]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp
Merge ACPICA 20141107 and 20150204.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / AnalysisBasedWarnings.cpp
1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines analysis_warnings::[Policy,Executor].
11 // Together they are used by Sema to issue warnings based on inexpensive
12 // static analysis algorithms in libAnalysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Sema/AnalysisBasedWarnings.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28 #include "clang/Analysis/Analyses/Consumed.h"
29 #include "clang/Analysis/Analyses/ReachableCode.h"
30 #include "clang/Analysis/Analyses/ThreadSafety.h"
31 #include "clang/Analysis/Analyses/UninitializedValues.h"
32 #include "clang/Analysis/AnalysisContext.h"
33 #include "clang/Analysis/CFG.h"
34 #include "clang/Analysis/CFGStmtMap.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Lex/Lexer.h"
38 #include "clang/Lex/Preprocessor.h"
39 #include "clang/Sema/ScopeInfo.h"
40 #include "clang/Sema/SemaInternal.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/FoldingSet.h"
44 #include "llvm/ADT/ImmutableMap.h"
45 #include "llvm/ADT/MapVector.h"
46 #include "llvm/ADT/PostOrderIterator.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/StringRef.h"
50 #include "llvm/Support/Casting.h"
51 #include <algorithm>
52 #include <deque>
53 #include <iterator>
54 #include <vector>
55
56 using namespace clang;
57
58 //===----------------------------------------------------------------------===//
59 // Unreachable code analysis.
60 //===----------------------------------------------------------------------===//
61
62 namespace {
63   class UnreachableCodeHandler : public reachable_code::Callback {
64     Sema &S;
65   public:
66     UnreachableCodeHandler(Sema &s) : S(s) {}
67
68     void HandleUnreachable(reachable_code::UnreachableKind UK,
69                            SourceLocation L,
70                            SourceRange SilenceableCondVal,
71                            SourceRange R1,
72                            SourceRange R2) override {
73       unsigned diag = diag::warn_unreachable;
74       switch (UK) {
75         case reachable_code::UK_Break:
76           diag = diag::warn_unreachable_break;
77           break;
78         case reachable_code::UK_Return:
79           diag = diag::warn_unreachable_return;
80           break;
81         case reachable_code::UK_Loop_Increment:
82           diag = diag::warn_unreachable_loop_increment;
83           break;
84         case reachable_code::UK_Other:
85           break;
86       }
87
88       S.Diag(L, diag) << R1 << R2;
89       
90       SourceLocation Open = SilenceableCondVal.getBegin();
91       if (Open.isValid()) {
92         SourceLocation Close = SilenceableCondVal.getEnd();
93         Close = S.getLocForEndOfToken(Close);
94         if (Close.isValid()) {
95           S.Diag(Open, diag::note_unreachable_silence)
96             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
97             << FixItHint::CreateInsertion(Close, ")");
98         }
99       }
100     }
101   };
102 }
103
104 /// CheckUnreachable - Check for unreachable code.
105 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
106   // As a heuristic prune all diagnostics not in the main file.  Currently
107   // the majority of warnings in headers are false positives.  These
108   // are largely caused by configuration state, e.g. preprocessor
109   // defined code, etc.
110   //
111   // Note that this is also a performance optimization.  Analyzing
112   // headers many times can be expensive.
113   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
114     return;
115
116   UnreachableCodeHandler UC(S);
117   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
118 }
119
120 /// \brief Warn on logical operator errors in CFGBuilder
121 class LogicalErrorHandler : public CFGCallback {
122   Sema &S;
123
124 public:
125   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
126
127   static bool HasMacroID(const Expr *E) {
128     if (E->getExprLoc().isMacroID())
129       return true;
130
131     // Recurse to children.
132     for (ConstStmtRange SubStmts = E->children(); SubStmts; ++SubStmts)
133       if (*SubStmts)
134         if (const Expr *SubExpr = dyn_cast<Expr>(*SubStmts))
135           if (HasMacroID(SubExpr))
136             return true;
137
138     return false;
139   }
140
141   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {
142     if (HasMacroID(B))
143       return;
144
145     SourceRange DiagRange = B->getSourceRange();
146     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
147         << DiagRange << isAlwaysTrue;
148   }
149
150   void compareBitwiseEquality(const BinaryOperator *B, bool isAlwaysTrue) {
151     if (HasMacroID(B))
152       return;
153
154     SourceRange DiagRange = B->getSourceRange();
155     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
156         << DiagRange << isAlwaysTrue;
157   }
158 };
159
160
161 //===----------------------------------------------------------------------===//
162 // Check for infinite self-recursion in functions
163 //===----------------------------------------------------------------------===//
164
165 // All blocks are in one of three states.  States are ordered so that blocks
166 // can only move to higher states.
167 enum RecursiveState {
168   FoundNoPath,
169   FoundPath,
170   FoundPathWithNoRecursiveCall
171 };
172
173 static void checkForFunctionCall(Sema &S, const FunctionDecl *FD,
174                                  CFGBlock &Block, unsigned ExitID,
175                                  llvm::SmallVectorImpl<RecursiveState> &States,
176                                  RecursiveState State) {
177   unsigned ID = Block.getBlockID();
178
179   // A block's state can only move to a higher state.
180   if (States[ID] >= State)
181     return;
182
183   States[ID] = State;
184
185   // Found a path to the exit node without a recursive call.
186   if (ID == ExitID && State == FoundPathWithNoRecursiveCall)
187     return;
188
189   if (State == FoundPathWithNoRecursiveCall) {
190     // If the current state is FoundPathWithNoRecursiveCall, the successors
191     // will be either FoundPathWithNoRecursiveCall or FoundPath.  To determine
192     // which, process all the Stmt's in this block to find any recursive calls.
193     for (const auto &B : Block) {
194       if (B.getKind() != CFGElement::Statement)
195         continue;
196
197       const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
198       if (CE && CE->getCalleeDecl() &&
199           CE->getCalleeDecl()->getCanonicalDecl() == FD) {
200
201         // Skip function calls which are qualified with a templated class.
202         if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(
203                 CE->getCallee()->IgnoreParenImpCasts())) {
204           if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
205             if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
206                 isa<TemplateSpecializationType>(NNS->getAsType())) {
207                continue;
208             }
209           }
210         }
211
212         if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) {
213           if (isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
214               !MCE->getMethodDecl()->isVirtual()) {
215             State = FoundPath;
216             break;
217           }
218         } else {
219           State = FoundPath;
220           break;
221         }
222       }
223     }
224   }
225
226   for (CFGBlock::succ_iterator I = Block.succ_begin(), E = Block.succ_end();
227        I != E; ++I)
228     if (*I)
229       checkForFunctionCall(S, FD, **I, ExitID, States, State);
230 }
231
232 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
233                                    const Stmt *Body,
234                                    AnalysisDeclContext &AC) {
235   FD = FD->getCanonicalDecl();
236
237   // Only run on non-templated functions and non-templated members of
238   // templated classes.
239   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
240       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
241     return;
242
243   CFG *cfg = AC.getCFG();
244   if (!cfg) return;
245
246   // If the exit block is unreachable, skip processing the function.
247   if (cfg->getExit().pred_empty())
248     return;
249
250   // Mark all nodes as FoundNoPath, then begin processing the entry block.
251   llvm::SmallVector<RecursiveState, 16> states(cfg->getNumBlockIDs(),
252                                                FoundNoPath);
253   checkForFunctionCall(S, FD, cfg->getEntry(), cfg->getExit().getBlockID(),
254                        states, FoundPathWithNoRecursiveCall);
255
256   // Check that the exit block is reachable.  This prevents triggering the
257   // warning on functions that do not terminate.
258   if (states[cfg->getExit().getBlockID()] == FoundPath)
259     S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
260 }
261
262 //===----------------------------------------------------------------------===//
263 // Check for missing return value.
264 //===----------------------------------------------------------------------===//
265
266 enum ControlFlowKind {
267   UnknownFallThrough,
268   NeverFallThrough,
269   MaybeFallThrough,
270   AlwaysFallThrough,
271   NeverFallThroughOrReturn
272 };
273
274 /// CheckFallThrough - Check that we don't fall off the end of a
275 /// Statement that should return a value.
276 ///
277 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
278 /// MaybeFallThrough iff we might or might not fall off the end,
279 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
280 /// return.  We assume NeverFallThrough iff we never fall off the end of the
281 /// statement but we may return.  We assume that functions not marked noreturn
282 /// will return.
283 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
284   CFG *cfg = AC.getCFG();
285   if (!cfg) return UnknownFallThrough;
286
287   // The CFG leaves in dead things, and we don't want the dead code paths to
288   // confuse us, so we mark all live things first.
289   llvm::BitVector live(cfg->getNumBlockIDs());
290   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
291                                                           live);
292
293   bool AddEHEdges = AC.getAddEHEdges();
294   if (!AddEHEdges && count != cfg->getNumBlockIDs())
295     // When there are things remaining dead, and we didn't add EH edges
296     // from CallExprs to the catch clauses, we have to go back and
297     // mark them as live.
298     for (const auto *B : *cfg) {
299       if (!live[B->getBlockID()]) {
300         if (B->pred_begin() == B->pred_end()) {
301           if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
302             // When not adding EH edges from calls, catch clauses
303             // can otherwise seem dead.  Avoid noting them as dead.
304             count += reachable_code::ScanReachableFromBlock(B, live);
305           continue;
306         }
307       }
308     }
309
310   // Now we know what is live, we check the live precessors of the exit block
311   // and look for fall through paths, being careful to ignore normal returns,
312   // and exceptional paths.
313   bool HasLiveReturn = false;
314   bool HasFakeEdge = false;
315   bool HasPlainEdge = false;
316   bool HasAbnormalEdge = false;
317
318   // Ignore default cases that aren't likely to be reachable because all
319   // enums in a switch(X) have explicit case statements.
320   CFGBlock::FilterOptions FO;
321   FO.IgnoreDefaultsWithCoveredEnums = 1;
322
323   for (CFGBlock::filtered_pred_iterator
324          I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
325     const CFGBlock& B = **I;
326     if (!live[B.getBlockID()])
327       continue;
328
329     // Skip blocks which contain an element marked as no-return. They don't
330     // represent actually viable edges into the exit block, so mark them as
331     // abnormal.
332     if (B.hasNoReturnElement()) {
333       HasAbnormalEdge = true;
334       continue;
335     }
336
337     // Destructors can appear after the 'return' in the CFG.  This is
338     // normal.  We need to look pass the destructors for the return
339     // statement (if it exists).
340     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
341
342     for ( ; ri != re ; ++ri)
343       if (ri->getAs<CFGStmt>())
344         break;
345
346     // No more CFGElements in the block?
347     if (ri == re) {
348       if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
349         HasAbnormalEdge = true;
350         continue;
351       }
352       // A labeled empty statement, or the entry block...
353       HasPlainEdge = true;
354       continue;
355     }
356
357     CFGStmt CS = ri->castAs<CFGStmt>();
358     const Stmt *S = CS.getStmt();
359     if (isa<ReturnStmt>(S)) {
360       HasLiveReturn = true;
361       continue;
362     }
363     if (isa<ObjCAtThrowStmt>(S)) {
364       HasFakeEdge = true;
365       continue;
366     }
367     if (isa<CXXThrowExpr>(S)) {
368       HasFakeEdge = true;
369       continue;
370     }
371     if (isa<MSAsmStmt>(S)) {
372       // TODO: Verify this is correct.
373       HasFakeEdge = true;
374       HasLiveReturn = true;
375       continue;
376     }
377     if (isa<CXXTryStmt>(S)) {
378       HasAbnormalEdge = true;
379       continue;
380     }
381     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
382         == B.succ_end()) {
383       HasAbnormalEdge = true;
384       continue;
385     }
386
387     HasPlainEdge = true;
388   }
389   if (!HasPlainEdge) {
390     if (HasLiveReturn)
391       return NeverFallThrough;
392     return NeverFallThroughOrReturn;
393   }
394   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
395     return MaybeFallThrough;
396   // This says AlwaysFallThrough for calls to functions that are not marked
397   // noreturn, that don't return.  If people would like this warning to be more
398   // accurate, such functions should be marked as noreturn.
399   return AlwaysFallThrough;
400 }
401
402 namespace {
403
404 struct CheckFallThroughDiagnostics {
405   unsigned diag_MaybeFallThrough_HasNoReturn;
406   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
407   unsigned diag_AlwaysFallThrough_HasNoReturn;
408   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
409   unsigned diag_NeverFallThroughOrReturn;
410   enum { Function, Block, Lambda } funMode;
411   SourceLocation FuncLoc;
412
413   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
414     CheckFallThroughDiagnostics D;
415     D.FuncLoc = Func->getLocation();
416     D.diag_MaybeFallThrough_HasNoReturn =
417       diag::warn_falloff_noreturn_function;
418     D.diag_MaybeFallThrough_ReturnsNonVoid =
419       diag::warn_maybe_falloff_nonvoid_function;
420     D.diag_AlwaysFallThrough_HasNoReturn =
421       diag::warn_falloff_noreturn_function;
422     D.diag_AlwaysFallThrough_ReturnsNonVoid =
423       diag::warn_falloff_nonvoid_function;
424
425     // Don't suggest that virtual functions be marked "noreturn", since they
426     // might be overridden by non-noreturn functions.
427     bool isVirtualMethod = false;
428     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
429       isVirtualMethod = Method->isVirtual();
430     
431     // Don't suggest that template instantiations be marked "noreturn"
432     bool isTemplateInstantiation = false;
433     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
434       isTemplateInstantiation = Function->isTemplateInstantiation();
435         
436     if (!isVirtualMethod && !isTemplateInstantiation)
437       D.diag_NeverFallThroughOrReturn =
438         diag::warn_suggest_noreturn_function;
439     else
440       D.diag_NeverFallThroughOrReturn = 0;
441     
442     D.funMode = Function;
443     return D;
444   }
445
446   static CheckFallThroughDiagnostics MakeForBlock() {
447     CheckFallThroughDiagnostics D;
448     D.diag_MaybeFallThrough_HasNoReturn =
449       diag::err_noreturn_block_has_return_expr;
450     D.diag_MaybeFallThrough_ReturnsNonVoid =
451       diag::err_maybe_falloff_nonvoid_block;
452     D.diag_AlwaysFallThrough_HasNoReturn =
453       diag::err_noreturn_block_has_return_expr;
454     D.diag_AlwaysFallThrough_ReturnsNonVoid =
455       diag::err_falloff_nonvoid_block;
456     D.diag_NeverFallThroughOrReturn = 0;
457     D.funMode = Block;
458     return D;
459   }
460
461   static CheckFallThroughDiagnostics MakeForLambda() {
462     CheckFallThroughDiagnostics D;
463     D.diag_MaybeFallThrough_HasNoReturn =
464       diag::err_noreturn_lambda_has_return_expr;
465     D.diag_MaybeFallThrough_ReturnsNonVoid =
466       diag::warn_maybe_falloff_nonvoid_lambda;
467     D.diag_AlwaysFallThrough_HasNoReturn =
468       diag::err_noreturn_lambda_has_return_expr;
469     D.diag_AlwaysFallThrough_ReturnsNonVoid =
470       diag::warn_falloff_nonvoid_lambda;
471     D.diag_NeverFallThroughOrReturn = 0;
472     D.funMode = Lambda;
473     return D;
474   }
475
476   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
477                         bool HasNoReturn) const {
478     if (funMode == Function) {
479       return (ReturnsVoid ||
480               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
481                           FuncLoc)) &&
482              (!HasNoReturn ||
483               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
484                           FuncLoc)) &&
485              (!ReturnsVoid ||
486               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
487     }
488
489     // For blocks / lambdas.
490     return ReturnsVoid && !HasNoReturn;
491   }
492 };
493
494 }
495
496 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
497 /// function that should return a value.  Check that we don't fall off the end
498 /// of a noreturn function.  We assume that functions and blocks not marked
499 /// noreturn will return.
500 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
501                                     const BlockExpr *blkExpr,
502                                     const CheckFallThroughDiagnostics& CD,
503                                     AnalysisDeclContext &AC) {
504
505   bool ReturnsVoid = false;
506   bool HasNoReturn = false;
507
508   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
509     ReturnsVoid = FD->getReturnType()->isVoidType();
510     HasNoReturn = FD->isNoReturn();
511   }
512   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
513     ReturnsVoid = MD->getReturnType()->isVoidType();
514     HasNoReturn = MD->hasAttr<NoReturnAttr>();
515   }
516   else if (isa<BlockDecl>(D)) {
517     QualType BlockTy = blkExpr->getType();
518     if (const FunctionType *FT =
519           BlockTy->getPointeeType()->getAs<FunctionType>()) {
520       if (FT->getReturnType()->isVoidType())
521         ReturnsVoid = true;
522       if (FT->getNoReturnAttr())
523         HasNoReturn = true;
524     }
525   }
526
527   DiagnosticsEngine &Diags = S.getDiagnostics();
528
529   // Short circuit for compilation speed.
530   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
531       return;
532
533   // FIXME: Function try block
534   if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
535     switch (CheckFallThrough(AC)) {
536       case UnknownFallThrough:
537         break;
538
539       case MaybeFallThrough:
540         if (HasNoReturn)
541           S.Diag(Compound->getRBracLoc(),
542                  CD.diag_MaybeFallThrough_HasNoReturn);
543         else if (!ReturnsVoid)
544           S.Diag(Compound->getRBracLoc(),
545                  CD.diag_MaybeFallThrough_ReturnsNonVoid);
546         break;
547       case AlwaysFallThrough:
548         if (HasNoReturn)
549           S.Diag(Compound->getRBracLoc(),
550                  CD.diag_AlwaysFallThrough_HasNoReturn);
551         else if (!ReturnsVoid)
552           S.Diag(Compound->getRBracLoc(),
553                  CD.diag_AlwaysFallThrough_ReturnsNonVoid);
554         break;
555       case NeverFallThroughOrReturn:
556         if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
557           if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
558             S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
559               << 0 << FD;
560           } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
561             S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
562               << 1 << MD;
563           } else {
564             S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
565           }
566         }
567         break;
568       case NeverFallThrough:
569         break;
570     }
571   }
572 }
573
574 //===----------------------------------------------------------------------===//
575 // -Wuninitialized
576 //===----------------------------------------------------------------------===//
577
578 namespace {
579 /// ContainsReference - A visitor class to search for references to
580 /// a particular declaration (the needle) within any evaluated component of an
581 /// expression (recursively).
582 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
583   bool FoundReference;
584   const DeclRefExpr *Needle;
585
586 public:
587   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
588     : EvaluatedExprVisitor<ContainsReference>(Context),
589       FoundReference(false), Needle(Needle) {}
590
591   void VisitExpr(Expr *E) {
592     // Stop evaluating if we already have a reference.
593     if (FoundReference)
594       return;
595
596     EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
597   }
598
599   void VisitDeclRefExpr(DeclRefExpr *E) {
600     if (E == Needle)
601       FoundReference = true;
602     else
603       EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
604   }
605
606   bool doesContainReference() const { return FoundReference; }
607 };
608 }
609
610 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
611   QualType VariableTy = VD->getType().getCanonicalType();
612   if (VariableTy->isBlockPointerType() &&
613       !VD->hasAttr<BlocksAttr>()) {
614     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
615         << VD->getDeclName()
616         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
617     return true;
618   }
619
620   // Don't issue a fixit if there is already an initializer.
621   if (VD->getInit())
622     return false;
623
624   // Don't suggest a fixit inside macros.
625   if (VD->getLocEnd().isMacroID())
626     return false;
627
628   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
629
630   // Suggest possible initialization (if any).
631   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
632   if (Init.empty())
633     return false;
634
635   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
636     << FixItHint::CreateInsertion(Loc, Init);
637   return true;
638 }
639
640 /// Create a fixit to remove an if-like statement, on the assumption that its
641 /// condition is CondVal.
642 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
643                           const Stmt *Else, bool CondVal,
644                           FixItHint &Fixit1, FixItHint &Fixit2) {
645   if (CondVal) {
646     // If condition is always true, remove all but the 'then'.
647     Fixit1 = FixItHint::CreateRemoval(
648         CharSourceRange::getCharRange(If->getLocStart(),
649                                       Then->getLocStart()));
650     if (Else) {
651       SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
652           Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
653       Fixit2 = FixItHint::CreateRemoval(
654           SourceRange(ElseKwLoc, Else->getLocEnd()));
655     }
656   } else {
657     // If condition is always false, remove all but the 'else'.
658     if (Else)
659       Fixit1 = FixItHint::CreateRemoval(
660           CharSourceRange::getCharRange(If->getLocStart(),
661                                         Else->getLocStart()));
662     else
663       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
664   }
665 }
666
667 /// DiagUninitUse -- Helper function to produce a diagnostic for an
668 /// uninitialized use of a variable.
669 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
670                           bool IsCapturedByBlock) {
671   bool Diagnosed = false;
672
673   switch (Use.getKind()) {
674   case UninitUse::Always:
675     S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
676         << VD->getDeclName() << IsCapturedByBlock
677         << Use.getUser()->getSourceRange();
678     return;
679
680   case UninitUse::AfterDecl:
681   case UninitUse::AfterCall:
682     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
683       << VD->getDeclName() << IsCapturedByBlock
684       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
685       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
686       << VD->getSourceRange();
687     S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
688       << IsCapturedByBlock << Use.getUser()->getSourceRange();
689     return;
690
691   case UninitUse::Maybe:
692   case UninitUse::Sometimes:
693     // Carry on to report sometimes-uninitialized branches, if possible,
694     // or a 'may be used uninitialized' diagnostic otherwise.
695     break;
696   }
697
698   // Diagnose each branch which leads to a sometimes-uninitialized use.
699   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
700        I != E; ++I) {
701     assert(Use.getKind() == UninitUse::Sometimes);
702
703     const Expr *User = Use.getUser();
704     const Stmt *Term = I->Terminator;
705
706     // Information used when building the diagnostic.
707     unsigned DiagKind;
708     StringRef Str;
709     SourceRange Range;
710
711     // FixIts to suppress the diagnostic by removing the dead condition.
712     // For all binary terminators, branch 0 is taken if the condition is true,
713     // and branch 1 is taken if the condition is false.
714     int RemoveDiagKind = -1;
715     const char *FixitStr =
716         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
717                                   : (I->Output ? "1" : "0");
718     FixItHint Fixit1, Fixit2;
719
720     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
721     default:
722       // Don't know how to report this. Just fall back to 'may be used
723       // uninitialized'. FIXME: Can this happen?
724       continue;
725
726     // "condition is true / condition is false".
727     case Stmt::IfStmtClass: {
728       const IfStmt *IS = cast<IfStmt>(Term);
729       DiagKind = 0;
730       Str = "if";
731       Range = IS->getCond()->getSourceRange();
732       RemoveDiagKind = 0;
733       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
734                     I->Output, Fixit1, Fixit2);
735       break;
736     }
737     case Stmt::ConditionalOperatorClass: {
738       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
739       DiagKind = 0;
740       Str = "?:";
741       Range = CO->getCond()->getSourceRange();
742       RemoveDiagKind = 0;
743       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
744                     I->Output, Fixit1, Fixit2);
745       break;
746     }
747     case Stmt::BinaryOperatorClass: {
748       const BinaryOperator *BO = cast<BinaryOperator>(Term);
749       if (!BO->isLogicalOp())
750         continue;
751       DiagKind = 0;
752       Str = BO->getOpcodeStr();
753       Range = BO->getLHS()->getSourceRange();
754       RemoveDiagKind = 0;
755       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
756           (BO->getOpcode() == BO_LOr && !I->Output))
757         // true && y -> y, false || y -> y.
758         Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
759                                                       BO->getOperatorLoc()));
760       else
761         // false && y -> false, true || y -> true.
762         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
763       break;
764     }
765
766     // "loop is entered / loop is exited".
767     case Stmt::WhileStmtClass:
768       DiagKind = 1;
769       Str = "while";
770       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
771       RemoveDiagKind = 1;
772       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
773       break;
774     case Stmt::ForStmtClass:
775       DiagKind = 1;
776       Str = "for";
777       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
778       RemoveDiagKind = 1;
779       if (I->Output)
780         Fixit1 = FixItHint::CreateRemoval(Range);
781       else
782         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
783       break;
784     case Stmt::CXXForRangeStmtClass:
785       if (I->Output == 1) {
786         // The use occurs if a range-based for loop's body never executes.
787         // That may be impossible, and there's no syntactic fix for this,
788         // so treat it as a 'may be uninitialized' case.
789         continue;
790       }
791       DiagKind = 1;
792       Str = "for";
793       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
794       break;
795
796     // "condition is true / loop is exited".
797     case Stmt::DoStmtClass:
798       DiagKind = 2;
799       Str = "do";
800       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
801       RemoveDiagKind = 1;
802       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
803       break;
804
805     // "switch case is taken".
806     case Stmt::CaseStmtClass:
807       DiagKind = 3;
808       Str = "case";
809       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
810       break;
811     case Stmt::DefaultStmtClass:
812       DiagKind = 3;
813       Str = "default";
814       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
815       break;
816     }
817
818     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
819       << VD->getDeclName() << IsCapturedByBlock << DiagKind
820       << Str << I->Output << Range;
821     S.Diag(User->getLocStart(), diag::note_uninit_var_use)
822       << IsCapturedByBlock << User->getSourceRange();
823     if (RemoveDiagKind != -1)
824       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
825         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
826
827     Diagnosed = true;
828   }
829
830   if (!Diagnosed)
831     S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
832         << VD->getDeclName() << IsCapturedByBlock
833         << Use.getUser()->getSourceRange();
834 }
835
836 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
837 /// uninitialized variable. This manages the different forms of diagnostic
838 /// emitted for particular types of uses. Returns true if the use was diagnosed
839 /// as a warning. If a particular use is one we omit warnings for, returns
840 /// false.
841 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
842                                      const UninitUse &Use,
843                                      bool alwaysReportSelfInit = false) {
844
845   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
846     // Inspect the initializer of the variable declaration which is
847     // being referenced prior to its initialization. We emit
848     // specialized diagnostics for self-initialization, and we
849     // specifically avoid warning about self references which take the
850     // form of:
851     //
852     //   int x = x;
853     //
854     // This is used to indicate to GCC that 'x' is intentionally left
855     // uninitialized. Proven code paths which access 'x' in
856     // an uninitialized state after this will still warn.
857     if (const Expr *Initializer = VD->getInit()) {
858       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
859         return false;
860
861       ContainsReference CR(S.Context, DRE);
862       CR.Visit(const_cast<Expr*>(Initializer));
863       if (CR.doesContainReference()) {
864         S.Diag(DRE->getLocStart(),
865                diag::warn_uninit_self_reference_in_init)
866           << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
867         return true;
868       }
869     }
870
871     DiagUninitUse(S, VD, Use, false);
872   } else {
873     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
874     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
875       S.Diag(BE->getLocStart(),
876              diag::warn_uninit_byref_blockvar_captured_by_block)
877         << VD->getDeclName();
878     else
879       DiagUninitUse(S, VD, Use, true);
880   }
881
882   // Report where the variable was declared when the use wasn't within
883   // the initializer of that declaration & we didn't already suggest
884   // an initialization fixit.
885   if (!SuggestInitializationFixit(S, VD))
886     S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
887       << VD->getDeclName();
888
889   return true;
890 }
891
892 namespace {
893   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
894   public:
895     FallthroughMapper(Sema &S)
896       : FoundSwitchStatements(false),
897         S(S) {
898     }
899
900     bool foundSwitchStatements() const { return FoundSwitchStatements; }
901
902     void markFallthroughVisited(const AttributedStmt *Stmt) {
903       bool Found = FallthroughStmts.erase(Stmt);
904       assert(Found);
905       (void)Found;
906     }
907
908     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
909
910     const AttrStmts &getFallthroughStmts() const {
911       return FallthroughStmts;
912     }
913
914     void fillReachableBlocks(CFG *Cfg) {
915       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
916       std::deque<const CFGBlock *> BlockQueue;
917
918       ReachableBlocks.insert(&Cfg->getEntry());
919       BlockQueue.push_back(&Cfg->getEntry());
920       // Mark all case blocks reachable to avoid problems with switching on
921       // constants, covered enums, etc.
922       // These blocks can contain fall-through annotations, and we don't want to
923       // issue a warn_fallthrough_attr_unreachable for them.
924       for (const auto *B : *Cfg) {
925         const Stmt *L = B->getLabel();
926         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
927           BlockQueue.push_back(B);
928       }
929
930       while (!BlockQueue.empty()) {
931         const CFGBlock *P = BlockQueue.front();
932         BlockQueue.pop_front();
933         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
934                                            E = P->succ_end();
935              I != E; ++I) {
936           if (*I && ReachableBlocks.insert(*I))
937             BlockQueue.push_back(*I);
938         }
939       }
940     }
941
942     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
943       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
944
945       int UnannotatedCnt = 0;
946       AnnotatedCnt = 0;
947
948       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
949       while (!BlockQueue.empty()) {
950         const CFGBlock *P = BlockQueue.front();
951         BlockQueue.pop_front();
952         if (!P) continue;
953
954         const Stmt *Term = P->getTerminator();
955         if (Term && isa<SwitchStmt>(Term))
956           continue; // Switch statement, good.
957
958         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
959         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
960           continue; // Previous case label has no statements, good.
961
962         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
963         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
964           continue; // Case label is preceded with a normal label, good.
965
966         if (!ReachableBlocks.count(P)) {
967           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
968                                                 ElemEnd = P->rend();
969                ElemIt != ElemEnd; ++ElemIt) {
970             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
971               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
972                 S.Diag(AS->getLocStart(),
973                        diag::warn_fallthrough_attr_unreachable);
974                 markFallthroughVisited(AS);
975                 ++AnnotatedCnt;
976                 break;
977               }
978               // Don't care about other unreachable statements.
979             }
980           }
981           // If there are no unreachable statements, this may be a special
982           // case in CFG:
983           // case X: {
984           //    A a;  // A has a destructor.
985           //    break;
986           // }
987           // // <<<< This place is represented by a 'hanging' CFG block.
988           // case Y:
989           continue;
990         }
991
992         const Stmt *LastStmt = getLastStmt(*P);
993         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
994           markFallthroughVisited(AS);
995           ++AnnotatedCnt;
996           continue; // Fallthrough annotation, good.
997         }
998
999         if (!LastStmt) { // This block contains no executable statements.
1000           // Traverse its predecessors.
1001           std::copy(P->pred_begin(), P->pred_end(),
1002                     std::back_inserter(BlockQueue));
1003           continue;
1004         }
1005
1006         ++UnannotatedCnt;
1007       }
1008       return !!UnannotatedCnt;
1009     }
1010
1011     // RecursiveASTVisitor setup.
1012     bool shouldWalkTypesOfTypeLocs() const { return false; }
1013
1014     bool VisitAttributedStmt(AttributedStmt *S) {
1015       if (asFallThroughAttr(S))
1016         FallthroughStmts.insert(S);
1017       return true;
1018     }
1019
1020     bool VisitSwitchStmt(SwitchStmt *S) {
1021       FoundSwitchStatements = true;
1022       return true;
1023     }
1024
1025     // We don't want to traverse local type declarations. We analyze their
1026     // methods separately.
1027     bool TraverseDecl(Decl *D) { return true; }
1028
1029     // We analyze lambda bodies separately. Skip them here.
1030     bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
1031
1032   private:
1033
1034     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1035       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1036         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1037           return AS;
1038       }
1039       return nullptr;
1040     }
1041
1042     static const Stmt *getLastStmt(const CFGBlock &B) {
1043       if (const Stmt *Term = B.getTerminator())
1044         return Term;
1045       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1046                                             ElemEnd = B.rend();
1047                                             ElemIt != ElemEnd; ++ElemIt) {
1048         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1049           return CS->getStmt();
1050       }
1051       // Workaround to detect a statement thrown out by CFGBuilder:
1052       //   case X: {} case Y:
1053       //   case X: ; case Y:
1054       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1055         if (!isa<SwitchCase>(SW->getSubStmt()))
1056           return SW->getSubStmt();
1057
1058       return nullptr;
1059     }
1060
1061     bool FoundSwitchStatements;
1062     AttrStmts FallthroughStmts;
1063     Sema &S;
1064     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1065   };
1066 }
1067
1068 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1069                                             bool PerFunction) {
1070   // Only perform this analysis when using C++11.  There is no good workflow
1071   // for this warning when not using C++11.  There is no good way to silence
1072   // the warning (no attribute is available) unless we are using C++11's support
1073   // for generalized attributes.  Once could use pragmas to silence the warning,
1074   // but as a general solution that is gross and not in the spirit of this
1075   // warning.
1076   //
1077   // NOTE: This an intermediate solution.  There are on-going discussions on
1078   // how to properly support this warning outside of C++11 with an annotation.
1079   if (!AC.getASTContext().getLangOpts().CPlusPlus11)
1080     return;
1081
1082   FallthroughMapper FM(S);
1083   FM.TraverseStmt(AC.getBody());
1084
1085   if (!FM.foundSwitchStatements())
1086     return;
1087
1088   if (PerFunction && FM.getFallthroughStmts().empty())
1089     return;
1090
1091   CFG *Cfg = AC.getCFG();
1092
1093   if (!Cfg)
1094     return;
1095
1096   FM.fillReachableBlocks(Cfg);
1097
1098   for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
1099     const CFGBlock *B = *I;
1100     const Stmt *Label = B->getLabel();
1101
1102     if (!Label || !isa<SwitchCase>(Label))
1103       continue;
1104
1105     int AnnotatedCnt;
1106
1107     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
1108       continue;
1109
1110     S.Diag(Label->getLocStart(),
1111         PerFunction ? diag::warn_unannotated_fallthrough_per_function
1112                     : diag::warn_unannotated_fallthrough);
1113
1114     if (!AnnotatedCnt) {
1115       SourceLocation L = Label->getLocStart();
1116       if (L.isMacroID())
1117         continue;
1118       if (S.getLangOpts().CPlusPlus11) {
1119         const Stmt *Term = B->getTerminator();
1120         // Skip empty cases.
1121         while (B->empty() && !Term && B->succ_size() == 1) {
1122           B = *B->succ_begin();
1123           Term = B->getTerminator();
1124         }
1125         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1126           Preprocessor &PP = S.getPreprocessor();
1127           TokenValue Tokens[] = {
1128             tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1129             tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1130             tok::r_square, tok::r_square
1131           };
1132           StringRef AnnotationSpelling = "[[clang::fallthrough]]";
1133           StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
1134           if (!MacroName.empty())
1135             AnnotationSpelling = MacroName;
1136           SmallString<64> TextToInsert(AnnotationSpelling);
1137           TextToInsert += "; ";
1138           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1139               AnnotationSpelling <<
1140               FixItHint::CreateInsertion(L, TextToInsert);
1141         }
1142       }
1143       S.Diag(L, diag::note_insert_break_fixit) <<
1144         FixItHint::CreateInsertion(L, "break; ");
1145     }
1146   }
1147
1148   for (const auto *F : FM.getFallthroughStmts())
1149     S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
1150 }
1151
1152 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1153                      const Stmt *S) {
1154   assert(S);
1155
1156   do {
1157     switch (S->getStmtClass()) {
1158     case Stmt::ForStmtClass:
1159     case Stmt::WhileStmtClass:
1160     case Stmt::CXXForRangeStmtClass:
1161     case Stmt::ObjCForCollectionStmtClass:
1162       return true;
1163     case Stmt::DoStmtClass: {
1164       const Expr *Cond = cast<DoStmt>(S)->getCond();
1165       llvm::APSInt Val;
1166       if (!Cond->EvaluateAsInt(Val, Ctx))
1167         return true;
1168       return Val.getBoolValue();
1169     }
1170     default:
1171       break;
1172     }
1173   } while ((S = PM.getParent(S)));
1174
1175   return false;
1176 }
1177
1178
1179 static void diagnoseRepeatedUseOfWeak(Sema &S,
1180                                       const sema::FunctionScopeInfo *CurFn,
1181                                       const Decl *D,
1182                                       const ParentMap &PM) {
1183   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1184   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1185   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1186   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1187   StmtUsesPair;
1188
1189   ASTContext &Ctx = S.getASTContext();
1190
1191   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1192
1193   // Extract all weak objects that are referenced more than once.
1194   SmallVector<StmtUsesPair, 8> UsesByStmt;
1195   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1196        I != E; ++I) {
1197     const WeakUseVector &Uses = I->second;
1198
1199     // Find the first read of the weak object.
1200     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1201     for ( ; UI != UE; ++UI) {
1202       if (UI->isUnsafe())
1203         break;
1204     }
1205
1206     // If there were only writes to this object, don't warn.
1207     if (UI == UE)
1208       continue;
1209
1210     // If there was only one read, followed by any number of writes, and the
1211     // read is not within a loop, don't warn. Additionally, don't warn in a
1212     // loop if the base object is a local variable -- local variables are often
1213     // changed in loops.
1214     if (UI == Uses.begin()) {
1215       WeakUseVector::const_iterator UI2 = UI;
1216       for (++UI2; UI2 != UE; ++UI2)
1217         if (UI2->isUnsafe())
1218           break;
1219
1220       if (UI2 == UE) {
1221         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1222           continue;
1223
1224         const WeakObjectProfileTy &Profile = I->first;
1225         if (!Profile.isExactProfile())
1226           continue;
1227
1228         const NamedDecl *Base = Profile.getBase();
1229         if (!Base)
1230           Base = Profile.getProperty();
1231         assert(Base && "A profile always has a base or property.");
1232
1233         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1234           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1235             continue;
1236       }
1237     }
1238
1239     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1240   }
1241
1242   if (UsesByStmt.empty())
1243     return;
1244
1245   // Sort by first use so that we emit the warnings in a deterministic order.
1246   SourceManager &SM = S.getSourceManager();
1247   std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1248             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1249     return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
1250                                         RHS.first->getLocStart());
1251   });
1252
1253   // Classify the current code body for better warning text.
1254   // This enum should stay in sync with the cases in
1255   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1256   // FIXME: Should we use a common classification enum and the same set of
1257   // possibilities all throughout Sema?
1258   enum {
1259     Function,
1260     Method,
1261     Block,
1262     Lambda
1263   } FunctionKind;
1264
1265   if (isa<sema::BlockScopeInfo>(CurFn))
1266     FunctionKind = Block;
1267   else if (isa<sema::LambdaScopeInfo>(CurFn))
1268     FunctionKind = Lambda;
1269   else if (isa<ObjCMethodDecl>(D))
1270     FunctionKind = Method;
1271   else
1272     FunctionKind = Function;
1273
1274   // Iterate through the sorted problems and emit warnings for each.
1275   for (const auto &P : UsesByStmt) {
1276     const Stmt *FirstRead = P.first;
1277     const WeakObjectProfileTy &Key = P.second->first;
1278     const WeakUseVector &Uses = P.second->second;
1279
1280     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1281     // may not contain enough information to determine that these are different
1282     // properties. We can only be 100% sure of a repeated use in certain cases,
1283     // and we adjust the diagnostic kind accordingly so that the less certain
1284     // case can be turned off if it is too noisy.
1285     unsigned DiagKind;
1286     if (Key.isExactProfile())
1287       DiagKind = diag::warn_arc_repeated_use_of_weak;
1288     else
1289       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1290
1291     // Classify the weak object being accessed for better warning text.
1292     // This enum should stay in sync with the cases in
1293     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1294     enum {
1295       Variable,
1296       Property,
1297       ImplicitProperty,
1298       Ivar
1299     } ObjectKind;
1300
1301     const NamedDecl *D = Key.getProperty();
1302     if (isa<VarDecl>(D))
1303       ObjectKind = Variable;
1304     else if (isa<ObjCPropertyDecl>(D))
1305       ObjectKind = Property;
1306     else if (isa<ObjCMethodDecl>(D))
1307       ObjectKind = ImplicitProperty;
1308     else if (isa<ObjCIvarDecl>(D))
1309       ObjectKind = Ivar;
1310     else
1311       llvm_unreachable("Unexpected weak object kind!");
1312
1313     // Show the first time the object was read.
1314     S.Diag(FirstRead->getLocStart(), DiagKind)
1315       << int(ObjectKind) << D << int(FunctionKind)
1316       << FirstRead->getSourceRange();
1317
1318     // Print all the other accesses as notes.
1319     for (const auto &Use : Uses) {
1320       if (Use.getUseExpr() == FirstRead)
1321         continue;
1322       S.Diag(Use.getUseExpr()->getLocStart(),
1323              diag::note_arc_weak_also_accessed_here)
1324           << Use.getUseExpr()->getSourceRange();
1325     }
1326   }
1327 }
1328
1329 namespace {
1330 class UninitValsDiagReporter : public UninitVariablesHandler {
1331   Sema &S;
1332   typedef SmallVector<UninitUse, 2> UsesVec;
1333   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1334   // Prefer using MapVector to DenseMap, so that iteration order will be
1335   // the same as insertion order. This is needed to obtain a deterministic
1336   // order of diagnostics when calling flushDiagnostics().
1337   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1338   UsesMap *uses;
1339   
1340 public:
1341   UninitValsDiagReporter(Sema &S) : S(S), uses(nullptr) {}
1342   ~UninitValsDiagReporter() { 
1343     flushDiagnostics();
1344   }
1345
1346   MappedType &getUses(const VarDecl *vd) {
1347     if (!uses)
1348       uses = new UsesMap();
1349
1350     MappedType &V = (*uses)[vd];
1351     if (!V.getPointer())
1352       V.setPointer(new UsesVec());
1353     
1354     return V;
1355   }
1356
1357   void handleUseOfUninitVariable(const VarDecl *vd,
1358                                  const UninitUse &use) override {
1359     getUses(vd).getPointer()->push_back(use);
1360   }
1361   
1362   void handleSelfInit(const VarDecl *vd) override {
1363     getUses(vd).setInt(true);
1364   }
1365   
1366   void flushDiagnostics() {
1367     if (!uses)
1368       return;
1369
1370     for (const auto &P : *uses) {
1371       const VarDecl *vd = P.first;
1372       const MappedType &V = P.second;
1373
1374       UsesVec *vec = V.getPointer();
1375       bool hasSelfInit = V.getInt();
1376
1377       // Specially handle the case where we have uses of an uninitialized 
1378       // variable, but the root cause is an idiomatic self-init.  We want
1379       // to report the diagnostic at the self-init since that is the root cause.
1380       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1381         DiagnoseUninitializedUse(S, vd,
1382                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
1383                                            /* isAlwaysUninit */ true),
1384                                  /* alwaysReportSelfInit */ true);
1385       else {
1386         // Sort the uses by their SourceLocations.  While not strictly
1387         // guaranteed to produce them in line/column order, this will provide
1388         // a stable ordering.
1389         std::sort(vec->begin(), vec->end(),
1390                   [](const UninitUse &a, const UninitUse &b) {
1391           // Prefer a more confident report over a less confident one.
1392           if (a.getKind() != b.getKind())
1393             return a.getKind() > b.getKind();
1394           return a.getUser()->getLocStart() < b.getUser()->getLocStart();
1395         });
1396
1397         for (const auto &U : *vec) {
1398           // If we have self-init, downgrade all uses to 'may be uninitialized'.
1399           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1400
1401           if (DiagnoseUninitializedUse(S, vd, Use))
1402             // Skip further diagnostics for this variable. We try to warn only
1403             // on the first point at which a variable is used uninitialized.
1404             break;
1405         }
1406       }
1407       
1408       // Release the uses vector.
1409       delete vec;
1410     }
1411     delete uses;
1412   }
1413
1414 private:
1415   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1416     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1417       return U.getKind() == UninitUse::Always ||
1418              U.getKind() == UninitUse::AfterCall ||
1419              U.getKind() == UninitUse::AfterDecl;
1420     });
1421   }
1422 };
1423 }
1424
1425 namespace clang {
1426 namespace {
1427 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1428 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1429 typedef std::list<DelayedDiag> DiagList;
1430
1431 struct SortDiagBySourceLocation {
1432   SourceManager &SM;
1433   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1434
1435   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1436     // Although this call will be slow, this is only called when outputting
1437     // multiple warnings.
1438     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1439   }
1440 };
1441 }}
1442
1443 //===----------------------------------------------------------------------===//
1444 // -Wthread-safety
1445 //===----------------------------------------------------------------------===//
1446 namespace clang {
1447 namespace thread_safety {
1448 namespace {
1449 class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
1450   Sema &S;
1451   DiagList Warnings;
1452   SourceLocation FunLocation, FunEndLocation;
1453
1454   // Helper functions
1455   void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
1456                         SourceLocation Loc) {
1457     // Gracefully handle rare cases when the analysis can't get a more
1458     // precise source location.
1459     if (!Loc.isValid())
1460       Loc = FunLocation;
1461     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
1462     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1463   }
1464
1465  public:
1466   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1467     : S(S), FunLocation(FL), FunEndLocation(FEL) {}
1468
1469   /// \brief Emit all buffered diagnostics in order of sourcelocation.
1470   /// We need to output diagnostics produced while iterating through
1471   /// the lockset in deterministic order, so this function orders diagnostics
1472   /// and outputs them.
1473   void emitDiagnostics() {
1474     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1475     for (const auto &Diag : Warnings) {
1476       S.Diag(Diag.first.first, Diag.first.second);
1477       for (const auto &Note : Diag.second)
1478         S.Diag(Note.first, Note.second);
1479     }
1480   }
1481
1482   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1483     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1484                                          << Loc);
1485     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1486   }
1487   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1488                              SourceLocation Loc) override {
1489     warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
1490   }
1491   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1492                                  LockKind Expected, LockKind Received,
1493                                  SourceLocation Loc) override {
1494     if (Loc.isInvalid())
1495       Loc = FunLocation;
1496     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
1497                                          << Kind << LockName << Received
1498                                          << Expected);
1499     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1500   }
1501   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
1502     warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
1503   }
1504
1505   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1506                                  SourceLocation LocLocked,
1507                                  SourceLocation LocEndOfScope,
1508                                  LockErrorKind LEK) override {
1509     unsigned DiagID = 0;
1510     switch (LEK) {
1511       case LEK_LockedSomePredecessors:
1512         DiagID = diag::warn_lock_some_predecessors;
1513         break;
1514       case LEK_LockedSomeLoopIterations:
1515         DiagID = diag::warn_expecting_lock_held_on_loop;
1516         break;
1517       case LEK_LockedAtEndOfFunction:
1518         DiagID = diag::warn_no_unlock;
1519         break;
1520       case LEK_NotLockedAtEndOfFunction:
1521         DiagID = diag::warn_expecting_locked;
1522         break;
1523     }
1524     if (LocEndOfScope.isInvalid())
1525       LocEndOfScope = FunEndLocation;
1526
1527     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1528                                                                << LockName);
1529     if (LocLocked.isValid()) {
1530       PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
1531                                               << Kind);
1532       Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1533       return;
1534     }
1535     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1536   }
1537
1538   void handleExclusiveAndShared(StringRef Kind, Name LockName,
1539                                 SourceLocation Loc1,
1540                                 SourceLocation Loc2) override {
1541     PartialDiagnosticAt Warning(Loc1,
1542                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
1543                                     << Kind << LockName);
1544     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1545                                        << Kind << LockName);
1546     Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1547   }
1548
1549   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1550                          ProtectedOperationKind POK, AccessKind AK,
1551                          SourceLocation Loc) override {
1552     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1553            "Only works for variables");
1554     unsigned DiagID = POK == POK_VarAccess?
1555                         diag::warn_variable_requires_any_lock:
1556                         diag::warn_var_deref_requires_any_lock;
1557     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1558       << D->getNameAsString() << getLockKindFromAccessKind(AK));
1559     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1560   }
1561
1562   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1563                           ProtectedOperationKind POK, Name LockName,
1564                           LockKind LK, SourceLocation Loc,
1565                           Name *PossibleMatch) override {
1566     unsigned DiagID = 0;
1567     if (PossibleMatch) {
1568       switch (POK) {
1569         case POK_VarAccess:
1570           DiagID = diag::warn_variable_requires_lock_precise;
1571           break;
1572         case POK_VarDereference:
1573           DiagID = diag::warn_var_deref_requires_lock_precise;
1574           break;
1575         case POK_FunctionCall:
1576           DiagID = diag::warn_fun_requires_lock_precise;
1577           break;
1578       }
1579       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1580                                                        << D->getNameAsString()
1581                                                        << LockName << LK);
1582       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1583                                         << *PossibleMatch);
1584       Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1585     } else {
1586       switch (POK) {
1587         case POK_VarAccess:
1588           DiagID = diag::warn_variable_requires_lock;
1589           break;
1590         case POK_VarDereference:
1591           DiagID = diag::warn_var_deref_requires_lock;
1592           break;
1593         case POK_FunctionCall:
1594           DiagID = diag::warn_fun_requires_lock;
1595           break;
1596       }
1597       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1598                                                        << D->getNameAsString()
1599                                                        << LockName << LK);
1600       Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1601     }
1602   }
1603
1604   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1605                              SourceLocation Loc) override {
1606     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1607                                          << Kind << FunName << LockName);
1608     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1609   }
1610 };
1611 }
1612 }
1613 }
1614
1615 //===----------------------------------------------------------------------===//
1616 // -Wconsumed
1617 //===----------------------------------------------------------------------===//
1618
1619 namespace clang {
1620 namespace consumed {
1621 namespace {
1622 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1623   
1624   Sema &S;
1625   DiagList Warnings;
1626   
1627 public:
1628   
1629   ConsumedWarningsHandler(Sema &S) : S(S) {}
1630
1631   void emitDiagnostics() override {
1632     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1633     for (const auto &Diag : Warnings) {
1634       S.Diag(Diag.first.first, Diag.first.second);
1635       for (const auto &Note : Diag.second)
1636         S.Diag(Note.first, Note.second);
1637     }
1638   }
1639
1640   void warnLoopStateMismatch(SourceLocation Loc,
1641                              StringRef VariableName) override {
1642     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1643       VariableName);
1644     
1645     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1646   }
1647   
1648   void warnParamReturnTypestateMismatch(SourceLocation Loc,
1649                                         StringRef VariableName,
1650                                         StringRef ExpectedState,
1651                                         StringRef ObservedState) override {
1652     
1653     PartialDiagnosticAt Warning(Loc, S.PDiag(
1654       diag::warn_param_return_typestate_mismatch) << VariableName <<
1655         ExpectedState << ObservedState);
1656     
1657     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1658   }
1659   
1660   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1661                                   StringRef ObservedState) override {
1662     
1663     PartialDiagnosticAt Warning(Loc, S.PDiag(
1664       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1665     
1666     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1667   }
1668   
1669   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1670                                               StringRef TypeName) override {
1671     PartialDiagnosticAt Warning(Loc, S.PDiag(
1672       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1673     
1674     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1675   }
1676   
1677   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1678                                    StringRef ObservedState) override {
1679                                     
1680     PartialDiagnosticAt Warning(Loc, S.PDiag(
1681       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1682     
1683     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1684   }
1685   
1686   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1687                                    SourceLocation Loc) override {
1688                                                     
1689     PartialDiagnosticAt Warning(Loc, S.PDiag(
1690       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1691     
1692     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1693   }
1694   
1695   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1696                              StringRef State, SourceLocation Loc) override {
1697   
1698     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1699                                 MethodName << VariableName << State);
1700     
1701     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1702   }
1703 };
1704 }}}
1705
1706 //===----------------------------------------------------------------------===//
1707 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1708 //  warnings on a function, method, or block.
1709 //===----------------------------------------------------------------------===//
1710
1711 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1712   enableCheckFallThrough = 1;
1713   enableCheckUnreachable = 0;
1714   enableThreadSafetyAnalysis = 0;
1715   enableConsumedAnalysis = 0;
1716 }
1717
1718 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1719   return (unsigned)!D.isIgnored(diag, SourceLocation());
1720 }
1721
1722 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1723   : S(s),
1724     NumFunctionsAnalyzed(0),
1725     NumFunctionsWithBadCFGs(0),
1726     NumCFGBlocks(0),
1727     MaxCFGBlocksPerFunction(0),
1728     NumUninitAnalysisFunctions(0),
1729     NumUninitAnalysisVariables(0),
1730     MaxUninitAnalysisVariablesPerFunction(0),
1731     NumUninitAnalysisBlockVisits(0),
1732     MaxUninitAnalysisBlockVisitsPerFunction(0) {
1733
1734   using namespace diag;
1735   DiagnosticsEngine &D = S.getDiagnostics();
1736
1737   DefaultPolicy.enableCheckUnreachable =
1738     isEnabled(D, warn_unreachable) ||
1739     isEnabled(D, warn_unreachable_break) ||
1740     isEnabled(D, warn_unreachable_return) ||
1741     isEnabled(D, warn_unreachable_loop_increment);
1742
1743   DefaultPolicy.enableThreadSafetyAnalysis =
1744     isEnabled(D, warn_double_lock);
1745
1746   DefaultPolicy.enableConsumedAnalysis =
1747     isEnabled(D, warn_use_in_invalid_state);
1748 }
1749
1750 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
1751   for (const auto &D : fscope->PossiblyUnreachableDiags)
1752     S.Diag(D.Loc, D.PD);
1753 }
1754
1755 void clang::sema::
1756 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1757                                      sema::FunctionScopeInfo *fscope,
1758                                      const Decl *D, const BlockExpr *blkExpr) {
1759
1760   // We avoid doing analysis-based warnings when there are errors for
1761   // two reasons:
1762   // (1) The CFGs often can't be constructed (if the body is invalid), so
1763   //     don't bother trying.
1764   // (2) The code already has problems; running the analysis just takes more
1765   //     time.
1766   DiagnosticsEngine &Diags = S.getDiagnostics();
1767
1768   // Do not do any analysis for declarations in system headers if we are
1769   // going to just ignore them.
1770   if (Diags.getSuppressSystemWarnings() &&
1771       S.SourceMgr.isInSystemHeader(D->getLocation()))
1772     return;
1773
1774   // For code in dependent contexts, we'll do this at instantiation time.
1775   if (cast<DeclContext>(D)->isDependentContext())
1776     return;
1777
1778   if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1779     // Flush out any possibly unreachable diagnostics.
1780     flushDiagnostics(S, fscope);
1781     return;
1782   }
1783   
1784   const Stmt *Body = D->getBody();
1785   assert(Body);
1786
1787   // Construct the analysis context with the specified CFG build options.
1788   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
1789
1790   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1791   // explosion for destructors that can result and the compile time hit.
1792   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1793   AC.getCFGBuildOptions().AddEHEdges = false;
1794   AC.getCFGBuildOptions().AddInitializers = true;
1795   AC.getCFGBuildOptions().AddImplicitDtors = true;
1796   AC.getCFGBuildOptions().AddTemporaryDtors = true;
1797   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
1798
1799   // Force that certain expressions appear as CFGElements in the CFG.  This
1800   // is used to speed up various analyses.
1801   // FIXME: This isn't the right factoring.  This is here for initial
1802   // prototyping, but we need a way for analyses to say what expressions they
1803   // expect to always be CFGElements and then fill in the BuildOptions
1804   // appropriately.  This is essentially a layering violation.
1805   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
1806       P.enableConsumedAnalysis) {
1807     // Unreachable code analysis and thread safety require a linearized CFG.
1808     AC.getCFGBuildOptions().setAllAlwaysAdd();
1809   }
1810   else {
1811     AC.getCFGBuildOptions()
1812       .setAlwaysAdd(Stmt::BinaryOperatorClass)
1813       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1814       .setAlwaysAdd(Stmt::BlockExprClass)
1815       .setAlwaysAdd(Stmt::CStyleCastExprClass)
1816       .setAlwaysAdd(Stmt::DeclRefExprClass)
1817       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1818       .setAlwaysAdd(Stmt::UnaryOperatorClass)
1819       .setAlwaysAdd(Stmt::AttributedStmtClass);
1820   }
1821
1822   // Install the logical handler for -Wtautological-overlap-compare
1823   std::unique_ptr<LogicalErrorHandler> LEH;
1824   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
1825                        D->getLocStart())) {
1826     LEH.reset(new LogicalErrorHandler(S));
1827     AC.getCFGBuildOptions().Observer = LEH.get();
1828   }
1829
1830   // Emit delayed diagnostics.
1831   if (!fscope->PossiblyUnreachableDiags.empty()) {
1832     bool analyzed = false;
1833
1834     // Register the expressions with the CFGBuilder.
1835     for (const auto &D : fscope->PossiblyUnreachableDiags) {
1836       if (D.stmt)
1837         AC.registerForcedBlockExpression(D.stmt);
1838     }
1839
1840     if (AC.getCFG()) {
1841       analyzed = true;
1842       for (const auto &D : fscope->PossiblyUnreachableDiags) {
1843         bool processed = false;
1844         if (D.stmt) {
1845           const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
1846           CFGReverseBlockReachabilityAnalysis *cra =
1847               AC.getCFGReachablityAnalysis();
1848           // FIXME: We should be able to assert that block is non-null, but
1849           // the CFG analysis can skip potentially-evaluated expressions in
1850           // edge cases; see test/Sema/vla-2.c.
1851           if (block && cra) {
1852             // Can this block be reached from the entrance?
1853             if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1854               S.Diag(D.Loc, D.PD);
1855             processed = true;
1856           }
1857         }
1858         if (!processed) {
1859           // Emit the warning anyway if we cannot map to a basic block.
1860           S.Diag(D.Loc, D.PD);
1861         }
1862       }
1863     }
1864
1865     if (!analyzed)
1866       flushDiagnostics(S, fscope);
1867   }
1868   
1869   
1870   // Warning: check missing 'return'
1871   if (P.enableCheckFallThrough) {
1872     const CheckFallThroughDiagnostics &CD =
1873       (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1874        : (isa<CXXMethodDecl>(D) &&
1875           cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1876           cast<CXXMethodDecl>(D)->getParent()->isLambda())
1877             ? CheckFallThroughDiagnostics::MakeForLambda()
1878             : CheckFallThroughDiagnostics::MakeForFunction(D));
1879     CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1880   }
1881
1882   // Warning: check for unreachable code
1883   if (P.enableCheckUnreachable) {
1884     // Only check for unreachable code on non-template instantiations.
1885     // Different template instantiations can effectively change the control-flow
1886     // and it is very difficult to prove that a snippet of code in a template
1887     // is unreachable for all instantiations.
1888     bool isTemplateInstantiation = false;
1889     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1890       isTemplateInstantiation = Function->isTemplateInstantiation();
1891     if (!isTemplateInstantiation)
1892       CheckUnreachable(S, AC);
1893   }
1894
1895   // Check for thread safety violations
1896   if (P.enableThreadSafetyAnalysis) {
1897     SourceLocation FL = AC.getDecl()->getLocation();
1898     SourceLocation FEL = AC.getDecl()->getLocEnd();
1899     thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1900     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
1901       Reporter.setIssueBetaWarnings(true);
1902
1903     thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1904     Reporter.emitDiagnostics();
1905   }
1906
1907   // Check for violations of consumed properties.
1908   if (P.enableConsumedAnalysis) {
1909     consumed::ConsumedWarningsHandler WarningHandler(S);
1910     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
1911     Analyzer.run(AC);
1912   }
1913
1914   if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
1915       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
1916       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
1917     if (CFG *cfg = AC.getCFG()) {
1918       UninitValsDiagReporter reporter(S);
1919       UninitVariablesAnalysisStats stats;
1920       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1921       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1922                                         reporter, stats);
1923
1924       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1925         ++NumUninitAnalysisFunctions;
1926         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1927         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1928         MaxUninitAnalysisVariablesPerFunction =
1929             std::max(MaxUninitAnalysisVariablesPerFunction,
1930                      stats.NumVariablesAnalyzed);
1931         MaxUninitAnalysisBlockVisitsPerFunction =
1932             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1933                      stats.NumBlockVisits);
1934       }
1935     }
1936   }
1937
1938   bool FallThroughDiagFull =
1939       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
1940   bool FallThroughDiagPerFunction = !Diags.isIgnored(
1941       diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
1942   if (FallThroughDiagFull || FallThroughDiagPerFunction) {
1943     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
1944   }
1945
1946   if (S.getLangOpts().ObjCARCWeak &&
1947       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
1948     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
1949
1950
1951   // Check for infinite self-recursion in functions
1952   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
1953                        D->getLocStart())) {
1954     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1955       checkRecursiveFunction(S, FD, Body, AC);
1956     }
1957   }
1958
1959   // If none of the previous checks caused a CFG build, trigger one here
1960   // for -Wtautological-overlap-compare
1961   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
1962                                D->getLocStart())) {
1963     AC.getCFG();
1964   }
1965
1966   // Collect statistics about the CFG if it was built.
1967   if (S.CollectStats && AC.isCFGBuilt()) {
1968     ++NumFunctionsAnalyzed;
1969     if (CFG *cfg = AC.getCFG()) {
1970       // If we successfully built a CFG for this context, record some more
1971       // detail information about it.
1972       NumCFGBlocks += cfg->getNumBlockIDs();
1973       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1974                                          cfg->getNumBlockIDs());
1975     } else {
1976       ++NumFunctionsWithBadCFGs;
1977     }
1978   }
1979 }
1980
1981 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1982   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1983
1984   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1985   unsigned AvgCFGBlocksPerFunction =
1986       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1987   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1988                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1989                << "  " << NumCFGBlocks << " CFG blocks built.\n"
1990                << "  " << AvgCFGBlocksPerFunction
1991                << " average CFG blocks per function.\n"
1992                << "  " << MaxCFGBlocksPerFunction
1993                << " max CFG blocks per function.\n";
1994
1995   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1996       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1997   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1998       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1999   llvm::errs() << NumUninitAnalysisFunctions
2000                << " functions analyzed for uninitialiazed variables\n"
2001                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2002                << "  " << AvgUninitVariablesPerFunction
2003                << " average variables per function.\n"
2004                << "  " << MaxUninitAnalysisVariablesPerFunction
2005                << " max variables per function.\n"
2006                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2007                << "  " << AvgUninitBlockVisitsPerFunction
2008                << " average block visits per function.\n"
2009                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2010                << " max block visits per function.\n";
2011 }