]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaDeclObjC.cpp
Merge ACPICA 20120711.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaDeclObjC.cpp
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/ExternalSemaSource.h"
17 #include "clang/Sema/Scope.h"
18 #include "clang/Sema/ScopeInfo.h"
19 #include "clang/AST/ASTConsumer.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/ASTMutationListener.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Sema/DeclSpec.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "llvm/ADT/DenseSet.h"
29
30 using namespace clang;
31
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 ///   if non-null, check this as if making a call to it with the given
37 ///   receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 ///   actions were taken
41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                            QualType receiverTypeIfCall) {
43   if (method->isInvalidDecl()) return true;
44
45   // This castAs is safe: methods that don't return an object
46   // pointer won't be inferred as inits and will reject an explicit
47   // objc_method_family(init).
48
49   // We ignore protocols here.  Should we?  What about Class?
50
51   const ObjCObjectType *result = method->getResultType()
52     ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54   if (result->isObjCId()) {
55     return false;
56   } else if (result->isObjCClass()) {
57     // fall through: always an error
58   } else {
59     ObjCInterfaceDecl *resultClass = result->getInterface();
60     assert(resultClass && "unexpected object type!");
61
62     // It's okay for the result type to still be a forward declaration
63     // if we're checking an interface declaration.
64     if (!resultClass->hasDefinition()) {
65       if (receiverTypeIfCall.isNull() &&
66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
67         return false;
68
69     // Otherwise, we try to compare class types.
70     } else {
71       // If this method was declared in a protocol, we can't check
72       // anything unless we have a receiver type that's an interface.
73       const ObjCInterfaceDecl *receiverClass = 0;
74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75         if (receiverTypeIfCall.isNull())
76           return false;
77
78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79           ->getInterfaceDecl();
80
81         // This can be null for calls to e.g. id<Foo>.
82         if (!receiverClass) return false;
83       } else {
84         receiverClass = method->getClassInterface();
85         assert(receiverClass && "method not associated with a class!");
86       }
87
88       // If either class is a subclass of the other, it's fine.
89       if (receiverClass->isSuperClassOf(resultClass) ||
90           resultClass->isSuperClassOf(receiverClass))
91         return false;
92     }
93   }
94
95   SourceLocation loc = method->getLocation();
96
97   // If we're in a system header, and this is not a call, just make
98   // the method unusable.
99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100     method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                 "init method returns a type unrelated to its receiver type"));
102     return true;
103   }
104
105   // Otherwise, it's an error.
106   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107   method->setInvalidDecl();
108   return true;
109 }
110
111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 
112                                    const ObjCMethodDecl *Overridden,
113                                    bool IsImplementation) {
114   if (Overridden->hasRelatedResultType() && 
115       !NewMethod->hasRelatedResultType()) {
116     // This can only happen when the method follows a naming convention that
117     // implies a related result type, and the original (overridden) method has
118     // a suitable return type, but the new (overriding) method does not have
119     // a suitable return type.
120     QualType ResultType = NewMethod->getResultType();
121     SourceRange ResultTypeRange;
122     if (const TypeSourceInfo *ResultTypeInfo 
123                                         = NewMethod->getResultTypeSourceInfo())
124       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
125     
126     // Figure out which class this method is part of, if any.
127     ObjCInterfaceDecl *CurrentClass 
128       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
129     if (!CurrentClass) {
130       DeclContext *DC = NewMethod->getDeclContext();
131       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
132         CurrentClass = Cat->getClassInterface();
133       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
134         CurrentClass = Impl->getClassInterface();
135       else if (ObjCCategoryImplDecl *CatImpl
136                = dyn_cast<ObjCCategoryImplDecl>(DC))
137         CurrentClass = CatImpl->getClassInterface();
138     }
139     
140     if (CurrentClass) {
141       Diag(NewMethod->getLocation(), 
142            diag::warn_related_result_type_compatibility_class)
143         << Context.getObjCInterfaceType(CurrentClass)
144         << ResultType
145         << ResultTypeRange;
146     } else {
147       Diag(NewMethod->getLocation(), 
148            diag::warn_related_result_type_compatibility_protocol)
149         << ResultType
150         << ResultTypeRange;
151     }
152     
153     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
154       Diag(Overridden->getLocation(), 
155            diag::note_related_result_type_overridden_family)
156         << Family;
157     else
158       Diag(Overridden->getLocation(), 
159            diag::note_related_result_type_overridden);
160   }
161   if (getLangOpts().ObjCAutoRefCount) {
162     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164         Diag(NewMethod->getLocation(),
165              diag::err_nsreturns_retained_attribute_mismatch) << 1;
166         Diag(Overridden->getLocation(), diag::note_previous_decl) 
167         << "method";
168     }
169     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171         Diag(NewMethod->getLocation(),
172              diag::err_nsreturns_retained_attribute_mismatch) << 0;
173         Diag(Overridden->getLocation(), diag::note_previous_decl) 
174         << "method";
175     }
176     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
177     for (ObjCMethodDecl::param_iterator
178            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
179          ni != ne; ++ni, ++oi) {
180       const ParmVarDecl *oldDecl = (*oi);
181       ParmVarDecl *newDecl = (*ni);
182       if (newDecl->hasAttr<NSConsumedAttr>() != 
183           oldDecl->hasAttr<NSConsumedAttr>()) {
184         Diag(newDecl->getLocation(),
185              diag::err_nsconsumed_attribute_mismatch);
186         Diag(oldDecl->getLocation(), diag::note_previous_decl) 
187           << "parameter";
188       }
189     }
190   }
191 }
192
193 /// \brief Check a method declaration for compatibility with the Objective-C
194 /// ARC conventions.
195 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
196   ObjCMethodFamily family = method->getMethodFamily();
197   switch (family) {
198   case OMF_None:
199   case OMF_dealloc:
200   case OMF_finalize:
201   case OMF_retain:
202   case OMF_release:
203   case OMF_autorelease:
204   case OMF_retainCount:
205   case OMF_self:
206   case OMF_performSelector:
207     return false;
208
209   case OMF_init:
210     // If the method doesn't obey the init rules, don't bother annotating it.
211     if (S.checkInitMethod(method, QualType()))
212       return true;
213
214     method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
215                                                        S.Context));
216
217     // Don't add a second copy of this attribute, but otherwise don't
218     // let it be suppressed.
219     if (method->hasAttr<NSReturnsRetainedAttr>())
220       return false;
221     break;
222
223   case OMF_alloc:
224   case OMF_copy:
225   case OMF_mutableCopy:
226   case OMF_new:
227     if (method->hasAttr<NSReturnsRetainedAttr>() ||
228         method->hasAttr<NSReturnsNotRetainedAttr>() ||
229         method->hasAttr<NSReturnsAutoreleasedAttr>())
230       return false;
231     break;
232   }
233
234   method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
235                                                         S.Context));
236   return false;
237 }
238
239 static void DiagnoseObjCImplementedDeprecations(Sema &S,
240                                                 NamedDecl *ND,
241                                                 SourceLocation ImplLoc,
242                                                 int select) {
243   if (ND && ND->isDeprecated()) {
244     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
245     if (select == 0)
246       S.Diag(ND->getLocation(), diag::note_method_declared_at)
247         << ND->getDeclName();
248     else
249       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
250   }
251 }
252
253 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
254 /// pool.
255 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
256   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
257     
258   // If we don't have a valid method decl, simply return.
259   if (!MDecl)
260     return;
261   if (MDecl->isInstanceMethod())
262     AddInstanceMethodToGlobalPool(MDecl, true);
263   else
264     AddFactoryMethodToGlobalPool(MDecl, true);
265 }
266
267 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
268 /// and user declared, in the method definition's AST.
269 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
270   assert(getCurMethodDecl() == 0 && "Method parsing confused");
271   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
272
273   // If we don't have a valid method decl, simply return.
274   if (!MDecl)
275     return;
276
277   // Allow all of Sema to see that we are entering a method definition.
278   PushDeclContext(FnBodyScope, MDecl);
279   PushFunctionScope();
280   
281   // Create Decl objects for each parameter, entrring them in the scope for
282   // binding to their use.
283
284   // Insert the invisible arguments, self and _cmd!
285   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
286
287   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
288   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
289
290   // Introduce all of the other parameters into this scope.
291   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
292        E = MDecl->param_end(); PI != E; ++PI) {
293     ParmVarDecl *Param = (*PI);
294     if (!Param->isInvalidDecl() &&
295         RequireCompleteType(Param->getLocation(), Param->getType(),
296                             diag::err_typecheck_decl_incomplete_type))
297           Param->setInvalidDecl();
298     if ((*PI)->getIdentifier())
299       PushOnScopeChains(*PI, FnBodyScope);
300   }
301
302   // In ARC, disallow definition of retain/release/autorelease/retainCount
303   if (getLangOpts().ObjCAutoRefCount) {
304     switch (MDecl->getMethodFamily()) {
305     case OMF_retain:
306     case OMF_retainCount:
307     case OMF_release:
308     case OMF_autorelease:
309       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
310         << MDecl->getSelector();
311       break;
312
313     case OMF_None:
314     case OMF_dealloc:
315     case OMF_finalize:
316     case OMF_alloc:
317     case OMF_init:
318     case OMF_mutableCopy:
319     case OMF_copy:
320     case OMF_new:
321     case OMF_self:
322     case OMF_performSelector:
323       break;
324     }
325   }
326
327   // Warn on deprecated methods under -Wdeprecated-implementations,
328   // and prepare for warning on missing super calls.
329   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
330     if (ObjCMethodDecl *IMD = 
331           IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
332       DiagnoseObjCImplementedDeprecations(*this, 
333                                           dyn_cast<NamedDecl>(IMD), 
334                                           MDecl->getLocation(), 0);
335
336     // If this is "dealloc" or "finalize", set some bit here.
337     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
338     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
339     // Only do this if the current class actually has a superclass.
340     if (IC->getSuperClass()) {
341       ObjCShouldCallSuperDealloc = 
342         !(Context.getLangOpts().ObjCAutoRefCount ||
343           Context.getLangOpts().getGC() == LangOptions::GCOnly) &&
344         MDecl->getMethodFamily() == OMF_dealloc;
345       ObjCShouldCallSuperFinalize =
346         Context.getLangOpts().getGC() != LangOptions::NonGC &&
347         MDecl->getMethodFamily() == OMF_finalize;
348     }
349   }
350 }
351
352 namespace {
353
354 // Callback to only accept typo corrections that are Objective-C classes.
355 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
356 // function will reject corrections to that class.
357 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
358  public:
359   ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
360   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
361       : CurrentIDecl(IDecl) {}
362
363   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
364     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
365     return ID && !declaresSameEntity(ID, CurrentIDecl);
366   }
367
368  private:
369   ObjCInterfaceDecl *CurrentIDecl;
370 };
371
372 }
373
374 Decl *Sema::
375 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
376                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
377                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
378                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
379                          const SourceLocation *ProtoLocs, 
380                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
381   assert(ClassName && "Missing class identifier");
382
383   // Check for another declaration kind with the same name.
384   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
385                                          LookupOrdinaryName, ForRedeclaration);
386
387   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
388     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
389     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
390   }
391
392   // Create a declaration to describe this @interface.
393   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
394   ObjCInterfaceDecl *IDecl
395     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
396                                 PrevIDecl, ClassLoc);
397   
398   if (PrevIDecl) {
399     // Class already seen. Was it a definition?
400     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
401       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
402         << PrevIDecl->getDeclName();
403       Diag(Def->getLocation(), diag::note_previous_definition);
404       IDecl->setInvalidDecl();
405     }
406   }
407   
408   if (AttrList)
409     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
410   PushOnScopeChains(IDecl, TUScope);
411
412   // Start the definition of this class. If we're in a redefinition case, there 
413   // may already be a definition, so we'll end up adding to it.
414   if (!IDecl->hasDefinition())
415     IDecl->startDefinition();
416   
417   if (SuperName) {
418     // Check if a different kind of symbol declared in this scope.
419     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
420                                 LookupOrdinaryName);
421
422     if (!PrevDecl) {
423       // Try to correct for a typo in the superclass name without correcting
424       // to the class we're defining.
425       ObjCInterfaceValidatorCCC Validator(IDecl);
426       if (TypoCorrection Corrected = CorrectTypo(
427           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
428           NULL, Validator)) {
429         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
430         Diag(SuperLoc, diag::err_undef_superclass_suggest)
431           << SuperName << ClassName << PrevDecl->getDeclName();
432         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
433           << PrevDecl->getDeclName();
434       }
435     }
436
437     if (declaresSameEntity(PrevDecl, IDecl)) {
438       Diag(SuperLoc, diag::err_recursive_superclass)
439         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
440       IDecl->setEndOfDefinitionLoc(ClassLoc);
441     } else {
442       ObjCInterfaceDecl *SuperClassDecl =
443                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
444
445       // Diagnose classes that inherit from deprecated classes.
446       if (SuperClassDecl)
447         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
448
449       if (PrevDecl && SuperClassDecl == 0) {
450         // The previous declaration was not a class decl. Check if we have a
451         // typedef. If we do, get the underlying class type.
452         if (const TypedefNameDecl *TDecl =
453               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
454           QualType T = TDecl->getUnderlyingType();
455           if (T->isObjCObjectType()) {
456             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
457               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
458           }
459         }
460
461         // This handles the following case:
462         //
463         // typedef int SuperClass;
464         // @interface MyClass : SuperClass {} @end
465         //
466         if (!SuperClassDecl) {
467           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
468           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
469         }
470       }
471
472       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
473         if (!SuperClassDecl)
474           Diag(SuperLoc, diag::err_undef_superclass)
475             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
476         else if (RequireCompleteType(SuperLoc, 
477                    Context.getObjCInterfaceType(SuperClassDecl),
478                    PDiag(diag::err_forward_superclass)
479                      << SuperClassDecl->getDeclName() 
480                      << ClassName
481                    << SourceRange(AtInterfaceLoc, ClassLoc))) {
482           SuperClassDecl = 0;
483         }
484       }
485       IDecl->setSuperClass(SuperClassDecl);
486       IDecl->setSuperClassLoc(SuperLoc);
487       IDecl->setEndOfDefinitionLoc(SuperLoc);
488     }
489   } else { // we have a root class.
490     IDecl->setEndOfDefinitionLoc(ClassLoc);
491   }
492
493   // Check then save referenced protocols.
494   if (NumProtoRefs) {
495     IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
496                            ProtoLocs, Context);
497     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
498   }
499
500   CheckObjCDeclScope(IDecl);
501   return ActOnObjCContainerStartDefinition(IDecl);
502 }
503
504 /// ActOnCompatiblityAlias - this action is called after complete parsing of
505 /// @compatibility_alias declaration. It sets up the alias relationships.
506 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
507                                         IdentifierInfo *AliasName,
508                                         SourceLocation AliasLocation,
509                                         IdentifierInfo *ClassName,
510                                         SourceLocation ClassLocation) {
511   // Look for previous declaration of alias name
512   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
513                                       LookupOrdinaryName, ForRedeclaration);
514   if (ADecl) {
515     if (isa<ObjCCompatibleAliasDecl>(ADecl))
516       Diag(AliasLocation, diag::warn_previous_alias_decl);
517     else
518       Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
519     Diag(ADecl->getLocation(), diag::note_previous_declaration);
520     return 0;
521   }
522   // Check for class declaration
523   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
524                                        LookupOrdinaryName, ForRedeclaration);
525   if (const TypedefNameDecl *TDecl =
526         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
527     QualType T = TDecl->getUnderlyingType();
528     if (T->isObjCObjectType()) {
529       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
530         ClassName = IDecl->getIdentifier();
531         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
532                                   LookupOrdinaryName, ForRedeclaration);
533       }
534     }
535   }
536   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
537   if (CDecl == 0) {
538     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
539     if (CDeclU)
540       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
541     return 0;
542   }
543
544   // Everything checked out, instantiate a new alias declaration AST.
545   ObjCCompatibleAliasDecl *AliasDecl =
546     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
547
548   if (!CheckObjCDeclScope(AliasDecl))
549     PushOnScopeChains(AliasDecl, TUScope);
550
551   return AliasDecl;
552 }
553
554 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
555   IdentifierInfo *PName,
556   SourceLocation &Ploc, SourceLocation PrevLoc,
557   const ObjCList<ObjCProtocolDecl> &PList) {
558   
559   bool res = false;
560   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
561        E = PList.end(); I != E; ++I) {
562     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
563                                                  Ploc)) {
564       if (PDecl->getIdentifier() == PName) {
565         Diag(Ploc, diag::err_protocol_has_circular_dependency);
566         Diag(PrevLoc, diag::note_previous_definition);
567         res = true;
568       }
569       
570       if (!PDecl->hasDefinition())
571         continue;
572       
573       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
574             PDecl->getLocation(), PDecl->getReferencedProtocols()))
575         res = true;
576     }
577   }
578   return res;
579 }
580
581 Decl *
582 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
583                                   IdentifierInfo *ProtocolName,
584                                   SourceLocation ProtocolLoc,
585                                   Decl * const *ProtoRefs,
586                                   unsigned NumProtoRefs,
587                                   const SourceLocation *ProtoLocs,
588                                   SourceLocation EndProtoLoc,
589                                   AttributeList *AttrList) {
590   bool err = false;
591   // FIXME: Deal with AttrList.
592   assert(ProtocolName && "Missing protocol identifier");
593   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
594                                               ForRedeclaration);
595   ObjCProtocolDecl *PDecl = 0;
596   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
597     // If we already have a definition, complain.
598     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
599     Diag(Def->getLocation(), diag::note_previous_definition);
600
601     // Create a new protocol that is completely distinct from previous
602     // declarations, and do not make this protocol available for name lookup.
603     // That way, we'll end up completely ignoring the duplicate.
604     // FIXME: Can we turn this into an error?
605     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
606                                      ProtocolLoc, AtProtoInterfaceLoc,
607                                      /*PrevDecl=*/0);
608     PDecl->startDefinition();
609   } else {
610     if (PrevDecl) {
611       // Check for circular dependencies among protocol declarations. This can
612       // only happen if this protocol was forward-declared.
613       ObjCList<ObjCProtocolDecl> PList;
614       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
615       err = CheckForwardProtocolDeclarationForCircularDependency(
616               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
617     }
618
619     // Create the new declaration.
620     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
621                                      ProtocolLoc, AtProtoInterfaceLoc,
622                                      /*PrevDecl=*/PrevDecl);
623     
624     PushOnScopeChains(PDecl, TUScope);
625     PDecl->startDefinition();
626   }
627   
628   if (AttrList)
629     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
630   
631   // Merge attributes from previous declarations.
632   if (PrevDecl)
633     mergeDeclAttributes(PDecl, PrevDecl);
634
635   if (!err && NumProtoRefs ) {
636     /// Check then save referenced protocols.
637     PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
638                            ProtoLocs, Context);
639   }
640
641   CheckObjCDeclScope(PDecl);
642   return ActOnObjCContainerStartDefinition(PDecl);
643 }
644
645 /// FindProtocolDeclaration - This routine looks up protocols and
646 /// issues an error if they are not declared. It returns list of
647 /// protocol declarations in its 'Protocols' argument.
648 void
649 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
650                               const IdentifierLocPair *ProtocolId,
651                               unsigned NumProtocols,
652                               SmallVectorImpl<Decl *> &Protocols) {
653   for (unsigned i = 0; i != NumProtocols; ++i) {
654     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
655                                              ProtocolId[i].second);
656     if (!PDecl) {
657       DeclFilterCCC<ObjCProtocolDecl> Validator;
658       TypoCorrection Corrected = CorrectTypo(
659           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
660           LookupObjCProtocolName, TUScope, NULL, Validator);
661       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
662         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
663           << ProtocolId[i].first << Corrected.getCorrection();
664         Diag(PDecl->getLocation(), diag::note_previous_decl)
665           << PDecl->getDeclName();
666       }
667     }
668
669     if (!PDecl) {
670       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
671         << ProtocolId[i].first;
672       continue;
673     }
674
675     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
676
677     // If this is a forward declaration and we are supposed to warn in this
678     // case, do it.
679     if (WarnOnDeclarations && !PDecl->hasDefinition())
680       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
681         << ProtocolId[i].first;
682     Protocols.push_back(PDecl);
683   }
684 }
685
686 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
687 /// a class method in its extension.
688 ///
689 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
690                                             ObjCInterfaceDecl *ID) {
691   if (!ID)
692     return;  // Possibly due to previous error
693
694   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
695   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
696        e =  ID->meth_end(); i != e; ++i) {
697     ObjCMethodDecl *MD = *i;
698     MethodMap[MD->getSelector()] = MD;
699   }
700
701   if (MethodMap.empty())
702     return;
703   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
704        e =  CAT->meth_end(); i != e; ++i) {
705     ObjCMethodDecl *Method = *i;
706     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
707     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
708       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
709             << Method->getDeclName();
710       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
711     }
712   }
713 }
714
715 /// ActOnForwardProtocolDeclaration - Handle @protocol foo;
716 Sema::DeclGroupPtrTy
717 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
718                                       const IdentifierLocPair *IdentList,
719                                       unsigned NumElts,
720                                       AttributeList *attrList) {
721   SmallVector<Decl *, 8> DeclsInGroup;
722   for (unsigned i = 0; i != NumElts; ++i) {
723     IdentifierInfo *Ident = IdentList[i].first;
724     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
725                                                 ForRedeclaration);
726     ObjCProtocolDecl *PDecl
727       = ObjCProtocolDecl::Create(Context, CurContext, Ident, 
728                                  IdentList[i].second, AtProtocolLoc,
729                                  PrevDecl);
730         
731     PushOnScopeChains(PDecl, TUScope);
732     CheckObjCDeclScope(PDecl);
733     
734     if (attrList)
735       ProcessDeclAttributeList(TUScope, PDecl, attrList);
736     
737     if (PrevDecl)
738       mergeDeclAttributes(PDecl, PrevDecl);
739
740     DeclsInGroup.push_back(PDecl);
741   }
742
743   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
744 }
745
746 Decl *Sema::
747 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
748                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
749                             IdentifierInfo *CategoryName,
750                             SourceLocation CategoryLoc,
751                             Decl * const *ProtoRefs,
752                             unsigned NumProtoRefs,
753                             const SourceLocation *ProtoLocs,
754                             SourceLocation EndProtoLoc) {
755   ObjCCategoryDecl *CDecl;
756   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
757
758   /// Check that class of this category is already completely declared.
759
760   if (!IDecl 
761       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
762                              PDiag(diag::err_category_forward_interface)
763                                << (CategoryName == 0))) {
764     // Create an invalid ObjCCategoryDecl to serve as context for
765     // the enclosing method declarations.  We mark the decl invalid
766     // to make it clear that this isn't a valid AST.
767     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
768                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
769     CDecl->setInvalidDecl();
770     CurContext->addDecl(CDecl);
771         
772     if (!IDecl)
773       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
774     return ActOnObjCContainerStartDefinition(CDecl);
775   }
776
777   if (!CategoryName && IDecl->getImplementation()) {
778     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
779     Diag(IDecl->getImplementation()->getLocation(), 
780           diag::note_implementation_declared);
781   }
782
783   if (CategoryName) {
784     /// Check for duplicate interface declaration for this category
785     ObjCCategoryDecl *CDeclChain;
786     for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
787          CDeclChain = CDeclChain->getNextClassCategory()) {
788       if (CDeclChain->getIdentifier() == CategoryName) {
789         // Class extensions can be declared multiple times.
790         Diag(CategoryLoc, diag::warn_dup_category_def)
791           << ClassName << CategoryName;
792         Diag(CDeclChain->getLocation(), diag::note_previous_definition);
793         break;
794       }
795     }
796   }
797
798   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
799                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
800   // FIXME: PushOnScopeChains?
801   CurContext->addDecl(CDecl);
802
803   if (NumProtoRefs) {
804     CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 
805                            ProtoLocs, Context);
806     // Protocols in the class extension belong to the class.
807     if (CDecl->IsClassExtension())
808      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 
809                                             NumProtoRefs, Context); 
810   }
811
812   CheckObjCDeclScope(CDecl);
813   return ActOnObjCContainerStartDefinition(CDecl);
814 }
815
816 /// ActOnStartCategoryImplementation - Perform semantic checks on the
817 /// category implementation declaration and build an ObjCCategoryImplDecl
818 /// object.
819 Decl *Sema::ActOnStartCategoryImplementation(
820                       SourceLocation AtCatImplLoc,
821                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
822                       IdentifierInfo *CatName, SourceLocation CatLoc) {
823   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
824   ObjCCategoryDecl *CatIDecl = 0;
825   if (IDecl && IDecl->hasDefinition()) {
826     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
827     if (!CatIDecl) {
828       // Category @implementation with no corresponding @interface.
829       // Create and install one.
830       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
831                                           ClassLoc, CatLoc,
832                                           CatName, IDecl);
833       CatIDecl->setImplicit();
834     }
835   }
836
837   ObjCCategoryImplDecl *CDecl =
838     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
839                                  ClassLoc, AtCatImplLoc, CatLoc);
840   /// Check that class of this category is already completely declared.
841   if (!IDecl) {
842     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
843     CDecl->setInvalidDecl();
844   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
845                                  diag::err_undef_interface)) {
846     CDecl->setInvalidDecl();
847   }
848
849   // FIXME: PushOnScopeChains?
850   CurContext->addDecl(CDecl);
851
852   // If the interface is deprecated/unavailable, warn/error about it.
853   if (IDecl)
854     DiagnoseUseOfDecl(IDecl, ClassLoc);
855
856   /// Check that CatName, category name, is not used in another implementation.
857   if (CatIDecl) {
858     if (CatIDecl->getImplementation()) {
859       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
860         << CatName;
861       Diag(CatIDecl->getImplementation()->getLocation(),
862            diag::note_previous_definition);
863     } else {
864       CatIDecl->setImplementation(CDecl);
865       // Warn on implementating category of deprecated class under 
866       // -Wdeprecated-implementations flag.
867       DiagnoseObjCImplementedDeprecations(*this, 
868                                           dyn_cast<NamedDecl>(IDecl), 
869                                           CDecl->getLocation(), 2);
870     }
871   }
872
873   CheckObjCDeclScope(CDecl);
874   return ActOnObjCContainerStartDefinition(CDecl);
875 }
876
877 Decl *Sema::ActOnStartClassImplementation(
878                       SourceLocation AtClassImplLoc,
879                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
880                       IdentifierInfo *SuperClassname,
881                       SourceLocation SuperClassLoc) {
882   ObjCInterfaceDecl* IDecl = 0;
883   // Check for another declaration kind with the same name.
884   NamedDecl *PrevDecl
885     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
886                        ForRedeclaration);
887   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
888     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
889     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
890   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
891     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
892                         diag::warn_undef_interface);
893   } else {
894     // We did not find anything with the name ClassName; try to correct for 
895     // typos in the class name.
896     ObjCInterfaceValidatorCCC Validator;
897     if (TypoCorrection Corrected = CorrectTypo(
898         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
899         NULL, Validator)) {
900       // Suggest the (potentially) correct interface name. However, put the
901       // fix-it hint itself in a separate note, since changing the name in 
902       // the warning would make the fix-it change semantics.However, don't
903       // provide a code-modification hint or use the typo name for recovery,
904       // because this is just a warning. The program may actually be correct.
905       IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
906       DeclarationName CorrectedName = Corrected.getCorrection();
907       Diag(ClassLoc, diag::warn_undef_interface_suggest)
908         << ClassName << CorrectedName;
909       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
910         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
911       IDecl = 0;
912     } else {
913       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
914     }
915   }
916
917   // Check that super class name is valid class name
918   ObjCInterfaceDecl* SDecl = 0;
919   if (SuperClassname) {
920     // Check if a different kind of symbol declared in this scope.
921     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
922                                 LookupOrdinaryName);
923     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
924       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
925         << SuperClassname;
926       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
927     } else {
928       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
929       if (SDecl && !SDecl->hasDefinition())
930         SDecl = 0;
931       if (!SDecl)
932         Diag(SuperClassLoc, diag::err_undef_superclass)
933           << SuperClassname << ClassName;
934       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
935         // This implementation and its interface do not have the same
936         // super class.
937         Diag(SuperClassLoc, diag::err_conflicting_super_class)
938           << SDecl->getDeclName();
939         Diag(SDecl->getLocation(), diag::note_previous_definition);
940       }
941     }
942   }
943
944   if (!IDecl) {
945     // Legacy case of @implementation with no corresponding @interface.
946     // Build, chain & install the interface decl into the identifier.
947
948     // FIXME: Do we support attributes on the @implementation? If so we should
949     // copy them over.
950     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
951                                       ClassName, /*PrevDecl=*/0, ClassLoc, 
952                                       true);
953     IDecl->startDefinition();
954     if (SDecl) {
955       IDecl->setSuperClass(SDecl);
956       IDecl->setSuperClassLoc(SuperClassLoc);
957       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
958     } else {
959       IDecl->setEndOfDefinitionLoc(ClassLoc);
960     }
961     
962     PushOnScopeChains(IDecl, TUScope);
963   } else {
964     // Mark the interface as being completed, even if it was just as
965     //   @class ....;
966     // declaration; the user cannot reopen it.
967     if (!IDecl->hasDefinition())
968       IDecl->startDefinition();
969   }
970
971   ObjCImplementationDecl* IMPDecl =
972     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
973                                    ClassLoc, AtClassImplLoc);
974
975   if (CheckObjCDeclScope(IMPDecl))
976     return ActOnObjCContainerStartDefinition(IMPDecl);
977
978   // Check that there is no duplicate implementation of this class.
979   if (IDecl->getImplementation()) {
980     // FIXME: Don't leak everything!
981     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
982     Diag(IDecl->getImplementation()->getLocation(),
983          diag::note_previous_definition);
984   } else { // add it to the list.
985     IDecl->setImplementation(IMPDecl);
986     PushOnScopeChains(IMPDecl, TUScope);
987     // Warn on implementating deprecated class under 
988     // -Wdeprecated-implementations flag.
989     DiagnoseObjCImplementedDeprecations(*this, 
990                                         dyn_cast<NamedDecl>(IDecl), 
991                                         IMPDecl->getLocation(), 1);
992   }
993   return ActOnObjCContainerStartDefinition(IMPDecl);
994 }
995
996 Sema::DeclGroupPtrTy
997 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
998   SmallVector<Decl *, 64> DeclsInGroup;
999   DeclsInGroup.reserve(Decls.size() + 1);
1000
1001   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1002     Decl *Dcl = Decls[i];
1003     if (!Dcl)
1004       continue;
1005     if (Dcl->getDeclContext()->isFileContext())
1006       Dcl->setTopLevelDeclInObjCContainer();
1007     DeclsInGroup.push_back(Dcl);
1008   }
1009
1010   DeclsInGroup.push_back(ObjCImpDecl);
1011
1012   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1013 }
1014
1015 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1016                                     ObjCIvarDecl **ivars, unsigned numIvars,
1017                                     SourceLocation RBrace) {
1018   assert(ImpDecl && "missing implementation decl");
1019   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1020   if (!IDecl)
1021     return;
1022   /// Check case of non-existing @interface decl.
1023   /// (legacy objective-c @implementation decl without an @interface decl).
1024   /// Add implementations's ivar to the synthesize class's ivar list.
1025   if (IDecl->isImplicitInterfaceDecl()) {
1026     IDecl->setEndOfDefinitionLoc(RBrace);
1027     // Add ivar's to class's DeclContext.
1028     for (unsigned i = 0, e = numIvars; i != e; ++i) {
1029       ivars[i]->setLexicalDeclContext(ImpDecl);
1030       IDecl->makeDeclVisibleInContext(ivars[i]);
1031       ImpDecl->addDecl(ivars[i]);
1032     }
1033     
1034     return;
1035   }
1036   // If implementation has empty ivar list, just return.
1037   if (numIvars == 0)
1038     return;
1039
1040   assert(ivars && "missing @implementation ivars");
1041   if (LangOpts.ObjCNonFragileABI2) {
1042     if (ImpDecl->getSuperClass())
1043       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1044     for (unsigned i = 0; i < numIvars; i++) {
1045       ObjCIvarDecl* ImplIvar = ivars[i];
1046       if (const ObjCIvarDecl *ClsIvar = 
1047             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1048         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 
1049         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1050         continue;
1051       }
1052       // Instance ivar to Implementation's DeclContext.
1053       ImplIvar->setLexicalDeclContext(ImpDecl);
1054       IDecl->makeDeclVisibleInContext(ImplIvar);
1055       ImpDecl->addDecl(ImplIvar);
1056     }
1057     return;
1058   }
1059   // Check interface's Ivar list against those in the implementation.
1060   // names and types must match.
1061   //
1062   unsigned j = 0;
1063   ObjCInterfaceDecl::ivar_iterator
1064     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1065   for (; numIvars > 0 && IVI != IVE; ++IVI) {
1066     ObjCIvarDecl* ImplIvar = ivars[j++];
1067     ObjCIvarDecl* ClsIvar = *IVI;
1068     assert (ImplIvar && "missing implementation ivar");
1069     assert (ClsIvar && "missing class ivar");
1070
1071     // First, make sure the types match.
1072     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1073       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1074         << ImplIvar->getIdentifier()
1075         << ImplIvar->getType() << ClsIvar->getType();
1076       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1077     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1078                ImplIvar->getBitWidthValue(Context) !=
1079                ClsIvar->getBitWidthValue(Context)) {
1080       Diag(ImplIvar->getBitWidth()->getLocStart(),
1081            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1082       Diag(ClsIvar->getBitWidth()->getLocStart(),
1083            diag::note_previous_definition);
1084     }
1085     // Make sure the names are identical.
1086     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1087       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1088         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1089       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1090     }
1091     --numIvars;
1092   }
1093
1094   if (numIvars > 0)
1095     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1096   else if (IVI != IVE)
1097     Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
1098 }
1099
1100 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1101                                bool &IncompleteImpl, unsigned DiagID) {
1102   // No point warning no definition of method which is 'unavailable'.
1103   if (method->hasAttr<UnavailableAttr>())
1104     return;
1105   if (!IncompleteImpl) {
1106     Diag(ImpLoc, diag::warn_incomplete_impl);
1107     IncompleteImpl = true;
1108   }
1109   if (DiagID == diag::warn_unimplemented_protocol_method)
1110     Diag(ImpLoc, DiagID) << method->getDeclName();
1111   else
1112     Diag(method->getLocation(), DiagID) << method->getDeclName();
1113 }
1114
1115 /// Determines if type B can be substituted for type A.  Returns true if we can
1116 /// guarantee that anything that the user will do to an object of type A can 
1117 /// also be done to an object of type B.  This is trivially true if the two 
1118 /// types are the same, or if B is a subclass of A.  It becomes more complex
1119 /// in cases where protocols are involved.
1120 ///
1121 /// Object types in Objective-C describe the minimum requirements for an
1122 /// object, rather than providing a complete description of a type.  For
1123 /// example, if A is a subclass of B, then B* may refer to an instance of A.
1124 /// The principle of substitutability means that we may use an instance of A
1125 /// anywhere that we may use an instance of B - it will implement all of the
1126 /// ivars of B and all of the methods of B.  
1127 ///
1128 /// This substitutability is important when type checking methods, because 
1129 /// the implementation may have stricter type definitions than the interface.
1130 /// The interface specifies minimum requirements, but the implementation may
1131 /// have more accurate ones.  For example, a method may privately accept 
1132 /// instances of B, but only publish that it accepts instances of A.  Any
1133 /// object passed to it will be type checked against B, and so will implicitly
1134 /// by a valid A*.  Similarly, a method may return a subclass of the class that
1135 /// it is declared as returning.
1136 ///
1137 /// This is most important when considering subclassing.  A method in a
1138 /// subclass must accept any object as an argument that its superclass's
1139 /// implementation accepts.  It may, however, accept a more general type
1140 /// without breaking substitutability (i.e. you can still use the subclass
1141 /// anywhere that you can use the superclass, but not vice versa).  The
1142 /// converse requirement applies to return types: the return type for a
1143 /// subclass method must be a valid object of the kind that the superclass
1144 /// advertises, but it may be specified more accurately.  This avoids the need
1145 /// for explicit down-casting by callers.
1146 ///
1147 /// Note: This is a stricter requirement than for assignment.  
1148 static bool isObjCTypeSubstitutable(ASTContext &Context,
1149                                     const ObjCObjectPointerType *A,
1150                                     const ObjCObjectPointerType *B,
1151                                     bool rejectId) {
1152   // Reject a protocol-unqualified id.
1153   if (rejectId && B->isObjCIdType()) return false;
1154
1155   // If B is a qualified id, then A must also be a qualified id and it must
1156   // implement all of the protocols in B.  It may not be a qualified class.
1157   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1158   // stricter definition so it is not substitutable for id<A>.
1159   if (B->isObjCQualifiedIdType()) {
1160     return A->isObjCQualifiedIdType() &&
1161            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1162                                                      QualType(B,0),
1163                                                      false);
1164   }
1165
1166   /*
1167   // id is a special type that bypasses type checking completely.  We want a
1168   // warning when it is used in one place but not another.
1169   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1170
1171
1172   // If B is a qualified id, then A must also be a qualified id (which it isn't
1173   // if we've got this far)
1174   if (B->isObjCQualifiedIdType()) return false;
1175   */
1176
1177   // Now we know that A and B are (potentially-qualified) class types.  The
1178   // normal rules for assignment apply.
1179   return Context.canAssignObjCInterfaces(A, B);
1180 }
1181
1182 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1183   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1184 }
1185
1186 static bool CheckMethodOverrideReturn(Sema &S,
1187                                       ObjCMethodDecl *MethodImpl,
1188                                       ObjCMethodDecl *MethodDecl,
1189                                       bool IsProtocolMethodDecl,
1190                                       bool IsOverridingMode,
1191                                       bool Warn) {
1192   if (IsProtocolMethodDecl &&
1193       (MethodDecl->getObjCDeclQualifier() !=
1194        MethodImpl->getObjCDeclQualifier())) {
1195     if (Warn) {
1196         S.Diag(MethodImpl->getLocation(), 
1197                (IsOverridingMode ? 
1198                  diag::warn_conflicting_overriding_ret_type_modifiers 
1199                  : diag::warn_conflicting_ret_type_modifiers))
1200           << MethodImpl->getDeclName()
1201           << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1202         S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1203           << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1204     }
1205     else
1206       return false;
1207   }
1208   
1209   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1210                                        MethodDecl->getResultType()))
1211     return true;
1212   if (!Warn)
1213     return false;
1214
1215   unsigned DiagID = 
1216     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 
1217                      : diag::warn_conflicting_ret_types;
1218
1219   // Mismatches between ObjC pointers go into a different warning
1220   // category, and sometimes they're even completely whitelisted.
1221   if (const ObjCObjectPointerType *ImplPtrTy =
1222         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1223     if (const ObjCObjectPointerType *IfacePtrTy =
1224           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1225       // Allow non-matching return types as long as they don't violate
1226       // the principle of substitutability.  Specifically, we permit
1227       // return types that are subclasses of the declared return type,
1228       // or that are more-qualified versions of the declared type.
1229       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1230         return false;
1231
1232       DiagID = 
1233         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 
1234                           : diag::warn_non_covariant_ret_types;
1235     }
1236   }
1237
1238   S.Diag(MethodImpl->getLocation(), DiagID)
1239     << MethodImpl->getDeclName()
1240     << MethodDecl->getResultType()
1241     << MethodImpl->getResultType()
1242     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1243   S.Diag(MethodDecl->getLocation(), 
1244          IsOverridingMode ? diag::note_previous_declaration 
1245                           : diag::note_previous_definition)
1246     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1247   return false;
1248 }
1249
1250 static bool CheckMethodOverrideParam(Sema &S,
1251                                      ObjCMethodDecl *MethodImpl,
1252                                      ObjCMethodDecl *MethodDecl,
1253                                      ParmVarDecl *ImplVar,
1254                                      ParmVarDecl *IfaceVar,
1255                                      bool IsProtocolMethodDecl,
1256                                      bool IsOverridingMode,
1257                                      bool Warn) {
1258   if (IsProtocolMethodDecl &&
1259       (ImplVar->getObjCDeclQualifier() !=
1260        IfaceVar->getObjCDeclQualifier())) {
1261     if (Warn) {
1262       if (IsOverridingMode)
1263         S.Diag(ImplVar->getLocation(), 
1264                diag::warn_conflicting_overriding_param_modifiers)
1265             << getTypeRange(ImplVar->getTypeSourceInfo())
1266             << MethodImpl->getDeclName();
1267       else S.Diag(ImplVar->getLocation(), 
1268              diag::warn_conflicting_param_modifiers)
1269           << getTypeRange(ImplVar->getTypeSourceInfo())
1270           << MethodImpl->getDeclName();
1271       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1272           << getTypeRange(IfaceVar->getTypeSourceInfo());   
1273     }
1274     else
1275       return false;
1276   }
1277       
1278   QualType ImplTy = ImplVar->getType();
1279   QualType IfaceTy = IfaceVar->getType();
1280   
1281   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1282     return true;
1283   
1284   if (!Warn)
1285     return false;
1286   unsigned DiagID = 
1287     IsOverridingMode ? diag::warn_conflicting_overriding_param_types 
1288                      : diag::warn_conflicting_param_types;
1289
1290   // Mismatches between ObjC pointers go into a different warning
1291   // category, and sometimes they're even completely whitelisted.
1292   if (const ObjCObjectPointerType *ImplPtrTy =
1293         ImplTy->getAs<ObjCObjectPointerType>()) {
1294     if (const ObjCObjectPointerType *IfacePtrTy =
1295           IfaceTy->getAs<ObjCObjectPointerType>()) {
1296       // Allow non-matching argument types as long as they don't
1297       // violate the principle of substitutability.  Specifically, the
1298       // implementation must accept any objects that the superclass
1299       // accepts, however it may also accept others.
1300       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1301         return false;
1302
1303       DiagID = 
1304       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 
1305                        :  diag::warn_non_contravariant_param_types;
1306     }
1307   }
1308
1309   S.Diag(ImplVar->getLocation(), DiagID)
1310     << getTypeRange(ImplVar->getTypeSourceInfo())
1311     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1312   S.Diag(IfaceVar->getLocation(), 
1313          (IsOverridingMode ? diag::note_previous_declaration 
1314                         : diag::note_previous_definition))
1315     << getTypeRange(IfaceVar->getTypeSourceInfo());
1316   return false;
1317 }
1318
1319 /// In ARC, check whether the conventional meanings of the two methods
1320 /// match.  If they don't, it's a hard error.
1321 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1322                                       ObjCMethodDecl *decl) {
1323   ObjCMethodFamily implFamily = impl->getMethodFamily();
1324   ObjCMethodFamily declFamily = decl->getMethodFamily();
1325   if (implFamily == declFamily) return false;
1326
1327   // Since conventions are sorted by selector, the only possibility is
1328   // that the types differ enough to cause one selector or the other
1329   // to fall out of the family.
1330   assert(implFamily == OMF_None || declFamily == OMF_None);
1331
1332   // No further diagnostics required on invalid declarations.
1333   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1334
1335   const ObjCMethodDecl *unmatched = impl;
1336   ObjCMethodFamily family = declFamily;
1337   unsigned errorID = diag::err_arc_lost_method_convention;
1338   unsigned noteID = diag::note_arc_lost_method_convention;
1339   if (declFamily == OMF_None) {
1340     unmatched = decl;
1341     family = implFamily;
1342     errorID = diag::err_arc_gained_method_convention;
1343     noteID = diag::note_arc_gained_method_convention;
1344   }
1345
1346   // Indexes into a %select clause in the diagnostic.
1347   enum FamilySelector {
1348     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1349   };
1350   FamilySelector familySelector = FamilySelector();
1351
1352   switch (family) {
1353   case OMF_None: llvm_unreachable("logic error, no method convention");
1354   case OMF_retain:
1355   case OMF_release:
1356   case OMF_autorelease:
1357   case OMF_dealloc:
1358   case OMF_finalize:
1359   case OMF_retainCount:
1360   case OMF_self:
1361   case OMF_performSelector:
1362     // Mismatches for these methods don't change ownership
1363     // conventions, so we don't care.
1364     return false;
1365
1366   case OMF_init: familySelector = F_init; break;
1367   case OMF_alloc: familySelector = F_alloc; break;
1368   case OMF_copy: familySelector = F_copy; break;
1369   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1370   case OMF_new: familySelector = F_new; break;
1371   }
1372
1373   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1374   ReasonSelector reasonSelector;
1375
1376   // The only reason these methods don't fall within their families is
1377   // due to unusual result types.
1378   if (unmatched->getResultType()->isObjCObjectPointerType()) {
1379     reasonSelector = R_UnrelatedReturn;
1380   } else {
1381     reasonSelector = R_NonObjectReturn;
1382   }
1383
1384   S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1385   S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1386
1387   return true;
1388 }
1389
1390 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1391                                        ObjCMethodDecl *MethodDecl,
1392                                        bool IsProtocolMethodDecl) {
1393   if (getLangOpts().ObjCAutoRefCount &&
1394       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1395     return;
1396
1397   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
1398                             IsProtocolMethodDecl, false, 
1399                             true);
1400
1401   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1402        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1403        IM != EM; ++IM, ++IF) {
1404     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1405                              IsProtocolMethodDecl, false, true);
1406   }
1407
1408   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1409     Diag(ImpMethodDecl->getLocation(), 
1410          diag::warn_conflicting_variadic);
1411     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1412   }
1413 }
1414
1415 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1416                                        ObjCMethodDecl *Overridden,
1417                                        bool IsProtocolMethodDecl) {
1418   
1419   CheckMethodOverrideReturn(*this, Method, Overridden, 
1420                             IsProtocolMethodDecl, true, 
1421                             true);
1422   
1423   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1424        IF = Overridden->param_begin(), EM = Method->param_end();
1425        IM != EM; ++IM, ++IF) {
1426     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1427                              IsProtocolMethodDecl, true, true);
1428   }
1429   
1430   if (Method->isVariadic() != Overridden->isVariadic()) {
1431     Diag(Method->getLocation(), 
1432          diag::warn_conflicting_overriding_variadic);
1433     Diag(Overridden->getLocation(), diag::note_previous_declaration);
1434   }
1435 }
1436
1437 /// WarnExactTypedMethods - This routine issues a warning if method
1438 /// implementation declaration matches exactly that of its declaration.
1439 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1440                                  ObjCMethodDecl *MethodDecl,
1441                                  bool IsProtocolMethodDecl) {
1442   // don't issue warning when protocol method is optional because primary
1443   // class is not required to implement it and it is safe for protocol
1444   // to implement it.
1445   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1446     return;
1447   // don't issue warning when primary class's method is 
1448   // depecated/unavailable.
1449   if (MethodDecl->hasAttr<UnavailableAttr>() ||
1450       MethodDecl->hasAttr<DeprecatedAttr>())
1451     return;
1452   
1453   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
1454                                       IsProtocolMethodDecl, false, false);
1455   if (match)
1456     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1457          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1458          IM != EM; ++IM, ++IF) {
1459       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 
1460                                        *IM, *IF,
1461                                        IsProtocolMethodDecl, false, false);
1462       if (!match)
1463         break;
1464     }
1465   if (match)
1466     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1467   if (match)
1468     match = !(MethodDecl->isClassMethod() &&
1469               MethodDecl->getSelector() == GetNullarySelector("load", Context));
1470   
1471   if (match) {
1472     Diag(ImpMethodDecl->getLocation(), 
1473          diag::warn_category_method_impl_match);
1474     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1475       << MethodDecl->getDeclName();
1476   }
1477 }
1478
1479 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1480 /// improve the efficiency of selector lookups and type checking by associating
1481 /// with each protocol / interface / category the flattened instance tables. If
1482 /// we used an immutable set to keep the table then it wouldn't add significant
1483 /// memory cost and it would be handy for lookups.
1484
1485 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
1486 /// Declared in protocol, and those referenced by it.
1487 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1488                                    ObjCProtocolDecl *PDecl,
1489                                    bool& IncompleteImpl,
1490                                    const llvm::DenseSet<Selector> &InsMap,
1491                                    const llvm::DenseSet<Selector> &ClsMap,
1492                                    ObjCContainerDecl *CDecl) {
1493   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1494   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 
1495                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
1496   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1497   
1498   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1499   ObjCInterfaceDecl *NSIDecl = 0;
1500   if (getLangOpts().NeXTRuntime) {
1501     // check to see if class implements forwardInvocation method and objects
1502     // of this class are derived from 'NSProxy' so that to forward requests
1503     // from one object to another.
1504     // Under such conditions, which means that every method possible is
1505     // implemented in the class, we should not issue "Method definition not
1506     // found" warnings.
1507     // FIXME: Use a general GetUnarySelector method for this.
1508     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1509     Selector fISelector = Context.Selectors.getSelector(1, &II);
1510     if (InsMap.count(fISelector))
1511       // Is IDecl derived from 'NSProxy'? If so, no instance methods
1512       // need be implemented in the implementation.
1513       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1514   }
1515
1516   // If a method lookup fails locally we still need to look and see if
1517   // the method was implemented by a base class or an inherited
1518   // protocol. This lookup is slow, but occurs rarely in correct code
1519   // and otherwise would terminate in a warning.
1520
1521   // check unimplemented instance methods.
1522   if (!NSIDecl)
1523     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1524          E = PDecl->instmeth_end(); I != E; ++I) {
1525       ObjCMethodDecl *method = *I;
1526       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1527           !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1528           (!Super ||
1529            !Super->lookupInstanceMethod(method->getSelector()))) {
1530             // If a method is not implemented in the category implementation but
1531             // has been declared in its primary class, superclass,
1532             // or in one of their protocols, no need to issue the warning. 
1533             // This is because method will be implemented in the primary class 
1534             // or one of its super class implementation.
1535             
1536             // Ugly, but necessary. Method declared in protcol might have
1537             // have been synthesized due to a property declared in the class which
1538             // uses the protocol.
1539             if (ObjCMethodDecl *MethodInClass =
1540                   IDecl->lookupInstanceMethod(method->getSelector(), 
1541                                               true /*shallowCategoryLookup*/))
1542               if (C || MethodInClass->isSynthesized())
1543                 continue;
1544             unsigned DIAG = diag::warn_unimplemented_protocol_method;
1545             if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1546                 != DiagnosticsEngine::Ignored) {
1547               WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1548               Diag(method->getLocation(), diag::note_method_declared_at)
1549                 << method->getDeclName();
1550               Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1551                 << PDecl->getDeclName();
1552             }
1553           }
1554     }
1555   // check unimplemented class methods
1556   for (ObjCProtocolDecl::classmeth_iterator
1557          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1558        I != E; ++I) {
1559     ObjCMethodDecl *method = *I;
1560     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1561         !ClsMap.count(method->getSelector()) &&
1562         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1563       // See above comment for instance method lookups.
1564       if (C && IDecl->lookupClassMethod(method->getSelector(), 
1565                                         true /*shallowCategoryLookup*/))
1566         continue;
1567       unsigned DIAG = diag::warn_unimplemented_protocol_method;
1568       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1569             DiagnosticsEngine::Ignored) {
1570         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1571         Diag(method->getLocation(), diag::note_method_declared_at)
1572           << method->getDeclName();
1573         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1574           PDecl->getDeclName();
1575       }
1576     }
1577   }
1578   // Check on this protocols's referenced protocols, recursively.
1579   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1580        E = PDecl->protocol_end(); PI != E; ++PI)
1581     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1582 }
1583
1584 /// MatchAllMethodDeclarations - Check methods declared in interface
1585 /// or protocol against those declared in their implementations.
1586 ///
1587 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1588                                       const llvm::DenseSet<Selector> &ClsMap,
1589                                       llvm::DenseSet<Selector> &InsMapSeen,
1590                                       llvm::DenseSet<Selector> &ClsMapSeen,
1591                                       ObjCImplDecl* IMPDecl,
1592                                       ObjCContainerDecl* CDecl,
1593                                       bool &IncompleteImpl,
1594                                       bool ImmediateClass,
1595                                       bool WarnCategoryMethodImpl) {
1596   // Check and see if instance methods in class interface have been
1597   // implemented in the implementation class. If so, their types match.
1598   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1599        E = CDecl->instmeth_end(); I != E; ++I) {
1600     if (InsMapSeen.count((*I)->getSelector()))
1601         continue;
1602     InsMapSeen.insert((*I)->getSelector());
1603     if (!(*I)->isSynthesized() &&
1604         !InsMap.count((*I)->getSelector())) {
1605       if (ImmediateClass)
1606         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1607                             diag::note_undef_method_impl);
1608       continue;
1609     } else {
1610       ObjCMethodDecl *ImpMethodDecl =
1611         IMPDecl->getInstanceMethod((*I)->getSelector());
1612       assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1613              "Expected to find the method through lookup as well");
1614       ObjCMethodDecl *MethodDecl = *I;
1615       // ImpMethodDecl may be null as in a @dynamic property.
1616       if (ImpMethodDecl) {
1617         if (!WarnCategoryMethodImpl)
1618           WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1619                                       isa<ObjCProtocolDecl>(CDecl));
1620         else if (!MethodDecl->isSynthesized())
1621           WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1622                                 isa<ObjCProtocolDecl>(CDecl));
1623       }
1624     }
1625   }
1626
1627   // Check and see if class methods in class interface have been
1628   // implemented in the implementation class. If so, their types match.
1629    for (ObjCInterfaceDecl::classmeth_iterator
1630        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1631      if (ClsMapSeen.count((*I)->getSelector()))
1632        continue;
1633      ClsMapSeen.insert((*I)->getSelector());
1634     if (!ClsMap.count((*I)->getSelector())) {
1635       if (ImmediateClass)
1636         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1637                             diag::note_undef_method_impl);
1638     } else {
1639       ObjCMethodDecl *ImpMethodDecl =
1640         IMPDecl->getClassMethod((*I)->getSelector());
1641       assert(CDecl->getClassMethod((*I)->getSelector()) &&
1642              "Expected to find the method through lookup as well");
1643       ObjCMethodDecl *MethodDecl = *I;
1644       if (!WarnCategoryMethodImpl)
1645         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 
1646                                     isa<ObjCProtocolDecl>(CDecl));
1647       else
1648         WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1649                               isa<ObjCProtocolDecl>(CDecl));
1650     }
1651   }
1652   
1653   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1654     // Also methods in class extensions need be looked at next.
1655     for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 
1656          ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1657       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1658                                  IMPDecl,
1659                                  const_cast<ObjCCategoryDecl *>(ClsExtDecl), 
1660                                  IncompleteImpl, false, 
1661                                  WarnCategoryMethodImpl);
1662     
1663     // Check for any implementation of a methods declared in protocol.
1664     for (ObjCInterfaceDecl::all_protocol_iterator
1665           PI = I->all_referenced_protocol_begin(),
1666           E = I->all_referenced_protocol_end(); PI != E; ++PI)
1667       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1668                                  IMPDecl,
1669                                  (*PI), IncompleteImpl, false, 
1670                                  WarnCategoryMethodImpl);
1671     
1672     // FIXME. For now, we are not checking for extact match of methods 
1673     // in category implementation and its primary class's super class. 
1674     if (!WarnCategoryMethodImpl && I->getSuperClass())
1675       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1676                                  IMPDecl,
1677                                  I->getSuperClass(), IncompleteImpl, false);
1678   }
1679 }
1680
1681 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1682 /// category matches with those implemented in its primary class and
1683 /// warns each time an exact match is found. 
1684 void Sema::CheckCategoryVsClassMethodMatches(
1685                                   ObjCCategoryImplDecl *CatIMPDecl) {
1686   llvm::DenseSet<Selector> InsMap, ClsMap;
1687   
1688   for (ObjCImplementationDecl::instmeth_iterator
1689        I = CatIMPDecl->instmeth_begin(), 
1690        E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1691     InsMap.insert((*I)->getSelector());
1692   
1693   for (ObjCImplementationDecl::classmeth_iterator
1694        I = CatIMPDecl->classmeth_begin(),
1695        E = CatIMPDecl->classmeth_end(); I != E; ++I)
1696     ClsMap.insert((*I)->getSelector());
1697   if (InsMap.empty() && ClsMap.empty())
1698     return;
1699   
1700   // Get category's primary class.
1701   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1702   if (!CatDecl)
1703     return;
1704   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1705   if (!IDecl)
1706     return;
1707   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1708   bool IncompleteImpl = false;
1709   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1710                              CatIMPDecl, IDecl,
1711                              IncompleteImpl, false, 
1712                              true /*WarnCategoryMethodImpl*/);
1713 }
1714
1715 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1716                                      ObjCContainerDecl* CDecl,
1717                                      bool IncompleteImpl) {
1718   llvm::DenseSet<Selector> InsMap;
1719   // Check and see if instance methods in class interface have been
1720   // implemented in the implementation class.
1721   for (ObjCImplementationDecl::instmeth_iterator
1722          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1723     InsMap.insert((*I)->getSelector());
1724
1725   // Check and see if properties declared in the interface have either 1)
1726   // an implementation or 2) there is a @synthesize/@dynamic implementation
1727   // of the property in the @implementation.
1728   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1729     if  (!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2) ||
1730       IDecl->isObjCRequiresPropertyDefs())
1731       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1732       
1733   llvm::DenseSet<Selector> ClsMap;
1734   for (ObjCImplementationDecl::classmeth_iterator
1735        I = IMPDecl->classmeth_begin(),
1736        E = IMPDecl->classmeth_end(); I != E; ++I)
1737     ClsMap.insert((*I)->getSelector());
1738
1739   // Check for type conflict of methods declared in a class/protocol and
1740   // its implementation; if any.
1741   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1742   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1743                              IMPDecl, CDecl,
1744                              IncompleteImpl, true);
1745   
1746   // check all methods implemented in category against those declared
1747   // in its primary class.
1748   if (ObjCCategoryImplDecl *CatDecl = 
1749         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1750     CheckCategoryVsClassMethodMatches(CatDecl);
1751
1752   // Check the protocol list for unimplemented methods in the @implementation
1753   // class.
1754   // Check and see if class methods in class interface have been
1755   // implemented in the implementation class.
1756
1757   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1758     for (ObjCInterfaceDecl::all_protocol_iterator
1759           PI = I->all_referenced_protocol_begin(),
1760           E = I->all_referenced_protocol_end(); PI != E; ++PI)
1761       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1762                               InsMap, ClsMap, I);
1763     // Check class extensions (unnamed categories)
1764     for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1765          Categories; Categories = Categories->getNextClassExtension())
1766       ImplMethodsVsClassMethods(S, IMPDecl, 
1767                                 const_cast<ObjCCategoryDecl*>(Categories), 
1768                                 IncompleteImpl);
1769   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1770     // For extended class, unimplemented methods in its protocols will
1771     // be reported in the primary class.
1772     if (!C->IsClassExtension()) {
1773       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1774            E = C->protocol_end(); PI != E; ++PI)
1775         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1776                                 InsMap, ClsMap, CDecl);
1777       // Report unimplemented properties in the category as well.
1778       // When reporting on missing setter/getters, do not report when
1779       // setter/getter is implemented in category's primary class 
1780       // implementation.
1781       if (ObjCInterfaceDecl *ID = C->getClassInterface())
1782         if (ObjCImplDecl *IMP = ID->getImplementation()) {
1783           for (ObjCImplementationDecl::instmeth_iterator
1784                I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1785             InsMap.insert((*I)->getSelector());
1786         }
1787       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);      
1788     } 
1789   } else
1790     llvm_unreachable("invalid ObjCContainerDecl type.");
1791 }
1792
1793 /// ActOnForwardClassDeclaration -
1794 Sema::DeclGroupPtrTy
1795 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1796                                    IdentifierInfo **IdentList,
1797                                    SourceLocation *IdentLocs,
1798                                    unsigned NumElts) {
1799   SmallVector<Decl *, 8> DeclsInGroup;
1800   for (unsigned i = 0; i != NumElts; ++i) {
1801     // Check for another declaration kind with the same name.
1802     NamedDecl *PrevDecl
1803       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 
1804                          LookupOrdinaryName, ForRedeclaration);
1805     if (PrevDecl && PrevDecl->isTemplateParameter()) {
1806       // Maybe we will complain about the shadowed template parameter.
1807       DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1808       // Just pretend that we didn't see the previous declaration.
1809       PrevDecl = 0;
1810     }
1811
1812     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1813       // GCC apparently allows the following idiom:
1814       //
1815       // typedef NSObject < XCElementTogglerP > XCElementToggler;
1816       // @class XCElementToggler;
1817       //
1818       // Here we have chosen to ignore the forward class declaration
1819       // with a warning. Since this is the implied behavior.
1820       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1821       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1822         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1823         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1824       } else {
1825         // a forward class declaration matching a typedef name of a class refers
1826         // to the underlying class. Just ignore the forward class with a warning
1827         // as this will force the intended behavior which is to lookup the typedef
1828         // name.
1829         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1830           Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1831           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1832           continue;
1833         }
1834       }
1835     }
1836     
1837     // Create a declaration to describe this forward declaration.
1838     ObjCInterfaceDecl *PrevIDecl
1839       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1840     ObjCInterfaceDecl *IDecl
1841       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1842                                   IdentList[i], PrevIDecl, IdentLocs[i]);
1843     IDecl->setAtEndRange(IdentLocs[i]);
1844     
1845     PushOnScopeChains(IDecl, TUScope);
1846     CheckObjCDeclScope(IDecl);
1847     DeclsInGroup.push_back(IDecl);
1848   }
1849   
1850   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1851 }
1852
1853 static bool tryMatchRecordTypes(ASTContext &Context,
1854                                 Sema::MethodMatchStrategy strategy,
1855                                 const Type *left, const Type *right);
1856
1857 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1858                        QualType leftQT, QualType rightQT) {
1859   const Type *left =
1860     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1861   const Type *right =
1862     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1863
1864   if (left == right) return true;
1865
1866   // If we're doing a strict match, the types have to match exactly.
1867   if (strategy == Sema::MMS_strict) return false;
1868
1869   if (left->isIncompleteType() || right->isIncompleteType()) return false;
1870
1871   // Otherwise, use this absurdly complicated algorithm to try to
1872   // validate the basic, low-level compatibility of the two types.
1873
1874   // As a minimum, require the sizes and alignments to match.
1875   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1876     return false;
1877
1878   // Consider all the kinds of non-dependent canonical types:
1879   // - functions and arrays aren't possible as return and parameter types
1880   
1881   // - vector types of equal size can be arbitrarily mixed
1882   if (isa<VectorType>(left)) return isa<VectorType>(right);
1883   if (isa<VectorType>(right)) return false;
1884
1885   // - references should only match references of identical type
1886   // - structs, unions, and Objective-C objects must match more-or-less
1887   //   exactly
1888   // - everything else should be a scalar
1889   if (!left->isScalarType() || !right->isScalarType())
1890     return tryMatchRecordTypes(Context, strategy, left, right);
1891
1892   // Make scalars agree in kind, except count bools as chars, and group
1893   // all non-member pointers together.
1894   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1895   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1896   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1897   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1898   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1899     leftSK = Type::STK_ObjCObjectPointer;
1900   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1901     rightSK = Type::STK_ObjCObjectPointer;
1902
1903   // Note that data member pointers and function member pointers don't
1904   // intermix because of the size differences.
1905
1906   return (leftSK == rightSK);
1907 }
1908
1909 static bool tryMatchRecordTypes(ASTContext &Context,
1910                                 Sema::MethodMatchStrategy strategy,
1911                                 const Type *lt, const Type *rt) {
1912   assert(lt && rt && lt != rt);
1913
1914   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1915   RecordDecl *left = cast<RecordType>(lt)->getDecl();
1916   RecordDecl *right = cast<RecordType>(rt)->getDecl();
1917
1918   // Require union-hood to match.
1919   if (left->isUnion() != right->isUnion()) return false;
1920
1921   // Require an exact match if either is non-POD.
1922   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1923       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1924     return false;
1925
1926   // Require size and alignment to match.
1927   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1928
1929   // Require fields to match.
1930   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1931   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1932   for (; li != le && ri != re; ++li, ++ri) {
1933     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1934       return false;
1935   }
1936   return (li == le && ri == re);
1937 }
1938
1939 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1940 /// returns true, or false, accordingly.
1941 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1942 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1943                                       const ObjCMethodDecl *right,
1944                                       MethodMatchStrategy strategy) {
1945   if (!matchTypes(Context, strategy,
1946                   left->getResultType(), right->getResultType()))
1947     return false;
1948
1949   if (getLangOpts().ObjCAutoRefCount &&
1950       (left->hasAttr<NSReturnsRetainedAttr>()
1951          != right->hasAttr<NSReturnsRetainedAttr>() ||
1952        left->hasAttr<NSConsumesSelfAttr>()
1953          != right->hasAttr<NSConsumesSelfAttr>()))
1954     return false;
1955
1956   ObjCMethodDecl::param_const_iterator
1957     li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
1958
1959   for (; li != le; ++li, ++ri) {
1960     assert(ri != right->param_end() && "Param mismatch");
1961     const ParmVarDecl *lparm = *li, *rparm = *ri;
1962
1963     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1964       return false;
1965
1966     if (getLangOpts().ObjCAutoRefCount &&
1967         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1968       return false;
1969   }
1970   return true;
1971 }
1972
1973 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
1974   // If the list is empty, make it a singleton list.
1975   if (List->Method == 0) {
1976     List->Method = Method;
1977     List->Next = 0;
1978     return;
1979   }
1980   
1981   // We've seen a method with this name, see if we have already seen this type
1982   // signature.
1983   ObjCMethodList *Previous = List;
1984   for (; List; Previous = List, List = List->Next) {
1985     if (!MatchTwoMethodDeclarations(Method, List->Method))
1986       continue;
1987     
1988     ObjCMethodDecl *PrevObjCMethod = List->Method;
1989
1990     // Propagate the 'defined' bit.
1991     if (Method->isDefined())
1992       PrevObjCMethod->setDefined(true);
1993     
1994     // If a method is deprecated, push it in the global pool.
1995     // This is used for better diagnostics.
1996     if (Method->isDeprecated()) {
1997       if (!PrevObjCMethod->isDeprecated())
1998         List->Method = Method;
1999     }
2000     // If new method is unavailable, push it into global pool
2001     // unless previous one is deprecated.
2002     if (Method->isUnavailable()) {
2003       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2004         List->Method = Method;
2005     }
2006     
2007     return;
2008   }
2009   
2010   // We have a new signature for an existing method - add it.
2011   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2012   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2013   Previous->Next = new (Mem) ObjCMethodList(Method, 0);
2014 }
2015
2016 /// \brief Read the contents of the method pool for a given selector from
2017 /// external storage.
2018 void Sema::ReadMethodPool(Selector Sel) {
2019   assert(ExternalSource && "We need an external AST source");
2020   ExternalSource->ReadMethodPool(Sel);
2021 }
2022
2023 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2024                                  bool instance) {
2025   // Ignore methods of invalid containers.
2026   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2027     return;
2028
2029   if (ExternalSource)
2030     ReadMethodPool(Method->getSelector());
2031   
2032   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2033   if (Pos == MethodPool.end())
2034     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2035                                            GlobalMethods())).first;
2036   
2037   Method->setDefined(impl);
2038   
2039   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2040   addMethodToGlobalList(&Entry, Method);
2041 }
2042
2043 /// Determines if this is an "acceptable" loose mismatch in the global
2044 /// method pool.  This exists mostly as a hack to get around certain
2045 /// global mismatches which we can't afford to make warnings / errors.
2046 /// Really, what we want is a way to take a method out of the global
2047 /// method pool.
2048 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2049                                        ObjCMethodDecl *other) {
2050   if (!chosen->isInstanceMethod())
2051     return false;
2052
2053   Selector sel = chosen->getSelector();
2054   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2055     return false;
2056
2057   // Don't complain about mismatches for -length if the method we
2058   // chose has an integral result type.
2059   return (chosen->getResultType()->isIntegerType());
2060 }
2061
2062 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2063                                                bool receiverIdOrClass,
2064                                                bool warn, bool instance) {
2065   if (ExternalSource)
2066     ReadMethodPool(Sel);
2067     
2068   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2069   if (Pos == MethodPool.end())
2070     return 0;
2071
2072   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2073
2074   if (warn && MethList.Method && MethList.Next) {
2075     bool issueDiagnostic = false, issueError = false;
2076
2077     // We support a warning which complains about *any* difference in
2078     // method signature.
2079     bool strictSelectorMatch =
2080       (receiverIdOrClass && warn &&
2081        (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2082                                  R.getBegin()) != 
2083       DiagnosticsEngine::Ignored));
2084     if (strictSelectorMatch)
2085       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2086         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2087                                         MMS_strict)) {
2088           issueDiagnostic = true;
2089           break;
2090         }
2091       }
2092
2093     // If we didn't see any strict differences, we won't see any loose
2094     // differences.  In ARC, however, we also need to check for loose
2095     // mismatches, because most of them are errors.
2096     if (!strictSelectorMatch ||
2097         (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2098       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2099         // This checks if the methods differ in type mismatch.
2100         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2101                                         MMS_loose) &&
2102             !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2103           issueDiagnostic = true;
2104           if (getLangOpts().ObjCAutoRefCount)
2105             issueError = true;
2106           break;
2107         }
2108       }
2109
2110     if (issueDiagnostic) {
2111       if (issueError)
2112         Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2113       else if (strictSelectorMatch)
2114         Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2115       else
2116         Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2117
2118       Diag(MethList.Method->getLocStart(), 
2119            issueError ? diag::note_possibility : diag::note_using)
2120         << MethList.Method->getSourceRange();
2121       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2122         Diag(Next->Method->getLocStart(), diag::note_also_found)
2123           << Next->Method->getSourceRange();
2124     }
2125   }
2126   return MethList.Method;
2127 }
2128
2129 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2130   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2131   if (Pos == MethodPool.end())
2132     return 0;
2133
2134   GlobalMethods &Methods = Pos->second;
2135
2136   if (Methods.first.Method && Methods.first.Method->isDefined())
2137     return Methods.first.Method;
2138   if (Methods.second.Method && Methods.second.Method->isDefined())
2139     return Methods.second.Method;
2140   return 0;
2141 }
2142
2143 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with
2144 /// identical selector names in current and its super classes and issues
2145 /// a warning if any of their argument types are incompatible.
2146 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
2147                                              ObjCMethodDecl *Method,
2148                                              bool IsInstance)  {
2149   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2150   if (ID == 0) return;
2151
2152   while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
2153     ObjCMethodDecl *SuperMethodDecl =
2154         SD->lookupMethod(Method->getSelector(), IsInstance);
2155     if (SuperMethodDecl == 0) {
2156       ID = SD;
2157       continue;
2158     }
2159     ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
2160       E = Method->param_end();
2161     ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
2162     for (; ParamI != E; ++ParamI, ++PrevI) {
2163       // Number of parameters are the same and is guaranteed by selector match.
2164       assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
2165       QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2166       QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2167       // If type of argument of method in this class does not match its
2168       // respective argument type in the super class method, issue warning;
2169       if (!Context.typesAreCompatible(T1, T2)) {
2170         Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2171           << T1 << T2;
2172         Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
2173         return;
2174       }
2175     }
2176     ID = SD;
2177   }
2178 }
2179
2180 /// DiagnoseDuplicateIvars - 
2181 /// Check for duplicate ivars in the entire class at the start of 
2182 /// @implementation. This becomes necesssary because class extension can
2183 /// add ivars to a class in random order which will not be known until
2184 /// class's @implementation is seen.
2185 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 
2186                                   ObjCInterfaceDecl *SID) {
2187   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2188        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2189     ObjCIvarDecl* Ivar = (*IVI);
2190     if (Ivar->isInvalidDecl())
2191       continue;
2192     if (IdentifierInfo *II = Ivar->getIdentifier()) {
2193       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2194       if (prevIvar) {
2195         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2196         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2197         Ivar->setInvalidDecl();
2198       }
2199     }
2200   }
2201 }
2202
2203 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2204   switch (CurContext->getDeclKind()) {
2205     case Decl::ObjCInterface:
2206       return Sema::OCK_Interface;
2207     case Decl::ObjCProtocol:
2208       return Sema::OCK_Protocol;
2209     case Decl::ObjCCategory:
2210       if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2211         return Sema::OCK_ClassExtension;
2212       else
2213         return Sema::OCK_Category;
2214     case Decl::ObjCImplementation:
2215       return Sema::OCK_Implementation;
2216     case Decl::ObjCCategoryImpl:
2217       return Sema::OCK_CategoryImplementation;
2218
2219     default:
2220       return Sema::OCK_None;
2221   }
2222 }
2223
2224 // Note: For class/category implemenations, allMethods/allProperties is
2225 // always null.
2226 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2227                        Decl **allMethods, unsigned allNum,
2228                        Decl **allProperties, unsigned pNum,
2229                        DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2230
2231   if (getObjCContainerKind() == Sema::OCK_None)
2232     return 0;
2233
2234   assert(AtEnd.isValid() && "Invalid location for '@end'");
2235
2236   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2237   Decl *ClassDecl = cast<Decl>(OCD);
2238   
2239   bool isInterfaceDeclKind =
2240         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2241          || isa<ObjCProtocolDecl>(ClassDecl);
2242   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2243
2244   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2245   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2246   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2247
2248   for (unsigned i = 0; i < allNum; i++ ) {
2249     ObjCMethodDecl *Method =
2250       cast_or_null<ObjCMethodDecl>(allMethods[i]);
2251
2252     if (!Method) continue;  // Already issued a diagnostic.
2253     if (Method->isInstanceMethod()) {
2254       /// Check for instance method of the same name with incompatible types
2255       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2256       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2257                               : false;
2258       if ((isInterfaceDeclKind && PrevMethod && !match)
2259           || (checkIdenticalMethods && match)) {
2260           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2261             << Method->getDeclName();
2262           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2263         Method->setInvalidDecl();
2264       } else {
2265         if (PrevMethod) {
2266           Method->setAsRedeclaration(PrevMethod);
2267           if (!Context.getSourceManager().isInSystemHeader(
2268                  Method->getLocation()))
2269             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2270               << Method->getDeclName();
2271           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2272         }
2273         InsMap[Method->getSelector()] = Method;
2274         /// The following allows us to typecheck messages to "id".
2275         AddInstanceMethodToGlobalPool(Method);
2276         // verify that the instance method conforms to the same definition of
2277         // parent methods if it shadows one.
2278         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
2279       }
2280     } else {
2281       /// Check for class method of the same name with incompatible types
2282       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2283       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2284                               : false;
2285       if ((isInterfaceDeclKind && PrevMethod && !match)
2286           || (checkIdenticalMethods && match)) {
2287         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2288           << Method->getDeclName();
2289         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2290         Method->setInvalidDecl();
2291       } else {
2292         if (PrevMethod) {
2293           Method->setAsRedeclaration(PrevMethod);
2294           if (!Context.getSourceManager().isInSystemHeader(
2295                  Method->getLocation()))
2296             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2297               << Method->getDeclName();
2298           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2299         }
2300         ClsMap[Method->getSelector()] = Method;
2301         /// The following allows us to typecheck messages to "Class".
2302         AddFactoryMethodToGlobalPool(Method);
2303         // verify that the class method conforms to the same definition of
2304         // parent methods if it shadows one.
2305         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
2306       }
2307     }
2308   }
2309   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2310     // Compares properties declared in this class to those of its
2311     // super class.
2312     ComparePropertiesInBaseAndSuper(I);
2313     CompareProperties(I, I);
2314   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2315     // Categories are used to extend the class by declaring new methods.
2316     // By the same token, they are also used to add new properties. No
2317     // need to compare the added property to those in the class.
2318
2319     // Compare protocol properties with those in category
2320     CompareProperties(C, C);
2321     if (C->IsClassExtension()) {
2322       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2323       DiagnoseClassExtensionDupMethods(C, CCPrimary);
2324     }
2325   }
2326   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2327     if (CDecl->getIdentifier())
2328       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2329       // user-defined setter/getter. It also synthesizes setter/getter methods
2330       // and adds them to the DeclContext and global method pools.
2331       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2332                                             E = CDecl->prop_end();
2333            I != E; ++I)
2334         ProcessPropertyDecl(*I, CDecl);
2335     CDecl->setAtEndRange(AtEnd);
2336   }
2337   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2338     IC->setAtEndRange(AtEnd);
2339     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2340       // Any property declared in a class extension might have user
2341       // declared setter or getter in current class extension or one
2342       // of the other class extensions. Mark them as synthesized as
2343       // property will be synthesized when property with same name is
2344       // seen in the @implementation.
2345       for (const ObjCCategoryDecl *ClsExtDecl =
2346            IDecl->getFirstClassExtension();
2347            ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2348         for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2349              E = ClsExtDecl->prop_end(); I != E; ++I) {
2350           ObjCPropertyDecl *Property = (*I);
2351           // Skip over properties declared @dynamic
2352           if (const ObjCPropertyImplDecl *PIDecl
2353               = IC->FindPropertyImplDecl(Property->getIdentifier()))
2354             if (PIDecl->getPropertyImplementation() 
2355                   == ObjCPropertyImplDecl::Dynamic)
2356               continue;
2357           
2358           for (const ObjCCategoryDecl *CExtDecl =
2359                IDecl->getFirstClassExtension();
2360                CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2361             if (ObjCMethodDecl *GetterMethod =
2362                 CExtDecl->getInstanceMethod(Property->getGetterName()))
2363               GetterMethod->setSynthesized(true);
2364             if (!Property->isReadOnly())
2365               if (ObjCMethodDecl *SetterMethod =
2366                   CExtDecl->getInstanceMethod(Property->getSetterName()))
2367                 SetterMethod->setSynthesized(true);
2368           }        
2369         }
2370       }
2371       ImplMethodsVsClassMethods(S, IC, IDecl);
2372       AtomicPropertySetterGetterRules(IC, IDecl);
2373       DiagnoseOwningPropertyGetterSynthesis(IC);
2374   
2375       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2376       if (IDecl->getSuperClass() == NULL) {
2377         // This class has no superclass, so check that it has been marked with
2378         // __attribute((objc_root_class)).
2379         if (!HasRootClassAttr) {
2380           SourceLocation DeclLoc(IDecl->getLocation());
2381           SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2382           Diag(DeclLoc, diag::warn_objc_root_class_missing)
2383             << IDecl->getIdentifier();
2384           // See if NSObject is in the current scope, and if it is, suggest
2385           // adding " : NSObject " to the class declaration.
2386           NamedDecl *IF = LookupSingleName(TUScope,
2387                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2388                                            DeclLoc, LookupOrdinaryName);
2389           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2390           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2391             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2392               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2393           } else {
2394             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2395           }
2396         }
2397       } else if (HasRootClassAttr) {
2398         // Complain that only root classes may have this attribute.
2399         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2400       }
2401
2402       if (LangOpts.ObjCNonFragileABI2) {
2403         while (IDecl->getSuperClass()) {
2404           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2405           IDecl = IDecl->getSuperClass();
2406         }
2407       }
2408     }
2409     SetIvarInitializers(IC);
2410   } else if (ObjCCategoryImplDecl* CatImplClass =
2411                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2412     CatImplClass->setAtEndRange(AtEnd);
2413
2414     // Find category interface decl and then check that all methods declared
2415     // in this interface are implemented in the category @implementation.
2416     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2417       for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2418            Categories; Categories = Categories->getNextClassCategory()) {
2419         if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2420           ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2421           break;
2422         }
2423       }
2424     }
2425   }
2426   if (isInterfaceDeclKind) {
2427     // Reject invalid vardecls.
2428     for (unsigned i = 0; i != tuvNum; i++) {
2429       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2430       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2431         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2432           if (!VDecl->hasExternalStorage())
2433             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2434         }
2435     }
2436   }
2437   ActOnObjCContainerFinishDefinition();
2438
2439   for (unsigned i = 0; i != tuvNum; i++) {
2440     DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2441     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2442       (*I)->setTopLevelDeclInObjCContainer();
2443     Consumer.HandleTopLevelDeclInObjCContainer(DG);
2444   }
2445
2446   return ClassDecl;
2447 }
2448
2449
2450 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2451 /// objective-c's type qualifier from the parser version of the same info.
2452 static Decl::ObjCDeclQualifier
2453 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2454   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2455 }
2456
2457 static inline
2458 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2459                                         const AttrVec &A) {
2460   // If method is only declared in implementation (private method),
2461   // No need to issue any diagnostics on method definition with attributes.
2462   if (!IMD)
2463     return false;
2464
2465   // method declared in interface has no attribute. 
2466   // But implementation has attributes. This is invalid
2467   if (!IMD->hasAttrs())
2468     return true;
2469
2470   const AttrVec &D = IMD->getAttrs();
2471   if (D.size() != A.size())
2472     return true;
2473
2474   // attributes on method declaration and definition must match exactly.
2475   // Note that we have at most a couple of attributes on methods, so this
2476   // n*n search is good enough.
2477   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2478     bool match = false;
2479     for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2480       if ((*i)->getKind() == (*i1)->getKind()) {
2481         match = true;
2482         break;
2483       }
2484     }
2485     if (!match)
2486       return true;
2487   }
2488   return false;
2489 }
2490
2491 namespace  {
2492   /// \brief Describes the compatibility of a result type with its method.
2493   enum ResultTypeCompatibilityKind {
2494     RTC_Compatible,
2495     RTC_Incompatible,
2496     RTC_Unknown
2497   };
2498 }
2499
2500 /// \brief Check whether the declared result type of the given Objective-C
2501 /// method declaration is compatible with the method's class.
2502 ///
2503 static ResultTypeCompatibilityKind 
2504 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2505                                     ObjCInterfaceDecl *CurrentClass) {
2506   QualType ResultType = Method->getResultType();
2507   
2508   // If an Objective-C method inherits its related result type, then its 
2509   // declared result type must be compatible with its own class type. The
2510   // declared result type is compatible if:
2511   if (const ObjCObjectPointerType *ResultObjectType
2512                                 = ResultType->getAs<ObjCObjectPointerType>()) {
2513     //   - it is id or qualified id, or
2514     if (ResultObjectType->isObjCIdType() ||
2515         ResultObjectType->isObjCQualifiedIdType())
2516       return RTC_Compatible;
2517   
2518     if (CurrentClass) {
2519       if (ObjCInterfaceDecl *ResultClass 
2520                                       = ResultObjectType->getInterfaceDecl()) {
2521         //   - it is the same as the method's class type, or
2522         if (declaresSameEntity(CurrentClass, ResultClass))
2523           return RTC_Compatible;
2524         
2525         //   - it is a superclass of the method's class type
2526         if (ResultClass->isSuperClassOf(CurrentClass))
2527           return RTC_Compatible;
2528       }      
2529     } else {
2530       // Any Objective-C pointer type might be acceptable for a protocol
2531       // method; we just don't know.
2532       return RTC_Unknown;
2533     }
2534   }
2535   
2536   return RTC_Incompatible;
2537 }
2538
2539 namespace {
2540 /// A helper class for searching for methods which a particular method
2541 /// overrides.
2542 class OverrideSearch {
2543 public:
2544   Sema &S;
2545   ObjCMethodDecl *Method;
2546   llvm::SmallPtrSet<ObjCContainerDecl*, 128> Searched;
2547   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2548   bool Recursive;
2549
2550 public:
2551   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2552     Selector selector = method->getSelector();
2553
2554     // Bypass this search if we've never seen an instance/class method
2555     // with this selector before.
2556     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2557     if (it == S.MethodPool.end()) {
2558       if (!S.ExternalSource) return;
2559       S.ReadMethodPool(selector);
2560       
2561       it = S.MethodPool.find(selector);
2562       if (it == S.MethodPool.end())
2563         return;
2564     }
2565     ObjCMethodList &list =
2566       method->isInstanceMethod() ? it->second.first : it->second.second;
2567     if (!list.Method) return;
2568
2569     ObjCContainerDecl *container
2570       = cast<ObjCContainerDecl>(method->getDeclContext());
2571
2572     // Prevent the search from reaching this container again.  This is
2573     // important with categories, which override methods from the
2574     // interface and each other.
2575     Searched.insert(container);
2576     searchFromContainer(container);
2577   }
2578
2579   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2580   iterator begin() const { return Overridden.begin(); }
2581   iterator end() const { return Overridden.end(); }
2582
2583 private:
2584   void searchFromContainer(ObjCContainerDecl *container) {
2585     if (container->isInvalidDecl()) return;
2586
2587     switch (container->getDeclKind()) {
2588 #define OBJCCONTAINER(type, base) \
2589     case Decl::type: \
2590       searchFrom(cast<type##Decl>(container)); \
2591       break;
2592 #define ABSTRACT_DECL(expansion)
2593 #define DECL(type, base) \
2594     case Decl::type:
2595 #include "clang/AST/DeclNodes.inc"
2596       llvm_unreachable("not an ObjC container!");
2597     }
2598   }
2599
2600   void searchFrom(ObjCProtocolDecl *protocol) {
2601     if (!protocol->hasDefinition())
2602       return;
2603     
2604     // A method in a protocol declaration overrides declarations from
2605     // referenced ("parent") protocols.
2606     search(protocol->getReferencedProtocols());
2607   }
2608
2609   void searchFrom(ObjCCategoryDecl *category) {
2610     // A method in a category declaration overrides declarations from
2611     // the main class and from protocols the category references.
2612     search(category->getClassInterface());
2613     search(category->getReferencedProtocols());
2614   }
2615
2616   void searchFrom(ObjCCategoryImplDecl *impl) {
2617     // A method in a category definition that has a category
2618     // declaration overrides declarations from the category
2619     // declaration.
2620     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2621       search(category);
2622
2623     // Otherwise it overrides declarations from the class.
2624     } else {
2625       search(impl->getClassInterface());
2626     }
2627   }
2628
2629   void searchFrom(ObjCInterfaceDecl *iface) {
2630     // A method in a class declaration overrides declarations from
2631     if (!iface->hasDefinition())
2632       return;
2633     
2634     //   - categories,
2635     for (ObjCCategoryDecl *category = iface->getCategoryList();
2636            category; category = category->getNextClassCategory())
2637       search(category);
2638
2639     //   - the super class, and
2640     if (ObjCInterfaceDecl *super = iface->getSuperClass())
2641       search(super);
2642
2643     //   - any referenced protocols.
2644     search(iface->getReferencedProtocols());
2645   }
2646
2647   void searchFrom(ObjCImplementationDecl *impl) {
2648     // A method in a class implementation overrides declarations from
2649     // the class interface.
2650     search(impl->getClassInterface());
2651   }
2652
2653
2654   void search(const ObjCProtocolList &protocols) {
2655     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2656          i != e; ++i)
2657       search(*i);
2658   }
2659
2660   void search(ObjCContainerDecl *container) {
2661     // Abort if we've already searched this container.
2662     if (!Searched.insert(container)) return;
2663
2664     // Check for a method in this container which matches this selector.
2665     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2666                                                 Method->isInstanceMethod());
2667
2668     // If we find one, record it and bail out.
2669     if (meth) {
2670       Overridden.insert(meth);
2671       return;
2672     }
2673
2674     // Otherwise, search for methods that a hypothetical method here
2675     // would have overridden.
2676
2677     // Note that we're now in a recursive case.
2678     Recursive = true;
2679
2680     searchFromContainer(container);
2681   }
2682 };
2683 }
2684
2685 Decl *Sema::ActOnMethodDeclaration(
2686     Scope *S,
2687     SourceLocation MethodLoc, SourceLocation EndLoc,
2688     tok::TokenKind MethodType, 
2689     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2690     ArrayRef<SourceLocation> SelectorLocs,
2691     Selector Sel,
2692     // optional arguments. The number of types/arguments is obtained
2693     // from the Sel.getNumArgs().
2694     ObjCArgInfo *ArgInfo,
2695     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2696     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2697     bool isVariadic, bool MethodDefinition) {
2698   // Make sure we can establish a context for the method.
2699   if (!CurContext->isObjCContainer()) {
2700     Diag(MethodLoc, diag::error_missing_method_context);
2701     return 0;
2702   }
2703   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2704   Decl *ClassDecl = cast<Decl>(OCD); 
2705   QualType resultDeclType;
2706
2707   bool HasRelatedResultType = false;
2708   TypeSourceInfo *ResultTInfo = 0;
2709   if (ReturnType) {
2710     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2711
2712     // Methods cannot return interface types. All ObjC objects are
2713     // passed by reference.
2714     if (resultDeclType->isObjCObjectType()) {
2715       Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2716         << 0 << resultDeclType;
2717       return 0;
2718     }    
2719     
2720     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2721   } else { // get the type for "id".
2722     resultDeclType = Context.getObjCIdType();
2723     Diag(MethodLoc, diag::warn_missing_method_return_type)
2724       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2725   }
2726
2727   ObjCMethodDecl* ObjCMethod =
2728     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2729                            resultDeclType,
2730                            ResultTInfo,
2731                            CurContext,
2732                            MethodType == tok::minus, isVariadic,
2733                            /*isSynthesized=*/false,
2734                            /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2735                            MethodDeclKind == tok::objc_optional 
2736                              ? ObjCMethodDecl::Optional
2737                              : ObjCMethodDecl::Required,
2738                            HasRelatedResultType);
2739
2740   SmallVector<ParmVarDecl*, 16> Params;
2741
2742   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2743     QualType ArgType;
2744     TypeSourceInfo *DI;
2745
2746     if (ArgInfo[i].Type == 0) {
2747       ArgType = Context.getObjCIdType();
2748       DI = 0;
2749     } else {
2750       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2751       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2752       ArgType = Context.getAdjustedParameterType(ArgType);
2753     }
2754
2755     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 
2756                    LookupOrdinaryName, ForRedeclaration);
2757     LookupName(R, S);
2758     if (R.isSingleResult()) {
2759       NamedDecl *PrevDecl = R.getFoundDecl();
2760       if (S->isDeclScope(PrevDecl)) {
2761         Diag(ArgInfo[i].NameLoc, 
2762              (MethodDefinition ? diag::warn_method_param_redefinition 
2763                                : diag::warn_method_param_declaration)) 
2764           << ArgInfo[i].Name;
2765         Diag(PrevDecl->getLocation(), 
2766              diag::note_previous_declaration);
2767       }
2768     }
2769
2770     SourceLocation StartLoc = DI
2771       ? DI->getTypeLoc().getBeginLoc()
2772       : ArgInfo[i].NameLoc;
2773
2774     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2775                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
2776                                         ArgType, DI, SC_None, SC_None);
2777
2778     Param->setObjCMethodScopeInfo(i);
2779
2780     Param->setObjCDeclQualifier(
2781       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2782
2783     // Apply the attributes to the parameter.
2784     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2785
2786     if (Param->hasAttr<BlocksAttr>()) {
2787       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
2788       Param->setInvalidDecl();
2789     }
2790     S->AddDecl(Param);
2791     IdResolver.AddDecl(Param);
2792
2793     Params.push_back(Param);
2794   }
2795   
2796   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2797     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2798     QualType ArgType = Param->getType();
2799     if (ArgType.isNull())
2800       ArgType = Context.getObjCIdType();
2801     else
2802       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2803       ArgType = Context.getAdjustedParameterType(ArgType);
2804     if (ArgType->isObjCObjectType()) {
2805       Diag(Param->getLocation(),
2806            diag::err_object_cannot_be_passed_returned_by_value)
2807       << 1 << ArgType;
2808       Param->setInvalidDecl();
2809     }
2810     Param->setDeclContext(ObjCMethod);
2811     
2812     Params.push_back(Param);
2813   }
2814   
2815   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2816   ObjCMethod->setObjCDeclQualifier(
2817     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2818
2819   if (AttrList)
2820     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2821
2822   // Add the method now.
2823   const ObjCMethodDecl *PrevMethod = 0;
2824   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2825     if (MethodType == tok::minus) {
2826       PrevMethod = ImpDecl->getInstanceMethod(Sel);
2827       ImpDecl->addInstanceMethod(ObjCMethod);
2828     } else {
2829       PrevMethod = ImpDecl->getClassMethod(Sel);
2830       ImpDecl->addClassMethod(ObjCMethod);
2831     }
2832
2833     ObjCMethodDecl *IMD = 0;
2834     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2835       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 
2836                                 ObjCMethod->isInstanceMethod());
2837     if (ObjCMethod->hasAttrs() &&
2838         containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
2839       SourceLocation MethodLoc = IMD->getLocation();
2840       if (!getSourceManager().isInSystemHeader(MethodLoc)) {
2841         Diag(EndLoc, diag::warn_attribute_method_def);
2842         Diag(MethodLoc, diag::note_method_declared_at)
2843           << ObjCMethod->getDeclName();
2844       }
2845     }
2846   } else {
2847     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2848   }
2849
2850   if (PrevMethod) {
2851     // You can never have two method definitions with the same name.
2852     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2853       << ObjCMethod->getDeclName();
2854     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2855   }
2856
2857   // If this Objective-C method does not have a related result type, but we
2858   // are allowed to infer related result types, try to do so based on the
2859   // method family.
2860   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2861   if (!CurrentClass) {
2862     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2863       CurrentClass = Cat->getClassInterface();
2864     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2865       CurrentClass = Impl->getClassInterface();
2866     else if (ObjCCategoryImplDecl *CatImpl
2867                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2868       CurrentClass = CatImpl->getClassInterface();
2869   }
2870
2871   ResultTypeCompatibilityKind RTC
2872     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2873
2874   // Search for overridden methods and merge information down from them.
2875   OverrideSearch overrides(*this, ObjCMethod);
2876   for (OverrideSearch::iterator
2877          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2878     ObjCMethodDecl *overridden = *i;
2879
2880     // Propagate down the 'related result type' bit from overridden methods.
2881     if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
2882       ObjCMethod->SetRelatedResultType();
2883
2884     // Then merge the declarations.
2885     mergeObjCMethodDecls(ObjCMethod, overridden);
2886     
2887     // Check for overriding methods
2888     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 
2889         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2890       CheckConflictingOverridingMethod(ObjCMethod, overridden,
2891               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2892   }
2893   
2894   bool ARCError = false;
2895   if (getLangOpts().ObjCAutoRefCount)
2896     ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2897
2898   // Infer the related result type when possible.
2899   if (!ARCError && RTC == RTC_Compatible &&
2900       !ObjCMethod->hasRelatedResultType() &&
2901       LangOpts.ObjCInferRelatedResultType) {
2902     bool InferRelatedResultType = false;
2903     switch (ObjCMethod->getMethodFamily()) {
2904     case OMF_None:
2905     case OMF_copy:
2906     case OMF_dealloc:
2907     case OMF_finalize:
2908     case OMF_mutableCopy:
2909     case OMF_release:
2910     case OMF_retainCount:
2911     case OMF_performSelector:
2912       break;
2913       
2914     case OMF_alloc:
2915     case OMF_new:
2916       InferRelatedResultType = ObjCMethod->isClassMethod();
2917       break;
2918         
2919     case OMF_init:
2920     case OMF_autorelease:
2921     case OMF_retain:
2922     case OMF_self:
2923       InferRelatedResultType = ObjCMethod->isInstanceMethod();
2924       break;
2925     }
2926     
2927     if (InferRelatedResultType)
2928       ObjCMethod->SetRelatedResultType();
2929   }
2930     
2931   return ObjCMethod;
2932 }
2933
2934 bool Sema::CheckObjCDeclScope(Decl *D) {
2935   // Following is also an error. But it is caused by a missing @end
2936   // and diagnostic is issued elsewhere.
2937   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
2938     return false;
2939
2940   // If we switched context to translation unit while we are still lexically in
2941   // an objc container, it means the parser missed emitting an error.
2942   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
2943     return false;
2944   
2945   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2946   D->setInvalidDecl();
2947
2948   return true;
2949 }
2950
2951 /// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2952 /// instance variables of ClassName into Decls.
2953 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2954                      IdentifierInfo *ClassName,
2955                      SmallVectorImpl<Decl*> &Decls) {
2956   // Check that ClassName is a valid class
2957   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2958   if (!Class) {
2959     Diag(DeclStart, diag::err_undef_interface) << ClassName;
2960     return;
2961   }
2962   if (LangOpts.ObjCNonFragileABI) {
2963     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2964     return;
2965   }
2966
2967   // Collect the instance variables
2968   SmallVector<const ObjCIvarDecl*, 32> Ivars;
2969   Context.DeepCollectObjCIvars(Class, true, Ivars);
2970   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2971   for (unsigned i = 0; i < Ivars.size(); i++) {
2972     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2973     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2974     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2975                                            /*FIXME: StartL=*/ID->getLocation(),
2976                                            ID->getLocation(),
2977                                            ID->getIdentifier(), ID->getType(),
2978                                            ID->getBitWidth());
2979     Decls.push_back(FD);
2980   }
2981
2982   // Introduce all of these fields into the appropriate scope.
2983   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
2984        D != Decls.end(); ++D) {
2985     FieldDecl *FD = cast<FieldDecl>(*D);
2986     if (getLangOpts().CPlusPlus)
2987       PushOnScopeChains(cast<FieldDecl>(FD), S);
2988     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
2989       Record->addDecl(FD);
2990   }
2991 }
2992
2993 /// \brief Build a type-check a new Objective-C exception variable declaration.
2994 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
2995                                       SourceLocation StartLoc,
2996                                       SourceLocation IdLoc,
2997                                       IdentifierInfo *Id,
2998                                       bool Invalid) {
2999   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
3000   // duration shall not be qualified by an address-space qualifier."
3001   // Since all parameters have automatic store duration, they can not have
3002   // an address space.
3003   if (T.getAddressSpace() != 0) {
3004     Diag(IdLoc, diag::err_arg_with_address_space);
3005     Invalid = true;
3006   }
3007   
3008   // An @catch parameter must be an unqualified object pointer type;
3009   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3010   if (Invalid) {
3011     // Don't do any further checking.
3012   } else if (T->isDependentType()) {
3013     // Okay: we don't know what this type will instantiate to.
3014   } else if (!T->isObjCObjectPointerType()) {
3015     Invalid = true;
3016     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3017   } else if (T->isObjCQualifiedIdType()) {
3018     Invalid = true;
3019     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3020   }
3021   
3022   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3023                                  T, TInfo, SC_None, SC_None);
3024   New->setExceptionVariable(true);
3025   
3026   // In ARC, infer 'retaining' for variables of retainable type.
3027   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3028     Invalid = true;
3029
3030   if (Invalid)
3031     New->setInvalidDecl();
3032   return New;
3033 }
3034
3035 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3036   const DeclSpec &DS = D.getDeclSpec();
3037   
3038   // We allow the "register" storage class on exception variables because
3039   // GCC did, but we drop it completely. Any other storage class is an error.
3040   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3041     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3042       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3043   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3044     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3045       << DS.getStorageClassSpec();
3046   }  
3047   if (D.getDeclSpec().isThreadSpecified())
3048     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3049   D.getMutableDeclSpec().ClearStorageClassSpecs();
3050
3051   DiagnoseFunctionSpecifiers(D);
3052   
3053   // Check that there are no default arguments inside the type of this
3054   // exception object (C++ only).
3055   if (getLangOpts().CPlusPlus)
3056     CheckExtraCXXDefaultArguments(D);
3057   
3058   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3059   QualType ExceptionType = TInfo->getType();
3060
3061   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3062                                         D.getSourceRange().getBegin(),
3063                                         D.getIdentifierLoc(),
3064                                         D.getIdentifier(),
3065                                         D.isInvalidType());
3066   
3067   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3068   if (D.getCXXScopeSpec().isSet()) {
3069     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3070       << D.getCXXScopeSpec().getRange();
3071     New->setInvalidDecl();
3072   }
3073   
3074   // Add the parameter declaration into this scope.
3075   S->AddDecl(New);
3076   if (D.getIdentifier())
3077     IdResolver.AddDecl(New);
3078   
3079   ProcessDeclAttributes(S, New, D);
3080   
3081   if (New->hasAttr<BlocksAttr>())
3082     Diag(New->getLocation(), diag::err_block_on_nonlocal);
3083   return New;
3084 }
3085
3086 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3087 /// initialization.
3088 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3089                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3090   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 
3091        Iv= Iv->getNextIvar()) {
3092     QualType QT = Context.getBaseElementType(Iv->getType());
3093     if (QT->isRecordType())
3094       Ivars.push_back(Iv);
3095   }
3096 }
3097
3098 void Sema::DiagnoseUseOfUnimplementedSelectors() {
3099   // Load referenced selectors from the external source.
3100   if (ExternalSource) {
3101     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3102     ExternalSource->ReadReferencedSelectors(Sels);
3103     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3104       ReferencedSelectors[Sels[I].first] = Sels[I].second;
3105   }
3106   
3107   // Warning will be issued only when selector table is
3108   // generated (which means there is at lease one implementation
3109   // in the TU). This is to match gcc's behavior.
3110   if (ReferencedSelectors.empty() || 
3111       !Context.AnyObjCImplementation())
3112     return;
3113   for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 
3114         ReferencedSelectors.begin(),
3115        E = ReferencedSelectors.end(); S != E; ++S) {
3116     Selector Sel = (*S).first;
3117     if (!LookupImplementedMethodInGlobalPool(Sel))
3118       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3119   }
3120   return;
3121 }