]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp
MFV r304060:
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / AnalysisBasedWarnings.cpp
1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines analysis_warnings::[Policy,Executor].
11 // Together they are used by Sema to issue warnings based on inexpensive
12 // static analysis algorithms in libAnalysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Sema/AnalysisBasedWarnings.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28 #include "clang/Analysis/Analyses/Consumed.h"
29 #include "clang/Analysis/Analyses/ReachableCode.h"
30 #include "clang/Analysis/Analyses/ThreadSafety.h"
31 #include "clang/Analysis/Analyses/UninitializedValues.h"
32 #include "clang/Analysis/AnalysisContext.h"
33 #include "clang/Analysis/CFG.h"
34 #include "clang/Analysis/CFGStmtMap.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Lex/Preprocessor.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/BitVector.h"
42 #include "llvm/ADT/FoldingSet.h"
43 #include "llvm/ADT/ImmutableMap.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Support/Casting.h"
50 #include <algorithm>
51 #include <deque>
52 #include <iterator>
53 #include <vector>
54
55 using namespace clang;
56
57 //===----------------------------------------------------------------------===//
58 // Unreachable code analysis.
59 //===----------------------------------------------------------------------===//
60
61 namespace {
62   class UnreachableCodeHandler : public reachable_code::Callback {
63     Sema &S;
64   public:
65     UnreachableCodeHandler(Sema &s) : S(s) {}
66
67     void HandleUnreachable(reachable_code::UnreachableKind UK,
68                            SourceLocation L,
69                            SourceRange SilenceableCondVal,
70                            SourceRange R1,
71                            SourceRange R2) override {
72       unsigned diag = diag::warn_unreachable;
73       switch (UK) {
74         case reachable_code::UK_Break:
75           diag = diag::warn_unreachable_break;
76           break;
77         case reachable_code::UK_Return:
78           diag = diag::warn_unreachable_return;
79           break;
80         case reachable_code::UK_Loop_Increment:
81           diag = diag::warn_unreachable_loop_increment;
82           break;
83         case reachable_code::UK_Other:
84           break;
85       }
86
87       S.Diag(L, diag) << R1 << R2;
88       
89       SourceLocation Open = SilenceableCondVal.getBegin();
90       if (Open.isValid()) {
91         SourceLocation Close = SilenceableCondVal.getEnd();
92         Close = S.getLocForEndOfToken(Close);
93         if (Close.isValid()) {
94           S.Diag(Open, diag::note_unreachable_silence)
95             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
96             << FixItHint::CreateInsertion(Close, ")");
97         }
98       }
99     }
100   };
101 } // anonymous namespace
102
103 /// CheckUnreachable - Check for unreachable code.
104 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
105   // As a heuristic prune all diagnostics not in the main file.  Currently
106   // the majority of warnings in headers are false positives.  These
107   // are largely caused by configuration state, e.g. preprocessor
108   // defined code, etc.
109   //
110   // Note that this is also a performance optimization.  Analyzing
111   // headers many times can be expensive.
112   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
113     return;
114
115   UnreachableCodeHandler UC(S);
116   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
117 }
118
119 namespace {
120 /// \brief Warn on logical operator errors in CFGBuilder
121 class LogicalErrorHandler : public CFGCallback {
122   Sema &S;
123
124 public:
125   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
126
127   static bool HasMacroID(const Expr *E) {
128     if (E->getExprLoc().isMacroID())
129       return true;
130
131     // Recurse to children.
132     for (const Stmt *SubStmt : E->children())
133       if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
134         if (HasMacroID(SubExpr))
135           return true;
136
137     return false;
138   }
139
140   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
141     if (HasMacroID(B))
142       return;
143
144     SourceRange DiagRange = B->getSourceRange();
145     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
146         << DiagRange << isAlwaysTrue;
147   }
148
149   void compareBitwiseEquality(const BinaryOperator *B,
150                               bool isAlwaysTrue) override {
151     if (HasMacroID(B))
152       return;
153
154     SourceRange DiagRange = B->getSourceRange();
155     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
156         << DiagRange << isAlwaysTrue;
157   }
158 };
159 } // anonymous namespace
160
161 //===----------------------------------------------------------------------===//
162 // Check for infinite self-recursion in functions
163 //===----------------------------------------------------------------------===//
164
165 // Returns true if the function is called anywhere within the CFGBlock.
166 // For member functions, the additional condition of being call from the
167 // this pointer is required.
168 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
169   // Process all the Stmt's in this block to find any calls to FD.
170   for (const auto &B : Block) {
171     if (B.getKind() != CFGElement::Statement)
172       continue;
173
174     const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
175     if (!CE || !CE->getCalleeDecl() ||
176         CE->getCalleeDecl()->getCanonicalDecl() != FD)
177       continue;
178
179     // Skip function calls which are qualified with a templated class.
180     if (const DeclRefExpr *DRE =
181             dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
182       if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
183         if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
184             isa<TemplateSpecializationType>(NNS->getAsType())) {
185           continue;
186         }
187       }
188     }
189
190     const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
191     if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
192         !MCE->getMethodDecl()->isVirtual())
193       return true;
194   }
195   return false;
196 }
197
198 // All blocks are in one of three states.  States are ordered so that blocks
199 // can only move to higher states.
200 enum RecursiveState {
201   FoundNoPath,
202   FoundPath,
203   FoundPathWithNoRecursiveCall
204 };
205
206 // Returns true if there exists a path to the exit block and every path
207 // to the exit block passes through a call to FD.
208 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
209
210   const unsigned ExitID = cfg->getExit().getBlockID();
211
212   // Mark all nodes as FoundNoPath, then set the status of the entry block.
213   SmallVector<RecursiveState, 16> States(cfg->getNumBlockIDs(), FoundNoPath);
214   States[cfg->getEntry().getBlockID()] = FoundPathWithNoRecursiveCall;
215
216   // Make the processing stack and seed it with the entry block.
217   SmallVector<CFGBlock *, 16> Stack;
218   Stack.push_back(&cfg->getEntry());
219
220   while (!Stack.empty()) {
221     CFGBlock *CurBlock = Stack.back();
222     Stack.pop_back();
223
224     unsigned ID = CurBlock->getBlockID();
225     RecursiveState CurState = States[ID];
226
227     if (CurState == FoundPathWithNoRecursiveCall) {
228       // Found a path to the exit node without a recursive call.
229       if (ExitID == ID)
230         return false;
231
232       // Only change state if the block has a recursive call.
233       if (hasRecursiveCallInPath(FD, *CurBlock))
234         CurState = FoundPath;
235     }
236
237     // Loop over successor blocks and add them to the Stack if their state
238     // changes.
239     for (auto I = CurBlock->succ_begin(), E = CurBlock->succ_end(); I != E; ++I)
240       if (*I) {
241         unsigned next_ID = (*I)->getBlockID();
242         if (States[next_ID] < CurState) {
243           States[next_ID] = CurState;
244           Stack.push_back(*I);
245         }
246       }
247   }
248
249   // Return true if the exit node is reachable, and only reachable through
250   // a recursive call.
251   return States[ExitID] == FoundPath;
252 }
253
254 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
255                                    const Stmt *Body, AnalysisDeclContext &AC) {
256   FD = FD->getCanonicalDecl();
257
258   // Only run on non-templated functions and non-templated members of
259   // templated classes.
260   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
261       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
262     return;
263
264   CFG *cfg = AC.getCFG();
265   if (!cfg) return;
266
267   // If the exit block is unreachable, skip processing the function.
268   if (cfg->getExit().pred_empty())
269     return;
270
271   // Emit diagnostic if a recursive function call is detected for all paths.
272   if (checkForRecursiveFunctionCall(FD, cfg))
273     S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
274 }
275
276 //===----------------------------------------------------------------------===//
277 // Check for missing return value.
278 //===----------------------------------------------------------------------===//
279
280 enum ControlFlowKind {
281   UnknownFallThrough,
282   NeverFallThrough,
283   MaybeFallThrough,
284   AlwaysFallThrough,
285   NeverFallThroughOrReturn
286 };
287
288 /// CheckFallThrough - Check that we don't fall off the end of a
289 /// Statement that should return a value.
290 ///
291 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
292 /// MaybeFallThrough iff we might or might not fall off the end,
293 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
294 /// return.  We assume NeverFallThrough iff we never fall off the end of the
295 /// statement but we may return.  We assume that functions not marked noreturn
296 /// will return.
297 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
298   CFG *cfg = AC.getCFG();
299   if (!cfg) return UnknownFallThrough;
300
301   // The CFG leaves in dead things, and we don't want the dead code paths to
302   // confuse us, so we mark all live things first.
303   llvm::BitVector live(cfg->getNumBlockIDs());
304   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
305                                                           live);
306
307   bool AddEHEdges = AC.getAddEHEdges();
308   if (!AddEHEdges && count != cfg->getNumBlockIDs())
309     // When there are things remaining dead, and we didn't add EH edges
310     // from CallExprs to the catch clauses, we have to go back and
311     // mark them as live.
312     for (const auto *B : *cfg) {
313       if (!live[B->getBlockID()]) {
314         if (B->pred_begin() == B->pred_end()) {
315           if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
316             // When not adding EH edges from calls, catch clauses
317             // can otherwise seem dead.  Avoid noting them as dead.
318             count += reachable_code::ScanReachableFromBlock(B, live);
319           continue;
320         }
321       }
322     }
323
324   // Now we know what is live, we check the live precessors of the exit block
325   // and look for fall through paths, being careful to ignore normal returns,
326   // and exceptional paths.
327   bool HasLiveReturn = false;
328   bool HasFakeEdge = false;
329   bool HasPlainEdge = false;
330   bool HasAbnormalEdge = false;
331
332   // Ignore default cases that aren't likely to be reachable because all
333   // enums in a switch(X) have explicit case statements.
334   CFGBlock::FilterOptions FO;
335   FO.IgnoreDefaultsWithCoveredEnums = 1;
336
337   for (CFGBlock::filtered_pred_iterator
338          I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
339     const CFGBlock& B = **I;
340     if (!live[B.getBlockID()])
341       continue;
342
343     // Skip blocks which contain an element marked as no-return. They don't
344     // represent actually viable edges into the exit block, so mark them as
345     // abnormal.
346     if (B.hasNoReturnElement()) {
347       HasAbnormalEdge = true;
348       continue;
349     }
350
351     // Destructors can appear after the 'return' in the CFG.  This is
352     // normal.  We need to look pass the destructors for the return
353     // statement (if it exists).
354     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
355
356     for ( ; ri != re ; ++ri)
357       if (ri->getAs<CFGStmt>())
358         break;
359
360     // No more CFGElements in the block?
361     if (ri == re) {
362       if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
363         HasAbnormalEdge = true;
364         continue;
365       }
366       // A labeled empty statement, or the entry block...
367       HasPlainEdge = true;
368       continue;
369     }
370
371     CFGStmt CS = ri->castAs<CFGStmt>();
372     const Stmt *S = CS.getStmt();
373     if (isa<ReturnStmt>(S)) {
374       HasLiveReturn = true;
375       continue;
376     }
377     if (isa<ObjCAtThrowStmt>(S)) {
378       HasFakeEdge = true;
379       continue;
380     }
381     if (isa<CXXThrowExpr>(S)) {
382       HasFakeEdge = true;
383       continue;
384     }
385     if (isa<MSAsmStmt>(S)) {
386       // TODO: Verify this is correct.
387       HasFakeEdge = true;
388       HasLiveReturn = true;
389       continue;
390     }
391     if (isa<CXXTryStmt>(S)) {
392       HasAbnormalEdge = true;
393       continue;
394     }
395     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
396         == B.succ_end()) {
397       HasAbnormalEdge = true;
398       continue;
399     }
400
401     HasPlainEdge = true;
402   }
403   if (!HasPlainEdge) {
404     if (HasLiveReturn)
405       return NeverFallThrough;
406     return NeverFallThroughOrReturn;
407   }
408   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
409     return MaybeFallThrough;
410   // This says AlwaysFallThrough for calls to functions that are not marked
411   // noreturn, that don't return.  If people would like this warning to be more
412   // accurate, such functions should be marked as noreturn.
413   return AlwaysFallThrough;
414 }
415
416 namespace {
417
418 struct CheckFallThroughDiagnostics {
419   unsigned diag_MaybeFallThrough_HasNoReturn;
420   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
421   unsigned diag_AlwaysFallThrough_HasNoReturn;
422   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
423   unsigned diag_NeverFallThroughOrReturn;
424   enum { Function, Block, Lambda } funMode;
425   SourceLocation FuncLoc;
426
427   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
428     CheckFallThroughDiagnostics D;
429     D.FuncLoc = Func->getLocation();
430     D.diag_MaybeFallThrough_HasNoReturn =
431       diag::warn_falloff_noreturn_function;
432     D.diag_MaybeFallThrough_ReturnsNonVoid =
433       diag::warn_maybe_falloff_nonvoid_function;
434     D.diag_AlwaysFallThrough_HasNoReturn =
435       diag::warn_falloff_noreturn_function;
436     D.diag_AlwaysFallThrough_ReturnsNonVoid =
437       diag::warn_falloff_nonvoid_function;
438
439     // Don't suggest that virtual functions be marked "noreturn", since they
440     // might be overridden by non-noreturn functions.
441     bool isVirtualMethod = false;
442     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
443       isVirtualMethod = Method->isVirtual();
444     
445     // Don't suggest that template instantiations be marked "noreturn"
446     bool isTemplateInstantiation = false;
447     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
448       isTemplateInstantiation = Function->isTemplateInstantiation();
449         
450     if (!isVirtualMethod && !isTemplateInstantiation)
451       D.diag_NeverFallThroughOrReturn =
452         diag::warn_suggest_noreturn_function;
453     else
454       D.diag_NeverFallThroughOrReturn = 0;
455     
456     D.funMode = Function;
457     return D;
458   }
459
460   static CheckFallThroughDiagnostics MakeForBlock() {
461     CheckFallThroughDiagnostics D;
462     D.diag_MaybeFallThrough_HasNoReturn =
463       diag::err_noreturn_block_has_return_expr;
464     D.diag_MaybeFallThrough_ReturnsNonVoid =
465       diag::err_maybe_falloff_nonvoid_block;
466     D.diag_AlwaysFallThrough_HasNoReturn =
467       diag::err_noreturn_block_has_return_expr;
468     D.diag_AlwaysFallThrough_ReturnsNonVoid =
469       diag::err_falloff_nonvoid_block;
470     D.diag_NeverFallThroughOrReturn = 0;
471     D.funMode = Block;
472     return D;
473   }
474
475   static CheckFallThroughDiagnostics MakeForLambda() {
476     CheckFallThroughDiagnostics D;
477     D.diag_MaybeFallThrough_HasNoReturn =
478       diag::err_noreturn_lambda_has_return_expr;
479     D.diag_MaybeFallThrough_ReturnsNonVoid =
480       diag::warn_maybe_falloff_nonvoid_lambda;
481     D.diag_AlwaysFallThrough_HasNoReturn =
482       diag::err_noreturn_lambda_has_return_expr;
483     D.diag_AlwaysFallThrough_ReturnsNonVoid =
484       diag::warn_falloff_nonvoid_lambda;
485     D.diag_NeverFallThroughOrReturn = 0;
486     D.funMode = Lambda;
487     return D;
488   }
489
490   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
491                         bool HasNoReturn) const {
492     if (funMode == Function) {
493       return (ReturnsVoid ||
494               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
495                           FuncLoc)) &&
496              (!HasNoReturn ||
497               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
498                           FuncLoc)) &&
499              (!ReturnsVoid ||
500               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
501     }
502
503     // For blocks / lambdas.
504     return ReturnsVoid && !HasNoReturn;
505   }
506 };
507
508 } // anonymous namespace
509
510 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
511 /// function that should return a value.  Check that we don't fall off the end
512 /// of a noreturn function.  We assume that functions and blocks not marked
513 /// noreturn will return.
514 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
515                                     const BlockExpr *blkExpr,
516                                     const CheckFallThroughDiagnostics& CD,
517                                     AnalysisDeclContext &AC) {
518
519   bool ReturnsVoid = false;
520   bool HasNoReturn = false;
521
522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
523     ReturnsVoid = FD->getReturnType()->isVoidType();
524     HasNoReturn = FD->isNoReturn();
525   }
526   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
527     ReturnsVoid = MD->getReturnType()->isVoidType();
528     HasNoReturn = MD->hasAttr<NoReturnAttr>();
529   }
530   else if (isa<BlockDecl>(D)) {
531     QualType BlockTy = blkExpr->getType();
532     if (const FunctionType *FT =
533           BlockTy->getPointeeType()->getAs<FunctionType>()) {
534       if (FT->getReturnType()->isVoidType())
535         ReturnsVoid = true;
536       if (FT->getNoReturnAttr())
537         HasNoReturn = true;
538     }
539   }
540
541   DiagnosticsEngine &Diags = S.getDiagnostics();
542
543   // Short circuit for compilation speed.
544   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
545       return;
546
547   SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
548   // Either in a function body compound statement, or a function-try-block.
549   switch (CheckFallThrough(AC)) {
550     case UnknownFallThrough:
551       break;
552
553     case MaybeFallThrough:
554       if (HasNoReturn)
555         S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
556       else if (!ReturnsVoid)
557         S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
558       break;
559     case AlwaysFallThrough:
560       if (HasNoReturn)
561         S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
562       else if (!ReturnsVoid)
563         S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
564       break;
565     case NeverFallThroughOrReturn:
566       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
567         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
568           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
569         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
570           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
571         } else {
572           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
573         }
574       }
575       break;
576     case NeverFallThrough:
577       break;
578   }
579 }
580
581 //===----------------------------------------------------------------------===//
582 // -Wuninitialized
583 //===----------------------------------------------------------------------===//
584
585 namespace {
586 /// ContainsReference - A visitor class to search for references to
587 /// a particular declaration (the needle) within any evaluated component of an
588 /// expression (recursively).
589 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
590   bool FoundReference;
591   const DeclRefExpr *Needle;
592
593 public:
594   typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
595
596   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
597     : Inherited(Context), FoundReference(false), Needle(Needle) {}
598
599   void VisitExpr(const Expr *E) {
600     // Stop evaluating if we already have a reference.
601     if (FoundReference)
602       return;
603
604     Inherited::VisitExpr(E);
605   }
606
607   void VisitDeclRefExpr(const DeclRefExpr *E) {
608     if (E == Needle)
609       FoundReference = true;
610     else
611       Inherited::VisitDeclRefExpr(E);
612   }
613
614   bool doesContainReference() const { return FoundReference; }
615 };
616 } // anonymous namespace
617
618 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
619   QualType VariableTy = VD->getType().getCanonicalType();
620   if (VariableTy->isBlockPointerType() &&
621       !VD->hasAttr<BlocksAttr>()) {
622     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
623         << VD->getDeclName()
624         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
625     return true;
626   }
627
628   // Don't issue a fixit if there is already an initializer.
629   if (VD->getInit())
630     return false;
631
632   // Don't suggest a fixit inside macros.
633   if (VD->getLocEnd().isMacroID())
634     return false;
635
636   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
637
638   // Suggest possible initialization (if any).
639   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
640   if (Init.empty())
641     return false;
642
643   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
644     << FixItHint::CreateInsertion(Loc, Init);
645   return true;
646 }
647
648 /// Create a fixit to remove an if-like statement, on the assumption that its
649 /// condition is CondVal.
650 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
651                           const Stmt *Else, bool CondVal,
652                           FixItHint &Fixit1, FixItHint &Fixit2) {
653   if (CondVal) {
654     // If condition is always true, remove all but the 'then'.
655     Fixit1 = FixItHint::CreateRemoval(
656         CharSourceRange::getCharRange(If->getLocStart(),
657                                       Then->getLocStart()));
658     if (Else) {
659       SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getLocEnd());
660       Fixit2 = FixItHint::CreateRemoval(
661           SourceRange(ElseKwLoc, Else->getLocEnd()));
662     }
663   } else {
664     // If condition is always false, remove all but the 'else'.
665     if (Else)
666       Fixit1 = FixItHint::CreateRemoval(
667           CharSourceRange::getCharRange(If->getLocStart(),
668                                         Else->getLocStart()));
669     else
670       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
671   }
672 }
673
674 /// DiagUninitUse -- Helper function to produce a diagnostic for an
675 /// uninitialized use of a variable.
676 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
677                           bool IsCapturedByBlock) {
678   bool Diagnosed = false;
679
680   switch (Use.getKind()) {
681   case UninitUse::Always:
682     S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
683         << VD->getDeclName() << IsCapturedByBlock
684         << Use.getUser()->getSourceRange();
685     return;
686
687   case UninitUse::AfterDecl:
688   case UninitUse::AfterCall:
689     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
690       << VD->getDeclName() << IsCapturedByBlock
691       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
692       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
693       << VD->getSourceRange();
694     S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
695       << IsCapturedByBlock << Use.getUser()->getSourceRange();
696     return;
697
698   case UninitUse::Maybe:
699   case UninitUse::Sometimes:
700     // Carry on to report sometimes-uninitialized branches, if possible,
701     // or a 'may be used uninitialized' diagnostic otherwise.
702     break;
703   }
704
705   // Diagnose each branch which leads to a sometimes-uninitialized use.
706   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
707        I != E; ++I) {
708     assert(Use.getKind() == UninitUse::Sometimes);
709
710     const Expr *User = Use.getUser();
711     const Stmt *Term = I->Terminator;
712
713     // Information used when building the diagnostic.
714     unsigned DiagKind;
715     StringRef Str;
716     SourceRange Range;
717
718     // FixIts to suppress the diagnostic by removing the dead condition.
719     // For all binary terminators, branch 0 is taken if the condition is true,
720     // and branch 1 is taken if the condition is false.
721     int RemoveDiagKind = -1;
722     const char *FixitStr =
723         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
724                                   : (I->Output ? "1" : "0");
725     FixItHint Fixit1, Fixit2;
726
727     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
728     default:
729       // Don't know how to report this. Just fall back to 'may be used
730       // uninitialized'. FIXME: Can this happen?
731       continue;
732
733     // "condition is true / condition is false".
734     case Stmt::IfStmtClass: {
735       const IfStmt *IS = cast<IfStmt>(Term);
736       DiagKind = 0;
737       Str = "if";
738       Range = IS->getCond()->getSourceRange();
739       RemoveDiagKind = 0;
740       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
741                     I->Output, Fixit1, Fixit2);
742       break;
743     }
744     case Stmt::ConditionalOperatorClass: {
745       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
746       DiagKind = 0;
747       Str = "?:";
748       Range = CO->getCond()->getSourceRange();
749       RemoveDiagKind = 0;
750       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
751                     I->Output, Fixit1, Fixit2);
752       break;
753     }
754     case Stmt::BinaryOperatorClass: {
755       const BinaryOperator *BO = cast<BinaryOperator>(Term);
756       if (!BO->isLogicalOp())
757         continue;
758       DiagKind = 0;
759       Str = BO->getOpcodeStr();
760       Range = BO->getLHS()->getSourceRange();
761       RemoveDiagKind = 0;
762       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
763           (BO->getOpcode() == BO_LOr && !I->Output))
764         // true && y -> y, false || y -> y.
765         Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
766                                                       BO->getOperatorLoc()));
767       else
768         // false && y -> false, true || y -> true.
769         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
770       break;
771     }
772
773     // "loop is entered / loop is exited".
774     case Stmt::WhileStmtClass:
775       DiagKind = 1;
776       Str = "while";
777       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
778       RemoveDiagKind = 1;
779       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
780       break;
781     case Stmt::ForStmtClass:
782       DiagKind = 1;
783       Str = "for";
784       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
785       RemoveDiagKind = 1;
786       if (I->Output)
787         Fixit1 = FixItHint::CreateRemoval(Range);
788       else
789         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
790       break;
791     case Stmt::CXXForRangeStmtClass:
792       if (I->Output == 1) {
793         // The use occurs if a range-based for loop's body never executes.
794         // That may be impossible, and there's no syntactic fix for this,
795         // so treat it as a 'may be uninitialized' case.
796         continue;
797       }
798       DiagKind = 1;
799       Str = "for";
800       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
801       break;
802
803     // "condition is true / loop is exited".
804     case Stmt::DoStmtClass:
805       DiagKind = 2;
806       Str = "do";
807       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
808       RemoveDiagKind = 1;
809       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
810       break;
811
812     // "switch case is taken".
813     case Stmt::CaseStmtClass:
814       DiagKind = 3;
815       Str = "case";
816       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
817       break;
818     case Stmt::DefaultStmtClass:
819       DiagKind = 3;
820       Str = "default";
821       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
822       break;
823     }
824
825     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
826       << VD->getDeclName() << IsCapturedByBlock << DiagKind
827       << Str << I->Output << Range;
828     S.Diag(User->getLocStart(), diag::note_uninit_var_use)
829       << IsCapturedByBlock << User->getSourceRange();
830     if (RemoveDiagKind != -1)
831       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
832         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
833
834     Diagnosed = true;
835   }
836
837   if (!Diagnosed)
838     S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
839         << VD->getDeclName() << IsCapturedByBlock
840         << Use.getUser()->getSourceRange();
841 }
842
843 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
844 /// uninitialized variable. This manages the different forms of diagnostic
845 /// emitted for particular types of uses. Returns true if the use was diagnosed
846 /// as a warning. If a particular use is one we omit warnings for, returns
847 /// false.
848 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
849                                      const UninitUse &Use,
850                                      bool alwaysReportSelfInit = false) {
851   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
852     // Inspect the initializer of the variable declaration which is
853     // being referenced prior to its initialization. We emit
854     // specialized diagnostics for self-initialization, and we
855     // specifically avoid warning about self references which take the
856     // form of:
857     //
858     //   int x = x;
859     //
860     // This is used to indicate to GCC that 'x' is intentionally left
861     // uninitialized. Proven code paths which access 'x' in
862     // an uninitialized state after this will still warn.
863     if (const Expr *Initializer = VD->getInit()) {
864       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
865         return false;
866
867       ContainsReference CR(S.Context, DRE);
868       CR.Visit(Initializer);
869       if (CR.doesContainReference()) {
870         S.Diag(DRE->getLocStart(),
871                diag::warn_uninit_self_reference_in_init)
872           << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
873         return true;
874       }
875     }
876
877     DiagUninitUse(S, VD, Use, false);
878   } else {
879     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
880     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
881       S.Diag(BE->getLocStart(),
882              diag::warn_uninit_byref_blockvar_captured_by_block)
883         << VD->getDeclName();
884     else
885       DiagUninitUse(S, VD, Use, true);
886   }
887
888   // Report where the variable was declared when the use wasn't within
889   // the initializer of that declaration & we didn't already suggest
890   // an initialization fixit.
891   if (!SuggestInitializationFixit(S, VD))
892     S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
893       << VD->getDeclName();
894
895   return true;
896 }
897
898 namespace {
899   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
900   public:
901     FallthroughMapper(Sema &S)
902       : FoundSwitchStatements(false),
903         S(S) {
904     }
905
906     bool foundSwitchStatements() const { return FoundSwitchStatements; }
907
908     void markFallthroughVisited(const AttributedStmt *Stmt) {
909       bool Found = FallthroughStmts.erase(Stmt);
910       assert(Found);
911       (void)Found;
912     }
913
914     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
915
916     const AttrStmts &getFallthroughStmts() const {
917       return FallthroughStmts;
918     }
919
920     void fillReachableBlocks(CFG *Cfg) {
921       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
922       std::deque<const CFGBlock *> BlockQueue;
923
924       ReachableBlocks.insert(&Cfg->getEntry());
925       BlockQueue.push_back(&Cfg->getEntry());
926       // Mark all case blocks reachable to avoid problems with switching on
927       // constants, covered enums, etc.
928       // These blocks can contain fall-through annotations, and we don't want to
929       // issue a warn_fallthrough_attr_unreachable for them.
930       for (const auto *B : *Cfg) {
931         const Stmt *L = B->getLabel();
932         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
933           BlockQueue.push_back(B);
934       }
935
936       while (!BlockQueue.empty()) {
937         const CFGBlock *P = BlockQueue.front();
938         BlockQueue.pop_front();
939         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
940                                            E = P->succ_end();
941              I != E; ++I) {
942           if (*I && ReachableBlocks.insert(*I).second)
943             BlockQueue.push_back(*I);
944         }
945       }
946     }
947
948     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
949       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
950
951       int UnannotatedCnt = 0;
952       AnnotatedCnt = 0;
953
954       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
955       while (!BlockQueue.empty()) {
956         const CFGBlock *P = BlockQueue.front();
957         BlockQueue.pop_front();
958         if (!P) continue;
959
960         const Stmt *Term = P->getTerminator();
961         if (Term && isa<SwitchStmt>(Term))
962           continue; // Switch statement, good.
963
964         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
965         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
966           continue; // Previous case label has no statements, good.
967
968         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
969         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
970           continue; // Case label is preceded with a normal label, good.
971
972         if (!ReachableBlocks.count(P)) {
973           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
974                                                 ElemEnd = P->rend();
975                ElemIt != ElemEnd; ++ElemIt) {
976             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
977               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
978                 S.Diag(AS->getLocStart(),
979                        diag::warn_fallthrough_attr_unreachable);
980                 markFallthroughVisited(AS);
981                 ++AnnotatedCnt;
982                 break;
983               }
984               // Don't care about other unreachable statements.
985             }
986           }
987           // If there are no unreachable statements, this may be a special
988           // case in CFG:
989           // case X: {
990           //    A a;  // A has a destructor.
991           //    break;
992           // }
993           // // <<<< This place is represented by a 'hanging' CFG block.
994           // case Y:
995           continue;
996         }
997
998         const Stmt *LastStmt = getLastStmt(*P);
999         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1000           markFallthroughVisited(AS);
1001           ++AnnotatedCnt;
1002           continue; // Fallthrough annotation, good.
1003         }
1004
1005         if (!LastStmt) { // This block contains no executable statements.
1006           // Traverse its predecessors.
1007           std::copy(P->pred_begin(), P->pred_end(),
1008                     std::back_inserter(BlockQueue));
1009           continue;
1010         }
1011
1012         ++UnannotatedCnt;
1013       }
1014       return !!UnannotatedCnt;
1015     }
1016
1017     // RecursiveASTVisitor setup.
1018     bool shouldWalkTypesOfTypeLocs() const { return false; }
1019
1020     bool VisitAttributedStmt(AttributedStmt *S) {
1021       if (asFallThroughAttr(S))
1022         FallthroughStmts.insert(S);
1023       return true;
1024     }
1025
1026     bool VisitSwitchStmt(SwitchStmt *S) {
1027       FoundSwitchStatements = true;
1028       return true;
1029     }
1030
1031     // We don't want to traverse local type declarations. We analyze their
1032     // methods separately.
1033     bool TraverseDecl(Decl *D) { return true; }
1034
1035     // We analyze lambda bodies separately. Skip them here.
1036     bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
1037
1038   private:
1039
1040     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1041       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1042         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1043           return AS;
1044       }
1045       return nullptr;
1046     }
1047
1048     static const Stmt *getLastStmt(const CFGBlock &B) {
1049       if (const Stmt *Term = B.getTerminator())
1050         return Term;
1051       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1052                                             ElemEnd = B.rend();
1053                                             ElemIt != ElemEnd; ++ElemIt) {
1054         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1055           return CS->getStmt();
1056       }
1057       // Workaround to detect a statement thrown out by CFGBuilder:
1058       //   case X: {} case Y:
1059       //   case X: ; case Y:
1060       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1061         if (!isa<SwitchCase>(SW->getSubStmt()))
1062           return SW->getSubStmt();
1063
1064       return nullptr;
1065     }
1066
1067     bool FoundSwitchStatements;
1068     AttrStmts FallthroughStmts;
1069     Sema &S;
1070     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1071   };
1072 } // anonymous namespace
1073
1074 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1075                                             bool PerFunction) {
1076   // Only perform this analysis when using C++11.  There is no good workflow
1077   // for this warning when not using C++11.  There is no good way to silence
1078   // the warning (no attribute is available) unless we are using C++11's support
1079   // for generalized attributes.  Once could use pragmas to silence the warning,
1080   // but as a general solution that is gross and not in the spirit of this
1081   // warning.
1082   //
1083   // NOTE: This an intermediate solution.  There are on-going discussions on
1084   // how to properly support this warning outside of C++11 with an annotation.
1085   if (!AC.getASTContext().getLangOpts().CPlusPlus11)
1086     return;
1087
1088   FallthroughMapper FM(S);
1089   FM.TraverseStmt(AC.getBody());
1090
1091   if (!FM.foundSwitchStatements())
1092     return;
1093
1094   if (PerFunction && FM.getFallthroughStmts().empty())
1095     return;
1096
1097   CFG *Cfg = AC.getCFG();
1098
1099   if (!Cfg)
1100     return;
1101
1102   FM.fillReachableBlocks(Cfg);
1103
1104   for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1105     const Stmt *Label = B->getLabel();
1106
1107     if (!Label || !isa<SwitchCase>(Label))
1108       continue;
1109
1110     int AnnotatedCnt;
1111
1112     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
1113       continue;
1114
1115     S.Diag(Label->getLocStart(),
1116         PerFunction ? diag::warn_unannotated_fallthrough_per_function
1117                     : diag::warn_unannotated_fallthrough);
1118
1119     if (!AnnotatedCnt) {
1120       SourceLocation L = Label->getLocStart();
1121       if (L.isMacroID())
1122         continue;
1123       if (S.getLangOpts().CPlusPlus11) {
1124         const Stmt *Term = B->getTerminator();
1125         // Skip empty cases.
1126         while (B->empty() && !Term && B->succ_size() == 1) {
1127           B = *B->succ_begin();
1128           Term = B->getTerminator();
1129         }
1130         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1131           Preprocessor &PP = S.getPreprocessor();
1132           TokenValue Tokens[] = {
1133             tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1134             tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1135             tok::r_square, tok::r_square
1136           };
1137           StringRef AnnotationSpelling = "[[clang::fallthrough]]";
1138           StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
1139           if (!MacroName.empty())
1140             AnnotationSpelling = MacroName;
1141           SmallString<64> TextToInsert(AnnotationSpelling);
1142           TextToInsert += "; ";
1143           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1144               AnnotationSpelling <<
1145               FixItHint::CreateInsertion(L, TextToInsert);
1146         }
1147       }
1148       S.Diag(L, diag::note_insert_break_fixit) <<
1149         FixItHint::CreateInsertion(L, "break; ");
1150     }
1151   }
1152
1153   for (const auto *F : FM.getFallthroughStmts())
1154     S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
1155 }
1156
1157 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1158                      const Stmt *S) {
1159   assert(S);
1160
1161   do {
1162     switch (S->getStmtClass()) {
1163     case Stmt::ForStmtClass:
1164     case Stmt::WhileStmtClass:
1165     case Stmt::CXXForRangeStmtClass:
1166     case Stmt::ObjCForCollectionStmtClass:
1167       return true;
1168     case Stmt::DoStmtClass: {
1169       const Expr *Cond = cast<DoStmt>(S)->getCond();
1170       llvm::APSInt Val;
1171       if (!Cond->EvaluateAsInt(Val, Ctx))
1172         return true;
1173       return Val.getBoolValue();
1174     }
1175     default:
1176       break;
1177     }
1178   } while ((S = PM.getParent(S)));
1179
1180   return false;
1181 }
1182
1183 static void diagnoseRepeatedUseOfWeak(Sema &S,
1184                                       const sema::FunctionScopeInfo *CurFn,
1185                                       const Decl *D,
1186                                       const ParentMap &PM) {
1187   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1188   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1189   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1190   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1191   StmtUsesPair;
1192
1193   ASTContext &Ctx = S.getASTContext();
1194
1195   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1196
1197   // Extract all weak objects that are referenced more than once.
1198   SmallVector<StmtUsesPair, 8> UsesByStmt;
1199   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1200        I != E; ++I) {
1201     const WeakUseVector &Uses = I->second;
1202
1203     // Find the first read of the weak object.
1204     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1205     for ( ; UI != UE; ++UI) {
1206       if (UI->isUnsafe())
1207         break;
1208     }
1209
1210     // If there were only writes to this object, don't warn.
1211     if (UI == UE)
1212       continue;
1213
1214     // If there was only one read, followed by any number of writes, and the
1215     // read is not within a loop, don't warn. Additionally, don't warn in a
1216     // loop if the base object is a local variable -- local variables are often
1217     // changed in loops.
1218     if (UI == Uses.begin()) {
1219       WeakUseVector::const_iterator UI2 = UI;
1220       for (++UI2; UI2 != UE; ++UI2)
1221         if (UI2->isUnsafe())
1222           break;
1223
1224       if (UI2 == UE) {
1225         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1226           continue;
1227
1228         const WeakObjectProfileTy &Profile = I->first;
1229         if (!Profile.isExactProfile())
1230           continue;
1231
1232         const NamedDecl *Base = Profile.getBase();
1233         if (!Base)
1234           Base = Profile.getProperty();
1235         assert(Base && "A profile always has a base or property.");
1236
1237         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1238           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1239             continue;
1240       }
1241     }
1242
1243     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1244   }
1245
1246   if (UsesByStmt.empty())
1247     return;
1248
1249   // Sort by first use so that we emit the warnings in a deterministic order.
1250   SourceManager &SM = S.getSourceManager();
1251   std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1252             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1253     return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
1254                                         RHS.first->getLocStart());
1255   });
1256
1257   // Classify the current code body for better warning text.
1258   // This enum should stay in sync with the cases in
1259   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1260   // FIXME: Should we use a common classification enum and the same set of
1261   // possibilities all throughout Sema?
1262   enum {
1263     Function,
1264     Method,
1265     Block,
1266     Lambda
1267   } FunctionKind;
1268
1269   if (isa<sema::BlockScopeInfo>(CurFn))
1270     FunctionKind = Block;
1271   else if (isa<sema::LambdaScopeInfo>(CurFn))
1272     FunctionKind = Lambda;
1273   else if (isa<ObjCMethodDecl>(D))
1274     FunctionKind = Method;
1275   else
1276     FunctionKind = Function;
1277
1278   // Iterate through the sorted problems and emit warnings for each.
1279   for (const auto &P : UsesByStmt) {
1280     const Stmt *FirstRead = P.first;
1281     const WeakObjectProfileTy &Key = P.second->first;
1282     const WeakUseVector &Uses = P.second->second;
1283
1284     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1285     // may not contain enough information to determine that these are different
1286     // properties. We can only be 100% sure of a repeated use in certain cases,
1287     // and we adjust the diagnostic kind accordingly so that the less certain
1288     // case can be turned off if it is too noisy.
1289     unsigned DiagKind;
1290     if (Key.isExactProfile())
1291       DiagKind = diag::warn_arc_repeated_use_of_weak;
1292     else
1293       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1294
1295     // Classify the weak object being accessed for better warning text.
1296     // This enum should stay in sync with the cases in
1297     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1298     enum {
1299       Variable,
1300       Property,
1301       ImplicitProperty,
1302       Ivar
1303     } ObjectKind;
1304
1305     const NamedDecl *D = Key.getProperty();
1306     if (isa<VarDecl>(D))
1307       ObjectKind = Variable;
1308     else if (isa<ObjCPropertyDecl>(D))
1309       ObjectKind = Property;
1310     else if (isa<ObjCMethodDecl>(D))
1311       ObjectKind = ImplicitProperty;
1312     else if (isa<ObjCIvarDecl>(D))
1313       ObjectKind = Ivar;
1314     else
1315       llvm_unreachable("Unexpected weak object kind!");
1316
1317     // Show the first time the object was read.
1318     S.Diag(FirstRead->getLocStart(), DiagKind)
1319       << int(ObjectKind) << D << int(FunctionKind)
1320       << FirstRead->getSourceRange();
1321
1322     // Print all the other accesses as notes.
1323     for (const auto &Use : Uses) {
1324       if (Use.getUseExpr() == FirstRead)
1325         continue;
1326       S.Diag(Use.getUseExpr()->getLocStart(),
1327              diag::note_arc_weak_also_accessed_here)
1328           << Use.getUseExpr()->getSourceRange();
1329     }
1330   }
1331 }
1332
1333 namespace {
1334 class UninitValsDiagReporter : public UninitVariablesHandler {
1335   Sema &S;
1336   typedef SmallVector<UninitUse, 2> UsesVec;
1337   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1338   // Prefer using MapVector to DenseMap, so that iteration order will be
1339   // the same as insertion order. This is needed to obtain a deterministic
1340   // order of diagnostics when calling flushDiagnostics().
1341   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1342   UsesMap uses;
1343   
1344 public:
1345   UninitValsDiagReporter(Sema &S) : S(S) {}
1346   ~UninitValsDiagReporter() override { flushDiagnostics(); }
1347
1348   MappedType &getUses(const VarDecl *vd) {
1349     MappedType &V = uses[vd];
1350     if (!V.getPointer())
1351       V.setPointer(new UsesVec());
1352     return V;
1353   }
1354
1355   void handleUseOfUninitVariable(const VarDecl *vd,
1356                                  const UninitUse &use) override {
1357     getUses(vd).getPointer()->push_back(use);
1358   }
1359   
1360   void handleSelfInit(const VarDecl *vd) override {
1361     getUses(vd).setInt(true);
1362   }
1363   
1364   void flushDiagnostics() {
1365     for (const auto &P : uses) {
1366       const VarDecl *vd = P.first;
1367       const MappedType &V = P.second;
1368
1369       UsesVec *vec = V.getPointer();
1370       bool hasSelfInit = V.getInt();
1371
1372       // Specially handle the case where we have uses of an uninitialized 
1373       // variable, but the root cause is an idiomatic self-init.  We want
1374       // to report the diagnostic at the self-init since that is the root cause.
1375       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1376         DiagnoseUninitializedUse(S, vd,
1377                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
1378                                            /* isAlwaysUninit */ true),
1379                                  /* alwaysReportSelfInit */ true);
1380       else {
1381         // Sort the uses by their SourceLocations.  While not strictly
1382         // guaranteed to produce them in line/column order, this will provide
1383         // a stable ordering.
1384         std::sort(vec->begin(), vec->end(),
1385                   [](const UninitUse &a, const UninitUse &b) {
1386           // Prefer a more confident report over a less confident one.
1387           if (a.getKind() != b.getKind())
1388             return a.getKind() > b.getKind();
1389           return a.getUser()->getLocStart() < b.getUser()->getLocStart();
1390         });
1391
1392         for (const auto &U : *vec) {
1393           // If we have self-init, downgrade all uses to 'may be uninitialized'.
1394           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1395
1396           if (DiagnoseUninitializedUse(S, vd, Use))
1397             // Skip further diagnostics for this variable. We try to warn only
1398             // on the first point at which a variable is used uninitialized.
1399             break;
1400         }
1401       }
1402       
1403       // Release the uses vector.
1404       delete vec;
1405     }
1406
1407     uses.clear();
1408   }
1409
1410 private:
1411   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1412     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1413       return U.getKind() == UninitUse::Always ||
1414              U.getKind() == UninitUse::AfterCall ||
1415              U.getKind() == UninitUse::AfterDecl;
1416     });
1417   }
1418 };
1419 } // anonymous namespace
1420
1421 namespace clang {
1422 namespace {
1423 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1424 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1425 typedef std::list<DelayedDiag> DiagList;
1426
1427 struct SortDiagBySourceLocation {
1428   SourceManager &SM;
1429   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1430
1431   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1432     // Although this call will be slow, this is only called when outputting
1433     // multiple warnings.
1434     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1435   }
1436 };
1437 } // anonymous namespace
1438 } // namespace clang
1439
1440 //===----------------------------------------------------------------------===//
1441 // -Wthread-safety
1442 //===----------------------------------------------------------------------===//
1443 namespace clang {
1444 namespace threadSafety {
1445 namespace {
1446 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1447   Sema &S;
1448   DiagList Warnings;
1449   SourceLocation FunLocation, FunEndLocation;
1450
1451   const FunctionDecl *CurrentFunction;
1452   bool Verbose;
1453
1454   OptionalNotes getNotes() const {
1455     if (Verbose && CurrentFunction) {
1456       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1457                                 S.PDiag(diag::note_thread_warning_in_fun)
1458                                     << CurrentFunction->getNameAsString());
1459       return OptionalNotes(1, FNote);
1460     }
1461     return OptionalNotes();
1462   }
1463
1464   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1465     OptionalNotes ONS(1, Note);
1466     if (Verbose && CurrentFunction) {
1467       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1468                                 S.PDiag(diag::note_thread_warning_in_fun)
1469                                     << CurrentFunction->getNameAsString());
1470       ONS.push_back(std::move(FNote));
1471     }
1472     return ONS;
1473   }
1474
1475   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1476                          const PartialDiagnosticAt &Note2) const {
1477     OptionalNotes ONS;
1478     ONS.push_back(Note1);
1479     ONS.push_back(Note2);
1480     if (Verbose && CurrentFunction) {
1481       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1482                                 S.PDiag(diag::note_thread_warning_in_fun)
1483                                     << CurrentFunction->getNameAsString());
1484       ONS.push_back(std::move(FNote));
1485     }
1486     return ONS;
1487   }
1488
1489   // Helper functions
1490   void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
1491                         SourceLocation Loc) {
1492     // Gracefully handle rare cases when the analysis can't get a more
1493     // precise source location.
1494     if (!Loc.isValid())
1495       Loc = FunLocation;
1496     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
1497     Warnings.emplace_back(std::move(Warning), getNotes());
1498   }
1499
1500  public:
1501   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1502     : S(S), FunLocation(FL), FunEndLocation(FEL),
1503       CurrentFunction(nullptr), Verbose(false) {}
1504
1505   void setVerbose(bool b) { Verbose = b; }
1506
1507   /// \brief Emit all buffered diagnostics in order of sourcelocation.
1508   /// We need to output diagnostics produced while iterating through
1509   /// the lockset in deterministic order, so this function orders diagnostics
1510   /// and outputs them.
1511   void emitDiagnostics() {
1512     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1513     for (const auto &Diag : Warnings) {
1514       S.Diag(Diag.first.first, Diag.first.second);
1515       for (const auto &Note : Diag.second)
1516         S.Diag(Note.first, Note.second);
1517     }
1518   }
1519
1520   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1521     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1522                                          << Loc);
1523     Warnings.emplace_back(std::move(Warning), getNotes());
1524   }
1525
1526   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1527                              SourceLocation Loc) override {
1528     warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
1529   }
1530
1531   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1532                                  LockKind Expected, LockKind Received,
1533                                  SourceLocation Loc) override {
1534     if (Loc.isInvalid())
1535       Loc = FunLocation;
1536     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
1537                                          << Kind << LockName << Received
1538                                          << Expected);
1539     Warnings.emplace_back(std::move(Warning), getNotes());
1540   }
1541
1542   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
1543     warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
1544   }
1545
1546   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1547                                  SourceLocation LocLocked,
1548                                  SourceLocation LocEndOfScope,
1549                                  LockErrorKind LEK) override {
1550     unsigned DiagID = 0;
1551     switch (LEK) {
1552       case LEK_LockedSomePredecessors:
1553         DiagID = diag::warn_lock_some_predecessors;
1554         break;
1555       case LEK_LockedSomeLoopIterations:
1556         DiagID = diag::warn_expecting_lock_held_on_loop;
1557         break;
1558       case LEK_LockedAtEndOfFunction:
1559         DiagID = diag::warn_no_unlock;
1560         break;
1561       case LEK_NotLockedAtEndOfFunction:
1562         DiagID = diag::warn_expecting_locked;
1563         break;
1564     }
1565     if (LocEndOfScope.isInvalid())
1566       LocEndOfScope = FunEndLocation;
1567
1568     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1569                                                                << LockName);
1570     if (LocLocked.isValid()) {
1571       PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
1572                                               << Kind);
1573       Warnings.emplace_back(std::move(Warning), getNotes(Note));
1574       return;
1575     }
1576     Warnings.emplace_back(std::move(Warning), getNotes());
1577   }
1578
1579   void handleExclusiveAndShared(StringRef Kind, Name LockName,
1580                                 SourceLocation Loc1,
1581                                 SourceLocation Loc2) override {
1582     PartialDiagnosticAt Warning(Loc1,
1583                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
1584                                     << Kind << LockName);
1585     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1586                                        << Kind << LockName);
1587     Warnings.emplace_back(std::move(Warning), getNotes(Note));
1588   }
1589
1590   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1591                          ProtectedOperationKind POK, AccessKind AK,
1592                          SourceLocation Loc) override {
1593     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1594            "Only works for variables");
1595     unsigned DiagID = POK == POK_VarAccess?
1596                         diag::warn_variable_requires_any_lock:
1597                         diag::warn_var_deref_requires_any_lock;
1598     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1599       << D->getNameAsString() << getLockKindFromAccessKind(AK));
1600     Warnings.emplace_back(std::move(Warning), getNotes());
1601   }
1602
1603   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1604                           ProtectedOperationKind POK, Name LockName,
1605                           LockKind LK, SourceLocation Loc,
1606                           Name *PossibleMatch) override {
1607     unsigned DiagID = 0;
1608     if (PossibleMatch) {
1609       switch (POK) {
1610         case POK_VarAccess:
1611           DiagID = diag::warn_variable_requires_lock_precise;
1612           break;
1613         case POK_VarDereference:
1614           DiagID = diag::warn_var_deref_requires_lock_precise;
1615           break;
1616         case POK_FunctionCall:
1617           DiagID = diag::warn_fun_requires_lock_precise;
1618           break;
1619         case POK_PassByRef:
1620           DiagID = diag::warn_guarded_pass_by_reference;
1621           break;
1622         case POK_PtPassByRef:
1623           DiagID = diag::warn_pt_guarded_pass_by_reference;
1624           break;
1625       }
1626       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1627                                                        << D->getNameAsString()
1628                                                        << LockName << LK);
1629       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1630                                         << *PossibleMatch);
1631       if (Verbose && POK == POK_VarAccess) {
1632         PartialDiagnosticAt VNote(D->getLocation(),
1633                                  S.PDiag(diag::note_guarded_by_declared_here)
1634                                      << D->getNameAsString());
1635         Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1636       } else
1637         Warnings.emplace_back(std::move(Warning), getNotes(Note));
1638     } else {
1639       switch (POK) {
1640         case POK_VarAccess:
1641           DiagID = diag::warn_variable_requires_lock;
1642           break;
1643         case POK_VarDereference:
1644           DiagID = diag::warn_var_deref_requires_lock;
1645           break;
1646         case POK_FunctionCall:
1647           DiagID = diag::warn_fun_requires_lock;
1648           break;
1649         case POK_PassByRef:
1650           DiagID = diag::warn_guarded_pass_by_reference;
1651           break;
1652         case POK_PtPassByRef:
1653           DiagID = diag::warn_pt_guarded_pass_by_reference;
1654           break;
1655       }
1656       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1657                                                        << D->getNameAsString()
1658                                                        << LockName << LK);
1659       if (Verbose && POK == POK_VarAccess) {
1660         PartialDiagnosticAt Note(D->getLocation(),
1661                                  S.PDiag(diag::note_guarded_by_declared_here)
1662                                      << D->getNameAsString());
1663         Warnings.emplace_back(std::move(Warning), getNotes(Note));
1664       } else
1665         Warnings.emplace_back(std::move(Warning), getNotes());
1666     }
1667   }
1668
1669   void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
1670                              SourceLocation Loc) override {
1671     PartialDiagnosticAt Warning(Loc,
1672         S.PDiag(diag::warn_acquire_requires_negative_cap)
1673         << Kind << LockName << Neg);
1674     Warnings.emplace_back(std::move(Warning), getNotes());
1675   }
1676
1677   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1678                              SourceLocation Loc) override {
1679     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1680                                          << Kind << FunName << LockName);
1681     Warnings.emplace_back(std::move(Warning), getNotes());
1682   }
1683
1684   void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
1685                                 SourceLocation Loc) override {
1686     PartialDiagnosticAt Warning(Loc,
1687       S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1688     Warnings.emplace_back(std::move(Warning), getNotes());
1689   }
1690
1691   void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
1692     PartialDiagnosticAt Warning(Loc,
1693       S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1694     Warnings.emplace_back(std::move(Warning), getNotes());
1695   }
1696
1697   void enterFunction(const FunctionDecl* FD) override {
1698     CurrentFunction = FD;
1699   }
1700
1701   void leaveFunction(const FunctionDecl* FD) override {
1702     CurrentFunction = nullptr;
1703   }
1704 };
1705 } // anonymous namespace
1706 } // namespace threadSafety
1707 } // namespace clang
1708
1709 //===----------------------------------------------------------------------===//
1710 // -Wconsumed
1711 //===----------------------------------------------------------------------===//
1712
1713 namespace clang {
1714 namespace consumed {
1715 namespace {
1716 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1717   
1718   Sema &S;
1719   DiagList Warnings;
1720   
1721 public:
1722
1723   ConsumedWarningsHandler(Sema &S) : S(S) {}
1724
1725   void emitDiagnostics() override {
1726     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1727     for (const auto &Diag : Warnings) {
1728       S.Diag(Diag.first.first, Diag.first.second);
1729       for (const auto &Note : Diag.second)
1730         S.Diag(Note.first, Note.second);
1731     }
1732   }
1733
1734   void warnLoopStateMismatch(SourceLocation Loc,
1735                              StringRef VariableName) override {
1736     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1737       VariableName);
1738
1739     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1740   }
1741   
1742   void warnParamReturnTypestateMismatch(SourceLocation Loc,
1743                                         StringRef VariableName,
1744                                         StringRef ExpectedState,
1745                                         StringRef ObservedState) override {
1746     
1747     PartialDiagnosticAt Warning(Loc, S.PDiag(
1748       diag::warn_param_return_typestate_mismatch) << VariableName <<
1749         ExpectedState << ObservedState);
1750
1751     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1752   }
1753   
1754   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1755                                   StringRef ObservedState) override {
1756     
1757     PartialDiagnosticAt Warning(Loc, S.PDiag(
1758       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1759
1760     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1761   }
1762   
1763   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1764                                               StringRef TypeName) override {
1765     PartialDiagnosticAt Warning(Loc, S.PDiag(
1766       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1767
1768     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1769   }
1770   
1771   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1772                                    StringRef ObservedState) override {
1773                                     
1774     PartialDiagnosticAt Warning(Loc, S.PDiag(
1775       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1776
1777     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1778   }
1779   
1780   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1781                                    SourceLocation Loc) override {
1782                                                     
1783     PartialDiagnosticAt Warning(Loc, S.PDiag(
1784       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1785
1786     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1787   }
1788   
1789   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1790                              StringRef State, SourceLocation Loc) override {
1791   
1792     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1793                                 MethodName << VariableName << State);
1794
1795     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1796   }
1797 };
1798 } // anonymous namespace
1799 } // namespace consumed
1800 } // namespace clang
1801
1802 //===----------------------------------------------------------------------===//
1803 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1804 //  warnings on a function, method, or block.
1805 //===----------------------------------------------------------------------===//
1806
1807 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1808   enableCheckFallThrough = 1;
1809   enableCheckUnreachable = 0;
1810   enableThreadSafetyAnalysis = 0;
1811   enableConsumedAnalysis = 0;
1812 }
1813
1814 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1815   return (unsigned)!D.isIgnored(diag, SourceLocation());
1816 }
1817
1818 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1819   : S(s),
1820     NumFunctionsAnalyzed(0),
1821     NumFunctionsWithBadCFGs(0),
1822     NumCFGBlocks(0),
1823     MaxCFGBlocksPerFunction(0),
1824     NumUninitAnalysisFunctions(0),
1825     NumUninitAnalysisVariables(0),
1826     MaxUninitAnalysisVariablesPerFunction(0),
1827     NumUninitAnalysisBlockVisits(0),
1828     MaxUninitAnalysisBlockVisitsPerFunction(0) {
1829
1830   using namespace diag;
1831   DiagnosticsEngine &D = S.getDiagnostics();
1832
1833   DefaultPolicy.enableCheckUnreachable =
1834     isEnabled(D, warn_unreachable) ||
1835     isEnabled(D, warn_unreachable_break) ||
1836     isEnabled(D, warn_unreachable_return) ||
1837     isEnabled(D, warn_unreachable_loop_increment);
1838
1839   DefaultPolicy.enableThreadSafetyAnalysis =
1840     isEnabled(D, warn_double_lock);
1841
1842   DefaultPolicy.enableConsumedAnalysis =
1843     isEnabled(D, warn_use_in_invalid_state);
1844 }
1845
1846 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
1847   for (const auto &D : fscope->PossiblyUnreachableDiags)
1848     S.Diag(D.Loc, D.PD);
1849 }
1850
1851 void clang::sema::
1852 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1853                                      sema::FunctionScopeInfo *fscope,
1854                                      const Decl *D, const BlockExpr *blkExpr) {
1855
1856   // We avoid doing analysis-based warnings when there are errors for
1857   // two reasons:
1858   // (1) The CFGs often can't be constructed (if the body is invalid), so
1859   //     don't bother trying.
1860   // (2) The code already has problems; running the analysis just takes more
1861   //     time.
1862   DiagnosticsEngine &Diags = S.getDiagnostics();
1863
1864   // Do not do any analysis for declarations in system headers if we are
1865   // going to just ignore them.
1866   if (Diags.getSuppressSystemWarnings() &&
1867       S.SourceMgr.isInSystemHeader(D->getLocation()))
1868     return;
1869
1870   // For code in dependent contexts, we'll do this at instantiation time.
1871   if (cast<DeclContext>(D)->isDependentContext())
1872     return;
1873
1874   if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1875     // Flush out any possibly unreachable diagnostics.
1876     flushDiagnostics(S, fscope);
1877     return;
1878   }
1879   
1880   const Stmt *Body = D->getBody();
1881   assert(Body);
1882
1883   // Construct the analysis context with the specified CFG build options.
1884   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
1885
1886   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1887   // explosion for destructors that can result and the compile time hit.
1888   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1889   AC.getCFGBuildOptions().AddEHEdges = false;
1890   AC.getCFGBuildOptions().AddInitializers = true;
1891   AC.getCFGBuildOptions().AddImplicitDtors = true;
1892   AC.getCFGBuildOptions().AddTemporaryDtors = true;
1893   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
1894   AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
1895
1896   // Force that certain expressions appear as CFGElements in the CFG.  This
1897   // is used to speed up various analyses.
1898   // FIXME: This isn't the right factoring.  This is here for initial
1899   // prototyping, but we need a way for analyses to say what expressions they
1900   // expect to always be CFGElements and then fill in the BuildOptions
1901   // appropriately.  This is essentially a layering violation.
1902   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
1903       P.enableConsumedAnalysis) {
1904     // Unreachable code analysis and thread safety require a linearized CFG.
1905     AC.getCFGBuildOptions().setAllAlwaysAdd();
1906   }
1907   else {
1908     AC.getCFGBuildOptions()
1909       .setAlwaysAdd(Stmt::BinaryOperatorClass)
1910       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1911       .setAlwaysAdd(Stmt::BlockExprClass)
1912       .setAlwaysAdd(Stmt::CStyleCastExprClass)
1913       .setAlwaysAdd(Stmt::DeclRefExprClass)
1914       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1915       .setAlwaysAdd(Stmt::UnaryOperatorClass)
1916       .setAlwaysAdd(Stmt::AttributedStmtClass);
1917   }
1918
1919   // Install the logical handler for -Wtautological-overlap-compare
1920   std::unique_ptr<LogicalErrorHandler> LEH;
1921   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
1922                        D->getLocStart())) {
1923     LEH.reset(new LogicalErrorHandler(S));
1924     AC.getCFGBuildOptions().Observer = LEH.get();
1925   }
1926
1927   // Emit delayed diagnostics.
1928   if (!fscope->PossiblyUnreachableDiags.empty()) {
1929     bool analyzed = false;
1930
1931     // Register the expressions with the CFGBuilder.
1932     for (const auto &D : fscope->PossiblyUnreachableDiags) {
1933       if (D.stmt)
1934         AC.registerForcedBlockExpression(D.stmt);
1935     }
1936
1937     if (AC.getCFG()) {
1938       analyzed = true;
1939       for (const auto &D : fscope->PossiblyUnreachableDiags) {
1940         bool processed = false;
1941         if (D.stmt) {
1942           const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
1943           CFGReverseBlockReachabilityAnalysis *cra =
1944               AC.getCFGReachablityAnalysis();
1945           // FIXME: We should be able to assert that block is non-null, but
1946           // the CFG analysis can skip potentially-evaluated expressions in
1947           // edge cases; see test/Sema/vla-2.c.
1948           if (block && cra) {
1949             // Can this block be reached from the entrance?
1950             if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1951               S.Diag(D.Loc, D.PD);
1952             processed = true;
1953           }
1954         }
1955         if (!processed) {
1956           // Emit the warning anyway if we cannot map to a basic block.
1957           S.Diag(D.Loc, D.PD);
1958         }
1959       }
1960     }
1961
1962     if (!analyzed)
1963       flushDiagnostics(S, fscope);
1964   }
1965   
1966   // Warning: check missing 'return'
1967   if (P.enableCheckFallThrough) {
1968     const CheckFallThroughDiagnostics &CD =
1969       (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1970        : (isa<CXXMethodDecl>(D) &&
1971           cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1972           cast<CXXMethodDecl>(D)->getParent()->isLambda())
1973             ? CheckFallThroughDiagnostics::MakeForLambda()
1974             : CheckFallThroughDiagnostics::MakeForFunction(D));
1975     CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1976   }
1977
1978   // Warning: check for unreachable code
1979   if (P.enableCheckUnreachable) {
1980     // Only check for unreachable code on non-template instantiations.
1981     // Different template instantiations can effectively change the control-flow
1982     // and it is very difficult to prove that a snippet of code in a template
1983     // is unreachable for all instantiations.
1984     bool isTemplateInstantiation = false;
1985     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1986       isTemplateInstantiation = Function->isTemplateInstantiation();
1987     if (!isTemplateInstantiation)
1988       CheckUnreachable(S, AC);
1989   }
1990
1991   // Check for thread safety violations
1992   if (P.enableThreadSafetyAnalysis) {
1993     SourceLocation FL = AC.getDecl()->getLocation();
1994     SourceLocation FEL = AC.getDecl()->getLocEnd();
1995     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
1996     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
1997       Reporter.setIssueBetaWarnings(true);
1998     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
1999       Reporter.setVerbose(true);
2000
2001     threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2002                                           &S.ThreadSafetyDeclCache);
2003     Reporter.emitDiagnostics();
2004   }
2005
2006   // Check for violations of consumed properties.
2007   if (P.enableConsumedAnalysis) {
2008     consumed::ConsumedWarningsHandler WarningHandler(S);
2009     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2010     Analyzer.run(AC);
2011   }
2012
2013   if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
2014       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
2015       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
2016     if (CFG *cfg = AC.getCFG()) {
2017       UninitValsDiagReporter reporter(S);
2018       UninitVariablesAnalysisStats stats;
2019       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2020       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2021                                         reporter, stats);
2022
2023       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2024         ++NumUninitAnalysisFunctions;
2025         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2026         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2027         MaxUninitAnalysisVariablesPerFunction =
2028             std::max(MaxUninitAnalysisVariablesPerFunction,
2029                      stats.NumVariablesAnalyzed);
2030         MaxUninitAnalysisBlockVisitsPerFunction =
2031             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2032                      stats.NumBlockVisits);
2033       }
2034     }
2035   }
2036
2037   bool FallThroughDiagFull =
2038       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
2039   bool FallThroughDiagPerFunction = !Diags.isIgnored(
2040       diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
2041   if (FallThroughDiagFull || FallThroughDiagPerFunction) {
2042     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2043   }
2044
2045   if (S.getLangOpts().ObjCWeak &&
2046       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
2047     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2048
2049
2050   // Check for infinite self-recursion in functions
2051   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2052                        D->getLocStart())) {
2053     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2054       checkRecursiveFunction(S, FD, Body, AC);
2055     }
2056   }
2057
2058   // If none of the previous checks caused a CFG build, trigger one here
2059   // for -Wtautological-overlap-compare
2060   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2061                                D->getLocStart())) {
2062     AC.getCFG();
2063   }
2064
2065   // Collect statistics about the CFG if it was built.
2066   if (S.CollectStats && AC.isCFGBuilt()) {
2067     ++NumFunctionsAnalyzed;
2068     if (CFG *cfg = AC.getCFG()) {
2069       // If we successfully built a CFG for this context, record some more
2070       // detail information about it.
2071       NumCFGBlocks += cfg->getNumBlockIDs();
2072       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2073                                          cfg->getNumBlockIDs());
2074     } else {
2075       ++NumFunctionsWithBadCFGs;
2076     }
2077   }
2078 }
2079
2080 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2081   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2082
2083   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2084   unsigned AvgCFGBlocksPerFunction =
2085       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2086   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2087                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2088                << "  " << NumCFGBlocks << " CFG blocks built.\n"
2089                << "  " << AvgCFGBlocksPerFunction
2090                << " average CFG blocks per function.\n"
2091                << "  " << MaxCFGBlocksPerFunction
2092                << " max CFG blocks per function.\n";
2093
2094   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2095       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2096   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2097       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2098   llvm::errs() << NumUninitAnalysisFunctions
2099                << " functions analyzed for uninitialiazed variables\n"
2100                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2101                << "  " << AvgUninitVariablesPerFunction
2102                << " average variables per function.\n"
2103                << "  " << MaxUninitAnalysisVariablesPerFunction
2104                << " max variables per function.\n"
2105                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2106                << "  " << AvgUninitBlockVisitsPerFunction
2107                << " average block visits per function.\n"
2108                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2109                << " max block visits per function.\n";
2110 }