]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaDeclObjC.cpp
Merge ^/head r275759 through r275911.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaDeclObjC.cpp
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/DataRecursiveASTVisitor.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/ExternalSemaSource.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseSet.h"
29
30 using namespace clang;
31
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 ///   if non-null, check this as if making a call to it with the given
37 ///   receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 ///   actions were taken
41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                            QualType receiverTypeIfCall) {
43   if (method->isInvalidDecl()) return true;
44
45   // This castAs is safe: methods that don't return an object
46   // pointer won't be inferred as inits and will reject an explicit
47   // objc_method_family(init).
48
49   // We ignore protocols here.  Should we?  What about Class?
50
51   const ObjCObjectType *result =
52       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53
54   if (result->isObjCId()) {
55     return false;
56   } else if (result->isObjCClass()) {
57     // fall through: always an error
58   } else {
59     ObjCInterfaceDecl *resultClass = result->getInterface();
60     assert(resultClass && "unexpected object type!");
61
62     // It's okay for the result type to still be a forward declaration
63     // if we're checking an interface declaration.
64     if (!resultClass->hasDefinition()) {
65       if (receiverTypeIfCall.isNull() &&
66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
67         return false;
68
69     // Otherwise, we try to compare class types.
70     } else {
71       // If this method was declared in a protocol, we can't check
72       // anything unless we have a receiver type that's an interface.
73       const ObjCInterfaceDecl *receiverClass = nullptr;
74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75         if (receiverTypeIfCall.isNull())
76           return false;
77
78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79           ->getInterfaceDecl();
80
81         // This can be null for calls to e.g. id<Foo>.
82         if (!receiverClass) return false;
83       } else {
84         receiverClass = method->getClassInterface();
85         assert(receiverClass && "method not associated with a class!");
86       }
87
88       // If either class is a subclass of the other, it's fine.
89       if (receiverClass->isSuperClassOf(resultClass) ||
90           resultClass->isSuperClassOf(receiverClass))
91         return false;
92     }
93   }
94
95   SourceLocation loc = method->getLocation();
96
97   // If we're in a system header, and this is not a call, just make
98   // the method unusable.
99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100     method->addAttr(UnavailableAttr::CreateImplicit(Context,
101                 "init method returns a type unrelated to its receiver type",
102                 loc));
103     return true;
104   }
105
106   // Otherwise, it's an error.
107   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108   method->setInvalidDecl();
109   return true;
110 }
111
112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 
113                                    const ObjCMethodDecl *Overridden) {
114   if (Overridden->hasRelatedResultType() && 
115       !NewMethod->hasRelatedResultType()) {
116     // This can only happen when the method follows a naming convention that
117     // implies a related result type, and the original (overridden) method has
118     // a suitable return type, but the new (overriding) method does not have
119     // a suitable return type.
120     QualType ResultType = NewMethod->getReturnType();
121     SourceRange ResultTypeRange;
122     if (const TypeSourceInfo *ResultTypeInfo =
123             NewMethod->getReturnTypeSourceInfo())
124       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
125     
126     // Figure out which class this method is part of, if any.
127     ObjCInterfaceDecl *CurrentClass 
128       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
129     if (!CurrentClass) {
130       DeclContext *DC = NewMethod->getDeclContext();
131       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
132         CurrentClass = Cat->getClassInterface();
133       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
134         CurrentClass = Impl->getClassInterface();
135       else if (ObjCCategoryImplDecl *CatImpl
136                = dyn_cast<ObjCCategoryImplDecl>(DC))
137         CurrentClass = CatImpl->getClassInterface();
138     }
139     
140     if (CurrentClass) {
141       Diag(NewMethod->getLocation(), 
142            diag::warn_related_result_type_compatibility_class)
143         << Context.getObjCInterfaceType(CurrentClass)
144         << ResultType
145         << ResultTypeRange;
146     } else {
147       Diag(NewMethod->getLocation(), 
148            diag::warn_related_result_type_compatibility_protocol)
149         << ResultType
150         << ResultTypeRange;
151     }
152     
153     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
154       Diag(Overridden->getLocation(), 
155            diag::note_related_result_type_family)
156         << /*overridden method*/ 0
157         << Family;
158     else
159       Diag(Overridden->getLocation(), 
160            diag::note_related_result_type_overridden);
161   }
162   if (getLangOpts().ObjCAutoRefCount) {
163     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
164          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
165         Diag(NewMethod->getLocation(),
166              diag::err_nsreturns_retained_attribute_mismatch) << 1;
167         Diag(Overridden->getLocation(), diag::note_previous_decl) 
168         << "method";
169     }
170     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
171               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
172         Diag(NewMethod->getLocation(),
173              diag::err_nsreturns_retained_attribute_mismatch) << 0;
174         Diag(Overridden->getLocation(), diag::note_previous_decl) 
175         << "method";
176     }
177     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
178                                          oe = Overridden->param_end();
179     for (ObjCMethodDecl::param_iterator
180            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
181          ni != ne && oi != oe; ++ni, ++oi) {
182       const ParmVarDecl *oldDecl = (*oi);
183       ParmVarDecl *newDecl = (*ni);
184       if (newDecl->hasAttr<NSConsumedAttr>() != 
185           oldDecl->hasAttr<NSConsumedAttr>()) {
186         Diag(newDecl->getLocation(),
187              diag::err_nsconsumed_attribute_mismatch);
188         Diag(oldDecl->getLocation(), diag::note_previous_decl) 
189           << "parameter";
190       }
191     }
192   }
193 }
194
195 /// \brief Check a method declaration for compatibility with the Objective-C
196 /// ARC conventions.
197 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
198   ObjCMethodFamily family = method->getMethodFamily();
199   switch (family) {
200   case OMF_None:
201   case OMF_finalize:
202   case OMF_retain:
203   case OMF_release:
204   case OMF_autorelease:
205   case OMF_retainCount:
206   case OMF_self:
207   case OMF_performSelector:
208     return false;
209
210   case OMF_dealloc:
211     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
212       SourceRange ResultTypeRange;
213       if (const TypeSourceInfo *ResultTypeInfo =
214               method->getReturnTypeSourceInfo())
215         ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
216       if (ResultTypeRange.isInvalid())
217         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
218             << method->getReturnType()
219             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
220       else
221         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
222             << method->getReturnType()
223             << FixItHint::CreateReplacement(ResultTypeRange, "void");
224       return true;
225     }
226     return false;
227       
228   case OMF_init:
229     // If the method doesn't obey the init rules, don't bother annotating it.
230     if (checkInitMethod(method, QualType()))
231       return true;
232
233     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
234
235     // Don't add a second copy of this attribute, but otherwise don't
236     // let it be suppressed.
237     if (method->hasAttr<NSReturnsRetainedAttr>())
238       return false;
239     break;
240
241   case OMF_alloc:
242   case OMF_copy:
243   case OMF_mutableCopy:
244   case OMF_new:
245     if (method->hasAttr<NSReturnsRetainedAttr>() ||
246         method->hasAttr<NSReturnsNotRetainedAttr>() ||
247         method->hasAttr<NSReturnsAutoreleasedAttr>())
248       return false;
249     break;
250   }
251
252   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
253   return false;
254 }
255
256 static void DiagnoseObjCImplementedDeprecations(Sema &S,
257                                                 NamedDecl *ND,
258                                                 SourceLocation ImplLoc,
259                                                 int select) {
260   if (ND && ND->isDeprecated()) {
261     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
262     if (select == 0)
263       S.Diag(ND->getLocation(), diag::note_method_declared_at)
264         << ND->getDeclName();
265     else
266       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
267   }
268 }
269
270 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
271 /// pool.
272 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
273   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
274     
275   // If we don't have a valid method decl, simply return.
276   if (!MDecl)
277     return;
278   if (MDecl->isInstanceMethod())
279     AddInstanceMethodToGlobalPool(MDecl, true);
280   else
281     AddFactoryMethodToGlobalPool(MDecl, true);
282 }
283
284 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
285 /// has explicit ownership attribute; false otherwise.
286 static bool
287 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
288   QualType T = Param->getType();
289   
290   if (const PointerType *PT = T->getAs<PointerType>()) {
291     T = PT->getPointeeType();
292   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
293     T = RT->getPointeeType();
294   } else {
295     return true;
296   }
297   
298   // If we have a lifetime qualifier, but it's local, we must have 
299   // inferred it. So, it is implicit.
300   return !T.getLocalQualifiers().hasObjCLifetime();
301 }
302
303 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
304 /// and user declared, in the method definition's AST.
305 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
306   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
307   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
308   
309   // If we don't have a valid method decl, simply return.
310   if (!MDecl)
311     return;
312
313   // Allow all of Sema to see that we are entering a method definition.
314   PushDeclContext(FnBodyScope, MDecl);
315   PushFunctionScope();
316   
317   // Create Decl objects for each parameter, entrring them in the scope for
318   // binding to their use.
319
320   // Insert the invisible arguments, self and _cmd!
321   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
322
323   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
324   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
325
326   // The ObjC parser requires parameter names so there's no need to check.
327   CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
328                            /*CheckParameterNames=*/false);
329
330   // Introduce all of the other parameters into this scope.
331   for (auto *Param : MDecl->params()) {
332     if (!Param->isInvalidDecl() &&
333         getLangOpts().ObjCAutoRefCount &&
334         !HasExplicitOwnershipAttr(*this, Param))
335       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
336             Param->getType();
337     
338     if (Param->getIdentifier())
339       PushOnScopeChains(Param, FnBodyScope);
340   }
341
342   // In ARC, disallow definition of retain/release/autorelease/retainCount
343   if (getLangOpts().ObjCAutoRefCount) {
344     switch (MDecl->getMethodFamily()) {
345     case OMF_retain:
346     case OMF_retainCount:
347     case OMF_release:
348     case OMF_autorelease:
349       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
350         << 0 << MDecl->getSelector();
351       break;
352
353     case OMF_None:
354     case OMF_dealloc:
355     case OMF_finalize:
356     case OMF_alloc:
357     case OMF_init:
358     case OMF_mutableCopy:
359     case OMF_copy:
360     case OMF_new:
361     case OMF_self:
362     case OMF_performSelector:
363       break;
364     }
365   }
366
367   // Warn on deprecated methods under -Wdeprecated-implementations,
368   // and prepare for warning on missing super calls.
369   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
370     ObjCMethodDecl *IMD = 
371       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
372     
373     if (IMD) {
374       ObjCImplDecl *ImplDeclOfMethodDef = 
375         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
376       ObjCContainerDecl *ContDeclOfMethodDecl = 
377         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
378       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
379       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
380         ImplDeclOfMethodDecl = OID->getImplementation();
381       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
382         if (CD->IsClassExtension()) {
383           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
384             ImplDeclOfMethodDecl = OID->getImplementation();
385         } else
386             ImplDeclOfMethodDecl = CD->getImplementation();
387       }
388       // No need to issue deprecated warning if deprecated mehod in class/category
389       // is being implemented in its own implementation (no overriding is involved).
390       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
391         DiagnoseObjCImplementedDeprecations(*this, 
392                                           dyn_cast<NamedDecl>(IMD), 
393                                           MDecl->getLocation(), 0);
394     }
395
396     if (MDecl->getMethodFamily() == OMF_init) {
397       if (MDecl->isDesignatedInitializerForTheInterface()) {
398         getCurFunction()->ObjCIsDesignatedInit = true;
399         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
400             IC->getSuperClass() != nullptr;
401       } else if (IC->hasDesignatedInitializers()) {
402         getCurFunction()->ObjCIsSecondaryInit = true;
403         getCurFunction()->ObjCWarnForNoInitDelegation = true;
404       }
405     }
406
407     // If this is "dealloc" or "finalize", set some bit here.
408     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
409     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
410     // Only do this if the current class actually has a superclass.
411     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
412       ObjCMethodFamily Family = MDecl->getMethodFamily();
413       if (Family == OMF_dealloc) {
414         if (!(getLangOpts().ObjCAutoRefCount ||
415               getLangOpts().getGC() == LangOptions::GCOnly))
416           getCurFunction()->ObjCShouldCallSuper = true;
417
418       } else if (Family == OMF_finalize) {
419         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
420           getCurFunction()->ObjCShouldCallSuper = true;
421         
422       } else {
423         const ObjCMethodDecl *SuperMethod =
424           SuperClass->lookupMethod(MDecl->getSelector(),
425                                    MDecl->isInstanceMethod());
426         getCurFunction()->ObjCShouldCallSuper = 
427           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
428       }
429     }
430   }
431 }
432
433 namespace {
434
435 // Callback to only accept typo corrections that are Objective-C classes.
436 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
437 // function will reject corrections to that class.
438 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
439  public:
440   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
441   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
442       : CurrentIDecl(IDecl) {}
443
444   bool ValidateCandidate(const TypoCorrection &candidate) override {
445     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
446     return ID && !declaresSameEntity(ID, CurrentIDecl);
447   }
448
449  private:
450   ObjCInterfaceDecl *CurrentIDecl;
451 };
452
453 }
454
455 Decl *Sema::
456 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
457                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
458                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
459                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
460                          const SourceLocation *ProtoLocs, 
461                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
462   assert(ClassName && "Missing class identifier");
463
464   // Check for another declaration kind with the same name.
465   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
466                                          LookupOrdinaryName, ForRedeclaration);
467
468   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
469     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
470     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
471   }
472
473   // Create a declaration to describe this @interface.
474   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
475
476   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
477     // A previous decl with a different name is because of
478     // @compatibility_alias, for example:
479     // \code
480     //   @class NewImage;
481     //   @compatibility_alias OldImage NewImage;
482     // \endcode
483     // A lookup for 'OldImage' will return the 'NewImage' decl.
484     //
485     // In such a case use the real declaration name, instead of the alias one,
486     // otherwise we will break IdentifierResolver and redecls-chain invariants.
487     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
488     // has been aliased.
489     ClassName = PrevIDecl->getIdentifier();
490   }
491
492   ObjCInterfaceDecl *IDecl
493     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
494                                 PrevIDecl, ClassLoc);
495   
496   if (PrevIDecl) {
497     // Class already seen. Was it a definition?
498     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
499       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
500         << PrevIDecl->getDeclName();
501       Diag(Def->getLocation(), diag::note_previous_definition);
502       IDecl->setInvalidDecl();
503     }
504   }
505   
506   if (AttrList)
507     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
508   PushOnScopeChains(IDecl, TUScope);
509
510   // Start the definition of this class. If we're in a redefinition case, there 
511   // may already be a definition, so we'll end up adding to it.
512   if (!IDecl->hasDefinition())
513     IDecl->startDefinition();
514   
515   if (SuperName) {
516     // Check if a different kind of symbol declared in this scope.
517     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
518                                 LookupOrdinaryName);
519
520     if (!PrevDecl) {
521       // Try to correct for a typo in the superclass name without correcting
522       // to the class we're defining.
523       ObjCInterfaceValidatorCCC Validator(IDecl);
524       if (TypoCorrection Corrected = CorrectTypo(
525           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
526           nullptr, Validator, CTK_ErrorRecovery)) {
527         diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
528                                     << SuperName << ClassName);
529         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
530       }
531     }
532
533     if (declaresSameEntity(PrevDecl, IDecl)) {
534       Diag(SuperLoc, diag::err_recursive_superclass)
535         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
536       IDecl->setEndOfDefinitionLoc(ClassLoc);
537     } else {
538       ObjCInterfaceDecl *SuperClassDecl =
539                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
540
541       // Diagnose classes that inherit from deprecated classes.
542       if (SuperClassDecl)
543         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
544
545       if (PrevDecl && !SuperClassDecl) {
546         // The previous declaration was not a class decl. Check if we have a
547         // typedef. If we do, get the underlying class type.
548         if (const TypedefNameDecl *TDecl =
549               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
550           QualType T = TDecl->getUnderlyingType();
551           if (T->isObjCObjectType()) {
552             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
553               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
554               // This handles the following case:
555               // @interface NewI @end
556               // typedef NewI DeprI __attribute__((deprecated("blah")))
557               // @interface SI : DeprI /* warn here */ @end
558               (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
559             }
560           }
561         }
562
563         // This handles the following case:
564         //
565         // typedef int SuperClass;
566         // @interface MyClass : SuperClass {} @end
567         //
568         if (!SuperClassDecl) {
569           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
570           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
571         }
572       }
573
574       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
575         if (!SuperClassDecl)
576           Diag(SuperLoc, diag::err_undef_superclass)
577             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
578         else if (RequireCompleteType(SuperLoc, 
579                                   Context.getObjCInterfaceType(SuperClassDecl),
580                                      diag::err_forward_superclass,
581                                      SuperClassDecl->getDeclName(),
582                                      ClassName,
583                                      SourceRange(AtInterfaceLoc, ClassLoc))) {
584           SuperClassDecl = nullptr;
585         }
586       }
587       IDecl->setSuperClass(SuperClassDecl);
588       IDecl->setSuperClassLoc(SuperLoc);
589       IDecl->setEndOfDefinitionLoc(SuperLoc);
590     }
591   } else { // we have a root class.
592     IDecl->setEndOfDefinitionLoc(ClassLoc);
593   }
594
595   // Check then save referenced protocols.
596   if (NumProtoRefs) {
597     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
598                            ProtoLocs, Context);
599     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
600   }
601
602   CheckObjCDeclScope(IDecl);
603   return ActOnObjCContainerStartDefinition(IDecl);
604 }
605
606 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
607 /// typedef'ed use for a qualified super class and adds them to the list
608 /// of the protocols.
609 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
610                                    IdentifierInfo *SuperName,
611                                    SourceLocation SuperLoc) {
612   if (!SuperName)
613     return;
614   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
615                                       LookupOrdinaryName);
616   if (!IDecl)
617     return;
618   
619   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
620     QualType T = TDecl->getUnderlyingType();
621     if (T->isObjCObjectType())
622       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
623         for (auto *I : OPT->quals())
624           ProtocolRefs.push_back(I);
625   }
626 }
627
628 /// ActOnCompatibilityAlias - this action is called after complete parsing of
629 /// a \@compatibility_alias declaration. It sets up the alias relationships.
630 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
631                                     IdentifierInfo *AliasName,
632                                     SourceLocation AliasLocation,
633                                     IdentifierInfo *ClassName,
634                                     SourceLocation ClassLocation) {
635   // Look for previous declaration of alias name
636   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
637                                       LookupOrdinaryName, ForRedeclaration);
638   if (ADecl) {
639     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
640     Diag(ADecl->getLocation(), diag::note_previous_declaration);
641     return nullptr;
642   }
643   // Check for class declaration
644   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
645                                        LookupOrdinaryName, ForRedeclaration);
646   if (const TypedefNameDecl *TDecl =
647         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
648     QualType T = TDecl->getUnderlyingType();
649     if (T->isObjCObjectType()) {
650       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
651         ClassName = IDecl->getIdentifier();
652         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
653                                   LookupOrdinaryName, ForRedeclaration);
654       }
655     }
656   }
657   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
658   if (!CDecl) {
659     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
660     if (CDeclU)
661       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
662     return nullptr;
663   }
664
665   // Everything checked out, instantiate a new alias declaration AST.
666   ObjCCompatibleAliasDecl *AliasDecl =
667     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
668
669   if (!CheckObjCDeclScope(AliasDecl))
670     PushOnScopeChains(AliasDecl, TUScope);
671
672   return AliasDecl;
673 }
674
675 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
676   IdentifierInfo *PName,
677   SourceLocation &Ploc, SourceLocation PrevLoc,
678   const ObjCList<ObjCProtocolDecl> &PList) {
679   
680   bool res = false;
681   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
682        E = PList.end(); I != E; ++I) {
683     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
684                                                  Ploc)) {
685       if (PDecl->getIdentifier() == PName) {
686         Diag(Ploc, diag::err_protocol_has_circular_dependency);
687         Diag(PrevLoc, diag::note_previous_definition);
688         res = true;
689       }
690       
691       if (!PDecl->hasDefinition())
692         continue;
693       
694       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
695             PDecl->getLocation(), PDecl->getReferencedProtocols()))
696         res = true;
697     }
698   }
699   return res;
700 }
701
702 Decl *
703 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
704                                   IdentifierInfo *ProtocolName,
705                                   SourceLocation ProtocolLoc,
706                                   Decl * const *ProtoRefs,
707                                   unsigned NumProtoRefs,
708                                   const SourceLocation *ProtoLocs,
709                                   SourceLocation EndProtoLoc,
710                                   AttributeList *AttrList) {
711   bool err = false;
712   // FIXME: Deal with AttrList.
713   assert(ProtocolName && "Missing protocol identifier");
714   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
715                                               ForRedeclaration);
716   ObjCProtocolDecl *PDecl = nullptr;
717   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
718     // If we already have a definition, complain.
719     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
720     Diag(Def->getLocation(), diag::note_previous_definition);
721
722     // Create a new protocol that is completely distinct from previous
723     // declarations, and do not make this protocol available for name lookup.
724     // That way, we'll end up completely ignoring the duplicate.
725     // FIXME: Can we turn this into an error?
726     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
727                                      ProtocolLoc, AtProtoInterfaceLoc,
728                                      /*PrevDecl=*/nullptr);
729     PDecl->startDefinition();
730   } else {
731     if (PrevDecl) {
732       // Check for circular dependencies among protocol declarations. This can
733       // only happen if this protocol was forward-declared.
734       ObjCList<ObjCProtocolDecl> PList;
735       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
736       err = CheckForwardProtocolDeclarationForCircularDependency(
737               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
738     }
739
740     // Create the new declaration.
741     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
742                                      ProtocolLoc, AtProtoInterfaceLoc,
743                                      /*PrevDecl=*/PrevDecl);
744     
745     PushOnScopeChains(PDecl, TUScope);
746     PDecl->startDefinition();
747   }
748   
749   if (AttrList)
750     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
751   
752   // Merge attributes from previous declarations.
753   if (PrevDecl)
754     mergeDeclAttributes(PDecl, PrevDecl);
755
756   if (!err && NumProtoRefs ) {
757     /// Check then save referenced protocols.
758     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
759                            ProtoLocs, Context);
760   }
761
762   CheckObjCDeclScope(PDecl);
763   return ActOnObjCContainerStartDefinition(PDecl);
764 }
765
766 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
767                                           ObjCProtocolDecl *&UndefinedProtocol) {
768   if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
769     UndefinedProtocol = PDecl;
770     return true;
771   }
772   
773   for (auto *PI : PDecl->protocols())
774     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
775       UndefinedProtocol = PI;
776       return true;
777     }
778   return false;
779 }
780
781 /// FindProtocolDeclaration - This routine looks up protocols and
782 /// issues an error if they are not declared. It returns list of
783 /// protocol declarations in its 'Protocols' argument.
784 void
785 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
786                               const IdentifierLocPair *ProtocolId,
787                               unsigned NumProtocols,
788                               SmallVectorImpl<Decl *> &Protocols) {
789   for (unsigned i = 0; i != NumProtocols; ++i) {
790     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
791                                              ProtocolId[i].second);
792     if (!PDecl) {
793       DeclFilterCCC<ObjCProtocolDecl> Validator;
794       TypoCorrection Corrected = CorrectTypo(
795           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
796           LookupObjCProtocolName, TUScope, nullptr, Validator,
797           CTK_ErrorRecovery);
798       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
799         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
800                                     << ProtocolId[i].first);
801     }
802
803     if (!PDecl) {
804       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
805         << ProtocolId[i].first;
806       continue;
807     }
808     // If this is a forward protocol declaration, get its definition.
809     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
810       PDecl = PDecl->getDefinition();
811     
812     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
813
814     // If this is a forward declaration and we are supposed to warn in this
815     // case, do it.
816     // FIXME: Recover nicely in the hidden case.
817     ObjCProtocolDecl *UndefinedProtocol;
818     
819     if (WarnOnDeclarations &&
820         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
821       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
822         << ProtocolId[i].first;
823       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
824         << UndefinedProtocol;
825     }
826     Protocols.push_back(PDecl);
827   }
828 }
829
830 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
831 /// a class method in its extension.
832 ///
833 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
834                                             ObjCInterfaceDecl *ID) {
835   if (!ID)
836     return;  // Possibly due to previous error
837
838   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
839   for (auto *MD : ID->methods())
840     MethodMap[MD->getSelector()] = MD;
841
842   if (MethodMap.empty())
843     return;
844   for (const auto *Method : CAT->methods()) {
845     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
846     if (PrevMethod &&
847         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
848         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
849       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
850             << Method->getDeclName();
851       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
852     }
853   }
854 }
855
856 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
857 Sema::DeclGroupPtrTy
858 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
859                                       const IdentifierLocPair *IdentList,
860                                       unsigned NumElts,
861                                       AttributeList *attrList) {
862   SmallVector<Decl *, 8> DeclsInGroup;
863   for (unsigned i = 0; i != NumElts; ++i) {
864     IdentifierInfo *Ident = IdentList[i].first;
865     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
866                                                 ForRedeclaration);
867     ObjCProtocolDecl *PDecl
868       = ObjCProtocolDecl::Create(Context, CurContext, Ident, 
869                                  IdentList[i].second, AtProtocolLoc,
870                                  PrevDecl);
871         
872     PushOnScopeChains(PDecl, TUScope);
873     CheckObjCDeclScope(PDecl);
874     
875     if (attrList)
876       ProcessDeclAttributeList(TUScope, PDecl, attrList);
877     
878     if (PrevDecl)
879       mergeDeclAttributes(PDecl, PrevDecl);
880
881     DeclsInGroup.push_back(PDecl);
882   }
883
884   return BuildDeclaratorGroup(DeclsInGroup, false);
885 }
886
887 Decl *Sema::
888 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
889                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
890                             IdentifierInfo *CategoryName,
891                             SourceLocation CategoryLoc,
892                             Decl * const *ProtoRefs,
893                             unsigned NumProtoRefs,
894                             const SourceLocation *ProtoLocs,
895                             SourceLocation EndProtoLoc) {
896   ObjCCategoryDecl *CDecl;
897   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
898
899   /// Check that class of this category is already completely declared.
900
901   if (!IDecl 
902       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
903                              diag::err_category_forward_interface,
904                              CategoryName == nullptr)) {
905     // Create an invalid ObjCCategoryDecl to serve as context for
906     // the enclosing method declarations.  We mark the decl invalid
907     // to make it clear that this isn't a valid AST.
908     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
909                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
910     CDecl->setInvalidDecl();
911     CurContext->addDecl(CDecl);
912         
913     if (!IDecl)
914       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
915     return ActOnObjCContainerStartDefinition(CDecl);
916   }
917
918   if (!CategoryName && IDecl->getImplementation()) {
919     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
920     Diag(IDecl->getImplementation()->getLocation(), 
921           diag::note_implementation_declared);
922   }
923
924   if (CategoryName) {
925     /// Check for duplicate interface declaration for this category
926     if (ObjCCategoryDecl *Previous
927           = IDecl->FindCategoryDeclaration(CategoryName)) {
928       // Class extensions can be declared multiple times, categories cannot.
929       Diag(CategoryLoc, diag::warn_dup_category_def)
930         << ClassName << CategoryName;
931       Diag(Previous->getLocation(), diag::note_previous_definition);
932     }
933   }
934
935   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
936                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
937   // FIXME: PushOnScopeChains?
938   CurContext->addDecl(CDecl);
939
940   if (NumProtoRefs) {
941     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 
942                            ProtoLocs, Context);
943     // Protocols in the class extension belong to the class.
944     if (CDecl->IsClassExtension())
945      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 
946                                             NumProtoRefs, Context); 
947   }
948
949   CheckObjCDeclScope(CDecl);
950   return ActOnObjCContainerStartDefinition(CDecl);
951 }
952
953 /// ActOnStartCategoryImplementation - Perform semantic checks on the
954 /// category implementation declaration and build an ObjCCategoryImplDecl
955 /// object.
956 Decl *Sema::ActOnStartCategoryImplementation(
957                       SourceLocation AtCatImplLoc,
958                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
959                       IdentifierInfo *CatName, SourceLocation CatLoc) {
960   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
961   ObjCCategoryDecl *CatIDecl = nullptr;
962   if (IDecl && IDecl->hasDefinition()) {
963     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
964     if (!CatIDecl) {
965       // Category @implementation with no corresponding @interface.
966       // Create and install one.
967       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
968                                           ClassLoc, CatLoc,
969                                           CatName, IDecl);
970       CatIDecl->setImplicit();
971     }
972   }
973
974   ObjCCategoryImplDecl *CDecl =
975     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
976                                  ClassLoc, AtCatImplLoc, CatLoc);
977   /// Check that class of this category is already completely declared.
978   if (!IDecl) {
979     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
980     CDecl->setInvalidDecl();
981   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
982                                  diag::err_undef_interface)) {
983     CDecl->setInvalidDecl();
984   }
985
986   // FIXME: PushOnScopeChains?
987   CurContext->addDecl(CDecl);
988
989   // If the interface is deprecated/unavailable, warn/error about it.
990   if (IDecl)
991     DiagnoseUseOfDecl(IDecl, ClassLoc);
992
993   /// Check that CatName, category name, is not used in another implementation.
994   if (CatIDecl) {
995     if (CatIDecl->getImplementation()) {
996       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
997         << CatName;
998       Diag(CatIDecl->getImplementation()->getLocation(),
999            diag::note_previous_definition);
1000       CDecl->setInvalidDecl();
1001     } else {
1002       CatIDecl->setImplementation(CDecl);
1003       // Warn on implementating category of deprecated class under 
1004       // -Wdeprecated-implementations flag.
1005       DiagnoseObjCImplementedDeprecations(*this, 
1006                                           dyn_cast<NamedDecl>(IDecl), 
1007                                           CDecl->getLocation(), 2);
1008     }
1009   }
1010
1011   CheckObjCDeclScope(CDecl);
1012   return ActOnObjCContainerStartDefinition(CDecl);
1013 }
1014
1015 Decl *Sema::ActOnStartClassImplementation(
1016                       SourceLocation AtClassImplLoc,
1017                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
1018                       IdentifierInfo *SuperClassname,
1019                       SourceLocation SuperClassLoc) {
1020   ObjCInterfaceDecl *IDecl = nullptr;
1021   // Check for another declaration kind with the same name.
1022   NamedDecl *PrevDecl
1023     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1024                        ForRedeclaration);
1025   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1026     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1027     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1028   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1029     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1030                         diag::warn_undef_interface);
1031   } else {
1032     // We did not find anything with the name ClassName; try to correct for
1033     // typos in the class name.
1034     ObjCInterfaceValidatorCCC Validator;
1035     TypoCorrection Corrected =
1036             CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1037                         LookupOrdinaryName, TUScope, nullptr, Validator,
1038                         CTK_NonError);
1039     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1040       // Suggest the (potentially) correct interface name. Don't provide a
1041       // code-modification hint or use the typo name for recovery, because
1042       // this is just a warning. The program may actually be correct.
1043       diagnoseTypo(Corrected,
1044                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
1045                    /*ErrorRecovery*/false);
1046     } else {
1047       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1048     }
1049   }
1050
1051   // Check that super class name is valid class name
1052   ObjCInterfaceDecl *SDecl = nullptr;
1053   if (SuperClassname) {
1054     // Check if a different kind of symbol declared in this scope.
1055     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1056                                 LookupOrdinaryName);
1057     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1058       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1059         << SuperClassname;
1060       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1061     } else {
1062       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1063       if (SDecl && !SDecl->hasDefinition())
1064         SDecl = nullptr;
1065       if (!SDecl)
1066         Diag(SuperClassLoc, diag::err_undef_superclass)
1067           << SuperClassname << ClassName;
1068       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1069         // This implementation and its interface do not have the same
1070         // super class.
1071         Diag(SuperClassLoc, diag::err_conflicting_super_class)
1072           << SDecl->getDeclName();
1073         Diag(SDecl->getLocation(), diag::note_previous_definition);
1074       }
1075     }
1076   }
1077
1078   if (!IDecl) {
1079     // Legacy case of @implementation with no corresponding @interface.
1080     // Build, chain & install the interface decl into the identifier.
1081
1082     // FIXME: Do we support attributes on the @implementation? If so we should
1083     // copy them over.
1084     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1085                                       ClassName, /*PrevDecl=*/nullptr, ClassLoc,
1086                                       true);
1087     IDecl->startDefinition();
1088     if (SDecl) {
1089       IDecl->setSuperClass(SDecl);
1090       IDecl->setSuperClassLoc(SuperClassLoc);
1091       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1092     } else {
1093       IDecl->setEndOfDefinitionLoc(ClassLoc);
1094     }
1095     
1096     PushOnScopeChains(IDecl, TUScope);
1097   } else {
1098     // Mark the interface as being completed, even if it was just as
1099     //   @class ....;
1100     // declaration; the user cannot reopen it.
1101     if (!IDecl->hasDefinition())
1102       IDecl->startDefinition();
1103   }
1104
1105   ObjCImplementationDecl* IMPDecl =
1106     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1107                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
1108
1109   if (CheckObjCDeclScope(IMPDecl))
1110     return ActOnObjCContainerStartDefinition(IMPDecl);
1111
1112   // Check that there is no duplicate implementation of this class.
1113   if (IDecl->getImplementation()) {
1114     // FIXME: Don't leak everything!
1115     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1116     Diag(IDecl->getImplementation()->getLocation(),
1117          diag::note_previous_definition);
1118     IMPDecl->setInvalidDecl();
1119   } else { // add it to the list.
1120     IDecl->setImplementation(IMPDecl);
1121     PushOnScopeChains(IMPDecl, TUScope);
1122     // Warn on implementating deprecated class under 
1123     // -Wdeprecated-implementations flag.
1124     DiagnoseObjCImplementedDeprecations(*this, 
1125                                         dyn_cast<NamedDecl>(IDecl), 
1126                                         IMPDecl->getLocation(), 1);
1127   }
1128   return ActOnObjCContainerStartDefinition(IMPDecl);
1129 }
1130
1131 Sema::DeclGroupPtrTy
1132 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1133   SmallVector<Decl *, 64> DeclsInGroup;
1134   DeclsInGroup.reserve(Decls.size() + 1);
1135
1136   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1137     Decl *Dcl = Decls[i];
1138     if (!Dcl)
1139       continue;
1140     if (Dcl->getDeclContext()->isFileContext())
1141       Dcl->setTopLevelDeclInObjCContainer();
1142     DeclsInGroup.push_back(Dcl);
1143   }
1144
1145   DeclsInGroup.push_back(ObjCImpDecl);
1146
1147   return BuildDeclaratorGroup(DeclsInGroup, false);
1148 }
1149
1150 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1151                                     ObjCIvarDecl **ivars, unsigned numIvars,
1152                                     SourceLocation RBrace) {
1153   assert(ImpDecl && "missing implementation decl");
1154   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1155   if (!IDecl)
1156     return;
1157   /// Check case of non-existing \@interface decl.
1158   /// (legacy objective-c \@implementation decl without an \@interface decl).
1159   /// Add implementations's ivar to the synthesize class's ivar list.
1160   if (IDecl->isImplicitInterfaceDecl()) {
1161     IDecl->setEndOfDefinitionLoc(RBrace);
1162     // Add ivar's to class's DeclContext.
1163     for (unsigned i = 0, e = numIvars; i != e; ++i) {
1164       ivars[i]->setLexicalDeclContext(ImpDecl);
1165       IDecl->makeDeclVisibleInContext(ivars[i]);
1166       ImpDecl->addDecl(ivars[i]);
1167     }
1168     
1169     return;
1170   }
1171   // If implementation has empty ivar list, just return.
1172   if (numIvars == 0)
1173     return;
1174
1175   assert(ivars && "missing @implementation ivars");
1176   if (LangOpts.ObjCRuntime.isNonFragile()) {
1177     if (ImpDecl->getSuperClass())
1178       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1179     for (unsigned i = 0; i < numIvars; i++) {
1180       ObjCIvarDecl* ImplIvar = ivars[i];
1181       if (const ObjCIvarDecl *ClsIvar = 
1182             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1183         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 
1184         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1185         continue;
1186       }
1187       // Check class extensions (unnamed categories) for duplicate ivars.
1188       for (const auto *CDecl : IDecl->visible_extensions()) {
1189         if (const ObjCIvarDecl *ClsExtIvar = 
1190             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1191           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 
1192           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1193           continue;
1194         }
1195       }
1196       // Instance ivar to Implementation's DeclContext.
1197       ImplIvar->setLexicalDeclContext(ImpDecl);
1198       IDecl->makeDeclVisibleInContext(ImplIvar);
1199       ImpDecl->addDecl(ImplIvar);
1200     }
1201     return;
1202   }
1203   // Check interface's Ivar list against those in the implementation.
1204   // names and types must match.
1205   //
1206   unsigned j = 0;
1207   ObjCInterfaceDecl::ivar_iterator
1208     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1209   for (; numIvars > 0 && IVI != IVE; ++IVI) {
1210     ObjCIvarDecl* ImplIvar = ivars[j++];
1211     ObjCIvarDecl* ClsIvar = *IVI;
1212     assert (ImplIvar && "missing implementation ivar");
1213     assert (ClsIvar && "missing class ivar");
1214
1215     // First, make sure the types match.
1216     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1217       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1218         << ImplIvar->getIdentifier()
1219         << ImplIvar->getType() << ClsIvar->getType();
1220       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1221     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1222                ImplIvar->getBitWidthValue(Context) !=
1223                ClsIvar->getBitWidthValue(Context)) {
1224       Diag(ImplIvar->getBitWidth()->getLocStart(),
1225            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1226       Diag(ClsIvar->getBitWidth()->getLocStart(),
1227            diag::note_previous_definition);
1228     }
1229     // Make sure the names are identical.
1230     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1231       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1232         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1233       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1234     }
1235     --numIvars;
1236   }
1237
1238   if (numIvars > 0)
1239     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
1240   else if (IVI != IVE)
1241     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
1242 }
1243
1244 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
1245                                 ObjCMethodDecl *method,
1246                                 bool &IncompleteImpl,
1247                                 unsigned DiagID,
1248                                 NamedDecl *NeededFor = nullptr) {
1249   // No point warning no definition of method which is 'unavailable'.
1250   switch (method->getAvailability()) {
1251   case AR_Available:
1252   case AR_Deprecated:
1253     break;
1254
1255       // Don't warn about unavailable or not-yet-introduced methods.
1256   case AR_NotYetIntroduced:
1257   case AR_Unavailable:
1258     return;
1259   }
1260   
1261   // FIXME: For now ignore 'IncompleteImpl'.
1262   // Previously we grouped all unimplemented methods under a single
1263   // warning, but some users strongly voiced that they would prefer
1264   // separate warnings.  We will give that approach a try, as that
1265   // matches what we do with protocols.
1266   {
1267     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
1268     B << method;
1269     if (NeededFor)
1270       B << NeededFor;
1271   }
1272
1273   // Issue a note to the original declaration.
1274   SourceLocation MethodLoc = method->getLocStart();
1275   if (MethodLoc.isValid())
1276     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
1277 }
1278
1279 /// Determines if type B can be substituted for type A.  Returns true if we can
1280 /// guarantee that anything that the user will do to an object of type A can 
1281 /// also be done to an object of type B.  This is trivially true if the two 
1282 /// types are the same, or if B is a subclass of A.  It becomes more complex
1283 /// in cases where protocols are involved.
1284 ///
1285 /// Object types in Objective-C describe the minimum requirements for an
1286 /// object, rather than providing a complete description of a type.  For
1287 /// example, if A is a subclass of B, then B* may refer to an instance of A.
1288 /// The principle of substitutability means that we may use an instance of A
1289 /// anywhere that we may use an instance of B - it will implement all of the
1290 /// ivars of B and all of the methods of B.  
1291 ///
1292 /// This substitutability is important when type checking methods, because 
1293 /// the implementation may have stricter type definitions than the interface.
1294 /// The interface specifies minimum requirements, but the implementation may
1295 /// have more accurate ones.  For example, a method may privately accept 
1296 /// instances of B, but only publish that it accepts instances of A.  Any
1297 /// object passed to it will be type checked against B, and so will implicitly
1298 /// by a valid A*.  Similarly, a method may return a subclass of the class that
1299 /// it is declared as returning.
1300 ///
1301 /// This is most important when considering subclassing.  A method in a
1302 /// subclass must accept any object as an argument that its superclass's
1303 /// implementation accepts.  It may, however, accept a more general type
1304 /// without breaking substitutability (i.e. you can still use the subclass
1305 /// anywhere that you can use the superclass, but not vice versa).  The
1306 /// converse requirement applies to return types: the return type for a
1307 /// subclass method must be a valid object of the kind that the superclass
1308 /// advertises, but it may be specified more accurately.  This avoids the need
1309 /// for explicit down-casting by callers.
1310 ///
1311 /// Note: This is a stricter requirement than for assignment.  
1312 static bool isObjCTypeSubstitutable(ASTContext &Context,
1313                                     const ObjCObjectPointerType *A,
1314                                     const ObjCObjectPointerType *B,
1315                                     bool rejectId) {
1316   // Reject a protocol-unqualified id.
1317   if (rejectId && B->isObjCIdType()) return false;
1318
1319   // If B is a qualified id, then A must also be a qualified id and it must
1320   // implement all of the protocols in B.  It may not be a qualified class.
1321   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1322   // stricter definition so it is not substitutable for id<A>.
1323   if (B->isObjCQualifiedIdType()) {
1324     return A->isObjCQualifiedIdType() &&
1325            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1326                                                      QualType(B,0),
1327                                                      false);
1328   }
1329
1330   /*
1331   // id is a special type that bypasses type checking completely.  We want a
1332   // warning when it is used in one place but not another.
1333   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1334
1335
1336   // If B is a qualified id, then A must also be a qualified id (which it isn't
1337   // if we've got this far)
1338   if (B->isObjCQualifiedIdType()) return false;
1339   */
1340
1341   // Now we know that A and B are (potentially-qualified) class types.  The
1342   // normal rules for assignment apply.
1343   return Context.canAssignObjCInterfaces(A, B);
1344 }
1345
1346 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1347   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1348 }
1349
1350 static bool CheckMethodOverrideReturn(Sema &S,
1351                                       ObjCMethodDecl *MethodImpl,
1352                                       ObjCMethodDecl *MethodDecl,
1353                                       bool IsProtocolMethodDecl,
1354                                       bool IsOverridingMode,
1355                                       bool Warn) {
1356   if (IsProtocolMethodDecl &&
1357       (MethodDecl->getObjCDeclQualifier() !=
1358        MethodImpl->getObjCDeclQualifier())) {
1359     if (Warn) {
1360       S.Diag(MethodImpl->getLocation(),
1361              (IsOverridingMode
1362                   ? diag::warn_conflicting_overriding_ret_type_modifiers
1363                   : diag::warn_conflicting_ret_type_modifiers))
1364           << MethodImpl->getDeclName()
1365           << getTypeRange(MethodImpl->getReturnTypeSourceInfo());
1366       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1367           << getTypeRange(MethodDecl->getReturnTypeSourceInfo());
1368     }
1369     else
1370       return false;
1371   }
1372
1373   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
1374                                        MethodDecl->getReturnType()))
1375     return true;
1376   if (!Warn)
1377     return false;
1378
1379   unsigned DiagID = 
1380     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 
1381                      : diag::warn_conflicting_ret_types;
1382
1383   // Mismatches between ObjC pointers go into a different warning
1384   // category, and sometimes they're even completely whitelisted.
1385   if (const ObjCObjectPointerType *ImplPtrTy =
1386           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1387     if (const ObjCObjectPointerType *IfacePtrTy =
1388             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1389       // Allow non-matching return types as long as they don't violate
1390       // the principle of substitutability.  Specifically, we permit
1391       // return types that are subclasses of the declared return type,
1392       // or that are more-qualified versions of the declared type.
1393       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1394         return false;
1395
1396       DiagID = 
1397         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 
1398                           : diag::warn_non_covariant_ret_types;
1399     }
1400   }
1401
1402   S.Diag(MethodImpl->getLocation(), DiagID)
1403       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
1404       << MethodImpl->getReturnType()
1405       << getTypeRange(MethodImpl->getReturnTypeSourceInfo());
1406   S.Diag(MethodDecl->getLocation(), IsOverridingMode
1407                                         ? diag::note_previous_declaration
1408                                         : diag::note_previous_definition)
1409       << getTypeRange(MethodDecl->getReturnTypeSourceInfo());
1410   return false;
1411 }
1412
1413 static bool CheckMethodOverrideParam(Sema &S,
1414                                      ObjCMethodDecl *MethodImpl,
1415                                      ObjCMethodDecl *MethodDecl,
1416                                      ParmVarDecl *ImplVar,
1417                                      ParmVarDecl *IfaceVar,
1418                                      bool IsProtocolMethodDecl,
1419                                      bool IsOverridingMode,
1420                                      bool Warn) {
1421   if (IsProtocolMethodDecl &&
1422       (ImplVar->getObjCDeclQualifier() !=
1423        IfaceVar->getObjCDeclQualifier())) {
1424     if (Warn) {
1425       if (IsOverridingMode)
1426         S.Diag(ImplVar->getLocation(), 
1427                diag::warn_conflicting_overriding_param_modifiers)
1428             << getTypeRange(ImplVar->getTypeSourceInfo())
1429             << MethodImpl->getDeclName();
1430       else S.Diag(ImplVar->getLocation(), 
1431              diag::warn_conflicting_param_modifiers)
1432           << getTypeRange(ImplVar->getTypeSourceInfo())
1433           << MethodImpl->getDeclName();
1434       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1435           << getTypeRange(IfaceVar->getTypeSourceInfo());   
1436     }
1437     else
1438       return false;
1439   }
1440       
1441   QualType ImplTy = ImplVar->getType();
1442   QualType IfaceTy = IfaceVar->getType();
1443   
1444   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1445     return true;
1446   
1447   if (!Warn)
1448     return false;
1449   unsigned DiagID = 
1450     IsOverridingMode ? diag::warn_conflicting_overriding_param_types 
1451                      : diag::warn_conflicting_param_types;
1452
1453   // Mismatches between ObjC pointers go into a different warning
1454   // category, and sometimes they're even completely whitelisted.
1455   if (const ObjCObjectPointerType *ImplPtrTy =
1456         ImplTy->getAs<ObjCObjectPointerType>()) {
1457     if (const ObjCObjectPointerType *IfacePtrTy =
1458           IfaceTy->getAs<ObjCObjectPointerType>()) {
1459       // Allow non-matching argument types as long as they don't
1460       // violate the principle of substitutability.  Specifically, the
1461       // implementation must accept any objects that the superclass
1462       // accepts, however it may also accept others.
1463       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1464         return false;
1465
1466       DiagID = 
1467       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 
1468                        :  diag::warn_non_contravariant_param_types;
1469     }
1470   }
1471
1472   S.Diag(ImplVar->getLocation(), DiagID)
1473     << getTypeRange(ImplVar->getTypeSourceInfo())
1474     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1475   S.Diag(IfaceVar->getLocation(), 
1476          (IsOverridingMode ? diag::note_previous_declaration 
1477                         : diag::note_previous_definition))
1478     << getTypeRange(IfaceVar->getTypeSourceInfo());
1479   return false;
1480 }
1481
1482 /// In ARC, check whether the conventional meanings of the two methods
1483 /// match.  If they don't, it's a hard error.
1484 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1485                                       ObjCMethodDecl *decl) {
1486   ObjCMethodFamily implFamily = impl->getMethodFamily();
1487   ObjCMethodFamily declFamily = decl->getMethodFamily();
1488   if (implFamily == declFamily) return false;
1489
1490   // Since conventions are sorted by selector, the only possibility is
1491   // that the types differ enough to cause one selector or the other
1492   // to fall out of the family.
1493   assert(implFamily == OMF_None || declFamily == OMF_None);
1494
1495   // No further diagnostics required on invalid declarations.
1496   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1497
1498   const ObjCMethodDecl *unmatched = impl;
1499   ObjCMethodFamily family = declFamily;
1500   unsigned errorID = diag::err_arc_lost_method_convention;
1501   unsigned noteID = diag::note_arc_lost_method_convention;
1502   if (declFamily == OMF_None) {
1503     unmatched = decl;
1504     family = implFamily;
1505     errorID = diag::err_arc_gained_method_convention;
1506     noteID = diag::note_arc_gained_method_convention;
1507   }
1508
1509   // Indexes into a %select clause in the diagnostic.
1510   enum FamilySelector {
1511     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1512   };
1513   FamilySelector familySelector = FamilySelector();
1514
1515   switch (family) {
1516   case OMF_None: llvm_unreachable("logic error, no method convention");
1517   case OMF_retain:
1518   case OMF_release:
1519   case OMF_autorelease:
1520   case OMF_dealloc:
1521   case OMF_finalize:
1522   case OMF_retainCount:
1523   case OMF_self:
1524   case OMF_performSelector:
1525     // Mismatches for these methods don't change ownership
1526     // conventions, so we don't care.
1527     return false;
1528
1529   case OMF_init: familySelector = F_init; break;
1530   case OMF_alloc: familySelector = F_alloc; break;
1531   case OMF_copy: familySelector = F_copy; break;
1532   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1533   case OMF_new: familySelector = F_new; break;
1534   }
1535
1536   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1537   ReasonSelector reasonSelector;
1538
1539   // The only reason these methods don't fall within their families is
1540   // due to unusual result types.
1541   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
1542     reasonSelector = R_UnrelatedReturn;
1543   } else {
1544     reasonSelector = R_NonObjectReturn;
1545   }
1546
1547   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1548   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1549
1550   return true;
1551 }
1552
1553 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1554                                        ObjCMethodDecl *MethodDecl,
1555                                        bool IsProtocolMethodDecl) {
1556   if (getLangOpts().ObjCAutoRefCount &&
1557       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1558     return;
1559
1560   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
1561                             IsProtocolMethodDecl, false, 
1562                             true);
1563
1564   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1565        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1566        EF = MethodDecl->param_end();
1567        IM != EM && IF != EF; ++IM, ++IF) {
1568     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1569                              IsProtocolMethodDecl, false, true);
1570   }
1571
1572   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1573     Diag(ImpMethodDecl->getLocation(), 
1574          diag::warn_conflicting_variadic);
1575     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1576   }
1577 }
1578
1579 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1580                                        ObjCMethodDecl *Overridden,
1581                                        bool IsProtocolMethodDecl) {
1582   
1583   CheckMethodOverrideReturn(*this, Method, Overridden, 
1584                             IsProtocolMethodDecl, true, 
1585                             true);
1586   
1587   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1588        IF = Overridden->param_begin(), EM = Method->param_end(),
1589        EF = Overridden->param_end();
1590        IM != EM && IF != EF; ++IM, ++IF) {
1591     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1592                              IsProtocolMethodDecl, true, true);
1593   }
1594   
1595   if (Method->isVariadic() != Overridden->isVariadic()) {
1596     Diag(Method->getLocation(), 
1597          diag::warn_conflicting_overriding_variadic);
1598     Diag(Overridden->getLocation(), diag::note_previous_declaration);
1599   }
1600 }
1601
1602 /// WarnExactTypedMethods - This routine issues a warning if method
1603 /// implementation declaration matches exactly that of its declaration.
1604 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1605                                  ObjCMethodDecl *MethodDecl,
1606                                  bool IsProtocolMethodDecl) {
1607   // don't issue warning when protocol method is optional because primary
1608   // class is not required to implement it and it is safe for protocol
1609   // to implement it.
1610   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1611     return;
1612   // don't issue warning when primary class's method is 
1613   // depecated/unavailable.
1614   if (MethodDecl->hasAttr<UnavailableAttr>() ||
1615       MethodDecl->hasAttr<DeprecatedAttr>())
1616     return;
1617   
1618   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
1619                                       IsProtocolMethodDecl, false, false);
1620   if (match)
1621     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1622          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1623          EF = MethodDecl->param_end();
1624          IM != EM && IF != EF; ++IM, ++IF) {
1625       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 
1626                                        *IM, *IF,
1627                                        IsProtocolMethodDecl, false, false);
1628       if (!match)
1629         break;
1630     }
1631   if (match)
1632     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1633   if (match)
1634     match = !(MethodDecl->isClassMethod() &&
1635               MethodDecl->getSelector() == GetNullarySelector("load", Context));
1636   
1637   if (match) {
1638     Diag(ImpMethodDecl->getLocation(), 
1639          diag::warn_category_method_impl_match);
1640     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1641       << MethodDecl->getDeclName();
1642   }
1643 }
1644
1645 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1646 /// improve the efficiency of selector lookups and type checking by associating
1647 /// with each protocol / interface / category the flattened instance tables. If
1648 /// we used an immutable set to keep the table then it wouldn't add significant
1649 /// memory cost and it would be handy for lookups.
1650
1651 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
1652 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
1653
1654 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
1655                                            ProtocolNameSet &PNS) {
1656   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
1657     PNS.insert(PDecl->getIdentifier());
1658   for (const auto *PI : PDecl->protocols())
1659     findProtocolsWithExplicitImpls(PI, PNS);
1660 }
1661
1662 /// Recursively populates a set with all conformed protocols in a class
1663 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
1664 /// attribute.
1665 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
1666                                            ProtocolNameSet &PNS) {
1667   if (!Super)
1668     return;
1669
1670   for (const auto *I : Super->all_referenced_protocols())
1671     findProtocolsWithExplicitImpls(I, PNS);
1672
1673   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
1674 }
1675
1676 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
1677 /// Declared in protocol, and those referenced by it.
1678 static void CheckProtocolMethodDefs(Sema &S,
1679                                     SourceLocation ImpLoc,
1680                                     ObjCProtocolDecl *PDecl,
1681                                     bool& IncompleteImpl,
1682                                     const Sema::SelectorSet &InsMap,
1683                                     const Sema::SelectorSet &ClsMap,
1684                                     ObjCContainerDecl *CDecl,
1685                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
1686   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1687   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 
1688                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
1689   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1690   
1691   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1692   ObjCInterfaceDecl *NSIDecl = nullptr;
1693
1694   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
1695   // then we should check if any class in the super class hierarchy also
1696   // conforms to this protocol, either directly or via protocol inheritance.
1697   // If so, we can skip checking this protocol completely because we
1698   // know that a parent class already satisfies this protocol.
1699   //
1700   // Note: we could generalize this logic for all protocols, and merely
1701   // add the limit on looking at the super class chain for just
1702   // specially marked protocols.  This may be a good optimization.  This
1703   // change is restricted to 'objc_protocol_requires_explicit_implementation'
1704   // protocols for now for controlled evaluation.
1705   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
1706     if (!ProtocolsExplictImpl) {
1707       ProtocolsExplictImpl.reset(new ProtocolNameSet);
1708       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
1709     }
1710     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
1711         ProtocolsExplictImpl->end())
1712       return;
1713
1714     // If no super class conforms to the protocol, we should not search
1715     // for methods in the super class to implicitly satisfy the protocol.
1716     Super = nullptr;
1717   }
1718
1719   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
1720     // check to see if class implements forwardInvocation method and objects
1721     // of this class are derived from 'NSProxy' so that to forward requests
1722     // from one object to another.
1723     // Under such conditions, which means that every method possible is
1724     // implemented in the class, we should not issue "Method definition not
1725     // found" warnings.
1726     // FIXME: Use a general GetUnarySelector method for this.
1727     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
1728     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
1729     if (InsMap.count(fISelector))
1730       // Is IDecl derived from 'NSProxy'? If so, no instance methods
1731       // need be implemented in the implementation.
1732       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
1733   }
1734
1735   // If this is a forward protocol declaration, get its definition.
1736   if (!PDecl->isThisDeclarationADefinition() &&
1737       PDecl->getDefinition())
1738     PDecl = PDecl->getDefinition();
1739   
1740   // If a method lookup fails locally we still need to look and see if
1741   // the method was implemented by a base class or an inherited
1742   // protocol. This lookup is slow, but occurs rarely in correct code
1743   // and otherwise would terminate in a warning.
1744
1745   // check unimplemented instance methods.
1746   if (!NSIDecl)
1747     for (auto *method : PDecl->instance_methods()) {
1748       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1749           !method->isPropertyAccessor() &&
1750           !InsMap.count(method->getSelector()) &&
1751           (!Super || !Super->lookupMethod(method->getSelector(),
1752                                           true /* instance */,
1753                                           false /* shallowCategory */,
1754                                           true /* followsSuper */,
1755                                           nullptr /* category */))) {
1756             // If a method is not implemented in the category implementation but
1757             // has been declared in its primary class, superclass,
1758             // or in one of their protocols, no need to issue the warning. 
1759             // This is because method will be implemented in the primary class 
1760             // or one of its super class implementation.
1761             
1762             // Ugly, but necessary. Method declared in protcol might have
1763             // have been synthesized due to a property declared in the class which
1764             // uses the protocol.
1765             if (ObjCMethodDecl *MethodInClass =
1766                   IDecl->lookupMethod(method->getSelector(),
1767                                       true /* instance */,
1768                                       true /* shallowCategoryLookup */,
1769                                       false /* followSuper */))
1770               if (C || MethodInClass->isPropertyAccessor())
1771                 continue;
1772             unsigned DIAG = diag::warn_unimplemented_protocol_method;
1773             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1774               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
1775                                   PDecl);
1776             }
1777           }
1778     }
1779   // check unimplemented class methods
1780   for (auto *method : PDecl->class_methods()) {
1781     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1782         !ClsMap.count(method->getSelector()) &&
1783         (!Super || !Super->lookupMethod(method->getSelector(),
1784                                         false /* class method */,
1785                                         false /* shallowCategoryLookup */,
1786                                         true  /* followSuper */,
1787                                         nullptr /* category */))) {
1788       // See above comment for instance method lookups.
1789       if (C && IDecl->lookupMethod(method->getSelector(),
1790                                    false /* class */,
1791                                    true /* shallowCategoryLookup */,
1792                                    false /* followSuper */))
1793         continue;
1794
1795       unsigned DIAG = diag::warn_unimplemented_protocol_method;
1796       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1797         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
1798       }
1799     }
1800   }
1801   // Check on this protocols's referenced protocols, recursively.
1802   for (auto *PI : PDecl->protocols())
1803     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
1804                             CDecl, ProtocolsExplictImpl);
1805 }
1806
1807 /// MatchAllMethodDeclarations - Check methods declared in interface
1808 /// or protocol against those declared in their implementations.
1809 ///
1810 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1811                                       const SelectorSet &ClsMap,
1812                                       SelectorSet &InsMapSeen,
1813                                       SelectorSet &ClsMapSeen,
1814                                       ObjCImplDecl* IMPDecl,
1815                                       ObjCContainerDecl* CDecl,
1816                                       bool &IncompleteImpl,
1817                                       bool ImmediateClass,
1818                                       bool WarnCategoryMethodImpl) {
1819   // Check and see if instance methods in class interface have been
1820   // implemented in the implementation class. If so, their types match.
1821   for (auto *I : CDecl->instance_methods()) {
1822     if (!InsMapSeen.insert(I->getSelector()))
1823       continue;
1824     if (!I->isPropertyAccessor() &&
1825         !InsMap.count(I->getSelector())) {
1826       if (ImmediateClass)
1827         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1828                             diag::warn_undef_method_impl);
1829       continue;
1830     } else {
1831       ObjCMethodDecl *ImpMethodDecl =
1832         IMPDecl->getInstanceMethod(I->getSelector());
1833       assert(CDecl->getInstanceMethod(I->getSelector()) &&
1834              "Expected to find the method through lookup as well");
1835       // ImpMethodDecl may be null as in a @dynamic property.
1836       if (ImpMethodDecl) {
1837         if (!WarnCategoryMethodImpl)
1838           WarnConflictingTypedMethods(ImpMethodDecl, I,
1839                                       isa<ObjCProtocolDecl>(CDecl));
1840         else if (!I->isPropertyAccessor())
1841           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
1842       }
1843     }
1844   }
1845
1846   // Check and see if class methods in class interface have been
1847   // implemented in the implementation class. If so, their types match.
1848   for (auto *I : CDecl->class_methods()) {
1849     if (!ClsMapSeen.insert(I->getSelector()))
1850       continue;
1851     if (!ClsMap.count(I->getSelector())) {
1852       if (ImmediateClass)
1853         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1854                             diag::warn_undef_method_impl);
1855     } else {
1856       ObjCMethodDecl *ImpMethodDecl =
1857         IMPDecl->getClassMethod(I->getSelector());
1858       assert(CDecl->getClassMethod(I->getSelector()) &&
1859              "Expected to find the method through lookup as well");
1860       if (!WarnCategoryMethodImpl)
1861         WarnConflictingTypedMethods(ImpMethodDecl, I, 
1862                                     isa<ObjCProtocolDecl>(CDecl));
1863       else
1864         WarnExactTypedMethods(ImpMethodDecl, I,
1865                               isa<ObjCProtocolDecl>(CDecl));
1866     }
1867   }
1868   
1869   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
1870     // Also, check for methods declared in protocols inherited by
1871     // this protocol.
1872     for (auto *PI : PD->protocols())
1873       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1874                                  IMPDecl, PI, IncompleteImpl, false,
1875                                  WarnCategoryMethodImpl);
1876   }
1877   
1878   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1879     // when checking that methods in implementation match their declaration,
1880     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1881     // extension; as well as those in categories.
1882     if (!WarnCategoryMethodImpl) {
1883       for (auto *Cat : I->visible_categories())
1884         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1885                                    IMPDecl, Cat, IncompleteImpl, false,
1886                                    WarnCategoryMethodImpl);
1887     } else {
1888       // Also methods in class extensions need be looked at next.
1889       for (auto *Ext : I->visible_extensions())
1890         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1891                                    IMPDecl, Ext, IncompleteImpl, false,
1892                                    WarnCategoryMethodImpl);
1893     }
1894
1895     // Check for any implementation of a methods declared in protocol.
1896     for (auto *PI : I->all_referenced_protocols())
1897       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1898                                  IMPDecl, PI, IncompleteImpl, false,
1899                                  WarnCategoryMethodImpl);
1900
1901     // FIXME. For now, we are not checking for extact match of methods 
1902     // in category implementation and its primary class's super class. 
1903     if (!WarnCategoryMethodImpl && I->getSuperClass())
1904       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1905                                  IMPDecl,
1906                                  I->getSuperClass(), IncompleteImpl, false);
1907   }
1908 }
1909
1910 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1911 /// category matches with those implemented in its primary class and
1912 /// warns each time an exact match is found. 
1913 void Sema::CheckCategoryVsClassMethodMatches(
1914                                   ObjCCategoryImplDecl *CatIMPDecl) {
1915   // Get category's primary class.
1916   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1917   if (!CatDecl)
1918     return;
1919   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1920   if (!IDecl)
1921     return;
1922   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
1923   SelectorSet InsMap, ClsMap;
1924   
1925   for (const auto *I : CatIMPDecl->instance_methods()) {
1926     Selector Sel = I->getSelector();
1927     // When checking for methods implemented in the category, skip over
1928     // those declared in category class's super class. This is because
1929     // the super class must implement the method.
1930     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
1931       continue;
1932     InsMap.insert(Sel);
1933   }
1934   
1935   for (const auto *I : CatIMPDecl->class_methods()) {
1936     Selector Sel = I->getSelector();
1937     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
1938       continue;
1939     ClsMap.insert(Sel);
1940   }
1941   if (InsMap.empty() && ClsMap.empty())
1942     return;
1943   
1944   SelectorSet InsMapSeen, ClsMapSeen;
1945   bool IncompleteImpl = false;
1946   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1947                              CatIMPDecl, IDecl,
1948                              IncompleteImpl, false, 
1949                              true /*WarnCategoryMethodImpl*/);
1950 }
1951
1952 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1953                                      ObjCContainerDecl* CDecl,
1954                                      bool IncompleteImpl) {
1955   SelectorSet InsMap;
1956   // Check and see if instance methods in class interface have been
1957   // implemented in the implementation class.
1958   for (const auto *I : IMPDecl->instance_methods())
1959     InsMap.insert(I->getSelector());
1960
1961   // Check and see if properties declared in the interface have either 1)
1962   // an implementation or 2) there is a @synthesize/@dynamic implementation
1963   // of the property in the @implementation.
1964   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1965     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
1966                                 LangOpts.ObjCRuntime.isNonFragile() &&
1967                                 !IDecl->isObjCRequiresPropertyDefs();
1968     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
1969   }
1970
1971   SelectorSet ClsMap;
1972   for (const auto *I : IMPDecl->class_methods())
1973     ClsMap.insert(I->getSelector());
1974
1975   // Check for type conflict of methods declared in a class/protocol and
1976   // its implementation; if any.
1977   SelectorSet InsMapSeen, ClsMapSeen;
1978   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1979                              IMPDecl, CDecl,
1980                              IncompleteImpl, true);
1981   
1982   // check all methods implemented in category against those declared
1983   // in its primary class.
1984   if (ObjCCategoryImplDecl *CatDecl = 
1985         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1986     CheckCategoryVsClassMethodMatches(CatDecl);
1987
1988   // Check the protocol list for unimplemented methods in the @implementation
1989   // class.
1990   // Check and see if class methods in class interface have been
1991   // implemented in the implementation class.
1992
1993   LazyProtocolNameSet ExplicitImplProtocols;
1994
1995   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1996     for (auto *PI : I->all_referenced_protocols())
1997       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
1998                               InsMap, ClsMap, I, ExplicitImplProtocols);
1999     // Check class extensions (unnamed categories)
2000     for (auto *Ext : I->visible_extensions())
2001       ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl);
2002   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2003     // For extended class, unimplemented methods in its protocols will
2004     // be reported in the primary class.
2005     if (!C->IsClassExtension()) {
2006       for (auto *P : C->protocols())
2007         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2008                                 IncompleteImpl, InsMap, ClsMap, CDecl,
2009                                 ExplicitImplProtocols);
2010       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2011                                       /* SynthesizeProperties */ false);
2012     } 
2013   } else
2014     llvm_unreachable("invalid ObjCContainerDecl type.");
2015 }
2016
2017 /// ActOnForwardClassDeclaration -
2018 Sema::DeclGroupPtrTy
2019 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2020                                    IdentifierInfo **IdentList,
2021                                    SourceLocation *IdentLocs,
2022                                    unsigned NumElts) {
2023   SmallVector<Decl *, 8> DeclsInGroup;
2024   for (unsigned i = 0; i != NumElts; ++i) {
2025     // Check for another declaration kind with the same name.
2026     NamedDecl *PrevDecl
2027       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 
2028                          LookupOrdinaryName, ForRedeclaration);
2029     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2030       // GCC apparently allows the following idiom:
2031       //
2032       // typedef NSObject < XCElementTogglerP > XCElementToggler;
2033       // @class XCElementToggler;
2034       //
2035       // Here we have chosen to ignore the forward class declaration
2036       // with a warning. Since this is the implied behavior.
2037       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2038       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2039         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2040         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2041       } else {
2042         // a forward class declaration matching a typedef name of a class refers
2043         // to the underlying class. Just ignore the forward class with a warning
2044         // as this will force the intended behavior which is to lookup the typedef
2045         // name.
2046         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2047           Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
2048           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2049           continue;
2050         }
2051       }
2052     }
2053     
2054     // Create a declaration to describe this forward declaration.
2055     ObjCInterfaceDecl *PrevIDecl
2056       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2057
2058     IdentifierInfo *ClassName = IdentList[i];
2059     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2060       // A previous decl with a different name is because of
2061       // @compatibility_alias, for example:
2062       // \code
2063       //   @class NewImage;
2064       //   @compatibility_alias OldImage NewImage;
2065       // \endcode
2066       // A lookup for 'OldImage' will return the 'NewImage' decl.
2067       //
2068       // In such a case use the real declaration name, instead of the alias one,
2069       // otherwise we will break IdentifierResolver and redecls-chain invariants.
2070       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
2071       // has been aliased.
2072       ClassName = PrevIDecl->getIdentifier();
2073     }
2074
2075     ObjCInterfaceDecl *IDecl
2076       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
2077                                   ClassName, PrevIDecl, IdentLocs[i]);
2078     IDecl->setAtEndRange(IdentLocs[i]);
2079     
2080     PushOnScopeChains(IDecl, TUScope);
2081     CheckObjCDeclScope(IDecl);
2082     DeclsInGroup.push_back(IDecl);
2083   }
2084
2085   return BuildDeclaratorGroup(DeclsInGroup, false);
2086 }
2087
2088 static bool tryMatchRecordTypes(ASTContext &Context,
2089                                 Sema::MethodMatchStrategy strategy,
2090                                 const Type *left, const Type *right);
2091
2092 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
2093                        QualType leftQT, QualType rightQT) {
2094   const Type *left =
2095     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2096   const Type *right =
2097     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2098
2099   if (left == right) return true;
2100
2101   // If we're doing a strict match, the types have to match exactly.
2102   if (strategy == Sema::MMS_strict) return false;
2103
2104   if (left->isIncompleteType() || right->isIncompleteType()) return false;
2105
2106   // Otherwise, use this absurdly complicated algorithm to try to
2107   // validate the basic, low-level compatibility of the two types.
2108
2109   // As a minimum, require the sizes and alignments to match.
2110   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
2111     return false;
2112
2113   // Consider all the kinds of non-dependent canonical types:
2114   // - functions and arrays aren't possible as return and parameter types
2115   
2116   // - vector types of equal size can be arbitrarily mixed
2117   if (isa<VectorType>(left)) return isa<VectorType>(right);
2118   if (isa<VectorType>(right)) return false;
2119
2120   // - references should only match references of identical type
2121   // - structs, unions, and Objective-C objects must match more-or-less
2122   //   exactly
2123   // - everything else should be a scalar
2124   if (!left->isScalarType() || !right->isScalarType())
2125     return tryMatchRecordTypes(Context, strategy, left, right);
2126
2127   // Make scalars agree in kind, except count bools as chars, and group
2128   // all non-member pointers together.
2129   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2130   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2131   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2132   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2133   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2134     leftSK = Type::STK_ObjCObjectPointer;
2135   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2136     rightSK = Type::STK_ObjCObjectPointer;
2137
2138   // Note that data member pointers and function member pointers don't
2139   // intermix because of the size differences.
2140
2141   return (leftSK == rightSK);
2142 }
2143
2144 static bool tryMatchRecordTypes(ASTContext &Context,
2145                                 Sema::MethodMatchStrategy strategy,
2146                                 const Type *lt, const Type *rt) {
2147   assert(lt && rt && lt != rt);
2148
2149   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2150   RecordDecl *left = cast<RecordType>(lt)->getDecl();
2151   RecordDecl *right = cast<RecordType>(rt)->getDecl();
2152
2153   // Require union-hood to match.
2154   if (left->isUnion() != right->isUnion()) return false;
2155
2156   // Require an exact match if either is non-POD.
2157   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2158       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2159     return false;
2160
2161   // Require size and alignment to match.
2162   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2163
2164   // Require fields to match.
2165   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2166   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2167   for (; li != le && ri != re; ++li, ++ri) {
2168     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2169       return false;
2170   }
2171   return (li == le && ri == re);
2172 }
2173
2174 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2175 /// returns true, or false, accordingly.
2176 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2177 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2178                                       const ObjCMethodDecl *right,
2179                                       MethodMatchStrategy strategy) {
2180   if (!matchTypes(Context, strategy, left->getReturnType(),
2181                   right->getReturnType()))
2182     return false;
2183
2184   // If either is hidden, it is not considered to match.
2185   if (left->isHidden() || right->isHidden())
2186     return false;
2187
2188   if (getLangOpts().ObjCAutoRefCount &&
2189       (left->hasAttr<NSReturnsRetainedAttr>()
2190          != right->hasAttr<NSReturnsRetainedAttr>() ||
2191        left->hasAttr<NSConsumesSelfAttr>()
2192          != right->hasAttr<NSConsumesSelfAttr>()))
2193     return false;
2194
2195   ObjCMethodDecl::param_const_iterator
2196     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2197     re = right->param_end();
2198
2199   for (; li != le && ri != re; ++li, ++ri) {
2200     assert(ri != right->param_end() && "Param mismatch");
2201     const ParmVarDecl *lparm = *li, *rparm = *ri;
2202
2203     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2204       return false;
2205
2206     if (getLangOpts().ObjCAutoRefCount &&
2207         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2208       return false;
2209   }
2210   return true;
2211 }
2212
2213 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2214   // Record at the head of the list whether there were 0, 1, or >= 2 methods
2215   // inside categories.
2216   if (ObjCCategoryDecl *
2217         CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2218     if (!CD->IsClassExtension() && List->getBits() < 2)
2219         List->setBits(List->getBits()+1);
2220
2221   // If the list is empty, make it a singleton list.
2222   if (List->Method == nullptr) {
2223     List->Method = Method;
2224     List->setNext(nullptr);
2225     return;
2226   }
2227   
2228   // We've seen a method with this name, see if we have already seen this type
2229   // signature.
2230   ObjCMethodList *Previous = List;
2231   for (; List; Previous = List, List = List->getNext()) {
2232     // If we are building a module, keep all of the methods.
2233     if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2234       continue;
2235
2236     if (!MatchTwoMethodDeclarations(Method, List->Method))
2237       continue;
2238     
2239     ObjCMethodDecl *PrevObjCMethod = List->Method;
2240
2241     // Propagate the 'defined' bit.
2242     if (Method->isDefined())
2243       PrevObjCMethod->setDefined(true);
2244     
2245     // If a method is deprecated, push it in the global pool.
2246     // This is used for better diagnostics.
2247     if (Method->isDeprecated()) {
2248       if (!PrevObjCMethod->isDeprecated())
2249         List->Method = Method;
2250     }
2251     // If new method is unavailable, push it into global pool
2252     // unless previous one is deprecated.
2253     if (Method->isUnavailable()) {
2254       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2255         List->Method = Method;
2256     }
2257     
2258     return;
2259   }
2260   
2261   // We have a new signature for an existing method - add it.
2262   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2263   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2264   Previous->setNext(new (Mem) ObjCMethodList(Method, nullptr));
2265 }
2266
2267 /// \brief Read the contents of the method pool for a given selector from
2268 /// external storage.
2269 void Sema::ReadMethodPool(Selector Sel) {
2270   assert(ExternalSource && "We need an external AST source");
2271   ExternalSource->ReadMethodPool(Sel);
2272 }
2273
2274 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2275                                  bool instance) {
2276   // Ignore methods of invalid containers.
2277   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2278     return;
2279
2280   if (ExternalSource)
2281     ReadMethodPool(Method->getSelector());
2282   
2283   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2284   if (Pos == MethodPool.end())
2285     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2286                                            GlobalMethods())).first;
2287   
2288   Method->setDefined(impl);
2289   
2290   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2291   addMethodToGlobalList(&Entry, Method);
2292 }
2293
2294 /// Determines if this is an "acceptable" loose mismatch in the global
2295 /// method pool.  This exists mostly as a hack to get around certain
2296 /// global mismatches which we can't afford to make warnings / errors.
2297 /// Really, what we want is a way to take a method out of the global
2298 /// method pool.
2299 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2300                                        ObjCMethodDecl *other) {
2301   if (!chosen->isInstanceMethod())
2302     return false;
2303
2304   Selector sel = chosen->getSelector();
2305   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2306     return false;
2307
2308   // Don't complain about mismatches for -length if the method we
2309   // chose has an integral result type.
2310   return (chosen->getReturnType()->isIntegerType());
2311 }
2312
2313 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2314                                                bool receiverIdOrClass,
2315                                                bool warn, bool instance) {
2316   if (ExternalSource)
2317     ReadMethodPool(Sel);
2318     
2319   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2320   if (Pos == MethodPool.end())
2321     return nullptr;
2322
2323   // Gather the non-hidden methods.
2324   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2325   SmallVector<ObjCMethodDecl *, 4> Methods;
2326   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2327     if (M->Method && !M->Method->isHidden()) {
2328       // If we're not supposed to warn about mismatches, we're done.
2329       if (!warn)
2330         return M->Method;
2331
2332       Methods.push_back(M->Method);
2333     }
2334   }
2335
2336   // If there aren't any visible methods, we're done.
2337   // FIXME: Recover if there are any known-but-hidden methods?
2338   if (Methods.empty())
2339     return nullptr;
2340
2341   if (Methods.size() == 1)
2342     return Methods[0];
2343
2344   // We found multiple methods, so we may have to complain.
2345   bool issueDiagnostic = false, issueError = false;
2346
2347   // We support a warning which complains about *any* difference in
2348   // method signature.
2349   bool strictSelectorMatch =
2350       receiverIdOrClass && warn &&
2351       !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
2352   if (strictSelectorMatch) {
2353     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2354       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2355         issueDiagnostic = true;
2356         break;
2357       }
2358     }
2359   }
2360
2361   // If we didn't see any strict differences, we won't see any loose
2362   // differences.  In ARC, however, we also need to check for loose
2363   // mismatches, because most of them are errors.
2364   if (!strictSelectorMatch ||
2365       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2366     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2367       // This checks if the methods differ in type mismatch.
2368       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2369           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2370         issueDiagnostic = true;
2371         if (getLangOpts().ObjCAutoRefCount)
2372           issueError = true;
2373         break;
2374       }
2375     }
2376
2377   if (issueDiagnostic) {
2378     if (issueError)
2379       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2380     else if (strictSelectorMatch)
2381       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2382     else
2383       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2384
2385     Diag(Methods[0]->getLocStart(),
2386          issueError ? diag::note_possibility : diag::note_using)
2387       << Methods[0]->getSourceRange();
2388     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2389       Diag(Methods[I]->getLocStart(), diag::note_also_found)
2390         << Methods[I]->getSourceRange();
2391   }
2392   }
2393   return Methods[0];
2394 }
2395
2396 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2397   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2398   if (Pos == MethodPool.end())
2399     return nullptr;
2400
2401   GlobalMethods &Methods = Pos->second;
2402   for (const ObjCMethodList *Method = &Methods.first; Method;
2403        Method = Method->getNext())
2404     if (Method->Method && Method->Method->isDefined())
2405       return Method->Method;
2406   
2407   for (const ObjCMethodList *Method = &Methods.second; Method;
2408        Method = Method->getNext())
2409     if (Method->Method && Method->Method->isDefined())
2410       return Method->Method;
2411   return nullptr;
2412 }
2413
2414 static void
2415 HelperSelectorsForTypoCorrection(
2416                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2417                       StringRef Typo, const ObjCMethodDecl * Method) {
2418   const unsigned MaxEditDistance = 1;
2419   unsigned BestEditDistance = MaxEditDistance + 1;
2420   std::string MethodName = Method->getSelector().getAsString();
2421   
2422   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2423   if (MinPossibleEditDistance > 0 &&
2424       Typo.size() / MinPossibleEditDistance < 1)
2425     return;
2426   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2427   if (EditDistance > MaxEditDistance)
2428     return;
2429   if (EditDistance == BestEditDistance)
2430     BestMethod.push_back(Method);
2431   else if (EditDistance < BestEditDistance) {
2432     BestMethod.clear();
2433     BestMethod.push_back(Method);
2434   }
2435 }
2436
2437 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2438                                      QualType ObjectType) {
2439   if (ObjectType.isNull())
2440     return true;
2441   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2442     return true;
2443   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
2444          nullptr;
2445 }
2446
2447 const ObjCMethodDecl *
2448 Sema::SelectorsForTypoCorrection(Selector Sel,
2449                                  QualType ObjectType) {
2450   unsigned NumArgs = Sel.getNumArgs();
2451   SmallVector<const ObjCMethodDecl *, 8> Methods;
2452   bool ObjectIsId = true, ObjectIsClass = true;
2453   if (ObjectType.isNull())
2454     ObjectIsId = ObjectIsClass = false;
2455   else if (!ObjectType->isObjCObjectPointerType())
2456     return nullptr;
2457   else if (const ObjCObjectPointerType *ObjCPtr =
2458            ObjectType->getAsObjCInterfacePointerType()) {
2459     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2460     ObjectIsId = ObjectIsClass = false;
2461   }
2462   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2463     ObjectIsClass = false;
2464   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2465     ObjectIsId = false;
2466   else
2467     return nullptr;
2468
2469   for (GlobalMethodPool::iterator b = MethodPool.begin(),
2470        e = MethodPool.end(); b != e; b++) {
2471     // instance methods
2472     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2473       if (M->Method &&
2474           (M->Method->getSelector().getNumArgs() == NumArgs) &&
2475           (M->Method->getSelector() != Sel)) {
2476         if (ObjectIsId)
2477           Methods.push_back(M->Method);
2478         else if (!ObjectIsClass &&
2479                  HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2480           Methods.push_back(M->Method);
2481       }
2482     // class methods
2483     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2484       if (M->Method &&
2485           (M->Method->getSelector().getNumArgs() == NumArgs) &&
2486           (M->Method->getSelector() != Sel)) {
2487         if (ObjectIsClass)
2488           Methods.push_back(M->Method);
2489         else if (!ObjectIsId &&
2490                  HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2491           Methods.push_back(M->Method);
2492       }
2493   }
2494   
2495   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2496   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2497     HelperSelectorsForTypoCorrection(SelectedMethods,
2498                                      Sel.getAsString(), Methods[i]);
2499   }
2500   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
2501 }
2502
2503 /// DiagnoseDuplicateIvars -
2504 /// Check for duplicate ivars in the entire class at the start of 
2505 /// \@implementation. This becomes necesssary because class extension can
2506 /// add ivars to a class in random order which will not be known until
2507 /// class's \@implementation is seen.
2508 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 
2509                                   ObjCInterfaceDecl *SID) {
2510   for (auto *Ivar : ID->ivars()) {
2511     if (Ivar->isInvalidDecl())
2512       continue;
2513     if (IdentifierInfo *II = Ivar->getIdentifier()) {
2514       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2515       if (prevIvar) {
2516         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2517         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2518         Ivar->setInvalidDecl();
2519       }
2520     }
2521   }
2522 }
2523
2524 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2525   switch (CurContext->getDeclKind()) {
2526     case Decl::ObjCInterface:
2527       return Sema::OCK_Interface;
2528     case Decl::ObjCProtocol:
2529       return Sema::OCK_Protocol;
2530     case Decl::ObjCCategory:
2531       if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2532         return Sema::OCK_ClassExtension;
2533       else
2534         return Sema::OCK_Category;
2535     case Decl::ObjCImplementation:
2536       return Sema::OCK_Implementation;
2537     case Decl::ObjCCategoryImpl:
2538       return Sema::OCK_CategoryImplementation;
2539
2540     default:
2541       return Sema::OCK_None;
2542   }
2543 }
2544
2545 // Note: For class/category implementations, allMethods is always null.
2546 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2547                        ArrayRef<DeclGroupPtrTy> allTUVars) {
2548   if (getObjCContainerKind() == Sema::OCK_None)
2549     return nullptr;
2550
2551   assert(AtEnd.isValid() && "Invalid location for '@end'");
2552
2553   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2554   Decl *ClassDecl = cast<Decl>(OCD);
2555   
2556   bool isInterfaceDeclKind =
2557         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2558          || isa<ObjCProtocolDecl>(ClassDecl);
2559   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2560
2561   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2562   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2563   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2564
2565   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2566     ObjCMethodDecl *Method =
2567       cast_or_null<ObjCMethodDecl>(allMethods[i]);
2568
2569     if (!Method) continue;  // Already issued a diagnostic.
2570     if (Method->isInstanceMethod()) {
2571       /// Check for instance method of the same name with incompatible types
2572       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2573       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2574                               : false;
2575       if ((isInterfaceDeclKind && PrevMethod && !match)
2576           || (checkIdenticalMethods && match)) {
2577           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2578             << Method->getDeclName();
2579           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2580         Method->setInvalidDecl();
2581       } else {
2582         if (PrevMethod) {
2583           Method->setAsRedeclaration(PrevMethod);
2584           if (!Context.getSourceManager().isInSystemHeader(
2585                  Method->getLocation()))
2586             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2587               << Method->getDeclName();
2588           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2589         }
2590         InsMap[Method->getSelector()] = Method;
2591         /// The following allows us to typecheck messages to "id".
2592         AddInstanceMethodToGlobalPool(Method);
2593       }
2594     } else {
2595       /// Check for class method of the same name with incompatible types
2596       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2597       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2598                               : false;
2599       if ((isInterfaceDeclKind && PrevMethod && !match)
2600           || (checkIdenticalMethods && match)) {
2601         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2602           << Method->getDeclName();
2603         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2604         Method->setInvalidDecl();
2605       } else {
2606         if (PrevMethod) {
2607           Method->setAsRedeclaration(PrevMethod);
2608           if (!Context.getSourceManager().isInSystemHeader(
2609                  Method->getLocation()))
2610             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2611               << Method->getDeclName();
2612           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2613         }
2614         ClsMap[Method->getSelector()] = Method;
2615         AddFactoryMethodToGlobalPool(Method);
2616       }
2617     }
2618   }
2619   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2620     // Nothing to do here.
2621   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2622     // Categories are used to extend the class by declaring new methods.
2623     // By the same token, they are also used to add new properties. No
2624     // need to compare the added property to those in the class.
2625
2626     if (C->IsClassExtension()) {
2627       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2628       DiagnoseClassExtensionDupMethods(C, CCPrimary);
2629     }
2630   }
2631   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2632     if (CDecl->getIdentifier())
2633       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2634       // user-defined setter/getter. It also synthesizes setter/getter methods
2635       // and adds them to the DeclContext and global method pools.
2636       for (auto *I : CDecl->properties())
2637         ProcessPropertyDecl(I, CDecl);
2638     CDecl->setAtEndRange(AtEnd);
2639   }
2640   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2641     IC->setAtEndRange(AtEnd);
2642     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2643       // Any property declared in a class extension might have user
2644       // declared setter or getter in current class extension or one
2645       // of the other class extensions. Mark them as synthesized as
2646       // property will be synthesized when property with same name is
2647       // seen in the @implementation.
2648       for (const auto *Ext : IDecl->visible_extensions()) {
2649         for (const auto *Property : Ext->properties()) {
2650           // Skip over properties declared @dynamic
2651           if (const ObjCPropertyImplDecl *PIDecl
2652               = IC->FindPropertyImplDecl(Property->getIdentifier()))
2653             if (PIDecl->getPropertyImplementation() 
2654                   == ObjCPropertyImplDecl::Dynamic)
2655               continue;
2656
2657           for (const auto *Ext : IDecl->visible_extensions()) {
2658             if (ObjCMethodDecl *GetterMethod
2659                   = Ext->getInstanceMethod(Property->getGetterName()))
2660               GetterMethod->setPropertyAccessor(true);
2661             if (!Property->isReadOnly())
2662               if (ObjCMethodDecl *SetterMethod
2663                     = Ext->getInstanceMethod(Property->getSetterName()))
2664                 SetterMethod->setPropertyAccessor(true);
2665           }
2666         }
2667       }
2668       ImplMethodsVsClassMethods(S, IC, IDecl);
2669       AtomicPropertySetterGetterRules(IC, IDecl);
2670       DiagnoseOwningPropertyGetterSynthesis(IC);
2671       DiagnoseUnusedBackingIvarInAccessor(S, IC);
2672       if (IDecl->hasDesignatedInitializers())
2673         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
2674
2675       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2676       if (IDecl->getSuperClass() == nullptr) {
2677         // This class has no superclass, so check that it has been marked with
2678         // __attribute((objc_root_class)).
2679         if (!HasRootClassAttr) {
2680           SourceLocation DeclLoc(IDecl->getLocation());
2681           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
2682           Diag(DeclLoc, diag::warn_objc_root_class_missing)
2683             << IDecl->getIdentifier();
2684           // See if NSObject is in the current scope, and if it is, suggest
2685           // adding " : NSObject " to the class declaration.
2686           NamedDecl *IF = LookupSingleName(TUScope,
2687                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2688                                            DeclLoc, LookupOrdinaryName);
2689           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2690           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2691             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2692               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2693           } else {
2694             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2695           }
2696         }
2697       } else if (HasRootClassAttr) {
2698         // Complain that only root classes may have this attribute.
2699         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2700       }
2701
2702       if (LangOpts.ObjCRuntime.isNonFragile()) {
2703         while (IDecl->getSuperClass()) {
2704           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2705           IDecl = IDecl->getSuperClass();
2706         }
2707       }
2708     }
2709     SetIvarInitializers(IC);
2710   } else if (ObjCCategoryImplDecl* CatImplClass =
2711                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2712     CatImplClass->setAtEndRange(AtEnd);
2713
2714     // Find category interface decl and then check that all methods declared
2715     // in this interface are implemented in the category @implementation.
2716     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2717       if (ObjCCategoryDecl *Cat
2718             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2719         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2720       }
2721     }
2722   }
2723   if (isInterfaceDeclKind) {
2724     // Reject invalid vardecls.
2725     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2726       DeclGroupRef DG = allTUVars[i].get();
2727       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2728         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2729           if (!VDecl->hasExternalStorage())
2730             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2731         }
2732     }
2733   }
2734   ActOnObjCContainerFinishDefinition();
2735
2736   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2737     DeclGroupRef DG = allTUVars[i].get();
2738     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2739       (*I)->setTopLevelDeclInObjCContainer();
2740     Consumer.HandleTopLevelDeclInObjCContainer(DG);
2741   }
2742
2743   ActOnDocumentableDecl(ClassDecl);
2744   return ClassDecl;
2745 }
2746
2747
2748 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2749 /// objective-c's type qualifier from the parser version of the same info.
2750 static Decl::ObjCDeclQualifier
2751 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2752   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2753 }
2754
2755 /// \brief Check whether the declared result type of the given Objective-C
2756 /// method declaration is compatible with the method's class.
2757 ///
2758 static Sema::ResultTypeCompatibilityKind 
2759 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2760                                     ObjCInterfaceDecl *CurrentClass) {
2761   QualType ResultType = Method->getReturnType();
2762
2763   // If an Objective-C method inherits its related result type, then its 
2764   // declared result type must be compatible with its own class type. The
2765   // declared result type is compatible if:
2766   if (const ObjCObjectPointerType *ResultObjectType
2767                                 = ResultType->getAs<ObjCObjectPointerType>()) {
2768     //   - it is id or qualified id, or
2769     if (ResultObjectType->isObjCIdType() ||
2770         ResultObjectType->isObjCQualifiedIdType())
2771       return Sema::RTC_Compatible;
2772   
2773     if (CurrentClass) {
2774       if (ObjCInterfaceDecl *ResultClass 
2775                                       = ResultObjectType->getInterfaceDecl()) {
2776         //   - it is the same as the method's class type, or
2777         if (declaresSameEntity(CurrentClass, ResultClass))
2778           return Sema::RTC_Compatible;
2779         
2780         //   - it is a superclass of the method's class type
2781         if (ResultClass->isSuperClassOf(CurrentClass))
2782           return Sema::RTC_Compatible;
2783       }      
2784     } else {
2785       // Any Objective-C pointer type might be acceptable for a protocol
2786       // method; we just don't know.
2787       return Sema::RTC_Unknown;
2788     }
2789   }
2790   
2791   return Sema::RTC_Incompatible;
2792 }
2793
2794 namespace {
2795 /// A helper class for searching for methods which a particular method
2796 /// overrides.
2797 class OverrideSearch {
2798 public:
2799   Sema &S;
2800   ObjCMethodDecl *Method;
2801   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2802   bool Recursive;
2803
2804 public:
2805   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2806     Selector selector = method->getSelector();
2807
2808     // Bypass this search if we've never seen an instance/class method
2809     // with this selector before.
2810     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2811     if (it == S.MethodPool.end()) {
2812       if (!S.getExternalSource()) return;
2813       S.ReadMethodPool(selector);
2814       
2815       it = S.MethodPool.find(selector);
2816       if (it == S.MethodPool.end())
2817         return;
2818     }
2819     ObjCMethodList &list =
2820       method->isInstanceMethod() ? it->second.first : it->second.second;
2821     if (!list.Method) return;
2822
2823     ObjCContainerDecl *container
2824       = cast<ObjCContainerDecl>(method->getDeclContext());
2825
2826     // Prevent the search from reaching this container again.  This is
2827     // important with categories, which override methods from the
2828     // interface and each other.
2829     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2830       searchFromContainer(container);
2831       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2832         searchFromContainer(Interface);
2833     } else {
2834       searchFromContainer(container);
2835     }
2836   }
2837
2838   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2839   iterator begin() const { return Overridden.begin(); }
2840   iterator end() const { return Overridden.end(); }
2841
2842 private:
2843   void searchFromContainer(ObjCContainerDecl *container) {
2844     if (container->isInvalidDecl()) return;
2845
2846     switch (container->getDeclKind()) {
2847 #define OBJCCONTAINER(type, base) \
2848     case Decl::type: \
2849       searchFrom(cast<type##Decl>(container)); \
2850       break;
2851 #define ABSTRACT_DECL(expansion)
2852 #define DECL(type, base) \
2853     case Decl::type:
2854 #include "clang/AST/DeclNodes.inc"
2855       llvm_unreachable("not an ObjC container!");
2856     }
2857   }
2858
2859   void searchFrom(ObjCProtocolDecl *protocol) {
2860     if (!protocol->hasDefinition())
2861       return;
2862     
2863     // A method in a protocol declaration overrides declarations from
2864     // referenced ("parent") protocols.
2865     search(protocol->getReferencedProtocols());
2866   }
2867
2868   void searchFrom(ObjCCategoryDecl *category) {
2869     // A method in a category declaration overrides declarations from
2870     // the main class and from protocols the category references.
2871     // The main class is handled in the constructor.
2872     search(category->getReferencedProtocols());
2873   }
2874
2875   void searchFrom(ObjCCategoryImplDecl *impl) {
2876     // A method in a category definition that has a category
2877     // declaration overrides declarations from the category
2878     // declaration.
2879     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2880       search(category);
2881       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2882         search(Interface);
2883
2884     // Otherwise it overrides declarations from the class.
2885     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2886       search(Interface);
2887     }
2888   }
2889
2890   void searchFrom(ObjCInterfaceDecl *iface) {
2891     // A method in a class declaration overrides declarations from
2892     if (!iface->hasDefinition())
2893       return;
2894     
2895     //   - categories,
2896     for (auto *Cat : iface->known_categories())
2897       search(Cat);
2898
2899     //   - the super class, and
2900     if (ObjCInterfaceDecl *super = iface->getSuperClass())
2901       search(super);
2902
2903     //   - any referenced protocols.
2904     search(iface->getReferencedProtocols());
2905   }
2906
2907   void searchFrom(ObjCImplementationDecl *impl) {
2908     // A method in a class implementation overrides declarations from
2909     // the class interface.
2910     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2911       search(Interface);
2912   }
2913
2914
2915   void search(const ObjCProtocolList &protocols) {
2916     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2917          i != e; ++i)
2918       search(*i);
2919   }
2920
2921   void search(ObjCContainerDecl *container) {
2922     // Check for a method in this container which matches this selector.
2923     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2924                                                 Method->isInstanceMethod(),
2925                                                 /*AllowHidden=*/true);
2926
2927     // If we find one, record it and bail out.
2928     if (meth) {
2929       Overridden.insert(meth);
2930       return;
2931     }
2932
2933     // Otherwise, search for methods that a hypothetical method here
2934     // would have overridden.
2935
2936     // Note that we're now in a recursive case.
2937     Recursive = true;
2938
2939     searchFromContainer(container);
2940   }
2941 };
2942 }
2943
2944 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2945                                     ObjCInterfaceDecl *CurrentClass,
2946                                     ResultTypeCompatibilityKind RTC) {
2947   // Search for overridden methods and merge information down from them.
2948   OverrideSearch overrides(*this, ObjCMethod);
2949   // Keep track if the method overrides any method in the class's base classes,
2950   // its protocols, or its categories' protocols; we will keep that info
2951   // in the ObjCMethodDecl.
2952   // For this info, a method in an implementation is not considered as
2953   // overriding the same method in the interface or its categories.
2954   bool hasOverriddenMethodsInBaseOrProtocol = false;
2955   for (OverrideSearch::iterator
2956          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2957     ObjCMethodDecl *overridden = *i;
2958
2959     if (!hasOverriddenMethodsInBaseOrProtocol) {
2960       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2961           CurrentClass != overridden->getClassInterface() ||
2962           overridden->isOverriding()) {
2963         hasOverriddenMethodsInBaseOrProtocol = true;
2964
2965       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
2966         // OverrideSearch will return as "overridden" the same method in the
2967         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
2968         // check whether a category of a base class introduced a method with the
2969         // same selector, after the interface method declaration.
2970         // To avoid unnecessary lookups in the majority of cases, we use the
2971         // extra info bits in GlobalMethodPool to check whether there were any
2972         // category methods with this selector.
2973         GlobalMethodPool::iterator It =
2974             MethodPool.find(ObjCMethod->getSelector());
2975         if (It != MethodPool.end()) {
2976           ObjCMethodList &List =
2977             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
2978           unsigned CategCount = List.getBits();
2979           if (CategCount > 0) {
2980             // If the method is in a category we'll do lookup if there were at
2981             // least 2 category methods recorded, otherwise only one will do.
2982             if (CategCount > 1 ||
2983                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
2984               OverrideSearch overrides(*this, overridden);
2985               for (OverrideSearch::iterator
2986                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
2987                 ObjCMethodDecl *SuperOverridden = *OI;
2988                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
2989                     CurrentClass != SuperOverridden->getClassInterface()) {
2990                   hasOverriddenMethodsInBaseOrProtocol = true;
2991                   overridden->setOverriding(true);
2992                   break;
2993                 }
2994               }
2995             }
2996           }
2997         }
2998       }
2999     }
3000
3001     // Propagate down the 'related result type' bit from overridden methods.
3002     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3003       ObjCMethod->SetRelatedResultType();
3004
3005     // Then merge the declarations.
3006     mergeObjCMethodDecls(ObjCMethod, overridden);
3007
3008     if (ObjCMethod->isImplicit() && overridden->isImplicit())
3009       continue; // Conflicting properties are detected elsewhere.
3010
3011     // Check for overriding methods
3012     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 
3013         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3014       CheckConflictingOverridingMethod(ObjCMethod, overridden,
3015               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3016     
3017     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3018         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3019         !overridden->isImplicit() /* not meant for properties */) {
3020       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3021                                           E = ObjCMethod->param_end();
3022       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3023                                      PrevE = overridden->param_end();
3024       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3025         assert(PrevI != overridden->param_end() && "Param mismatch");
3026         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3027         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3028         // If type of argument of method in this class does not match its
3029         // respective argument type in the super class method, issue warning;
3030         if (!Context.typesAreCompatible(T1, T2)) {
3031           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3032             << T1 << T2;
3033           Diag(overridden->getLocation(), diag::note_previous_declaration);
3034           break;
3035         }
3036       }
3037     }
3038   }
3039
3040   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3041 }
3042
3043 Decl *Sema::ActOnMethodDeclaration(
3044     Scope *S,
3045     SourceLocation MethodLoc, SourceLocation EndLoc,
3046     tok::TokenKind MethodType, 
3047     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3048     ArrayRef<SourceLocation> SelectorLocs,
3049     Selector Sel,
3050     // optional arguments. The number of types/arguments is obtained
3051     // from the Sel.getNumArgs().
3052     ObjCArgInfo *ArgInfo,
3053     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3054     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3055     bool isVariadic, bool MethodDefinition) {
3056   // Make sure we can establish a context for the method.
3057   if (!CurContext->isObjCContainer()) {
3058     Diag(MethodLoc, diag::error_missing_method_context);
3059     return nullptr;
3060   }
3061   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3062   Decl *ClassDecl = cast<Decl>(OCD); 
3063   QualType resultDeclType;
3064
3065   bool HasRelatedResultType = false;
3066   TypeSourceInfo *ReturnTInfo = nullptr;
3067   if (ReturnType) {
3068     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
3069
3070     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3071       return nullptr;
3072
3073     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3074   } else { // get the type for "id".
3075     resultDeclType = Context.getObjCIdType();
3076     Diag(MethodLoc, diag::warn_missing_method_return_type)
3077       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3078   }
3079
3080   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
3081       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
3082       MethodType == tok::minus, isVariadic,
3083       /*isPropertyAccessor=*/false,
3084       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3085       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
3086                                            : ObjCMethodDecl::Required,
3087       HasRelatedResultType);
3088
3089   SmallVector<ParmVarDecl*, 16> Params;
3090
3091   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3092     QualType ArgType;
3093     TypeSourceInfo *DI;
3094
3095     if (!ArgInfo[i].Type) {
3096       ArgType = Context.getObjCIdType();
3097       DI = nullptr;
3098     } else {
3099       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3100     }
3101
3102     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 
3103                    LookupOrdinaryName, ForRedeclaration);
3104     LookupName(R, S);
3105     if (R.isSingleResult()) {
3106       NamedDecl *PrevDecl = R.getFoundDecl();
3107       if (S->isDeclScope(PrevDecl)) {
3108         Diag(ArgInfo[i].NameLoc, 
3109              (MethodDefinition ? diag::warn_method_param_redefinition 
3110                                : diag::warn_method_param_declaration)) 
3111           << ArgInfo[i].Name;
3112         Diag(PrevDecl->getLocation(), 
3113              diag::note_previous_declaration);
3114       }
3115     }
3116
3117     SourceLocation StartLoc = DI
3118       ? DI->getTypeLoc().getBeginLoc()
3119       : ArgInfo[i].NameLoc;
3120
3121     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3122                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
3123                                         ArgType, DI, SC_None);
3124
3125     Param->setObjCMethodScopeInfo(i);
3126
3127     Param->setObjCDeclQualifier(
3128       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3129
3130     // Apply the attributes to the parameter.
3131     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3132
3133     if (Param->hasAttr<BlocksAttr>()) {
3134       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3135       Param->setInvalidDecl();
3136     }
3137     S->AddDecl(Param);
3138     IdResolver.AddDecl(Param);
3139
3140     Params.push_back(Param);
3141   }
3142   
3143   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3144     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3145     QualType ArgType = Param->getType();
3146     if (ArgType.isNull())
3147       ArgType = Context.getObjCIdType();
3148     else
3149       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3150       ArgType = Context.getAdjustedParameterType(ArgType);
3151
3152     Param->setDeclContext(ObjCMethod);
3153     Params.push_back(Param);
3154   }
3155   
3156   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3157   ObjCMethod->setObjCDeclQualifier(
3158     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3159
3160   if (AttrList)
3161     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3162
3163   // Add the method now.
3164   const ObjCMethodDecl *PrevMethod = nullptr;
3165   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3166     if (MethodType == tok::minus) {
3167       PrevMethod = ImpDecl->getInstanceMethod(Sel);
3168       ImpDecl->addInstanceMethod(ObjCMethod);
3169     } else {
3170       PrevMethod = ImpDecl->getClassMethod(Sel);
3171       ImpDecl->addClassMethod(ObjCMethod);
3172     }
3173
3174     ObjCMethodDecl *IMD = nullptr;
3175     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3176       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 
3177                                 ObjCMethod->isInstanceMethod());
3178     if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3179         !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3180       // merge the attribute into implementation.
3181       ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context,
3182                                                    ObjCMethod->getLocation()));
3183     }
3184     if (isa<ObjCCategoryImplDecl>(ImpDecl)) {
3185       ObjCMethodFamily family = 
3186         ObjCMethod->getSelector().getMethodFamily();
3187       if (family == OMF_dealloc && IMD && IMD->isOverriding()) 
3188         Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
3189           << ObjCMethod->getDeclName();
3190     }
3191   } else {
3192     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3193   }
3194
3195   if (PrevMethod) {
3196     // You can never have two method definitions with the same name.
3197     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3198       << ObjCMethod->getDeclName();
3199     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3200     ObjCMethod->setInvalidDecl();
3201     return ObjCMethod;
3202   }
3203
3204   // If this Objective-C method does not have a related result type, but we
3205   // are allowed to infer related result types, try to do so based on the
3206   // method family.
3207   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3208   if (!CurrentClass) {
3209     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3210       CurrentClass = Cat->getClassInterface();
3211     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3212       CurrentClass = Impl->getClassInterface();
3213     else if (ObjCCategoryImplDecl *CatImpl
3214                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3215       CurrentClass = CatImpl->getClassInterface();
3216   }
3217
3218   ResultTypeCompatibilityKind RTC
3219     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3220
3221   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3222
3223   bool ARCError = false;
3224   if (getLangOpts().ObjCAutoRefCount)
3225     ARCError = CheckARCMethodDecl(ObjCMethod);
3226
3227   // Infer the related result type when possible.
3228   if (!ARCError && RTC == Sema::RTC_Compatible &&
3229       !ObjCMethod->hasRelatedResultType() &&
3230       LangOpts.ObjCInferRelatedResultType) {
3231     bool InferRelatedResultType = false;
3232     switch (ObjCMethod->getMethodFamily()) {
3233     case OMF_None:
3234     case OMF_copy:
3235     case OMF_dealloc:
3236     case OMF_finalize:
3237     case OMF_mutableCopy:
3238     case OMF_release:
3239     case OMF_retainCount:
3240     case OMF_performSelector:
3241       break;
3242       
3243     case OMF_alloc:
3244     case OMF_new:
3245       InferRelatedResultType = ObjCMethod->isClassMethod();
3246       break;
3247         
3248     case OMF_init:
3249     case OMF_autorelease:
3250     case OMF_retain:
3251     case OMF_self:
3252       InferRelatedResultType = ObjCMethod->isInstanceMethod();
3253       break;
3254     }
3255     
3256     if (InferRelatedResultType)
3257       ObjCMethod->SetRelatedResultType();
3258   }
3259
3260   ActOnDocumentableDecl(ObjCMethod);
3261
3262   return ObjCMethod;
3263 }
3264
3265 bool Sema::CheckObjCDeclScope(Decl *D) {
3266   // Following is also an error. But it is caused by a missing @end
3267   // and diagnostic is issued elsewhere.
3268   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3269     return false;
3270
3271   // If we switched context to translation unit while we are still lexically in
3272   // an objc container, it means the parser missed emitting an error.
3273   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3274     return false;
3275   
3276   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3277   D->setInvalidDecl();
3278
3279   return true;
3280 }
3281
3282 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3283 /// instance variables of ClassName into Decls.
3284 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3285                      IdentifierInfo *ClassName,
3286                      SmallVectorImpl<Decl*> &Decls) {
3287   // Check that ClassName is a valid class
3288   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3289   if (!Class) {
3290     Diag(DeclStart, diag::err_undef_interface) << ClassName;
3291     return;
3292   }
3293   if (LangOpts.ObjCRuntime.isNonFragile()) {
3294     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3295     return;
3296   }
3297
3298   // Collect the instance variables
3299   SmallVector<const ObjCIvarDecl*, 32> Ivars;
3300   Context.DeepCollectObjCIvars(Class, true, Ivars);
3301   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3302   for (unsigned i = 0; i < Ivars.size(); i++) {
3303     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3304     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3305     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3306                                            /*FIXME: StartL=*/ID->getLocation(),
3307                                            ID->getLocation(),
3308                                            ID->getIdentifier(), ID->getType(),
3309                                            ID->getBitWidth());
3310     Decls.push_back(FD);
3311   }
3312
3313   // Introduce all of these fields into the appropriate scope.
3314   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3315        D != Decls.end(); ++D) {
3316     FieldDecl *FD = cast<FieldDecl>(*D);
3317     if (getLangOpts().CPlusPlus)
3318       PushOnScopeChains(cast<FieldDecl>(FD), S);
3319     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3320       Record->addDecl(FD);
3321   }
3322 }
3323
3324 /// \brief Build a type-check a new Objective-C exception variable declaration.
3325 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3326                                       SourceLocation StartLoc,
3327                                       SourceLocation IdLoc,
3328                                       IdentifierInfo *Id,
3329                                       bool Invalid) {
3330   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
3331   // duration shall not be qualified by an address-space qualifier."
3332   // Since all parameters have automatic store duration, they can not have
3333   // an address space.
3334   if (T.getAddressSpace() != 0) {
3335     Diag(IdLoc, diag::err_arg_with_address_space);
3336     Invalid = true;
3337   }
3338   
3339   // An @catch parameter must be an unqualified object pointer type;
3340   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3341   if (Invalid) {
3342     // Don't do any further checking.
3343   } else if (T->isDependentType()) {
3344     // Okay: we don't know what this type will instantiate to.
3345   } else if (!T->isObjCObjectPointerType()) {
3346     Invalid = true;
3347     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3348   } else if (T->isObjCQualifiedIdType()) {
3349     Invalid = true;
3350     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3351   }
3352   
3353   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3354                                  T, TInfo, SC_None);
3355   New->setExceptionVariable(true);
3356   
3357   // In ARC, infer 'retaining' for variables of retainable type.
3358   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3359     Invalid = true;
3360
3361   if (Invalid)
3362     New->setInvalidDecl();
3363   return New;
3364 }
3365
3366 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3367   const DeclSpec &DS = D.getDeclSpec();
3368   
3369   // We allow the "register" storage class on exception variables because
3370   // GCC did, but we drop it completely. Any other storage class is an error.
3371   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3372     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3373       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3374   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3375     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3376       << DeclSpec::getSpecifierName(SCS);
3377   }
3378   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3379     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3380          diag::err_invalid_thread)
3381      << DeclSpec::getSpecifierName(TSCS);
3382   D.getMutableDeclSpec().ClearStorageClassSpecs();
3383
3384   DiagnoseFunctionSpecifiers(D.getDeclSpec());
3385   
3386   // Check that there are no default arguments inside the type of this
3387   // exception object (C++ only).
3388   if (getLangOpts().CPlusPlus)
3389     CheckExtraCXXDefaultArguments(D);
3390   
3391   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3392   QualType ExceptionType = TInfo->getType();
3393
3394   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3395                                         D.getSourceRange().getBegin(),
3396                                         D.getIdentifierLoc(),
3397                                         D.getIdentifier(),
3398                                         D.isInvalidType());
3399   
3400   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3401   if (D.getCXXScopeSpec().isSet()) {
3402     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3403       << D.getCXXScopeSpec().getRange();
3404     New->setInvalidDecl();
3405   }
3406   
3407   // Add the parameter declaration into this scope.
3408   S->AddDecl(New);
3409   if (D.getIdentifier())
3410     IdResolver.AddDecl(New);
3411   
3412   ProcessDeclAttributes(S, New, D);
3413   
3414   if (New->hasAttr<BlocksAttr>())
3415     Diag(New->getLocation(), diag::err_block_on_nonlocal);
3416   return New;
3417 }
3418
3419 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3420 /// initialization.
3421 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3422                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3423   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 
3424        Iv= Iv->getNextIvar()) {
3425     QualType QT = Context.getBaseElementType(Iv->getType());
3426     if (QT->isRecordType())
3427       Ivars.push_back(Iv);
3428   }
3429 }
3430
3431 void Sema::DiagnoseUseOfUnimplementedSelectors() {
3432   // Load referenced selectors from the external source.
3433   if (ExternalSource) {
3434     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3435     ExternalSource->ReadReferencedSelectors(Sels);
3436     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3437       ReferencedSelectors[Sels[I].first] = Sels[I].second;
3438   }
3439   
3440   // Warning will be issued only when selector table is
3441   // generated (which means there is at lease one implementation
3442   // in the TU). This is to match gcc's behavior.
3443   if (ReferencedSelectors.empty() || 
3444       !Context.AnyObjCImplementation())
3445     return;
3446   for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 
3447         ReferencedSelectors.begin(),
3448        E = ReferencedSelectors.end(); S != E; ++S) {
3449     Selector Sel = (*S).first;
3450     if (!LookupImplementedMethodInGlobalPool(Sel))
3451       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3452   }
3453   return;
3454 }
3455
3456 ObjCIvarDecl *
3457 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
3458                                      const ObjCPropertyDecl *&PDecl) const {
3459   if (Method->isClassMethod())
3460     return nullptr;
3461   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
3462   if (!IDecl)
3463     return nullptr;
3464   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
3465                                /*shallowCategoryLookup=*/false,
3466                                /*followSuper=*/false);
3467   if (!Method || !Method->isPropertyAccessor())
3468     return nullptr;
3469   if ((PDecl = Method->findPropertyDecl()))
3470     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
3471       // property backing ivar must belong to property's class
3472       // or be a private ivar in class's implementation.
3473       // FIXME. fix the const-ness issue.
3474       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
3475                                                         IV->getIdentifier());
3476       return IV;
3477     }
3478   return nullptr;
3479 }
3480
3481 namespace {
3482   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
3483   /// accessor references the backing ivar.
3484   class UnusedBackingIvarChecker :
3485       public DataRecursiveASTVisitor<UnusedBackingIvarChecker> {
3486   public:
3487     Sema &S;
3488     const ObjCMethodDecl *Method;
3489     const ObjCIvarDecl *IvarD;
3490     bool AccessedIvar;
3491     bool InvokedSelfMethod;
3492
3493     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
3494                              const ObjCIvarDecl *IvarD)
3495       : S(S), Method(Method), IvarD(IvarD),
3496         AccessedIvar(false), InvokedSelfMethod(false) {
3497       assert(IvarD);
3498     }
3499
3500     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
3501       if (E->getDecl() == IvarD) {
3502         AccessedIvar = true;
3503         return false;
3504       }
3505       return true;
3506     }
3507
3508     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
3509       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
3510           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
3511         InvokedSelfMethod = true;
3512       }
3513       return true;
3514     }
3515   };
3516 }
3517
3518 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
3519                                           const ObjCImplementationDecl *ImplD) {
3520   if (S->hasUnrecoverableErrorOccurred())
3521     return;
3522
3523   for (const auto *CurMethod : ImplD->instance_methods()) {
3524     unsigned DIAG = diag::warn_unused_property_backing_ivar;
3525     SourceLocation Loc = CurMethod->getLocation();
3526     if (Diags.isIgnored(DIAG, Loc))
3527       continue;
3528
3529     const ObjCPropertyDecl *PDecl;
3530     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
3531     if (!IV)
3532       continue;
3533
3534     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
3535     Checker.TraverseStmt(CurMethod->getBody());
3536     if (Checker.AccessedIvar)
3537       continue;
3538
3539     // Do not issue this warning if backing ivar is used somewhere and accessor
3540     // implementation makes a self call. This is to prevent false positive in
3541     // cases where the ivar is accessed by another method that the accessor
3542     // delegates to.
3543     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
3544       Diag(Loc, DIAG) << IV;
3545       Diag(PDecl->getLocation(), diag::note_property_declare);
3546     }
3547   }
3548 }