]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Parse/ParseExprCXX.cpp
Update clang to release_39 branch r276489, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Parse / ParseExprCXX.cpp
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expression parsing implementation for C++.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "RAIIObjectsForParser.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Parse/Parser.h"
20 #include "clang/Sema/DeclSpec.h"
21 #include "clang/Sema/ParsedTemplate.h"
22 #include "clang/Sema/Scope.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25
26 using namespace clang;
27
28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
29   switch (Kind) {
30     // template name
31     case tok::unknown:             return 0;
32     // casts
33     case tok::kw_const_cast:       return 1;
34     case tok::kw_dynamic_cast:     return 2;
35     case tok::kw_reinterpret_cast: return 3;
36     case tok::kw_static_cast:      return 4;
37     default:
38       llvm_unreachable("Unknown type for digraph error message.");
39   }
40 }
41
42 // Are the two tokens adjacent in the same source file?
43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
44   SourceManager &SM = PP.getSourceManager();
45   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
46   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
47   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
48 }
49
50 // Suggest fixit for "<::" after a cast.
51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
52                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
53   // Pull '<:' and ':' off token stream.
54   if (!AtDigraph)
55     PP.Lex(DigraphToken);
56   PP.Lex(ColonToken);
57
58   SourceRange Range;
59   Range.setBegin(DigraphToken.getLocation());
60   Range.setEnd(ColonToken.getLocation());
61   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
62       << SelectDigraphErrorMessage(Kind)
63       << FixItHint::CreateReplacement(Range, "< ::");
64
65   // Update token information to reflect their change in token type.
66   ColonToken.setKind(tok::coloncolon);
67   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
68   ColonToken.setLength(2);
69   DigraphToken.setKind(tok::less);
70   DigraphToken.setLength(1);
71
72   // Push new tokens back to token stream.
73   PP.EnterToken(ColonToken);
74   if (!AtDigraph)
75     PP.EnterToken(DigraphToken);
76 }
77
78 // Check for '<::' which should be '< ::' instead of '[:' when following
79 // a template name.
80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
81                                         bool EnteringContext,
82                                         IdentifierInfo &II, CXXScopeSpec &SS) {
83   if (!Next.is(tok::l_square) || Next.getLength() != 2)
84     return;
85
86   Token SecondToken = GetLookAheadToken(2);
87   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
88     return;
89
90   TemplateTy Template;
91   UnqualifiedId TemplateName;
92   TemplateName.setIdentifier(&II, Tok.getLocation());
93   bool MemberOfUnknownSpecialization;
94   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
95                               TemplateName, ObjectType, EnteringContext,
96                               Template, MemberOfUnknownSpecialization))
97     return;
98
99   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
100              /*AtDigraph*/false);
101 }
102
103 /// \brief Emits an error for a left parentheses after a double colon.
104 ///
105 /// When a '(' is found after a '::', emit an error.  Attempt to fix the token
106 /// stream by removing the '(', and the matching ')' if found.
107 void Parser::CheckForLParenAfterColonColon() {
108   if (!Tok.is(tok::l_paren))
109     return;
110
111   Token LParen = Tok;
112   Token NextTok = GetLookAheadToken(1);
113   Token StarTok = NextTok;
114   // Check for (identifier or (*identifier
115   Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok;
116   if (IdentifierTok.isNot(tok::identifier))
117     return;
118   // Eat the '('.
119   ConsumeParen();
120   Token RParen;
121   RParen.setLocation(SourceLocation());
122   // Do we have a ')' ?
123   NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1);
124   if (NextTok.is(tok::r_paren)) {
125     RParen = NextTok;
126     // Eat the '*' if it is present.
127     if (StarTok.is(tok::star))
128       ConsumeToken();
129     // Eat the identifier.
130     ConsumeToken();
131     // Add the identifier token back.
132     PP.EnterToken(IdentifierTok);
133     // Add the '*' back if it was present.
134     if (StarTok.is(tok::star))
135       PP.EnterToken(StarTok);
136     // Eat the ')'.
137     ConsumeParen();
138   }
139
140   Diag(LParen.getLocation(), diag::err_paren_after_colon_colon)
141       << FixItHint::CreateRemoval(LParen.getLocation())
142       << FixItHint::CreateRemoval(RParen.getLocation());
143 }
144
145 /// \brief Parse global scope or nested-name-specifier if present.
146 ///
147 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
148 /// may be preceded by '::'). Note that this routine will not parse ::new or
149 /// ::delete; it will just leave them in the token stream.
150 ///
151 ///       '::'[opt] nested-name-specifier
152 ///       '::'
153 ///
154 ///       nested-name-specifier:
155 ///         type-name '::'
156 ///         namespace-name '::'
157 ///         nested-name-specifier identifier '::'
158 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
159 ///
160 ///
161 /// \param SS the scope specifier that will be set to the parsed
162 /// nested-name-specifier (or empty)
163 ///
164 /// \param ObjectType if this nested-name-specifier is being parsed following
165 /// the "." or "->" of a member access expression, this parameter provides the
166 /// type of the object whose members are being accessed.
167 ///
168 /// \param EnteringContext whether we will be entering into the context of
169 /// the nested-name-specifier after parsing it.
170 ///
171 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
172 /// indicates whether this nested-name-specifier may be part of a
173 /// pseudo-destructor name. In this case, the flag will be set false
174 /// if we don't actually end up parsing a destructor name. Moreorover,
175 /// if we do end up determining that we are parsing a destructor name,
176 /// the last component of the nested-name-specifier is not parsed as
177 /// part of the scope specifier.
178 ///
179 /// \param IsTypename If \c true, this nested-name-specifier is known to be
180 /// part of a type name. This is used to improve error recovery.
181 ///
182 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
183 /// filled in with the leading identifier in the last component of the
184 /// nested-name-specifier, if any.
185 ///
186 /// \returns true if there was an error parsing a scope specifier
187 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
188                                             ParsedType ObjectType,
189                                             bool EnteringContext,
190                                             bool *MayBePseudoDestructor,
191                                             bool IsTypename,
192                                             IdentifierInfo **LastII) {
193   assert(getLangOpts().CPlusPlus &&
194          "Call sites of this function should be guarded by checking for C++");
195
196   if (Tok.is(tok::annot_cxxscope)) {
197     assert(!LastII && "want last identifier but have already annotated scope");
198     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
199     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
200                                                  Tok.getAnnotationRange(),
201                                                  SS);
202     ConsumeToken();
203     return false;
204   }
205
206   if (Tok.is(tok::annot_template_id)) {
207     // If the current token is an annotated template id, it may already have
208     // a scope specifier. Restore it.
209     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
210     SS = TemplateId->SS;
211   }
212
213   // Has to happen before any "return false"s in this function.
214   bool CheckForDestructor = false;
215   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
216     CheckForDestructor = true;
217     *MayBePseudoDestructor = false;
218   }
219
220   if (LastII)
221     *LastII = nullptr;
222
223   bool HasScopeSpecifier = false;
224
225   if (Tok.is(tok::coloncolon)) {
226     // ::new and ::delete aren't nested-name-specifiers.
227     tok::TokenKind NextKind = NextToken().getKind();
228     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
229       return false;
230
231     if (NextKind == tok::l_brace) {
232       // It is invalid to have :: {, consume the scope qualifier and pretend
233       // like we never saw it.
234       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
235     } else {
236       // '::' - Global scope qualifier.
237       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
238         return true;
239
240       CheckForLParenAfterColonColon();
241
242       HasScopeSpecifier = true;
243     }
244   }
245
246   if (Tok.is(tok::kw___super)) {
247     SourceLocation SuperLoc = ConsumeToken();
248     if (!Tok.is(tok::coloncolon)) {
249       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
250       return true;
251     }
252
253     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
254   }
255
256   if (!HasScopeSpecifier &&
257       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
258     DeclSpec DS(AttrFactory);
259     SourceLocation DeclLoc = Tok.getLocation();
260     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
261
262     SourceLocation CCLoc;
263     if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
264       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
265       return false;
266     }
267
268     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
269       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
270
271     HasScopeSpecifier = true;
272   }
273
274   while (true) {
275     if (HasScopeSpecifier) {
276       // C++ [basic.lookup.classref]p5:
277       //   If the qualified-id has the form
278       //
279       //       ::class-name-or-namespace-name::...
280       //
281       //   the class-name-or-namespace-name is looked up in global scope as a
282       //   class-name or namespace-name.
283       //
284       // To implement this, we clear out the object type as soon as we've
285       // seen a leading '::' or part of a nested-name-specifier.
286       ObjectType = nullptr;
287
288       if (Tok.is(tok::code_completion)) {
289         // Code completion for a nested-name-specifier, where the code
290         // code completion token follows the '::'.
291         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
292         // Include code completion token into the range of the scope otherwise
293         // when we try to annotate the scope tokens the dangling code completion
294         // token will cause assertion in
295         // Preprocessor::AnnotatePreviousCachedTokens.
296         SS.setEndLoc(Tok.getLocation());
297         cutOffParsing();
298         return true;
299       }
300     }
301
302     // nested-name-specifier:
303     //   nested-name-specifier 'template'[opt] simple-template-id '::'
304
305     // Parse the optional 'template' keyword, then make sure we have
306     // 'identifier <' after it.
307     if (Tok.is(tok::kw_template)) {
308       // If we don't have a scope specifier or an object type, this isn't a
309       // nested-name-specifier, since they aren't allowed to start with
310       // 'template'.
311       if (!HasScopeSpecifier && !ObjectType)
312         break;
313
314       TentativeParsingAction TPA(*this);
315       SourceLocation TemplateKWLoc = ConsumeToken();
316
317       UnqualifiedId TemplateName;
318       if (Tok.is(tok::identifier)) {
319         // Consume the identifier.
320         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
321         ConsumeToken();
322       } else if (Tok.is(tok::kw_operator)) {
323         // We don't need to actually parse the unqualified-id in this case,
324         // because a simple-template-id cannot start with 'operator', but
325         // go ahead and parse it anyway for consistency with the case where
326         // we already annotated the template-id.
327         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
328                                        TemplateName)) {
329           TPA.Commit();
330           break;
331         }
332
333         if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
334             TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
335           Diag(TemplateName.getSourceRange().getBegin(),
336                diag::err_id_after_template_in_nested_name_spec)
337             << TemplateName.getSourceRange();
338           TPA.Commit();
339           break;
340         }
341       } else {
342         TPA.Revert();
343         break;
344       }
345
346       // If the next token is not '<', we have a qualified-id that refers
347       // to a template name, such as T::template apply, but is not a 
348       // template-id.
349       if (Tok.isNot(tok::less)) {
350         TPA.Revert();
351         break;
352       }        
353       
354       // Commit to parsing the template-id.
355       TPA.Commit();
356       TemplateTy Template;
357       if (TemplateNameKind TNK
358           = Actions.ActOnDependentTemplateName(getCurScope(),
359                                                SS, TemplateKWLoc, TemplateName,
360                                                ObjectType, EnteringContext,
361                                                Template)) {
362         if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
363                                     TemplateName, false))
364           return true;
365       } else
366         return true;
367
368       continue;
369     }
370
371     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
372       // We have
373       //
374       //   template-id '::'
375       //
376       // So we need to check whether the template-id is a simple-template-id of
377       // the right kind (it should name a type or be dependent), and then
378       // convert it into a type within the nested-name-specifier.
379       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
380       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
381         *MayBePseudoDestructor = true;
382         return false;
383       }
384
385       if (LastII)
386         *LastII = TemplateId->Name;
387
388       // Consume the template-id token.
389       ConsumeToken();
390
391       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
392       SourceLocation CCLoc = ConsumeToken();
393
394       HasScopeSpecifier = true;
395
396       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
397                                          TemplateId->NumArgs);
398
399       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
400                                               SS,
401                                               TemplateId->TemplateKWLoc,
402                                               TemplateId->Template,
403                                               TemplateId->TemplateNameLoc,
404                                               TemplateId->LAngleLoc,
405                                               TemplateArgsPtr,
406                                               TemplateId->RAngleLoc,
407                                               CCLoc,
408                                               EnteringContext)) {
409         SourceLocation StartLoc 
410           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
411                                       : TemplateId->TemplateNameLoc;
412         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
413       }
414
415       continue;
416     }
417
418     // The rest of the nested-name-specifier possibilities start with
419     // tok::identifier.
420     if (Tok.isNot(tok::identifier))
421       break;
422
423     IdentifierInfo &II = *Tok.getIdentifierInfo();
424
425     // nested-name-specifier:
426     //   type-name '::'
427     //   namespace-name '::'
428     //   nested-name-specifier identifier '::'
429     Token Next = NextToken();
430     
431     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
432     // and emit a fixit hint for it.
433     if (Next.is(tok::colon) && !ColonIsSacred) {
434       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, 
435                                             Tok.getLocation(), 
436                                             Next.getLocation(), ObjectType,
437                                             EnteringContext) &&
438           // If the token after the colon isn't an identifier, it's still an
439           // error, but they probably meant something else strange so don't
440           // recover like this.
441           PP.LookAhead(1).is(tok::identifier)) {
442         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
443           << FixItHint::CreateReplacement(Next.getLocation(), "::");
444         // Recover as if the user wrote '::'.
445         Next.setKind(tok::coloncolon);
446       }
447     }
448
449     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
450       // It is invalid to have :: {, consume the scope qualifier and pretend
451       // like we never saw it.
452       Token Identifier = Tok; // Stash away the identifier.
453       ConsumeToken();         // Eat the identifier, current token is now '::'.
454       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
455           << tok::identifier;
456       UnconsumeToken(Identifier); // Stick the identifier back.
457       Next = NextToken();         // Point Next at the '{' token.
458     }
459
460     if (Next.is(tok::coloncolon)) {
461       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
462           !Actions.isNonTypeNestedNameSpecifier(
463               getCurScope(), SS, Tok.getLocation(), II, ObjectType)) {
464         *MayBePseudoDestructor = true;
465         return false;
466       }
467
468       if (ColonIsSacred) {
469         const Token &Next2 = GetLookAheadToken(2);
470         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
471             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
472           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
473               << Next2.getName()
474               << FixItHint::CreateReplacement(Next.getLocation(), ":");
475           Token ColonColon;
476           PP.Lex(ColonColon);
477           ColonColon.setKind(tok::colon);
478           PP.EnterToken(ColonColon);
479           break;
480         }
481       }
482
483       if (LastII)
484         *LastII = &II;
485
486       // We have an identifier followed by a '::'. Lookup this name
487       // as the name in a nested-name-specifier.
488       Token Identifier = Tok;
489       SourceLocation IdLoc = ConsumeToken();
490       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
491              "NextToken() not working properly!");
492       Token ColonColon = Tok;
493       SourceLocation CCLoc = ConsumeToken();
494
495       CheckForLParenAfterColonColon();
496
497       bool IsCorrectedToColon = false;
498       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
499       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
500                                               ObjectType, EnteringContext, SS,
501                                               false, CorrectionFlagPtr)) {
502         // Identifier is not recognized as a nested name, but we can have
503         // mistyped '::' instead of ':'.
504         if (CorrectionFlagPtr && IsCorrectedToColon) {
505           ColonColon.setKind(tok::colon);
506           PP.EnterToken(Tok);
507           PP.EnterToken(ColonColon);
508           Tok = Identifier;
509           break;
510         }
511         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
512       }
513       HasScopeSpecifier = true;
514       continue;
515     }
516
517     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
518
519     // nested-name-specifier:
520     //   type-name '<'
521     if (Next.is(tok::less)) {
522       TemplateTy Template;
523       UnqualifiedId TemplateName;
524       TemplateName.setIdentifier(&II, Tok.getLocation());
525       bool MemberOfUnknownSpecialization;
526       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, 
527                                               /*hasTemplateKeyword=*/false,
528                                                         TemplateName,
529                                                         ObjectType,
530                                                         EnteringContext,
531                                                         Template,
532                                               MemberOfUnknownSpecialization)) {
533         // We have found a template name, so annotate this token
534         // with a template-id annotation. We do not permit the
535         // template-id to be translated into a type annotation,
536         // because some clients (e.g., the parsing of class template
537         // specializations) still want to see the original template-id
538         // token.
539         ConsumeToken();
540         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
541                                     TemplateName, false))
542           return true;
543         continue;
544       }
545
546       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && 
547           (IsTypename || IsTemplateArgumentList(1))) {
548         // We have something like t::getAs<T>, where getAs is a 
549         // member of an unknown specialization. However, this will only
550         // parse correctly as a template, so suggest the keyword 'template'
551         // before 'getAs' and treat this as a dependent template name.
552         unsigned DiagID = diag::err_missing_dependent_template_keyword;
553         if (getLangOpts().MicrosoftExt)
554           DiagID = diag::warn_missing_dependent_template_keyword;
555         
556         Diag(Tok.getLocation(), DiagID)
557           << II.getName()
558           << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
559         
560         if (TemplateNameKind TNK 
561               = Actions.ActOnDependentTemplateName(getCurScope(), 
562                                                    SS, SourceLocation(),
563                                                    TemplateName, ObjectType,
564                                                    EnteringContext, Template)) {
565           // Consume the identifier.
566           ConsumeToken();
567           if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
568                                       TemplateName, false))
569             return true;
570         }
571         else
572           return true;     
573                 
574         continue;        
575       }
576     }
577
578     // We don't have any tokens that form the beginning of a
579     // nested-name-specifier, so we're done.
580     break;
581   }
582
583   // Even if we didn't see any pieces of a nested-name-specifier, we
584   // still check whether there is a tilde in this position, which
585   // indicates a potential pseudo-destructor.
586   if (CheckForDestructor && Tok.is(tok::tilde))
587     *MayBePseudoDestructor = true;
588
589   return false;
590 }
591
592 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
593                                            Token &Replacement) {
594   SourceLocation TemplateKWLoc;
595   UnqualifiedId Name;
596   if (ParseUnqualifiedId(SS,
597                          /*EnteringContext=*/false,
598                          /*AllowDestructorName=*/false,
599                          /*AllowConstructorName=*/false,
600                          /*ObjectType=*/nullptr, TemplateKWLoc, Name))
601     return ExprError();
602
603   // This is only the direct operand of an & operator if it is not
604   // followed by a postfix-expression suffix.
605   if (isAddressOfOperand && isPostfixExpressionSuffixStart())
606     isAddressOfOperand = false;
607
608   return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
609                                    Tok.is(tok::l_paren), isAddressOfOperand,
610                                    nullptr, /*IsInlineAsmIdentifier=*/false,
611                                    &Replacement);
612 }
613
614 /// ParseCXXIdExpression - Handle id-expression.
615 ///
616 ///       id-expression:
617 ///         unqualified-id
618 ///         qualified-id
619 ///
620 ///       qualified-id:
621 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
622 ///         '::' identifier
623 ///         '::' operator-function-id
624 ///         '::' template-id
625 ///
626 /// NOTE: The standard specifies that, for qualified-id, the parser does not
627 /// expect:
628 ///
629 ///   '::' conversion-function-id
630 ///   '::' '~' class-name
631 ///
632 /// This may cause a slight inconsistency on diagnostics:
633 ///
634 /// class C {};
635 /// namespace A {}
636 /// void f() {
637 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
638 ///                  // namespace.
639 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
640 /// }
641 ///
642 /// We simplify the parser a bit and make it work like:
643 ///
644 ///       qualified-id:
645 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
646 ///         '::' unqualified-id
647 ///
648 /// That way Sema can handle and report similar errors for namespaces and the
649 /// global scope.
650 ///
651 /// The isAddressOfOperand parameter indicates that this id-expression is a
652 /// direct operand of the address-of operator. This is, besides member contexts,
653 /// the only place where a qualified-id naming a non-static class member may
654 /// appear.
655 ///
656 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
657   // qualified-id:
658   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
659   //   '::' unqualified-id
660   //
661   CXXScopeSpec SS;
662   ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/false);
663
664   Token Replacement;
665   ExprResult Result =
666       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
667   if (Result.isUnset()) {
668     // If the ExprResult is valid but null, then typo correction suggested a
669     // keyword replacement that needs to be reparsed.
670     UnconsumeToken(Replacement);
671     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
672   }
673   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
674                               "for a previous keyword suggestion");
675   return Result;
676 }
677
678 /// ParseLambdaExpression - Parse a C++11 lambda expression.
679 ///
680 ///       lambda-expression:
681 ///         lambda-introducer lambda-declarator[opt] compound-statement
682 ///
683 ///       lambda-introducer:
684 ///         '[' lambda-capture[opt] ']'
685 ///
686 ///       lambda-capture:
687 ///         capture-default
688 ///         capture-list
689 ///         capture-default ',' capture-list
690 ///
691 ///       capture-default:
692 ///         '&'
693 ///         '='
694 ///
695 ///       capture-list:
696 ///         capture
697 ///         capture-list ',' capture
698 ///
699 ///       capture:
700 ///         simple-capture
701 ///         init-capture     [C++1y]
702 ///
703 ///       simple-capture:
704 ///         identifier
705 ///         '&' identifier
706 ///         'this'
707 ///
708 ///       init-capture:      [C++1y]
709 ///         identifier initializer
710 ///         '&' identifier initializer
711 ///
712 ///       lambda-declarator:
713 ///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
714 ///           'mutable'[opt] exception-specification[opt]
715 ///           trailing-return-type[opt]
716 ///
717 ExprResult Parser::ParseLambdaExpression() {
718   // Parse lambda-introducer.
719   LambdaIntroducer Intro;
720   Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
721   if (DiagID) {
722     Diag(Tok, DiagID.getValue());
723     SkipUntil(tok::r_square, StopAtSemi);
724     SkipUntil(tok::l_brace, StopAtSemi);
725     SkipUntil(tok::r_brace, StopAtSemi);
726     return ExprError();
727   }
728
729   return ParseLambdaExpressionAfterIntroducer(Intro);
730 }
731
732 /// TryParseLambdaExpression - Use lookahead and potentially tentative
733 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
734 /// it if we are.
735 ///
736 /// If we are not looking at a lambda expression, returns ExprError().
737 ExprResult Parser::TryParseLambdaExpression() {
738   assert(getLangOpts().CPlusPlus11
739          && Tok.is(tok::l_square)
740          && "Not at the start of a possible lambda expression.");
741
742   const Token Next = NextToken();
743   if (Next.is(tok::eof)) // Nothing else to lookup here...
744     return ExprEmpty();
745
746   const Token After = GetLookAheadToken(2);
747   // If lookahead indicates this is a lambda...
748   if (Next.is(tok::r_square) ||     // []
749       Next.is(tok::equal) ||        // [=
750       (Next.is(tok::amp) &&         // [&] or [&,
751        (After.is(tok::r_square) ||
752         After.is(tok::comma))) ||
753       (Next.is(tok::identifier) &&  // [identifier]
754        After.is(tok::r_square))) {
755     return ParseLambdaExpression();
756   }
757
758   // If lookahead indicates an ObjC message send...
759   // [identifier identifier
760   if (Next.is(tok::identifier) && After.is(tok::identifier)) {
761     return ExprEmpty();
762   }
763  
764   // Here, we're stuck: lambda introducers and Objective-C message sends are
765   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
766   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
767   // writing two routines to parse a lambda introducer, just try to parse
768   // a lambda introducer first, and fall back if that fails.
769   // (TryParseLambdaIntroducer never produces any diagnostic output.)
770   LambdaIntroducer Intro;
771   if (TryParseLambdaIntroducer(Intro))
772     return ExprEmpty();
773
774   return ParseLambdaExpressionAfterIntroducer(Intro);
775 }
776
777 /// \brief Parse a lambda introducer.
778 /// \param Intro A LambdaIntroducer filled in with information about the
779 ///        contents of the lambda-introducer.
780 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C
781 ///        message send and a lambda expression. In this mode, we will
782 ///        sometimes skip the initializers for init-captures and not fully
783 ///        populate \p Intro. This flag will be set to \c true if we do so.
784 /// \return A DiagnosticID if it hit something unexpected. The location for
785 ///         for the diagnostic is that of the current token.
786 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
787                                                  bool *SkippedInits) {
788   typedef Optional<unsigned> DiagResult;
789
790   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
791   BalancedDelimiterTracker T(*this, tok::l_square);
792   T.consumeOpen();
793
794   Intro.Range.setBegin(T.getOpenLocation());
795
796   bool first = true;
797
798   // Parse capture-default.
799   if (Tok.is(tok::amp) &&
800       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
801     Intro.Default = LCD_ByRef;
802     Intro.DefaultLoc = ConsumeToken();
803     first = false;
804   } else if (Tok.is(tok::equal)) {
805     Intro.Default = LCD_ByCopy;
806     Intro.DefaultLoc = ConsumeToken();
807     first = false;
808   }
809
810   while (Tok.isNot(tok::r_square)) {
811     if (!first) {
812       if (Tok.isNot(tok::comma)) {
813         // Provide a completion for a lambda introducer here. Except
814         // in Objective-C, where this is Almost Surely meant to be a message
815         // send. In that case, fail here and let the ObjC message
816         // expression parser perform the completion.
817         if (Tok.is(tok::code_completion) &&
818             !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
819               !Intro.Captures.empty())) {
820           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 
821                                                /*AfterAmpersand=*/false);
822           cutOffParsing();
823           break;
824         }
825
826         return DiagResult(diag::err_expected_comma_or_rsquare);
827       }
828       ConsumeToken();
829     }
830
831     if (Tok.is(tok::code_completion)) {
832       // If we're in Objective-C++ and we have a bare '[', then this is more
833       // likely to be a message receiver.
834       if (getLangOpts().ObjC1 && first)
835         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
836       else
837         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 
838                                              /*AfterAmpersand=*/false);
839       cutOffParsing();
840       break;
841     }
842
843     first = false;
844     
845     // Parse capture.
846     LambdaCaptureKind Kind = LCK_ByCopy;
847     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
848     SourceLocation Loc;
849     IdentifierInfo *Id = nullptr;
850     SourceLocation EllipsisLoc;
851     ExprResult Init;
852
853     if (Tok.is(tok::star)) {
854       Loc = ConsumeToken(); 
855       if (Tok.is(tok::kw_this)) {
856         ConsumeToken();     
857         Kind = LCK_StarThis;      
858       } else {
859         return DiagResult(diag::err_expected_star_this_capture);
860       }
861     } else if (Tok.is(tok::kw_this)) {
862       Kind = LCK_This;
863       Loc = ConsumeToken();
864     } else {
865       if (Tok.is(tok::amp)) {
866         Kind = LCK_ByRef;
867         ConsumeToken();
868
869         if (Tok.is(tok::code_completion)) {
870           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 
871                                                /*AfterAmpersand=*/true);
872           cutOffParsing();
873           break;
874         }
875       }
876
877       if (Tok.is(tok::identifier)) {
878         Id = Tok.getIdentifierInfo();
879         Loc = ConsumeToken();
880       } else if (Tok.is(tok::kw_this)) {
881         // FIXME: If we want to suggest a fixit here, will need to return more
882         // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
883         // Clear()ed to prevent emission in case of tentative parsing?
884         return DiagResult(diag::err_this_captured_by_reference);
885       } else {
886         return DiagResult(diag::err_expected_capture);
887       }
888
889       if (Tok.is(tok::l_paren)) {
890         BalancedDelimiterTracker Parens(*this, tok::l_paren);
891         Parens.consumeOpen();
892
893         InitKind = LambdaCaptureInitKind::DirectInit;
894
895         ExprVector Exprs;
896         CommaLocsTy Commas;
897         if (SkippedInits) {
898           Parens.skipToEnd();
899           *SkippedInits = true;
900         } else if (ParseExpressionList(Exprs, Commas)) {
901           Parens.skipToEnd();
902           Init = ExprError();
903         } else {
904           Parens.consumeClose();
905           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
906                                             Parens.getCloseLocation(),
907                                             Exprs);
908         }
909       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
910         // Each lambda init-capture forms its own full expression, which clears
911         // Actions.MaybeODRUseExprs. So create an expression evaluation context
912         // to save the necessary state, and restore it later.
913         EnterExpressionEvaluationContext EC(Actions,
914                                             Sema::PotentiallyEvaluated);
915
916         if (TryConsumeToken(tok::equal))
917           InitKind = LambdaCaptureInitKind::CopyInit;
918         else
919           InitKind = LambdaCaptureInitKind::ListInit;
920
921         if (!SkippedInits) {
922           Init = ParseInitializer();
923         } else if (Tok.is(tok::l_brace)) {
924           BalancedDelimiterTracker Braces(*this, tok::l_brace);
925           Braces.consumeOpen();
926           Braces.skipToEnd();
927           *SkippedInits = true;
928         } else {
929           // We're disambiguating this:
930           //
931           //   [..., x = expr
932           //
933           // We need to find the end of the following expression in order to
934           // determine whether this is an Obj-C message send's receiver, a
935           // C99 designator, or a lambda init-capture.
936           //
937           // Parse the expression to find where it ends, and annotate it back
938           // onto the tokens. We would have parsed this expression the same way
939           // in either case: both the RHS of an init-capture and the RHS of an
940           // assignment expression are parsed as an initializer-clause, and in
941           // neither case can anything be added to the scope between the '[' and
942           // here.
943           //
944           // FIXME: This is horrible. Adding a mechanism to skip an expression
945           // would be much cleaner.
946           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
947           // that instead. (And if we see a ':' with no matching '?', we can
948           // classify this as an Obj-C message send.)
949           SourceLocation StartLoc = Tok.getLocation();
950           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
951           Init = ParseInitializer();
952
953           if (Tok.getLocation() != StartLoc) {
954             // Back out the lexing of the token after the initializer.
955             PP.RevertCachedTokens(1);
956
957             // Replace the consumed tokens with an appropriate annotation.
958             Tok.setLocation(StartLoc);
959             Tok.setKind(tok::annot_primary_expr);
960             setExprAnnotation(Tok, Init);
961             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
962             PP.AnnotateCachedTokens(Tok);
963
964             // Consume the annotated initializer.
965             ConsumeToken();
966           }
967         }
968       } else
969         TryConsumeToken(tok::ellipsis, EllipsisLoc);
970     }
971     // If this is an init capture, process the initialization expression
972     // right away.  For lambda init-captures such as the following:
973     // const int x = 10;
974     //  auto L = [i = x+1](int a) {
975     //    return [j = x+2,
976     //           &k = x](char b) { };
977     //  };
978     // keep in mind that each lambda init-capture has to have:
979     //  - its initialization expression executed in the context
980     //    of the enclosing/parent decl-context.
981     //  - but the variable itself has to be 'injected' into the
982     //    decl-context of its lambda's call-operator (which has
983     //    not yet been created).
984     // Each init-expression is a full-expression that has to get
985     // Sema-analyzed (for capturing etc.) before its lambda's
986     // call-operator's decl-context, scope & scopeinfo are pushed on their
987     // respective stacks.  Thus if any variable is odr-used in the init-capture
988     // it will correctly get captured in the enclosing lambda, if one exists.
989     // The init-variables above are created later once the lambdascope and
990     // call-operators decl-context is pushed onto its respective stack.
991
992     // Since the lambda init-capture's initializer expression occurs in the
993     // context of the enclosing function or lambda, therefore we can not wait
994     // till a lambda scope has been pushed on before deciding whether the
995     // variable needs to be captured.  We also need to process all
996     // lvalue-to-rvalue conversions and discarded-value conversions,
997     // so that we can avoid capturing certain constant variables.
998     // For e.g.,
999     //  void test() {
1000     //   const int x = 10;
1001     //   auto L = [&z = x](char a) { <-- don't capture by the current lambda
1002     //     return [y = x](int i) { <-- don't capture by enclosing lambda
1003     //          return y;
1004     //     }
1005     //   };
1006     // If x was not const, the second use would require 'L' to capture, and
1007     // that would be an error.
1008
1009     ParsedType InitCaptureType;
1010     if (Init.isUsable()) {
1011       // Get the pointer and store it in an lvalue, so we can use it as an
1012       // out argument.
1013       Expr *InitExpr = Init.get();
1014       // This performs any lvalue-to-rvalue conversions if necessary, which
1015       // can affect what gets captured in the containing decl-context.
1016       InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1017           Loc, Kind == LCK_ByRef, Id, InitKind, InitExpr);
1018       Init = InitExpr;
1019     }
1020     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1021                      InitCaptureType);
1022   }
1023
1024   T.consumeClose();
1025   Intro.Range.setEnd(T.getCloseLocation());
1026   return DiagResult();
1027 }
1028
1029 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
1030 ///
1031 /// Returns true if it hit something unexpected.
1032 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
1033   TentativeParsingAction PA(*this);
1034
1035   bool SkippedInits = false;
1036   Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
1037
1038   if (DiagID) {
1039     PA.Revert();
1040     return true;
1041   }
1042
1043   if (SkippedInits) {
1044     // Parse it again, but this time parse the init-captures too.
1045     PA.Revert();
1046     Intro = LambdaIntroducer();
1047     DiagID = ParseLambdaIntroducer(Intro);
1048     assert(!DiagID && "parsing lambda-introducer failed on reparse");
1049     return false;
1050   }
1051
1052   PA.Commit();
1053   return false;
1054 }
1055
1056 static void
1057 tryConsumeMutableOrConstexprToken(Parser &P, SourceLocation &MutableLoc,
1058                                   SourceLocation &ConstexprLoc,
1059                                   SourceLocation &DeclEndLoc) {
1060   assert(MutableLoc.isInvalid());
1061   assert(ConstexprLoc.isInvalid());
1062   // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1063   // to the final of those locations. Emit an error if we have multiple
1064   // copies of those keywords and recover.
1065
1066   while (true) {
1067     switch (P.getCurToken().getKind()) {
1068     case tok::kw_mutable: {
1069       if (MutableLoc.isValid()) {
1070         P.Diag(P.getCurToken().getLocation(),
1071                diag::err_lambda_decl_specifier_repeated)
1072             << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1073       }
1074       MutableLoc = P.ConsumeToken();
1075       DeclEndLoc = MutableLoc;
1076       break /*switch*/;
1077     }
1078     case tok::kw_constexpr:
1079       if (ConstexprLoc.isValid()) {
1080         P.Diag(P.getCurToken().getLocation(),
1081                diag::err_lambda_decl_specifier_repeated)
1082             << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1083       }
1084       ConstexprLoc = P.ConsumeToken();
1085       DeclEndLoc = ConstexprLoc;
1086       break /*switch*/;
1087     default:
1088       return;
1089     }
1090   }
1091 }
1092
1093 static void
1094 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1095                                   DeclSpec &DS) {
1096   if (ConstexprLoc.isValid()) {
1097     P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus1z
1098                              ? diag::ext_constexpr_on_lambda_cxx1z
1099                              : diag::warn_cxx14_compat_constexpr_on_lambda);
1100     const char *PrevSpec = nullptr;
1101     unsigned DiagID = 0;
1102     DS.SetConstexprSpec(ConstexprLoc, PrevSpec, DiagID);
1103     assert(PrevSpec == nullptr && DiagID == 0 &&
1104            "Constexpr cannot have been set previously!");
1105   }
1106 }
1107
1108 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1109 /// expression.
1110 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1111                      LambdaIntroducer &Intro) {
1112   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1113   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1114
1115   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1116                                 "lambda expression parsing");
1117
1118  
1119
1120   // FIXME: Call into Actions to add any init-capture declarations to the
1121   // scope while parsing the lambda-declarator and compound-statement.
1122
1123   // Parse lambda-declarator[opt].
1124   DeclSpec DS(AttrFactory);
1125   Declarator D(DS, Declarator::LambdaExprContext);
1126   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1127   Actions.PushLambdaScope();    
1128
1129   TypeResult TrailingReturnType;
1130   if (Tok.is(tok::l_paren)) {
1131     ParseScope PrototypeScope(this,
1132                               Scope::FunctionPrototypeScope |
1133                               Scope::FunctionDeclarationScope |
1134                               Scope::DeclScope);
1135
1136     SourceLocation DeclEndLoc;
1137     BalancedDelimiterTracker T(*this, tok::l_paren);
1138     T.consumeOpen();
1139     SourceLocation LParenLoc = T.getOpenLocation();
1140
1141     // Parse parameter-declaration-clause.
1142     ParsedAttributes Attr(AttrFactory);
1143     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1144     SourceLocation EllipsisLoc;
1145     
1146     if (Tok.isNot(tok::r_paren)) {
1147       Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
1148       ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
1149       // For a generic lambda, each 'auto' within the parameter declaration 
1150       // clause creates a template type parameter, so increment the depth.
1151       if (Actions.getCurGenericLambda()) 
1152         ++CurTemplateDepthTracker;
1153     }
1154     T.consumeClose();
1155     SourceLocation RParenLoc = T.getCloseLocation();
1156     DeclEndLoc = RParenLoc;
1157
1158     // GNU-style attributes must be parsed before the mutable specifier to be
1159     // compatible with GCC.
1160     MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1161
1162     // MSVC-style attributes must be parsed before the mutable specifier to be
1163     // compatible with MSVC.
1164     MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc);
1165
1166     // Parse mutable-opt and/or constexpr-opt, and update the DeclEndLoc.
1167     SourceLocation MutableLoc;
1168     SourceLocation ConstexprLoc;
1169     tryConsumeMutableOrConstexprToken(*this, MutableLoc, ConstexprLoc,
1170                                       DeclEndLoc);
1171     
1172     addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1173
1174     // Parse exception-specification[opt].
1175     ExceptionSpecificationType ESpecType = EST_None;
1176     SourceRange ESpecRange;
1177     SmallVector<ParsedType, 2> DynamicExceptions;
1178     SmallVector<SourceRange, 2> DynamicExceptionRanges;
1179     ExprResult NoexceptExpr;
1180     CachedTokens *ExceptionSpecTokens;
1181     ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
1182                                                ESpecRange,
1183                                                DynamicExceptions,
1184                                                DynamicExceptionRanges,
1185                                                NoexceptExpr,
1186                                                ExceptionSpecTokens);
1187
1188     if (ESpecType != EST_None)
1189       DeclEndLoc = ESpecRange.getEnd();
1190
1191     // Parse attribute-specifier[opt].
1192     MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1193
1194     SourceLocation FunLocalRangeEnd = DeclEndLoc;
1195
1196     // Parse trailing-return-type[opt].
1197     if (Tok.is(tok::arrow)) {
1198       FunLocalRangeEnd = Tok.getLocation();
1199       SourceRange Range;
1200       TrailingReturnType = ParseTrailingReturnType(Range);
1201       if (Range.getEnd().isValid())
1202         DeclEndLoc = Range.getEnd();
1203     }
1204
1205     PrototypeScope.Exit();
1206
1207     SourceLocation NoLoc;
1208     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1209                                            /*isAmbiguous=*/false,
1210                                            LParenLoc,
1211                                            ParamInfo.data(), ParamInfo.size(),
1212                                            EllipsisLoc, RParenLoc,
1213                                            DS.getTypeQualifiers(),
1214                                            /*RefQualifierIsLValueRef=*/true,
1215                                            /*RefQualifierLoc=*/NoLoc,
1216                                            /*ConstQualifierLoc=*/NoLoc,
1217                                            /*VolatileQualifierLoc=*/NoLoc,
1218                                            /*RestrictQualifierLoc=*/NoLoc,
1219                                            MutableLoc,
1220                                            ESpecType, ESpecRange,
1221                                            DynamicExceptions.data(),
1222                                            DynamicExceptionRanges.data(),
1223                                            DynamicExceptions.size(),
1224                                            NoexceptExpr.isUsable() ?
1225                                              NoexceptExpr.get() : nullptr,
1226                                            /*ExceptionSpecTokens*/nullptr,
1227                                            LParenLoc, FunLocalRangeEnd, D,
1228                                            TrailingReturnType),
1229                   Attr, DeclEndLoc);
1230   } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1231                          tok::kw_constexpr) ||
1232              (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1233     // It's common to forget that one needs '()' before 'mutable', an attribute
1234     // specifier, or the result type. Deal with this.
1235     unsigned TokKind = 0;
1236     switch (Tok.getKind()) {
1237     case tok::kw_mutable: TokKind = 0; break;
1238     case tok::arrow: TokKind = 1; break;
1239     case tok::kw___attribute:
1240     case tok::l_square: TokKind = 2; break;
1241     case tok::kw_constexpr: TokKind = 3; break;
1242     default: llvm_unreachable("Unknown token kind");
1243     }
1244
1245     Diag(Tok, diag::err_lambda_missing_parens)
1246       << TokKind
1247       << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1248     SourceLocation DeclLoc = Tok.getLocation();
1249     SourceLocation DeclEndLoc = DeclLoc;
1250
1251     // GNU-style attributes must be parsed before the mutable specifier to be
1252     // compatible with GCC.
1253     ParsedAttributes Attr(AttrFactory);
1254     MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1255
1256     // Parse 'mutable', if it's there.
1257     SourceLocation MutableLoc;
1258     if (Tok.is(tok::kw_mutable)) {
1259       MutableLoc = ConsumeToken();
1260       DeclEndLoc = MutableLoc;
1261     }
1262
1263     // Parse attribute-specifier[opt].
1264     MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1265
1266     // Parse the return type, if there is one.
1267     if (Tok.is(tok::arrow)) {
1268       SourceRange Range;
1269       TrailingReturnType = ParseTrailingReturnType(Range);
1270       if (Range.getEnd().isValid())
1271         DeclEndLoc = Range.getEnd();
1272     }
1273
1274     SourceLocation NoLoc;
1275     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1276                                                /*isAmbiguous=*/false,
1277                                                /*LParenLoc=*/NoLoc,
1278                                                /*Params=*/nullptr,
1279                                                /*NumParams=*/0,
1280                                                /*EllipsisLoc=*/NoLoc,
1281                                                /*RParenLoc=*/NoLoc,
1282                                                /*TypeQuals=*/0,
1283                                                /*RefQualifierIsLValueRef=*/true,
1284                                                /*RefQualifierLoc=*/NoLoc,
1285                                                /*ConstQualifierLoc=*/NoLoc,
1286                                                /*VolatileQualifierLoc=*/NoLoc,
1287                                                /*RestrictQualifierLoc=*/NoLoc,
1288                                                MutableLoc,
1289                                                EST_None,
1290                                                /*ESpecRange=*/SourceRange(),
1291                                                /*Exceptions=*/nullptr,
1292                                                /*ExceptionRanges=*/nullptr,
1293                                                /*NumExceptions=*/0,
1294                                                /*NoexceptExpr=*/nullptr,
1295                                                /*ExceptionSpecTokens=*/nullptr,
1296                                                DeclLoc, DeclEndLoc, D,
1297                                                TrailingReturnType),
1298                   Attr, DeclEndLoc);
1299   }
1300   
1301
1302   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1303   // it.
1304   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
1305   ParseScope BodyScope(this, ScopeFlags);
1306
1307   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1308
1309   // Parse compound-statement.
1310   if (!Tok.is(tok::l_brace)) {
1311     Diag(Tok, diag::err_expected_lambda_body);
1312     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1313     return ExprError();
1314   }
1315
1316   StmtResult Stmt(ParseCompoundStatementBody());
1317   BodyScope.Exit();
1318
1319   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1320     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1321
1322   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1323   return ExprError();
1324 }
1325
1326 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1327 /// type.
1328 ///
1329 ///       postfix-expression: [C++ 5.2p1]
1330 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1331 ///         'static_cast' '<' type-name '>' '(' expression ')'
1332 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1333 ///         'const_cast' '<' type-name '>' '(' expression ')'
1334 ///
1335 ExprResult Parser::ParseCXXCasts() {
1336   tok::TokenKind Kind = Tok.getKind();
1337   const char *CastName = nullptr; // For error messages
1338
1339   switch (Kind) {
1340   default: llvm_unreachable("Unknown C++ cast!");
1341   case tok::kw_const_cast:       CastName = "const_cast";       break;
1342   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1343   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1344   case tok::kw_static_cast:      CastName = "static_cast";      break;
1345   }
1346
1347   SourceLocation OpLoc = ConsumeToken();
1348   SourceLocation LAngleBracketLoc = Tok.getLocation();
1349
1350   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1351   // diagnose error, suggest fix, and recover parsing.
1352   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1353     Token Next = NextToken();
1354     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1355       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1356   }
1357
1358   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1359     return ExprError();
1360
1361   // Parse the common declaration-specifiers piece.
1362   DeclSpec DS(AttrFactory);
1363   ParseSpecifierQualifierList(DS);
1364
1365   // Parse the abstract-declarator, if present.
1366   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1367   ParseDeclarator(DeclaratorInfo);
1368
1369   SourceLocation RAngleBracketLoc = Tok.getLocation();
1370
1371   if (ExpectAndConsume(tok::greater))
1372     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1373
1374   SourceLocation LParenLoc, RParenLoc;
1375   BalancedDelimiterTracker T(*this, tok::l_paren);
1376
1377   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1378     return ExprError();
1379
1380   ExprResult Result = ParseExpression();
1381
1382   // Match the ')'.
1383   T.consumeClose();
1384
1385   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1386     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1387                                        LAngleBracketLoc, DeclaratorInfo,
1388                                        RAngleBracketLoc,
1389                                        T.getOpenLocation(), Result.get(), 
1390                                        T.getCloseLocation());
1391
1392   return Result;
1393 }
1394
1395 /// ParseCXXTypeid - This handles the C++ typeid expression.
1396 ///
1397 ///       postfix-expression: [C++ 5.2p1]
1398 ///         'typeid' '(' expression ')'
1399 ///         'typeid' '(' type-id ')'
1400 ///
1401 ExprResult Parser::ParseCXXTypeid() {
1402   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1403
1404   SourceLocation OpLoc = ConsumeToken();
1405   SourceLocation LParenLoc, RParenLoc;
1406   BalancedDelimiterTracker T(*this, tok::l_paren);
1407
1408   // typeid expressions are always parenthesized.
1409   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1410     return ExprError();
1411   LParenLoc = T.getOpenLocation();
1412
1413   ExprResult Result;
1414
1415   // C++0x [expr.typeid]p3:
1416   //   When typeid is applied to an expression other than an lvalue of a
1417   //   polymorphic class type [...] The expression is an unevaluated
1418   //   operand (Clause 5).
1419   //
1420   // Note that we can't tell whether the expression is an lvalue of a
1421   // polymorphic class type until after we've parsed the expression; we
1422   // speculatively assume the subexpression is unevaluated, and fix it up
1423   // later.
1424   //
1425   // We enter the unevaluated context before trying to determine whether we
1426   // have a type-id, because the tentative parse logic will try to resolve
1427   // names, and must treat them as unevaluated.
1428   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1429                                                Sema::ReuseLambdaContextDecl);
1430
1431   if (isTypeIdInParens()) {
1432     TypeResult Ty = ParseTypeName();
1433
1434     // Match the ')'.
1435     T.consumeClose();
1436     RParenLoc = T.getCloseLocation();
1437     if (Ty.isInvalid() || RParenLoc.isInvalid())
1438       return ExprError();
1439
1440     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1441                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1442   } else {
1443     Result = ParseExpression();
1444
1445     // Match the ')'.
1446     if (Result.isInvalid())
1447       SkipUntil(tok::r_paren, StopAtSemi);
1448     else {
1449       T.consumeClose();
1450       RParenLoc = T.getCloseLocation();
1451       if (RParenLoc.isInvalid())
1452         return ExprError();
1453
1454       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1455                                       Result.get(), RParenLoc);
1456     }
1457   }
1458
1459   return Result;
1460 }
1461
1462 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1463 ///
1464 ///         '__uuidof' '(' expression ')'
1465 ///         '__uuidof' '(' type-id ')'
1466 ///
1467 ExprResult Parser::ParseCXXUuidof() {
1468   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1469
1470   SourceLocation OpLoc = ConsumeToken();
1471   BalancedDelimiterTracker T(*this, tok::l_paren);
1472
1473   // __uuidof expressions are always parenthesized.
1474   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1475     return ExprError();
1476
1477   ExprResult Result;
1478
1479   if (isTypeIdInParens()) {
1480     TypeResult Ty = ParseTypeName();
1481
1482     // Match the ')'.
1483     T.consumeClose();
1484
1485     if (Ty.isInvalid())
1486       return ExprError();
1487
1488     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1489                                     Ty.get().getAsOpaquePtr(), 
1490                                     T.getCloseLocation());
1491   } else {
1492     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1493     Result = ParseExpression();
1494
1495     // Match the ')'.
1496     if (Result.isInvalid())
1497       SkipUntil(tok::r_paren, StopAtSemi);
1498     else {
1499       T.consumeClose();
1500
1501       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1502                                       /*isType=*/false,
1503                                       Result.get(), T.getCloseLocation());
1504     }
1505   }
1506
1507   return Result;
1508 }
1509
1510 /// \brief Parse a C++ pseudo-destructor expression after the base,
1511 /// . or -> operator, and nested-name-specifier have already been
1512 /// parsed.
1513 ///
1514 ///       postfix-expression: [C++ 5.2]
1515 ///         postfix-expression . pseudo-destructor-name
1516 ///         postfix-expression -> pseudo-destructor-name
1517 ///
1518 ///       pseudo-destructor-name: 
1519 ///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name 
1520 ///         ::[opt] nested-name-specifier template simple-template-id :: 
1521 ///                 ~type-name 
1522 ///         ::[opt] nested-name-specifier[opt] ~type-name
1523 ///       
1524 ExprResult 
1525 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1526                                  tok::TokenKind OpKind,
1527                                  CXXScopeSpec &SS,
1528                                  ParsedType ObjectType) {
1529   // We're parsing either a pseudo-destructor-name or a dependent
1530   // member access that has the same form as a
1531   // pseudo-destructor-name. We parse both in the same way and let
1532   // the action model sort them out.
1533   //
1534   // Note that the ::[opt] nested-name-specifier[opt] has already
1535   // been parsed, and if there was a simple-template-id, it has
1536   // been coalesced into a template-id annotation token.
1537   UnqualifiedId FirstTypeName;
1538   SourceLocation CCLoc;
1539   if (Tok.is(tok::identifier)) {
1540     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1541     ConsumeToken();
1542     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1543     CCLoc = ConsumeToken();
1544   } else if (Tok.is(tok::annot_template_id)) {
1545     // FIXME: retrieve TemplateKWLoc from template-id annotation and
1546     // store it in the pseudo-dtor node (to be used when instantiating it).
1547     FirstTypeName.setTemplateId(
1548                               (TemplateIdAnnotation *)Tok.getAnnotationValue());
1549     ConsumeToken();
1550     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1551     CCLoc = ConsumeToken();
1552   } else {
1553     FirstTypeName.setIdentifier(nullptr, SourceLocation());
1554   }
1555
1556   // Parse the tilde.
1557   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1558   SourceLocation TildeLoc = ConsumeToken();
1559
1560   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1561     DeclSpec DS(AttrFactory);
1562     ParseDecltypeSpecifier(DS);
1563     if (DS.getTypeSpecType() == TST_error)
1564       return ExprError();
1565     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1566                                              TildeLoc, DS);
1567   }
1568
1569   if (!Tok.is(tok::identifier)) {
1570     Diag(Tok, diag::err_destructor_tilde_identifier);
1571     return ExprError();
1572   }
1573   
1574   // Parse the second type.
1575   UnqualifiedId SecondTypeName;
1576   IdentifierInfo *Name = Tok.getIdentifierInfo();
1577   SourceLocation NameLoc = ConsumeToken();
1578   SecondTypeName.setIdentifier(Name, NameLoc);
1579   
1580   // If there is a '<', the second type name is a template-id. Parse
1581   // it as such.
1582   if (Tok.is(tok::less) &&
1583       ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1584                                    Name, NameLoc,
1585                                    false, ObjectType, SecondTypeName,
1586                                    /*AssumeTemplateName=*/true))
1587     return ExprError();
1588
1589   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1590                                            SS, FirstTypeName, CCLoc, TildeLoc,
1591                                            SecondTypeName);
1592 }
1593
1594 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1595 ///
1596 ///       boolean-literal: [C++ 2.13.5]
1597 ///         'true'
1598 ///         'false'
1599 ExprResult Parser::ParseCXXBoolLiteral() {
1600   tok::TokenKind Kind = Tok.getKind();
1601   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1602 }
1603
1604 /// ParseThrowExpression - This handles the C++ throw expression.
1605 ///
1606 ///       throw-expression: [C++ 15]
1607 ///         'throw' assignment-expression[opt]
1608 ExprResult Parser::ParseThrowExpression() {
1609   assert(Tok.is(tok::kw_throw) && "Not throw!");
1610   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1611
1612   // If the current token isn't the start of an assignment-expression,
1613   // then the expression is not present.  This handles things like:
1614   //   "C ? throw : (void)42", which is crazy but legal.
1615   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1616   case tok::semi:
1617   case tok::r_paren:
1618   case tok::r_square:
1619   case tok::r_brace:
1620   case tok::colon:
1621   case tok::comma:
1622     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1623
1624   default:
1625     ExprResult Expr(ParseAssignmentExpression());
1626     if (Expr.isInvalid()) return Expr;
1627     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1628   }
1629 }
1630
1631 /// \brief Parse the C++ Coroutines co_yield expression.
1632 ///
1633 ///       co_yield-expression:
1634 ///         'co_yield' assignment-expression[opt]
1635 ExprResult Parser::ParseCoyieldExpression() {
1636   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1637
1638   SourceLocation Loc = ConsumeToken();
1639   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1640                                          : ParseAssignmentExpression();
1641   if (!Expr.isInvalid())
1642     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1643   return Expr;
1644 }
1645
1646 /// ParseCXXThis - This handles the C++ 'this' pointer.
1647 ///
1648 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1649 /// a non-lvalue expression whose value is the address of the object for which
1650 /// the function is called.
1651 ExprResult Parser::ParseCXXThis() {
1652   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1653   SourceLocation ThisLoc = ConsumeToken();
1654   return Actions.ActOnCXXThis(ThisLoc);
1655 }
1656
1657 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1658 /// Can be interpreted either as function-style casting ("int(x)")
1659 /// or class type construction ("ClassType(x,y,z)")
1660 /// or creation of a value-initialized type ("int()").
1661 /// See [C++ 5.2.3].
1662 ///
1663 ///       postfix-expression: [C++ 5.2p1]
1664 ///         simple-type-specifier '(' expression-list[opt] ')'
1665 /// [C++0x] simple-type-specifier braced-init-list
1666 ///         typename-specifier '(' expression-list[opt] ')'
1667 /// [C++0x] typename-specifier braced-init-list
1668 ///
1669 ExprResult
1670 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1671   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1672   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1673
1674   assert((Tok.is(tok::l_paren) ||
1675           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1676          && "Expected '(' or '{'!");
1677
1678   if (Tok.is(tok::l_brace)) {
1679     ExprResult Init = ParseBraceInitializer();
1680     if (Init.isInvalid())
1681       return Init;
1682     Expr *InitList = Init.get();
1683     return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1684                                              MultiExprArg(&InitList, 1),
1685                                              SourceLocation());
1686   } else {
1687     BalancedDelimiterTracker T(*this, tok::l_paren);
1688     T.consumeOpen();
1689
1690     ExprVector Exprs;
1691     CommaLocsTy CommaLocs;
1692
1693     if (Tok.isNot(tok::r_paren)) {
1694       if (ParseExpressionList(Exprs, CommaLocs, [&] {
1695             Actions.CodeCompleteConstructor(getCurScope(),
1696                                       TypeRep.get()->getCanonicalTypeInternal(),
1697                                             DS.getLocEnd(), Exprs);
1698          })) {
1699         SkipUntil(tok::r_paren, StopAtSemi);
1700         return ExprError();
1701       }
1702     }
1703
1704     // Match the ')'.
1705     T.consumeClose();
1706
1707     // TypeRep could be null, if it references an invalid typedef.
1708     if (!TypeRep)
1709       return ExprError();
1710
1711     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1712            "Unexpected number of commas!");
1713     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), 
1714                                              Exprs,
1715                                              T.getCloseLocation());
1716   }
1717 }
1718
1719 /// ParseCXXCondition - if/switch/while condition expression.
1720 ///
1721 ///       condition:
1722 ///         expression
1723 ///         type-specifier-seq declarator '=' assignment-expression
1724 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1725 /// [C++11] type-specifier-seq declarator braced-init-list
1726 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1727 ///             '=' assignment-expression
1728 ///
1729 /// In C++1z, a condition may in some contexts be preceded by an
1730 /// optional init-statement. This function will parse that too.
1731 ///
1732 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1733 /// will be parsed and stored here.
1734 ///
1735 /// \param Loc The location of the start of the statement that requires this
1736 /// condition, e.g., the "for" in a for loop.
1737 ///
1738 /// \returns The parsed condition.
1739 Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
1740                                                 SourceLocation Loc,
1741                                                 Sema::ConditionKind CK) {
1742   if (Tok.is(tok::code_completion)) {
1743     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1744     cutOffParsing();
1745     return Sema::ConditionError();
1746   }
1747
1748   ParsedAttributesWithRange attrs(AttrFactory);
1749   MaybeParseCXX11Attributes(attrs);
1750
1751   // Determine what kind of thing we have.
1752   switch (isCXXConditionDeclarationOrInitStatement(InitStmt)) {
1753   case ConditionOrInitStatement::Expression: {
1754     ProhibitAttributes(attrs);
1755
1756     // Parse the expression.
1757     ExprResult Expr = ParseExpression(); // expression
1758     if (Expr.isInvalid())
1759       return Sema::ConditionError();
1760
1761     if (InitStmt && Tok.is(tok::semi)) {
1762       *InitStmt = Actions.ActOnExprStmt(Expr.get());
1763       ConsumeToken();
1764       return ParseCXXCondition(nullptr, Loc, CK);
1765     }
1766
1767     return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
1768   }
1769
1770   case ConditionOrInitStatement::InitStmtDecl: {
1771     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
1772     DeclGroupPtrTy DG = ParseSimpleDeclaration(
1773         Declarator::InitStmtContext, DeclEnd, attrs, /*RequireSemi=*/true);
1774     *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
1775     return ParseCXXCondition(nullptr, Loc, CK);
1776   }
1777
1778   case ConditionOrInitStatement::ConditionDecl:
1779   case ConditionOrInitStatement::Error:
1780     break;
1781   }
1782
1783   // type-specifier-seq
1784   DeclSpec DS(AttrFactory);
1785   DS.takeAttributesFrom(attrs);
1786   ParseSpecifierQualifierList(DS, AS_none, DSC_condition);
1787
1788   // declarator
1789   Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1790   ParseDeclarator(DeclaratorInfo);
1791
1792   // simple-asm-expr[opt]
1793   if (Tok.is(tok::kw_asm)) {
1794     SourceLocation Loc;
1795     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1796     if (AsmLabel.isInvalid()) {
1797       SkipUntil(tok::semi, StopAtSemi);
1798       return Sema::ConditionError();
1799     }
1800     DeclaratorInfo.setAsmLabel(AsmLabel.get());
1801     DeclaratorInfo.SetRangeEnd(Loc);
1802   }
1803
1804   // If attributes are present, parse them.
1805   MaybeParseGNUAttributes(DeclaratorInfo);
1806
1807   // Type-check the declaration itself.
1808   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), 
1809                                                         DeclaratorInfo);
1810   if (Dcl.isInvalid())
1811     return Sema::ConditionError();
1812   Decl *DeclOut = Dcl.get();
1813
1814   // '=' assignment-expression
1815   // If a '==' or '+=' is found, suggest a fixit to '='.
1816   bool CopyInitialization = isTokenEqualOrEqualTypo();
1817   if (CopyInitialization)
1818     ConsumeToken();
1819
1820   ExprResult InitExpr = ExprError();
1821   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1822     Diag(Tok.getLocation(),
1823          diag::warn_cxx98_compat_generalized_initializer_lists);
1824     InitExpr = ParseBraceInitializer();
1825   } else if (CopyInitialization) {
1826     InitExpr = ParseAssignmentExpression();
1827   } else if (Tok.is(tok::l_paren)) {
1828     // This was probably an attempt to initialize the variable.
1829     SourceLocation LParen = ConsumeParen(), RParen = LParen;
1830     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
1831       RParen = ConsumeParen();
1832     Diag(DeclOut->getLocation(),
1833          diag::err_expected_init_in_condition_lparen)
1834       << SourceRange(LParen, RParen);
1835   } else {
1836     Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
1837   }
1838
1839   if (!InitExpr.isInvalid())
1840     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization,
1841                                  DS.containsPlaceholderType());
1842   else
1843     Actions.ActOnInitializerError(DeclOut);
1844
1845   Actions.FinalizeDeclaration(DeclOut);
1846   return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
1847 }
1848
1849 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1850 /// This should only be called when the current token is known to be part of
1851 /// simple-type-specifier.
1852 ///
1853 ///       simple-type-specifier:
1854 ///         '::'[opt] nested-name-specifier[opt] type-name
1855 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1856 ///         char
1857 ///         wchar_t
1858 ///         bool
1859 ///         short
1860 ///         int
1861 ///         long
1862 ///         signed
1863 ///         unsigned
1864 ///         float
1865 ///         double
1866 ///         void
1867 /// [GNU]   typeof-specifier
1868 /// [C++0x] auto               [TODO]
1869 ///
1870 ///       type-name:
1871 ///         class-name
1872 ///         enum-name
1873 ///         typedef-name
1874 ///
1875 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1876   DS.SetRangeStart(Tok.getLocation());
1877   const char *PrevSpec;
1878   unsigned DiagID;
1879   SourceLocation Loc = Tok.getLocation();
1880   const clang::PrintingPolicy &Policy =
1881       Actions.getASTContext().getPrintingPolicy();
1882
1883   switch (Tok.getKind()) {
1884   case tok::identifier:   // foo::bar
1885   case tok::coloncolon:   // ::foo::bar
1886     llvm_unreachable("Annotation token should already be formed!");
1887   default:
1888     llvm_unreachable("Not a simple-type-specifier token!");
1889
1890   // type-name
1891   case tok::annot_typename: {
1892     if (getTypeAnnotation(Tok))
1893       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1894                          getTypeAnnotation(Tok), Policy);
1895     else
1896       DS.SetTypeSpecError();
1897     
1898     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1899     ConsumeToken();
1900     
1901     DS.Finish(Actions, Policy);
1902     return;
1903   }
1904
1905   // builtin types
1906   case tok::kw_short:
1907     DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
1908     break;
1909   case tok::kw_long:
1910     DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
1911     break;
1912   case tok::kw___int64:
1913     DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
1914     break;
1915   case tok::kw_signed:
1916     DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1917     break;
1918   case tok::kw_unsigned:
1919     DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1920     break;
1921   case tok::kw_void:
1922     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
1923     break;
1924   case tok::kw_char:
1925     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
1926     break;
1927   case tok::kw_int:
1928     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
1929     break;
1930   case tok::kw___int128:
1931     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
1932     break;
1933   case tok::kw_half:
1934     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
1935     break;
1936   case tok::kw_float:
1937     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
1938     break;
1939   case tok::kw_double:
1940     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
1941     break;
1942   case tok::kw___float128:
1943     DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
1944     break;
1945   case tok::kw_wchar_t:
1946     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
1947     break;
1948   case tok::kw_char16_t:
1949     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
1950     break;
1951   case tok::kw_char32_t:
1952     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
1953     break;
1954   case tok::kw_bool:
1955     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
1956     break;
1957   case tok::annot_decltype:
1958   case tok::kw_decltype:
1959     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1960     return DS.Finish(Actions, Policy);
1961
1962   // GNU typeof support.
1963   case tok::kw_typeof:
1964     ParseTypeofSpecifier(DS);
1965     DS.Finish(Actions, Policy);
1966     return;
1967   }
1968   if (Tok.is(tok::annot_typename))
1969     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1970   else
1971     DS.SetRangeEnd(Tok.getLocation());
1972   ConsumeToken();
1973   DS.Finish(Actions, Policy);
1974 }
1975
1976 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1977 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
1978 /// e.g., "const short int". Note that the DeclSpec is *not* finished
1979 /// by parsing the type-specifier-seq, because these sequences are
1980 /// typically followed by some form of declarator. Returns true and
1981 /// emits diagnostics if this is not a type-specifier-seq, false
1982 /// otherwise.
1983 ///
1984 ///   type-specifier-seq: [C++ 8.1]
1985 ///     type-specifier type-specifier-seq[opt]
1986 ///
1987 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1988   ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1989   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
1990   return false;
1991 }
1992
1993 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
1994 /// some form. 
1995 ///
1996 /// This routine is invoked when a '<' is encountered after an identifier or
1997 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1998 /// whether the unqualified-id is actually a template-id. This routine will
1999 /// then parse the template arguments and form the appropriate template-id to
2000 /// return to the caller.
2001 ///
2002 /// \param SS the nested-name-specifier that precedes this template-id, if
2003 /// we're actually parsing a qualified-id.
2004 ///
2005 /// \param Name for constructor and destructor names, this is the actual
2006 /// identifier that may be a template-name.
2007 ///
2008 /// \param NameLoc the location of the class-name in a constructor or 
2009 /// destructor.
2010 ///
2011 /// \param EnteringContext whether we're entering the scope of the 
2012 /// nested-name-specifier.
2013 ///
2014 /// \param ObjectType if this unqualified-id occurs within a member access
2015 /// expression, the type of the base object whose member is being accessed.
2016 ///
2017 /// \param Id as input, describes the template-name or operator-function-id
2018 /// that precedes the '<'. If template arguments were parsed successfully,
2019 /// will be updated with the template-id.
2020 /// 
2021 /// \param AssumeTemplateId When true, this routine will assume that the name
2022 /// refers to a template without performing name lookup to verify. 
2023 ///
2024 /// \returns true if a parse error occurred, false otherwise.
2025 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
2026                                           SourceLocation TemplateKWLoc,
2027                                           IdentifierInfo *Name,
2028                                           SourceLocation NameLoc,
2029                                           bool EnteringContext,
2030                                           ParsedType ObjectType,
2031                                           UnqualifiedId &Id,
2032                                           bool AssumeTemplateId) {
2033   assert((AssumeTemplateId || Tok.is(tok::less)) &&
2034          "Expected '<' to finish parsing a template-id");
2035   
2036   TemplateTy Template;
2037   TemplateNameKind TNK = TNK_Non_template;
2038   switch (Id.getKind()) {
2039   case UnqualifiedId::IK_Identifier:
2040   case UnqualifiedId::IK_OperatorFunctionId:
2041   case UnqualifiedId::IK_LiteralOperatorId:
2042     if (AssumeTemplateId) {
2043       TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
2044                                                Id, ObjectType, EnteringContext,
2045                                                Template);
2046       if (TNK == TNK_Non_template)
2047         return true;
2048     } else {
2049       bool MemberOfUnknownSpecialization;
2050       TNK = Actions.isTemplateName(getCurScope(), SS,
2051                                    TemplateKWLoc.isValid(), Id,
2052                                    ObjectType, EnteringContext, Template,
2053                                    MemberOfUnknownSpecialization);
2054       
2055       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2056           ObjectType && IsTemplateArgumentList()) {
2057         // We have something like t->getAs<T>(), where getAs is a 
2058         // member of an unknown specialization. However, this will only
2059         // parse correctly as a template, so suggest the keyword 'template'
2060         // before 'getAs' and treat this as a dependent template name.
2061         std::string Name;
2062         if (Id.getKind() == UnqualifiedId::IK_Identifier)
2063           Name = Id.Identifier->getName();
2064         else {
2065           Name = "operator ";
2066           if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
2067             Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2068           else
2069             Name += Id.Identifier->getName();
2070         }
2071         Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2072           << Name
2073           << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2074         TNK = Actions.ActOnDependentTemplateName(getCurScope(),
2075                                                  SS, TemplateKWLoc, Id,
2076                                                  ObjectType, EnteringContext,
2077                                                  Template);
2078         if (TNK == TNK_Non_template)
2079           return true;              
2080       }
2081     }
2082     break;
2083       
2084   case UnqualifiedId::IK_ConstructorName: {
2085     UnqualifiedId TemplateName;
2086     bool MemberOfUnknownSpecialization;
2087     TemplateName.setIdentifier(Name, NameLoc);
2088     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2089                                  TemplateName, ObjectType, 
2090                                  EnteringContext, Template,
2091                                  MemberOfUnknownSpecialization);
2092     break;
2093   }
2094       
2095   case UnqualifiedId::IK_DestructorName: {
2096     UnqualifiedId TemplateName;
2097     bool MemberOfUnknownSpecialization;
2098     TemplateName.setIdentifier(Name, NameLoc);
2099     if (ObjectType) {
2100       TNK = Actions.ActOnDependentTemplateName(getCurScope(),
2101                                                SS, TemplateKWLoc, TemplateName,
2102                                                ObjectType, EnteringContext,
2103                                                Template);
2104       if (TNK == TNK_Non_template)
2105         return true;
2106     } else {
2107       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2108                                    TemplateName, ObjectType, 
2109                                    EnteringContext, Template,
2110                                    MemberOfUnknownSpecialization);
2111       
2112       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2113         Diag(NameLoc, diag::err_destructor_template_id)
2114           << Name << SS.getRange();
2115         return true;        
2116       }
2117     }
2118     break;
2119   }
2120       
2121   default:
2122     return false;
2123   }
2124   
2125   if (TNK == TNK_Non_template)
2126     return false;
2127   
2128   // Parse the enclosed template argument list.
2129   SourceLocation LAngleLoc, RAngleLoc;
2130   TemplateArgList TemplateArgs;
2131   if (Tok.is(tok::less) &&
2132       ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
2133                                        SS, true, LAngleLoc,
2134                                        TemplateArgs,
2135                                        RAngleLoc))
2136     return true;
2137   
2138   if (Id.getKind() == UnqualifiedId::IK_Identifier ||
2139       Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2140       Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
2141     // Form a parsed representation of the template-id to be stored in the
2142     // UnqualifiedId.
2143     TemplateIdAnnotation *TemplateId
2144       = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
2145
2146     // FIXME: Store name for literal operator too.
2147     if (Id.getKind() == UnqualifiedId::IK_Identifier) {
2148       TemplateId->Name = Id.Identifier;
2149       TemplateId->Operator = OO_None;
2150       TemplateId->TemplateNameLoc = Id.StartLocation;
2151     } else {
2152       TemplateId->Name = nullptr;
2153       TemplateId->Operator = Id.OperatorFunctionId.Operator;
2154       TemplateId->TemplateNameLoc = Id.StartLocation;
2155     }
2156
2157     TemplateId->SS = SS;
2158     TemplateId->TemplateKWLoc = TemplateKWLoc;
2159     TemplateId->Template = Template;
2160     TemplateId->Kind = TNK;
2161     TemplateId->LAngleLoc = LAngleLoc;
2162     TemplateId->RAngleLoc = RAngleLoc;
2163     ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
2164     for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); 
2165          Arg != ArgEnd; ++Arg)
2166       Args[Arg] = TemplateArgs[Arg];
2167     
2168     Id.setTemplateId(TemplateId);
2169     return false;
2170   }
2171
2172   // Bundle the template arguments together.
2173   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2174
2175   // Constructor and destructor names.
2176   TypeResult Type
2177     = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
2178                                   Template, NameLoc,
2179                                   LAngleLoc, TemplateArgsPtr, RAngleLoc,
2180                                   /*IsCtorOrDtorName=*/true);
2181   if (Type.isInvalid())
2182     return true;
2183   
2184   if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
2185     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2186   else
2187     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2188   
2189   return false;
2190 }
2191
2192 /// \brief Parse an operator-function-id or conversion-function-id as part
2193 /// of a C++ unqualified-id.
2194 ///
2195 /// This routine is responsible only for parsing the operator-function-id or
2196 /// conversion-function-id; it does not handle template arguments in any way.
2197 ///
2198 /// \code
2199 ///       operator-function-id: [C++ 13.5]
2200 ///         'operator' operator
2201 ///
2202 ///       operator: one of
2203 ///            new   delete  new[]   delete[]
2204 ///            +     -    *  /    %  ^    &   |   ~
2205 ///            !     =    <  >    += -=   *=  /=  %=
2206 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
2207 ///            <=    >=   && ||   ++ --   ,   ->* ->
2208 ///            ()    []
2209 ///
2210 ///       conversion-function-id: [C++ 12.3.2]
2211 ///         operator conversion-type-id
2212 ///
2213 ///       conversion-type-id:
2214 ///         type-specifier-seq conversion-declarator[opt]
2215 ///
2216 ///       conversion-declarator:
2217 ///         ptr-operator conversion-declarator[opt]
2218 /// \endcode
2219 ///
2220 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2221 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2222 ///
2223 /// \param EnteringContext whether we are entering the scope of the 
2224 /// nested-name-specifier.
2225 ///
2226 /// \param ObjectType if this unqualified-id occurs within a member access
2227 /// expression, the type of the base object whose member is being accessed.
2228 ///
2229 /// \param Result on a successful parse, contains the parsed unqualified-id.
2230 ///
2231 /// \returns true if parsing fails, false otherwise.
2232 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2233                                         ParsedType ObjectType,
2234                                         UnqualifiedId &Result) {
2235   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2236   
2237   // Consume the 'operator' keyword.
2238   SourceLocation KeywordLoc = ConsumeToken();
2239   
2240   // Determine what kind of operator name we have.
2241   unsigned SymbolIdx = 0;
2242   SourceLocation SymbolLocations[3];
2243   OverloadedOperatorKind Op = OO_None;
2244   switch (Tok.getKind()) {
2245     case tok::kw_new:
2246     case tok::kw_delete: {
2247       bool isNew = Tok.getKind() == tok::kw_new;
2248       // Consume the 'new' or 'delete'.
2249       SymbolLocations[SymbolIdx++] = ConsumeToken();
2250       // Check for array new/delete.
2251       if (Tok.is(tok::l_square) &&
2252           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2253         // Consume the '[' and ']'.
2254         BalancedDelimiterTracker T(*this, tok::l_square);
2255         T.consumeOpen();
2256         T.consumeClose();
2257         if (T.getCloseLocation().isInvalid())
2258           return true;
2259         
2260         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2261         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2262         Op = isNew? OO_Array_New : OO_Array_Delete;
2263       } else {
2264         Op = isNew? OO_New : OO_Delete;
2265       }
2266       break;
2267     }
2268       
2269 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2270     case tok::Token:                                                     \
2271       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
2272       Op = OO_##Name;                                                    \
2273       break;
2274 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2275 #include "clang/Basic/OperatorKinds.def"
2276       
2277     case tok::l_paren: {
2278       // Consume the '(' and ')'.
2279       BalancedDelimiterTracker T(*this, tok::l_paren);
2280       T.consumeOpen();
2281       T.consumeClose();
2282       if (T.getCloseLocation().isInvalid())
2283         return true;
2284       
2285       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2286       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2287       Op = OO_Call;
2288       break;
2289     }
2290       
2291     case tok::l_square: {
2292       // Consume the '[' and ']'.
2293       BalancedDelimiterTracker T(*this, tok::l_square);
2294       T.consumeOpen();
2295       T.consumeClose();
2296       if (T.getCloseLocation().isInvalid())
2297         return true;
2298       
2299       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2300       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2301       Op = OO_Subscript;
2302       break;
2303     }
2304       
2305     case tok::code_completion: {
2306       // Code completion for the operator name.
2307       Actions.CodeCompleteOperatorName(getCurScope());
2308       cutOffParsing();      
2309       // Don't try to parse any further.
2310       return true;
2311     }
2312       
2313     default:
2314       break;
2315   }
2316   
2317   if (Op != OO_None) {
2318     // We have parsed an operator-function-id.
2319     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2320     return false;
2321   }
2322
2323   // Parse a literal-operator-id.
2324   //
2325   //   literal-operator-id: C++11 [over.literal]
2326   //     operator string-literal identifier
2327   //     operator user-defined-string-literal
2328
2329   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2330     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2331
2332     SourceLocation DiagLoc;
2333     unsigned DiagId = 0;
2334
2335     // We're past translation phase 6, so perform string literal concatenation
2336     // before checking for "".
2337     SmallVector<Token, 4> Toks;
2338     SmallVector<SourceLocation, 4> TokLocs;
2339     while (isTokenStringLiteral()) {
2340       if (!Tok.is(tok::string_literal) && !DiagId) {
2341         // C++11 [over.literal]p1:
2342         //   The string-literal or user-defined-string-literal in a
2343         //   literal-operator-id shall have no encoding-prefix [...].
2344         DiagLoc = Tok.getLocation();
2345         DiagId = diag::err_literal_operator_string_prefix;
2346       }
2347       Toks.push_back(Tok);
2348       TokLocs.push_back(ConsumeStringToken());
2349     }
2350
2351     StringLiteralParser Literal(Toks, PP);
2352     if (Literal.hadError)
2353       return true;
2354
2355     // Grab the literal operator's suffix, which will be either the next token
2356     // or a ud-suffix from the string literal.
2357     IdentifierInfo *II = nullptr;
2358     SourceLocation SuffixLoc;
2359     if (!Literal.getUDSuffix().empty()) {
2360       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2361       SuffixLoc =
2362         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2363                                        Literal.getUDSuffixOffset(),
2364                                        PP.getSourceManager(), getLangOpts());
2365     } else if (Tok.is(tok::identifier)) {
2366       II = Tok.getIdentifierInfo();
2367       SuffixLoc = ConsumeToken();
2368       TokLocs.push_back(SuffixLoc);
2369     } else {
2370       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2371       return true;
2372     }
2373
2374     // The string literal must be empty.
2375     if (!Literal.GetString().empty() || Literal.Pascal) {
2376       // C++11 [over.literal]p1:
2377       //   The string-literal or user-defined-string-literal in a
2378       //   literal-operator-id shall [...] contain no characters
2379       //   other than the implicit terminating '\0'.
2380       DiagLoc = TokLocs.front();
2381       DiagId = diag::err_literal_operator_string_not_empty;
2382     }
2383
2384     if (DiagId) {
2385       // This isn't a valid literal-operator-id, but we think we know
2386       // what the user meant. Tell them what they should have written.
2387       SmallString<32> Str;
2388       Str += "\"\"";
2389       Str += II->getName();
2390       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2391           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2392     }
2393
2394     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2395
2396     return Actions.checkLiteralOperatorId(SS, Result);
2397   }
2398
2399   // Parse a conversion-function-id.
2400   //
2401   //   conversion-function-id: [C++ 12.3.2]
2402   //     operator conversion-type-id
2403   //
2404   //   conversion-type-id:
2405   //     type-specifier-seq conversion-declarator[opt]
2406   //
2407   //   conversion-declarator:
2408   //     ptr-operator conversion-declarator[opt]
2409   
2410   // Parse the type-specifier-seq.
2411   DeclSpec DS(AttrFactory);
2412   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2413     return true;
2414   
2415   // Parse the conversion-declarator, which is merely a sequence of
2416   // ptr-operators.
2417   Declarator D(DS, Declarator::ConversionIdContext);
2418   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2419
2420   // Finish up the type.
2421   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2422   if (Ty.isInvalid())
2423     return true;
2424   
2425   // Note that this is a conversion-function-id.
2426   Result.setConversionFunctionId(KeywordLoc, Ty.get(), 
2427                                  D.getSourceRange().getEnd());
2428   return false;  
2429 }
2430
2431 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
2432 /// name of an entity.
2433 ///
2434 /// \code
2435 ///       unqualified-id: [C++ expr.prim.general]
2436 ///         identifier
2437 ///         operator-function-id
2438 ///         conversion-function-id
2439 /// [C++0x] literal-operator-id [TODO]
2440 ///         ~ class-name
2441 ///         template-id
2442 ///
2443 /// \endcode
2444 ///
2445 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2446 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2447 ///
2448 /// \param EnteringContext whether we are entering the scope of the 
2449 /// nested-name-specifier.
2450 ///
2451 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2452 ///
2453 /// \param AllowConstructorName whether we allow parsing a constructor name.
2454 ///
2455 /// \param ObjectType if this unqualified-id occurs within a member access
2456 /// expression, the type of the base object whose member is being accessed.
2457 ///
2458 /// \param Result on a successful parse, contains the parsed unqualified-id.
2459 ///
2460 /// \returns true if parsing fails, false otherwise.
2461 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2462                                 bool AllowDestructorName,
2463                                 bool AllowConstructorName,
2464                                 ParsedType ObjectType,
2465                                 SourceLocation& TemplateKWLoc,
2466                                 UnqualifiedId &Result) {
2467
2468   // Handle 'A::template B'. This is for template-ids which have not
2469   // already been annotated by ParseOptionalCXXScopeSpecifier().
2470   bool TemplateSpecified = false;
2471   if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2472       (ObjectType || SS.isSet())) {
2473     TemplateSpecified = true;
2474     TemplateKWLoc = ConsumeToken();
2475   }
2476
2477   // unqualified-id:
2478   //   identifier
2479   //   template-id (when it hasn't already been annotated)
2480   if (Tok.is(tok::identifier)) {
2481     // Consume the identifier.
2482     IdentifierInfo *Id = Tok.getIdentifierInfo();
2483     SourceLocation IdLoc = ConsumeToken();
2484
2485     if (!getLangOpts().CPlusPlus) {
2486       // If we're not in C++, only identifiers matter. Record the
2487       // identifier and return.
2488       Result.setIdentifier(Id, IdLoc);
2489       return false;
2490     }
2491
2492     if (AllowConstructorName && 
2493         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2494       // We have parsed a constructor name.
2495       ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, false,
2496                                           false, nullptr,
2497                                           /*IsCtorOrDtorName=*/true,
2498                                           /*NonTrivialTypeSourceInfo=*/true);
2499       Result.setConstructorName(Ty, IdLoc, IdLoc);
2500     } else {
2501       // We have parsed an identifier.
2502       Result.setIdentifier(Id, IdLoc);      
2503     }
2504
2505     // If the next token is a '<', we may have a template.
2506     if (TemplateSpecified || Tok.is(tok::less))
2507       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2508                                           EnteringContext, ObjectType,
2509                                           Result, TemplateSpecified);
2510     
2511     return false;
2512   }
2513   
2514   // unqualified-id:
2515   //   template-id (already parsed and annotated)
2516   if (Tok.is(tok::annot_template_id)) {
2517     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2518
2519     // If the template-name names the current class, then this is a constructor 
2520     if (AllowConstructorName && TemplateId->Name &&
2521         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2522       if (SS.isSet()) {
2523         // C++ [class.qual]p2 specifies that a qualified template-name
2524         // is taken as the constructor name where a constructor can be
2525         // declared. Thus, the template arguments are extraneous, so
2526         // complain about them and remove them entirely.
2527         Diag(TemplateId->TemplateNameLoc, 
2528              diag::err_out_of_line_constructor_template_id)
2529           << TemplateId->Name
2530           << FixItHint::CreateRemoval(
2531                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2532         ParsedType Ty =
2533             Actions.getTypeName(*TemplateId->Name, TemplateId->TemplateNameLoc,
2534                                 getCurScope(), &SS, false, false, nullptr,
2535                                 /*IsCtorOrDtorName=*/true,
2536                                 /*NontrivialTypeSourceInfo=*/true);
2537         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2538                                   TemplateId->RAngleLoc);
2539         ConsumeToken();
2540         return false;
2541       }
2542
2543       Result.setConstructorTemplateId(TemplateId);
2544       ConsumeToken();
2545       return false;
2546     }
2547
2548     // We have already parsed a template-id; consume the annotation token as
2549     // our unqualified-id.
2550     Result.setTemplateId(TemplateId);
2551     TemplateKWLoc = TemplateId->TemplateKWLoc;
2552     ConsumeToken();
2553     return false;
2554   }
2555   
2556   // unqualified-id:
2557   //   operator-function-id
2558   //   conversion-function-id
2559   if (Tok.is(tok::kw_operator)) {
2560     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2561       return true;
2562     
2563     // If we have an operator-function-id or a literal-operator-id and the next
2564     // token is a '<', we may have a
2565     // 
2566     //   template-id:
2567     //     operator-function-id < template-argument-list[opt] >
2568     if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2569          Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2570         (TemplateSpecified || Tok.is(tok::less)))
2571       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2572                                           nullptr, SourceLocation(),
2573                                           EnteringContext, ObjectType,
2574                                           Result, TemplateSpecified);
2575
2576     return false;
2577   }
2578   
2579   if (getLangOpts().CPlusPlus && 
2580       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2581     // C++ [expr.unary.op]p10:
2582     //   There is an ambiguity in the unary-expression ~X(), where X is a 
2583     //   class-name. The ambiguity is resolved in favor of treating ~ as a 
2584     //    unary complement rather than treating ~X as referring to a destructor.
2585     
2586     // Parse the '~'.
2587     SourceLocation TildeLoc = ConsumeToken();
2588
2589     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2590       DeclSpec DS(AttrFactory);
2591       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2592       if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2593         Result.setDestructorName(TildeLoc, Type, EndLoc);
2594         return false;
2595       }
2596       return true;
2597     }
2598     
2599     // Parse the class-name.
2600     if (Tok.isNot(tok::identifier)) {
2601       Diag(Tok, diag::err_destructor_tilde_identifier);
2602       return true;
2603     }
2604
2605     // If the user wrote ~T::T, correct it to T::~T.
2606     DeclaratorScopeObj DeclScopeObj(*this, SS);
2607     if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
2608       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2609       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2610       // it will confuse this recovery logic.
2611       ColonProtectionRAIIObject ColonRAII(*this, false);
2612
2613       if (SS.isSet()) {
2614         AnnotateScopeToken(SS, /*NewAnnotation*/true);
2615         SS.clear();
2616       }
2617       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
2618         return true;
2619       if (SS.isNotEmpty())
2620         ObjectType = nullptr;
2621       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
2622           !SS.isSet()) {
2623         Diag(TildeLoc, diag::err_destructor_tilde_scope);
2624         return true;
2625       }
2626
2627       // Recover as if the tilde had been written before the identifier.
2628       Diag(TildeLoc, diag::err_destructor_tilde_scope)
2629         << FixItHint::CreateRemoval(TildeLoc)
2630         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
2631
2632       // Temporarily enter the scope for the rest of this function.
2633       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2634         DeclScopeObj.EnterDeclaratorScope();
2635     }
2636
2637     // Parse the class-name (or template-name in a simple-template-id).
2638     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2639     SourceLocation ClassNameLoc = ConsumeToken();
2640
2641     if (TemplateSpecified || Tok.is(tok::less)) {
2642       Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
2643       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2644                                           ClassName, ClassNameLoc,
2645                                           EnteringContext, ObjectType,
2646                                           Result, TemplateSpecified);
2647     }
2648
2649     // Note that this is a destructor name.
2650     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, 
2651                                               ClassNameLoc, getCurScope(),
2652                                               SS, ObjectType,
2653                                               EnteringContext);
2654     if (!Ty)
2655       return true;
2656
2657     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2658     return false;
2659   }
2660   
2661   Diag(Tok, diag::err_expected_unqualified_id)
2662     << getLangOpts().CPlusPlus;
2663   return true;
2664 }
2665
2666 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2667 /// memory in a typesafe manner and call constructors.
2668 ///
2669 /// This method is called to parse the new expression after the optional :: has
2670 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2671 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
2672 ///
2673 ///        new-expression:
2674 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
2675 ///                                     new-initializer[opt]
2676 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2677 ///                                     new-initializer[opt]
2678 ///
2679 ///        new-placement:
2680 ///                   '(' expression-list ')'
2681 ///
2682 ///        new-type-id:
2683 ///                   type-specifier-seq new-declarator[opt]
2684 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
2685 ///
2686 ///        new-declarator:
2687 ///                   ptr-operator new-declarator[opt]
2688 ///                   direct-new-declarator
2689 ///
2690 ///        new-initializer:
2691 ///                   '(' expression-list[opt] ')'
2692 /// [C++0x]           braced-init-list
2693 ///
2694 ExprResult
2695 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2696   assert(Tok.is(tok::kw_new) && "expected 'new' token");
2697   ConsumeToken();   // Consume 'new'
2698
2699   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2700   // second form of new-expression. It can't be a new-type-id.
2701
2702   ExprVector PlacementArgs;
2703   SourceLocation PlacementLParen, PlacementRParen;
2704
2705   SourceRange TypeIdParens;
2706   DeclSpec DS(AttrFactory);
2707   Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2708   if (Tok.is(tok::l_paren)) {
2709     // If it turns out to be a placement, we change the type location.
2710     BalancedDelimiterTracker T(*this, tok::l_paren);
2711     T.consumeOpen();
2712     PlacementLParen = T.getOpenLocation();
2713     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2714       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2715       return ExprError();
2716     }
2717
2718     T.consumeClose();
2719     PlacementRParen = T.getCloseLocation();
2720     if (PlacementRParen.isInvalid()) {
2721       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2722       return ExprError();
2723     }
2724
2725     if (PlacementArgs.empty()) {
2726       // Reset the placement locations. There was no placement.
2727       TypeIdParens = T.getRange();
2728       PlacementLParen = PlacementRParen = SourceLocation();
2729     } else {
2730       // We still need the type.
2731       if (Tok.is(tok::l_paren)) {
2732         BalancedDelimiterTracker T(*this, tok::l_paren);
2733         T.consumeOpen();
2734         MaybeParseGNUAttributes(DeclaratorInfo);
2735         ParseSpecifierQualifierList(DS);
2736         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2737         ParseDeclarator(DeclaratorInfo);
2738         T.consumeClose();
2739         TypeIdParens = T.getRange();
2740       } else {
2741         MaybeParseGNUAttributes(DeclaratorInfo);
2742         if (ParseCXXTypeSpecifierSeq(DS))
2743           DeclaratorInfo.setInvalidType(true);
2744         else {
2745           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2746           ParseDeclaratorInternal(DeclaratorInfo,
2747                                   &Parser::ParseDirectNewDeclarator);
2748         }
2749       }
2750     }
2751   } else {
2752     // A new-type-id is a simplified type-id, where essentially the
2753     // direct-declarator is replaced by a direct-new-declarator.
2754     MaybeParseGNUAttributes(DeclaratorInfo);
2755     if (ParseCXXTypeSpecifierSeq(DS))
2756       DeclaratorInfo.setInvalidType(true);
2757     else {
2758       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2759       ParseDeclaratorInternal(DeclaratorInfo,
2760                               &Parser::ParseDirectNewDeclarator);
2761     }
2762   }
2763   if (DeclaratorInfo.isInvalidType()) {
2764     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2765     return ExprError();
2766   }
2767
2768   ExprResult Initializer;
2769
2770   if (Tok.is(tok::l_paren)) {
2771     SourceLocation ConstructorLParen, ConstructorRParen;
2772     ExprVector ConstructorArgs;
2773     BalancedDelimiterTracker T(*this, tok::l_paren);
2774     T.consumeOpen();
2775     ConstructorLParen = T.getOpenLocation();
2776     if (Tok.isNot(tok::r_paren)) {
2777       CommaLocsTy CommaLocs;
2778       if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
2779             ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(),
2780                                                        DeclaratorInfo).get();
2781             Actions.CodeCompleteConstructor(getCurScope(),
2782                                       TypeRep.get()->getCanonicalTypeInternal(),
2783                                             DeclaratorInfo.getLocEnd(),
2784                                             ConstructorArgs);
2785       })) {
2786         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2787         return ExprError();
2788       }
2789     }
2790     T.consumeClose();
2791     ConstructorRParen = T.getCloseLocation();
2792     if (ConstructorRParen.isInvalid()) {
2793       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2794       return ExprError();
2795     }
2796     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2797                                              ConstructorRParen,
2798                                              ConstructorArgs);
2799   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
2800     Diag(Tok.getLocation(),
2801          diag::warn_cxx98_compat_generalized_initializer_lists);
2802     Initializer = ParseBraceInitializer();
2803   }
2804   if (Initializer.isInvalid())
2805     return Initializer;
2806
2807   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2808                              PlacementArgs, PlacementRParen,
2809                              TypeIdParens, DeclaratorInfo, Initializer.get());
2810 }
2811
2812 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2813 /// passed to ParseDeclaratorInternal.
2814 ///
2815 ///        direct-new-declarator:
2816 ///                   '[' expression ']'
2817 ///                   direct-new-declarator '[' constant-expression ']'
2818 ///
2819 void Parser::ParseDirectNewDeclarator(Declarator &D) {
2820   // Parse the array dimensions.
2821   bool first = true;
2822   while (Tok.is(tok::l_square)) {
2823     // An array-size expression can't start with a lambda.
2824     if (CheckProhibitedCXX11Attribute())
2825       continue;
2826
2827     BalancedDelimiterTracker T(*this, tok::l_square);
2828     T.consumeOpen();
2829
2830     ExprResult Size(first ? ParseExpression()
2831                                 : ParseConstantExpression());
2832     if (Size.isInvalid()) {
2833       // Recover
2834       SkipUntil(tok::r_square, StopAtSemi);
2835       return;
2836     }
2837     first = false;
2838
2839     T.consumeClose();
2840
2841     // Attributes here appertain to the array type. C++11 [expr.new]p5.
2842     ParsedAttributes Attrs(AttrFactory);
2843     MaybeParseCXX11Attributes(Attrs);
2844
2845     D.AddTypeInfo(DeclaratorChunk::getArray(0,
2846                                             /*static=*/false, /*star=*/false,
2847                                             Size.get(),
2848                                             T.getOpenLocation(),
2849                                             T.getCloseLocation()),
2850                   Attrs, T.getCloseLocation());
2851
2852     if (T.getCloseLocation().isInvalid())
2853       return;
2854   }
2855 }
2856
2857 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2858 /// This ambiguity appears in the syntax of the C++ new operator.
2859 ///
2860 ///        new-expression:
2861 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2862 ///                                     new-initializer[opt]
2863 ///
2864 ///        new-placement:
2865 ///                   '(' expression-list ')'
2866 ///
2867 bool Parser::ParseExpressionListOrTypeId(
2868                                    SmallVectorImpl<Expr*> &PlacementArgs,
2869                                          Declarator &D) {
2870   // The '(' was already consumed.
2871   if (isTypeIdInParens()) {
2872     ParseSpecifierQualifierList(D.getMutableDeclSpec());
2873     D.SetSourceRange(D.getDeclSpec().getSourceRange());
2874     ParseDeclarator(D);
2875     return D.isInvalidType();
2876   }
2877
2878   // It's not a type, it has to be an expression list.
2879   // Discard the comma locations - ActOnCXXNew has enough parameters.
2880   CommaLocsTy CommaLocs;
2881   return ParseExpressionList(PlacementArgs, CommaLocs);
2882 }
2883
2884 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2885 /// to free memory allocated by new.
2886 ///
2887 /// This method is called to parse the 'delete' expression after the optional
2888 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2889 /// and "Start" is its location.  Otherwise, "Start" is the location of the
2890 /// 'delete' token.
2891 ///
2892 ///        delete-expression:
2893 ///                   '::'[opt] 'delete' cast-expression
2894 ///                   '::'[opt] 'delete' '[' ']' cast-expression
2895 ExprResult
2896 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2897   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2898   ConsumeToken(); // Consume 'delete'
2899
2900   // Array delete?
2901   bool ArrayDelete = false;
2902   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2903     // C++11 [expr.delete]p1:
2904     //   Whenever the delete keyword is followed by empty square brackets, it
2905     //   shall be interpreted as [array delete].
2906     //   [Footnote: A lambda expression with a lambda-introducer that consists
2907     //              of empty square brackets can follow the delete keyword if
2908     //              the lambda expression is enclosed in parentheses.]
2909     // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
2910     //        lambda-introducer.
2911     ArrayDelete = true;
2912     BalancedDelimiterTracker T(*this, tok::l_square);
2913
2914     T.consumeOpen();
2915     T.consumeClose();
2916     if (T.getCloseLocation().isInvalid())
2917       return ExprError();
2918   }
2919
2920   ExprResult Operand(ParseCastExpression(false));
2921   if (Operand.isInvalid())
2922     return Operand;
2923
2924   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
2925 }
2926
2927 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2928   switch (kind) {
2929   default: llvm_unreachable("Not a known type trait");
2930 #define TYPE_TRAIT_1(Spelling, Name, Key) \
2931 case tok::kw_ ## Spelling: return UTT_ ## Name;
2932 #define TYPE_TRAIT_2(Spelling, Name, Key) \
2933 case tok::kw_ ## Spelling: return BTT_ ## Name;
2934 #include "clang/Basic/TokenKinds.def"
2935 #define TYPE_TRAIT_N(Spelling, Name, Key) \
2936   case tok::kw_ ## Spelling: return TT_ ## Name;
2937 #include "clang/Basic/TokenKinds.def"
2938   }
2939 }
2940
2941 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2942   switch(kind) {
2943   default: llvm_unreachable("Not a known binary type trait");
2944   case tok::kw___array_rank:                 return ATT_ArrayRank;
2945   case tok::kw___array_extent:               return ATT_ArrayExtent;
2946   }
2947 }
2948
2949 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2950   switch(kind) {
2951   default: llvm_unreachable("Not a known unary expression trait.");
2952   case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2953   case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2954   }
2955 }
2956
2957 static unsigned TypeTraitArity(tok::TokenKind kind) {
2958   switch (kind) {
2959     default: llvm_unreachable("Not a known type trait");
2960 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
2961 #include "clang/Basic/TokenKinds.def"
2962   }
2963 }
2964
2965 /// \brief Parse the built-in type-trait pseudo-functions that allow 
2966 /// implementation of the TR1/C++11 type traits templates.
2967 ///
2968 ///       primary-expression:
2969 ///          unary-type-trait '(' type-id ')'
2970 ///          binary-type-trait '(' type-id ',' type-id ')'
2971 ///          type-trait '(' type-id-seq ')'
2972 ///
2973 ///       type-id-seq:
2974 ///          type-id ...[opt] type-id-seq[opt]
2975 ///
2976 ExprResult Parser::ParseTypeTrait() {
2977   tok::TokenKind Kind = Tok.getKind();
2978   unsigned Arity = TypeTraitArity(Kind);
2979
2980   SourceLocation Loc = ConsumeToken();
2981   
2982   BalancedDelimiterTracker Parens(*this, tok::l_paren);
2983   if (Parens.expectAndConsume())
2984     return ExprError();
2985
2986   SmallVector<ParsedType, 2> Args;
2987   do {
2988     // Parse the next type.
2989     TypeResult Ty = ParseTypeName();
2990     if (Ty.isInvalid()) {
2991       Parens.skipToEnd();
2992       return ExprError();
2993     }
2994
2995     // Parse the ellipsis, if present.
2996     if (Tok.is(tok::ellipsis)) {
2997       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2998       if (Ty.isInvalid()) {
2999         Parens.skipToEnd();
3000         return ExprError();
3001       }
3002     }
3003     
3004     // Add this type to the list of arguments.
3005     Args.push_back(Ty.get());
3006   } while (TryConsumeToken(tok::comma));
3007
3008   if (Parens.consumeClose())
3009     return ExprError();
3010
3011   SourceLocation EndLoc = Parens.getCloseLocation();
3012
3013   if (Arity && Args.size() != Arity) {
3014     Diag(EndLoc, diag::err_type_trait_arity)
3015       << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3016     return ExprError();
3017   }
3018
3019   if (!Arity && Args.empty()) {
3020     Diag(EndLoc, diag::err_type_trait_arity)
3021       << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3022     return ExprError();
3023   }
3024
3025   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3026 }
3027
3028 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3029 /// pseudo-functions.
3030 ///
3031 ///       primary-expression:
3032 /// [Embarcadero]     '__array_rank' '(' type-id ')'
3033 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
3034 ///
3035 ExprResult Parser::ParseArrayTypeTrait() {
3036   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3037   SourceLocation Loc = ConsumeToken();
3038
3039   BalancedDelimiterTracker T(*this, tok::l_paren);
3040   if (T.expectAndConsume())
3041     return ExprError();
3042
3043   TypeResult Ty = ParseTypeName();
3044   if (Ty.isInvalid()) {
3045     SkipUntil(tok::comma, StopAtSemi);
3046     SkipUntil(tok::r_paren, StopAtSemi);
3047     return ExprError();
3048   }
3049
3050   switch (ATT) {
3051   case ATT_ArrayRank: {
3052     T.consumeClose();
3053     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3054                                        T.getCloseLocation());
3055   }
3056   case ATT_ArrayExtent: {
3057     if (ExpectAndConsume(tok::comma)) {
3058       SkipUntil(tok::r_paren, StopAtSemi);
3059       return ExprError();
3060     }
3061
3062     ExprResult DimExpr = ParseExpression();
3063     T.consumeClose();
3064
3065     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3066                                        T.getCloseLocation());
3067   }
3068   }
3069   llvm_unreachable("Invalid ArrayTypeTrait!");
3070 }
3071
3072 /// ParseExpressionTrait - Parse built-in expression-trait
3073 /// pseudo-functions like __is_lvalue_expr( xxx ).
3074 ///
3075 ///       primary-expression:
3076 /// [Embarcadero]     expression-trait '(' expression ')'
3077 ///
3078 ExprResult Parser::ParseExpressionTrait() {
3079   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3080   SourceLocation Loc = ConsumeToken();
3081
3082   BalancedDelimiterTracker T(*this, tok::l_paren);
3083   if (T.expectAndConsume())
3084     return ExprError();
3085
3086   ExprResult Expr = ParseExpression();
3087
3088   T.consumeClose();
3089
3090   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3091                                       T.getCloseLocation());
3092 }
3093
3094
3095 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3096 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3097 /// based on the context past the parens.
3098 ExprResult
3099 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3100                                          ParsedType &CastTy,
3101                                          BalancedDelimiterTracker &Tracker,
3102                                          ColonProtectionRAIIObject &ColonProt) {
3103   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3104   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3105   assert(isTypeIdInParens() && "Not a type-id!");
3106
3107   ExprResult Result(true);
3108   CastTy = nullptr;
3109
3110   // We need to disambiguate a very ugly part of the C++ syntax:
3111   //
3112   // (T())x;  - type-id
3113   // (T())*x; - type-id
3114   // (T())/x; - expression
3115   // (T());   - expression
3116   //
3117   // The bad news is that we cannot use the specialized tentative parser, since
3118   // it can only verify that the thing inside the parens can be parsed as
3119   // type-id, it is not useful for determining the context past the parens.
3120   //
3121   // The good news is that the parser can disambiguate this part without
3122   // making any unnecessary Action calls.
3123   //
3124   // It uses a scheme similar to parsing inline methods. The parenthesized
3125   // tokens are cached, the context that follows is determined (possibly by
3126   // parsing a cast-expression), and then we re-introduce the cached tokens
3127   // into the token stream and parse them appropriately.
3128
3129   ParenParseOption ParseAs;
3130   CachedTokens Toks;
3131
3132   // Store the tokens of the parentheses. We will parse them after we determine
3133   // the context that follows them.
3134   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3135     // We didn't find the ')' we expected.
3136     Tracker.consumeClose();
3137     return ExprError();
3138   }
3139
3140   if (Tok.is(tok::l_brace)) {
3141     ParseAs = CompoundLiteral;
3142   } else {
3143     bool NotCastExpr;
3144     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3145       NotCastExpr = true;
3146     } else {
3147       // Try parsing the cast-expression that may follow.
3148       // If it is not a cast-expression, NotCastExpr will be true and no token
3149       // will be consumed.
3150       ColonProt.restore();
3151       Result = ParseCastExpression(false/*isUnaryExpression*/,
3152                                    false/*isAddressofOperand*/,
3153                                    NotCastExpr,
3154                                    // type-id has priority.
3155                                    IsTypeCast);
3156     }
3157
3158     // If we parsed a cast-expression, it's really a type-id, otherwise it's
3159     // an expression.
3160     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3161   }
3162
3163   // Create a fake EOF to mark end of Toks buffer.
3164   Token AttrEnd;
3165   AttrEnd.startToken();
3166   AttrEnd.setKind(tok::eof);
3167   AttrEnd.setLocation(Tok.getLocation());
3168   AttrEnd.setEofData(Toks.data());
3169   Toks.push_back(AttrEnd);
3170
3171   // The current token should go after the cached tokens.
3172   Toks.push_back(Tok);
3173   // Re-enter the stored parenthesized tokens into the token stream, so we may
3174   // parse them now.
3175   PP.EnterTokenStream(Toks, true /*DisableMacroExpansion*/);
3176   // Drop the current token and bring the first cached one. It's the same token
3177   // as when we entered this function.
3178   ConsumeAnyToken();
3179
3180   if (ParseAs >= CompoundLiteral) {
3181     // Parse the type declarator.
3182     DeclSpec DS(AttrFactory);
3183     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
3184     {
3185       ColonProtectionRAIIObject InnerColonProtection(*this);
3186       ParseSpecifierQualifierList(DS);
3187       ParseDeclarator(DeclaratorInfo);
3188     }
3189
3190     // Match the ')'.
3191     Tracker.consumeClose();
3192     ColonProt.restore();
3193
3194     // Consume EOF marker for Toks buffer.
3195     assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3196     ConsumeAnyToken();
3197
3198     if (ParseAs == CompoundLiteral) {
3199       ExprType = CompoundLiteral;
3200       if (DeclaratorInfo.isInvalidType())
3201         return ExprError();
3202
3203       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3204       return ParseCompoundLiteralExpression(Ty.get(),
3205                                             Tracker.getOpenLocation(),
3206                                             Tracker.getCloseLocation());
3207     }
3208
3209     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3210     assert(ParseAs == CastExpr);
3211
3212     if (DeclaratorInfo.isInvalidType())
3213       return ExprError();
3214
3215     // Result is what ParseCastExpression returned earlier.
3216     if (!Result.isInvalid())
3217       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3218                                     DeclaratorInfo, CastTy,
3219                                     Tracker.getCloseLocation(), Result.get());
3220     return Result;
3221   }
3222
3223   // Not a compound literal, and not followed by a cast-expression.
3224   assert(ParseAs == SimpleExpr);
3225
3226   ExprType = SimpleExpr;
3227   Result = ParseExpression();
3228   if (!Result.isInvalid() && Tok.is(tok::r_paren))
3229     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(), 
3230                                     Tok.getLocation(), Result.get());
3231
3232   // Match the ')'.
3233   if (Result.isInvalid()) {
3234     while (Tok.isNot(tok::eof))
3235       ConsumeAnyToken();
3236     assert(Tok.getEofData() == AttrEnd.getEofData());
3237     ConsumeAnyToken();
3238     return ExprError();
3239   }
3240
3241   Tracker.consumeClose();
3242   // Consume EOF marker for Toks buffer.
3243   assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3244   ConsumeAnyToken();
3245   return Result;
3246 }