]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / AnalysisBasedWarnings.cpp
1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines analysis_warnings::[Policy,Executor].
10 // Together they are used by Sema to issue warnings based on inexpensive
11 // static analysis algorithms in libAnalysis.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/AnalysisBasedWarnings.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/EvaluatedExprVisitor.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/AST/RecursiveASTVisitor.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
27 #include "clang/Analysis/Analyses/Consumed.h"
28 #include "clang/Analysis/Analyses/ReachableCode.h"
29 #include "clang/Analysis/Analyses/ThreadSafety.h"
30 #include "clang/Analysis/Analyses/UninitializedValues.h"
31 #include "clang/Analysis/AnalysisDeclContext.h"
32 #include "clang/Analysis/CFG.h"
33 #include "clang/Analysis/CFGStmtMap.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "clang/Sema/SemaInternal.h"
39 #include "llvm/ADT/BitVector.h"
40 #include "llvm/ADT/MapVector.h"
41 #include "llvm/ADT/SmallString.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/Support/Casting.h"
45 #include <algorithm>
46 #include <deque>
47 #include <iterator>
48
49 using namespace clang;
50
51 //===----------------------------------------------------------------------===//
52 // Unreachable code analysis.
53 //===----------------------------------------------------------------------===//
54
55 namespace {
56   class UnreachableCodeHandler : public reachable_code::Callback {
57     Sema &S;
58     SourceRange PreviousSilenceableCondVal;
59
60   public:
61     UnreachableCodeHandler(Sema &s) : S(s) {}
62
63     void HandleUnreachable(reachable_code::UnreachableKind UK,
64                            SourceLocation L,
65                            SourceRange SilenceableCondVal,
66                            SourceRange R1,
67                            SourceRange R2) override {
68       // Avoid reporting multiple unreachable code diagnostics that are
69       // triggered by the same conditional value.
70       if (PreviousSilenceableCondVal.isValid() &&
71           SilenceableCondVal.isValid() &&
72           PreviousSilenceableCondVal == SilenceableCondVal)
73         return;
74       PreviousSilenceableCondVal = SilenceableCondVal;
75
76       unsigned diag = diag::warn_unreachable;
77       switch (UK) {
78         case reachable_code::UK_Break:
79           diag = diag::warn_unreachable_break;
80           break;
81         case reachable_code::UK_Return:
82           diag = diag::warn_unreachable_return;
83           break;
84         case reachable_code::UK_Loop_Increment:
85           diag = diag::warn_unreachable_loop_increment;
86           break;
87         case reachable_code::UK_Other:
88           break;
89       }
90
91       S.Diag(L, diag) << R1 << R2;
92
93       SourceLocation Open = SilenceableCondVal.getBegin();
94       if (Open.isValid()) {
95         SourceLocation Close = SilenceableCondVal.getEnd();
96         Close = S.getLocForEndOfToken(Close);
97         if (Close.isValid()) {
98           S.Diag(Open, diag::note_unreachable_silence)
99             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
100             << FixItHint::CreateInsertion(Close, ")");
101         }
102       }
103     }
104   };
105 } // anonymous namespace
106
107 /// CheckUnreachable - Check for unreachable code.
108 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
109   // As a heuristic prune all diagnostics not in the main file.  Currently
110   // the majority of warnings in headers are false positives.  These
111   // are largely caused by configuration state, e.g. preprocessor
112   // defined code, etc.
113   //
114   // Note that this is also a performance optimization.  Analyzing
115   // headers many times can be expensive.
116   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
117     return;
118
119   UnreachableCodeHandler UC(S);
120   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
121 }
122
123 namespace {
124 /// Warn on logical operator errors in CFGBuilder
125 class LogicalErrorHandler : public CFGCallback {
126   Sema &S;
127
128 public:
129   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
130
131   static bool HasMacroID(const Expr *E) {
132     if (E->getExprLoc().isMacroID())
133       return true;
134
135     // Recurse to children.
136     for (const Stmt *SubStmt : E->children())
137       if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
138         if (HasMacroID(SubExpr))
139           return true;
140
141     return false;
142   }
143
144   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
145     if (HasMacroID(B))
146       return;
147
148     SourceRange DiagRange = B->getSourceRange();
149     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
150         << DiagRange << isAlwaysTrue;
151   }
152
153   void compareBitwiseEquality(const BinaryOperator *B,
154                               bool isAlwaysTrue) override {
155     if (HasMacroID(B))
156       return;
157
158     SourceRange DiagRange = B->getSourceRange();
159     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
160         << DiagRange << isAlwaysTrue;
161   }
162 };
163 } // anonymous namespace
164
165 //===----------------------------------------------------------------------===//
166 // Check for infinite self-recursion in functions
167 //===----------------------------------------------------------------------===//
168
169 // Returns true if the function is called anywhere within the CFGBlock.
170 // For member functions, the additional condition of being call from the
171 // this pointer is required.
172 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
173   // Process all the Stmt's in this block to find any calls to FD.
174   for (const auto &B : Block) {
175     if (B.getKind() != CFGElement::Statement)
176       continue;
177
178     const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
179     if (!CE || !CE->getCalleeDecl() ||
180         CE->getCalleeDecl()->getCanonicalDecl() != FD)
181       continue;
182
183     // Skip function calls which are qualified with a templated class.
184     if (const DeclRefExpr *DRE =
185             dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
186       if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
187         if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
188             isa<TemplateSpecializationType>(NNS->getAsType())) {
189           continue;
190         }
191       }
192     }
193
194     const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
195     if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
196         !MCE->getMethodDecl()->isVirtual())
197       return true;
198   }
199   return false;
200 }
201
202 // Returns true if every path from the entry block passes through a call to FD.
203 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
204   llvm::SmallPtrSet<CFGBlock *, 16> Visited;
205   llvm::SmallVector<CFGBlock *, 16> WorkList;
206   // Keep track of whether we found at least one recursive path.
207   bool foundRecursion = false;
208
209   const unsigned ExitID = cfg->getExit().getBlockID();
210
211   // Seed the work list with the entry block.
212   WorkList.push_back(&cfg->getEntry());
213
214   while (!WorkList.empty()) {
215     CFGBlock *Block = WorkList.pop_back_val();
216
217     for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
218       if (CFGBlock *SuccBlock = *I) {
219         if (!Visited.insert(SuccBlock).second)
220           continue;
221
222         // Found a path to the exit node without a recursive call.
223         if (ExitID == SuccBlock->getBlockID())
224           return false;
225
226         // If the successor block contains a recursive call, end analysis there.
227         if (hasRecursiveCallInPath(FD, *SuccBlock)) {
228           foundRecursion = true;
229           continue;
230         }
231
232         WorkList.push_back(SuccBlock);
233       }
234     }
235   }
236   return foundRecursion;
237 }
238
239 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
240                                    const Stmt *Body, AnalysisDeclContext &AC) {
241   FD = FD->getCanonicalDecl();
242
243   // Only run on non-templated functions and non-templated members of
244   // templated classes.
245   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
246       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
247     return;
248
249   CFG *cfg = AC.getCFG();
250   if (!cfg) return;
251
252   // If the exit block is unreachable, skip processing the function.
253   if (cfg->getExit().pred_empty())
254     return;
255
256   // Emit diagnostic if a recursive function call is detected for all paths.
257   if (checkForRecursiveFunctionCall(FD, cfg))
258     S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
259 }
260
261 //===----------------------------------------------------------------------===//
262 // Check for throw in a non-throwing function.
263 //===----------------------------------------------------------------------===//
264
265 /// Determine whether an exception thrown by E, unwinding from ThrowBlock,
266 /// can reach ExitBlock.
267 static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
268                          CFG *Body) {
269   SmallVector<CFGBlock *, 16> Stack;
270   llvm::BitVector Queued(Body->getNumBlockIDs());
271
272   Stack.push_back(&ThrowBlock);
273   Queued[ThrowBlock.getBlockID()] = true;
274
275   while (!Stack.empty()) {
276     CFGBlock &UnwindBlock = *Stack.back();
277     Stack.pop_back();
278
279     for (auto &Succ : UnwindBlock.succs()) {
280       if (!Succ.isReachable() || Queued[Succ->getBlockID()])
281         continue;
282
283       if (Succ->getBlockID() == Body->getExit().getBlockID())
284         return true;
285
286       if (auto *Catch =
287               dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
288         QualType Caught = Catch->getCaughtType();
289         if (Caught.isNull() || // catch (...) catches everything
290             !E->getSubExpr() || // throw; is considered cuaght by any handler
291             S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
292           // Exception doesn't escape via this path.
293           break;
294       } else {
295         Stack.push_back(Succ);
296         Queued[Succ->getBlockID()] = true;
297       }
298     }
299   }
300
301   return false;
302 }
303
304 static void visitReachableThrows(
305     CFG *BodyCFG,
306     llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
307   llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
308   clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
309   for (CFGBlock *B : *BodyCFG) {
310     if (!Reachable[B->getBlockID()])
311       continue;
312     for (CFGElement &E : *B) {
313       Optional<CFGStmt> S = E.getAs<CFGStmt>();
314       if (!S)
315         continue;
316       if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
317         Visit(Throw, *B);
318     }
319   }
320 }
321
322 static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
323                                                  const FunctionDecl *FD) {
324   if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
325       FD->getTypeSourceInfo()) {
326     S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
327     if (S.getLangOpts().CPlusPlus11 &&
328         (isa<CXXDestructorDecl>(FD) ||
329          FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
330          FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
331       if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
332                                          getAs<FunctionProtoType>())
333         S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
334             << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
335             << FD->getExceptionSpecSourceRange();
336     } else
337       S.Diag(FD->getLocation(), diag::note_throw_in_function)
338           << FD->getExceptionSpecSourceRange();
339   }
340 }
341
342 static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
343                                         AnalysisDeclContext &AC) {
344   CFG *BodyCFG = AC.getCFG();
345   if (!BodyCFG)
346     return;
347   if (BodyCFG->getExit().pred_empty())
348     return;
349   visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
350     if (throwEscapes(S, Throw, Block, BodyCFG))
351       EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
352   });
353 }
354
355 static bool isNoexcept(const FunctionDecl *FD) {
356   const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
357   if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
358     return true;
359   return false;
360 }
361
362 //===----------------------------------------------------------------------===//
363 // Check for missing return value.
364 //===----------------------------------------------------------------------===//
365
366 enum ControlFlowKind {
367   UnknownFallThrough,
368   NeverFallThrough,
369   MaybeFallThrough,
370   AlwaysFallThrough,
371   NeverFallThroughOrReturn
372 };
373
374 /// CheckFallThrough - Check that we don't fall off the end of a
375 /// Statement that should return a value.
376 ///
377 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
378 /// MaybeFallThrough iff we might or might not fall off the end,
379 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
380 /// return.  We assume NeverFallThrough iff we never fall off the end of the
381 /// statement but we may return.  We assume that functions not marked noreturn
382 /// will return.
383 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
384   CFG *cfg = AC.getCFG();
385   if (!cfg) return UnknownFallThrough;
386
387   // The CFG leaves in dead things, and we don't want the dead code paths to
388   // confuse us, so we mark all live things first.
389   llvm::BitVector live(cfg->getNumBlockIDs());
390   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
391                                                           live);
392
393   bool AddEHEdges = AC.getAddEHEdges();
394   if (!AddEHEdges && count != cfg->getNumBlockIDs())
395     // When there are things remaining dead, and we didn't add EH edges
396     // from CallExprs to the catch clauses, we have to go back and
397     // mark them as live.
398     for (const auto *B : *cfg) {
399       if (!live[B->getBlockID()]) {
400         if (B->pred_begin() == B->pred_end()) {
401           const Stmt *Term = B->getTerminatorStmt();
402           if (Term && isa<CXXTryStmt>(Term))
403             // When not adding EH edges from calls, catch clauses
404             // can otherwise seem dead.  Avoid noting them as dead.
405             count += reachable_code::ScanReachableFromBlock(B, live);
406           continue;
407         }
408       }
409     }
410
411   // Now we know what is live, we check the live precessors of the exit block
412   // and look for fall through paths, being careful to ignore normal returns,
413   // and exceptional paths.
414   bool HasLiveReturn = false;
415   bool HasFakeEdge = false;
416   bool HasPlainEdge = false;
417   bool HasAbnormalEdge = false;
418
419   // Ignore default cases that aren't likely to be reachable because all
420   // enums in a switch(X) have explicit case statements.
421   CFGBlock::FilterOptions FO;
422   FO.IgnoreDefaultsWithCoveredEnums = 1;
423
424   for (CFGBlock::filtered_pred_iterator I =
425            cfg->getExit().filtered_pred_start_end(FO);
426        I.hasMore(); ++I) {
427     const CFGBlock &B = **I;
428     if (!live[B.getBlockID()])
429       continue;
430
431     // Skip blocks which contain an element marked as no-return. They don't
432     // represent actually viable edges into the exit block, so mark them as
433     // abnormal.
434     if (B.hasNoReturnElement()) {
435       HasAbnormalEdge = true;
436       continue;
437     }
438
439     // Destructors can appear after the 'return' in the CFG.  This is
440     // normal.  We need to look pass the destructors for the return
441     // statement (if it exists).
442     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
443
444     for ( ; ri != re ; ++ri)
445       if (ri->getAs<CFGStmt>())
446         break;
447
448     // No more CFGElements in the block?
449     if (ri == re) {
450       const Stmt *Term = B.getTerminatorStmt();
451       if (Term && isa<CXXTryStmt>(Term)) {
452         HasAbnormalEdge = true;
453         continue;
454       }
455       // A labeled empty statement, or the entry block...
456       HasPlainEdge = true;
457       continue;
458     }
459
460     CFGStmt CS = ri->castAs<CFGStmt>();
461     const Stmt *S = CS.getStmt();
462     if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
463       HasLiveReturn = true;
464       continue;
465     }
466     if (isa<ObjCAtThrowStmt>(S)) {
467       HasFakeEdge = true;
468       continue;
469     }
470     if (isa<CXXThrowExpr>(S)) {
471       HasFakeEdge = true;
472       continue;
473     }
474     if (isa<MSAsmStmt>(S)) {
475       // TODO: Verify this is correct.
476       HasFakeEdge = true;
477       HasLiveReturn = true;
478       continue;
479     }
480     if (isa<CXXTryStmt>(S)) {
481       HasAbnormalEdge = true;
482       continue;
483     }
484     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
485         == B.succ_end()) {
486       HasAbnormalEdge = true;
487       continue;
488     }
489
490     HasPlainEdge = true;
491   }
492   if (!HasPlainEdge) {
493     if (HasLiveReturn)
494       return NeverFallThrough;
495     return NeverFallThroughOrReturn;
496   }
497   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
498     return MaybeFallThrough;
499   // This says AlwaysFallThrough for calls to functions that are not marked
500   // noreturn, that don't return.  If people would like this warning to be more
501   // accurate, such functions should be marked as noreturn.
502   return AlwaysFallThrough;
503 }
504
505 namespace {
506
507 struct CheckFallThroughDiagnostics {
508   unsigned diag_MaybeFallThrough_HasNoReturn;
509   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
510   unsigned diag_AlwaysFallThrough_HasNoReturn;
511   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
512   unsigned diag_NeverFallThroughOrReturn;
513   enum { Function, Block, Lambda, Coroutine } funMode;
514   SourceLocation FuncLoc;
515
516   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
517     CheckFallThroughDiagnostics D;
518     D.FuncLoc = Func->getLocation();
519     D.diag_MaybeFallThrough_HasNoReturn =
520       diag::warn_falloff_noreturn_function;
521     D.diag_MaybeFallThrough_ReturnsNonVoid =
522       diag::warn_maybe_falloff_nonvoid_function;
523     D.diag_AlwaysFallThrough_HasNoReturn =
524       diag::warn_falloff_noreturn_function;
525     D.diag_AlwaysFallThrough_ReturnsNonVoid =
526       diag::warn_falloff_nonvoid_function;
527
528     // Don't suggest that virtual functions be marked "noreturn", since they
529     // might be overridden by non-noreturn functions.
530     bool isVirtualMethod = false;
531     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
532       isVirtualMethod = Method->isVirtual();
533
534     // Don't suggest that template instantiations be marked "noreturn"
535     bool isTemplateInstantiation = false;
536     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
537       isTemplateInstantiation = Function->isTemplateInstantiation();
538
539     if (!isVirtualMethod && !isTemplateInstantiation)
540       D.diag_NeverFallThroughOrReturn =
541         diag::warn_suggest_noreturn_function;
542     else
543       D.diag_NeverFallThroughOrReturn = 0;
544
545     D.funMode = Function;
546     return D;
547   }
548
549   static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
550     CheckFallThroughDiagnostics D;
551     D.FuncLoc = Func->getLocation();
552     D.diag_MaybeFallThrough_HasNoReturn = 0;
553     D.diag_MaybeFallThrough_ReturnsNonVoid =
554         diag::warn_maybe_falloff_nonvoid_coroutine;
555     D.diag_AlwaysFallThrough_HasNoReturn = 0;
556     D.diag_AlwaysFallThrough_ReturnsNonVoid =
557         diag::warn_falloff_nonvoid_coroutine;
558     D.funMode = Coroutine;
559     return D;
560   }
561
562   static CheckFallThroughDiagnostics MakeForBlock() {
563     CheckFallThroughDiagnostics D;
564     D.diag_MaybeFallThrough_HasNoReturn =
565       diag::err_noreturn_block_has_return_expr;
566     D.diag_MaybeFallThrough_ReturnsNonVoid =
567       diag::err_maybe_falloff_nonvoid_block;
568     D.diag_AlwaysFallThrough_HasNoReturn =
569       diag::err_noreturn_block_has_return_expr;
570     D.diag_AlwaysFallThrough_ReturnsNonVoid =
571       diag::err_falloff_nonvoid_block;
572     D.diag_NeverFallThroughOrReturn = 0;
573     D.funMode = Block;
574     return D;
575   }
576
577   static CheckFallThroughDiagnostics MakeForLambda() {
578     CheckFallThroughDiagnostics D;
579     D.diag_MaybeFallThrough_HasNoReturn =
580       diag::err_noreturn_lambda_has_return_expr;
581     D.diag_MaybeFallThrough_ReturnsNonVoid =
582       diag::warn_maybe_falloff_nonvoid_lambda;
583     D.diag_AlwaysFallThrough_HasNoReturn =
584       diag::err_noreturn_lambda_has_return_expr;
585     D.diag_AlwaysFallThrough_ReturnsNonVoid =
586       diag::warn_falloff_nonvoid_lambda;
587     D.diag_NeverFallThroughOrReturn = 0;
588     D.funMode = Lambda;
589     return D;
590   }
591
592   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
593                         bool HasNoReturn) const {
594     if (funMode == Function) {
595       return (ReturnsVoid ||
596               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
597                           FuncLoc)) &&
598              (!HasNoReturn ||
599               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
600                           FuncLoc)) &&
601              (!ReturnsVoid ||
602               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
603     }
604     if (funMode == Coroutine) {
605       return (ReturnsVoid ||
606               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
607               D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
608                           FuncLoc)) &&
609              (!HasNoReturn);
610     }
611     // For blocks / lambdas.
612     return ReturnsVoid && !HasNoReturn;
613   }
614 };
615
616 } // anonymous namespace
617
618 /// CheckFallThroughForBody - Check that we don't fall off the end of a
619 /// function that should return a value.  Check that we don't fall off the end
620 /// of a noreturn function.  We assume that functions and blocks not marked
621 /// noreturn will return.
622 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
623                                     QualType BlockType,
624                                     const CheckFallThroughDiagnostics &CD,
625                                     AnalysisDeclContext &AC,
626                                     sema::FunctionScopeInfo *FSI) {
627
628   bool ReturnsVoid = false;
629   bool HasNoReturn = false;
630   bool IsCoroutine = FSI->isCoroutine();
631
632   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
633     if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
634       ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
635     else
636       ReturnsVoid = FD->getReturnType()->isVoidType();
637     HasNoReturn = FD->isNoReturn();
638   }
639   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
640     ReturnsVoid = MD->getReturnType()->isVoidType();
641     HasNoReturn = MD->hasAttr<NoReturnAttr>();
642   }
643   else if (isa<BlockDecl>(D)) {
644     if (const FunctionType *FT =
645           BlockType->getPointeeType()->getAs<FunctionType>()) {
646       if (FT->getReturnType()->isVoidType())
647         ReturnsVoid = true;
648       if (FT->getNoReturnAttr())
649         HasNoReturn = true;
650     }
651   }
652
653   DiagnosticsEngine &Diags = S.getDiagnostics();
654
655   // Short circuit for compilation speed.
656   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
657       return;
658   SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
659   auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
660     if (IsCoroutine)
661       S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
662     else
663       S.Diag(Loc, DiagID);
664   };
665
666   // cpu_dispatch functions permit empty function bodies for ICC compatibility.
667   if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
668     return;
669
670   // Either in a function body compound statement, or a function-try-block.
671   switch (CheckFallThrough(AC)) {
672     case UnknownFallThrough:
673       break;
674
675     case MaybeFallThrough:
676       if (HasNoReturn)
677         EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
678       else if (!ReturnsVoid)
679         EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
680       break;
681     case AlwaysFallThrough:
682       if (HasNoReturn)
683         EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
684       else if (!ReturnsVoid)
685         EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
686       break;
687     case NeverFallThroughOrReturn:
688       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
689         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
690           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
691         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
692           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
693         } else {
694           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
695         }
696       }
697       break;
698     case NeverFallThrough:
699       break;
700   }
701 }
702
703 //===----------------------------------------------------------------------===//
704 // -Wuninitialized
705 //===----------------------------------------------------------------------===//
706
707 namespace {
708 /// ContainsReference - A visitor class to search for references to
709 /// a particular declaration (the needle) within any evaluated component of an
710 /// expression (recursively).
711 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
712   bool FoundReference;
713   const DeclRefExpr *Needle;
714
715 public:
716   typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
717
718   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
719     : Inherited(Context), FoundReference(false), Needle(Needle) {}
720
721   void VisitExpr(const Expr *E) {
722     // Stop evaluating if we already have a reference.
723     if (FoundReference)
724       return;
725
726     Inherited::VisitExpr(E);
727   }
728
729   void VisitDeclRefExpr(const DeclRefExpr *E) {
730     if (E == Needle)
731       FoundReference = true;
732     else
733       Inherited::VisitDeclRefExpr(E);
734   }
735
736   bool doesContainReference() const { return FoundReference; }
737 };
738 } // anonymous namespace
739
740 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
741   QualType VariableTy = VD->getType().getCanonicalType();
742   if (VariableTy->isBlockPointerType() &&
743       !VD->hasAttr<BlocksAttr>()) {
744     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
745         << VD->getDeclName()
746         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
747     return true;
748   }
749
750   // Don't issue a fixit if there is already an initializer.
751   if (VD->getInit())
752     return false;
753
754   // Don't suggest a fixit inside macros.
755   if (VD->getEndLoc().isMacroID())
756     return false;
757
758   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
759
760   // Suggest possible initialization (if any).
761   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
762   if (Init.empty())
763     return false;
764
765   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
766     << FixItHint::CreateInsertion(Loc, Init);
767   return true;
768 }
769
770 /// Create a fixit to remove an if-like statement, on the assumption that its
771 /// condition is CondVal.
772 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
773                           const Stmt *Else, bool CondVal,
774                           FixItHint &Fixit1, FixItHint &Fixit2) {
775   if (CondVal) {
776     // If condition is always true, remove all but the 'then'.
777     Fixit1 = FixItHint::CreateRemoval(
778         CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
779     if (Else) {
780       SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
781       Fixit2 =
782           FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
783     }
784   } else {
785     // If condition is always false, remove all but the 'else'.
786     if (Else)
787       Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
788           If->getBeginLoc(), Else->getBeginLoc()));
789     else
790       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
791   }
792 }
793
794 /// DiagUninitUse -- Helper function to produce a diagnostic for an
795 /// uninitialized use of a variable.
796 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
797                           bool IsCapturedByBlock) {
798   bool Diagnosed = false;
799
800   switch (Use.getKind()) {
801   case UninitUse::Always:
802     S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
803         << VD->getDeclName() << IsCapturedByBlock
804         << Use.getUser()->getSourceRange();
805     return;
806
807   case UninitUse::AfterDecl:
808   case UninitUse::AfterCall:
809     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
810       << VD->getDeclName() << IsCapturedByBlock
811       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
812       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
813       << VD->getSourceRange();
814     S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
815         << IsCapturedByBlock << Use.getUser()->getSourceRange();
816     return;
817
818   case UninitUse::Maybe:
819   case UninitUse::Sometimes:
820     // Carry on to report sometimes-uninitialized branches, if possible,
821     // or a 'may be used uninitialized' diagnostic otherwise.
822     break;
823   }
824
825   // Diagnose each branch which leads to a sometimes-uninitialized use.
826   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
827        I != E; ++I) {
828     assert(Use.getKind() == UninitUse::Sometimes);
829
830     const Expr *User = Use.getUser();
831     const Stmt *Term = I->Terminator;
832
833     // Information used when building the diagnostic.
834     unsigned DiagKind;
835     StringRef Str;
836     SourceRange Range;
837
838     // FixIts to suppress the diagnostic by removing the dead condition.
839     // For all binary terminators, branch 0 is taken if the condition is true,
840     // and branch 1 is taken if the condition is false.
841     int RemoveDiagKind = -1;
842     const char *FixitStr =
843         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
844                                   : (I->Output ? "1" : "0");
845     FixItHint Fixit1, Fixit2;
846
847     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
848     default:
849       // Don't know how to report this. Just fall back to 'may be used
850       // uninitialized'. FIXME: Can this happen?
851       continue;
852
853     // "condition is true / condition is false".
854     case Stmt::IfStmtClass: {
855       const IfStmt *IS = cast<IfStmt>(Term);
856       DiagKind = 0;
857       Str = "if";
858       Range = IS->getCond()->getSourceRange();
859       RemoveDiagKind = 0;
860       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
861                     I->Output, Fixit1, Fixit2);
862       break;
863     }
864     case Stmt::ConditionalOperatorClass: {
865       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
866       DiagKind = 0;
867       Str = "?:";
868       Range = CO->getCond()->getSourceRange();
869       RemoveDiagKind = 0;
870       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
871                     I->Output, Fixit1, Fixit2);
872       break;
873     }
874     case Stmt::BinaryOperatorClass: {
875       const BinaryOperator *BO = cast<BinaryOperator>(Term);
876       if (!BO->isLogicalOp())
877         continue;
878       DiagKind = 0;
879       Str = BO->getOpcodeStr();
880       Range = BO->getLHS()->getSourceRange();
881       RemoveDiagKind = 0;
882       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
883           (BO->getOpcode() == BO_LOr && !I->Output))
884         // true && y -> y, false || y -> y.
885         Fixit1 = FixItHint::CreateRemoval(
886             SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
887       else
888         // false && y -> false, true || y -> true.
889         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
890       break;
891     }
892
893     // "loop is entered / loop is exited".
894     case Stmt::WhileStmtClass:
895       DiagKind = 1;
896       Str = "while";
897       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
898       RemoveDiagKind = 1;
899       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
900       break;
901     case Stmt::ForStmtClass:
902       DiagKind = 1;
903       Str = "for";
904       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
905       RemoveDiagKind = 1;
906       if (I->Output)
907         Fixit1 = FixItHint::CreateRemoval(Range);
908       else
909         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
910       break;
911     case Stmt::CXXForRangeStmtClass:
912       if (I->Output == 1) {
913         // The use occurs if a range-based for loop's body never executes.
914         // That may be impossible, and there's no syntactic fix for this,
915         // so treat it as a 'may be uninitialized' case.
916         continue;
917       }
918       DiagKind = 1;
919       Str = "for";
920       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
921       break;
922
923     // "condition is true / loop is exited".
924     case Stmt::DoStmtClass:
925       DiagKind = 2;
926       Str = "do";
927       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
928       RemoveDiagKind = 1;
929       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
930       break;
931
932     // "switch case is taken".
933     case Stmt::CaseStmtClass:
934       DiagKind = 3;
935       Str = "case";
936       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
937       break;
938     case Stmt::DefaultStmtClass:
939       DiagKind = 3;
940       Str = "default";
941       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
942       break;
943     }
944
945     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
946       << VD->getDeclName() << IsCapturedByBlock << DiagKind
947       << Str << I->Output << Range;
948     S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
949         << IsCapturedByBlock << User->getSourceRange();
950     if (RemoveDiagKind != -1)
951       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
952         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
953
954     Diagnosed = true;
955   }
956
957   if (!Diagnosed)
958     S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
959         << VD->getDeclName() << IsCapturedByBlock
960         << Use.getUser()->getSourceRange();
961 }
962
963 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
964 /// uninitialized variable. This manages the different forms of diagnostic
965 /// emitted for particular types of uses. Returns true if the use was diagnosed
966 /// as a warning. If a particular use is one we omit warnings for, returns
967 /// false.
968 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
969                                      const UninitUse &Use,
970                                      bool alwaysReportSelfInit = false) {
971   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
972     // Inspect the initializer of the variable declaration which is
973     // being referenced prior to its initialization. We emit
974     // specialized diagnostics for self-initialization, and we
975     // specifically avoid warning about self references which take the
976     // form of:
977     //
978     //   int x = x;
979     //
980     // This is used to indicate to GCC that 'x' is intentionally left
981     // uninitialized. Proven code paths which access 'x' in
982     // an uninitialized state after this will still warn.
983     if (const Expr *Initializer = VD->getInit()) {
984       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
985         return false;
986
987       ContainsReference CR(S.Context, DRE);
988       CR.Visit(Initializer);
989       if (CR.doesContainReference()) {
990         S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
991             << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
992         return true;
993       }
994     }
995
996     DiagUninitUse(S, VD, Use, false);
997   } else {
998     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
999     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
1000       S.Diag(BE->getBeginLoc(),
1001              diag::warn_uninit_byref_blockvar_captured_by_block)
1002           << VD->getDeclName()
1003           << VD->getType().getQualifiers().hasObjCLifetime();
1004     else
1005       DiagUninitUse(S, VD, Use, true);
1006   }
1007
1008   // Report where the variable was declared when the use wasn't within
1009   // the initializer of that declaration & we didn't already suggest
1010   // an initialization fixit.
1011   if (!SuggestInitializationFixit(S, VD))
1012     S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
1013         << VD->getDeclName();
1014
1015   return true;
1016 }
1017
1018 namespace {
1019   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1020   public:
1021     FallthroughMapper(Sema &S)
1022       : FoundSwitchStatements(false),
1023         S(S) {
1024     }
1025
1026     bool foundSwitchStatements() const { return FoundSwitchStatements; }
1027
1028     void markFallthroughVisited(const AttributedStmt *Stmt) {
1029       bool Found = FallthroughStmts.erase(Stmt);
1030       assert(Found);
1031       (void)Found;
1032     }
1033
1034     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
1035
1036     const AttrStmts &getFallthroughStmts() const {
1037       return FallthroughStmts;
1038     }
1039
1040     void fillReachableBlocks(CFG *Cfg) {
1041       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
1042       std::deque<const CFGBlock *> BlockQueue;
1043
1044       ReachableBlocks.insert(&Cfg->getEntry());
1045       BlockQueue.push_back(&Cfg->getEntry());
1046       // Mark all case blocks reachable to avoid problems with switching on
1047       // constants, covered enums, etc.
1048       // These blocks can contain fall-through annotations, and we don't want to
1049       // issue a warn_fallthrough_attr_unreachable for them.
1050       for (const auto *B : *Cfg) {
1051         const Stmt *L = B->getLabel();
1052         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1053           BlockQueue.push_back(B);
1054       }
1055
1056       while (!BlockQueue.empty()) {
1057         const CFGBlock *P = BlockQueue.front();
1058         BlockQueue.pop_front();
1059         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
1060                                            E = P->succ_end();
1061              I != E; ++I) {
1062           if (*I && ReachableBlocks.insert(*I).second)
1063             BlockQueue.push_back(*I);
1064         }
1065       }
1066     }
1067
1068     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
1069                                    bool IsTemplateInstantiation) {
1070       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
1071
1072       int UnannotatedCnt = 0;
1073       AnnotatedCnt = 0;
1074
1075       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1076       while (!BlockQueue.empty()) {
1077         const CFGBlock *P = BlockQueue.front();
1078         BlockQueue.pop_front();
1079         if (!P) continue;
1080
1081         const Stmt *Term = P->getTerminatorStmt();
1082         if (Term && isa<SwitchStmt>(Term))
1083           continue; // Switch statement, good.
1084
1085         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1086         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1087           continue; // Previous case label has no statements, good.
1088
1089         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1090         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1091           continue; // Case label is preceded with a normal label, good.
1092
1093         if (!ReachableBlocks.count(P)) {
1094           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
1095                                                 ElemEnd = P->rend();
1096                ElemIt != ElemEnd; ++ElemIt) {
1097             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
1098               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1099                 // Don't issue a warning for an unreachable fallthrough
1100                 // attribute in template instantiations as it may not be
1101                 // unreachable in all instantiations of the template.
1102                 if (!IsTemplateInstantiation)
1103                   S.Diag(AS->getBeginLoc(),
1104                          diag::warn_fallthrough_attr_unreachable);
1105                 markFallthroughVisited(AS);
1106                 ++AnnotatedCnt;
1107                 break;
1108               }
1109               // Don't care about other unreachable statements.
1110             }
1111           }
1112           // If there are no unreachable statements, this may be a special
1113           // case in CFG:
1114           // case X: {
1115           //    A a;  // A has a destructor.
1116           //    break;
1117           // }
1118           // // <<<< This place is represented by a 'hanging' CFG block.
1119           // case Y:
1120           continue;
1121         }
1122
1123         const Stmt *LastStmt = getLastStmt(*P);
1124         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1125           markFallthroughVisited(AS);
1126           ++AnnotatedCnt;
1127           continue; // Fallthrough annotation, good.
1128         }
1129
1130         if (!LastStmt) { // This block contains no executable statements.
1131           // Traverse its predecessors.
1132           std::copy(P->pred_begin(), P->pred_end(),
1133                     std::back_inserter(BlockQueue));
1134           continue;
1135         }
1136
1137         ++UnannotatedCnt;
1138       }
1139       return !!UnannotatedCnt;
1140     }
1141
1142     // RecursiveASTVisitor setup.
1143     bool shouldWalkTypesOfTypeLocs() const { return false; }
1144
1145     bool VisitAttributedStmt(AttributedStmt *S) {
1146       if (asFallThroughAttr(S))
1147         FallthroughStmts.insert(S);
1148       return true;
1149     }
1150
1151     bool VisitSwitchStmt(SwitchStmt *S) {
1152       FoundSwitchStatements = true;
1153       return true;
1154     }
1155
1156     // We don't want to traverse local type declarations. We analyze their
1157     // methods separately.
1158     bool TraverseDecl(Decl *D) { return true; }
1159
1160     // We analyze lambda bodies separately. Skip them here.
1161     bool TraverseLambdaExpr(LambdaExpr *LE) {
1162       // Traverse the captures, but not the body.
1163       for (const auto &C : zip(LE->captures(), LE->capture_inits()))
1164         TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
1165       return true;
1166     }
1167
1168   private:
1169
1170     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1171       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1172         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1173           return AS;
1174       }
1175       return nullptr;
1176     }
1177
1178     static const Stmt *getLastStmt(const CFGBlock &B) {
1179       if (const Stmt *Term = B.getTerminatorStmt())
1180         return Term;
1181       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1182                                             ElemEnd = B.rend();
1183                                             ElemIt != ElemEnd; ++ElemIt) {
1184         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1185           return CS->getStmt();
1186       }
1187       // Workaround to detect a statement thrown out by CFGBuilder:
1188       //   case X: {} case Y:
1189       //   case X: ; case Y:
1190       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1191         if (!isa<SwitchCase>(SW->getSubStmt()))
1192           return SW->getSubStmt();
1193
1194       return nullptr;
1195     }
1196
1197     bool FoundSwitchStatements;
1198     AttrStmts FallthroughStmts;
1199     Sema &S;
1200     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1201   };
1202 } // anonymous namespace
1203
1204 static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1205                                             SourceLocation Loc) {
1206   TokenValue FallthroughTokens[] = {
1207     tok::l_square, tok::l_square,
1208     PP.getIdentifierInfo("fallthrough"),
1209     tok::r_square, tok::r_square
1210   };
1211
1212   TokenValue ClangFallthroughTokens[] = {
1213     tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1214     tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1215     tok::r_square, tok::r_square
1216   };
1217
1218   bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17;
1219
1220   StringRef MacroName;
1221   if (PreferClangAttr)
1222     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1223   if (MacroName.empty())
1224     MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1225   if (MacroName.empty() && !PreferClangAttr)
1226     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1227   if (MacroName.empty())
1228     MacroName = PreferClangAttr ? "[[clang::fallthrough]]" : "[[fallthrough]]";
1229   return MacroName;
1230 }
1231
1232 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1233                                             bool PerFunction) {
1234   // Only perform this analysis when using [[]] attributes. There is no good
1235   // workflow for this warning when not using C++11. There is no good way to
1236   // silence the warning (no attribute is available) unless we are using
1237   // [[]] attributes. One could use pragmas to silence the warning, but as a
1238   // general solution that is gross and not in the spirit of this warning.
1239   //
1240   // NOTE: This an intermediate solution. There are on-going discussions on
1241   // how to properly support this warning outside of C++11 with an annotation.
1242   if (!AC.getASTContext().getLangOpts().DoubleSquareBracketAttributes)
1243     return;
1244
1245   FallthroughMapper FM(S);
1246   FM.TraverseStmt(AC.getBody());
1247
1248   if (!FM.foundSwitchStatements())
1249     return;
1250
1251   if (PerFunction && FM.getFallthroughStmts().empty())
1252     return;
1253
1254   CFG *Cfg = AC.getCFG();
1255
1256   if (!Cfg)
1257     return;
1258
1259   FM.fillReachableBlocks(Cfg);
1260
1261   for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1262     const Stmt *Label = B->getLabel();
1263
1264     if (!Label || !isa<SwitchCase>(Label))
1265       continue;
1266
1267     int AnnotatedCnt;
1268
1269     bool IsTemplateInstantiation = false;
1270     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1271       IsTemplateInstantiation = Function->isTemplateInstantiation();
1272     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1273                                       IsTemplateInstantiation))
1274       continue;
1275
1276     S.Diag(Label->getBeginLoc(),
1277            PerFunction ? diag::warn_unannotated_fallthrough_per_function
1278                        : diag::warn_unannotated_fallthrough);
1279
1280     if (!AnnotatedCnt) {
1281       SourceLocation L = Label->getBeginLoc();
1282       if (L.isMacroID())
1283         continue;
1284       if (S.getLangOpts().CPlusPlus11) {
1285         const Stmt *Term = B->getTerminatorStmt();
1286         // Skip empty cases.
1287         while (B->empty() && !Term && B->succ_size() == 1) {
1288           B = *B->succ_begin();
1289           Term = B->getTerminatorStmt();
1290         }
1291         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1292           Preprocessor &PP = S.getPreprocessor();
1293           StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1294           SmallString<64> TextToInsert(AnnotationSpelling);
1295           TextToInsert += "; ";
1296           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1297               AnnotationSpelling <<
1298               FixItHint::CreateInsertion(L, TextToInsert);
1299         }
1300       }
1301       S.Diag(L, diag::note_insert_break_fixit) <<
1302         FixItHint::CreateInsertion(L, "break; ");
1303     }
1304   }
1305
1306   for (const auto *F : FM.getFallthroughStmts())
1307     S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
1308 }
1309
1310 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1311                      const Stmt *S) {
1312   assert(S);
1313
1314   do {
1315     switch (S->getStmtClass()) {
1316     case Stmt::ForStmtClass:
1317     case Stmt::WhileStmtClass:
1318     case Stmt::CXXForRangeStmtClass:
1319     case Stmt::ObjCForCollectionStmtClass:
1320       return true;
1321     case Stmt::DoStmtClass: {
1322       Expr::EvalResult Result;
1323       if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
1324         return true;
1325       return Result.Val.getInt().getBoolValue();
1326     }
1327     default:
1328       break;
1329     }
1330   } while ((S = PM.getParent(S)));
1331
1332   return false;
1333 }
1334
1335 static void diagnoseRepeatedUseOfWeak(Sema &S,
1336                                       const sema::FunctionScopeInfo *CurFn,
1337                                       const Decl *D,
1338                                       const ParentMap &PM) {
1339   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1340   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1341   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1342   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1343   StmtUsesPair;
1344
1345   ASTContext &Ctx = S.getASTContext();
1346
1347   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1348
1349   // Extract all weak objects that are referenced more than once.
1350   SmallVector<StmtUsesPair, 8> UsesByStmt;
1351   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1352        I != E; ++I) {
1353     const WeakUseVector &Uses = I->second;
1354
1355     // Find the first read of the weak object.
1356     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1357     for ( ; UI != UE; ++UI) {
1358       if (UI->isUnsafe())
1359         break;
1360     }
1361
1362     // If there were only writes to this object, don't warn.
1363     if (UI == UE)
1364       continue;
1365
1366     // If there was only one read, followed by any number of writes, and the
1367     // read is not within a loop, don't warn. Additionally, don't warn in a
1368     // loop if the base object is a local variable -- local variables are often
1369     // changed in loops.
1370     if (UI == Uses.begin()) {
1371       WeakUseVector::const_iterator UI2 = UI;
1372       for (++UI2; UI2 != UE; ++UI2)
1373         if (UI2->isUnsafe())
1374           break;
1375
1376       if (UI2 == UE) {
1377         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1378           continue;
1379
1380         const WeakObjectProfileTy &Profile = I->first;
1381         if (!Profile.isExactProfile())
1382           continue;
1383
1384         const NamedDecl *Base = Profile.getBase();
1385         if (!Base)
1386           Base = Profile.getProperty();
1387         assert(Base && "A profile always has a base or property.");
1388
1389         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1390           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1391             continue;
1392       }
1393     }
1394
1395     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1396   }
1397
1398   if (UsesByStmt.empty())
1399     return;
1400
1401   // Sort by first use so that we emit the warnings in a deterministic order.
1402   SourceManager &SM = S.getSourceManager();
1403   llvm::sort(UsesByStmt,
1404              [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1405                return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
1406                                                    RHS.first->getBeginLoc());
1407              });
1408
1409   // Classify the current code body for better warning text.
1410   // This enum should stay in sync with the cases in
1411   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1412   // FIXME: Should we use a common classification enum and the same set of
1413   // possibilities all throughout Sema?
1414   enum {
1415     Function,
1416     Method,
1417     Block,
1418     Lambda
1419   } FunctionKind;
1420
1421   if (isa<sema::BlockScopeInfo>(CurFn))
1422     FunctionKind = Block;
1423   else if (isa<sema::LambdaScopeInfo>(CurFn))
1424     FunctionKind = Lambda;
1425   else if (isa<ObjCMethodDecl>(D))
1426     FunctionKind = Method;
1427   else
1428     FunctionKind = Function;
1429
1430   // Iterate through the sorted problems and emit warnings for each.
1431   for (const auto &P : UsesByStmt) {
1432     const Stmt *FirstRead = P.first;
1433     const WeakObjectProfileTy &Key = P.second->first;
1434     const WeakUseVector &Uses = P.second->second;
1435
1436     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1437     // may not contain enough information to determine that these are different
1438     // properties. We can only be 100% sure of a repeated use in certain cases,
1439     // and we adjust the diagnostic kind accordingly so that the less certain
1440     // case can be turned off if it is too noisy.
1441     unsigned DiagKind;
1442     if (Key.isExactProfile())
1443       DiagKind = diag::warn_arc_repeated_use_of_weak;
1444     else
1445       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1446
1447     // Classify the weak object being accessed for better warning text.
1448     // This enum should stay in sync with the cases in
1449     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1450     enum {
1451       Variable,
1452       Property,
1453       ImplicitProperty,
1454       Ivar
1455     } ObjectKind;
1456
1457     const NamedDecl *KeyProp = Key.getProperty();
1458     if (isa<VarDecl>(KeyProp))
1459       ObjectKind = Variable;
1460     else if (isa<ObjCPropertyDecl>(KeyProp))
1461       ObjectKind = Property;
1462     else if (isa<ObjCMethodDecl>(KeyProp))
1463       ObjectKind = ImplicitProperty;
1464     else if (isa<ObjCIvarDecl>(KeyProp))
1465       ObjectKind = Ivar;
1466     else
1467       llvm_unreachable("Unexpected weak object kind!");
1468
1469     // Do not warn about IBOutlet weak property receivers being set to null
1470     // since they are typically only used from the main thread.
1471     if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1472       if (Prop->hasAttr<IBOutletAttr>())
1473         continue;
1474
1475     // Show the first time the object was read.
1476     S.Diag(FirstRead->getBeginLoc(), DiagKind)
1477         << int(ObjectKind) << KeyProp << int(FunctionKind)
1478         << FirstRead->getSourceRange();
1479
1480     // Print all the other accesses as notes.
1481     for (const auto &Use : Uses) {
1482       if (Use.getUseExpr() == FirstRead)
1483         continue;
1484       S.Diag(Use.getUseExpr()->getBeginLoc(),
1485              diag::note_arc_weak_also_accessed_here)
1486           << Use.getUseExpr()->getSourceRange();
1487     }
1488   }
1489 }
1490
1491 namespace {
1492 class UninitValsDiagReporter : public UninitVariablesHandler {
1493   Sema &S;
1494   typedef SmallVector<UninitUse, 2> UsesVec;
1495   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1496   // Prefer using MapVector to DenseMap, so that iteration order will be
1497   // the same as insertion order. This is needed to obtain a deterministic
1498   // order of diagnostics when calling flushDiagnostics().
1499   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1500   UsesMap uses;
1501
1502 public:
1503   UninitValsDiagReporter(Sema &S) : S(S) {}
1504   ~UninitValsDiagReporter() override { flushDiagnostics(); }
1505
1506   MappedType &getUses(const VarDecl *vd) {
1507     MappedType &V = uses[vd];
1508     if (!V.getPointer())
1509       V.setPointer(new UsesVec());
1510     return V;
1511   }
1512
1513   void handleUseOfUninitVariable(const VarDecl *vd,
1514                                  const UninitUse &use) override {
1515     getUses(vd).getPointer()->push_back(use);
1516   }
1517
1518   void handleSelfInit(const VarDecl *vd) override {
1519     getUses(vd).setInt(true);
1520   }
1521
1522   void flushDiagnostics() {
1523     for (const auto &P : uses) {
1524       const VarDecl *vd = P.first;
1525       const MappedType &V = P.second;
1526
1527       UsesVec *vec = V.getPointer();
1528       bool hasSelfInit = V.getInt();
1529
1530       // Specially handle the case where we have uses of an uninitialized
1531       // variable, but the root cause is an idiomatic self-init.  We want
1532       // to report the diagnostic at the self-init since that is the root cause.
1533       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1534         DiagnoseUninitializedUse(S, vd,
1535                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
1536                                            /* isAlwaysUninit */ true),
1537                                  /* alwaysReportSelfInit */ true);
1538       else {
1539         // Sort the uses by their SourceLocations.  While not strictly
1540         // guaranteed to produce them in line/column order, this will provide
1541         // a stable ordering.
1542         llvm::sort(vec->begin(), vec->end(),
1543                    [](const UninitUse &a, const UninitUse &b) {
1544           // Prefer a more confident report over a less confident one.
1545           if (a.getKind() != b.getKind())
1546             return a.getKind() > b.getKind();
1547           return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
1548         });
1549
1550         for (const auto &U : *vec) {
1551           // If we have self-init, downgrade all uses to 'may be uninitialized'.
1552           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1553
1554           if (DiagnoseUninitializedUse(S, vd, Use))
1555             // Skip further diagnostics for this variable. We try to warn only
1556             // on the first point at which a variable is used uninitialized.
1557             break;
1558         }
1559       }
1560
1561       // Release the uses vector.
1562       delete vec;
1563     }
1564
1565     uses.clear();
1566   }
1567
1568 private:
1569   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1570     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1571       return U.getKind() == UninitUse::Always ||
1572              U.getKind() == UninitUse::AfterCall ||
1573              U.getKind() == UninitUse::AfterDecl;
1574     });
1575   }
1576 };
1577 } // anonymous namespace
1578
1579 namespace clang {
1580 namespace {
1581 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1582 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1583 typedef std::list<DelayedDiag> DiagList;
1584
1585 struct SortDiagBySourceLocation {
1586   SourceManager &SM;
1587   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1588
1589   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1590     // Although this call will be slow, this is only called when outputting
1591     // multiple warnings.
1592     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1593   }
1594 };
1595 } // anonymous namespace
1596 } // namespace clang
1597
1598 //===----------------------------------------------------------------------===//
1599 // -Wthread-safety
1600 //===----------------------------------------------------------------------===//
1601 namespace clang {
1602 namespace threadSafety {
1603 namespace {
1604 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1605   Sema &S;
1606   DiagList Warnings;
1607   SourceLocation FunLocation, FunEndLocation;
1608
1609   const FunctionDecl *CurrentFunction;
1610   bool Verbose;
1611
1612   OptionalNotes getNotes() const {
1613     if (Verbose && CurrentFunction) {
1614       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1615                                 S.PDiag(diag::note_thread_warning_in_fun)
1616                                     << CurrentFunction);
1617       return OptionalNotes(1, FNote);
1618     }
1619     return OptionalNotes();
1620   }
1621
1622   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1623     OptionalNotes ONS(1, Note);
1624     if (Verbose && CurrentFunction) {
1625       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1626                                 S.PDiag(diag::note_thread_warning_in_fun)
1627                                     << CurrentFunction);
1628       ONS.push_back(std::move(FNote));
1629     }
1630     return ONS;
1631   }
1632
1633   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1634                          const PartialDiagnosticAt &Note2) const {
1635     OptionalNotes ONS;
1636     ONS.push_back(Note1);
1637     ONS.push_back(Note2);
1638     if (Verbose && CurrentFunction) {
1639       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1640                                 S.PDiag(diag::note_thread_warning_in_fun)
1641                                     << CurrentFunction);
1642       ONS.push_back(std::move(FNote));
1643     }
1644     return ONS;
1645   }
1646
1647   OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
1648     return LocLocked.isValid()
1649                ? getNotes(PartialDiagnosticAt(
1650                      LocLocked, S.PDiag(diag::note_locked_here) << Kind))
1651                : getNotes();
1652   }
1653
1654  public:
1655   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1656     : S(S), FunLocation(FL), FunEndLocation(FEL),
1657       CurrentFunction(nullptr), Verbose(false) {}
1658
1659   void setVerbose(bool b) { Verbose = b; }
1660
1661   /// Emit all buffered diagnostics in order of sourcelocation.
1662   /// We need to output diagnostics produced while iterating through
1663   /// the lockset in deterministic order, so this function orders diagnostics
1664   /// and outputs them.
1665   void emitDiagnostics() {
1666     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1667     for (const auto &Diag : Warnings) {
1668       S.Diag(Diag.first.first, Diag.first.second);
1669       for (const auto &Note : Diag.second)
1670         S.Diag(Note.first, Note.second);
1671     }
1672   }
1673
1674   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1675     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1676                                          << Loc);
1677     Warnings.emplace_back(std::move(Warning), getNotes());
1678   }
1679
1680   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1681                              SourceLocation Loc) override {
1682     if (Loc.isInvalid())
1683       Loc = FunLocation;
1684     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
1685                                          << Kind << LockName);
1686     Warnings.emplace_back(std::move(Warning), getNotes());
1687   }
1688
1689   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1690                                  LockKind Expected, LockKind Received,
1691                                  SourceLocation LocLocked,
1692                                  SourceLocation LocUnlock) override {
1693     if (LocUnlock.isInvalid())
1694       LocUnlock = FunLocation;
1695     PartialDiagnosticAt Warning(
1696         LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
1697                        << Kind << LockName << Received << Expected);
1698     Warnings.emplace_back(std::move(Warning),
1699                           makeLockedHereNote(LocLocked, Kind));
1700   }
1701
1702   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
1703                         SourceLocation LocDoubleLock) override {
1704     if (LocDoubleLock.isInvalid())
1705       LocDoubleLock = FunLocation;
1706     PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
1707                                                    << Kind << LockName);
1708     Warnings.emplace_back(std::move(Warning),
1709                           makeLockedHereNote(LocLocked, Kind));
1710   }
1711
1712   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1713                                  SourceLocation LocLocked,
1714                                  SourceLocation LocEndOfScope,
1715                                  LockErrorKind LEK) override {
1716     unsigned DiagID = 0;
1717     switch (LEK) {
1718       case LEK_LockedSomePredecessors:
1719         DiagID = diag::warn_lock_some_predecessors;
1720         break;
1721       case LEK_LockedSomeLoopIterations:
1722         DiagID = diag::warn_expecting_lock_held_on_loop;
1723         break;
1724       case LEK_LockedAtEndOfFunction:
1725         DiagID = diag::warn_no_unlock;
1726         break;
1727       case LEK_NotLockedAtEndOfFunction:
1728         DiagID = diag::warn_expecting_locked;
1729         break;
1730     }
1731     if (LocEndOfScope.isInvalid())
1732       LocEndOfScope = FunEndLocation;
1733
1734     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1735                                                                << LockName);
1736     Warnings.emplace_back(std::move(Warning),
1737                           makeLockedHereNote(LocLocked, Kind));
1738   }
1739
1740   void handleExclusiveAndShared(StringRef Kind, Name LockName,
1741                                 SourceLocation Loc1,
1742                                 SourceLocation Loc2) override {
1743     PartialDiagnosticAt Warning(Loc1,
1744                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
1745                                     << Kind << LockName);
1746     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1747                                        << Kind << LockName);
1748     Warnings.emplace_back(std::move(Warning), getNotes(Note));
1749   }
1750
1751   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1752                          ProtectedOperationKind POK, AccessKind AK,
1753                          SourceLocation Loc) override {
1754     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1755            "Only works for variables");
1756     unsigned DiagID = POK == POK_VarAccess?
1757                         diag::warn_variable_requires_any_lock:
1758                         diag::warn_var_deref_requires_any_lock;
1759     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1760       << D << getLockKindFromAccessKind(AK));
1761     Warnings.emplace_back(std::move(Warning), getNotes());
1762   }
1763
1764   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1765                           ProtectedOperationKind POK, Name LockName,
1766                           LockKind LK, SourceLocation Loc,
1767                           Name *PossibleMatch) override {
1768     unsigned DiagID = 0;
1769     if (PossibleMatch) {
1770       switch (POK) {
1771         case POK_VarAccess:
1772           DiagID = diag::warn_variable_requires_lock_precise;
1773           break;
1774         case POK_VarDereference:
1775           DiagID = diag::warn_var_deref_requires_lock_precise;
1776           break;
1777         case POK_FunctionCall:
1778           DiagID = diag::warn_fun_requires_lock_precise;
1779           break;
1780         case POK_PassByRef:
1781           DiagID = diag::warn_guarded_pass_by_reference;
1782           break;
1783         case POK_PtPassByRef:
1784           DiagID = diag::warn_pt_guarded_pass_by_reference;
1785           break;
1786       }
1787       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1788                                                        << D
1789                                                        << LockName << LK);
1790       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1791                                         << *PossibleMatch);
1792       if (Verbose && POK == POK_VarAccess) {
1793         PartialDiagnosticAt VNote(D->getLocation(),
1794                                  S.PDiag(diag::note_guarded_by_declared_here)
1795                                      << D->getNameAsString());
1796         Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1797       } else
1798         Warnings.emplace_back(std::move(Warning), getNotes(Note));
1799     } else {
1800       switch (POK) {
1801         case POK_VarAccess:
1802           DiagID = diag::warn_variable_requires_lock;
1803           break;
1804         case POK_VarDereference:
1805           DiagID = diag::warn_var_deref_requires_lock;
1806           break;
1807         case POK_FunctionCall:
1808           DiagID = diag::warn_fun_requires_lock;
1809           break;
1810         case POK_PassByRef:
1811           DiagID = diag::warn_guarded_pass_by_reference;
1812           break;
1813         case POK_PtPassByRef:
1814           DiagID = diag::warn_pt_guarded_pass_by_reference;
1815           break;
1816       }
1817       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1818                                                        << D
1819                                                        << LockName << LK);
1820       if (Verbose && POK == POK_VarAccess) {
1821         PartialDiagnosticAt Note(D->getLocation(),
1822                                  S.PDiag(diag::note_guarded_by_declared_here));
1823         Warnings.emplace_back(std::move(Warning), getNotes(Note));
1824       } else
1825         Warnings.emplace_back(std::move(Warning), getNotes());
1826     }
1827   }
1828
1829   void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
1830                              SourceLocation Loc) override {
1831     PartialDiagnosticAt Warning(Loc,
1832         S.PDiag(diag::warn_acquire_requires_negative_cap)
1833         << Kind << LockName << Neg);
1834     Warnings.emplace_back(std::move(Warning), getNotes());
1835   }
1836
1837   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1838                              SourceLocation Loc) override {
1839     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1840                                          << Kind << FunName << LockName);
1841     Warnings.emplace_back(std::move(Warning), getNotes());
1842   }
1843
1844   void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
1845                                 SourceLocation Loc) override {
1846     PartialDiagnosticAt Warning(Loc,
1847       S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1848     Warnings.emplace_back(std::move(Warning), getNotes());
1849   }
1850
1851   void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
1852     PartialDiagnosticAt Warning(Loc,
1853       S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1854     Warnings.emplace_back(std::move(Warning), getNotes());
1855   }
1856
1857   void enterFunction(const FunctionDecl* FD) override {
1858     CurrentFunction = FD;
1859   }
1860
1861   void leaveFunction(const FunctionDecl* FD) override {
1862     CurrentFunction = nullptr;
1863   }
1864 };
1865 } // anonymous namespace
1866 } // namespace threadSafety
1867 } // namespace clang
1868
1869 //===----------------------------------------------------------------------===//
1870 // -Wconsumed
1871 //===----------------------------------------------------------------------===//
1872
1873 namespace clang {
1874 namespace consumed {
1875 namespace {
1876 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1877
1878   Sema &S;
1879   DiagList Warnings;
1880
1881 public:
1882
1883   ConsumedWarningsHandler(Sema &S) : S(S) {}
1884
1885   void emitDiagnostics() override {
1886     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1887     for (const auto &Diag : Warnings) {
1888       S.Diag(Diag.first.first, Diag.first.second);
1889       for (const auto &Note : Diag.second)
1890         S.Diag(Note.first, Note.second);
1891     }
1892   }
1893
1894   void warnLoopStateMismatch(SourceLocation Loc,
1895                              StringRef VariableName) override {
1896     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1897       VariableName);
1898
1899     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1900   }
1901
1902   void warnParamReturnTypestateMismatch(SourceLocation Loc,
1903                                         StringRef VariableName,
1904                                         StringRef ExpectedState,
1905                                         StringRef ObservedState) override {
1906
1907     PartialDiagnosticAt Warning(Loc, S.PDiag(
1908       diag::warn_param_return_typestate_mismatch) << VariableName <<
1909         ExpectedState << ObservedState);
1910
1911     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1912   }
1913
1914   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1915                                   StringRef ObservedState) override {
1916
1917     PartialDiagnosticAt Warning(Loc, S.PDiag(
1918       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1919
1920     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1921   }
1922
1923   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1924                                               StringRef TypeName) override {
1925     PartialDiagnosticAt Warning(Loc, S.PDiag(
1926       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1927
1928     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1929   }
1930
1931   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1932                                    StringRef ObservedState) override {
1933
1934     PartialDiagnosticAt Warning(Loc, S.PDiag(
1935       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1936
1937     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1938   }
1939
1940   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1941                                    SourceLocation Loc) override {
1942
1943     PartialDiagnosticAt Warning(Loc, S.PDiag(
1944       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1945
1946     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1947   }
1948
1949   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1950                              StringRef State, SourceLocation Loc) override {
1951
1952     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1953                                 MethodName << VariableName << State);
1954
1955     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1956   }
1957 };
1958 } // anonymous namespace
1959 } // namespace consumed
1960 } // namespace clang
1961
1962 //===----------------------------------------------------------------------===//
1963 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1964 //  warnings on a function, method, or block.
1965 //===----------------------------------------------------------------------===//
1966
1967 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1968   enableCheckFallThrough = 1;
1969   enableCheckUnreachable = 0;
1970   enableThreadSafetyAnalysis = 0;
1971   enableConsumedAnalysis = 0;
1972 }
1973
1974 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1975   return (unsigned)!D.isIgnored(diag, SourceLocation());
1976 }
1977
1978 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1979   : S(s),
1980     NumFunctionsAnalyzed(0),
1981     NumFunctionsWithBadCFGs(0),
1982     NumCFGBlocks(0),
1983     MaxCFGBlocksPerFunction(0),
1984     NumUninitAnalysisFunctions(0),
1985     NumUninitAnalysisVariables(0),
1986     MaxUninitAnalysisVariablesPerFunction(0),
1987     NumUninitAnalysisBlockVisits(0),
1988     MaxUninitAnalysisBlockVisitsPerFunction(0) {
1989
1990   using namespace diag;
1991   DiagnosticsEngine &D = S.getDiagnostics();
1992
1993   DefaultPolicy.enableCheckUnreachable =
1994     isEnabled(D, warn_unreachable) ||
1995     isEnabled(D, warn_unreachable_break) ||
1996     isEnabled(D, warn_unreachable_return) ||
1997     isEnabled(D, warn_unreachable_loop_increment);
1998
1999   DefaultPolicy.enableThreadSafetyAnalysis =
2000     isEnabled(D, warn_double_lock);
2001
2002   DefaultPolicy.enableConsumedAnalysis =
2003     isEnabled(D, warn_use_in_invalid_state);
2004 }
2005
2006 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
2007   for (const auto &D : fscope->PossiblyUnreachableDiags)
2008     S.Diag(D.Loc, D.PD);
2009 }
2010
2011 void clang::sema::
2012 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
2013                                      sema::FunctionScopeInfo *fscope,
2014                                      const Decl *D, QualType BlockType) {
2015
2016   // We avoid doing analysis-based warnings when there are errors for
2017   // two reasons:
2018   // (1) The CFGs often can't be constructed (if the body is invalid), so
2019   //     don't bother trying.
2020   // (2) The code already has problems; running the analysis just takes more
2021   //     time.
2022   DiagnosticsEngine &Diags = S.getDiagnostics();
2023
2024   // Do not do any analysis if we are going to just ignore them.
2025   if (Diags.getIgnoreAllWarnings() ||
2026       (Diags.getSuppressSystemWarnings() &&
2027        S.SourceMgr.isInSystemHeader(D->getLocation())))
2028     return;
2029
2030   // For code in dependent contexts, we'll do this at instantiation time.
2031   if (cast<DeclContext>(D)->isDependentContext())
2032     return;
2033
2034   if (Diags.hasUncompilableErrorOccurred()) {
2035     // Flush out any possibly unreachable diagnostics.
2036     flushDiagnostics(S, fscope);
2037     return;
2038   }
2039
2040   const Stmt *Body = D->getBody();
2041   assert(Body);
2042
2043   // Construct the analysis context with the specified CFG build options.
2044   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
2045
2046   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2047   // explosion for destructors that can result and the compile time hit.
2048   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2049   AC.getCFGBuildOptions().AddEHEdges = false;
2050   AC.getCFGBuildOptions().AddInitializers = true;
2051   AC.getCFGBuildOptions().AddImplicitDtors = true;
2052   AC.getCFGBuildOptions().AddTemporaryDtors = true;
2053   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2054   AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2055
2056   // Force that certain expressions appear as CFGElements in the CFG.  This
2057   // is used to speed up various analyses.
2058   // FIXME: This isn't the right factoring.  This is here for initial
2059   // prototyping, but we need a way for analyses to say what expressions they
2060   // expect to always be CFGElements and then fill in the BuildOptions
2061   // appropriately.  This is essentially a layering violation.
2062   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2063       P.enableConsumedAnalysis) {
2064     // Unreachable code analysis and thread safety require a linearized CFG.
2065     AC.getCFGBuildOptions().setAllAlwaysAdd();
2066   }
2067   else {
2068     AC.getCFGBuildOptions()
2069       .setAlwaysAdd(Stmt::BinaryOperatorClass)
2070       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2071       .setAlwaysAdd(Stmt::BlockExprClass)
2072       .setAlwaysAdd(Stmt::CStyleCastExprClass)
2073       .setAlwaysAdd(Stmt::DeclRefExprClass)
2074       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2075       .setAlwaysAdd(Stmt::UnaryOperatorClass)
2076       .setAlwaysAdd(Stmt::AttributedStmtClass);
2077   }
2078
2079   // Install the logical handler for -Wtautological-overlap-compare
2080   llvm::Optional<LogicalErrorHandler> LEH;
2081   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2082                        D->getBeginLoc())) {
2083     LEH.emplace(S);
2084     AC.getCFGBuildOptions().Observer = &*LEH;
2085   }
2086
2087   // Emit delayed diagnostics.
2088   if (!fscope->PossiblyUnreachableDiags.empty()) {
2089     bool analyzed = false;
2090
2091     // Register the expressions with the CFGBuilder.
2092     for (const auto &D : fscope->PossiblyUnreachableDiags) {
2093       for (const Stmt *S : D.Stmts)
2094         AC.registerForcedBlockExpression(S);
2095     }
2096
2097     if (AC.getCFG()) {
2098       analyzed = true;
2099       for (const auto &D : fscope->PossiblyUnreachableDiags) {
2100         bool AllReachable = true;
2101         for (const Stmt *S : D.Stmts) {
2102           const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
2103           CFGReverseBlockReachabilityAnalysis *cra =
2104               AC.getCFGReachablityAnalysis();
2105           // FIXME: We should be able to assert that block is non-null, but
2106           // the CFG analysis can skip potentially-evaluated expressions in
2107           // edge cases; see test/Sema/vla-2.c.
2108           if (block && cra) {
2109             // Can this block be reached from the entrance?
2110             if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
2111               AllReachable = false;
2112               break;
2113             }
2114           }
2115           // If we cannot map to a basic block, assume the statement is
2116           // reachable.
2117         }
2118
2119         if (AllReachable)
2120           S.Diag(D.Loc, D.PD);
2121       }
2122     }
2123
2124     if (!analyzed)
2125       flushDiagnostics(S, fscope);
2126   }
2127
2128   // Warning: check missing 'return'
2129   if (P.enableCheckFallThrough) {
2130     const CheckFallThroughDiagnostics &CD =
2131         (isa<BlockDecl>(D)
2132              ? CheckFallThroughDiagnostics::MakeForBlock()
2133              : (isa<CXXMethodDecl>(D) &&
2134                 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2135                 cast<CXXMethodDecl>(D)->getParent()->isLambda())
2136                    ? CheckFallThroughDiagnostics::MakeForLambda()
2137                    : (fscope->isCoroutine()
2138                           ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2139                           : CheckFallThroughDiagnostics::MakeForFunction(D)));
2140     CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
2141   }
2142
2143   // Warning: check for unreachable code
2144   if (P.enableCheckUnreachable) {
2145     // Only check for unreachable code on non-template instantiations.
2146     // Different template instantiations can effectively change the control-flow
2147     // and it is very difficult to prove that a snippet of code in a template
2148     // is unreachable for all instantiations.
2149     bool isTemplateInstantiation = false;
2150     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2151       isTemplateInstantiation = Function->isTemplateInstantiation();
2152     if (!isTemplateInstantiation)
2153       CheckUnreachable(S, AC);
2154   }
2155
2156   // Check for thread safety violations
2157   if (P.enableThreadSafetyAnalysis) {
2158     SourceLocation FL = AC.getDecl()->getLocation();
2159     SourceLocation FEL = AC.getDecl()->getEndLoc();
2160     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
2161     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
2162       Reporter.setIssueBetaWarnings(true);
2163     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
2164       Reporter.setVerbose(true);
2165
2166     threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2167                                           &S.ThreadSafetyDeclCache);
2168     Reporter.emitDiagnostics();
2169   }
2170
2171   // Check for violations of consumed properties.
2172   if (P.enableConsumedAnalysis) {
2173     consumed::ConsumedWarningsHandler WarningHandler(S);
2174     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2175     Analyzer.run(AC);
2176   }
2177
2178   if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
2179       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
2180       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc())) {
2181     if (CFG *cfg = AC.getCFG()) {
2182       UninitValsDiagReporter reporter(S);
2183       UninitVariablesAnalysisStats stats;
2184       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2185       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2186                                         reporter, stats);
2187
2188       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2189         ++NumUninitAnalysisFunctions;
2190         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2191         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2192         MaxUninitAnalysisVariablesPerFunction =
2193             std::max(MaxUninitAnalysisVariablesPerFunction,
2194                      stats.NumVariablesAnalyzed);
2195         MaxUninitAnalysisBlockVisitsPerFunction =
2196             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2197                      stats.NumBlockVisits);
2198       }
2199     }
2200   }
2201
2202   bool FallThroughDiagFull =
2203       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
2204   bool FallThroughDiagPerFunction = !Diags.isIgnored(
2205       diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
2206   if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2207       fscope->HasFallthroughStmt) {
2208     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2209   }
2210
2211   if (S.getLangOpts().ObjCWeak &&
2212       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
2213     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2214
2215
2216   // Check for infinite self-recursion in functions
2217   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2218                        D->getBeginLoc())) {
2219     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2220       checkRecursiveFunction(S, FD, Body, AC);
2221     }
2222   }
2223
2224   // Check for throw out of non-throwing function.
2225   if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
2226     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2227       if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2228         checkThrowInNonThrowingFunc(S, FD, AC);
2229
2230   // If none of the previous checks caused a CFG build, trigger one here
2231   // for -Wtautological-overlap-compare
2232   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2233                        D->getBeginLoc())) {
2234     AC.getCFG();
2235   }
2236
2237   // Collect statistics about the CFG if it was built.
2238   if (S.CollectStats && AC.isCFGBuilt()) {
2239     ++NumFunctionsAnalyzed;
2240     if (CFG *cfg = AC.getCFG()) {
2241       // If we successfully built a CFG for this context, record some more
2242       // detail information about it.
2243       NumCFGBlocks += cfg->getNumBlockIDs();
2244       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2245                                          cfg->getNumBlockIDs());
2246     } else {
2247       ++NumFunctionsWithBadCFGs;
2248     }
2249   }
2250 }
2251
2252 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2253   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2254
2255   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2256   unsigned AvgCFGBlocksPerFunction =
2257       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2258   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2259                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2260                << "  " << NumCFGBlocks << " CFG blocks built.\n"
2261                << "  " << AvgCFGBlocksPerFunction
2262                << " average CFG blocks per function.\n"
2263                << "  " << MaxCFGBlocksPerFunction
2264                << " max CFG blocks per function.\n";
2265
2266   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2267       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2268   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2269       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2270   llvm::errs() << NumUninitAnalysisFunctions
2271                << " functions analyzed for uninitialiazed variables\n"
2272                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2273                << "  " << AvgUninitVariablesPerFunction
2274                << " average variables per function.\n"
2275                << "  " << MaxUninitAnalysisVariablesPerFunction
2276                << " max variables per function.\n"
2277                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2278                << "  " << AvgUninitBlockVisitsPerFunction
2279                << " average block visits per function.\n"
2280                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2281                << " max block visits per function.\n";
2282 }