195       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
196            diag::ext_nonstandard_escape)
197         << std::string(1, ResultChar);
198     break;
199   default:
200     if (!Diags)
201       break;
202
203     if (isPrintable(ResultChar))
204       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
205            diag::ext_unknown_escape)
206         << std::string(1, ResultChar);
207     else
208       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
209            diag::ext_unknown_escape)
210         << "x" + llvm::utohexstr(ResultChar);
211     break;
212   }
213
214   return ResultChar;
215 }
216
217 static void appendCodePoint(unsigned Codepoint,
218                             llvm::SmallVectorImpl<char> &Str) {
219   char ResultBuf[4];
220   char *ResultPtr = ResultBuf;
221   bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
222   (void)Res;
223   assert(Res && "Unexpected conversion failure");
224   Str.append(ResultBuf, ResultPtr);
225 }
226
227 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
228   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
229     if (*I != '\\') {
230       Buf.push_back(*I);
231       continue;
232     }
233
234     ++I;
235     assert(*I == 'u' || *I == 'U');
236
237     unsigned NumHexDigits;
238     if (*I == 'u')
239       NumHexDigits = 4;
240     else
241       NumHexDigits = 8;
242
243     assert(I + NumHexDigits <= E);
244
245     uint32_t CodePoint = 0;
246     for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
247       unsigned Value = llvm::hexDigitValue(*I);
248       assert(Value != -1U);
249
250       CodePoint <<= 4;
251       CodePoint += Value;
252     }
253
254     appendCodePoint(CodePoint, Buf);
255     --I;
256   }
257 }
258
259 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
260 /// return the UTF32.
261 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
262                              const char *ThisTokEnd,
263                              uint32_t &UcnVal, unsigned short &UcnLen,
264                              FullSourceLoc Loc, DiagnosticsEngine *Diags, 
265                              const LangOptions &Features,
266                              bool in_char_string_literal = false) {
267   const char *UcnBegin = ThisTokBuf;
268
269   // Skip the '\u' char's.
270   ThisTokBuf += 2;
271
272   if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
273     if (Diags)
274       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
275            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
276     return false;
277   }
278   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
279   unsigned short UcnLenSave = UcnLen;
280   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
281     int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
282     if (CharVal == -1) break;
283     UcnVal <<= 4;
284     UcnVal |= CharVal;
285   }
286   // If we didn't consume the proper number of digits, there is a problem.
287   if (UcnLenSave) {
288     if (Diags)
289       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
290            diag::err_ucn_escape_incomplete);
291     return false;
292   }
293
294   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
295   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
296       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
297     if (Diags)
298       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
299            diag::err_ucn_escape_invalid);
300     return false;
301   }
302
303   // C++11 allows UCNs that refer to control characters and basic source
304   // characters inside character and string literals
305   if (UcnVal < 0xa0 &&
306       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
307     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
308     if (Diags) {
309       char BasicSCSChar = UcnVal;
310       if (UcnVal >= 0x20 && UcnVal < 0x7f)
311         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
312              IsError ? diag::err_ucn_escape_basic_scs :
313                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
314             << StringRef(&BasicSCSChar, 1);
315       else
316         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
317              IsError ? diag::err_ucn_control_character :
318                        diag::warn_cxx98_compat_literal_ucn_control_character);
319     }
320     if (IsError)
321       return false;
322   }
323
324   if (!Features.CPlusPlus && !Features.C99 && Diags)
325     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
326          diag::warn_ucn_not_valid_in_c89_literal);
327
328   return true;
329 }
330
331 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
332 /// which this UCN will occupy.
333 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
334                             const char *ThisTokEnd, unsigned CharByteWidth,
335                             const LangOptions &Features, bool &HadError) {
336   // UTF-32: 4 bytes per escape.
337   if (CharByteWidth == 4)
338     return 4;
339
340   uint32_t UcnVal = 0;
341   unsigned short UcnLen = 0;
342   FullSourceLoc Loc;
343
344   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
345                         UcnLen, Loc, nullptr, Features, true)) {
346     HadError = true;
347     return 0;
348   }
349
350   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
351   if (CharByteWidth == 2)
352     return UcnVal <= 0xFFFF ? 2 : 4;
353
354   // UTF-8.
355   if (UcnVal < 0x80)
356     return 1;
357   if (UcnVal < 0x800)
358     return 2;
359   if (UcnVal < 0x10000)
360     return 3;
361   return 4;
362 }
363
364 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
365 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
366 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
367 /// we will likely rework our support for UCN's.
368 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
369                             const char *ThisTokEnd,
370                             char *&ResultBuf, bool &HadError,
371                             FullSourceLoc Loc, unsigned CharByteWidth,
372                             DiagnosticsEngine *Diags,
373                             const LangOptions &Features) {
374   typedef uint32_t UTF32;
375   UTF32 UcnVal = 0;
376   unsigned short UcnLen = 0;
377   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
378                         Loc, Diags, Features, true)) {
379     HadError = true;
380     return;
381   }
382
383   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
384          "only character widths of 1, 2, or 4 bytes supported");
385
386   (void)UcnLen;
387   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
388
389   if (CharByteWidth == 4) {
390     // FIXME: Make the type of the result buffer correct instead of
391     // using reinterpret_cast.
392     UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
393     *ResultPtr = UcnVal;
394     ResultBuf += 4;
395     return;
396   }
397
398   if (CharByteWidth == 2) {
399     // FIXME: Make the type of the result buffer correct instead of
400     // using reinterpret_cast.
401     UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
402
403     if (UcnVal <= (UTF32)0xFFFF) {
404       *ResultPtr = UcnVal;
405       ResultBuf += 2;
406       return;
407     }
408
409     // Convert to UTF16.
410     UcnVal -= 0x10000;
411     *ResultPtr     = 0xD800 + (UcnVal >> 10);
412     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
413     ResultBuf += 4;
414     return;
415   }
416
417   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
418
419   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
420   // The conversion below was inspired by:
421   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
422   // First, we determine how many bytes the result will require.
423   typedef uint8_t UTF8;
424
425   unsigned short bytesToWrite = 0;
426   if (UcnVal < (UTF32)0x80)
427     bytesToWrite = 1;
428   else if (UcnVal < (UTF32)0x800)
429     bytesToWrite = 2;
430   else if (UcnVal < (UTF32)0x10000)
431     bytesToWrite = 3;
432   else
433     bytesToWrite = 4;
434
435   const unsigned byteMask = 0xBF;
436   const unsigned byteMark = 0x80;
437
438   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
439   // into the first byte, depending on how many bytes follow.
440   static const UTF8 firstByteMark[5] = {
441     0x00, 0x00, 0xC0, 0xE0, 0xF0
442   };
443   // Finally, we write the bytes into ResultBuf.
444   ResultBuf += bytesToWrite;
445   switch (bytesToWrite) { // note: everything falls through.
446   case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
447   case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
448   case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
449   case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
450   }
451   // Update the buffer.
452   ResultBuf += bytesToWrite;
453 }
454
455
456 ///       integer-constant: [C99 6.4.4.1]
457 ///         decimal-constant integer-suffix
458 ///         octal-constant integer-suffix
459 ///         hexadecimal-constant integer-suffix
460 ///         binary-literal integer-suffix [GNU, C++1y]
461 ///       user-defined-integer-literal: [C++11 lex.ext]
462 ///         decimal-literal ud-suffix
463 ///         octal-literal ud-suffix
464 ///         hexadecimal-literal ud-suffix
465 ///         binary-literal ud-suffix [GNU, C++1y]
466 ///       decimal-constant:
467 ///         nonzero-digit
468 ///         decimal-constant digit
469 ///       octal-constant:
470 ///         0
471 ///         octal-constant octal-digit
472 ///       hexadecimal-constant:
473 ///         hexadecimal-prefix hexadecimal-digit
474 ///         hexadecimal-constant hexadecimal-digit
475 ///       hexadecimal-prefix: one of
476 ///         0x 0X
477 ///       binary-literal:
478 ///         0b binary-digit
479 ///         0B binary-digit
480 ///         binary-literal binary-digit
481 ///       integer-suffix:
482 ///         unsigned-suffix [long-suffix]
483 ///         unsigned-suffix [long-long-suffix]
484 ///         long-suffix [unsigned-suffix]
485 ///         long-long-suffix [unsigned-sufix]
486 ///       nonzero-digit:
487 ///         1 2 3 4 5 6 7 8 9
488 ///       octal-digit:
489 ///         0 1 2 3 4 5 6 7
490 ///       hexadecimal-digit:
491 ///         0 1 2 3 4 5 6 7 8 9
492 ///         a b c d e f
493 ///         A B C D E F
494 ///       binary-digit:
495 ///         0
496 ///         1
497 ///       unsigned-suffix: one of
498 ///         u U
499 ///       long-suffix: one of
500 ///         l L
501 ///       long-long-suffix: one of
502 ///         ll LL
503 ///
504 ///       floating-constant: [C99 6.4.4.2]
505 ///         TODO: add rules...
506 ///
507 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
508                                            SourceLocation TokLoc,
509                                            Preprocessor &PP)
510   : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
511
512   // This routine assumes that the range begin/end matches the regex for integer
513   // and FP constants (specifically, the 'pp-number' regex), and assumes that
514   // the byte at "*end" is both valid and not part of the regex.  Because of
515   // this, it doesn't have to check for 'overscan' in various places.
516   assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
517
518   s = DigitsBegin = ThisTokBegin;
519   saw_exponent = false;
520   saw_period = false;
521   saw_ud_suffix = false;
522   isLong = false;
523   isUnsigned = false;
524   isLongLong = false;
525   isFloat = false;
526   isImaginary = false;
527   MicrosoftInteger = 0;
528   hadError = false;
529
530   if (*s == '0') { // parse radix
531     ParseNumberStartingWithZero(TokLoc);
532     if (hadError)
533       return;
534   } else { // the first digit is non-zero
535     radix = 10;
536     s = SkipDigits(s);
537     if (s == ThisTokEnd) {
538       // Done.
539     } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
540       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
541               diag::err_invalid_decimal_digit) << StringRef(s, 1);
542       hadError = true;
543       return;
544     } else if (*s == '.') {
545       checkSeparator(TokLoc, s, CSK_AfterDigits);
546       s++;
547       saw_period = true;
548       checkSeparator(TokLoc, s, CSK_BeforeDigits);
549       s = SkipDigits(s);
550     }
551     if ((*s == 'e' || *s == 'E')) { // exponent
552       checkSeparator(TokLoc, s, CSK_AfterDigits);
553       const char *Exponent = s;
554       s++;
555       saw_exponent = true;
556       if (*s == '+' || *s == '-')  s++; // sign
557       checkSeparator(TokLoc, s, CSK_BeforeDigits);
558       const char *first_non_digit = SkipDigits(s);
559       if (first_non_digit != s) {
560         s = first_non_digit;
561       } else {
562         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
563                 diag::err_exponent_has_no_digits);
564         hadError = true;
565         return;
566       }
567     }
568   }
569
570   SuffixBegin = s;
571   checkSeparator(TokLoc, s, CSK_AfterDigits);
572
573   // Parse the suffix.  At this point we can classify whether we have an FP or
574   // integer constant.
575   bool isFPConstant = isFloatingLiteral();
576   const char *ImaginarySuffixLoc = nullptr;
577
578   // Loop over all of the characters of the suffix.  If we see something bad,
579   // we break out of the loop.
580   for (; s != ThisTokEnd; ++s) {
581     switch (*s) {
582     case 'f':      // FP Suffix for "float"
583     case 'F':
584       if (!isFPConstant) break;  // Error for integer constant.
585       if (isFloat || isLong) break; // FF, LF invalid.
586       isFloat = true;
587       continue;  // Success.
588     case 'u':
589     case 'U':
590       if (isFPConstant) break;  // Error for floating constant.
591       if (isUnsigned) break;    // Cannot be repeated.
592       isUnsigned = true;
593       continue;  // Success.
594     case 'l':
595     case 'L':
596       if (isLong || isLongLong) break;  // Cannot be repeated.
597       if (isFloat) break;               // LF invalid.
598
599       // Check for long long.  The L's need to be adjacent and the same case.
600       if (s[1] == s[0]) {
601         assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
602         if (isFPConstant) break;        // long long invalid for floats.
603         isLongLong = true;
604         ++s;  // Eat both of them.
605       } else {
606         isLong = true;
607       }
608       continue;  // Success.
609     case 'i':
610     case 'I':
611       if (PP.getLangOpts().MicrosoftExt) {
612         if (isLong || isLongLong || MicrosoftInteger)
613           break;
614
615         if (!isFPConstant) {
616           // Allow i8, i16, i32, i64, and i128.
617           switch (s[1]) {
618           case '8':
619             s += 2; // i8 suffix
620             MicrosoftInteger = 8;
621             break;
622           case '1':
623             if (s[2] == '6') {
624               s += 3; // i16 suffix
625               MicrosoftInteger = 16;
626             } else if (s[2] == '2' && s[3] == '8') {
627               s += 4; // i128 suffix
628               MicrosoftInteger = 128;
629             }
630             break;
631           case '3':
632             if (s[2] == '2') {
633               s += 3; // i32 suffix
634               MicrosoftInteger = 32;
635             }
636             break;
637           case '6':
638             if (s[2] == '4') {
639               s += 3; // i64 suffix
640               MicrosoftInteger = 64;
641             }
642             break;
643           default:
644             break;
645           }
646         }
647         if (MicrosoftInteger) {
648           assert(s <= ThisTokEnd && "didn't maximally munch?");
649           break;
650         }
651       }
652       // "i", "if", and "il" are user-defined suffixes in C++1y.
653       if (*s == 'i' && PP.getLangOpts().CPlusPlus14)
654         break;
655       // fall through.
656     case 'j':
657     case 'J':
658       if (isImaginary) break;   // Cannot be repeated.
659       isImaginary = true;
660       ImaginarySuffixLoc = s;
661       continue;  // Success.
662     }
663     // If we reached here, there was an error or a ud-suffix.
664     break;
665   }
666
667   if (s != ThisTokEnd) {
668     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
669     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
670     if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
671       // Any suffix pieces we might have parsed are actually part of the
672       // ud-suffix.
673       isLong = false;
674       isUnsigned = false;
675       isLongLong = false;
676       isFloat = false;
677       isImaginary = false;
678       MicrosoftInteger = 0;
679
680       saw_ud_suffix = true;
681       return;
682     }
683
684     // Report an error if there are any.
685     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
686             isFPConstant ? diag::err_invalid_suffix_float_constant :
687                            diag::err_invalid_suffix_integer_constant)
688       << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
689     hadError = true;
690     return;
691   }
692
693   if (isImaginary) {
694     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
695                                        ImaginarySuffixLoc - ThisTokBegin),
696             diag::ext_imaginary_constant);
697   }
698 }
699
700 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
701 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
702 /// treat it as an invalid suffix.
703 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
704                                            StringRef Suffix) {
705   if (!LangOpts.CPlusPlus11 || Suffix.empty())
706     return false;
707
708   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
709   if (Suffix[0] == '_')
710     return true;
711
712   // In C++11, there are no library suffixes.
713   if (!LangOpts.CPlusPlus14)
714     return false;
715
716   // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
717   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
718   return llvm::StringSwitch<bool>(Suffix)
719       .Cases("h", "min", "s", true)
720       .Cases("ms", "us", "ns", true)
721       .Cases("il", "i", "if", true)
722       .Default(false);
723 }
724
725 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
726                                           const char *Pos,
727                                           CheckSeparatorKind IsAfterDigits) {
728   if (IsAfterDigits == CSK_AfterDigits) {
729     if (Pos == ThisTokBegin)
730       return;
731     --Pos;
732   } else if (Pos == ThisTokEnd)
733     return;
734
735   if (isDigitSeparator(*Pos))
736     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
737             diag::err_digit_separator_not_between_digits)
738       << IsAfterDigits;
739 }
740
741 /// ParseNumberStartingWithZero - This method is called when the first character
742 /// of the number is found to be a zero.  This means it is either an octal
743 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
744 /// a floating point number (01239.123e4).  Eat the prefix, determining the
745 /// radix etc.
746 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
747   assert(s[0] == '0' && "Invalid method call");
748   s++;
749
750   int c1 = s[0];
751
752   // Handle a hex number like 0x1234.
753   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
754     s++;
755     assert(s < ThisTokEnd && "didn't maximally munch?");
756     radix = 16;
757     DigitsBegin = s;
758     s = SkipHexDigits(s);
759     bool noSignificand = (s == DigitsBegin);
760     if (s == ThisTokEnd) {
761       // Done.
762     } else if (*s == '.') {
763       s++;
764       saw_period = true;
765       const char *floatDigitsBegin = s;
766       checkSeparator(TokLoc, s, CSK_BeforeDigits);
767       s = SkipHexDigits(s);
768       noSignificand &= (floatDigitsBegin == s);
769     }
770
771     if (noSignificand) {
772       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
773         diag::err_hexconstant_requires_digits);
774       hadError = true;
775       return;
776     }
777
778     // A binary exponent can appear with or with a '.'. If dotted, the
779     // binary exponent is required.
780     if (*s == 'p' || *s == 'P') {
781       checkSeparator(TokLoc, s, CSK_AfterDigits);
782       const char *Exponent = s;
783       s++;
784       saw_exponent = true;
785       if (*s == '+' || *s == '-')  s++; // sign
786       const char *first_non_digit = SkipDigits(s);
787       if (first_non_digit == s) {
788         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
789                 diag::err_exponent_has_no_digits);
790         hadError = true;
791         return;
792       }
793       checkSeparator(TokLoc, s, CSK_BeforeDigits);
794       s = first_non_digit;
795
796       if (!PP.getLangOpts().HexFloats)
797         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
798     } else if (saw_period) {
799       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
800               diag::err_hexconstant_requires_exponent);
801       hadError = true;
802     }
803     return;
804   }
805
806   // Handle simple binary numbers 0b01010
807   if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
808     // 0b101010 is a C++1y / GCC extension.
809     PP.Diag(TokLoc,
810             PP.getLangOpts().CPlusPlus14
811               ? diag::warn_cxx11_compat_binary_literal
812               : PP.getLangOpts().CPlusPlus
813                 ? diag::ext_binary_literal_cxx14
814                 : diag::ext_binary_literal);
815     ++s;
816     assert(s < ThisTokEnd && "didn't maximally munch?");
817     radix = 2;
818     DigitsBegin = s;
819     s = SkipBinaryDigits(s);
820     if (s == ThisTokEnd) {
821       // Done.
822     } else if (isHexDigit(*s)) {
823       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
824               diag::err_invalid_binary_digit) << StringRef(s, 1);
825       hadError = true;
826     }
827     // Other suffixes will be diagnosed by the caller.
828     return;
829   }
830
831   // For now, the radix is set to 8. If we discover that we have a
832   // floating point constant, the radix will change to 10. Octal floating
833   // point constants are not permitted (only decimal and hexadecimal).
834   radix = 8;
835   DigitsBegin = s;
836   s = SkipOctalDigits(s);
837   if (s == ThisTokEnd)
838     return; // Done, simple octal number like 01234
839
840   // If we have some other non-octal digit that *is* a decimal digit, see if
841   // this is part of a floating point number like 094.123 or 09e1.
842   if (isDigit(*s)) {
843     const char *EndDecimal = SkipDigits(s);
844     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
845       s = EndDecimal;
846       radix = 10;
847     }
848   }
849
850   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
851   // the code is using an incorrect base.
852   if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
853     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
854             diag::err_invalid_octal_digit) << StringRef(s, 1);
855     hadError = true;
856     return;
857   }
858
859   if (*s == '.') {
860     s++;
861     radix = 10;
862     saw_period = true;
863     checkSeparator(TokLoc, s, CSK_BeforeDigits);
864     s = SkipDigits(s); // Skip suffix.
865   }
866   if (*s == 'e' || *s == 'E') { // exponent
867     checkSeparator(TokLoc, s, CSK_AfterDigits);
868     const char *Exponent = s;
869     s++;
870     radix = 10;
871     saw_exponent = true;
872     if (*s == '+' || *s == '-')  s++; // sign
873     const char *first_non_digit = SkipDigits(s);
874     if (first_non_digit != s) {
875       checkSeparator(TokLoc, s, CSK_BeforeDigits);
876       s = first_non_digit;
877     } else {
878       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
879               diag::err_exponent_has_no_digits);
880       hadError = true;
881       return;
882     }
883   }
884 }
885
886 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
887   switch (Radix) {
888   case 2:
889     return NumDigits <= 64;
890   case 8:
891     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
892   case 10:
893     return NumDigits <= 19; // floor(log10(2^64))
894   case 16:
895     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
896   default:
897     llvm_unreachable("impossible Radix");
898   }
899 }
900
901 /// GetIntegerValue - Convert this numeric literal value to an APInt that
902 /// matches Val's input width.  If there is an overflow, set Val to the low bits
903 /// of the result and return true.  Otherwise, return false.
904 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
905   // Fast path: Compute a conservative bound on the maximum number of
906   // bits per digit in this radix. If we can't possibly overflow a
907   // uint64 based on that bound then do the simple conversion to
908   // integer. This avoids the expensive overflow checking below, and
909   // handles the common cases that matter (small decimal integers and
910   // hex/octal values which don't overflow).
911   const unsigned NumDigits = SuffixBegin - DigitsBegin;
912   if (alwaysFitsInto64Bits(radix, NumDigits)) {
913     uint64_t N = 0;
914     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
915       if (!isDigitSeparator(*Ptr))
916         N = N * radix + llvm::hexDigitValue(*Ptr);
917
918     // This will truncate the value to Val's input width. Simply check
919     // for overflow by comparing.
920     Val = N;
921     return Val.getZExtValue() != N;
922   }
923
924   Val = 0;
925   const char *Ptr = DigitsBegin;
926
927   llvm::APInt RadixVal(Val.getBitWidth(), radix);
928   llvm::APInt CharVal(Val.getBitWidth(), 0);
929   llvm::APInt OldVal = Val;
930
931   bool OverflowOccurred = false;
932   while (Ptr < SuffixBegin) {
933     if (isDigitSeparator(*Ptr)) {
934       ++Ptr;
935       continue;
936     }
937
938     unsigned C = llvm::hexDigitValue(*Ptr++);
939
940     // If this letter is out of bound for this radix, reject it.
941     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
942
943     CharVal = C;
944
945     // Add the digit to the value in the appropriate radix.  If adding in digits
946     // made the value smaller, then this overflowed.
947     OldVal = Val;
948
949     // Multiply by radix, did overflow occur on the multiply?
950     Val *= RadixVal;
951     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
952
953     // Add value, did overflow occur on the value?
954     //   (a + b) ult b  <=> overflow
955     Val += CharVal;
956     OverflowOccurred |= Val.ult(CharVal);
957   }
958   return OverflowOccurred;
959 }
960
961 llvm::APFloat::opStatus
962 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
963   using llvm::APFloat;
964
965   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
966
967   llvm::SmallString<16> Buffer;
968   StringRef Str(ThisTokBegin, n);
969   if (Str.find('\'') != StringRef::npos) {
970     Buffer.reserve(n);
971     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
972                         &isDigitSeparator);
973     Str = Buffer;
974   }
975
976   return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
977 }
978
979
980 /// \verbatim
981 ///       user-defined-character-literal: [C++11 lex.ext]
982 ///         character-literal ud-suffix
983 ///       ud-suffix:
984 ///         identifier
985 ///       character-literal: [C++11 lex.ccon]
986 ///         ' c-char-sequence '
987 ///         u' c-char-sequence '
988 ///         U' c-char-sequence '
989 ///         L' c-char-sequence '
990 ///       c-char-sequence:
991 ///         c-char
992 ///         c-char-sequence c-char
993 ///       c-char:
994 ///         any member of the source character set except the single-quote ',
995 ///           backslash \, or new-line character
996 ///         escape-sequence
997 ///         universal-character-name
998 ///       escape-sequence:
999 ///         simple-escape-sequence
1000 ///         octal-escape-sequence
1001 ///         hexadecimal-escape-sequence
1002 ///       simple-escape-sequence:
1003 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1004 ///       octal-escape-sequence:
1005 ///         \ octal-digit
1006 ///         \ octal-digit octal-digit
1007 ///         \ octal-digit octal-digit octal-digit
1008 ///       hexadecimal-escape-sequence:
1009 ///         \x hexadecimal-digit
1010 ///         hexadecimal-escape-sequence hexadecimal-digit
1011 ///       universal-character-name: [C++11 lex.charset]
1012 ///         \u hex-quad
1013 ///         \U hex-quad hex-quad
1014 ///       hex-quad:
1015 ///         hex-digit hex-digit hex-digit hex-digit
1016 /// \endverbatim
1017 ///
1018 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1019                                      SourceLocation Loc, Preprocessor &PP,
1020                                      tok::TokenKind kind) {
1021   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1022   HadError = false;
1023
1024   Kind = kind;
1025
1026   const char *TokBegin = begin;
1027
1028   // Skip over wide character determinant.
1029   if (Kind != tok::char_constant)
1030     ++begin;
1031   if (Kind == tok::utf8_char_constant)
1032     ++begin;
1033
1034   // Skip over the entry quote.
1035   assert(begin[0] == '\'' && "Invalid token lexed");
1036   ++begin;
1037
1038   // Remove an optional ud-suffix.
1039   if (end[-1] != '\'') {
1040     const char *UDSuffixEnd = end;
1041     do {
1042       --end;
1043     } while (end[-1] != '\'');
1044     // FIXME: Don't bother with this if !tok.hasUCN().
1045     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1046     UDSuffixOffset = end - TokBegin;
1047   }
1048
1049   // Trim the ending quote.
1050   assert(end != begin && "Invalid token lexed");
1051   --end;
1052
1053   // FIXME: The "Value" is an uint64_t so we can handle char literals of
1054   // up to 64-bits.
1055   // FIXME: This extensively assumes that 'char' is 8-bits.
1056   assert(PP.getTargetInfo().getCharWidth() == 8 &&
1057          "Assumes char is 8 bits");
1058   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1059          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1060          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1061   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1062          "Assumes sizeof(wchar) on target is <= 64");
1063
1064   SmallVector<uint32_t, 4> codepoint_buffer;
1065   codepoint_buffer.resize(end - begin);
1066   uint32_t *buffer_begin = &codepoint_buffer.front();
1067   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1068
1069   // Unicode escapes representing characters that cannot be correctly
1070   // represented in a single code unit are disallowed in character literals
1071   // by this implementation.
1072   uint32_t largest_character_for_kind;
1073   if (tok::wide_char_constant == Kind) {
1074     largest_character_for_kind =
1075         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1076   } else if (tok::utf8_char_constant == Kind) {
1077     largest_character_for_kind = 0x7F;
1078   } else if (tok::utf16_char_constant == Kind) {
1079     largest_character_for_kind = 0xFFFF;
1080   } else if (tok::utf32_char_constant == Kind) {
1081     largest_character_for_kind = 0x10FFFF;
1082   } else {
1083     largest_character_for_kind = 0x7Fu;
1084   }
1085
1086   while (begin != end) {
1087     // Is this a span of non-escape characters?
1088     if (begin[0] != '\\') {
1089       char const *start = begin;
1090       do {
1091         ++begin;
1092       } while (begin != end && *begin != '\\');
1093
1094       char const *tmp_in_start = start;
1095       uint32_t *tmp_out_start = buffer_begin;
1096       ConversionResult res =
1097           ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
1098                              reinterpret_cast<UTF8 const *>(begin),
1099                              &buffer_begin, buffer_end, strictConversion);
1100       if (res != conversionOK) {
1101         // If we see bad encoding for unprefixed character literals, warn and
1102         // simply copy the byte values, for compatibility with gcc and
1103         // older versions of clang.
1104         bool NoErrorOnBadEncoding = isAscii();
1105         unsigned Msg = diag::err_bad_character_encoding;
1106         if (NoErrorOnBadEncoding)
1107           Msg = diag::warn_bad_character_encoding;
1108         PP.Diag(Loc, Msg);
1109         if (NoErrorOnBadEncoding) {
1110           start = tmp_in_start;
1111           buffer_begin = tmp_out_start;
1112           for (; start != begin; ++start, ++buffer_begin)
1113             *buffer_begin = static_cast<uint8_t>(*start);
1114         } else {
1115           HadError = true;
1116         }
1117       } else {
1118         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1119           if (*tmp_out_start > largest_character_for_kind) {
1120             HadError = true;
1121             PP.Diag(Loc, diag::err_character_too_large);
1122           }
1123         }
1124       }
1125
1126       continue;
1127     }
1128     // Is this a Universal Character Name escape?
1129     if (begin[1] == 'u' || begin[1] == 'U') {
1130       unsigned short UcnLen = 0;
1131       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1132                             FullSourceLoc(Loc, PP.getSourceManager()),
1133                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1134         HadError = true;
1135       } else if (*buffer_begin > largest_character_for_kind) {
1136         HadError = true;
1137         PP.Diag(Loc, diag::err_character_too_large);
1138       }
1139
1140       ++buffer_begin;
1141       continue;
1142     }
1143     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1144     uint64_t result =
1145       ProcessCharEscape(TokBegin, begin, end, HadError,
1146                         FullSourceLoc(Loc,PP.getSourceManager()),
1147                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1148     *buffer_begin++ = result;
1149   }
1150
1151   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1152
1153   if (NumCharsSoFar > 1) {
1154     if (isWide())
1155       PP.Diag(Loc, diag::warn_extraneous_char_constant);
1156     else if (isAscii() && NumCharsSoFar == 4)
1157       PP.Diag(Loc, diag::ext_four_char_character_literal);
1158     else if (isAscii())
1159       PP.Diag(Loc, diag::ext_multichar_character_literal);
1160     else
1161       PP.Diag(Loc, diag::err_multichar_utf_character_literal);
1162     IsMultiChar = true;
1163   } else {
1164     IsMultiChar = false;
1165   }
1166
1167   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1168
1169   // Narrow character literals act as though their value is concatenated
1170   // in this implementation, but warn on overflow.
1171   bool multi_char_too_long = false;
1172   if (isAscii() && isMultiChar()) {
1173     LitVal = 0;
1174     for (size_t i = 0; i < NumCharsSoFar; ++i) {
1175       // check for enough leading zeros to shift into
1176       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1177       LitVal <<= 8;
1178       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1179     }
1180   } else if (NumCharsSoFar > 0) {
1181     // otherwise just take the last character
1182     LitVal = buffer_begin[-1];
1183   }
1184
1185   if (!HadError && multi_char_too_long) {
1186     PP.Diag(Loc, diag::warn_char_constant_too_large);
1187   }
1188
1189   // Transfer the value from APInt to uint64_t
1190   Value = LitVal.getZExtValue();
1191
1192   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1193   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
1194   // character constants are not sign extended in the this implementation:
1195   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1196   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1197       PP.getLangOpts().CharIsSigned)
1198     Value = (signed char)Value;
1199 }
1200
1201 /// \verbatim
1202 ///       string-literal: [C++0x lex.string]
1203 ///         encoding-prefix " [s-char-sequence] "
1204 ///         encoding-prefix R raw-string
1205 ///       encoding-prefix:
1206 ///         u8
1207 ///         u
1208 ///         U
1209 ///         L
1210 ///       s-char-sequence:
1211 ///         s-char
1212 ///         s-char-sequence s-char
1213 ///       s-char:
1214 ///         any member of the source character set except the double-quote ",
1215 ///           backslash \, or new-line character
1216 ///         escape-sequence
1217 ///         universal-character-name
1218 ///       raw-string:
1219 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
1220 ///       r-char-sequence:
1221 ///         r-char
1222 ///         r-char-sequence r-char
1223 ///       r-char:
1224 ///         any member of the source character set, except a right parenthesis )
1225 ///           followed by the initial d-char-sequence (which may be empty)
1226 ///           followed by a double quote ".
1227 ///       d-char-sequence:
1228 ///         d-char
1229 ///         d-char-sequence d-char
1230 ///       d-char:
1231 ///         any member of the basic source character set except:
1232 ///           space, the left parenthesis (, the right parenthesis ),
1233 ///           the backslash \, and the control characters representing horizontal
1234 ///           tab, vertical tab, form feed, and newline.
1235 ///       escape-sequence: [C++0x lex.ccon]
1236 ///         simple-escape-sequence
1237 ///         octal-escape-sequence
1238 ///         hexadecimal-escape-sequence
1239 ///       simple-escape-sequence:
1240 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1241 ///       octal-escape-sequence:
1242 ///         \ octal-digit
1243 ///         \ octal-digit octal-digit
1244 ///         \ octal-digit octal-digit octal-digit
1245 ///       hexadecimal-escape-sequence:
1246 ///         \x hexadecimal-digit
1247 ///         hexadecimal-escape-sequence hexadecimal-digit
1248 ///       universal-character-name:
1249 ///         \u hex-quad
1250 ///         \U hex-quad hex-quad
1251 ///       hex-quad:
1252 ///         hex-digit hex-digit hex-digit hex-digit
1253 /// \endverbatim
1254 ///
1255 StringLiteralParser::
1256 StringLiteralParser(ArrayRef<Token> StringToks,
1257                     Preprocessor &PP, bool Complain)
1258   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1259     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
1260     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1261     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1262   init(StringToks);
1263 }
1264
1265 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1266   // The literal token may have come from an invalid source location (e.g. due
1267   // to a PCH error), in which case the token length will be 0.
1268   if (StringToks.empty() || StringToks[0].getLength() < 2)
1269     return DiagnoseLexingError(SourceLocation());
1270
1271   // Scan all of the string portions, remember the max individual token length,
1272   // computing a bound on the concatenated string length, and see whether any
1273   // piece is a wide-string.  If any of the string portions is a wide-string
1274   // literal, the result is a wide-string literal [C99 6.4.5p4].
1275   assert(!StringToks.empty() && "expected at least one token");
1276   MaxTokenLength = StringToks[0].getLength();
1277   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1278   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
1279   Kind = StringToks[0].getKind();
1280
1281   hadError = false;
1282
1283   // Implement Translation Phase #6: concatenation of string literals
1284   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
1285   for (unsigned i = 1; i != StringToks.size(); ++i) {
1286     if (StringToks[i].getLength() < 2)
1287       return DiagnoseLexingError(StringToks[i].getLocation());
1288
1289     // The string could be shorter than this if it needs cleaning, but this is a
1290     // reasonable bound, which is all we need.
1291     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1292     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
1293
1294     // Remember maximum string piece length.
1295     if (StringToks[i].getLength() > MaxTokenLength)
1296       MaxTokenLength = StringToks[i].getLength();
1297
1298     // Remember if we see any wide or utf-8/16/32 strings.
1299     // Also check for illegal concatenations.
1300     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1301       if (isAscii()) {
1302         Kind = StringToks[i].getKind();
1303       } else {
1304         if (Diags)
1305           Diags->Report(StringToks[i].getLocation(),
1306                         diag::err_unsupported_string_concat);
1307         hadError = true;
1308       }
1309     }
1310   }
1311
1312   // Include space for the null terminator.
1313   ++SizeBound;
1314
1315   // TODO: K&R warning: "traditional C rejects string constant concatenation"
1316
1317   // Get the width in bytes of char/wchar_t/char16_t/char32_t
1318   CharByteWidth = getCharWidth(Kind, Target);
1319   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1320   CharByteWidth /= 8;
1321
1322   // The output buffer size needs to be large enough to hold wide characters.
1323   // This is a worst-case assumption which basically corresponds to L"" "long".
1324   SizeBound *= CharByteWidth;
1325
1326   // Size the temporary buffer to hold the result string data.
1327   ResultBuf.resize(SizeBound);
1328
1329   // Likewise, but for each string piece.
1330   SmallString<512> TokenBuf;
1331   TokenBuf.resize(MaxTokenLength);
1332
1333   // Loop over all the strings, getting their spelling, and expanding them to
1334   // wide strings as appropriate.
1335   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
1336
1337   Pascal = false;
1338
1339   SourceLocation UDSuffixTokLoc;
1340
1341   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1342     const char *ThisTokBuf = &TokenBuf[0];
1343     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
1344     // that ThisTokBuf points to a buffer that is big enough for the whole token
1345     // and 'spelled' tokens can only shrink.
1346     bool StringInvalid = false;
1347     unsigned ThisTokLen = 
1348       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1349                          &StringInvalid);
1350     if (StringInvalid)
1351       return DiagnoseLexingError(StringToks[i].getLocation());
1352
1353     const char *ThisTokBegin = ThisTokBuf;
1354     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1355
1356     // Remove an optional ud-suffix.
1357     if (ThisTokEnd[-1] != '"') {
1358       const char *UDSuffixEnd = ThisTokEnd;
1359       do {
1360         --ThisTokEnd;
1361       } while (ThisTokEnd[-1] != '"');
1362
1363       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1364
1365       if (UDSuffixBuf.empty()) {
1366         if (StringToks[i].hasUCN())
1367           expandUCNs(UDSuffixBuf, UDSuffix);
1368         else
1369           UDSuffixBuf.assign(UDSuffix);
1370         UDSuffixToken = i;
1371         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1372         UDSuffixTokLoc = StringToks[i].getLocation();
1373       } else {
1374         SmallString<32> ExpandedUDSuffix;
1375         if (StringToks[i].hasUCN()) {
1376           expandUCNs(ExpandedUDSuffix, UDSuffix);
1377           UDSuffix = ExpandedUDSuffix;
1378         }
1379
1380         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1381         // result of a concatenation involving at least one user-defined-string-
1382         // literal, all the participating user-defined-string-literals shall
1383         // have the same ud-suffix.
1384         if (UDSuffixBuf != UDSuffix) {
1385           if (Diags) {
1386             SourceLocation TokLoc = StringToks[i].getLocation();
1387             Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1388               << UDSuffixBuf << UDSuffix
1389               << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1390               << SourceRange(TokLoc, TokLoc);
1391           }
1392           hadError = true;
1393         }
1394       }
1395     }
1396
1397     // Strip the end quote.
1398     --ThisTokEnd;
1399
1400     // TODO: Input character set mapping support.
1401
1402     // Skip marker for wide or unicode strings.
1403     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1404       ++ThisTokBuf;
1405       // Skip 8 of u8 marker for utf8 strings.
1406       if (ThisTokBuf[0] == '8')
1407         ++ThisTokBuf;
1408     }
1409
1410     // Check for raw string
1411     if (ThisTokBuf[0] == 'R') {
1412       ThisTokBuf += 2; // skip R"
1413
1414       const char *Prefix = ThisTokBuf;
1415       while (ThisTokBuf[0] != '(')
1416         ++ThisTokBuf;
1417       ++ThisTokBuf; // skip '('
1418
1419       // Remove same number of characters from the end
1420       ThisTokEnd -= ThisTokBuf - Prefix;
1421       assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1422
1423       // Copy the string over
1424       if (CopyStringFragment(StringToks[i], ThisTokBegin,
1425                              StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
1426         hadError = true;
1427     } else {
1428       if (ThisTokBuf[0] != '"') {
1429         // The file may have come from PCH and then changed after loading the
1430         // PCH; Fail gracefully.
1431         return DiagnoseLexingError(StringToks[i].getLocation());
1432       }
1433       ++ThisTokBuf; // skip "
1434
1435       // Check if this is a pascal string
1436       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1437           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1438
1439         // If the \p sequence is found in the first token, we have a pascal string
1440         // Otherwise, if we already have a pascal string, ignore the first \p
1441         if (i == 0) {
1442           ++ThisTokBuf;
1443           Pascal = true;
1444         } else if (Pascal)
1445           ThisTokBuf += 2;
1446       }
1447
1448       while (ThisTokBuf != ThisTokEnd) {
1449         // Is this a span of non-escape characters?
1450         if (ThisTokBuf[0] != '\\') {
1451           const char *InStart = ThisTokBuf;
1452           do {
1453             ++ThisTokBuf;
1454           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1455
1456           // Copy the character span over.
1457           if (CopyStringFragment(StringToks[i], ThisTokBegin,
1458                                  StringRef(InStart, ThisTokBuf - InStart)))
1459             hadError = true;
1460           continue;
1461         }
1462         // Is this a Universal Character Name escape?
1463         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1464           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1465                           ResultPtr, hadError,
1466                           FullSourceLoc(StringToks[i].getLocation(), SM),
1467                           CharByteWidth, Diags, Features);
1468           continue;
1469         }
1470         // Otherwise, this is a non-UCN escape character.  Process it.
1471         unsigned ResultChar =
1472           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1473                             FullSourceLoc(StringToks[i].getLocation(), SM),
1474                             CharByteWidth*8, Diags, Features);
1475
1476         if (CharByteWidth == 4) {
1477           // FIXME: Make the type of the result buffer correct instead of
1478           // using reinterpret_cast.
1479           UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1480           *ResultWidePtr = ResultChar;
1481           ResultPtr += 4;
1482         } else if (CharByteWidth == 2) {
1483           // FIXME: Make the type of the result buffer correct instead of
1484           // using reinterpret_cast.
1485           UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1486           *ResultWidePtr = ResultChar & 0xFFFF;
1487           ResultPtr += 2;
1488         } else {
1489           assert(CharByteWidth == 1 && "Unexpected char width");
1490           *ResultPtr++ = ResultChar & 0xFF;
1491         }
1492       }
1493     }
1494   }
1495
1496   if (Pascal) {
1497     if (CharByteWidth == 4) {
1498       // FIXME: Make the type of the result buffer correct instead of
1499       // using reinterpret_cast.
1500       UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1501       ResultWidePtr[0] = GetNumStringChars() - 1;
1502     } else if (CharByteWidth == 2) {
1503       // FIXME: Make the type of the result buffer correct instead of
1504       // using reinterpret_cast.
1505       UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1506       ResultWidePtr[0] = GetNumStringChars() - 1;
1507     } else {
1508       assert(CharByteWidth == 1 && "Unexpected char width");
1509       ResultBuf[0] = GetNumStringChars() - 1;
1510     }
1511
1512     // Verify that pascal strings aren't too large.
1513     if (GetStringLength() > 256) {
1514       if (Diags)
1515         Diags->Report(StringToks.front().getLocation(),
1516                       diag::err_pascal_string_too_long)
1517           << SourceRange(StringToks.front().getLocation(),
1518                          StringToks.back().getLocation());
1519       hadError = true;
1520       return;
1521     }
1522   } else if (Diags) {
1523     // Complain if this string literal has too many characters.
1524     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1525
1526     if (GetNumStringChars() > MaxChars)
1527       Diags->Report(StringToks.front().getLocation(),
1528                     diag::ext_string_too_long)
1529         << GetNumStringChars() << MaxChars
1530         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1531         << SourceRange(StringToks.front().getLocation(),
1532                        StringToks.back().getLocation());
1533   }
1534 }
1535
1536 static const char *resyncUTF8(const char *Err, const char *End) {
1537   if (Err == End)
1538     return End;
1539   End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
1540   while (++Err != End && (*Err & 0xC0) == 0x80)
1541     ;
1542   return Err;
1543 }
1544
1545 /// \brief This function copies from Fragment, which is a sequence of bytes
1546 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
1547 /// Performs widening for multi-byte characters.
1548 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1549                                              const char *TokBegin,
1550                                              StringRef Fragment) {
1551   const UTF8 *ErrorPtrTmp;
1552   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1553     return false;
1554
1555   // If we see bad encoding for unprefixed string literals, warn and
1556   // simply copy the byte values, for compatibility with gcc and older
1557   // versions of clang.
1558   bool NoErrorOnBadEncoding = isAscii();
1559   if (NoErrorOnBadEncoding) {
1560     memcpy(ResultPtr, Fragment.data(), Fragment.size());
1561     ResultPtr += Fragment.size();
1562   }
1563
1564   if (Diags) {
1565     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1566
1567     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1568     const DiagnosticBuilder &Builder =
1569       Diag(Diags, Features, SourceLoc, TokBegin,
1570            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1571            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1572                                 : diag::err_bad_string_encoding);
1573
1574     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1575     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
1576
1577     // Decode into a dummy buffer.
1578     SmallString<512> Dummy;
1579     Dummy.reserve(Fragment.size() * CharByteWidth);
1580     char *Ptr = Dummy.data();
1581
1582     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
1583       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1584       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1585       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
1586                                      ErrorPtr, NextStart);
1587       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
1588     }
1589   }
1590   return !NoErrorOnBadEncoding;
1591 }
1592
1593 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
1594   hadError = true;
1595   if (Diags)
1596     Diags->Report(Loc, diag::err_lexing_string);
1597 }
1598
1599 /// getOffsetOfStringByte - This function returns the offset of the
1600 /// specified byte of the string data represented by Token.  This handles
1601 /// advancing over escape sequences in the string.
1602 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1603                                                     unsigned ByteNo) const {
1604   // Get the spelling of the token.
1605   SmallString<32> SpellingBuffer;
1606   SpellingBuffer.resize(Tok.getLength());
1607
1608   bool StringInvalid = false;
1609   const char *SpellingPtr = &SpellingBuffer[0];
1610   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1611                                        &StringInvalid);
1612   if (StringInvalid)
1613     return 0;
1614
1615   const char *SpellingStart = SpellingPtr;
1616   const char *SpellingEnd = SpellingPtr+TokLen;
1617
1618   // Handle UTF-8 strings just like narrow strings.
1619   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
1620     SpellingPtr += 2;
1621
1622   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1623          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1624
1625   // For raw string literals, this is easy.
1626   if (SpellingPtr[0] == 'R') {
1627     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
1628     // Skip 'R"'.
1629     SpellingPtr += 2;
1630     while (*SpellingPtr != '(') {
1631       ++SpellingPtr;
1632       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
1633     }
1634     // Skip '('.
1635     ++SpellingPtr;
1636     return SpellingPtr - SpellingStart + ByteNo;
1637   }
1638
1639   // Skip over the leading quote
1640   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1641   ++SpellingPtr;
1642
1643   // Skip over bytes until we find the offset we're looking for.
1644   while (ByteNo) {
1645     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1646
1647     // Step over non-escapes simply.
1648     if (*SpellingPtr != '\\') {
1649       ++SpellingPtr;
1650       --ByteNo;
1651       continue;
1652     }
1653
1654     // Otherwise, this is an escape character.  Advance over it.
1655     bool HadError = false;
1656     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
1657       const char *EscapePtr = SpellingPtr;
1658       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1659                                       1, Features, HadError);
1660       if (Len > ByteNo) {
1661         // ByteNo is somewhere within the escape sequence.
1662         SpellingPtr = EscapePtr;
1663         break;
1664       }
1665       ByteNo -= Len;
1666     } else {
1667       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
1668                         FullSourceLoc(Tok.getLocation(), SM),
1669                         CharByteWidth*8, Diags, Features);
1670       --ByteNo;
1671     }
1672     assert(!HadError && "This method isn't valid on erroneous strings");
1673   }
1674
1675   return SpellingPtr-SpellingStart;
1676 }