]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaCXXScopeSpec.cpp
Merge ^/head r288836 through r288925.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaCXXScopeSpec.cpp
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return nullptr;
33
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!Record->isDependentContext() ||
38         Record->isCurrentInstantiation(CurContext))
39       return Record;
40
41     return nullptr;
42   } else if (isa<InjectedClassNameType>(Ty))
43     return cast<InjectedClassNameType>(Ty)->getDecl();
44   else
45     return nullptr;
46 }
47
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
55 DeclContext *Sema::computeDeclContext(QualType T) {
56   if (!T->isDependentType())
57     if (const TagType *Tag = T->getAs<TagType>())
58       return Tag->getDecl();
59
60   return ::getCurrentInstantiationOf(T, CurContext);
61 }
62
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                       bool EnteringContext) {
78   if (!SS.isSet() || SS.isInvalid())
79     return nullptr;
80
81   NestedNameSpecifier *NNS = SS.getScopeRep();
82   if (NNS->isDependent()) {
83     // If this nested-name-specifier refers to the current
84     // instantiation, return its DeclContext.
85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86       return Record;
87
88     if (EnteringContext) {
89       const Type *NNSType = NNS->getAsType();
90       if (!NNSType) {
91         return nullptr;
92       }
93
94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
95       NNSType = Context.getCanonicalType(NNSType);
96       if (const TemplateSpecializationType *SpecType
97             = NNSType->getAs<TemplateSpecializationType>()) {
98         // We are entering the context of the nested name specifier, so try to
99         // match the nested name specifier to either a primary class template
100         // or a class template partial specialization.
101         if (ClassTemplateDecl *ClassTemplate
102               = dyn_cast_or_null<ClassTemplateDecl>(
103                             SpecType->getTemplateName().getAsTemplateDecl())) {
104           QualType ContextType
105             = Context.getCanonicalType(QualType(SpecType, 0));
106
107           // If the type of the nested name specifier is the same as the
108           // injected class name of the named class template, we're entering
109           // into that class template definition.
110           QualType Injected
111             = ClassTemplate->getInjectedClassNameSpecialization();
112           if (Context.hasSameType(Injected, ContextType))
113             return ClassTemplate->getTemplatedDecl();
114
115           // If the type of the nested name specifier is the same as the
116           // type of one of the class template's class template partial
117           // specializations, we're entering into the definition of that
118           // class template partial specialization.
119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                 = ClassTemplate->findPartialSpecialization(ContextType))
121             return PartialSpec;
122         }
123       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124         // The nested name specifier refers to a member of a class template.
125         return RecordT->getDecl();
126       }
127     }
128
129     return nullptr;
130   }
131
132   switch (NNS->getKind()) {
133   case NestedNameSpecifier::Identifier:
134     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135
136   case NestedNameSpecifier::Namespace:
137     return NNS->getAsNamespace();
138
139   case NestedNameSpecifier::NamespaceAlias:
140     return NNS->getAsNamespaceAlias()->getNamespace();
141
142   case NestedNameSpecifier::TypeSpec:
143   case NestedNameSpecifier::TypeSpecWithTemplate: {
144     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145     assert(Tag && "Non-tag type in nested-name-specifier");
146     return Tag->getDecl();
147   }
148
149   case NestedNameSpecifier::Global:
150     return Context.getTranslationUnitDecl();
151
152   case NestedNameSpecifier::Super:
153     return NNS->getAsRecordDecl();
154   }
155
156   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
157 }
158
159 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
160   if (!SS.isSet() || SS.isInvalid())
161     return false;
162
163   return SS.getScopeRep()->isDependent();
164 }
165
166 /// \brief If the given nested name specifier refers to the current
167 /// instantiation, return the declaration that corresponds to that
168 /// current instantiation (C++0x [temp.dep.type]p1).
169 ///
170 /// \param NNS a dependent nested name specifier.
171 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
172   assert(getLangOpts().CPlusPlus && "Only callable in C++");
173   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
174
175   if (!NNS->getAsType())
176     return nullptr;
177
178   QualType T = QualType(NNS->getAsType(), 0);
179   return ::getCurrentInstantiationOf(T, CurContext);
180 }
181
182 /// \brief Require that the context specified by SS be complete.
183 ///
184 /// If SS refers to a type, this routine checks whether the type is
185 /// complete enough (or can be made complete enough) for name lookup
186 /// into the DeclContext. A type that is not yet completed can be
187 /// considered "complete enough" if it is a class/struct/union/enum
188 /// that is currently being defined. Or, if we have a type that names
189 /// a class template specialization that is not a complete type, we
190 /// will attempt to instantiate that class template.
191 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
192                                       DeclContext *DC) {
193   assert(DC && "given null context");
194
195   TagDecl *tag = dyn_cast<TagDecl>(DC);
196
197   // If this is a dependent type, then we consider it complete.
198   if (!tag || tag->isDependentContext())
199     return false;
200
201   // If we're currently defining this type, then lookup into the
202   // type is okay: don't complain that it isn't complete yet.
203   QualType type = Context.getTypeDeclType(tag);
204   const TagType *tagType = type->getAs<TagType>();
205   if (tagType && tagType->isBeingDefined())
206     return false;
207
208   SourceLocation loc = SS.getLastQualifierNameLoc();
209   if (loc.isInvalid()) loc = SS.getRange().getBegin();
210
211   // The type must be complete.
212   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
213                           SS.getRange())) {
214     SS.SetInvalid(SS.getRange());
215     return true;
216   }
217
218   // Fixed enum types are complete, but they aren't valid as scopes
219   // until we see a definition, so awkwardly pull out this special
220   // case.
221   // FIXME: The definition might not be visible; complain if it is not.
222   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
223   if (!enumType || enumType->getDecl()->isCompleteDefinition())
224     return false;
225
226   // Try to instantiate the definition, if this is a specialization of an
227   // enumeration temploid.
228   EnumDecl *ED = enumType->getDecl();
229   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
230     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
231     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
232       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
233                           TSK_ImplicitInstantiation)) {
234         SS.SetInvalid(SS.getRange());
235         return true;
236       }
237       return false;
238     }
239   }
240
241   Diag(loc, diag::err_incomplete_nested_name_spec)
242     << type << SS.getRange();
243   SS.SetInvalid(SS.getRange());
244   return true;
245 }
246
247 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
248                                         CXXScopeSpec &SS) {
249   SS.MakeGlobal(Context, CCLoc);
250   return false;
251 }
252
253 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
254                                     SourceLocation ColonColonLoc,
255                                     CXXScopeSpec &SS) {
256   CXXRecordDecl *RD = nullptr;
257   for (Scope *S = getCurScope(); S; S = S->getParent()) {
258     if (S->isFunctionScope()) {
259       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
260         RD = MD->getParent();
261       break;
262     }
263     if (S->isClassScope()) {
264       RD = cast<CXXRecordDecl>(S->getEntity());
265       break;
266     }
267   }
268
269   if (!RD) {
270     Diag(SuperLoc, diag::err_invalid_super_scope);
271     return true;
272   } else if (RD->isLambda()) {
273     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
274     return true;
275   } else if (RD->getNumBases() == 0) {
276     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
277     return true;
278   }
279
280   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
281   return false;
282 }
283
284 /// \brief Determines whether the given declaration is an valid acceptable
285 /// result for name lookup of a nested-name-specifier.
286 /// \param SD Declaration checked for nested-name-specifier.
287 /// \param IsExtension If not null and the declaration is accepted as an
288 /// extension, the pointed variable is assigned true.
289 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
290                                            bool *IsExtension) {
291   if (!SD)
292     return false;
293
294   // Namespace and namespace aliases are fine.
295   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
296     return true;
297
298   if (!isa<TypeDecl>(SD))
299     return false;
300
301   // Determine whether we have a class (or, in C++11, an enum) or
302   // a typedef thereof. If so, build the nested-name-specifier.
303   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
304   if (T->isDependentType())
305     return true;
306   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
307     if (TD->getUnderlyingType()->isRecordType())
308       return true;
309     if (TD->getUnderlyingType()->isEnumeralType()) {
310       if (Context.getLangOpts().CPlusPlus11)
311         return true;
312       if (IsExtension)
313         *IsExtension = true;
314     }
315   } else if (isa<RecordDecl>(SD)) {
316     return true;
317   } else if (isa<EnumDecl>(SD)) {
318     if (Context.getLangOpts().CPlusPlus11)
319       return true;
320     if (IsExtension)
321       *IsExtension = true;
322   }
323
324   return false;
325 }
326
327 /// \brief If the given nested-name-specifier begins with a bare identifier
328 /// (e.g., Base::), perform name lookup for that identifier as a
329 /// nested-name-specifier within the given scope, and return the result of that
330 /// name lookup.
331 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
332   if (!S || !NNS)
333     return nullptr;
334
335   while (NNS->getPrefix())
336     NNS = NNS->getPrefix();
337
338   if (NNS->getKind() != NestedNameSpecifier::Identifier)
339     return nullptr;
340
341   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
342                      LookupNestedNameSpecifierName);
343   LookupName(Found, S);
344   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
345
346   if (!Found.isSingleResult())
347     return nullptr;
348
349   NamedDecl *Result = Found.getFoundDecl();
350   if (isAcceptableNestedNameSpecifier(Result))
351     return Result;
352
353   return nullptr;
354 }
355
356 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
357                                         SourceLocation IdLoc,
358                                         IdentifierInfo &II,
359                                         ParsedType ObjectTypePtr) {
360   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
361   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
362   
363   // Determine where to perform name lookup
364   DeclContext *LookupCtx = nullptr;
365   bool isDependent = false;
366   if (!ObjectType.isNull()) {
367     // This nested-name-specifier occurs in a member access expression, e.g.,
368     // x->B::f, and we are looking into the type of the object.
369     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
370     LookupCtx = computeDeclContext(ObjectType);
371     isDependent = ObjectType->isDependentType();
372   } else if (SS.isSet()) {
373     // This nested-name-specifier occurs after another nested-name-specifier,
374     // so long into the context associated with the prior nested-name-specifier.
375     LookupCtx = computeDeclContext(SS, false);
376     isDependent = isDependentScopeSpecifier(SS);
377     Found.setContextRange(SS.getRange());
378   }
379   
380   if (LookupCtx) {
381     // Perform "qualified" name lookup into the declaration context we
382     // computed, which is either the type of the base of a member access
383     // expression or the declaration context associated with a prior
384     // nested-name-specifier.
385     
386     // The declaration context must be complete.
387     if (!LookupCtx->isDependentContext() &&
388         RequireCompleteDeclContext(SS, LookupCtx))
389       return false;
390     
391     LookupQualifiedName(Found, LookupCtx);
392   } else if (isDependent) {
393     return false;
394   } else {
395     LookupName(Found, S);
396   }
397   Found.suppressDiagnostics();
398   
399   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
400     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
401   
402   return false;
403 }
404
405 namespace {
406
407 // Callback to only accept typo corrections that can be a valid C++ member
408 // intializer: either a non-static field member or a base class.
409 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
410  public:
411   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
412       : SRef(SRef) {}
413
414   bool ValidateCandidate(const TypoCorrection &candidate) override {
415     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
416   }
417
418  private:
419   Sema &SRef;
420 };
421
422 }
423
424 /// \brief Build a new nested-name-specifier for "identifier::", as described
425 /// by ActOnCXXNestedNameSpecifier.
426 ///
427 /// \param S Scope in which the nested-name-specifier occurs.
428 /// \param Identifier Identifier in the sequence "identifier" "::".
429 /// \param IdentifierLoc Location of the \p Identifier.
430 /// \param CCLoc Location of "::" following Identifier.
431 /// \param ObjectType Type of postfix expression if the nested-name-specifier
432 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
433 /// \param EnteringContext If true, enter the context specified by the
434 ///        nested-name-specifier.
435 /// \param SS Optional nested name specifier preceding the identifier.
436 /// \param ScopeLookupResult Provides the result of name lookup within the
437 ///        scope of the nested-name-specifier that was computed at template
438 ///        definition time.
439 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
440 ///        error recovery and what kind of recovery is performed.
441 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
442 ///        are allowed.  The bool value pointed by this parameter is set to
443 ///       'true' if the identifier is treated as if it was followed by ':',
444 ///        not '::'.
445 ///
446 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
447 /// that it contains an extra parameter \p ScopeLookupResult, which provides
448 /// the result of name lookup within the scope of the nested-name-specifier
449 /// that was computed at template definition time.
450 ///
451 /// If ErrorRecoveryLookup is true, then this call is used to improve error
452 /// recovery.  This means that it should not emit diagnostics, it should
453 /// just return true on failure.  It also means it should only return a valid
454 /// scope if it *knows* that the result is correct.  It should not return in a
455 /// dependent context, for example. Nor will it extend \p SS with the scope
456 /// specifier.
457 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
458                                        IdentifierInfo &Identifier,
459                                        SourceLocation IdentifierLoc,
460                                        SourceLocation CCLoc,
461                                        QualType ObjectType,
462                                        bool EnteringContext,
463                                        CXXScopeSpec &SS,
464                                        NamedDecl *ScopeLookupResult,
465                                        bool ErrorRecoveryLookup,
466                                        bool *IsCorrectedToColon) {
467   LookupResult Found(*this, &Identifier, IdentifierLoc, 
468                      LookupNestedNameSpecifierName);
469
470   // Determine where to perform name lookup
471   DeclContext *LookupCtx = nullptr;
472   bool isDependent = false;
473   if (IsCorrectedToColon)
474     *IsCorrectedToColon = false;
475   if (!ObjectType.isNull()) {
476     // This nested-name-specifier occurs in a member access expression, e.g.,
477     // x->B::f, and we are looking into the type of the object.
478     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
479     LookupCtx = computeDeclContext(ObjectType);
480     isDependent = ObjectType->isDependentType();
481   } else if (SS.isSet()) {
482     // This nested-name-specifier occurs after another nested-name-specifier,
483     // so look into the context associated with the prior nested-name-specifier.
484     LookupCtx = computeDeclContext(SS, EnteringContext);
485     isDependent = isDependentScopeSpecifier(SS);
486     Found.setContextRange(SS.getRange());
487   }
488
489   bool ObjectTypeSearchedInScope = false;
490   if (LookupCtx) {
491     // Perform "qualified" name lookup into the declaration context we
492     // computed, which is either the type of the base of a member access
493     // expression or the declaration context associated with a prior
494     // nested-name-specifier.
495
496     // The declaration context must be complete.
497     if (!LookupCtx->isDependentContext() &&
498         RequireCompleteDeclContext(SS, LookupCtx))
499       return true;
500
501     LookupQualifiedName(Found, LookupCtx);
502
503     if (!ObjectType.isNull() && Found.empty()) {
504       // C++ [basic.lookup.classref]p4:
505       //   If the id-expression in a class member access is a qualified-id of
506       //   the form
507       //
508       //        class-name-or-namespace-name::...
509       //
510       //   the class-name-or-namespace-name following the . or -> operator is
511       //   looked up both in the context of the entire postfix-expression and in
512       //   the scope of the class of the object expression. If the name is found
513       //   only in the scope of the class of the object expression, the name
514       //   shall refer to a class-name. If the name is found only in the
515       //   context of the entire postfix-expression, the name shall refer to a
516       //   class-name or namespace-name. [...]
517       //
518       // Qualified name lookup into a class will not find a namespace-name,
519       // so we do not need to diagnose that case specifically. However,
520       // this qualified name lookup may find nothing. In that case, perform
521       // unqualified name lookup in the given scope (if available) or
522       // reconstruct the result from when name lookup was performed at template
523       // definition time.
524       if (S)
525         LookupName(Found, S);
526       else if (ScopeLookupResult)
527         Found.addDecl(ScopeLookupResult);
528
529       ObjectTypeSearchedInScope = true;
530     }
531   } else if (!isDependent) {
532     // Perform unqualified name lookup in the current scope.
533     LookupName(Found, S);
534   }
535
536   // If we performed lookup into a dependent context and did not find anything,
537   // that's fine: just build a dependent nested-name-specifier.
538   if (Found.empty() && isDependent &&
539       !(LookupCtx && LookupCtx->isRecord() &&
540         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
541          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
542     // Don't speculate if we're just trying to improve error recovery.
543     if (ErrorRecoveryLookup)
544       return true;
545
546     // We were not able to compute the declaration context for a dependent
547     // base object type or prior nested-name-specifier, so this
548     // nested-name-specifier refers to an unknown specialization. Just build
549     // a dependent nested-name-specifier.
550     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
551     return false;
552   }
553
554   // FIXME: Deal with ambiguities cleanly.
555
556   if (Found.empty() && !ErrorRecoveryLookup) {
557     // If identifier is not found as class-name-or-namespace-name, but is found
558     // as other entity, don't look for typos.
559     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
560     if (LookupCtx)
561       LookupQualifiedName(R, LookupCtx);
562     else if (S && !isDependent)
563       LookupName(R, S);
564     if (!R.empty()) {
565       // The identifier is found in ordinary lookup. If correction to colon is
566       // allowed, suggest replacement to ':'.
567       if (IsCorrectedToColon) {
568         *IsCorrectedToColon = true;
569         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
570             << &Identifier << getLangOpts().CPlusPlus
571             << FixItHint::CreateReplacement(CCLoc, ":");
572         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
573           Diag(ND->getLocation(), diag::note_declared_at);
574         return true;
575       }
576       // Replacement '::' -> ':' is not allowed, just issue respective error.
577       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
578           << &Identifier << getLangOpts().CPlusPlus;
579       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
580         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
581       return true;
582     }
583   }
584
585   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
586     // We haven't found anything, and we're not recovering from a
587     // different kind of error, so look for typos.
588     DeclarationName Name = Found.getLookupName();
589     Found.clear();
590     if (TypoCorrection Corrected = CorrectTypo(
591             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
592             llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
593             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
594       if (LookupCtx) {
595         bool DroppedSpecifier =
596             Corrected.WillReplaceSpecifier() &&
597             Name.getAsString() == Corrected.getAsString(getLangOpts());
598         if (DroppedSpecifier)
599           SS.clear();
600         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
601                                   << Name << LookupCtx << DroppedSpecifier
602                                   << SS.getRange());
603       } else
604         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
605                                   << Name);
606
607       if (NamedDecl *ND = Corrected.getCorrectionDecl())
608         Found.addDecl(ND);
609       Found.setLookupName(Corrected.getCorrection());
610     } else {
611       Found.setLookupName(&Identifier);
612     }
613   }
614
615   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
616   bool IsExtension = false;
617   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
618   if (!AcceptSpec && IsExtension) {
619     AcceptSpec = true;
620     Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
621   }
622   if (AcceptSpec) {
623     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
624         !getLangOpts().CPlusPlus11) {
625       // C++03 [basic.lookup.classref]p4:
626       //   [...] If the name is found in both contexts, the
627       //   class-name-or-namespace-name shall refer to the same entity.
628       //
629       // We already found the name in the scope of the object. Now, look
630       // into the current scope (the scope of the postfix-expression) to
631       // see if we can find the same name there. As above, if there is no
632       // scope, reconstruct the result from the template instantiation itself.
633       //
634       // Note that C++11 does *not* perform this redundant lookup.
635       NamedDecl *OuterDecl;
636       if (S) {
637         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 
638                                 LookupNestedNameSpecifierName);
639         LookupName(FoundOuter, S);
640         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
641       } else
642         OuterDecl = ScopeLookupResult;
643
644       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
645           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
646           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
647            !Context.hasSameType(
648                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
649                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
650         if (ErrorRecoveryLookup)
651           return true;
652
653          Diag(IdentifierLoc, 
654               diag::err_nested_name_member_ref_lookup_ambiguous)
655            << &Identifier;
656          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
657            << ObjectType;
658          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
659
660          // Fall through so that we'll pick the name we found in the object
661          // type, since that's probably what the user wanted anyway.
662        }
663     }
664
665     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
666       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
667
668     // If we're just performing this lookup for error-recovery purposes,
669     // don't extend the nested-name-specifier. Just return now.
670     if (ErrorRecoveryLookup)
671       return false;
672
673     // The use of a nested name specifier may trigger deprecation warnings.
674     DiagnoseUseOfDecl(SD, CCLoc);
675
676     
677     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
678       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
679       return false;
680     }
681
682     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
683       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
684       return false;
685     }
686
687     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
688     TypeLocBuilder TLB;
689     if (isa<InjectedClassNameType>(T)) {
690       InjectedClassNameTypeLoc InjectedTL
691         = TLB.push<InjectedClassNameTypeLoc>(T);
692       InjectedTL.setNameLoc(IdentifierLoc);
693     } else if (isa<RecordType>(T)) {
694       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
695       RecordTL.setNameLoc(IdentifierLoc);
696     } else if (isa<TypedefType>(T)) {
697       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
698       TypedefTL.setNameLoc(IdentifierLoc);
699     } else if (isa<EnumType>(T)) {
700       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
701       EnumTL.setNameLoc(IdentifierLoc);
702     } else if (isa<TemplateTypeParmType>(T)) {
703       TemplateTypeParmTypeLoc TemplateTypeTL
704         = TLB.push<TemplateTypeParmTypeLoc>(T);
705       TemplateTypeTL.setNameLoc(IdentifierLoc);
706     } else if (isa<UnresolvedUsingType>(T)) {
707       UnresolvedUsingTypeLoc UnresolvedTL
708         = TLB.push<UnresolvedUsingTypeLoc>(T);
709       UnresolvedTL.setNameLoc(IdentifierLoc);
710     } else if (isa<SubstTemplateTypeParmType>(T)) {
711       SubstTemplateTypeParmTypeLoc TL 
712         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
713       TL.setNameLoc(IdentifierLoc);
714     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
715       SubstTemplateTypeParmPackTypeLoc TL
716         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
717       TL.setNameLoc(IdentifierLoc);
718     } else {
719       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
720     }
721
722     if (T->isEnumeralType())
723       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
724
725     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
726               CCLoc);
727     return false;
728   }
729
730   // Otherwise, we have an error case.  If we don't want diagnostics, just
731   // return an error now.
732   if (ErrorRecoveryLookup)
733     return true;
734
735   // If we didn't find anything during our lookup, try again with
736   // ordinary name lookup, which can help us produce better error
737   // messages.
738   if (Found.empty()) {
739     Found.clear(LookupOrdinaryName);
740     LookupName(Found, S);
741   }
742
743   // In Microsoft mode, if we are within a templated function and we can't
744   // resolve Identifier, then extend the SS with Identifier. This will have 
745   // the effect of resolving Identifier during template instantiation. 
746   // The goal is to be able to resolve a function call whose
747   // nested-name-specifier is located inside a dependent base class.
748   // Example: 
749   //
750   // class C {
751   // public:
752   //    static void foo2() {  }
753   // };
754   // template <class T> class A { public: typedef C D; };
755   //
756   // template <class T> class B : public A<T> {
757   // public:
758   //   void foo() { D::foo2(); }
759   // };
760   if (getLangOpts().MSVCCompat) {
761     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
762     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
763       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
764       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
765         Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
766             << &Identifier << ContainingClass;
767         SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
768         return false;
769       }
770     }
771   }
772
773   if (!Found.empty()) {
774     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
775       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
776           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
777     else {
778       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
779           << &Identifier << getLangOpts().CPlusPlus;
780       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
781         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
782     }
783   } else if (SS.isSet())
784     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
785                                              << SS.getRange();
786   else
787     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
788
789   return true;
790 }
791
792 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
793                                        IdentifierInfo &Identifier,
794                                        SourceLocation IdentifierLoc,
795                                        SourceLocation CCLoc,
796                                        ParsedType ObjectType,
797                                        bool EnteringContext,
798                                        CXXScopeSpec &SS,
799                                        bool ErrorRecoveryLookup,
800                                        bool *IsCorrectedToColon) {
801   if (SS.isInvalid())
802     return true;
803
804   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
805                                      GetTypeFromParser(ObjectType),
806                                      EnteringContext, SS, 
807                                      /*ScopeLookupResult=*/nullptr, false,
808                                      IsCorrectedToColon);
809 }
810
811 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
812                                                const DeclSpec &DS,
813                                                SourceLocation ColonColonLoc) {
814   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
815     return true;
816
817   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
818
819   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
820   if (!T->isDependentType() && !T->getAs<TagType>()) {
821     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace) 
822       << T << getLangOpts().CPlusPlus;
823     return true;
824   }
825
826   TypeLocBuilder TLB;
827   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
828   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
829   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
830             ColonColonLoc);
831   return false;
832 }
833
834 /// IsInvalidUnlessNestedName - This method is used for error recovery
835 /// purposes to determine whether the specified identifier is only valid as
836 /// a nested name specifier, for example a namespace name.  It is
837 /// conservatively correct to always return false from this method.
838 ///
839 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
840 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
841                                      IdentifierInfo &Identifier, 
842                                      SourceLocation IdentifierLoc,
843                                      SourceLocation ColonLoc,
844                                      ParsedType ObjectType,
845                                      bool EnteringContext) {
846   if (SS.isInvalid())
847     return false;
848
849   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
850                                       GetTypeFromParser(ObjectType),
851                                       EnteringContext, SS, 
852                                       /*ScopeLookupResult=*/nullptr, true);
853 }
854
855 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
856                                        CXXScopeSpec &SS,
857                                        SourceLocation TemplateKWLoc,
858                                        TemplateTy Template,
859                                        SourceLocation TemplateNameLoc,
860                                        SourceLocation LAngleLoc,
861                                        ASTTemplateArgsPtr TemplateArgsIn,
862                                        SourceLocation RAngleLoc,
863                                        SourceLocation CCLoc,
864                                        bool EnteringContext) {
865   if (SS.isInvalid())
866     return true;
867   
868   // Translate the parser's template argument list in our AST format.
869   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
870   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
871
872   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
873   if (DTN && DTN->isIdentifier()) {
874     // Handle a dependent template specialization for which we cannot resolve
875     // the template name.
876     assert(DTN->getQualifier() == SS.getScopeRep());
877     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
878                                                           DTN->getQualifier(),
879                                                           DTN->getIdentifier(),
880                                                                 TemplateArgs);
881     
882     // Create source-location information for this type.
883     TypeLocBuilder Builder;
884     DependentTemplateSpecializationTypeLoc SpecTL
885       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
886     SpecTL.setElaboratedKeywordLoc(SourceLocation());
887     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
888     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
889     SpecTL.setTemplateNameLoc(TemplateNameLoc);
890     SpecTL.setLAngleLoc(LAngleLoc);
891     SpecTL.setRAngleLoc(RAngleLoc);
892     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
893       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
894     
895     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
896               CCLoc);
897     return false;
898   }
899
900   TemplateDecl *TD = Template.get().getAsTemplateDecl();
901   if (Template.get().getAsOverloadedTemplate() || DTN ||
902       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
903     SourceRange R(TemplateNameLoc, RAngleLoc);
904     if (SS.getRange().isValid())
905       R.setBegin(SS.getRange().getBegin());
906
907     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
908       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
909     NoteAllFoundTemplates(Template.get());
910     return true;
911   }
912
913   // We were able to resolve the template name to an actual template. 
914   // Build an appropriate nested-name-specifier.
915   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 
916                                    TemplateArgs);
917   if (T.isNull())
918     return true;
919
920   // Alias template specializations can produce types which are not valid
921   // nested name specifiers.
922   if (!T->isDependentType() && !T->getAs<TagType>()) {
923     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
924     NoteAllFoundTemplates(Template.get());
925     return true;
926   }
927
928   // Provide source-location information for the template specialization type.
929   TypeLocBuilder Builder;
930   TemplateSpecializationTypeLoc SpecTL
931     = Builder.push<TemplateSpecializationTypeLoc>(T);
932   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
933   SpecTL.setTemplateNameLoc(TemplateNameLoc);
934   SpecTL.setLAngleLoc(LAngleLoc);
935   SpecTL.setRAngleLoc(RAngleLoc);
936   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
937     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
938
939
940   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
941             CCLoc);
942   return false;
943 }
944
945 namespace {
946   /// \brief A structure that stores a nested-name-specifier annotation,
947   /// including both the nested-name-specifier 
948   struct NestedNameSpecifierAnnotation {
949     NestedNameSpecifier *NNS;
950   };
951 }
952
953 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
954   if (SS.isEmpty() || SS.isInvalid())
955     return nullptr;
956
957   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
958                                                         SS.location_size()),
959                                llvm::alignOf<NestedNameSpecifierAnnotation>());
960   NestedNameSpecifierAnnotation *Annotation
961     = new (Mem) NestedNameSpecifierAnnotation;
962   Annotation->NNS = SS.getScopeRep();
963   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
964   return Annotation;
965 }
966
967 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 
968                                                 SourceRange AnnotationRange,
969                                                 CXXScopeSpec &SS) {
970   if (!AnnotationPtr) {
971     SS.SetInvalid(AnnotationRange);
972     return;
973   }
974   
975   NestedNameSpecifierAnnotation *Annotation
976     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
977   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
978 }
979
980 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
981   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
982
983   NestedNameSpecifier *Qualifier = SS.getScopeRep();
984
985   // There are only two places a well-formed program may qualify a
986   // declarator: first, when defining a namespace or class member
987   // out-of-line, and second, when naming an explicitly-qualified
988   // friend function.  The latter case is governed by
989   // C++03 [basic.lookup.unqual]p10:
990   //   In a friend declaration naming a member function, a name used
991   //   in the function declarator and not part of a template-argument
992   //   in a template-id is first looked up in the scope of the member
993   //   function's class. If it is not found, or if the name is part of
994   //   a template-argument in a template-id, the look up is as
995   //   described for unqualified names in the definition of the class
996   //   granting friendship.
997   // i.e. we don't push a scope unless it's a class member.
998
999   switch (Qualifier->getKind()) {
1000   case NestedNameSpecifier::Global:
1001   case NestedNameSpecifier::Namespace:
1002   case NestedNameSpecifier::NamespaceAlias:
1003     // These are always namespace scopes.  We never want to enter a
1004     // namespace scope from anything but a file context.
1005     return CurContext->getRedeclContext()->isFileContext();
1006
1007   case NestedNameSpecifier::Identifier:
1008   case NestedNameSpecifier::TypeSpec:
1009   case NestedNameSpecifier::TypeSpecWithTemplate:
1010   case NestedNameSpecifier::Super:
1011     // These are never namespace scopes.
1012     return true;
1013   }
1014
1015   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1016 }
1017
1018 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1019 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1020 /// After this method is called, according to [C++ 3.4.3p3], names should be
1021 /// looked up in the declarator-id's scope, until the declarator is parsed and
1022 /// ActOnCXXExitDeclaratorScope is called.
1023 /// The 'SS' should be a non-empty valid CXXScopeSpec.
1024 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1025   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1026
1027   if (SS.isInvalid()) return true;
1028
1029   DeclContext *DC = computeDeclContext(SS, true);
1030   if (!DC) return true;
1031
1032   // Before we enter a declarator's context, we need to make sure that
1033   // it is a complete declaration context.
1034   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1035     return true;
1036     
1037   EnterDeclaratorContext(S, DC);
1038
1039   // Rebuild the nested name specifier for the new scope.
1040   if (DC->isDependentContext())
1041     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1042
1043   return false;
1044 }
1045
1046 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1047 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1048 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1049 /// Used to indicate that names should revert to being looked up in the
1050 /// defining scope.
1051 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1052   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1053   if (SS.isInvalid())
1054     return;
1055   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1056          "exiting declarator scope we never really entered");
1057   ExitDeclaratorContext(S);
1058 }