]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaExprCXX.cpp
Update llvm to trunk r256945.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaExprCXX.cpp
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43
44 /// \brief Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49                                               SourceLocation NameLoc,
50                                               IdentifierInfo &Name) {
51   NestedNameSpecifier *NNS = SS.getScopeRep();
52
53   // Convert the nested-name-specifier into a type.
54   QualType Type;
55   switch (NNS->getKind()) {
56   case NestedNameSpecifier::TypeSpec:
57   case NestedNameSpecifier::TypeSpecWithTemplate:
58     Type = QualType(NNS->getAsType(), 0);
59     break;
60
61   case NestedNameSpecifier::Identifier:
62     // Strip off the last layer of the nested-name-specifier and build a
63     // typename type for it.
64     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66                                         NNS->getAsIdentifier());
67     break;
68
69   case NestedNameSpecifier::Global:
70   case NestedNameSpecifier::Super:
71   case NestedNameSpecifier::Namespace:
72   case NestedNameSpecifier::NamespaceAlias:
73     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74   }
75
76   // This reference to the type is located entirely at the location of the
77   // final identifier in the qualified-id.
78   return CreateParsedType(Type,
79                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
80 }
81
82 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
83                                    IdentifierInfo &II,
84                                    SourceLocation NameLoc,
85                                    Scope *S, CXXScopeSpec &SS,
86                                    ParsedType ObjectTypePtr,
87                                    bool EnteringContext) {
88   // Determine where to perform name lookup.
89
90   // FIXME: This area of the standard is very messy, and the current
91   // wording is rather unclear about which scopes we search for the
92   // destructor name; see core issues 399 and 555. Issue 399 in
93   // particular shows where the current description of destructor name
94   // lookup is completely out of line with existing practice, e.g.,
95   // this appears to be ill-formed:
96   //
97   //   namespace N {
98   //     template <typename T> struct S {
99   //       ~S();
100   //     };
101   //   }
102   //
103   //   void f(N::S<int>* s) {
104   //     s->N::S<int>::~S();
105   //   }
106   //
107   // See also PR6358 and PR6359.
108   // For this reason, we're currently only doing the C++03 version of this
109   // code; the C++0x version has to wait until we get a proper spec.
110   QualType SearchType;
111   DeclContext *LookupCtx = nullptr;
112   bool isDependent = false;
113   bool LookInScope = false;
114
115   if (SS.isInvalid())
116     return ParsedType();
117
118   // If we have an object type, it's because we are in a
119   // pseudo-destructor-expression or a member access expression, and
120   // we know what type we're looking for.
121   if (ObjectTypePtr)
122     SearchType = GetTypeFromParser(ObjectTypePtr);
123
124   if (SS.isSet()) {
125     NestedNameSpecifier *NNS = SS.getScopeRep();
126
127     bool AlreadySearched = false;
128     bool LookAtPrefix = true;
129     // C++11 [basic.lookup.qual]p6:
130     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
131     //   the type-names are looked up as types in the scope designated by the
132     //   nested-name-specifier. Similarly, in a qualified-id of the form:
133     //
134     //     nested-name-specifier[opt] class-name :: ~ class-name
135     //
136     //   the second class-name is looked up in the same scope as the first.
137     //
138     // Here, we determine whether the code below is permitted to look at the
139     // prefix of the nested-name-specifier.
140     DeclContext *DC = computeDeclContext(SS, EnteringContext);
141     if (DC && DC->isFileContext()) {
142       AlreadySearched = true;
143       LookupCtx = DC;
144       isDependent = false;
145     } else if (DC && isa<CXXRecordDecl>(DC)) {
146       LookAtPrefix = false;
147       LookInScope = true;
148     }
149
150     // The second case from the C++03 rules quoted further above.
151     NestedNameSpecifier *Prefix = nullptr;
152     if (AlreadySearched) {
153       // Nothing left to do.
154     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
155       CXXScopeSpec PrefixSS;
156       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
157       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
158       isDependent = isDependentScopeSpecifier(PrefixSS);
159     } else if (ObjectTypePtr) {
160       LookupCtx = computeDeclContext(SearchType);
161       isDependent = SearchType->isDependentType();
162     } else {
163       LookupCtx = computeDeclContext(SS, EnteringContext);
164       isDependent = LookupCtx && LookupCtx->isDependentContext();
165     }
166   } else if (ObjectTypePtr) {
167     // C++ [basic.lookup.classref]p3:
168     //   If the unqualified-id is ~type-name, the type-name is looked up
169     //   in the context of the entire postfix-expression. If the type T
170     //   of the object expression is of a class type C, the type-name is
171     //   also looked up in the scope of class C. At least one of the
172     //   lookups shall find a name that refers to (possibly
173     //   cv-qualified) T.
174     LookupCtx = computeDeclContext(SearchType);
175     isDependent = SearchType->isDependentType();
176     assert((isDependent || !SearchType->isIncompleteType()) &&
177            "Caller should have completed object type");
178
179     LookInScope = true;
180   } else {
181     // Perform lookup into the current scope (only).
182     LookInScope = true;
183   }
184
185   TypeDecl *NonMatchingTypeDecl = nullptr;
186   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187   for (unsigned Step = 0; Step != 2; ++Step) {
188     // Look for the name first in the computed lookup context (if we
189     // have one) and, if that fails to find a match, in the scope (if
190     // we're allowed to look there).
191     Found.clear();
192     if (Step == 0 && LookupCtx)
193       LookupQualifiedName(Found, LookupCtx);
194     else if (Step == 1 && LookInScope && S)
195       LookupName(Found, S);
196     else
197       continue;
198
199     // FIXME: Should we be suppressing ambiguities here?
200     if (Found.isAmbiguous())
201       return ParsedType();
202
203     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204       QualType T = Context.getTypeDeclType(Type);
205       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
206
207       if (SearchType.isNull() || SearchType->isDependentType() ||
208           Context.hasSameUnqualifiedType(T, SearchType)) {
209         // We found our type!
210
211         return CreateParsedType(T,
212                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
213       }
214
215       if (!SearchType.isNull())
216         NonMatchingTypeDecl = Type;
217     }
218
219     // If the name that we found is a class template name, and it is
220     // the same name as the template name in the last part of the
221     // nested-name-specifier (if present) or the object type, then
222     // this is the destructor for that class.
223     // FIXME: This is a workaround until we get real drafting for core
224     // issue 399, for which there isn't even an obvious direction.
225     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
226       QualType MemberOfType;
227       if (SS.isSet()) {
228         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
229           // Figure out the type of the context, if it has one.
230           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
231             MemberOfType = Context.getTypeDeclType(Record);
232         }
233       }
234       if (MemberOfType.isNull())
235         MemberOfType = SearchType;
236
237       if (MemberOfType.isNull())
238         continue;
239
240       // We're referring into a class template specialization. If the
241       // class template we found is the same as the template being
242       // specialized, we found what we are looking for.
243       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
244         if (ClassTemplateSpecializationDecl *Spec
245               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
246           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
247                 Template->getCanonicalDecl())
248             return CreateParsedType(
249                 MemberOfType,
250                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
251         }
252
253         continue;
254       }
255
256       // We're referring to an unresolved class template
257       // specialization. Determine whether we class template we found
258       // is the same as the template being specialized or, if we don't
259       // know which template is being specialized, that it at least
260       // has the same name.
261       if (const TemplateSpecializationType *SpecType
262             = MemberOfType->getAs<TemplateSpecializationType>()) {
263         TemplateName SpecName = SpecType->getTemplateName();
264
265         // The class template we found is the same template being
266         // specialized.
267         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
268           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
269             return CreateParsedType(
270                 MemberOfType,
271                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
272
273           continue;
274         }
275
276         // The class template we found has the same name as the
277         // (dependent) template name being specialized.
278         if (DependentTemplateName *DepTemplate
279                                     = SpecName.getAsDependentTemplateName()) {
280           if (DepTemplate->isIdentifier() &&
281               DepTemplate->getIdentifier() == Template->getIdentifier())
282             return CreateParsedType(
283                 MemberOfType,
284                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
285
286           continue;
287         }
288       }
289     }
290   }
291
292   if (isDependent) {
293     // We didn't find our type, but that's okay: it's dependent
294     // anyway.
295     
296     // FIXME: What if we have no nested-name-specifier?
297     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
298                                    SS.getWithLocInContext(Context),
299                                    II, NameLoc);
300     return ParsedType::make(T);
301   }
302
303   if (NonMatchingTypeDecl) {
304     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
305     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
306       << T << SearchType;
307     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
308       << T;
309   } else if (ObjectTypePtr)
310     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
311       << &II;
312   else {
313     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
314                                           diag::err_destructor_class_name);
315     if (S) {
316       const DeclContext *Ctx = S->getEntity();
317       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
318         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
319                                                  Class->getNameAsString());
320     }
321   }
322
323   return ParsedType();
324 }
325
326 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
327     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
328       return ParsedType();
329     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype 
330            && "only get destructor types from declspecs");
331     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
332     QualType SearchType = GetTypeFromParser(ObjectType);
333     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
334       return ParsedType::make(T);
335     }
336       
337     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
338       << T << SearchType;
339     return ParsedType();
340 }
341
342 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
343                                   const UnqualifiedId &Name) {
344   assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
345
346   if (!SS.isValid())
347     return false;
348
349   switch (SS.getScopeRep()->getKind()) {
350   case NestedNameSpecifier::Identifier:
351   case NestedNameSpecifier::TypeSpec:
352   case NestedNameSpecifier::TypeSpecWithTemplate:
353     // Per C++11 [over.literal]p2, literal operators can only be declared at
354     // namespace scope. Therefore, this unqualified-id cannot name anything.
355     // Reject it early, because we have no AST representation for this in the
356     // case where the scope is dependent.
357     Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
358       << SS.getScopeRep();
359     return true;
360
361   case NestedNameSpecifier::Global:
362   case NestedNameSpecifier::Super:
363   case NestedNameSpecifier::Namespace:
364   case NestedNameSpecifier::NamespaceAlias:
365     return false;
366   }
367
368   llvm_unreachable("unknown nested name specifier kind");
369 }
370
371 /// \brief Build a C++ typeid expression with a type operand.
372 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
373                                 SourceLocation TypeidLoc,
374                                 TypeSourceInfo *Operand,
375                                 SourceLocation RParenLoc) {
376   // C++ [expr.typeid]p4:
377   //   The top-level cv-qualifiers of the lvalue expression or the type-id
378   //   that is the operand of typeid are always ignored.
379   //   If the type of the type-id is a class type or a reference to a class
380   //   type, the class shall be completely-defined.
381   Qualifiers Quals;
382   QualType T
383     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
384                                       Quals);
385   if (T->getAs<RecordType>() &&
386       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
387     return ExprError();
388
389   if (T->isVariablyModifiedType())
390     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
391
392   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
393                                      SourceRange(TypeidLoc, RParenLoc));
394 }
395
396 /// \brief Build a C++ typeid expression with an expression operand.
397 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
398                                 SourceLocation TypeidLoc,
399                                 Expr *E,
400                                 SourceLocation RParenLoc) {
401   bool WasEvaluated = false;
402   if (E && !E->isTypeDependent()) {
403     if (E->getType()->isPlaceholderType()) {
404       ExprResult result = CheckPlaceholderExpr(E);
405       if (result.isInvalid()) return ExprError();
406       E = result.get();
407     }
408
409     QualType T = E->getType();
410     if (const RecordType *RecordT = T->getAs<RecordType>()) {
411       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
412       // C++ [expr.typeid]p3:
413       //   [...] If the type of the expression is a class type, the class
414       //   shall be completely-defined.
415       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
416         return ExprError();
417
418       // C++ [expr.typeid]p3:
419       //   When typeid is applied to an expression other than an glvalue of a
420       //   polymorphic class type [...] [the] expression is an unevaluated
421       //   operand. [...]
422       if (RecordD->isPolymorphic() && E->isGLValue()) {
423         // The subexpression is potentially evaluated; switch the context
424         // and recheck the subexpression.
425         ExprResult Result = TransformToPotentiallyEvaluated(E);
426         if (Result.isInvalid()) return ExprError();
427         E = Result.get();
428
429         // We require a vtable to query the type at run time.
430         MarkVTableUsed(TypeidLoc, RecordD);
431         WasEvaluated = true;
432       }
433     }
434
435     // C++ [expr.typeid]p4:
436     //   [...] If the type of the type-id is a reference to a possibly
437     //   cv-qualified type, the result of the typeid expression refers to a
438     //   std::type_info object representing the cv-unqualified referenced
439     //   type.
440     Qualifiers Quals;
441     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
442     if (!Context.hasSameType(T, UnqualT)) {
443       T = UnqualT;
444       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
445     }
446   }
447
448   if (E->getType()->isVariablyModifiedType())
449     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
450                      << E->getType());
451   else if (ActiveTemplateInstantiations.empty() &&
452            E->HasSideEffects(Context, WasEvaluated)) {
453     // The expression operand for typeid is in an unevaluated expression
454     // context, so side effects could result in unintended consequences.
455     Diag(E->getExprLoc(), WasEvaluated
456                               ? diag::warn_side_effects_typeid
457                               : diag::warn_side_effects_unevaluated_context);
458   }
459
460   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
461                                      SourceRange(TypeidLoc, RParenLoc));
462 }
463
464 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
465 ExprResult
466 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
467                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
468   // Find the std::type_info type.
469   if (!getStdNamespace())
470     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
471
472   if (!CXXTypeInfoDecl) {
473     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
474     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
475     LookupQualifiedName(R, getStdNamespace());
476     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
477     // Microsoft's typeinfo doesn't have type_info in std but in the global
478     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
479     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
480       LookupQualifiedName(R, Context.getTranslationUnitDecl());
481       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
482     }
483     if (!CXXTypeInfoDecl)
484       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
485   }
486
487   if (!getLangOpts().RTTI) {
488     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
489   }
490
491   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
492
493   if (isType) {
494     // The operand is a type; handle it as such.
495     TypeSourceInfo *TInfo = nullptr;
496     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
497                                    &TInfo);
498     if (T.isNull())
499       return ExprError();
500
501     if (!TInfo)
502       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
503
504     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
505   }
506
507   // The operand is an expression.
508   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
509 }
510
511 /// \brief Build a Microsoft __uuidof expression with a type operand.
512 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
513                                 SourceLocation TypeidLoc,
514                                 TypeSourceInfo *Operand,
515                                 SourceLocation RParenLoc) {
516   if (!Operand->getType()->isDependentType()) {
517     bool HasMultipleGUIDs = false;
518     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
519                                           &HasMultipleGUIDs)) {
520       if (HasMultipleGUIDs)
521         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
522       else
523         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
524     }
525   }
526
527   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
528                                      SourceRange(TypeidLoc, RParenLoc));
529 }
530
531 /// \brief Build a Microsoft __uuidof expression with an expression operand.
532 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
533                                 SourceLocation TypeidLoc,
534                                 Expr *E,
535                                 SourceLocation RParenLoc) {
536   if (!E->getType()->isDependentType()) {
537     bool HasMultipleGUIDs = false;
538     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
539         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
540       if (HasMultipleGUIDs)
541         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
542       else
543         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
544     }
545   }
546
547   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
548                                      SourceRange(TypeidLoc, RParenLoc));
549 }
550
551 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
552 ExprResult
553 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
554                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
555   // If MSVCGuidDecl has not been cached, do the lookup.
556   if (!MSVCGuidDecl) {
557     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
558     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
559     LookupQualifiedName(R, Context.getTranslationUnitDecl());
560     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
561     if (!MSVCGuidDecl)
562       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
563   }
564
565   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
566
567   if (isType) {
568     // The operand is a type; handle it as such.
569     TypeSourceInfo *TInfo = nullptr;
570     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
571                                    &TInfo);
572     if (T.isNull())
573       return ExprError();
574
575     if (!TInfo)
576       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
577
578     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
579   }
580
581   // The operand is an expression.
582   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
583 }
584
585 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
586 ExprResult
587 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
588   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
589          "Unknown C++ Boolean value!");
590   return new (Context)
591       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
592 }
593
594 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
595 ExprResult
596 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
597   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
598 }
599
600 /// ActOnCXXThrow - Parse throw expressions.
601 ExprResult
602 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
603   bool IsThrownVarInScope = false;
604   if (Ex) {
605     // C++0x [class.copymove]p31:
606     //   When certain criteria are met, an implementation is allowed to omit the
607     //   copy/move construction of a class object [...]
608     //
609     //     - in a throw-expression, when the operand is the name of a
610     //       non-volatile automatic object (other than a function or catch-
611     //       clause parameter) whose scope does not extend beyond the end of the
612     //       innermost enclosing try-block (if there is one), the copy/move
613     //       operation from the operand to the exception object (15.1) can be
614     //       omitted by constructing the automatic object directly into the
615     //       exception object
616     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
617       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
618         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
619           for( ; S; S = S->getParent()) {
620             if (S->isDeclScope(Var)) {
621               IsThrownVarInScope = true;
622               break;
623             }
624             
625             if (S->getFlags() &
626                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
627                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
628                  Scope::TryScope))
629               break;
630           }
631         }
632       }
633   }
634   
635   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
636 }
637
638 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 
639                                bool IsThrownVarInScope) {
640   // Don't report an error if 'throw' is used in system headers.
641   if (!getLangOpts().CXXExceptions &&
642       !getSourceManager().isInSystemHeader(OpLoc))
643     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
644
645   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
646     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
647
648   if (Ex && !Ex->isTypeDependent()) {
649     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
650     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
651       return ExprError();
652
653     // Initialize the exception result.  This implicitly weeds out
654     // abstract types or types with inaccessible copy constructors.
655
656     // C++0x [class.copymove]p31:
657     //   When certain criteria are met, an implementation is allowed to omit the
658     //   copy/move construction of a class object [...]
659     //
660     //     - in a throw-expression, when the operand is the name of a
661     //       non-volatile automatic object (other than a function or
662     //       catch-clause
663     //       parameter) whose scope does not extend beyond the end of the
664     //       innermost enclosing try-block (if there is one), the copy/move
665     //       operation from the operand to the exception object (15.1) can be
666     //       omitted by constructing the automatic object directly into the
667     //       exception object
668     const VarDecl *NRVOVariable = nullptr;
669     if (IsThrownVarInScope)
670       NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
671
672     InitializedEntity Entity = InitializedEntity::InitializeException(
673         OpLoc, ExceptionObjectTy,
674         /*NRVO=*/NRVOVariable != nullptr);
675     ExprResult Res = PerformMoveOrCopyInitialization(
676         Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
677     if (Res.isInvalid())
678       return ExprError();
679     Ex = Res.get();
680   }
681
682   return new (Context)
683       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
684 }
685
686 static void
687 collectPublicBases(CXXRecordDecl *RD,
688                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
689                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
690                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
691                    bool ParentIsPublic) {
692   for (const CXXBaseSpecifier &BS : RD->bases()) {
693     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
694     bool NewSubobject;
695     // Virtual bases constitute the same subobject.  Non-virtual bases are
696     // always distinct subobjects.
697     if (BS.isVirtual())
698       NewSubobject = VBases.insert(BaseDecl).second;
699     else
700       NewSubobject = true;
701
702     if (NewSubobject)
703       ++SubobjectsSeen[BaseDecl];
704
705     // Only add subobjects which have public access throughout the entire chain.
706     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
707     if (PublicPath)
708       PublicSubobjectsSeen.insert(BaseDecl);
709
710     // Recurse on to each base subobject.
711     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
712                        PublicPath);
713   }
714 }
715
716 static void getUnambiguousPublicSubobjects(
717     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
718   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
719   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
720   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
721   SubobjectsSeen[RD] = 1;
722   PublicSubobjectsSeen.insert(RD);
723   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
724                      /*ParentIsPublic=*/true);
725
726   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
727     // Skip ambiguous objects.
728     if (SubobjectsSeen[PublicSubobject] > 1)
729       continue;
730
731     Objects.push_back(PublicSubobject);
732   }
733 }
734
735 /// CheckCXXThrowOperand - Validate the operand of a throw.
736 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
737                                 QualType ExceptionObjectTy, Expr *E) {
738   //   If the type of the exception would be an incomplete type or a pointer
739   //   to an incomplete type other than (cv) void the program is ill-formed.
740   QualType Ty = ExceptionObjectTy;
741   bool isPointer = false;
742   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
743     Ty = Ptr->getPointeeType();
744     isPointer = true;
745   }
746   if (!isPointer || !Ty->isVoidType()) {
747     if (RequireCompleteType(ThrowLoc, Ty,
748                             isPointer ? diag::err_throw_incomplete_ptr
749                                       : diag::err_throw_incomplete,
750                             E->getSourceRange()))
751       return true;
752
753     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
754                                diag::err_throw_abstract_type, E))
755       return true;
756   }
757
758   // If the exception has class type, we need additional handling.
759   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
760   if (!RD)
761     return false;
762
763   // If we are throwing a polymorphic class type or pointer thereof,
764   // exception handling will make use of the vtable.
765   MarkVTableUsed(ThrowLoc, RD);
766
767   // If a pointer is thrown, the referenced object will not be destroyed.
768   if (isPointer)
769     return false;
770
771   // If the class has a destructor, we must be able to call it.
772   if (!RD->hasIrrelevantDestructor()) {
773     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
774       MarkFunctionReferenced(E->getExprLoc(), Destructor);
775       CheckDestructorAccess(E->getExprLoc(), Destructor,
776                             PDiag(diag::err_access_dtor_exception) << Ty);
777       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
778         return true;
779     }
780   }
781
782   // The MSVC ABI creates a list of all types which can catch the exception
783   // object.  This list also references the appropriate copy constructor to call
784   // if the object is caught by value and has a non-trivial copy constructor.
785   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
786     // We are only interested in the public, unambiguous bases contained within
787     // the exception object.  Bases which are ambiguous or otherwise
788     // inaccessible are not catchable types.
789     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
790     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
791
792     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
793       // Attempt to lookup the copy constructor.  Various pieces of machinery
794       // will spring into action, like template instantiation, which means this
795       // cannot be a simple walk of the class's decls.  Instead, we must perform
796       // lookup and overload resolution.
797       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
798       if (!CD)
799         continue;
800
801       // Mark the constructor referenced as it is used by this throw expression.
802       MarkFunctionReferenced(E->getExprLoc(), CD);
803
804       // Skip this copy constructor if it is trivial, we don't need to record it
805       // in the catchable type data.
806       if (CD->isTrivial())
807         continue;
808
809       // The copy constructor is non-trivial, create a mapping from this class
810       // type to this constructor.
811       // N.B.  The selection of copy constructor is not sensitive to this
812       // particular throw-site.  Lookup will be performed at the catch-site to
813       // ensure that the copy constructor is, in fact, accessible (via
814       // friendship or any other means).
815       Context.addCopyConstructorForExceptionObject(Subobject, CD);
816
817       // We don't keep the instantiated default argument expressions around so
818       // we must rebuild them here.
819       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
820         // Skip any default arguments that we've already instantiated.
821         if (Context.getDefaultArgExprForConstructor(CD, I))
822           continue;
823
824         Expr *DefaultArg =
825             BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
826         Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
827       }
828     }
829   }
830
831   return false;
832 }
833
834 QualType Sema::getCurrentThisType() {
835   DeclContext *DC = getFunctionLevelDeclContext();
836   QualType ThisTy = CXXThisTypeOverride;
837   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
838     if (method && method->isInstance())
839       ThisTy = method->getThisType(Context);
840   }
841   if (ThisTy.isNull()) {
842     if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
843         CurContext->getParent()->getParent()->isRecord()) {
844       // This is a generic lambda call operator that is being instantiated
845       // within a default initializer - so use the enclosing class as 'this'.
846       // There is no enclosing member function to retrieve the 'this' pointer
847       // from.
848       QualType ClassTy = Context.getTypeDeclType(
849           cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
850       // There are no cv-qualifiers for 'this' within default initializers, 
851       // per [expr.prim.general]p4.
852       return Context.getPointerType(ClassTy);
853     }
854   }
855   return ThisTy;
856 }
857
858 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 
859                                          Decl *ContextDecl,
860                                          unsigned CXXThisTypeQuals,
861                                          bool Enabled) 
862   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
863 {
864   if (!Enabled || !ContextDecl)
865     return;
866
867   CXXRecordDecl *Record = nullptr;
868   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
869     Record = Template->getTemplatedDecl();
870   else
871     Record = cast<CXXRecordDecl>(ContextDecl);
872     
873   S.CXXThisTypeOverride
874     = S.Context.getPointerType(
875         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
876   
877   this->Enabled = true;
878 }
879
880
881 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
882   if (Enabled) {
883     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
884   }
885 }
886
887 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
888                          QualType ThisTy, SourceLocation Loc) {
889   FieldDecl *Field
890     = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
891                         Context.getTrivialTypeSourceInfo(ThisTy, Loc),
892                         nullptr, false, ICIS_NoInit);
893   Field->setImplicit(true);
894   Field->setAccess(AS_private);
895   RD->addDecl(Field);
896   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
897 }
898
899 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit, 
900     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
901   // We don't need to capture this in an unevaluated context.
902   if (isUnevaluatedContext() && !Explicit)
903     return true;
904
905   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
906     *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;  
907  // Otherwise, check that we can capture 'this'.
908   unsigned NumClosures = 0;
909   for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
910     if (CapturingScopeInfo *CSI =
911             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
912       if (CSI->CXXThisCaptureIndex != 0) {
913         // 'this' is already being captured; there isn't anything more to do.
914         break;
915       }
916       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
917       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
918         // This context can't implicitly capture 'this'; fail out.
919         if (BuildAndDiagnose)
920           Diag(Loc, diag::err_this_capture) << Explicit;
921         return true;
922       }
923       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
924           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
925           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
926           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
927           Explicit) {
928         // This closure can capture 'this'; continue looking upwards.
929         NumClosures++;
930         Explicit = false;
931         continue;
932       }
933       // This context can't implicitly capture 'this'; fail out.
934       if (BuildAndDiagnose)
935         Diag(Loc, diag::err_this_capture) << Explicit;
936       return true;
937     }
938     break;
939   }
940   if (!BuildAndDiagnose) return false;
941   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
942   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
943   // contexts.
944   for (unsigned idx = MaxFunctionScopesIndex; NumClosures; 
945       --idx, --NumClosures) {
946     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
947     Expr *ThisExpr = nullptr;
948     QualType ThisTy = getCurrentThisType();
949     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
950       // For lambda expressions, build a field and an initializing expression.
951       ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
952     else if (CapturedRegionScopeInfo *RSI
953         = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
954       ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
955
956     bool isNested = NumClosures > 1;
957     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
958   }
959   return false;
960 }
961
962 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
963   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
964   /// is a non-lvalue expression whose value is the address of the object for
965   /// which the function is called.
966
967   QualType ThisTy = getCurrentThisType();
968   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
969
970   CheckCXXThisCapture(Loc);
971   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
972 }
973
974 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
975   // If we're outside the body of a member function, then we'll have a specified
976   // type for 'this'.
977   if (CXXThisTypeOverride.isNull())
978     return false;
979   
980   // Determine whether we're looking into a class that's currently being
981   // defined.
982   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
983   return Class && Class->isBeingDefined();
984 }
985
986 ExprResult
987 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
988                                 SourceLocation LParenLoc,
989                                 MultiExprArg exprs,
990                                 SourceLocation RParenLoc) {
991   if (!TypeRep)
992     return ExprError();
993
994   TypeSourceInfo *TInfo;
995   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
996   if (!TInfo)
997     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
998
999   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
1000 }
1001
1002 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
1003 /// Can be interpreted either as function-style casting ("int(x)")
1004 /// or class type construction ("ClassType(x,y,z)")
1005 /// or creation of a value-initialized type ("int()").
1006 ExprResult
1007 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1008                                 SourceLocation LParenLoc,
1009                                 MultiExprArg Exprs,
1010                                 SourceLocation RParenLoc) {
1011   QualType Ty = TInfo->getType();
1012   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1013
1014   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1015     return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
1016                                               RParenLoc);
1017   }
1018
1019   bool ListInitialization = LParenLoc.isInvalid();
1020   assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
1021          && "List initialization must have initializer list as expression.");
1022   SourceRange FullRange = SourceRange(TyBeginLoc,
1023       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
1024
1025   // C++ [expr.type.conv]p1:
1026   // If the expression list is a single expression, the type conversion
1027   // expression is equivalent (in definedness, and if defined in meaning) to the
1028   // corresponding cast expression.
1029   if (Exprs.size() == 1 && !ListInitialization) {
1030     Expr *Arg = Exprs[0];
1031     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
1032   }
1033
1034   // C++14 [expr.type.conv]p2: The expression T(), where T is a
1035   //   simple-type-specifier or typename-specifier for a non-array complete
1036   //   object type or the (possibly cv-qualified) void type, creates a prvalue
1037   //   of the specified type, whose value is that produced by value-initializing
1038   //   an object of type T.
1039   QualType ElemTy = Ty;
1040   if (Ty->isArrayType()) {
1041     if (!ListInitialization)
1042       return ExprError(Diag(TyBeginLoc,
1043                             diag::err_value_init_for_array_type) << FullRange);
1044     ElemTy = Context.getBaseElementType(Ty);
1045   }
1046
1047   if (!ListInitialization && Ty->isFunctionType())
1048     return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type)
1049                      << FullRange);
1050
1051   if (!Ty->isVoidType() &&
1052       RequireCompleteType(TyBeginLoc, ElemTy,
1053                           diag::err_invalid_incomplete_type_use, FullRange))
1054     return ExprError();
1055
1056   if (RequireNonAbstractType(TyBeginLoc, Ty,
1057                              diag::err_allocation_of_abstract_type))
1058     return ExprError();
1059
1060   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1061   InitializationKind Kind =
1062       Exprs.size() ? ListInitialization
1063       ? InitializationKind::CreateDirectList(TyBeginLoc)
1064       : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
1065       : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
1066   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1067   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1068
1069   if (Result.isInvalid() || !ListInitialization)
1070     return Result;
1071
1072   Expr *Inner = Result.get();
1073   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1074     Inner = BTE->getSubExpr();
1075   if (!isa<CXXTemporaryObjectExpr>(Inner)) {
1076     // If we created a CXXTemporaryObjectExpr, that node also represents the
1077     // functional cast. Otherwise, create an explicit cast to represent
1078     // the syntactic form of a functional-style cast that was used here.
1079     //
1080     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1081     // would give a more consistent AST representation than using a
1082     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1083     // is sometimes handled by initialization and sometimes not.
1084     QualType ResultType = Result.get()->getType();
1085     Result = CXXFunctionalCastExpr::Create(
1086         Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
1087         CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
1088   }
1089
1090   return Result;
1091 }
1092
1093 /// doesUsualArrayDeleteWantSize - Answers whether the usual
1094 /// operator delete[] for the given type has a size_t parameter.
1095 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1096                                          QualType allocType) {
1097   const RecordType *record =
1098     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1099   if (!record) return false;
1100
1101   // Try to find an operator delete[] in class scope.
1102
1103   DeclarationName deleteName =
1104     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1105   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1106   S.LookupQualifiedName(ops, record->getDecl());
1107
1108   // We're just doing this for information.
1109   ops.suppressDiagnostics();
1110
1111   // Very likely: there's no operator delete[].
1112   if (ops.empty()) return false;
1113
1114   // If it's ambiguous, it should be illegal to call operator delete[]
1115   // on this thing, so it doesn't matter if we allocate extra space or not.
1116   if (ops.isAmbiguous()) return false;
1117
1118   LookupResult::Filter filter = ops.makeFilter();
1119   while (filter.hasNext()) {
1120     NamedDecl *del = filter.next()->getUnderlyingDecl();
1121
1122     // C++0x [basic.stc.dynamic.deallocation]p2:
1123     //   A template instance is never a usual deallocation function,
1124     //   regardless of its signature.
1125     if (isa<FunctionTemplateDecl>(del)) {
1126       filter.erase();
1127       continue;
1128     }
1129
1130     // C++0x [basic.stc.dynamic.deallocation]p2:
1131     //   If class T does not declare [an operator delete[] with one
1132     //   parameter] but does declare a member deallocation function
1133     //   named operator delete[] with exactly two parameters, the
1134     //   second of which has type std::size_t, then this function
1135     //   is a usual deallocation function.
1136     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1137       filter.erase();
1138       continue;
1139     }
1140   }
1141   filter.done();
1142
1143   if (!ops.isSingleResult()) return false;
1144
1145   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1146   return (del->getNumParams() == 2);
1147 }
1148
1149 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1150 ///
1151 /// E.g.:
1152 /// @code new (memory) int[size][4] @endcode
1153 /// or
1154 /// @code ::new Foo(23, "hello") @endcode
1155 ///
1156 /// \param StartLoc The first location of the expression.
1157 /// \param UseGlobal True if 'new' was prefixed with '::'.
1158 /// \param PlacementLParen Opening paren of the placement arguments.
1159 /// \param PlacementArgs Placement new arguments.
1160 /// \param PlacementRParen Closing paren of the placement arguments.
1161 /// \param TypeIdParens If the type is in parens, the source range.
1162 /// \param D The type to be allocated, as well as array dimensions.
1163 /// \param Initializer The initializing expression or initializer-list, or null
1164 ///   if there is none.
1165 ExprResult
1166 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1167                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1168                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1169                   Declarator &D, Expr *Initializer) {
1170   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1171
1172   Expr *ArraySize = nullptr;
1173   // If the specified type is an array, unwrap it and save the expression.
1174   if (D.getNumTypeObjects() > 0 &&
1175       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1176      DeclaratorChunk &Chunk = D.getTypeObject(0);
1177     if (TypeContainsAuto)
1178       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1179         << D.getSourceRange());
1180     if (Chunk.Arr.hasStatic)
1181       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1182         << D.getSourceRange());
1183     if (!Chunk.Arr.NumElts)
1184       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1185         << D.getSourceRange());
1186
1187     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1188     D.DropFirstTypeObject();
1189   }
1190
1191   // Every dimension shall be of constant size.
1192   if (ArraySize) {
1193     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1194       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1195         break;
1196
1197       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1198       if (Expr *NumElts = (Expr *)Array.NumElts) {
1199         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1200           if (getLangOpts().CPlusPlus14) {
1201             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1202             //   shall be a converted constant expression (5.19) of type std::size_t
1203             //   and shall evaluate to a strictly positive value.
1204             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1205             assert(IntWidth && "Builtin type of size 0?");
1206             llvm::APSInt Value(IntWidth);
1207             Array.NumElts
1208              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1209                                                 CCEK_NewExpr)
1210                  .get();
1211           } else {
1212             Array.NumElts
1213               = VerifyIntegerConstantExpression(NumElts, nullptr,
1214                                                 diag::err_new_array_nonconst)
1215                   .get();
1216           }
1217           if (!Array.NumElts)
1218             return ExprError();
1219         }
1220       }
1221     }
1222   }
1223
1224   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1225   QualType AllocType = TInfo->getType();
1226   if (D.isInvalidType())
1227     return ExprError();
1228
1229   SourceRange DirectInitRange;
1230   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1231     DirectInitRange = List->getSourceRange();
1232
1233   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1234                      PlacementLParen,
1235                      PlacementArgs,
1236                      PlacementRParen,
1237                      TypeIdParens,
1238                      AllocType,
1239                      TInfo,
1240                      ArraySize,
1241                      DirectInitRange,
1242                      Initializer,
1243                      TypeContainsAuto);
1244 }
1245
1246 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1247                                        Expr *Init) {
1248   if (!Init)
1249     return true;
1250   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1251     return PLE->getNumExprs() == 0;
1252   if (isa<ImplicitValueInitExpr>(Init))
1253     return true;
1254   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1255     return !CCE->isListInitialization() &&
1256            CCE->getConstructor()->isDefaultConstructor();
1257   else if (Style == CXXNewExpr::ListInit) {
1258     assert(isa<InitListExpr>(Init) &&
1259            "Shouldn't create list CXXConstructExprs for arrays.");
1260     return true;
1261   }
1262   return false;
1263 }
1264
1265 ExprResult
1266 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1267                   SourceLocation PlacementLParen,
1268                   MultiExprArg PlacementArgs,
1269                   SourceLocation PlacementRParen,
1270                   SourceRange TypeIdParens,
1271                   QualType AllocType,
1272                   TypeSourceInfo *AllocTypeInfo,
1273                   Expr *ArraySize,
1274                   SourceRange DirectInitRange,
1275                   Expr *Initializer,
1276                   bool TypeMayContainAuto) {
1277   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1278   SourceLocation StartLoc = Range.getBegin();
1279
1280   CXXNewExpr::InitializationStyle initStyle;
1281   if (DirectInitRange.isValid()) {
1282     assert(Initializer && "Have parens but no initializer.");
1283     initStyle = CXXNewExpr::CallInit;
1284   } else if (Initializer && isa<InitListExpr>(Initializer))
1285     initStyle = CXXNewExpr::ListInit;
1286   else {
1287     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1288             isa<CXXConstructExpr>(Initializer)) &&
1289            "Initializer expression that cannot have been implicitly created.");
1290     initStyle = CXXNewExpr::NoInit;
1291   }
1292
1293   Expr **Inits = &Initializer;
1294   unsigned NumInits = Initializer ? 1 : 0;
1295   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1296     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1297     Inits = List->getExprs();
1298     NumInits = List->getNumExprs();
1299   }
1300
1301   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1302   if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1303     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1304       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1305                        << AllocType << TypeRange);
1306     if (initStyle == CXXNewExpr::ListInit ||
1307         (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1308       return ExprError(Diag(Inits[0]->getLocStart(),
1309                             diag::err_auto_new_list_init)
1310                        << AllocType << TypeRange);
1311     if (NumInits > 1) {
1312       Expr *FirstBad = Inits[1];
1313       return ExprError(Diag(FirstBad->getLocStart(),
1314                             diag::err_auto_new_ctor_multiple_expressions)
1315                        << AllocType << TypeRange);
1316     }
1317     Expr *Deduce = Inits[0];
1318     QualType DeducedType;
1319     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1320       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1321                        << AllocType << Deduce->getType()
1322                        << TypeRange << Deduce->getSourceRange());
1323     if (DeducedType.isNull())
1324       return ExprError();
1325     AllocType = DeducedType;
1326   }
1327
1328   // Per C++0x [expr.new]p5, the type being constructed may be a
1329   // typedef of an array type.
1330   if (!ArraySize) {
1331     if (const ConstantArrayType *Array
1332                               = Context.getAsConstantArrayType(AllocType)) {
1333       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1334                                          Context.getSizeType(),
1335                                          TypeRange.getEnd());
1336       AllocType = Array->getElementType();
1337     }
1338   }
1339
1340   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1341     return ExprError();
1342
1343   if (initStyle == CXXNewExpr::ListInit &&
1344       isStdInitializerList(AllocType, nullptr)) {
1345     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1346          diag::warn_dangling_std_initializer_list)
1347         << /*at end of FE*/0 << Inits[0]->getSourceRange();
1348   }
1349
1350   // In ARC, infer 'retaining' for the allocated 
1351   if (getLangOpts().ObjCAutoRefCount &&
1352       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1353       AllocType->isObjCLifetimeType()) {
1354     AllocType = Context.getLifetimeQualifiedType(AllocType,
1355                                     AllocType->getObjCARCImplicitLifetime());
1356   }
1357
1358   QualType ResultType = Context.getPointerType(AllocType);
1359     
1360   if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1361     ExprResult result = CheckPlaceholderExpr(ArraySize);
1362     if (result.isInvalid()) return ExprError();
1363     ArraySize = result.get();
1364   }
1365   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1366   //   integral or enumeration type with a non-negative value."
1367   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1368   //   enumeration type, or a class type for which a single non-explicit
1369   //   conversion function to integral or unscoped enumeration type exists.
1370   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1371   //   std::size_t.
1372   if (ArraySize && !ArraySize->isTypeDependent()) {
1373     ExprResult ConvertedSize;
1374     if (getLangOpts().CPlusPlus14) {
1375       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1376
1377       ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1378                                                 AA_Converting);
1379
1380       if (!ConvertedSize.isInvalid() && 
1381           ArraySize->getType()->getAs<RecordType>())
1382         // Diagnose the compatibility of this conversion.
1383         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1384           << ArraySize->getType() << 0 << "'size_t'";
1385     } else {
1386       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1387       protected:
1388         Expr *ArraySize;
1389   
1390       public:
1391         SizeConvertDiagnoser(Expr *ArraySize)
1392             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1393               ArraySize(ArraySize) {}
1394
1395         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1396                                              QualType T) override {
1397           return S.Diag(Loc, diag::err_array_size_not_integral)
1398                    << S.getLangOpts().CPlusPlus11 << T;
1399         }
1400
1401         SemaDiagnosticBuilder diagnoseIncomplete(
1402             Sema &S, SourceLocation Loc, QualType T) override {
1403           return S.Diag(Loc, diag::err_array_size_incomplete_type)
1404                    << T << ArraySize->getSourceRange();
1405         }
1406
1407         SemaDiagnosticBuilder diagnoseExplicitConv(
1408             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1409           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1410         }
1411
1412         SemaDiagnosticBuilder noteExplicitConv(
1413             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1414           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1415                    << ConvTy->isEnumeralType() << ConvTy;
1416         }
1417
1418         SemaDiagnosticBuilder diagnoseAmbiguous(
1419             Sema &S, SourceLocation Loc, QualType T) override {
1420           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1421         }
1422
1423         SemaDiagnosticBuilder noteAmbiguous(
1424             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1425           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1426                    << ConvTy->isEnumeralType() << ConvTy;
1427         }
1428
1429         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1430                                                  QualType T,
1431                                                  QualType ConvTy) override {
1432           return S.Diag(Loc,
1433                         S.getLangOpts().CPlusPlus11
1434                           ? diag::warn_cxx98_compat_array_size_conversion
1435                           : diag::ext_array_size_conversion)
1436                    << T << ConvTy->isEnumeralType() << ConvTy;
1437         }
1438       } SizeDiagnoser(ArraySize);
1439
1440       ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1441                                                           SizeDiagnoser);
1442     }
1443     if (ConvertedSize.isInvalid())
1444       return ExprError();
1445
1446     ArraySize = ConvertedSize.get();
1447     QualType SizeType = ArraySize->getType();
1448
1449     if (!SizeType->isIntegralOrUnscopedEnumerationType())
1450       return ExprError();
1451
1452     // C++98 [expr.new]p7:
1453     //   The expression in a direct-new-declarator shall have integral type
1454     //   with a non-negative value.
1455     //
1456     // Let's see if this is a constant < 0. If so, we reject it out of
1457     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1458     // array type.
1459     //
1460     // Note: such a construct has well-defined semantics in C++11: it throws
1461     // std::bad_array_new_length.
1462     if (!ArraySize->isValueDependent()) {
1463       llvm::APSInt Value;
1464       // We've already performed any required implicit conversion to integer or
1465       // unscoped enumeration type.
1466       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1467         if (Value < llvm::APSInt(
1468                         llvm::APInt::getNullValue(Value.getBitWidth()),
1469                                  Value.isUnsigned())) {
1470           if (getLangOpts().CPlusPlus11)
1471             Diag(ArraySize->getLocStart(),
1472                  diag::warn_typecheck_negative_array_new_size)
1473               << ArraySize->getSourceRange();
1474           else
1475             return ExprError(Diag(ArraySize->getLocStart(),
1476                                   diag::err_typecheck_negative_array_size)
1477                              << ArraySize->getSourceRange());
1478         } else if (!AllocType->isDependentType()) {
1479           unsigned ActiveSizeBits =
1480             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1481           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1482             if (getLangOpts().CPlusPlus11)
1483               Diag(ArraySize->getLocStart(),
1484                    diag::warn_array_new_too_large)
1485                 << Value.toString(10)
1486                 << ArraySize->getSourceRange();
1487             else
1488               return ExprError(Diag(ArraySize->getLocStart(),
1489                                     diag::err_array_too_large)
1490                                << Value.toString(10)
1491                                << ArraySize->getSourceRange());
1492           }
1493         }
1494       } else if (TypeIdParens.isValid()) {
1495         // Can't have dynamic array size when the type-id is in parentheses.
1496         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1497           << ArraySize->getSourceRange()
1498           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1499           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1500
1501         TypeIdParens = SourceRange();
1502       }
1503     }
1504
1505     // Note that we do *not* convert the argument in any way.  It can
1506     // be signed, larger than size_t, whatever.
1507   }
1508
1509   FunctionDecl *OperatorNew = nullptr;
1510   FunctionDecl *OperatorDelete = nullptr;
1511
1512   if (!AllocType->isDependentType() &&
1513       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1514       FindAllocationFunctions(StartLoc,
1515                               SourceRange(PlacementLParen, PlacementRParen),
1516                               UseGlobal, AllocType, ArraySize, PlacementArgs,
1517                               OperatorNew, OperatorDelete))
1518     return ExprError();
1519
1520   // If this is an array allocation, compute whether the usual array
1521   // deallocation function for the type has a size_t parameter.
1522   bool UsualArrayDeleteWantsSize = false;
1523   if (ArraySize && !AllocType->isDependentType())
1524     UsualArrayDeleteWantsSize
1525       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1526
1527   SmallVector<Expr *, 8> AllPlaceArgs;
1528   if (OperatorNew) {
1529     const FunctionProtoType *Proto =
1530         OperatorNew->getType()->getAs<FunctionProtoType>();
1531     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1532                                                     : VariadicDoesNotApply;
1533
1534     // We've already converted the placement args, just fill in any default
1535     // arguments. Skip the first parameter because we don't have a corresponding
1536     // argument.
1537     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1538                                PlacementArgs, AllPlaceArgs, CallType))
1539       return ExprError();
1540
1541     if (!AllPlaceArgs.empty())
1542       PlacementArgs = AllPlaceArgs;
1543
1544     // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1545     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1546
1547     // FIXME: Missing call to CheckFunctionCall or equivalent
1548   }
1549
1550   // Warn if the type is over-aligned and is being allocated by global operator
1551   // new.
1552   if (PlacementArgs.empty() && OperatorNew &&
1553       (OperatorNew->isImplicit() ||
1554        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1555     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1556       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1557       if (Align > SuitableAlign)
1558         Diag(StartLoc, diag::warn_overaligned_type)
1559             << AllocType
1560             << unsigned(Align / Context.getCharWidth())
1561             << unsigned(SuitableAlign / Context.getCharWidth());
1562     }
1563   }
1564
1565   QualType InitType = AllocType;
1566   // Array 'new' can't have any initializers except empty parentheses.
1567   // Initializer lists are also allowed, in C++11. Rely on the parser for the
1568   // dialect distinction.
1569   if (ResultType->isArrayType() || ArraySize) {
1570     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1571       SourceRange InitRange(Inits[0]->getLocStart(),
1572                             Inits[NumInits - 1]->getLocEnd());
1573       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1574       return ExprError();
1575     }
1576     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1577       // We do the initialization typechecking against the array type
1578       // corresponding to the number of initializers + 1 (to also check
1579       // default-initialization).
1580       unsigned NumElements = ILE->getNumInits() + 1;
1581       InitType = Context.getConstantArrayType(AllocType,
1582           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1583                                               ArrayType::Normal, 0);
1584     }
1585   }
1586
1587   // If we can perform the initialization, and we've not already done so,
1588   // do it now.
1589   if (!AllocType->isDependentType() &&
1590       !Expr::hasAnyTypeDependentArguments(
1591           llvm::makeArrayRef(Inits, NumInits))) {
1592     // C++11 [expr.new]p15:
1593     //   A new-expression that creates an object of type T initializes that
1594     //   object as follows:
1595     InitializationKind Kind
1596     //     - If the new-initializer is omitted, the object is default-
1597     //       initialized (8.5); if no initialization is performed,
1598     //       the object has indeterminate value
1599       = initStyle == CXXNewExpr::NoInit
1600           ? InitializationKind::CreateDefault(TypeRange.getBegin())
1601     //     - Otherwise, the new-initializer is interpreted according to the
1602     //       initialization rules of 8.5 for direct-initialization.
1603           : initStyle == CXXNewExpr::ListInit
1604               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1605               : InitializationKind::CreateDirect(TypeRange.getBegin(),
1606                                                  DirectInitRange.getBegin(),
1607                                                  DirectInitRange.getEnd());
1608
1609     InitializedEntity Entity
1610       = InitializedEntity::InitializeNew(StartLoc, InitType);
1611     InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1612     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1613                                           MultiExprArg(Inits, NumInits));
1614     if (FullInit.isInvalid())
1615       return ExprError();
1616
1617     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1618     // we don't want the initialized object to be destructed.
1619     if (CXXBindTemporaryExpr *Binder =
1620             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1621       FullInit = Binder->getSubExpr();
1622
1623     Initializer = FullInit.get();
1624   }
1625
1626   // Mark the new and delete operators as referenced.
1627   if (OperatorNew) {
1628     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1629       return ExprError();
1630     MarkFunctionReferenced(StartLoc, OperatorNew);
1631   }
1632   if (OperatorDelete) {
1633     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1634       return ExprError();
1635     MarkFunctionReferenced(StartLoc, OperatorDelete);
1636   }
1637
1638   // C++0x [expr.new]p17:
1639   //   If the new expression creates an array of objects of class type,
1640   //   access and ambiguity control are done for the destructor.
1641   QualType BaseAllocType = Context.getBaseElementType(AllocType);
1642   if (ArraySize && !BaseAllocType->isDependentType()) {
1643     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1644       if (CXXDestructorDecl *dtor = LookupDestructor(
1645               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1646         MarkFunctionReferenced(StartLoc, dtor);
1647         CheckDestructorAccess(StartLoc, dtor, 
1648                               PDiag(diag::err_access_dtor)
1649                                 << BaseAllocType);
1650         if (DiagnoseUseOfDecl(dtor, StartLoc))
1651           return ExprError();
1652       }
1653     }
1654   }
1655
1656   return new (Context)
1657       CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1658                  UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1659                  ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1660                  Range, DirectInitRange);
1661 }
1662
1663 /// \brief Checks that a type is suitable as the allocated type
1664 /// in a new-expression.
1665 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1666                               SourceRange R) {
1667   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1668   //   abstract class type or array thereof.
1669   if (AllocType->isFunctionType())
1670     return Diag(Loc, diag::err_bad_new_type)
1671       << AllocType << 0 << R;
1672   else if (AllocType->isReferenceType())
1673     return Diag(Loc, diag::err_bad_new_type)
1674       << AllocType << 1 << R;
1675   else if (!AllocType->isDependentType() &&
1676            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1677     return true;
1678   else if (RequireNonAbstractType(Loc, AllocType,
1679                                   diag::err_allocation_of_abstract_type))
1680     return true;
1681   else if (AllocType->isVariablyModifiedType())
1682     return Diag(Loc, diag::err_variably_modified_new_type)
1683              << AllocType;
1684   else if (unsigned AddressSpace = AllocType.getAddressSpace())
1685     return Diag(Loc, diag::err_address_space_qualified_new)
1686       << AllocType.getUnqualifiedType() << AddressSpace;
1687   else if (getLangOpts().ObjCAutoRefCount) {
1688     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1689       QualType BaseAllocType = Context.getBaseElementType(AT);
1690       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1691           BaseAllocType->isObjCLifetimeType())
1692         return Diag(Loc, diag::err_arc_new_array_without_ownership)
1693           << BaseAllocType;
1694     }
1695   }
1696            
1697   return false;
1698 }
1699
1700 /// \brief Determine whether the given function is a non-placement
1701 /// deallocation function.
1702 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1703   if (FD->isInvalidDecl())
1704     return false;
1705
1706   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1707     return Method->isUsualDeallocationFunction();
1708
1709   if (FD->getOverloadedOperator() != OO_Delete &&
1710       FD->getOverloadedOperator() != OO_Array_Delete)
1711     return false;
1712
1713   if (FD->getNumParams() == 1)
1714     return true;
1715
1716   return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1717          S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1718                                           S.Context.getSizeType());
1719 }
1720
1721 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1722 /// that are appropriate for the allocation.
1723 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1724                                    bool UseGlobal, QualType AllocType,
1725                                    bool IsArray, MultiExprArg PlaceArgs,
1726                                    FunctionDecl *&OperatorNew,
1727                                    FunctionDecl *&OperatorDelete) {
1728   // --- Choosing an allocation function ---
1729   // C++ 5.3.4p8 - 14 & 18
1730   // 1) If UseGlobal is true, only look in the global scope. Else, also look
1731   //   in the scope of the allocated class.
1732   // 2) If an array size is given, look for operator new[], else look for
1733   //   operator new.
1734   // 3) The first argument is always size_t. Append the arguments from the
1735   //   placement form.
1736
1737   SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1738   // We don't care about the actual value of this argument.
1739   // FIXME: Should the Sema create the expression and embed it in the syntax
1740   // tree? Or should the consumer just recalculate the value?
1741   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1742                       Context.getTargetInfo().getPointerWidth(0)),
1743                       Context.getSizeType(),
1744                       SourceLocation());
1745   AllocArgs[0] = &Size;
1746   std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1747
1748   // C++ [expr.new]p8:
1749   //   If the allocated type is a non-array type, the allocation
1750   //   function's name is operator new and the deallocation function's
1751   //   name is operator delete. If the allocated type is an array
1752   //   type, the allocation function's name is operator new[] and the
1753   //   deallocation function's name is operator delete[].
1754   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1755                                         IsArray ? OO_Array_New : OO_New);
1756   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1757                                         IsArray ? OO_Array_Delete : OO_Delete);
1758
1759   QualType AllocElemType = Context.getBaseElementType(AllocType);
1760
1761   if (AllocElemType->isRecordType() && !UseGlobal) {
1762     CXXRecordDecl *Record
1763       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1764     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1765                                /*AllowMissing=*/true, OperatorNew))
1766       return true;
1767   }
1768
1769   if (!OperatorNew) {
1770     // Didn't find a member overload. Look for a global one.
1771     DeclareGlobalNewDelete();
1772     DeclContext *TUDecl = Context.getTranslationUnitDecl();
1773     bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
1774     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1775                                /*AllowMissing=*/FallbackEnabled, OperatorNew,
1776                                /*Diagnose=*/!FallbackEnabled)) {
1777       if (!FallbackEnabled)
1778         return true;
1779
1780       // MSVC will fall back on trying to find a matching global operator new
1781       // if operator new[] cannot be found.  Also, MSVC will leak by not
1782       // generating a call to operator delete or operator delete[], but we
1783       // will not replicate that bug.
1784       NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1785       DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1786       if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1787                                /*AllowMissing=*/false, OperatorNew))
1788       return true;
1789     }
1790   }
1791
1792   // We don't need an operator delete if we're running under
1793   // -fno-exceptions.
1794   if (!getLangOpts().Exceptions) {
1795     OperatorDelete = nullptr;
1796     return false;
1797   }
1798
1799   // C++ [expr.new]p19:
1800   //
1801   //   If the new-expression begins with a unary :: operator, the
1802   //   deallocation function's name is looked up in the global
1803   //   scope. Otherwise, if the allocated type is a class type T or an
1804   //   array thereof, the deallocation function's name is looked up in
1805   //   the scope of T. If this lookup fails to find the name, or if
1806   //   the allocated type is not a class type or array thereof, the
1807   //   deallocation function's name is looked up in the global scope.
1808   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1809   if (AllocElemType->isRecordType() && !UseGlobal) {
1810     CXXRecordDecl *RD
1811       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1812     LookupQualifiedName(FoundDelete, RD);
1813   }
1814   if (FoundDelete.isAmbiguous())
1815     return true; // FIXME: clean up expressions?
1816
1817   if (FoundDelete.empty()) {
1818     DeclareGlobalNewDelete();
1819     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1820   }
1821
1822   FoundDelete.suppressDiagnostics();
1823
1824   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1825
1826   // Whether we're looking for a placement operator delete is dictated
1827   // by whether we selected a placement operator new, not by whether
1828   // we had explicit placement arguments.  This matters for things like
1829   //   struct A { void *operator new(size_t, int = 0); ... };
1830   //   A *a = new A()
1831   bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1832
1833   if (isPlacementNew) {
1834     // C++ [expr.new]p20:
1835     //   A declaration of a placement deallocation function matches the
1836     //   declaration of a placement allocation function if it has the
1837     //   same number of parameters and, after parameter transformations
1838     //   (8.3.5), all parameter types except the first are
1839     //   identical. [...]
1840     //
1841     // To perform this comparison, we compute the function type that
1842     // the deallocation function should have, and use that type both
1843     // for template argument deduction and for comparison purposes.
1844     //
1845     // FIXME: this comparison should ignore CC and the like.
1846     QualType ExpectedFunctionType;
1847     {
1848       const FunctionProtoType *Proto
1849         = OperatorNew->getType()->getAs<FunctionProtoType>();
1850
1851       SmallVector<QualType, 4> ArgTypes;
1852       ArgTypes.push_back(Context.VoidPtrTy);
1853       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
1854         ArgTypes.push_back(Proto->getParamType(I));
1855
1856       FunctionProtoType::ExtProtoInfo EPI;
1857       EPI.Variadic = Proto->isVariadic();
1858
1859       ExpectedFunctionType
1860         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1861     }
1862
1863     for (LookupResult::iterator D = FoundDelete.begin(),
1864                              DEnd = FoundDelete.end();
1865          D != DEnd; ++D) {
1866       FunctionDecl *Fn = nullptr;
1867       if (FunctionTemplateDecl *FnTmpl
1868             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1869         // Perform template argument deduction to try to match the
1870         // expected function type.
1871         TemplateDeductionInfo Info(StartLoc);
1872         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
1873                                     Info))
1874           continue;
1875       } else
1876         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1877
1878       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1879         Matches.push_back(std::make_pair(D.getPair(), Fn));
1880     }
1881   } else {
1882     // C++ [expr.new]p20:
1883     //   [...] Any non-placement deallocation function matches a
1884     //   non-placement allocation function. [...]
1885     for (LookupResult::iterator D = FoundDelete.begin(),
1886                              DEnd = FoundDelete.end();
1887          D != DEnd; ++D) {
1888       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1889         if (isNonPlacementDeallocationFunction(*this, Fn))
1890           Matches.push_back(std::make_pair(D.getPair(), Fn));
1891     }
1892
1893     // C++1y [expr.new]p22:
1894     //   For a non-placement allocation function, the normal deallocation
1895     //   function lookup is used
1896     // C++1y [expr.delete]p?:
1897     //   If [...] deallocation function lookup finds both a usual deallocation
1898     //   function with only a pointer parameter and a usual deallocation
1899     //   function with both a pointer parameter and a size parameter, then the
1900     //   selected deallocation function shall be the one with two parameters.
1901     //   Otherwise, the selected deallocation function shall be the function
1902     //   with one parameter.
1903     if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1904       if (Matches[0].second->getNumParams() == 1)
1905         Matches.erase(Matches.begin());
1906       else
1907         Matches.erase(Matches.begin() + 1);
1908       assert(Matches[0].second->getNumParams() == 2 &&
1909              "found an unexpected usual deallocation function");
1910     }
1911   }
1912
1913   // C++ [expr.new]p20:
1914   //   [...] If the lookup finds a single matching deallocation
1915   //   function, that function will be called; otherwise, no
1916   //   deallocation function will be called.
1917   if (Matches.size() == 1) {
1918     OperatorDelete = Matches[0].second;
1919
1920     // C++0x [expr.new]p20:
1921     //   If the lookup finds the two-parameter form of a usual
1922     //   deallocation function (3.7.4.2) and that function, considered
1923     //   as a placement deallocation function, would have been
1924     //   selected as a match for the allocation function, the program
1925     //   is ill-formed.
1926     if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1927         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1928       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1929         << SourceRange(PlaceArgs.front()->getLocStart(),
1930                        PlaceArgs.back()->getLocEnd());
1931       if (!OperatorDelete->isImplicit())
1932         Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1933           << DeleteName;
1934     } else {
1935       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1936                             Matches[0].first);
1937     }
1938   }
1939
1940   return false;
1941 }
1942
1943 /// \brief Find an fitting overload for the allocation function
1944 /// in the specified scope.
1945 ///
1946 /// \param StartLoc The location of the 'new' token.
1947 /// \param Range The range of the placement arguments.
1948 /// \param Name The name of the function ('operator new' or 'operator new[]').
1949 /// \param Args The placement arguments specified.
1950 /// \param Ctx The scope in which we should search; either a class scope or the
1951 ///        translation unit.
1952 /// \param AllowMissing If \c true, report an error if we can't find any
1953 ///        allocation functions. Otherwise, succeed but don't fill in \p
1954 ///        Operator.
1955 /// \param Operator Filled in with the found allocation function. Unchanged if
1956 ///        no allocation function was found.
1957 /// \param Diagnose If \c true, issue errors if the allocation function is not
1958 ///        usable.
1959 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1960                                   DeclarationName Name, MultiExprArg Args,
1961                                   DeclContext *Ctx,
1962                                   bool AllowMissing, FunctionDecl *&Operator,
1963                                   bool Diagnose) {
1964   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1965   LookupQualifiedName(R, Ctx);
1966   if (R.empty()) {
1967     if (AllowMissing || !Diagnose)
1968       return false;
1969     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1970       << Name << Range;
1971   }
1972
1973   if (R.isAmbiguous())
1974     return true;
1975
1976   R.suppressDiagnostics();
1977
1978   OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
1979   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1980        Alloc != AllocEnd; ++Alloc) {
1981     // Even member operator new/delete are implicitly treated as
1982     // static, so don't use AddMemberCandidate.
1983     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1984
1985     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1986       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1987                                    /*ExplicitTemplateArgs=*/nullptr,
1988                                    Args, Candidates,
1989                                    /*SuppressUserConversions=*/false);
1990       continue;
1991     }
1992
1993     FunctionDecl *Fn = cast<FunctionDecl>(D);
1994     AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1995                          /*SuppressUserConversions=*/false);
1996   }
1997
1998   // Do the resolution.
1999   OverloadCandidateSet::iterator Best;
2000   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
2001   case OR_Success: {
2002     // Got one!
2003     FunctionDecl *FnDecl = Best->Function;
2004     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
2005                               Best->FoundDecl, Diagnose) == AR_inaccessible)
2006       return true;
2007
2008     Operator = FnDecl;
2009     return false;
2010   }
2011
2012   case OR_No_Viable_Function:
2013     if (Diagnose) {
2014       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
2015         << Name << Range;
2016       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2017     }
2018     return true;
2019
2020   case OR_Ambiguous:
2021     if (Diagnose) {
2022       Diag(StartLoc, diag::err_ovl_ambiguous_call)
2023         << Name << Range;
2024       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
2025     }
2026     return true;
2027
2028   case OR_Deleted: {
2029     if (Diagnose) {
2030       Diag(StartLoc, diag::err_ovl_deleted_call)
2031         << Best->Function->isDeleted()
2032         << Name 
2033         << getDeletedOrUnavailableSuffix(Best->Function)
2034         << Range;
2035       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2036     }
2037     return true;
2038   }
2039   }
2040   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2041 }
2042
2043
2044 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2045 /// delete. These are:
2046 /// @code
2047 ///   // C++03:
2048 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2049 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2050 ///   void operator delete(void *) throw();
2051 ///   void operator delete[](void *) throw();
2052 ///   // C++11:
2053 ///   void* operator new(std::size_t);
2054 ///   void* operator new[](std::size_t);
2055 ///   void operator delete(void *) noexcept;
2056 ///   void operator delete[](void *) noexcept;
2057 ///   // C++1y:
2058 ///   void* operator new(std::size_t);
2059 ///   void* operator new[](std::size_t);
2060 ///   void operator delete(void *) noexcept;
2061 ///   void operator delete[](void *) noexcept;
2062 ///   void operator delete(void *, std::size_t) noexcept;
2063 ///   void operator delete[](void *, std::size_t) noexcept;
2064 /// @endcode
2065 /// Note that the placement and nothrow forms of new are *not* implicitly
2066 /// declared. Their use requires including \<new\>.
2067 void Sema::DeclareGlobalNewDelete() {
2068   if (GlobalNewDeleteDeclared)
2069     return;
2070
2071   // C++ [basic.std.dynamic]p2:
2072   //   [...] The following allocation and deallocation functions (18.4) are
2073   //   implicitly declared in global scope in each translation unit of a
2074   //   program
2075   //
2076   //     C++03:
2077   //     void* operator new(std::size_t) throw(std::bad_alloc);
2078   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2079   //     void  operator delete(void*) throw();
2080   //     void  operator delete[](void*) throw();
2081   //     C++11:
2082   //     void* operator new(std::size_t);
2083   //     void* operator new[](std::size_t);
2084   //     void  operator delete(void*) noexcept;
2085   //     void  operator delete[](void*) noexcept;
2086   //     C++1y:
2087   //     void* operator new(std::size_t);
2088   //     void* operator new[](std::size_t);
2089   //     void  operator delete(void*) noexcept;
2090   //     void  operator delete[](void*) noexcept;
2091   //     void  operator delete(void*, std::size_t) noexcept;
2092   //     void  operator delete[](void*, std::size_t) noexcept;
2093   //
2094   //   These implicit declarations introduce only the function names operator
2095   //   new, operator new[], operator delete, operator delete[].
2096   //
2097   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2098   // "std" or "bad_alloc" as necessary to form the exception specification.
2099   // However, we do not make these implicit declarations visible to name
2100   // lookup.
2101   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2102     // The "std::bad_alloc" class has not yet been declared, so build it
2103     // implicitly.
2104     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2105                                         getOrCreateStdNamespace(),
2106                                         SourceLocation(), SourceLocation(),
2107                                       &PP.getIdentifierTable().get("bad_alloc"),
2108                                         nullptr);
2109     getStdBadAlloc()->setImplicit(true);
2110   }
2111
2112   GlobalNewDeleteDeclared = true;
2113
2114   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2115   QualType SizeT = Context.getSizeType();
2116   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
2117
2118   DeclareGlobalAllocationFunction(
2119       Context.DeclarationNames.getCXXOperatorName(OO_New),
2120       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2121   DeclareGlobalAllocationFunction(
2122       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2123       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2124   DeclareGlobalAllocationFunction(
2125       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2126       Context.VoidTy, VoidPtr);
2127   DeclareGlobalAllocationFunction(
2128       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2129       Context.VoidTy, VoidPtr);
2130   if (getLangOpts().SizedDeallocation) {
2131     DeclareGlobalAllocationFunction(
2132         Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2133         Context.VoidTy, VoidPtr, Context.getSizeType());
2134     DeclareGlobalAllocationFunction(
2135         Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2136         Context.VoidTy, VoidPtr, Context.getSizeType());
2137   }
2138 }
2139
2140 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2141 /// allocation function if it doesn't already exist.
2142 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2143                                            QualType Return,
2144                                            QualType Param1, QualType Param2,
2145                                            bool AddRestrictAttr) {
2146   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2147   unsigned NumParams = Param2.isNull() ? 1 : 2;
2148
2149   // Check if this function is already declared.
2150   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2151   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2152        Alloc != AllocEnd; ++Alloc) {
2153     // Only look at non-template functions, as it is the predefined,
2154     // non-templated allocation function we are trying to declare here.
2155     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2156       if (Func->getNumParams() == NumParams) {
2157         QualType InitialParam1Type =
2158             Context.getCanonicalType(Func->getParamDecl(0)
2159                                          ->getType().getUnqualifiedType());
2160         QualType InitialParam2Type =
2161             NumParams == 2
2162                 ? Context.getCanonicalType(Func->getParamDecl(1)
2163                                                ->getType().getUnqualifiedType())
2164                 : QualType();
2165         // FIXME: Do we need to check for default arguments here?
2166         if (InitialParam1Type == Param1 &&
2167             (NumParams == 1 || InitialParam2Type == Param2)) {
2168           if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>())
2169             Func->addAttr(RestrictAttr::CreateImplicit(
2170                 Context, RestrictAttr::GNU_malloc));
2171           // Make the function visible to name lookup, even if we found it in
2172           // an unimported module. It either is an implicitly-declared global
2173           // allocation function, or is suppressing that function.
2174           Func->setHidden(false);
2175           return;
2176         }
2177       }
2178     }
2179   }
2180
2181   FunctionProtoType::ExtProtoInfo EPI;
2182
2183   QualType BadAllocType;
2184   bool HasBadAllocExceptionSpec
2185     = (Name.getCXXOverloadedOperator() == OO_New ||
2186        Name.getCXXOverloadedOperator() == OO_Array_New);
2187   if (HasBadAllocExceptionSpec) {
2188     if (!getLangOpts().CPlusPlus11) {
2189       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2190       assert(StdBadAlloc && "Must have std::bad_alloc declared");
2191       EPI.ExceptionSpec.Type = EST_Dynamic;
2192       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2193     }
2194   } else {
2195     EPI.ExceptionSpec =
2196         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2197   }
2198
2199   QualType Params[] = { Param1, Param2 };
2200
2201   QualType FnType = Context.getFunctionType(
2202       Return, llvm::makeArrayRef(Params, NumParams), EPI);
2203   FunctionDecl *Alloc =
2204     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2205                          SourceLocation(), Name,
2206                          FnType, /*TInfo=*/nullptr, SC_None, false, true);
2207   Alloc->setImplicit();
2208   
2209   // Implicit sized deallocation functions always have default visibility.
2210   Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
2211                                                 VisibilityAttr::Default));
2212
2213   if (AddRestrictAttr)
2214     Alloc->addAttr(
2215         RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc));
2216
2217   ParmVarDecl *ParamDecls[2];
2218   for (unsigned I = 0; I != NumParams; ++I) {
2219     ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2220                                         SourceLocation(), nullptr,
2221                                         Params[I], /*TInfo=*/nullptr,
2222                                         SC_None, nullptr);
2223     ParamDecls[I]->setImplicit();
2224   }
2225   Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
2226
2227   Context.getTranslationUnitDecl()->addDecl(Alloc);
2228   IdResolver.tryAddTopLevelDecl(Alloc, Name);
2229 }
2230
2231 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2232                                                   bool CanProvideSize,
2233                                                   DeclarationName Name) {
2234   DeclareGlobalNewDelete();
2235
2236   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2237   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2238
2239   // C++ [expr.new]p20:
2240   //   [...] Any non-placement deallocation function matches a
2241   //   non-placement allocation function. [...]
2242   llvm::SmallVector<FunctionDecl*, 2> Matches;
2243   for (LookupResult::iterator D = FoundDelete.begin(),
2244                            DEnd = FoundDelete.end();
2245        D != DEnd; ++D) {
2246     if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2247       if (isNonPlacementDeallocationFunction(*this, Fn))
2248         Matches.push_back(Fn);
2249   }
2250
2251   // C++1y [expr.delete]p?:
2252   //   If the type is complete and deallocation function lookup finds both a
2253   //   usual deallocation function with only a pointer parameter and a usual
2254   //   deallocation function with both a pointer parameter and a size
2255   //   parameter, then the selected deallocation function shall be the one
2256   //   with two parameters.  Otherwise, the selected deallocation function
2257   //   shall be the function with one parameter.
2258   if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2259     unsigned NumArgs = CanProvideSize ? 2 : 1;
2260     if (Matches[0]->getNumParams() != NumArgs)
2261       Matches.erase(Matches.begin());
2262     else
2263       Matches.erase(Matches.begin() + 1);
2264     assert(Matches[0]->getNumParams() == NumArgs &&
2265            "found an unexpected usual deallocation function");
2266   }
2267
2268   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
2269     EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2270
2271   assert(Matches.size() == 1 &&
2272          "unexpectedly have multiple usual deallocation functions");
2273   return Matches.front();
2274 }
2275
2276 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2277                                     DeclarationName Name,
2278                                     FunctionDecl* &Operator, bool Diagnose) {
2279   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2280   // Try to find operator delete/operator delete[] in class scope.
2281   LookupQualifiedName(Found, RD);
2282
2283   if (Found.isAmbiguous())
2284     return true;
2285
2286   Found.suppressDiagnostics();
2287
2288   SmallVector<DeclAccessPair,4> Matches;
2289   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2290        F != FEnd; ++F) {
2291     NamedDecl *ND = (*F)->getUnderlyingDecl();
2292
2293     // Ignore template operator delete members from the check for a usual
2294     // deallocation function.
2295     if (isa<FunctionTemplateDecl>(ND))
2296       continue;
2297
2298     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2299       Matches.push_back(F.getPair());
2300   }
2301
2302   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
2303     EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2304
2305   // There's exactly one suitable operator;  pick it.
2306   if (Matches.size() == 1) {
2307     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2308
2309     if (Operator->isDeleted()) {
2310       if (Diagnose) {
2311         Diag(StartLoc, diag::err_deleted_function_use);
2312         NoteDeletedFunction(Operator);
2313       }
2314       return true;
2315     }
2316
2317     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2318                               Matches[0], Diagnose) == AR_inaccessible)
2319       return true;
2320
2321     return false;
2322
2323   // We found multiple suitable operators;  complain about the ambiguity.
2324   } else if (!Matches.empty()) {
2325     if (Diagnose) {
2326       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2327         << Name << RD;
2328
2329       for (SmallVectorImpl<DeclAccessPair>::iterator
2330              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2331         Diag((*F)->getUnderlyingDecl()->getLocation(),
2332              diag::note_member_declared_here) << Name;
2333     }
2334     return true;
2335   }
2336
2337   // We did find operator delete/operator delete[] declarations, but
2338   // none of them were suitable.
2339   if (!Found.empty()) {
2340     if (Diagnose) {
2341       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2342         << Name << RD;
2343
2344       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2345            F != FEnd; ++F)
2346         Diag((*F)->getUnderlyingDecl()->getLocation(),
2347              diag::note_member_declared_here) << Name;
2348     }
2349     return true;
2350   }
2351
2352   Operator = nullptr;
2353   return false;
2354 }
2355
2356 namespace {
2357 /// \brief Checks whether delete-expression, and new-expression used for
2358 ///  initializing deletee have the same array form.
2359 class MismatchingNewDeleteDetector {
2360 public:
2361   enum MismatchResult {
2362     /// Indicates that there is no mismatch or a mismatch cannot be proven.
2363     NoMismatch,
2364     /// Indicates that variable is initialized with mismatching form of \a new.
2365     VarInitMismatches,
2366     /// Indicates that member is initialized with mismatching form of \a new.
2367     MemberInitMismatches,
2368     /// Indicates that 1 or more constructors' definitions could not been
2369     /// analyzed, and they will be checked again at the end of translation unit.
2370     AnalyzeLater
2371   };
2372
2373   /// \param EndOfTU True, if this is the final analysis at the end of
2374   /// translation unit. False, if this is the initial analysis at the point
2375   /// delete-expression was encountered.
2376   explicit MismatchingNewDeleteDetector(bool EndOfTU)
2377       : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU),
2378         HasUndefinedConstructors(false) {}
2379
2380   /// \brief Checks whether pointee of a delete-expression is initialized with
2381   /// matching form of new-expression.
2382   ///
2383   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2384   /// point where delete-expression is encountered, then a warning will be
2385   /// issued immediately. If return value is \c AnalyzeLater at the point where
2386   /// delete-expression is seen, then member will be analyzed at the end of
2387   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2388   /// couldn't be analyzed. If at least one constructor initializes the member
2389   /// with matching type of new, the return value is \c NoMismatch.
2390   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2391   /// \brief Analyzes a class member.
2392   /// \param Field Class member to analyze.
2393   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2394   /// for deleting the \p Field.
2395   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2396   /// List of mismatching new-expressions used for initialization of the pointee
2397   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2398   /// Indicates whether delete-expression was in array form.
2399   bool IsArrayForm;
2400   FieldDecl *Field;
2401
2402 private:
2403   const bool EndOfTU;
2404   /// \brief Indicates that there is at least one constructor without body.
2405   bool HasUndefinedConstructors;
2406   /// \brief Returns \c CXXNewExpr from given initialization expression.
2407   /// \param E Expression used for initializing pointee in delete-expression.
2408   /// E can be a single-element \c InitListExpr consisting of new-expression.
2409   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
2410   /// \brief Returns whether member is initialized with mismatching form of
2411   /// \c new either by the member initializer or in-class initialization.
2412   ///
2413   /// If bodies of all constructors are not visible at the end of translation
2414   /// unit or at least one constructor initializes member with the matching
2415   /// form of \c new, mismatch cannot be proven, and this function will return
2416   /// \c NoMismatch.
2417   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
2418   /// \brief Returns whether variable is initialized with mismatching form of
2419   /// \c new.
2420   ///
2421   /// If variable is initialized with matching form of \c new or variable is not
2422   /// initialized with a \c new expression, this function will return true.
2423   /// If variable is initialized with mismatching form of \c new, returns false.
2424   /// \param D Variable to analyze.
2425   bool hasMatchingVarInit(const DeclRefExpr *D);
2426   /// \brief Checks whether the constructor initializes pointee with mismatching
2427   /// form of \c new.
2428   ///
2429   /// Returns true, if member is initialized with matching form of \c new in
2430   /// member initializer list. Returns false, if member is initialized with the
2431   /// matching form of \c new in this constructor's initializer or given
2432   /// constructor isn't defined at the point where delete-expression is seen, or
2433   /// member isn't initialized by the constructor.
2434   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
2435   /// \brief Checks whether member is initialized with matching form of
2436   /// \c new in member initializer list.
2437   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
2438   /// Checks whether member is initialized with mismatching form of \c new by
2439   /// in-class initializer.
2440   MismatchResult analyzeInClassInitializer();
2441 };
2442 }
2443
2444 MismatchingNewDeleteDetector::MismatchResult
2445 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
2446   NewExprs.clear();
2447   assert(DE && "Expected delete-expression");
2448   IsArrayForm = DE->isArrayForm();
2449   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
2450   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
2451     return analyzeMemberExpr(ME);
2452   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
2453     if (!hasMatchingVarInit(D))
2454       return VarInitMismatches;
2455   }
2456   return NoMismatch;
2457 }
2458
2459 const CXXNewExpr *
2460 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
2461   assert(E != nullptr && "Expected a valid initializer expression");
2462   E = E->IgnoreParenImpCasts();
2463   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
2464     if (ILE->getNumInits() == 1)
2465       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
2466   }
2467
2468   return dyn_cast_or_null<const CXXNewExpr>(E);
2469 }
2470
2471 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
2472     const CXXCtorInitializer *CI) {
2473   const CXXNewExpr *NE = nullptr;
2474   if (Field == CI->getMember() &&
2475       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
2476     if (NE->isArray() == IsArrayForm)
2477       return true;
2478     else
2479       NewExprs.push_back(NE);
2480   }
2481   return false;
2482 }
2483
2484 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
2485     const CXXConstructorDecl *CD) {
2486   if (CD->isImplicit())
2487     return false;
2488   const FunctionDecl *Definition = CD;
2489   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
2490     HasUndefinedConstructors = true;
2491     return EndOfTU;
2492   }
2493   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
2494     if (hasMatchingNewInCtorInit(CI))
2495       return true;
2496   }
2497   return false;
2498 }
2499
2500 MismatchingNewDeleteDetector::MismatchResult
2501 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
2502   assert(Field != nullptr && "This should be called only for members");
2503   const Expr *InitExpr = Field->getInClassInitializer();
2504   if (!InitExpr)
2505     return EndOfTU ? NoMismatch : AnalyzeLater;
2506   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
2507     if (NE->isArray() != IsArrayForm) {
2508       NewExprs.push_back(NE);
2509       return MemberInitMismatches;
2510     }
2511   }
2512   return NoMismatch;
2513 }
2514
2515 MismatchingNewDeleteDetector::MismatchResult
2516 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
2517                                            bool DeleteWasArrayForm) {
2518   assert(Field != nullptr && "Analysis requires a valid class member.");
2519   this->Field = Field;
2520   IsArrayForm = DeleteWasArrayForm;
2521   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
2522   for (const auto *CD : RD->ctors()) {
2523     if (hasMatchingNewInCtor(CD))
2524       return NoMismatch;
2525   }
2526   if (HasUndefinedConstructors)
2527     return EndOfTU ? NoMismatch : AnalyzeLater;
2528   if (!NewExprs.empty())
2529     return MemberInitMismatches;
2530   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
2531                                         : NoMismatch;
2532 }
2533
2534 MismatchingNewDeleteDetector::MismatchResult
2535 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
2536   assert(ME != nullptr && "Expected a member expression");
2537   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2538     return analyzeField(F, IsArrayForm);
2539   return NoMismatch;
2540 }
2541
2542 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
2543   const CXXNewExpr *NE = nullptr;
2544   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
2545     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
2546         NE->isArray() != IsArrayForm) {
2547       NewExprs.push_back(NE);
2548     }
2549   }
2550   return NewExprs.empty();
2551 }
2552
2553 static void
2554 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
2555                             const MismatchingNewDeleteDetector &Detector) {
2556   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
2557   FixItHint H;
2558   if (!Detector.IsArrayForm)
2559     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
2560   else {
2561     SourceLocation RSquare = Lexer::findLocationAfterToken(
2562         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
2563         SemaRef.getLangOpts(), true);
2564     if (RSquare.isValid())
2565       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
2566   }
2567   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
2568       << Detector.IsArrayForm << H;
2569
2570   for (const auto *NE : Detector.NewExprs)
2571     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
2572         << Detector.IsArrayForm;
2573 }
2574
2575 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
2576   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
2577     return;
2578   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
2579   switch (Detector.analyzeDeleteExpr(DE)) {
2580   case MismatchingNewDeleteDetector::VarInitMismatches:
2581   case MismatchingNewDeleteDetector::MemberInitMismatches: {
2582     DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
2583     break;
2584   }
2585   case MismatchingNewDeleteDetector::AnalyzeLater: {
2586     DeleteExprs[Detector.Field].push_back(
2587         std::make_pair(DE->getLocStart(), DE->isArrayForm()));
2588     break;
2589   }
2590   case MismatchingNewDeleteDetector::NoMismatch:
2591     break;
2592   }
2593 }
2594
2595 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
2596                                      bool DeleteWasArrayForm) {
2597   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
2598   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
2599   case MismatchingNewDeleteDetector::VarInitMismatches:
2600     llvm_unreachable("This analysis should have been done for class members.");
2601   case MismatchingNewDeleteDetector::AnalyzeLater:
2602     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
2603                      "translation unit.");
2604   case MismatchingNewDeleteDetector::MemberInitMismatches:
2605     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
2606     break;
2607   case MismatchingNewDeleteDetector::NoMismatch:
2608     break;
2609   }
2610 }
2611
2612 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2613 /// @code ::delete ptr; @endcode
2614 /// or
2615 /// @code delete [] ptr; @endcode
2616 ExprResult
2617 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2618                      bool ArrayForm, Expr *ExE) {
2619   // C++ [expr.delete]p1:
2620   //   The operand shall have a pointer type, or a class type having a single
2621   //   non-explicit conversion function to a pointer type. The result has type
2622   //   void.
2623   //
2624   // DR599 amends "pointer type" to "pointer to object type" in both cases.
2625
2626   ExprResult Ex = ExE;
2627   FunctionDecl *OperatorDelete = nullptr;
2628   bool ArrayFormAsWritten = ArrayForm;
2629   bool UsualArrayDeleteWantsSize = false;
2630
2631   if (!Ex.get()->isTypeDependent()) {
2632     // Perform lvalue-to-rvalue cast, if needed.
2633     Ex = DefaultLvalueConversion(Ex.get());
2634     if (Ex.isInvalid())
2635       return ExprError();
2636
2637     QualType Type = Ex.get()->getType();
2638
2639     class DeleteConverter : public ContextualImplicitConverter {
2640     public:
2641       DeleteConverter() : ContextualImplicitConverter(false, true) {}
2642
2643       bool match(QualType ConvType) override {
2644         // FIXME: If we have an operator T* and an operator void*, we must pick
2645         // the operator T*.
2646         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2647           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2648             return true;
2649         return false;
2650       }
2651
2652       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2653                                             QualType T) override {
2654         return S.Diag(Loc, diag::err_delete_operand) << T;
2655       }
2656
2657       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2658                                                QualType T) override {
2659         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2660       }
2661
2662       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2663                                                  QualType T,
2664                                                  QualType ConvTy) override {
2665         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2666       }
2667
2668       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2669                                              QualType ConvTy) override {
2670         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2671           << ConvTy;
2672       }
2673
2674       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2675                                               QualType T) override {
2676         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2677       }
2678
2679       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2680                                           QualType ConvTy) override {
2681         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2682           << ConvTy;
2683       }
2684
2685       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2686                                                QualType T,
2687                                                QualType ConvTy) override {
2688         llvm_unreachable("conversion functions are permitted");
2689       }
2690     } Converter;
2691
2692     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2693     if (Ex.isInvalid())
2694       return ExprError();
2695     Type = Ex.get()->getType();
2696     if (!Converter.match(Type))
2697       // FIXME: PerformContextualImplicitConversion should return ExprError
2698       //        itself in this case.
2699       return ExprError();
2700
2701     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2702     QualType PointeeElem = Context.getBaseElementType(Pointee);
2703
2704     if (unsigned AddressSpace = Pointee.getAddressSpace())
2705       return Diag(Ex.get()->getLocStart(), 
2706                   diag::err_address_space_qualified_delete)
2707                << Pointee.getUnqualifiedType() << AddressSpace;
2708
2709     CXXRecordDecl *PointeeRD = nullptr;
2710     if (Pointee->isVoidType() && !isSFINAEContext()) {
2711       // The C++ standard bans deleting a pointer to a non-object type, which
2712       // effectively bans deletion of "void*". However, most compilers support
2713       // this, so we treat it as a warning unless we're in a SFINAE context.
2714       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2715         << Type << Ex.get()->getSourceRange();
2716     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2717       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2718         << Type << Ex.get()->getSourceRange());
2719     } else if (!Pointee->isDependentType()) {
2720       // FIXME: This can result in errors if the definition was imported from a
2721       // module but is hidden.
2722       if (!RequireCompleteType(StartLoc, Pointee,
2723                                diag::warn_delete_incomplete, Ex.get())) {
2724         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2725           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2726       }
2727     }
2728
2729     if (Pointee->isArrayType() && !ArrayForm) {
2730       Diag(StartLoc, diag::warn_delete_array_type)
2731           << Type << Ex.get()->getSourceRange()
2732           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
2733       ArrayForm = true;
2734     }
2735
2736     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2737                                       ArrayForm ? OO_Array_Delete : OO_Delete);
2738
2739     if (PointeeRD) {
2740       if (!UseGlobal &&
2741           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2742                                    OperatorDelete))
2743         return ExprError();
2744
2745       // If we're allocating an array of records, check whether the
2746       // usual operator delete[] has a size_t parameter.
2747       if (ArrayForm) {
2748         // If the user specifically asked to use the global allocator,
2749         // we'll need to do the lookup into the class.
2750         if (UseGlobal)
2751           UsualArrayDeleteWantsSize =
2752             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2753
2754         // Otherwise, the usual operator delete[] should be the
2755         // function we just found.
2756         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2757           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2758       }
2759
2760       if (!PointeeRD->hasIrrelevantDestructor())
2761         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2762           MarkFunctionReferenced(StartLoc,
2763                                     const_cast<CXXDestructorDecl*>(Dtor));
2764           if (DiagnoseUseOfDecl(Dtor, StartLoc))
2765             return ExprError();
2766         }
2767
2768       // C++ [expr.delete]p3:
2769       //   In the first alternative (delete object), if the static type of the
2770       //   object to be deleted is different from its dynamic type, the static
2771       //   type shall be a base class of the dynamic type of the object to be
2772       //   deleted and the static type shall have a virtual destructor or the
2773       //   behavior is undefined.
2774       //
2775       // Note: a final class cannot be derived from, no issue there
2776       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2777         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2778         if (dtor && !dtor->isVirtual()) {
2779           if (PointeeRD->isAbstract()) {
2780             // If the class is abstract, we warn by default, because we're
2781             // sure the code has undefined behavior.
2782             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2783                 << PointeeElem;
2784           } else if (!ArrayForm) {
2785             // Otherwise, if this is not an array delete, it's a bit suspect,
2786             // but not necessarily wrong.
2787             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2788           }
2789         }
2790       }
2791
2792     }
2793
2794     if (!OperatorDelete)
2795       // Look for a global declaration.
2796       OperatorDelete = FindUsualDeallocationFunction(
2797           StartLoc, isCompleteType(StartLoc, Pointee) &&
2798                     (!ArrayForm || UsualArrayDeleteWantsSize ||
2799                      Pointee.isDestructedType()),
2800           DeleteName);
2801
2802     MarkFunctionReferenced(StartLoc, OperatorDelete);
2803
2804     // Check access and ambiguity of operator delete and destructor.
2805     if (PointeeRD) {
2806       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2807           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 
2808                       PDiag(diag::err_access_dtor) << PointeeElem);
2809       }
2810     }
2811   }
2812
2813   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
2814       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
2815       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
2816   AnalyzeDeleteExprMismatch(Result);
2817   return Result;
2818 }
2819
2820 /// \brief Check the use of the given variable as a C++ condition in an if,
2821 /// while, do-while, or switch statement.
2822 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2823                                         SourceLocation StmtLoc,
2824                                         bool ConvertToBoolean) {
2825   if (ConditionVar->isInvalidDecl())
2826     return ExprError();
2827
2828   QualType T = ConditionVar->getType();
2829
2830   // C++ [stmt.select]p2:
2831   //   The declarator shall not specify a function or an array.
2832   if (T->isFunctionType())
2833     return ExprError(Diag(ConditionVar->getLocation(),
2834                           diag::err_invalid_use_of_function_type)
2835                        << ConditionVar->getSourceRange());
2836   else if (T->isArrayType())
2837     return ExprError(Diag(ConditionVar->getLocation(),
2838                           diag::err_invalid_use_of_array_type)
2839                      << ConditionVar->getSourceRange());
2840
2841   ExprResult Condition = DeclRefExpr::Create(
2842       Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
2843       /*enclosing*/ false, ConditionVar->getLocation(),
2844       ConditionVar->getType().getNonReferenceType(), VK_LValue);
2845
2846   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2847
2848   if (ConvertToBoolean) {
2849     Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
2850     if (Condition.isInvalid())
2851       return ExprError();
2852   }
2853
2854   return Condition;
2855 }
2856
2857 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2858 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2859   // C++ 6.4p4:
2860   // The value of a condition that is an initialized declaration in a statement
2861   // other than a switch statement is the value of the declared variable
2862   // implicitly converted to type bool. If that conversion is ill-formed, the
2863   // program is ill-formed.
2864   // The value of a condition that is an expression is the value of the
2865   // expression, implicitly converted to bool.
2866   //
2867   return PerformContextuallyConvertToBool(CondExpr);
2868 }
2869
2870 /// Helper function to determine whether this is the (deprecated) C++
2871 /// conversion from a string literal to a pointer to non-const char or
2872 /// non-const wchar_t (for narrow and wide string literals,
2873 /// respectively).
2874 bool
2875 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2876   // Look inside the implicit cast, if it exists.
2877   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2878     From = Cast->getSubExpr();
2879
2880   // A string literal (2.13.4) that is not a wide string literal can
2881   // be converted to an rvalue of type "pointer to char"; a wide
2882   // string literal can be converted to an rvalue of type "pointer
2883   // to wchar_t" (C++ 4.2p2).
2884   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2885     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2886       if (const BuiltinType *ToPointeeType
2887           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2888         // This conversion is considered only when there is an
2889         // explicit appropriate pointer target type (C++ 4.2p2).
2890         if (!ToPtrType->getPointeeType().hasQualifiers()) {
2891           switch (StrLit->getKind()) {
2892             case StringLiteral::UTF8:
2893             case StringLiteral::UTF16:
2894             case StringLiteral::UTF32:
2895               // We don't allow UTF literals to be implicitly converted
2896               break;
2897             case StringLiteral::Ascii:
2898               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2899                       ToPointeeType->getKind() == BuiltinType::Char_S);
2900             case StringLiteral::Wide:
2901               return ToPointeeType->isWideCharType();
2902           }
2903         }
2904       }
2905
2906   return false;
2907 }
2908
2909 static ExprResult BuildCXXCastArgument(Sema &S,
2910                                        SourceLocation CastLoc,
2911                                        QualType Ty,
2912                                        CastKind Kind,
2913                                        CXXMethodDecl *Method,
2914                                        DeclAccessPair FoundDecl,
2915                                        bool HadMultipleCandidates,
2916                                        Expr *From) {
2917   switch (Kind) {
2918   default: llvm_unreachable("Unhandled cast kind!");
2919   case CK_ConstructorConversion: {
2920     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2921     SmallVector<Expr*, 8> ConstructorArgs;
2922
2923     if (S.RequireNonAbstractType(CastLoc, Ty,
2924                                  diag::err_allocation_of_abstract_type))
2925       return ExprError();
2926
2927     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2928       return ExprError();
2929
2930     S.CheckConstructorAccess(CastLoc, Constructor,
2931                              InitializedEntity::InitializeTemporary(Ty),
2932                              Constructor->getAccess());
2933     if (S.DiagnoseUseOfDecl(Method, CastLoc))
2934       return ExprError();
2935
2936     ExprResult Result = S.BuildCXXConstructExpr(
2937         CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2938         ConstructorArgs, HadMultipleCandidates,
2939         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2940         CXXConstructExpr::CK_Complete, SourceRange());
2941     if (Result.isInvalid())
2942       return ExprError();
2943
2944     return S.MaybeBindToTemporary(Result.getAs<Expr>());
2945   }
2946
2947   case CK_UserDefinedConversion: {
2948     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2949
2950     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
2951     if (S.DiagnoseUseOfDecl(Method, CastLoc))
2952       return ExprError();
2953
2954     // Create an implicit call expr that calls it.
2955     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2956     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2957                                                  HadMultipleCandidates);
2958     if (Result.isInvalid())
2959       return ExprError();
2960     // Record usage of conversion in an implicit cast.
2961     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
2962                                       CK_UserDefinedConversion, Result.get(),
2963                                       nullptr, Result.get()->getValueKind());
2964
2965     return S.MaybeBindToTemporary(Result.get());
2966   }
2967   }
2968 }
2969
2970 /// PerformImplicitConversion - Perform an implicit conversion of the
2971 /// expression From to the type ToType using the pre-computed implicit
2972 /// conversion sequence ICS. Returns the converted
2973 /// expression. Action is the kind of conversion we're performing,
2974 /// used in the error message.
2975 ExprResult
2976 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2977                                 const ImplicitConversionSequence &ICS,
2978                                 AssignmentAction Action, 
2979                                 CheckedConversionKind CCK) {
2980   switch (ICS.getKind()) {
2981   case ImplicitConversionSequence::StandardConversion: {
2982     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2983                                                Action, CCK);
2984     if (Res.isInvalid())
2985       return ExprError();
2986     From = Res.get();
2987     break;
2988   }
2989
2990   case ImplicitConversionSequence::UserDefinedConversion: {
2991
2992       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2993       CastKind CastKind;
2994       QualType BeforeToType;
2995       assert(FD && "no conversion function for user-defined conversion seq");
2996       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2997         CastKind = CK_UserDefinedConversion;
2998
2999         // If the user-defined conversion is specified by a conversion function,
3000         // the initial standard conversion sequence converts the source type to
3001         // the implicit object parameter of the conversion function.
3002         BeforeToType = Context.getTagDeclType(Conv->getParent());
3003       } else {
3004         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3005         CastKind = CK_ConstructorConversion;
3006         // Do no conversion if dealing with ... for the first conversion.
3007         if (!ICS.UserDefined.EllipsisConversion) {
3008           // If the user-defined conversion is specified by a constructor, the
3009           // initial standard conversion sequence converts the source type to
3010           // the type required by the argument of the constructor
3011           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3012         }
3013       }
3014       // Watch out for ellipsis conversion.
3015       if (!ICS.UserDefined.EllipsisConversion) {
3016         ExprResult Res =
3017           PerformImplicitConversion(From, BeforeToType,
3018                                     ICS.UserDefined.Before, AA_Converting,
3019                                     CCK);
3020         if (Res.isInvalid())
3021           return ExprError();
3022         From = Res.get();
3023       }
3024
3025       ExprResult CastArg
3026         = BuildCXXCastArgument(*this,
3027                                From->getLocStart(),
3028                                ToType.getNonReferenceType(),
3029                                CastKind, cast<CXXMethodDecl>(FD),
3030                                ICS.UserDefined.FoundConversionFunction,
3031                                ICS.UserDefined.HadMultipleCandidates,
3032                                From);
3033
3034       if (CastArg.isInvalid())
3035         return ExprError();
3036
3037       From = CastArg.get();
3038
3039       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3040                                        AA_Converting, CCK);
3041   }
3042
3043   case ImplicitConversionSequence::AmbiguousConversion:
3044     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3045                           PDiag(diag::err_typecheck_ambiguous_condition)
3046                             << From->getSourceRange());
3047      return ExprError();
3048
3049   case ImplicitConversionSequence::EllipsisConversion:
3050     llvm_unreachable("Cannot perform an ellipsis conversion");
3051
3052   case ImplicitConversionSequence::BadConversion:
3053     return ExprError();
3054   }
3055
3056   // Everything went well.
3057   return From;
3058 }
3059
3060 /// PerformImplicitConversion - Perform an implicit conversion of the
3061 /// expression From to the type ToType by following the standard
3062 /// conversion sequence SCS. Returns the converted
3063 /// expression. Flavor is the context in which we're performing this
3064 /// conversion, for use in error messages.
3065 ExprResult
3066 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3067                                 const StandardConversionSequence& SCS,
3068                                 AssignmentAction Action, 
3069                                 CheckedConversionKind CCK) {
3070   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3071   
3072   // Overall FIXME: we are recomputing too many types here and doing far too
3073   // much extra work. What this means is that we need to keep track of more
3074   // information that is computed when we try the implicit conversion initially,
3075   // so that we don't need to recompute anything here.
3076   QualType FromType = From->getType();
3077   
3078   if (SCS.CopyConstructor) {
3079     // FIXME: When can ToType be a reference type?
3080     assert(!ToType->isReferenceType());
3081     if (SCS.Second == ICK_Derived_To_Base) {
3082       SmallVector<Expr*, 8> ConstructorArgs;
3083       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3084                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
3085                                   ConstructorArgs))
3086         return ExprError();
3087       return BuildCXXConstructExpr(
3088           /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
3089           ConstructorArgs, /*HadMultipleCandidates*/ false,
3090           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3091           CXXConstructExpr::CK_Complete, SourceRange());
3092     }
3093     return BuildCXXConstructExpr(
3094         /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
3095         From, /*HadMultipleCandidates*/ false,
3096         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3097         CXXConstructExpr::CK_Complete, SourceRange());
3098   }
3099
3100   // Resolve overloaded function references.
3101   if (Context.hasSameType(FromType, Context.OverloadTy)) {
3102     DeclAccessPair Found;
3103     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3104                                                           true, Found);
3105     if (!Fn)
3106       return ExprError();
3107
3108     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
3109       return ExprError();
3110
3111     From = FixOverloadedFunctionReference(From, Found, Fn);
3112     FromType = From->getType();
3113   }
3114
3115   // If we're converting to an atomic type, first convert to the corresponding
3116   // non-atomic type.
3117   QualType ToAtomicType;
3118   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3119     ToAtomicType = ToType;
3120     ToType = ToAtomic->getValueType();
3121   }
3122
3123   QualType InitialFromType = FromType;
3124   // Perform the first implicit conversion.
3125   switch (SCS.First) {
3126   case ICK_Identity:
3127     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3128       FromType = FromAtomic->getValueType().getUnqualifiedType();
3129       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3130                                       From, /*BasePath=*/nullptr, VK_RValue);
3131     }
3132     break;
3133
3134   case ICK_Lvalue_To_Rvalue: {
3135     assert(From->getObjectKind() != OK_ObjCProperty);
3136     ExprResult FromRes = DefaultLvalueConversion(From);
3137     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3138     From = FromRes.get();
3139     FromType = From->getType();
3140     break;
3141   }
3142
3143   case ICK_Array_To_Pointer:
3144     FromType = Context.getArrayDecayedType(FromType);
3145     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 
3146                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3147     break;
3148
3149   case ICK_Function_To_Pointer:
3150     FromType = Context.getPointerType(FromType);
3151     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 
3152                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3153     break;
3154
3155   default:
3156     llvm_unreachable("Improper first standard conversion");
3157   }
3158
3159   // Perform the second implicit conversion
3160   switch (SCS.Second) {
3161   case ICK_Identity:
3162     // C++ [except.spec]p5:
3163     //   [For] assignment to and initialization of pointers to functions,
3164     //   pointers to member functions, and references to functions: the
3165     //   target entity shall allow at least the exceptions allowed by the
3166     //   source value in the assignment or initialization.
3167     switch (Action) {
3168     case AA_Assigning:
3169     case AA_Initializing:
3170       // Note, function argument passing and returning are initialization.
3171     case AA_Passing:
3172     case AA_Returning:
3173     case AA_Sending:
3174     case AA_Passing_CFAudited:
3175       if (CheckExceptionSpecCompatibility(From, ToType))
3176         return ExprError();
3177       break;
3178
3179     case AA_Casting:
3180     case AA_Converting:
3181       // Casts and implicit conversions are not initialization, so are not
3182       // checked for exception specification mismatches.
3183       break;
3184     }
3185     // Nothing else to do.
3186     break;
3187
3188   case ICK_NoReturn_Adjustment:
3189     // If both sides are functions (or pointers/references to them), there could
3190     // be incompatible exception declarations.
3191     if (CheckExceptionSpecCompatibility(From, ToType))
3192       return ExprError();
3193
3194     From = ImpCastExprToType(From, ToType, CK_NoOp, 
3195                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3196     break;
3197
3198   case ICK_Integral_Promotion:
3199   case ICK_Integral_Conversion:
3200     if (ToType->isBooleanType()) {
3201       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
3202              SCS.Second == ICK_Integral_Promotion &&
3203              "only enums with fixed underlying type can promote to bool");
3204       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
3205                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
3206     } else {
3207       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
3208                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
3209     }
3210     break;
3211
3212   case ICK_Floating_Promotion:
3213   case ICK_Floating_Conversion:
3214     From = ImpCastExprToType(From, ToType, CK_FloatingCast, 
3215                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3216     break;
3217
3218   case ICK_Complex_Promotion:
3219   case ICK_Complex_Conversion: {
3220     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
3221     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
3222     CastKind CK;
3223     if (FromEl->isRealFloatingType()) {
3224       if (ToEl->isRealFloatingType())
3225         CK = CK_FloatingComplexCast;
3226       else
3227         CK = CK_FloatingComplexToIntegralComplex;
3228     } else if (ToEl->isRealFloatingType()) {
3229       CK = CK_IntegralComplexToFloatingComplex;
3230     } else {
3231       CK = CK_IntegralComplexCast;
3232     }
3233     From = ImpCastExprToType(From, ToType, CK, 
3234                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3235     break;
3236   }
3237
3238   case ICK_Floating_Integral:
3239     if (ToType->isRealFloatingType())
3240       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 
3241                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
3242     else
3243       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 
3244                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
3245     break;
3246
3247   case ICK_Compatible_Conversion:
3248       From = ImpCastExprToType(From, ToType, CK_NoOp, 
3249                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
3250     break;
3251
3252   case ICK_Writeback_Conversion:
3253   case ICK_Pointer_Conversion: {
3254     if (SCS.IncompatibleObjC && Action != AA_Casting) {
3255       // Diagnose incompatible Objective-C conversions
3256       if (Action == AA_Initializing || Action == AA_Assigning)
3257         Diag(From->getLocStart(),
3258              diag::ext_typecheck_convert_incompatible_pointer)
3259           << ToType << From->getType() << Action
3260           << From->getSourceRange() << 0;
3261       else
3262         Diag(From->getLocStart(),
3263              diag::ext_typecheck_convert_incompatible_pointer)
3264           << From->getType() << ToType << Action
3265           << From->getSourceRange() << 0;
3266
3267       if (From->getType()->isObjCObjectPointerType() &&
3268           ToType->isObjCObjectPointerType())
3269         EmitRelatedResultTypeNote(From);
3270     } 
3271     else if (getLangOpts().ObjCAutoRefCount &&
3272              !CheckObjCARCUnavailableWeakConversion(ToType, 
3273                                                     From->getType())) {
3274       if (Action == AA_Initializing)
3275         Diag(From->getLocStart(), 
3276              diag::err_arc_weak_unavailable_assign);
3277       else
3278         Diag(From->getLocStart(),
3279              diag::err_arc_convesion_of_weak_unavailable) 
3280           << (Action == AA_Casting) << From->getType() << ToType 
3281           << From->getSourceRange();
3282     }
3283              
3284     CastKind Kind = CK_Invalid;
3285     CXXCastPath BasePath;
3286     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
3287       return ExprError();
3288
3289     // Make sure we extend blocks if necessary.
3290     // FIXME: doing this here is really ugly.
3291     if (Kind == CK_BlockPointerToObjCPointerCast) {
3292       ExprResult E = From;
3293       (void) PrepareCastToObjCObjectPointer(E);
3294       From = E.get();
3295     }
3296     if (getLangOpts().ObjCAutoRefCount)
3297       CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
3298     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3299              .get();
3300     break;
3301   }
3302
3303   case ICK_Pointer_Member: {
3304     CastKind Kind = CK_Invalid;
3305     CXXCastPath BasePath;
3306     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
3307       return ExprError();
3308     if (CheckExceptionSpecCompatibility(From, ToType))
3309       return ExprError();
3310
3311     // We may not have been able to figure out what this member pointer resolved
3312     // to up until this exact point.  Attempt to lock-in it's inheritance model.
3313     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3314       (void)isCompleteType(From->getExprLoc(), From->getType());
3315       (void)isCompleteType(From->getExprLoc(), ToType);
3316     }
3317
3318     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3319              .get();
3320     break;
3321   }
3322
3323   case ICK_Boolean_Conversion:
3324     // Perform half-to-boolean conversion via float.
3325     if (From->getType()->isHalfType()) {
3326       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
3327       FromType = Context.FloatTy;
3328     }
3329
3330     From = ImpCastExprToType(From, Context.BoolTy,
3331                              ScalarTypeToBooleanCastKind(FromType), 
3332                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3333     break;
3334
3335   case ICK_Derived_To_Base: {
3336     CXXCastPath BasePath;
3337     if (CheckDerivedToBaseConversion(From->getType(),
3338                                      ToType.getNonReferenceType(),
3339                                      From->getLocStart(),
3340                                      From->getSourceRange(),
3341                                      &BasePath,
3342                                      CStyle))
3343       return ExprError();
3344
3345     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
3346                       CK_DerivedToBase, From->getValueKind(),
3347                       &BasePath, CCK).get();
3348     break;
3349   }
3350
3351   case ICK_Vector_Conversion:
3352     From = ImpCastExprToType(From, ToType, CK_BitCast, 
3353                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3354     break;
3355
3356   case ICK_Vector_Splat:
3357     // Vector splat from any arithmetic type to a vector.
3358     // Cast to the element type.
3359     {
3360       QualType elType = ToType->getAs<ExtVectorType>()->getElementType();
3361       if (elType != From->getType()) {
3362         ExprResult E = From;
3363         From = ImpCastExprToType(From, elType,
3364                                  PrepareScalarCast(E, elType)).get();
3365       }
3366       From = ImpCastExprToType(From, ToType, CK_VectorSplat,
3367                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
3368     }
3369     break;
3370
3371   case ICK_Complex_Real:
3372     // Case 1.  x -> _Complex y
3373     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
3374       QualType ElType = ToComplex->getElementType();
3375       bool isFloatingComplex = ElType->isRealFloatingType();
3376
3377       // x -> y
3378       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
3379         // do nothing
3380       } else if (From->getType()->isRealFloatingType()) {
3381         From = ImpCastExprToType(From, ElType,
3382                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
3383       } else {
3384         assert(From->getType()->isIntegerType());
3385         From = ImpCastExprToType(From, ElType,
3386                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
3387       }
3388       // y -> _Complex y
3389       From = ImpCastExprToType(From, ToType,
3390                    isFloatingComplex ? CK_FloatingRealToComplex
3391                                      : CK_IntegralRealToComplex).get();
3392
3393     // Case 2.  _Complex x -> y
3394     } else {
3395       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3396       assert(FromComplex);
3397
3398       QualType ElType = FromComplex->getElementType();
3399       bool isFloatingComplex = ElType->isRealFloatingType();
3400
3401       // _Complex x -> x
3402       From = ImpCastExprToType(From, ElType,
3403                    isFloatingComplex ? CK_FloatingComplexToReal
3404                                      : CK_IntegralComplexToReal, 
3405                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
3406
3407       // x -> y
3408       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3409         // do nothing
3410       } else if (ToType->isRealFloatingType()) {
3411         From = ImpCastExprToType(From, ToType,
3412                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 
3413                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3414       } else {
3415         assert(ToType->isIntegerType());
3416         From = ImpCastExprToType(From, ToType,
3417                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 
3418                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3419       }
3420     }
3421     break;
3422   
3423   case ICK_Block_Pointer_Conversion: {
3424     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3425                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3426     break;
3427   }
3428       
3429   case ICK_TransparentUnionConversion: {
3430     ExprResult FromRes = From;
3431     Sema::AssignConvertType ConvTy =
3432       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3433     if (FromRes.isInvalid())
3434       return ExprError();
3435     From = FromRes.get();
3436     assert ((ConvTy == Sema::Compatible) &&
3437             "Improper transparent union conversion");
3438     (void)ConvTy;
3439     break;
3440   }
3441
3442   case ICK_Zero_Event_Conversion:
3443     From = ImpCastExprToType(From, ToType,
3444                              CK_ZeroToOCLEvent,
3445                              From->getValueKind()).get();
3446     break;
3447
3448   case ICK_Lvalue_To_Rvalue:
3449   case ICK_Array_To_Pointer:
3450   case ICK_Function_To_Pointer:
3451   case ICK_Qualification:
3452   case ICK_Num_Conversion_Kinds:
3453   case ICK_C_Only_Conversion:
3454     llvm_unreachable("Improper second standard conversion");
3455   }
3456
3457   switch (SCS.Third) {
3458   case ICK_Identity:
3459     // Nothing to do.
3460     break;
3461
3462   case ICK_Qualification: {
3463     // The qualification keeps the category of the inner expression, unless the
3464     // target type isn't a reference.
3465     ExprValueKind VK = ToType->isReferenceType() ?
3466                                   From->getValueKind() : VK_RValue;
3467     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3468                              CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3469
3470     if (SCS.DeprecatedStringLiteralToCharPtr &&
3471         !getLangOpts().WritableStrings) {
3472       Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3473            ? diag::ext_deprecated_string_literal_conversion
3474            : diag::warn_deprecated_string_literal_conversion)
3475         << ToType.getNonReferenceType();
3476     }
3477
3478     break;
3479   }
3480
3481   default:
3482     llvm_unreachable("Improper third standard conversion");
3483   }
3484
3485   // If this conversion sequence involved a scalar -> atomic conversion, perform
3486   // that conversion now.
3487   if (!ToAtomicType.isNull()) {
3488     assert(Context.hasSameType(
3489         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3490     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3491                              VK_RValue, nullptr, CCK).get();
3492   }
3493
3494   // If this conversion sequence succeeded and involved implicitly converting a
3495   // _Nullable type to a _Nonnull one, complain.
3496   if (CCK == CCK_ImplicitConversion)
3497     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
3498                                         From->getLocStart());
3499
3500   return From;
3501 }
3502
3503 /// \brief Check the completeness of a type in a unary type trait.
3504 ///
3505 /// If the particular type trait requires a complete type, tries to complete
3506 /// it. If completing the type fails, a diagnostic is emitted and false
3507 /// returned. If completing the type succeeds or no completion was required,
3508 /// returns true.
3509 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3510                                                 SourceLocation Loc,
3511                                                 QualType ArgTy) {
3512   // C++0x [meta.unary.prop]p3:
3513   //   For all of the class templates X declared in this Clause, instantiating
3514   //   that template with a template argument that is a class template
3515   //   specialization may result in the implicit instantiation of the template
3516   //   argument if and only if the semantics of X require that the argument
3517   //   must be a complete type.
3518   // We apply this rule to all the type trait expressions used to implement
3519   // these class templates. We also try to follow any GCC documented behavior
3520   // in these expressions to ensure portability of standard libraries.
3521   switch (UTT) {
3522   default: llvm_unreachable("not a UTT");
3523     // is_complete_type somewhat obviously cannot require a complete type.
3524   case UTT_IsCompleteType:
3525     // Fall-through
3526
3527     // These traits are modeled on the type predicates in C++0x
3528     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3529     // requiring a complete type, as whether or not they return true cannot be
3530     // impacted by the completeness of the type.
3531   case UTT_IsVoid:
3532   case UTT_IsIntegral:
3533   case UTT_IsFloatingPoint:
3534   case UTT_IsArray:
3535   case UTT_IsPointer:
3536   case UTT_IsLvalueReference:
3537   case UTT_IsRvalueReference:
3538   case UTT_IsMemberFunctionPointer:
3539   case UTT_IsMemberObjectPointer:
3540   case UTT_IsEnum:
3541   case UTT_IsUnion:
3542   case UTT_IsClass:
3543   case UTT_IsFunction:
3544   case UTT_IsReference:
3545   case UTT_IsArithmetic:
3546   case UTT_IsFundamental:
3547   case UTT_IsObject:
3548   case UTT_IsScalar:
3549   case UTT_IsCompound:
3550   case UTT_IsMemberPointer:
3551     // Fall-through
3552
3553     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3554     // which requires some of its traits to have the complete type. However,
3555     // the completeness of the type cannot impact these traits' semantics, and
3556     // so they don't require it. This matches the comments on these traits in
3557     // Table 49.
3558   case UTT_IsConst:
3559   case UTT_IsVolatile:
3560   case UTT_IsSigned:
3561   case UTT_IsUnsigned:
3562
3563   // This type trait always returns false, checking the type is moot.
3564   case UTT_IsInterfaceClass:
3565     return true;
3566
3567   // C++14 [meta.unary.prop]:
3568   //   If T is a non-union class type, T shall be a complete type.
3569   case UTT_IsEmpty:
3570   case UTT_IsPolymorphic:
3571   case UTT_IsAbstract:
3572     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
3573       if (!RD->isUnion())
3574         return !S.RequireCompleteType(
3575             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3576     return true;
3577
3578   // C++14 [meta.unary.prop]:
3579   //   If T is a class type, T shall be a complete type.
3580   case UTT_IsFinal:
3581   case UTT_IsSealed:
3582     if (ArgTy->getAsCXXRecordDecl())
3583       return !S.RequireCompleteType(
3584           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3585     return true;
3586
3587   // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3588   // applied to a complete type.
3589   case UTT_IsTrivial:
3590   case UTT_IsTriviallyCopyable:
3591   case UTT_IsStandardLayout:
3592   case UTT_IsPOD:
3593   case UTT_IsLiteral:
3594
3595   case UTT_IsDestructible:
3596   case UTT_IsNothrowDestructible:
3597     // Fall-through
3598
3599     // These trait expressions are designed to help implement predicates in
3600     // [meta.unary.prop] despite not being named the same. They are specified
3601     // by both GCC and the Embarcadero C++ compiler, and require the complete
3602     // type due to the overarching C++0x type predicates being implemented
3603     // requiring the complete type.
3604   case UTT_HasNothrowAssign:
3605   case UTT_HasNothrowMoveAssign:
3606   case UTT_HasNothrowConstructor:
3607   case UTT_HasNothrowCopy:
3608   case UTT_HasTrivialAssign:
3609   case UTT_HasTrivialMoveAssign:
3610   case UTT_HasTrivialDefaultConstructor:
3611   case UTT_HasTrivialMoveConstructor:
3612   case UTT_HasTrivialCopy:
3613   case UTT_HasTrivialDestructor:
3614   case UTT_HasVirtualDestructor:
3615     // Arrays of unknown bound are expressly allowed.
3616     QualType ElTy = ArgTy;
3617     if (ArgTy->isIncompleteArrayType())
3618       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3619
3620     // The void type is expressly allowed.
3621     if (ElTy->isVoidType())
3622       return true;
3623
3624     return !S.RequireCompleteType(
3625       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3626   }
3627 }
3628
3629 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3630                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3631                                bool (CXXRecordDecl::*HasTrivial)() const, 
3632                                bool (CXXRecordDecl::*HasNonTrivial)() const, 
3633                                bool (CXXMethodDecl::*IsDesiredOp)() const)
3634 {
3635   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3636   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3637     return true;
3638
3639   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3640   DeclarationNameInfo NameInfo(Name, KeyLoc);
3641   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3642   if (Self.LookupQualifiedName(Res, RD)) {
3643     bool FoundOperator = false;
3644     Res.suppressDiagnostics();
3645     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3646          Op != OpEnd; ++Op) {
3647       if (isa<FunctionTemplateDecl>(*Op))
3648         continue;
3649
3650       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3651       if((Operator->*IsDesiredOp)()) {
3652         FoundOperator = true;
3653         const FunctionProtoType *CPT =
3654           Operator->getType()->getAs<FunctionProtoType>();
3655         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3656         if (!CPT || !CPT->isNothrow(C))
3657           return false;
3658       }
3659     }
3660     return FoundOperator;
3661   }
3662   return false;
3663 }
3664
3665 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3666                                    SourceLocation KeyLoc, QualType T) {
3667   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3668
3669   ASTContext &C = Self.Context;
3670   switch(UTT) {
3671   default: llvm_unreachable("not a UTT");
3672     // Type trait expressions corresponding to the primary type category
3673     // predicates in C++0x [meta.unary.cat].
3674   case UTT_IsVoid:
3675     return T->isVoidType();
3676   case UTT_IsIntegral:
3677     return T->isIntegralType(C);
3678   case UTT_IsFloatingPoint:
3679     return T->isFloatingType();
3680   case UTT_IsArray:
3681     return T->isArrayType();
3682   case UTT_IsPointer:
3683     return T->isPointerType();
3684   case UTT_IsLvalueReference:
3685     return T->isLValueReferenceType();
3686   case UTT_IsRvalueReference:
3687     return T->isRValueReferenceType();
3688   case UTT_IsMemberFunctionPointer:
3689     return T->isMemberFunctionPointerType();
3690   case UTT_IsMemberObjectPointer:
3691     return T->isMemberDataPointerType();
3692   case UTT_IsEnum:
3693     return T->isEnumeralType();
3694   case UTT_IsUnion:
3695     return T->isUnionType();
3696   case UTT_IsClass:
3697     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3698   case UTT_IsFunction:
3699     return T->isFunctionType();
3700
3701     // Type trait expressions which correspond to the convenient composition
3702     // predicates in C++0x [meta.unary.comp].
3703   case UTT_IsReference:
3704     return T->isReferenceType();
3705   case UTT_IsArithmetic:
3706     return T->isArithmeticType() && !T->isEnumeralType();
3707   case UTT_IsFundamental:
3708     return T->isFundamentalType();
3709   case UTT_IsObject:
3710     return T->isObjectType();
3711   case UTT_IsScalar:
3712     // Note: semantic analysis depends on Objective-C lifetime types to be
3713     // considered scalar types. However, such types do not actually behave
3714     // like scalar types at run time (since they may require retain/release
3715     // operations), so we report them as non-scalar.
3716     if (T->isObjCLifetimeType()) {
3717       switch (T.getObjCLifetime()) {
3718       case Qualifiers::OCL_None:
3719       case Qualifiers::OCL_ExplicitNone:
3720         return true;
3721
3722       case Qualifiers::OCL_Strong:
3723       case Qualifiers::OCL_Weak:
3724       case Qualifiers::OCL_Autoreleasing:
3725         return false;
3726       }
3727     }
3728       
3729     return T->isScalarType();
3730   case UTT_IsCompound:
3731     return T->isCompoundType();
3732   case UTT_IsMemberPointer:
3733     return T->isMemberPointerType();
3734
3735     // Type trait expressions which correspond to the type property predicates
3736     // in C++0x [meta.unary.prop].
3737   case UTT_IsConst:
3738     return T.isConstQualified();
3739   case UTT_IsVolatile:
3740     return T.isVolatileQualified();
3741   case UTT_IsTrivial:
3742     return T.isTrivialType(C);
3743   case UTT_IsTriviallyCopyable:
3744     return T.isTriviallyCopyableType(C);
3745   case UTT_IsStandardLayout:
3746     return T->isStandardLayoutType();
3747   case UTT_IsPOD:
3748     return T.isPODType(C);
3749   case UTT_IsLiteral:
3750     return T->isLiteralType(C);
3751   case UTT_IsEmpty:
3752     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3753       return !RD->isUnion() && RD->isEmpty();
3754     return false;
3755   case UTT_IsPolymorphic:
3756     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3757       return !RD->isUnion() && RD->isPolymorphic();
3758     return false;
3759   case UTT_IsAbstract:
3760     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3761       return !RD->isUnion() && RD->isAbstract();
3762     return false;
3763   // __is_interface_class only returns true when CL is invoked in /CLR mode and
3764   // even then only when it is used with the 'interface struct ...' syntax
3765   // Clang doesn't support /CLR which makes this type trait moot.
3766   case UTT_IsInterfaceClass:
3767     return false;
3768   case UTT_IsFinal:
3769   case UTT_IsSealed:
3770     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3771       return RD->hasAttr<FinalAttr>();
3772     return false;
3773   case UTT_IsSigned:
3774     return T->isSignedIntegerType();
3775   case UTT_IsUnsigned:
3776     return T->isUnsignedIntegerType();
3777
3778     // Type trait expressions which query classes regarding their construction,
3779     // destruction, and copying. Rather than being based directly on the
3780     // related type predicates in the standard, they are specified by both
3781     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3782     // specifications.
3783     //
3784     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3785     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3786     //
3787     // Note that these builtins do not behave as documented in g++: if a class
3788     // has both a trivial and a non-trivial special member of a particular kind,
3789     // they return false! For now, we emulate this behavior.
3790     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3791     // does not correctly compute triviality in the presence of multiple special
3792     // members of the same kind. Revisit this once the g++ bug is fixed.
3793   case UTT_HasTrivialDefaultConstructor:
3794     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3795     //   If __is_pod (type) is true then the trait is true, else if type is
3796     //   a cv class or union type (or array thereof) with a trivial default
3797     //   constructor ([class.ctor]) then the trait is true, else it is false.
3798     if (T.isPODType(C))
3799       return true;
3800     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3801       return RD->hasTrivialDefaultConstructor() &&
3802              !RD->hasNonTrivialDefaultConstructor();
3803     return false;
3804   case UTT_HasTrivialMoveConstructor:
3805     //  This trait is implemented by MSVC 2012 and needed to parse the
3806     //  standard library headers. Specifically this is used as the logic
3807     //  behind std::is_trivially_move_constructible (20.9.4.3).
3808     if (T.isPODType(C))
3809       return true;
3810     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3811       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3812     return false;
3813   case UTT_HasTrivialCopy:
3814     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3815     //   If __is_pod (type) is true or type is a reference type then
3816     //   the trait is true, else if type is a cv class or union type
3817     //   with a trivial copy constructor ([class.copy]) then the trait
3818     //   is true, else it is false.
3819     if (T.isPODType(C) || T->isReferenceType())
3820       return true;
3821     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3822       return RD->hasTrivialCopyConstructor() &&
3823              !RD->hasNonTrivialCopyConstructor();
3824     return false;
3825   case UTT_HasTrivialMoveAssign:
3826     //  This trait is implemented by MSVC 2012 and needed to parse the
3827     //  standard library headers. Specifically it is used as the logic
3828     //  behind std::is_trivially_move_assignable (20.9.4.3)
3829     if (T.isPODType(C))
3830       return true;
3831     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3832       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3833     return false;
3834   case UTT_HasTrivialAssign:
3835     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3836     //   If type is const qualified or is a reference type then the
3837     //   trait is false. Otherwise if __is_pod (type) is true then the
3838     //   trait is true, else if type is a cv class or union type with
3839     //   a trivial copy assignment ([class.copy]) then the trait is
3840     //   true, else it is false.
3841     // Note: the const and reference restrictions are interesting,
3842     // given that const and reference members don't prevent a class
3843     // from having a trivial copy assignment operator (but do cause
3844     // errors if the copy assignment operator is actually used, q.v.
3845     // [class.copy]p12).
3846
3847     if (T.isConstQualified())
3848       return false;
3849     if (T.isPODType(C))
3850       return true;
3851     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3852       return RD->hasTrivialCopyAssignment() &&
3853              !RD->hasNonTrivialCopyAssignment();
3854     return false;
3855   case UTT_IsDestructible:
3856   case UTT_IsNothrowDestructible:
3857     // C++14 [meta.unary.prop]:
3858     //   For reference types, is_destructible<T>::value is true.
3859     if (T->isReferenceType())
3860       return true;
3861
3862     // Objective-C++ ARC: autorelease types don't require destruction.
3863     if (T->isObjCLifetimeType() &&
3864         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3865       return true;
3866
3867     // C++14 [meta.unary.prop]:
3868     //   For incomplete types and function types, is_destructible<T>::value is
3869     //   false.
3870     if (T->isIncompleteType() || T->isFunctionType())
3871       return false;
3872
3873     // C++14 [meta.unary.prop]:
3874     //   For object types and given U equal to remove_all_extents_t<T>, if the
3875     //   expression std::declval<U&>().~U() is well-formed when treated as an
3876     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
3877     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3878       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
3879       if (!Destructor)
3880         return false;
3881       //  C++14 [dcl.fct.def.delete]p2:
3882       //    A program that refers to a deleted function implicitly or
3883       //    explicitly, other than to declare it, is ill-formed.
3884       if (Destructor->isDeleted())
3885         return false;
3886       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
3887         return false;
3888       if (UTT == UTT_IsNothrowDestructible) {
3889         const FunctionProtoType *CPT =
3890             Destructor->getType()->getAs<FunctionProtoType>();
3891         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3892         if (!CPT || !CPT->isNothrow(C))
3893           return false;
3894       }
3895     }
3896     return true;
3897
3898   case UTT_HasTrivialDestructor:
3899     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3900     //   If __is_pod (type) is true or type is a reference type
3901     //   then the trait is true, else if type is a cv class or union
3902     //   type (or array thereof) with a trivial destructor
3903     //   ([class.dtor]) then the trait is true, else it is
3904     //   false.
3905     if (T.isPODType(C) || T->isReferenceType())
3906       return true;
3907       
3908     // Objective-C++ ARC: autorelease types don't require destruction.
3909     if (T->isObjCLifetimeType() && 
3910         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3911       return true;
3912       
3913     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3914       return RD->hasTrivialDestructor();
3915     return false;
3916   // TODO: Propagate nothrowness for implicitly declared special members.
3917   case UTT_HasNothrowAssign:
3918     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3919     //   If type is const qualified or is a reference type then the
3920     //   trait is false. Otherwise if __has_trivial_assign (type)
3921     //   is true then the trait is true, else if type is a cv class
3922     //   or union type with copy assignment operators that are known
3923     //   not to throw an exception then the trait is true, else it is
3924     //   false.
3925     if (C.getBaseElementType(T).isConstQualified())
3926       return false;
3927     if (T->isReferenceType())
3928       return false;
3929     if (T.isPODType(C) || T->isObjCLifetimeType())
3930       return true;
3931
3932     if (const RecordType *RT = T->getAs<RecordType>())
3933       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3934                                 &CXXRecordDecl::hasTrivialCopyAssignment,
3935                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
3936                                 &CXXMethodDecl::isCopyAssignmentOperator);
3937     return false;
3938   case UTT_HasNothrowMoveAssign:
3939     //  This trait is implemented by MSVC 2012 and needed to parse the
3940     //  standard library headers. Specifically this is used as the logic
3941     //  behind std::is_nothrow_move_assignable (20.9.4.3).
3942     if (T.isPODType(C))
3943       return true;
3944
3945     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3946       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3947                                 &CXXRecordDecl::hasTrivialMoveAssignment,
3948                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
3949                                 &CXXMethodDecl::isMoveAssignmentOperator);
3950     return false;
3951   case UTT_HasNothrowCopy:
3952     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3953     //   If __has_trivial_copy (type) is true then the trait is true, else
3954     //   if type is a cv class or union type with copy constructors that are
3955     //   known not to throw an exception then the trait is true, else it is
3956     //   false.
3957     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3958       return true;
3959     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3960       if (RD->hasTrivialCopyConstructor() &&
3961           !RD->hasNonTrivialCopyConstructor())
3962         return true;
3963
3964       bool FoundConstructor = false;
3965       unsigned FoundTQs;
3966       for (const auto *ND : Self.LookupConstructors(RD)) {
3967         // A template constructor is never a copy constructor.
3968         // FIXME: However, it may actually be selected at the actual overload
3969         // resolution point.
3970         if (isa<FunctionTemplateDecl>(ND))
3971           continue;
3972         const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
3973         if (Constructor->isCopyConstructor(FoundTQs)) {
3974           FoundConstructor = true;
3975           const FunctionProtoType *CPT
3976               = Constructor->getType()->getAs<FunctionProtoType>();
3977           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3978           if (!CPT)
3979             return false;
3980           // TODO: check whether evaluating default arguments can throw.
3981           // For now, we'll be conservative and assume that they can throw.
3982           if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
3983             return false;
3984         }
3985       }
3986
3987       return FoundConstructor;
3988     }
3989     return false;
3990   case UTT_HasNothrowConstructor:
3991     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3992     //   If __has_trivial_constructor (type) is true then the trait is
3993     //   true, else if type is a cv class or union type (or array
3994     //   thereof) with a default constructor that is known not to
3995     //   throw an exception then the trait is true, else it is false.
3996     if (T.isPODType(C) || T->isObjCLifetimeType())
3997       return true;
3998     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3999       if (RD->hasTrivialDefaultConstructor() &&
4000           !RD->hasNonTrivialDefaultConstructor())
4001         return true;
4002
4003       bool FoundConstructor = false;
4004       for (const auto *ND : Self.LookupConstructors(RD)) {
4005         // FIXME: In C++0x, a constructor template can be a default constructor.
4006         if (isa<FunctionTemplateDecl>(ND))
4007           continue;
4008         const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
4009         if (Constructor->isDefaultConstructor()) {
4010           FoundConstructor = true;
4011           const FunctionProtoType *CPT
4012               = Constructor->getType()->getAs<FunctionProtoType>();
4013           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4014           if (!CPT)
4015             return false;
4016           // FIXME: check whether evaluating default arguments can throw.
4017           // For now, we'll be conservative and assume that they can throw.
4018           if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
4019             return false;
4020         }
4021       }
4022       return FoundConstructor;
4023     }
4024     return false;
4025   case UTT_HasVirtualDestructor:
4026     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4027     //   If type is a class type with a virtual destructor ([class.dtor])
4028     //   then the trait is true, else it is false.
4029     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4030       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4031         return Destructor->isVirtual();
4032     return false;
4033
4034     // These type trait expressions are modeled on the specifications for the
4035     // Embarcadero C++0x type trait functions:
4036     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4037   case UTT_IsCompleteType:
4038     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4039     //   Returns True if and only if T is a complete type at the point of the
4040     //   function call.
4041     return !T->isIncompleteType();
4042   }
4043 }
4044
4045 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
4046 /// ARC mode.
4047 static bool hasNontrivialObjCLifetime(QualType T) {
4048   switch (T.getObjCLifetime()) {
4049   case Qualifiers::OCL_ExplicitNone:
4050     return false;
4051
4052   case Qualifiers::OCL_Strong:
4053   case Qualifiers::OCL_Weak:
4054   case Qualifiers::OCL_Autoreleasing:
4055     return true;
4056
4057   case Qualifiers::OCL_None:
4058     return T->isObjCLifetimeType();
4059   }
4060
4061   llvm_unreachable("Unknown ObjC lifetime qualifier");
4062 }
4063
4064 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4065                                     QualType RhsT, SourceLocation KeyLoc);
4066
4067 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4068                               ArrayRef<TypeSourceInfo *> Args,
4069                               SourceLocation RParenLoc) {
4070   if (Kind <= UTT_Last)
4071     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4072
4073   if (Kind <= BTT_Last)
4074     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4075                                    Args[1]->getType(), RParenLoc);
4076
4077   switch (Kind) {
4078   case clang::TT_IsConstructible:
4079   case clang::TT_IsNothrowConstructible:
4080   case clang::TT_IsTriviallyConstructible: {
4081     // C++11 [meta.unary.prop]:
4082     //   is_trivially_constructible is defined as:
4083     //
4084     //     is_constructible<T, Args...>::value is true and the variable
4085     //     definition for is_constructible, as defined below, is known to call
4086     //     no operation that is not trivial.
4087     //
4088     //   The predicate condition for a template specialization 
4089     //   is_constructible<T, Args...> shall be satisfied if and only if the 
4090     //   following variable definition would be well-formed for some invented 
4091     //   variable t:
4092     //
4093     //     T t(create<Args>()...);
4094     assert(!Args.empty());
4095
4096     // Precondition: T and all types in the parameter pack Args shall be
4097     // complete types, (possibly cv-qualified) void, or arrays of
4098     // unknown bound.
4099     for (const auto *TSI : Args) {
4100       QualType ArgTy = TSI->getType();
4101       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4102         continue;
4103
4104       if (S.RequireCompleteType(KWLoc, ArgTy, 
4105           diag::err_incomplete_type_used_in_type_trait_expr))
4106         return false;
4107     }
4108
4109     // Make sure the first argument is not incomplete nor a function type.
4110     QualType T = Args[0]->getType();
4111     if (T->isIncompleteType() || T->isFunctionType())
4112       return false;
4113
4114     // Make sure the first argument is not an abstract type.
4115     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4116     if (RD && RD->isAbstract())
4117       return false;
4118
4119     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4120     SmallVector<Expr *, 2> ArgExprs;
4121     ArgExprs.reserve(Args.size() - 1);
4122     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4123       QualType ArgTy = Args[I]->getType();
4124       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4125         ArgTy = S.Context.getRValueReferenceType(ArgTy);
4126       OpaqueArgExprs.push_back(
4127           OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
4128                           ArgTy.getNonLValueExprType(S.Context),
4129                           Expr::getValueKindForType(ArgTy)));
4130     }
4131     for (Expr &E : OpaqueArgExprs)
4132       ArgExprs.push_back(&E);
4133
4134     // Perform the initialization in an unevaluated context within a SFINAE 
4135     // trap at translation unit scope.
4136     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
4137     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4138     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4139     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4140     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4141                                                                  RParenLoc));
4142     InitializationSequence Init(S, To, InitKind, ArgExprs);
4143     if (Init.Failed())
4144       return false;
4145
4146     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4147     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4148       return false;
4149
4150     if (Kind == clang::TT_IsConstructible)
4151       return true;
4152
4153     if (Kind == clang::TT_IsNothrowConstructible)
4154       return S.canThrow(Result.get()) == CT_Cannot;
4155
4156     if (Kind == clang::TT_IsTriviallyConstructible) {
4157       // Under Objective-C ARC, if the destination has non-trivial Objective-C
4158       // lifetime, this is a non-trivial construction.
4159       if (S.getLangOpts().ObjCAutoRefCount &&
4160           hasNontrivialObjCLifetime(T.getNonReferenceType()))
4161         return false;
4162
4163       // The initialization succeeded; now make sure there are no non-trivial
4164       // calls.
4165       return !Result.get()->hasNonTrivialCall(S.Context);
4166     }
4167
4168     llvm_unreachable("unhandled type trait");
4169     return false;
4170   }
4171     default: llvm_unreachable("not a TT");
4172   }
4173   
4174   return false;
4175 }
4176
4177 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 
4178                                 ArrayRef<TypeSourceInfo *> Args, 
4179                                 SourceLocation RParenLoc) {
4180   QualType ResultType = Context.getLogicalOperationType();
4181
4182   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
4183                                *this, Kind, KWLoc, Args[0]->getType()))
4184     return ExprError();
4185
4186   bool Dependent = false;
4187   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4188     if (Args[I]->getType()->isDependentType()) {
4189       Dependent = true;
4190       break;
4191     }
4192   }
4193
4194   bool Result = false;
4195   if (!Dependent)
4196     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
4197
4198   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
4199                                RParenLoc, Result);
4200 }
4201
4202 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4203                                 ArrayRef<ParsedType> Args,
4204                                 SourceLocation RParenLoc) {
4205   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
4206   ConvertedArgs.reserve(Args.size());
4207   
4208   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4209     TypeSourceInfo *TInfo;
4210     QualType T = GetTypeFromParser(Args[I], &TInfo);
4211     if (!TInfo)
4212       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
4213     
4214     ConvertedArgs.push_back(TInfo);    
4215   }
4216
4217   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
4218 }
4219
4220 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4221                                     QualType RhsT, SourceLocation KeyLoc) {
4222   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
4223          "Cannot evaluate traits of dependent types");
4224
4225   switch(BTT) {
4226   case BTT_IsBaseOf: {
4227     // C++0x [meta.rel]p2
4228     // Base is a base class of Derived without regard to cv-qualifiers or
4229     // Base and Derived are not unions and name the same class type without
4230     // regard to cv-qualifiers.
4231
4232     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
4233     if (!lhsRecord) return false;
4234
4235     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
4236     if (!rhsRecord) return false;
4237
4238     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
4239              == (lhsRecord == rhsRecord));
4240
4241     if (lhsRecord == rhsRecord)
4242       return !lhsRecord->getDecl()->isUnion();
4243
4244     // C++0x [meta.rel]p2:
4245     //   If Base and Derived are class types and are different types
4246     //   (ignoring possible cv-qualifiers) then Derived shall be a
4247     //   complete type.
4248     if (Self.RequireCompleteType(KeyLoc, RhsT, 
4249                           diag::err_incomplete_type_used_in_type_trait_expr))
4250       return false;
4251
4252     return cast<CXXRecordDecl>(rhsRecord->getDecl())
4253       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
4254   }
4255   case BTT_IsSame:
4256     return Self.Context.hasSameType(LhsT, RhsT);
4257   case BTT_TypeCompatible:
4258     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
4259                                            RhsT.getUnqualifiedType());
4260   case BTT_IsConvertible:
4261   case BTT_IsConvertibleTo: {
4262     // C++0x [meta.rel]p4:
4263     //   Given the following function prototype:
4264     //
4265     //     template <class T> 
4266     //       typename add_rvalue_reference<T>::type create();
4267     //
4268     //   the predicate condition for a template specialization 
4269     //   is_convertible<From, To> shall be satisfied if and only if 
4270     //   the return expression in the following code would be 
4271     //   well-formed, including any implicit conversions to the return
4272     //   type of the function:
4273     //
4274     //     To test() { 
4275     //       return create<From>();
4276     //     }
4277     //
4278     //   Access checking is performed as if in a context unrelated to To and 
4279     //   From. Only the validity of the immediate context of the expression 
4280     //   of the return-statement (including conversions to the return type)
4281     //   is considered.
4282     //
4283     // We model the initialization as a copy-initialization of a temporary
4284     // of the appropriate type, which for this expression is identical to the
4285     // return statement (since NRVO doesn't apply).
4286
4287     // Functions aren't allowed to return function or array types.
4288     if (RhsT->isFunctionType() || RhsT->isArrayType())
4289       return false;
4290
4291     // A return statement in a void function must have void type.
4292     if (RhsT->isVoidType())
4293       return LhsT->isVoidType();
4294
4295     // A function definition requires a complete, non-abstract return type.
4296     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
4297       return false;
4298
4299     // Compute the result of add_rvalue_reference.
4300     if (LhsT->isObjectType() || LhsT->isFunctionType())
4301       LhsT = Self.Context.getRValueReferenceType(LhsT);
4302
4303     // Build a fake source and destination for initialization.
4304     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
4305     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4306                          Expr::getValueKindForType(LhsT));
4307     Expr *FromPtr = &From;
4308     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 
4309                                                            SourceLocation()));
4310     
4311     // Perform the initialization in an unevaluated context within a SFINAE 
4312     // trap at translation unit scope.
4313     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4314     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4315     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4316     InitializationSequence Init(Self, To, Kind, FromPtr);
4317     if (Init.Failed())
4318       return false;
4319
4320     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
4321     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
4322   }
4323
4324   case BTT_IsNothrowAssignable:
4325   case BTT_IsTriviallyAssignable: {
4326     // C++11 [meta.unary.prop]p3:
4327     //   is_trivially_assignable is defined as:
4328     //     is_assignable<T, U>::value is true and the assignment, as defined by
4329     //     is_assignable, is known to call no operation that is not trivial
4330     //
4331     //   is_assignable is defined as:
4332     //     The expression declval<T>() = declval<U>() is well-formed when 
4333     //     treated as an unevaluated operand (Clause 5).
4334     //
4335     //   For both, T and U shall be complete types, (possibly cv-qualified) 
4336     //   void, or arrays of unknown bound.
4337     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
4338         Self.RequireCompleteType(KeyLoc, LhsT, 
4339           diag::err_incomplete_type_used_in_type_trait_expr))
4340       return false;
4341     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
4342         Self.RequireCompleteType(KeyLoc, RhsT, 
4343           diag::err_incomplete_type_used_in_type_trait_expr))
4344       return false;
4345
4346     // cv void is never assignable.
4347     if (LhsT->isVoidType() || RhsT->isVoidType())
4348       return false;
4349
4350     // Build expressions that emulate the effect of declval<T>() and 
4351     // declval<U>().
4352     if (LhsT->isObjectType() || LhsT->isFunctionType())
4353       LhsT = Self.Context.getRValueReferenceType(LhsT);
4354     if (RhsT->isObjectType() || RhsT->isFunctionType())
4355       RhsT = Self.Context.getRValueReferenceType(RhsT);
4356     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4357                         Expr::getValueKindForType(LhsT));
4358     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
4359                         Expr::getValueKindForType(RhsT));
4360     
4361     // Attempt the assignment in an unevaluated context within a SFINAE 
4362     // trap at translation unit scope.
4363     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4364     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4365     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4366     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
4367                                         &Rhs);
4368     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4369       return false;
4370
4371     if (BTT == BTT_IsNothrowAssignable)
4372       return Self.canThrow(Result.get()) == CT_Cannot;
4373
4374     if (BTT == BTT_IsTriviallyAssignable) {
4375       // Under Objective-C ARC, if the destination has non-trivial Objective-C
4376       // lifetime, this is a non-trivial assignment.
4377       if (Self.getLangOpts().ObjCAutoRefCount &&
4378           hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
4379         return false;
4380
4381       return !Result.get()->hasNonTrivialCall(Self.Context);
4382     }
4383
4384     llvm_unreachable("unhandled type trait");
4385     return false;
4386   }
4387     default: llvm_unreachable("not a BTT");
4388   }
4389   llvm_unreachable("Unknown type trait or not implemented");
4390 }
4391
4392 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
4393                                      SourceLocation KWLoc,
4394                                      ParsedType Ty,
4395                                      Expr* DimExpr,
4396                                      SourceLocation RParen) {
4397   TypeSourceInfo *TSInfo;
4398   QualType T = GetTypeFromParser(Ty, &TSInfo);
4399   if (!TSInfo)
4400     TSInfo = Context.getTrivialTypeSourceInfo(T);
4401
4402   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
4403 }
4404
4405 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
4406                                            QualType T, Expr *DimExpr,
4407                                            SourceLocation KeyLoc) {
4408   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4409
4410   switch(ATT) {
4411   case ATT_ArrayRank:
4412     if (T->isArrayType()) {
4413       unsigned Dim = 0;
4414       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4415         ++Dim;
4416         T = AT->getElementType();
4417       }
4418       return Dim;
4419     }
4420     return 0;
4421
4422   case ATT_ArrayExtent: {
4423     llvm::APSInt Value;
4424     uint64_t Dim;
4425     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
4426           diag::err_dimension_expr_not_constant_integer,
4427           false).isInvalid())
4428       return 0;
4429     if (Value.isSigned() && Value.isNegative()) {
4430       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
4431         << DimExpr->getSourceRange();
4432       return 0;
4433     }
4434     Dim = Value.getLimitedValue();
4435
4436     if (T->isArrayType()) {
4437       unsigned D = 0;
4438       bool Matched = false;
4439       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4440         if (Dim == D) {
4441           Matched = true;
4442           break;
4443         }
4444         ++D;
4445         T = AT->getElementType();
4446       }
4447
4448       if (Matched && T->isArrayType()) {
4449         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
4450           return CAT->getSize().getLimitedValue();
4451       }
4452     }
4453     return 0;
4454   }
4455   }
4456   llvm_unreachable("Unknown type trait or not implemented");
4457 }
4458
4459 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
4460                                      SourceLocation KWLoc,
4461                                      TypeSourceInfo *TSInfo,
4462                                      Expr* DimExpr,
4463                                      SourceLocation RParen) {
4464   QualType T = TSInfo->getType();
4465
4466   // FIXME: This should likely be tracked as an APInt to remove any host
4467   // assumptions about the width of size_t on the target.
4468   uint64_t Value = 0;
4469   if (!T->isDependentType())
4470     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4471
4472   // While the specification for these traits from the Embarcadero C++
4473   // compiler's documentation says the return type is 'unsigned int', Clang
4474   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4475   // compiler, there is no difference. On several other platforms this is an
4476   // important distinction.
4477   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4478                                           RParen, Context.getSizeType());
4479 }
4480
4481 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4482                                       SourceLocation KWLoc,
4483                                       Expr *Queried,
4484                                       SourceLocation RParen) {
4485   // If error parsing the expression, ignore.
4486   if (!Queried)
4487     return ExprError();
4488
4489   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4490
4491   return Result;
4492 }
4493
4494 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4495   switch (ET) {
4496   case ET_IsLValueExpr: return E->isLValue();
4497   case ET_IsRValueExpr: return E->isRValue();
4498   }
4499   llvm_unreachable("Expression trait not covered by switch");
4500 }
4501
4502 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4503                                       SourceLocation KWLoc,
4504                                       Expr *Queried,
4505                                       SourceLocation RParen) {
4506   if (Queried->isTypeDependent()) {
4507     // Delay type-checking for type-dependent expressions.
4508   } else if (Queried->getType()->isPlaceholderType()) {
4509     ExprResult PE = CheckPlaceholderExpr(Queried);
4510     if (PE.isInvalid()) return ExprError();
4511     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4512   }
4513
4514   bool Value = EvaluateExpressionTrait(ET, Queried);
4515
4516   return new (Context)
4517       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4518 }
4519
4520 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4521                                             ExprValueKind &VK,
4522                                             SourceLocation Loc,
4523                                             bool isIndirect) {
4524   assert(!LHS.get()->getType()->isPlaceholderType() &&
4525          !RHS.get()->getType()->isPlaceholderType() &&
4526          "placeholders should have been weeded out by now");
4527
4528   // The LHS undergoes lvalue conversions if this is ->*.
4529   if (isIndirect) {
4530     LHS = DefaultLvalueConversion(LHS.get());
4531     if (LHS.isInvalid()) return QualType();
4532   }
4533
4534   // The RHS always undergoes lvalue conversions.
4535   RHS = DefaultLvalueConversion(RHS.get());
4536   if (RHS.isInvalid()) return QualType();
4537
4538   const char *OpSpelling = isIndirect ? "->*" : ".*";
4539   // C++ 5.5p2
4540   //   The binary operator .* [p3: ->*] binds its second operand, which shall
4541   //   be of type "pointer to member of T" (where T is a completely-defined
4542   //   class type) [...]
4543   QualType RHSType = RHS.get()->getType();
4544   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4545   if (!MemPtr) {
4546     Diag(Loc, diag::err_bad_memptr_rhs)
4547       << OpSpelling << RHSType << RHS.get()->getSourceRange();
4548     return QualType();
4549   }
4550
4551   QualType Class(MemPtr->getClass(), 0);
4552
4553   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4554   // member pointer points must be completely-defined. However, there is no
4555   // reason for this semantic distinction, and the rule is not enforced by
4556   // other compilers. Therefore, we do not check this property, as it is
4557   // likely to be considered a defect.
4558
4559   // C++ 5.5p2
4560   //   [...] to its first operand, which shall be of class T or of a class of
4561   //   which T is an unambiguous and accessible base class. [p3: a pointer to
4562   //   such a class]
4563   QualType LHSType = LHS.get()->getType();
4564   if (isIndirect) {
4565     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4566       LHSType = Ptr->getPointeeType();
4567     else {
4568       Diag(Loc, diag::err_bad_memptr_lhs)
4569         << OpSpelling << 1 << LHSType
4570         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4571       return QualType();
4572     }
4573   }
4574
4575   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4576     // If we want to check the hierarchy, we need a complete type.
4577     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4578                             OpSpelling, (int)isIndirect)) {
4579       return QualType();
4580     }
4581
4582     if (!IsDerivedFrom(Loc, LHSType, Class)) {
4583       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4584         << (int)isIndirect << LHS.get()->getType();
4585       return QualType();
4586     }
4587
4588     CXXCastPath BasePath;
4589     if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4590                                      SourceRange(LHS.get()->getLocStart(),
4591                                                  RHS.get()->getLocEnd()),
4592                                      &BasePath))
4593       return QualType();
4594
4595     // Cast LHS to type of use.
4596     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4597     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4598     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4599                             &BasePath);
4600   }
4601
4602   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4603     // Diagnose use of pointer-to-member type which when used as
4604     // the functional cast in a pointer-to-member expression.
4605     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4606      return QualType();
4607   }
4608
4609   // C++ 5.5p2
4610   //   The result is an object or a function of the type specified by the
4611   //   second operand.
4612   // The cv qualifiers are the union of those in the pointer and the left side,
4613   // in accordance with 5.5p5 and 5.2.5.
4614   QualType Result = MemPtr->getPointeeType();
4615   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4616
4617   // C++0x [expr.mptr.oper]p6:
4618   //   In a .* expression whose object expression is an rvalue, the program is
4619   //   ill-formed if the second operand is a pointer to member function with
4620   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
4621   //   expression is an lvalue, the program is ill-formed if the second operand
4622   //   is a pointer to member function with ref-qualifier &&.
4623   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4624     switch (Proto->getRefQualifier()) {
4625     case RQ_None:
4626       // Do nothing
4627       break;
4628
4629     case RQ_LValue:
4630       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4631         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4632           << RHSType << 1 << LHS.get()->getSourceRange();
4633       break;
4634
4635     case RQ_RValue:
4636       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4637         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4638           << RHSType << 0 << LHS.get()->getSourceRange();
4639       break;
4640     }
4641   }
4642
4643   // C++ [expr.mptr.oper]p6:
4644   //   The result of a .* expression whose second operand is a pointer
4645   //   to a data member is of the same value category as its
4646   //   first operand. The result of a .* expression whose second
4647   //   operand is a pointer to a member function is a prvalue. The
4648   //   result of an ->* expression is an lvalue if its second operand
4649   //   is a pointer to data member and a prvalue otherwise.
4650   if (Result->isFunctionType()) {
4651     VK = VK_RValue;
4652     return Context.BoundMemberTy;
4653   } else if (isIndirect) {
4654     VK = VK_LValue;
4655   } else {
4656     VK = LHS.get()->getValueKind();
4657   }
4658
4659   return Result;
4660 }
4661
4662 /// \brief Try to convert a type to another according to C++0x 5.16p3.
4663 ///
4664 /// This is part of the parameter validation for the ? operator. If either
4665 /// value operand is a class type, the two operands are attempted to be
4666 /// converted to each other. This function does the conversion in one direction.
4667 /// It returns true if the program is ill-formed and has already been diagnosed
4668 /// as such.
4669 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4670                                 SourceLocation QuestionLoc,
4671                                 bool &HaveConversion,
4672                                 QualType &ToType) {
4673   HaveConversion = false;
4674   ToType = To->getType();
4675
4676   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4677                                                            SourceLocation());
4678   // C++0x 5.16p3
4679   //   The process for determining whether an operand expression E1 of type T1
4680   //   can be converted to match an operand expression E2 of type T2 is defined
4681   //   as follows:
4682   //   -- If E2 is an lvalue:
4683   bool ToIsLvalue = To->isLValue();
4684   if (ToIsLvalue) {
4685     //   E1 can be converted to match E2 if E1 can be implicitly converted to
4686     //   type "lvalue reference to T2", subject to the constraint that in the
4687     //   conversion the reference must bind directly to E1.
4688     QualType T = Self.Context.getLValueReferenceType(ToType);
4689     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4690
4691     InitializationSequence InitSeq(Self, Entity, Kind, From);
4692     if (InitSeq.isDirectReferenceBinding()) {
4693       ToType = T;
4694       HaveConversion = true;
4695       return false;
4696     }
4697
4698     if (InitSeq.isAmbiguous())
4699       return InitSeq.Diagnose(Self, Entity, Kind, From);
4700   }
4701
4702   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4703   //      -- if E1 and E2 have class type, and the underlying class types are
4704   //         the same or one is a base class of the other:
4705   QualType FTy = From->getType();
4706   QualType TTy = To->getType();
4707   const RecordType *FRec = FTy->getAs<RecordType>();
4708   const RecordType *TRec = TTy->getAs<RecordType>();
4709   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4710                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
4711   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
4712                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
4713     //         E1 can be converted to match E2 if the class of T2 is the
4714     //         same type as, or a base class of, the class of T1, and
4715     //         [cv2 > cv1].
4716     if (FRec == TRec || FDerivedFromT) {
4717       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4718         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4719         InitializationSequence InitSeq(Self, Entity, Kind, From);
4720         if (InitSeq) {
4721           HaveConversion = true;
4722           return false;
4723         }
4724
4725         if (InitSeq.isAmbiguous())
4726           return InitSeq.Diagnose(Self, Entity, Kind, From);
4727       }
4728     }
4729
4730     return false;
4731   }
4732
4733   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4734   //        implicitly converted to the type that expression E2 would have
4735   //        if E2 were converted to an rvalue (or the type it has, if E2 is
4736   //        an rvalue).
4737   //
4738   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4739   // to the array-to-pointer or function-to-pointer conversions.
4740   if (!TTy->getAs<TagType>())
4741     TTy = TTy.getUnqualifiedType();
4742
4743   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4744   InitializationSequence InitSeq(Self, Entity, Kind, From);
4745   HaveConversion = !InitSeq.Failed();
4746   ToType = TTy;
4747   if (InitSeq.isAmbiguous())
4748     return InitSeq.Diagnose(Self, Entity, Kind, From);
4749
4750   return false;
4751 }
4752
4753 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4754 ///
4755 /// This is part of the parameter validation for the ? operator. If either
4756 /// value operand is a class type, overload resolution is used to find a
4757 /// conversion to a common type.
4758 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4759                                     SourceLocation QuestionLoc) {
4760   Expr *Args[2] = { LHS.get(), RHS.get() };
4761   OverloadCandidateSet CandidateSet(QuestionLoc,
4762                                     OverloadCandidateSet::CSK_Operator);
4763   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4764                                     CandidateSet);
4765
4766   OverloadCandidateSet::iterator Best;
4767   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4768     case OR_Success: {
4769       // We found a match. Perform the conversions on the arguments and move on.
4770       ExprResult LHSRes =
4771         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4772                                        Best->Conversions[0], Sema::AA_Converting);
4773       if (LHSRes.isInvalid())
4774         break;
4775       LHS = LHSRes;
4776
4777       ExprResult RHSRes =
4778         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4779                                        Best->Conversions[1], Sema::AA_Converting);
4780       if (RHSRes.isInvalid())
4781         break;
4782       RHS = RHSRes;
4783       if (Best->Function)
4784         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4785       return false;
4786     }
4787     
4788     case OR_No_Viable_Function:
4789
4790       // Emit a better diagnostic if one of the expressions is a null pointer
4791       // constant and the other is a pointer type. In this case, the user most
4792       // likely forgot to take the address of the other expression.
4793       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4794         return true;
4795
4796       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4797         << LHS.get()->getType() << RHS.get()->getType()
4798         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4799       return true;
4800
4801     case OR_Ambiguous:
4802       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4803         << LHS.get()->getType() << RHS.get()->getType()
4804         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4805       // FIXME: Print the possible common types by printing the return types of
4806       // the viable candidates.
4807       break;
4808
4809     case OR_Deleted:
4810       llvm_unreachable("Conditional operator has only built-in overloads");
4811   }
4812   return true;
4813 }
4814
4815 /// \brief Perform an "extended" implicit conversion as returned by
4816 /// TryClassUnification.
4817 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4818   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4819   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4820                                                            SourceLocation());
4821   Expr *Arg = E.get();
4822   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4823   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4824   if (Result.isInvalid())
4825     return true;
4826
4827   E = Result;
4828   return false;
4829 }
4830
4831 /// \brief Check the operands of ?: under C++ semantics.
4832 ///
4833 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4834 /// extension. In this case, LHS == Cond. (But they're not aliases.)
4835 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4836                                            ExprResult &RHS, ExprValueKind &VK,
4837                                            ExprObjectKind &OK,
4838                                            SourceLocation QuestionLoc) {
4839   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4840   // interface pointers.
4841
4842   // C++11 [expr.cond]p1
4843   //   The first expression is contextually converted to bool.
4844   if (!Cond.get()->isTypeDependent()) {
4845     ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
4846     if (CondRes.isInvalid())
4847       return QualType();
4848     Cond = CondRes;
4849   }
4850
4851   // Assume r-value.
4852   VK = VK_RValue;
4853   OK = OK_Ordinary;
4854
4855   // Either of the arguments dependent?
4856   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4857     return Context.DependentTy;
4858
4859   // C++11 [expr.cond]p2
4860   //   If either the second or the third operand has type (cv) void, ...
4861   QualType LTy = LHS.get()->getType();
4862   QualType RTy = RHS.get()->getType();
4863   bool LVoid = LTy->isVoidType();
4864   bool RVoid = RTy->isVoidType();
4865   if (LVoid || RVoid) {
4866     //   ... one of the following shall hold:
4867     //   -- The second or the third operand (but not both) is a (possibly
4868     //      parenthesized) throw-expression; the result is of the type
4869     //      and value category of the other.
4870     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
4871     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
4872     if (LThrow != RThrow) {
4873       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
4874       VK = NonThrow->getValueKind();
4875       // DR (no number yet): the result is a bit-field if the
4876       // non-throw-expression operand is a bit-field.
4877       OK = NonThrow->getObjectKind();
4878       return NonThrow->getType();
4879     }
4880
4881     //   -- Both the second and third operands have type void; the result is of
4882     //      type void and is a prvalue.
4883     if (LVoid && RVoid)
4884       return Context.VoidTy;
4885
4886     // Neither holds, error.
4887     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4888       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4889       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4890     return QualType();
4891   }
4892
4893   // Neither is void.
4894
4895   // C++11 [expr.cond]p3
4896   //   Otherwise, if the second and third operand have different types, and
4897   //   either has (cv) class type [...] an attempt is made to convert each of
4898   //   those operands to the type of the other.
4899   if (!Context.hasSameType(LTy, RTy) &&
4900       (LTy->isRecordType() || RTy->isRecordType())) {
4901     // These return true if a single direction is already ambiguous.
4902     QualType L2RType, R2LType;
4903     bool HaveL2R, HaveR2L;
4904     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4905       return QualType();
4906     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4907       return QualType();
4908
4909     //   If both can be converted, [...] the program is ill-formed.
4910     if (HaveL2R && HaveR2L) {
4911       Diag(QuestionLoc, diag::err_conditional_ambiguous)
4912         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4913       return QualType();
4914     }
4915
4916     //   If exactly one conversion is possible, that conversion is applied to
4917     //   the chosen operand and the converted operands are used in place of the
4918     //   original operands for the remainder of this section.
4919     if (HaveL2R) {
4920       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4921         return QualType();
4922       LTy = LHS.get()->getType();
4923     } else if (HaveR2L) {
4924       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4925         return QualType();
4926       RTy = RHS.get()->getType();
4927     }
4928   }
4929
4930   // C++11 [expr.cond]p3
4931   //   if both are glvalues of the same value category and the same type except
4932   //   for cv-qualification, an attempt is made to convert each of those
4933   //   operands to the type of the other.
4934   ExprValueKind LVK = LHS.get()->getValueKind();
4935   ExprValueKind RVK = RHS.get()->getValueKind();
4936   if (!Context.hasSameType(LTy, RTy) &&
4937       Context.hasSameUnqualifiedType(LTy, RTy) &&
4938       LVK == RVK && LVK != VK_RValue) {
4939     // Since the unqualified types are reference-related and we require the
4940     // result to be as if a reference bound directly, the only conversion
4941     // we can perform is to add cv-qualifiers.
4942     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4943     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4944     if (RCVR.isStrictSupersetOf(LCVR)) {
4945       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
4946       LTy = LHS.get()->getType();
4947     }
4948     else if (LCVR.isStrictSupersetOf(RCVR)) {
4949       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
4950       RTy = RHS.get()->getType();
4951     }
4952   }
4953
4954   // C++11 [expr.cond]p4
4955   //   If the second and third operands are glvalues of the same value
4956   //   category and have the same type, the result is of that type and
4957   //   value category and it is a bit-field if the second or the third
4958   //   operand is a bit-field, or if both are bit-fields.
4959   // We only extend this to bitfields, not to the crazy other kinds of
4960   // l-values.
4961   bool Same = Context.hasSameType(LTy, RTy);
4962   if (Same && LVK == RVK && LVK != VK_RValue &&
4963       LHS.get()->isOrdinaryOrBitFieldObject() &&
4964       RHS.get()->isOrdinaryOrBitFieldObject()) {
4965     VK = LHS.get()->getValueKind();
4966     if (LHS.get()->getObjectKind() == OK_BitField ||
4967         RHS.get()->getObjectKind() == OK_BitField)
4968       OK = OK_BitField;
4969     return LTy;
4970   }
4971
4972   // C++11 [expr.cond]p5
4973   //   Otherwise, the result is a prvalue. If the second and third operands
4974   //   do not have the same type, and either has (cv) class type, ...
4975   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4976     //   ... overload resolution is used to determine the conversions (if any)
4977     //   to be applied to the operands. If the overload resolution fails, the
4978     //   program is ill-formed.
4979     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4980       return QualType();
4981   }
4982
4983   // C++11 [expr.cond]p6
4984   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4985   //   conversions are performed on the second and third operands.
4986   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
4987   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
4988   if (LHS.isInvalid() || RHS.isInvalid())
4989     return QualType();
4990   LTy = LHS.get()->getType();
4991   RTy = RHS.get()->getType();
4992
4993   //   After those conversions, one of the following shall hold:
4994   //   -- The second and third operands have the same type; the result
4995   //      is of that type. If the operands have class type, the result
4996   //      is a prvalue temporary of the result type, which is
4997   //      copy-initialized from either the second operand or the third
4998   //      operand depending on the value of the first operand.
4999   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5000     if (LTy->isRecordType()) {
5001       // The operands have class type. Make a temporary copy.
5002       if (RequireNonAbstractType(QuestionLoc, LTy,
5003                                  diag::err_allocation_of_abstract_type))
5004         return QualType();
5005       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5006
5007       ExprResult LHSCopy = PerformCopyInitialization(Entity,
5008                                                      SourceLocation(),
5009                                                      LHS);
5010       if (LHSCopy.isInvalid())
5011         return QualType();
5012
5013       ExprResult RHSCopy = PerformCopyInitialization(Entity,
5014                                                      SourceLocation(),
5015                                                      RHS);
5016       if (RHSCopy.isInvalid())
5017         return QualType();
5018
5019       LHS = LHSCopy;
5020       RHS = RHSCopy;
5021     }
5022
5023     return LTy;
5024   }
5025
5026   // Extension: conditional operator involving vector types.
5027   if (LTy->isVectorType() || RTy->isVectorType())
5028     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5029                                /*AllowBothBool*/true,
5030                                /*AllowBoolConversions*/false);
5031
5032   //   -- The second and third operands have arithmetic or enumeration type;
5033   //      the usual arithmetic conversions are performed to bring them to a
5034   //      common type, and the result is of that type.
5035   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5036     QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5037     if (LHS.isInvalid() || RHS.isInvalid())
5038       return QualType();
5039
5040     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5041     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5042
5043     return ResTy;
5044   }
5045
5046   //   -- The second and third operands have pointer type, or one has pointer
5047   //      type and the other is a null pointer constant, or both are null
5048   //      pointer constants, at least one of which is non-integral; pointer
5049   //      conversions and qualification conversions are performed to bring them
5050   //      to their composite pointer type. The result is of the composite
5051   //      pointer type.
5052   //   -- The second and third operands have pointer to member type, or one has
5053   //      pointer to member type and the other is a null pointer constant;
5054   //      pointer to member conversions and qualification conversions are
5055   //      performed to bring them to a common type, whose cv-qualification
5056   //      shall match the cv-qualification of either the second or the third
5057   //      operand. The result is of the common type.
5058   bool NonStandardCompositeType = false;
5059   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
5060                                  isSFINAEContext() ? nullptr
5061                                                    : &NonStandardCompositeType);
5062   if (!Composite.isNull()) {
5063     if (NonStandardCompositeType)
5064       Diag(QuestionLoc,
5065            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
5066         << LTy << RTy << Composite
5067         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5068
5069     return Composite;
5070   }
5071
5072   // Similarly, attempt to find composite type of two objective-c pointers.
5073   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5074   if (!Composite.isNull())
5075     return Composite;
5076
5077   // Check if we are using a null with a non-pointer type.
5078   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5079     return QualType();
5080
5081   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5082     << LHS.get()->getType() << RHS.get()->getType()
5083     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5084   return QualType();
5085 }
5086
5087 /// \brief Find a merged pointer type and convert the two expressions to it.
5088 ///
5089 /// This finds the composite pointer type (or member pointer type) for @p E1
5090 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
5091 /// type and returns it.
5092 /// It does not emit diagnostics.
5093 ///
5094 /// \param Loc The location of the operator requiring these two expressions to
5095 /// be converted to the composite pointer type.
5096 ///
5097 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
5098 /// a non-standard (but still sane) composite type to which both expressions
5099 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
5100 /// will be set true.
5101 QualType Sema::FindCompositePointerType(SourceLocation Loc,
5102                                         Expr *&E1, Expr *&E2,
5103                                         bool *NonStandardCompositeType) {
5104   if (NonStandardCompositeType)
5105     *NonStandardCompositeType = false;
5106
5107   assert(getLangOpts().CPlusPlus && "This function assumes C++");
5108   QualType T1 = E1->getType(), T2 = E2->getType();
5109
5110   // C++11 5.9p2
5111   //   Pointer conversions and qualification conversions are performed on
5112   //   pointer operands to bring them to their composite pointer type. If
5113   //   one operand is a null pointer constant, the composite pointer type is
5114   //   std::nullptr_t if the other operand is also a null pointer constant or,
5115   //   if the other operand is a pointer, the type of the other operand.
5116   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
5117       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
5118     if (T1->isNullPtrType() &&
5119         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5120       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5121       return T1;
5122     }
5123     if (T2->isNullPtrType() &&
5124         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5125       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5126       return T2;
5127     }
5128     return QualType();
5129   }
5130
5131   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5132     if (T2->isMemberPointerType())
5133       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
5134     else
5135       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5136     return T2;
5137   }
5138   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5139     if (T1->isMemberPointerType())
5140       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
5141     else
5142       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5143     return T1;
5144   }
5145
5146   // Now both have to be pointers or member pointers.
5147   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
5148       (!T2->isPointerType() && !T2->isMemberPointerType()))
5149     return QualType();
5150
5151   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
5152   //   the other has type "pointer to cv2 T" and the composite pointer type is
5153   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
5154   //   Otherwise, the composite pointer type is a pointer type similar to the
5155   //   type of one of the operands, with a cv-qualification signature that is
5156   //   the union of the cv-qualification signatures of the operand types.
5157   // In practice, the first part here is redundant; it's subsumed by the second.
5158   // What we do here is, we build the two possible composite types, and try the
5159   // conversions in both directions. If only one works, or if the two composite
5160   // types are the same, we have succeeded.
5161   // FIXME: extended qualifiers?
5162   typedef SmallVector<unsigned, 4> QualifierVector;
5163   QualifierVector QualifierUnion;
5164   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
5165       ContainingClassVector;
5166   ContainingClassVector MemberOfClass;
5167   QualType Composite1 = Context.getCanonicalType(T1),
5168            Composite2 = Context.getCanonicalType(T2);
5169   unsigned NeedConstBefore = 0;
5170   do {
5171     const PointerType *Ptr1, *Ptr2;
5172     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
5173         (Ptr2 = Composite2->getAs<PointerType>())) {
5174       Composite1 = Ptr1->getPointeeType();
5175       Composite2 = Ptr2->getPointeeType();
5176
5177       // If we're allowed to create a non-standard composite type, keep track
5178       // of where we need to fill in additional 'const' qualifiers.
5179       if (NonStandardCompositeType &&
5180           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5181         NeedConstBefore = QualifierUnion.size();
5182
5183       QualifierUnion.push_back(
5184                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5185       MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
5186       continue;
5187     }
5188
5189     const MemberPointerType *MemPtr1, *MemPtr2;
5190     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
5191         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
5192       Composite1 = MemPtr1->getPointeeType();
5193       Composite2 = MemPtr2->getPointeeType();
5194
5195       // If we're allowed to create a non-standard composite type, keep track
5196       // of where we need to fill in additional 'const' qualifiers.
5197       if (NonStandardCompositeType &&
5198           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5199         NeedConstBefore = QualifierUnion.size();
5200
5201       QualifierUnion.push_back(
5202                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5203       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
5204                                              MemPtr2->getClass()));
5205       continue;
5206     }
5207
5208     // FIXME: block pointer types?
5209
5210     // Cannot unwrap any more types.
5211     break;
5212   } while (true);
5213
5214   if (NeedConstBefore && NonStandardCompositeType) {
5215     // Extension: Add 'const' to qualifiers that come before the first qualifier
5216     // mismatch, so that our (non-standard!) composite type meets the
5217     // requirements of C++ [conv.qual]p4 bullet 3.
5218     for (unsigned I = 0; I != NeedConstBefore; ++I) {
5219       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
5220         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
5221         *NonStandardCompositeType = true;
5222       }
5223     }
5224   }
5225
5226   // Rewrap the composites as pointers or member pointers with the union CVRs.
5227   ContainingClassVector::reverse_iterator MOC
5228     = MemberOfClass.rbegin();
5229   for (QualifierVector::reverse_iterator
5230          I = QualifierUnion.rbegin(),
5231          E = QualifierUnion.rend();
5232        I != E; (void)++I, ++MOC) {
5233     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
5234     if (MOC->first && MOC->second) {
5235       // Rebuild member pointer type
5236       Composite1 = Context.getMemberPointerType(
5237                                     Context.getQualifiedType(Composite1, Quals),
5238                                     MOC->first);
5239       Composite2 = Context.getMemberPointerType(
5240                                     Context.getQualifiedType(Composite2, Quals),
5241                                     MOC->second);
5242     } else {
5243       // Rebuild pointer type
5244       Composite1
5245         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
5246       Composite2
5247         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
5248     }
5249   }
5250
5251   // Try to convert to the first composite pointer type.
5252   InitializedEntity Entity1
5253     = InitializedEntity::InitializeTemporary(Composite1);
5254   InitializationKind Kind
5255     = InitializationKind::CreateCopy(Loc, SourceLocation());
5256   InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
5257   InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
5258
5259   if (E1ToC1 && E2ToC1) {
5260     // Conversion to Composite1 is viable.
5261     if (!Context.hasSameType(Composite1, Composite2)) {
5262       // Composite2 is a different type from Composite1. Check whether
5263       // Composite2 is also viable.
5264       InitializedEntity Entity2
5265         = InitializedEntity::InitializeTemporary(Composite2);
5266       InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5267       InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5268       if (E1ToC2 && E2ToC2) {
5269         // Both Composite1 and Composite2 are viable and are different;
5270         // this is an ambiguity.
5271         return QualType();
5272       }
5273     }
5274
5275     // Convert E1 to Composite1
5276     ExprResult E1Result
5277       = E1ToC1.Perform(*this, Entity1, Kind, E1);
5278     if (E1Result.isInvalid())
5279       return QualType();
5280     E1 = E1Result.getAs<Expr>();
5281
5282     // Convert E2 to Composite1
5283     ExprResult E2Result
5284       = E2ToC1.Perform(*this, Entity1, Kind, E2);
5285     if (E2Result.isInvalid())
5286       return QualType();
5287     E2 = E2Result.getAs<Expr>();
5288
5289     return Composite1;
5290   }
5291
5292   // Check whether Composite2 is viable.
5293   InitializedEntity Entity2
5294     = InitializedEntity::InitializeTemporary(Composite2);
5295   InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5296   InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5297   if (!E1ToC2 || !E2ToC2)
5298     return QualType();
5299
5300   // Convert E1 to Composite2
5301   ExprResult E1Result
5302     = E1ToC2.Perform(*this, Entity2, Kind, E1);
5303   if (E1Result.isInvalid())
5304     return QualType();
5305   E1 = E1Result.getAs<Expr>();
5306
5307   // Convert E2 to Composite2
5308   ExprResult E2Result
5309     = E2ToC2.Perform(*this, Entity2, Kind, E2);
5310   if (E2Result.isInvalid())
5311     return QualType();
5312   E2 = E2Result.getAs<Expr>();
5313
5314   return Composite2;
5315 }
5316
5317 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
5318   if (!E)
5319     return ExprError();
5320
5321   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
5322
5323   // If the result is a glvalue, we shouldn't bind it.
5324   if (!E->isRValue())
5325     return E;
5326
5327   // In ARC, calls that return a retainable type can return retained,
5328   // in which case we have to insert a consuming cast.
5329   if (getLangOpts().ObjCAutoRefCount &&
5330       E->getType()->isObjCRetainableType()) {
5331
5332     bool ReturnsRetained;
5333
5334     // For actual calls, we compute this by examining the type of the
5335     // called value.
5336     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
5337       Expr *Callee = Call->getCallee()->IgnoreParens();
5338       QualType T = Callee->getType();
5339
5340       if (T == Context.BoundMemberTy) {
5341         // Handle pointer-to-members.
5342         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
5343           T = BinOp->getRHS()->getType();
5344         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
5345           T = Mem->getMemberDecl()->getType();
5346       }
5347       
5348       if (const PointerType *Ptr = T->getAs<PointerType>())
5349         T = Ptr->getPointeeType();
5350       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
5351         T = Ptr->getPointeeType();
5352       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
5353         T = MemPtr->getPointeeType();
5354       
5355       const FunctionType *FTy = T->getAs<FunctionType>();
5356       assert(FTy && "call to value not of function type?");
5357       ReturnsRetained = FTy->getExtInfo().getProducesResult();
5358
5359     // ActOnStmtExpr arranges things so that StmtExprs of retainable
5360     // type always produce a +1 object.
5361     } else if (isa<StmtExpr>(E)) {
5362       ReturnsRetained = true;
5363
5364     // We hit this case with the lambda conversion-to-block optimization;
5365     // we don't want any extra casts here.
5366     } else if (isa<CastExpr>(E) &&
5367                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
5368       return E;
5369
5370     // For message sends and property references, we try to find an
5371     // actual method.  FIXME: we should infer retention by selector in
5372     // cases where we don't have an actual method.
5373     } else {
5374       ObjCMethodDecl *D = nullptr;
5375       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
5376         D = Send->getMethodDecl();
5377       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
5378         D = BoxedExpr->getBoxingMethod();
5379       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
5380         D = ArrayLit->getArrayWithObjectsMethod();
5381       } else if (ObjCDictionaryLiteral *DictLit
5382                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
5383         D = DictLit->getDictWithObjectsMethod();
5384       }
5385
5386       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
5387
5388       // Don't do reclaims on performSelector calls; despite their
5389       // return type, the invoked method doesn't necessarily actually
5390       // return an object.
5391       if (!ReturnsRetained &&
5392           D && D->getMethodFamily() == OMF_performSelector)
5393         return E;
5394     }
5395
5396     // Don't reclaim an object of Class type.
5397     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
5398       return E;
5399
5400     ExprNeedsCleanups = true;
5401
5402     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
5403                                    : CK_ARCReclaimReturnedObject);
5404     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
5405                                     VK_RValue);
5406   }
5407
5408   if (!getLangOpts().CPlusPlus)
5409     return E;
5410
5411   // Search for the base element type (cf. ASTContext::getBaseElementType) with
5412   // a fast path for the common case that the type is directly a RecordType.
5413   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
5414   const RecordType *RT = nullptr;
5415   while (!RT) {
5416     switch (T->getTypeClass()) {
5417     case Type::Record:
5418       RT = cast<RecordType>(T);
5419       break;
5420     case Type::ConstantArray:
5421     case Type::IncompleteArray:
5422     case Type::VariableArray:
5423     case Type::DependentSizedArray:
5424       T = cast<ArrayType>(T)->getElementType().getTypePtr();
5425       break;
5426     default:
5427       return E;
5428     }
5429   }
5430
5431   // That should be enough to guarantee that this type is complete, if we're
5432   // not processing a decltype expression.
5433   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5434   if (RD->isInvalidDecl() || RD->isDependentContext())
5435     return E;
5436
5437   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
5438   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
5439
5440   if (Destructor) {
5441     MarkFunctionReferenced(E->getExprLoc(), Destructor);
5442     CheckDestructorAccess(E->getExprLoc(), Destructor,
5443                           PDiag(diag::err_access_dtor_temp)
5444                             << E->getType());
5445     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
5446       return ExprError();
5447
5448     // If destructor is trivial, we can avoid the extra copy.
5449     if (Destructor->isTrivial())
5450       return E;
5451
5452     // We need a cleanup, but we don't need to remember the temporary.
5453     ExprNeedsCleanups = true;
5454   }
5455
5456   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
5457   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
5458
5459   if (IsDecltype)
5460     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
5461
5462   return Bind;
5463 }
5464
5465 ExprResult
5466 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
5467   if (SubExpr.isInvalid())
5468     return ExprError();
5469
5470   return MaybeCreateExprWithCleanups(SubExpr.get());
5471 }
5472
5473 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
5474   assert(SubExpr && "subexpression can't be null!");
5475
5476   CleanupVarDeclMarking();
5477
5478   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5479   assert(ExprCleanupObjects.size() >= FirstCleanup);
5480   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
5481   if (!ExprNeedsCleanups)
5482     return SubExpr;
5483
5484   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5485                                      ExprCleanupObjects.size() - FirstCleanup);
5486
5487   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5488   DiscardCleanupsInEvaluationContext();
5489
5490   return E;
5491 }
5492
5493 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5494   assert(SubStmt && "sub-statement can't be null!");
5495
5496   CleanupVarDeclMarking();
5497
5498   if (!ExprNeedsCleanups)
5499     return SubStmt;
5500
5501   // FIXME: In order to attach the temporaries, wrap the statement into
5502   // a StmtExpr; currently this is only used for asm statements.
5503   // This is hacky, either create a new CXXStmtWithTemporaries statement or
5504   // a new AsmStmtWithTemporaries.
5505   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5506                                                       SourceLocation(),
5507                                                       SourceLocation());
5508   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5509                                    SourceLocation());
5510   return MaybeCreateExprWithCleanups(E);
5511 }
5512
5513 /// Process the expression contained within a decltype. For such expressions,
5514 /// certain semantic checks on temporaries are delayed until this point, and
5515 /// are omitted for the 'topmost' call in the decltype expression. If the
5516 /// topmost call bound a temporary, strip that temporary off the expression.
5517 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5518   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5519
5520   // C++11 [expr.call]p11:
5521   //   If a function call is a prvalue of object type,
5522   // -- if the function call is either
5523   //   -- the operand of a decltype-specifier, or
5524   //   -- the right operand of a comma operator that is the operand of a
5525   //      decltype-specifier,
5526   //   a temporary object is not introduced for the prvalue.
5527
5528   // Recursively rebuild ParenExprs and comma expressions to strip out the
5529   // outermost CXXBindTemporaryExpr, if any.
5530   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5531     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5532     if (SubExpr.isInvalid())
5533       return ExprError();
5534     if (SubExpr.get() == PE->getSubExpr())
5535       return E;
5536     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5537   }
5538   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5539     if (BO->getOpcode() == BO_Comma) {
5540       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5541       if (RHS.isInvalid())
5542         return ExprError();
5543       if (RHS.get() == BO->getRHS())
5544         return E;
5545       return new (Context) BinaryOperator(
5546           BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5547           BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5548     }
5549   }
5550
5551   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5552   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5553                               : nullptr;
5554   if (TopCall)
5555     E = TopCall;
5556   else
5557     TopBind = nullptr;
5558
5559   // Disable the special decltype handling now.
5560   ExprEvalContexts.back().IsDecltype = false;
5561
5562   // In MS mode, don't perform any extra checking of call return types within a
5563   // decltype expression.
5564   if (getLangOpts().MSVCCompat)
5565     return E;
5566
5567   // Perform the semantic checks we delayed until this point.
5568   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5569        I != N; ++I) {
5570     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5571     if (Call == TopCall)
5572       continue;
5573
5574     if (CheckCallReturnType(Call->getCallReturnType(Context),
5575                             Call->getLocStart(),
5576                             Call, Call->getDirectCallee()))
5577       return ExprError();
5578   }
5579
5580   // Now all relevant types are complete, check the destructors are accessible
5581   // and non-deleted, and annotate them on the temporaries.
5582   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5583        I != N; ++I) {
5584     CXXBindTemporaryExpr *Bind =
5585       ExprEvalContexts.back().DelayedDecltypeBinds[I];
5586     if (Bind == TopBind)
5587       continue;
5588
5589     CXXTemporary *Temp = Bind->getTemporary();
5590
5591     CXXRecordDecl *RD =
5592       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5593     CXXDestructorDecl *Destructor = LookupDestructor(RD);
5594     Temp->setDestructor(Destructor);
5595
5596     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5597     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5598                           PDiag(diag::err_access_dtor_temp)
5599                             << Bind->getType());
5600     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5601       return ExprError();
5602
5603     // We need a cleanup, but we don't need to remember the temporary.
5604     ExprNeedsCleanups = true;
5605   }
5606
5607   // Possibly strip off the top CXXBindTemporaryExpr.
5608   return E;
5609 }
5610
5611 /// Note a set of 'operator->' functions that were used for a member access.
5612 static void noteOperatorArrows(Sema &S,
5613                                ArrayRef<FunctionDecl *> OperatorArrows) {
5614   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5615   // FIXME: Make this configurable?
5616   unsigned Limit = 9;
5617   if (OperatorArrows.size() > Limit) {
5618     // Produce Limit-1 normal notes and one 'skipping' note.
5619     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5620     SkipCount = OperatorArrows.size() - (Limit - 1);
5621   }
5622
5623   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5624     if (I == SkipStart) {
5625       S.Diag(OperatorArrows[I]->getLocation(),
5626              diag::note_operator_arrows_suppressed)
5627           << SkipCount;
5628       I += SkipCount;
5629     } else {
5630       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5631           << OperatorArrows[I]->getCallResultType();
5632       ++I;
5633     }
5634   }
5635 }
5636
5637 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
5638                                               SourceLocation OpLoc,
5639                                               tok::TokenKind OpKind,
5640                                               ParsedType &ObjectType,
5641                                               bool &MayBePseudoDestructor) {
5642   // Since this might be a postfix expression, get rid of ParenListExprs.
5643   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5644   if (Result.isInvalid()) return ExprError();
5645   Base = Result.get();
5646
5647   Result = CheckPlaceholderExpr(Base);
5648   if (Result.isInvalid()) return ExprError();
5649   Base = Result.get();
5650
5651   QualType BaseType = Base->getType();
5652   MayBePseudoDestructor = false;
5653   if (BaseType->isDependentType()) {
5654     // If we have a pointer to a dependent type and are using the -> operator,
5655     // the object type is the type that the pointer points to. We might still
5656     // have enough information about that type to do something useful.
5657     if (OpKind == tok::arrow)
5658       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5659         BaseType = Ptr->getPointeeType();
5660
5661     ObjectType = ParsedType::make(BaseType);
5662     MayBePseudoDestructor = true;
5663     return Base;
5664   }
5665
5666   // C++ [over.match.oper]p8:
5667   //   [...] When operator->returns, the operator-> is applied  to the value
5668   //   returned, with the original second operand.
5669   if (OpKind == tok::arrow) {
5670     QualType StartingType = BaseType;
5671     bool NoArrowOperatorFound = false;
5672     bool FirstIteration = true;
5673     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5674     // The set of types we've considered so far.
5675     llvm::SmallPtrSet<CanQualType,8> CTypes;
5676     SmallVector<FunctionDecl*, 8> OperatorArrows;
5677     CTypes.insert(Context.getCanonicalType(BaseType));
5678
5679     while (BaseType->isRecordType()) {
5680       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5681         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5682           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5683         noteOperatorArrows(*this, OperatorArrows);
5684         Diag(OpLoc, diag::note_operator_arrow_depth)
5685           << getLangOpts().ArrowDepth;
5686         return ExprError();
5687       }
5688
5689       Result = BuildOverloadedArrowExpr(
5690           S, Base, OpLoc,
5691           // When in a template specialization and on the first loop iteration,
5692           // potentially give the default diagnostic (with the fixit in a
5693           // separate note) instead of having the error reported back to here
5694           // and giving a diagnostic with a fixit attached to the error itself.
5695           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5696               ? nullptr
5697               : &NoArrowOperatorFound);
5698       if (Result.isInvalid()) {
5699         if (NoArrowOperatorFound) {
5700           if (FirstIteration) {
5701             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5702               << BaseType << 1 << Base->getSourceRange()
5703               << FixItHint::CreateReplacement(OpLoc, ".");
5704             OpKind = tok::period;
5705             break;
5706           }
5707           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5708             << BaseType << Base->getSourceRange();
5709           CallExpr *CE = dyn_cast<CallExpr>(Base);
5710           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5711             Diag(CD->getLocStart(),
5712                  diag::note_member_reference_arrow_from_operator_arrow);
5713           }
5714         }
5715         return ExprError();
5716       }
5717       Base = Result.get();
5718       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5719         OperatorArrows.push_back(OpCall->getDirectCallee());
5720       BaseType = Base->getType();
5721       CanQualType CBaseType = Context.getCanonicalType(BaseType);
5722       if (!CTypes.insert(CBaseType).second) {
5723         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5724         noteOperatorArrows(*this, OperatorArrows);
5725         return ExprError();
5726       }
5727       FirstIteration = false;
5728     }
5729
5730     if (OpKind == tok::arrow &&
5731         (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5732       BaseType = BaseType->getPointeeType();
5733   }
5734
5735   // Objective-C properties allow "." access on Objective-C pointer types,
5736   // so adjust the base type to the object type itself.
5737   if (BaseType->isObjCObjectPointerType())
5738     BaseType = BaseType->getPointeeType();
5739   
5740   // C++ [basic.lookup.classref]p2:
5741   //   [...] If the type of the object expression is of pointer to scalar
5742   //   type, the unqualified-id is looked up in the context of the complete
5743   //   postfix-expression.
5744   //
5745   // This also indicates that we could be parsing a pseudo-destructor-name.
5746   // Note that Objective-C class and object types can be pseudo-destructor
5747   // expressions or normal member (ivar or property) access expressions, and
5748   // it's legal for the type to be incomplete if this is a pseudo-destructor
5749   // call.  We'll do more incomplete-type checks later in the lookup process,
5750   // so just skip this check for ObjC types.
5751   if (BaseType->isObjCObjectOrInterfaceType()) {
5752     ObjectType = ParsedType::make(BaseType);
5753     MayBePseudoDestructor = true;
5754     return Base;
5755   } else if (!BaseType->isRecordType()) {
5756     ObjectType = ParsedType();
5757     MayBePseudoDestructor = true;
5758     return Base;
5759   }
5760
5761   // The object type must be complete (or dependent), or
5762   // C++11 [expr.prim.general]p3:
5763   //   Unlike the object expression in other contexts, *this is not required to
5764   //   be of complete type for purposes of class member access (5.2.5) outside 
5765   //   the member function body.
5766   if (!BaseType->isDependentType() &&
5767       !isThisOutsideMemberFunctionBody(BaseType) &&
5768       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5769     return ExprError();
5770
5771   // C++ [basic.lookup.classref]p2:
5772   //   If the id-expression in a class member access (5.2.5) is an
5773   //   unqualified-id, and the type of the object expression is of a class
5774   //   type C (or of pointer to a class type C), the unqualified-id is looked
5775   //   up in the scope of class C. [...]
5776   ObjectType = ParsedType::make(BaseType);
5777   return Base;
5778 }
5779
5780 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 
5781                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
5782   if (Base->hasPlaceholderType()) {
5783     ExprResult result = S.CheckPlaceholderExpr(Base);
5784     if (result.isInvalid()) return true;
5785     Base = result.get();
5786   }
5787   ObjectType = Base->getType();
5788
5789   // C++ [expr.pseudo]p2:
5790   //   The left-hand side of the dot operator shall be of scalar type. The
5791   //   left-hand side of the arrow operator shall be of pointer to scalar type.
5792   //   This scalar type is the object type.
5793   // Note that this is rather different from the normal handling for the
5794   // arrow operator.
5795   if (OpKind == tok::arrow) {
5796     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5797       ObjectType = Ptr->getPointeeType();
5798     } else if (!Base->isTypeDependent()) {
5799       // The user wrote "p->" when she probably meant "p."; fix it.
5800       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5801         << ObjectType << true
5802         << FixItHint::CreateReplacement(OpLoc, ".");
5803       if (S.isSFINAEContext())
5804         return true;
5805
5806       OpKind = tok::period;
5807     }
5808   }
5809
5810   return false;
5811 }
5812
5813 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5814                                            SourceLocation OpLoc,
5815                                            tok::TokenKind OpKind,
5816                                            const CXXScopeSpec &SS,
5817                                            TypeSourceInfo *ScopeTypeInfo,
5818                                            SourceLocation CCLoc,
5819                                            SourceLocation TildeLoc,
5820                                          PseudoDestructorTypeStorage Destructed) {
5821   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5822
5823   QualType ObjectType;
5824   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5825     return ExprError();
5826
5827   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5828       !ObjectType->isVectorType()) {
5829     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
5830       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5831     else {
5832       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5833         << ObjectType << Base->getSourceRange();
5834       return ExprError();
5835     }
5836   }
5837
5838   // C++ [expr.pseudo]p2:
5839   //   [...] The cv-unqualified versions of the object type and of the type
5840   //   designated by the pseudo-destructor-name shall be the same type.
5841   if (DestructedTypeInfo) {
5842     QualType DestructedType = DestructedTypeInfo->getType();
5843     SourceLocation DestructedTypeStart
5844       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5845     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5846       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5847         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5848           << ObjectType << DestructedType << Base->getSourceRange()
5849           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5850
5851         // Recover by setting the destructed type to the object type.
5852         DestructedType = ObjectType;
5853         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5854                                                            DestructedTypeStart);
5855         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5856       } else if (DestructedType.getObjCLifetime() != 
5857                                                 ObjectType.getObjCLifetime()) {
5858         
5859         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5860           // Okay: just pretend that the user provided the correctly-qualified
5861           // type.
5862         } else {
5863           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5864             << ObjectType << DestructedType << Base->getSourceRange()
5865             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5866         }
5867         
5868         // Recover by setting the destructed type to the object type.
5869         DestructedType = ObjectType;
5870         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5871                                                            DestructedTypeStart);
5872         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5873       }
5874     }
5875   }
5876
5877   // C++ [expr.pseudo]p2:
5878   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5879   //   form
5880   //
5881   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5882   //
5883   //   shall designate the same scalar type.
5884   if (ScopeTypeInfo) {
5885     QualType ScopeType = ScopeTypeInfo->getType();
5886     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5887         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5888
5889       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5890            diag::err_pseudo_dtor_type_mismatch)
5891         << ObjectType << ScopeType << Base->getSourceRange()
5892         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5893
5894       ScopeType = QualType();
5895       ScopeTypeInfo = nullptr;
5896     }
5897   }
5898
5899   Expr *Result
5900     = new (Context) CXXPseudoDestructorExpr(Context, Base,
5901                                             OpKind == tok::arrow, OpLoc,
5902                                             SS.getWithLocInContext(Context),
5903                                             ScopeTypeInfo,
5904                                             CCLoc,
5905                                             TildeLoc,
5906                                             Destructed);
5907
5908   return Result;
5909 }
5910
5911 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5912                                            SourceLocation OpLoc,
5913                                            tok::TokenKind OpKind,
5914                                            CXXScopeSpec &SS,
5915                                            UnqualifiedId &FirstTypeName,
5916                                            SourceLocation CCLoc,
5917                                            SourceLocation TildeLoc,
5918                                            UnqualifiedId &SecondTypeName) {
5919   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5920           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5921          "Invalid first type name in pseudo-destructor");
5922   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5923           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5924          "Invalid second type name in pseudo-destructor");
5925
5926   QualType ObjectType;
5927   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5928     return ExprError();
5929
5930   // Compute the object type that we should use for name lookup purposes. Only
5931   // record types and dependent types matter.
5932   ParsedType ObjectTypePtrForLookup;
5933   if (!SS.isSet()) {
5934     if (ObjectType->isRecordType())
5935       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5936     else if (ObjectType->isDependentType())
5937       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5938   }
5939
5940   // Convert the name of the type being destructed (following the ~) into a
5941   // type (with source-location information).
5942   QualType DestructedType;
5943   TypeSourceInfo *DestructedTypeInfo = nullptr;
5944   PseudoDestructorTypeStorage Destructed;
5945   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5946     ParsedType T = getTypeName(*SecondTypeName.Identifier,
5947                                SecondTypeName.StartLocation,
5948                                S, &SS, true, false, ObjectTypePtrForLookup);
5949     if (!T &&
5950         ((SS.isSet() && !computeDeclContext(SS, false)) ||
5951          (!SS.isSet() && ObjectType->isDependentType()))) {
5952       // The name of the type being destroyed is a dependent name, and we
5953       // couldn't find anything useful in scope. Just store the identifier and
5954       // it's location, and we'll perform (qualified) name lookup again at
5955       // template instantiation time.
5956       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5957                                                SecondTypeName.StartLocation);
5958     } else if (!T) {
5959       Diag(SecondTypeName.StartLocation,
5960            diag::err_pseudo_dtor_destructor_non_type)
5961         << SecondTypeName.Identifier << ObjectType;
5962       if (isSFINAEContext())
5963         return ExprError();
5964
5965       // Recover by assuming we had the right type all along.
5966       DestructedType = ObjectType;
5967     } else
5968       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5969   } else {
5970     // Resolve the template-id to a type.
5971     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5972     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5973                                        TemplateId->NumArgs);
5974     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5975                                        TemplateId->TemplateKWLoc,
5976                                        TemplateId->Template,
5977                                        TemplateId->TemplateNameLoc,
5978                                        TemplateId->LAngleLoc,
5979                                        TemplateArgsPtr,
5980                                        TemplateId->RAngleLoc);
5981     if (T.isInvalid() || !T.get()) {
5982       // Recover by assuming we had the right type all along.
5983       DestructedType = ObjectType;
5984     } else
5985       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5986   }
5987
5988   // If we've performed some kind of recovery, (re-)build the type source
5989   // information.
5990   if (!DestructedType.isNull()) {
5991     if (!DestructedTypeInfo)
5992       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5993                                                   SecondTypeName.StartLocation);
5994     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5995   }
5996
5997   // Convert the name of the scope type (the type prior to '::') into a type.
5998   TypeSourceInfo *ScopeTypeInfo = nullptr;
5999   QualType ScopeType;
6000   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
6001       FirstTypeName.Identifier) {
6002     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
6003       ParsedType T = getTypeName(*FirstTypeName.Identifier,
6004                                  FirstTypeName.StartLocation,
6005                                  S, &SS, true, false, ObjectTypePtrForLookup);
6006       if (!T) {
6007         Diag(FirstTypeName.StartLocation,
6008              diag::err_pseudo_dtor_destructor_non_type)
6009           << FirstTypeName.Identifier << ObjectType;
6010
6011         if (isSFINAEContext())
6012           return ExprError();
6013
6014         // Just drop this type. It's unnecessary anyway.
6015         ScopeType = QualType();
6016       } else
6017         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
6018     } else {
6019       // Resolve the template-id to a type.
6020       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
6021       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6022                                          TemplateId->NumArgs);
6023       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
6024                                          TemplateId->TemplateKWLoc,
6025                                          TemplateId->Template,
6026                                          TemplateId->TemplateNameLoc,
6027                                          TemplateId->LAngleLoc,
6028                                          TemplateArgsPtr,
6029                                          TemplateId->RAngleLoc);
6030       if (T.isInvalid() || !T.get()) {
6031         // Recover by dropping this type.
6032         ScopeType = QualType();
6033       } else
6034         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
6035     }
6036   }
6037
6038   if (!ScopeType.isNull() && !ScopeTypeInfo)
6039     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
6040                                                   FirstTypeName.StartLocation);
6041
6042
6043   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
6044                                    ScopeTypeInfo, CCLoc, TildeLoc,
6045                                    Destructed);
6046 }
6047
6048 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6049                                            SourceLocation OpLoc,
6050                                            tok::TokenKind OpKind,
6051                                            SourceLocation TildeLoc, 
6052                                            const DeclSpec& DS) {
6053   QualType ObjectType;
6054   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6055     return ExprError();
6056
6057   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
6058                                  false);
6059
6060   TypeLocBuilder TLB;
6061   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
6062   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
6063   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
6064   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
6065
6066   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
6067                                    nullptr, SourceLocation(), TildeLoc,
6068                                    Destructed);
6069 }
6070
6071 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
6072                                         CXXConversionDecl *Method,
6073                                         bool HadMultipleCandidates) {
6074   if (Method->getParent()->isLambda() &&
6075       Method->getConversionType()->isBlockPointerType()) {
6076     // This is a lambda coversion to block pointer; check if the argument
6077     // is a LambdaExpr.
6078     Expr *SubE = E;
6079     CastExpr *CE = dyn_cast<CastExpr>(SubE);
6080     if (CE && CE->getCastKind() == CK_NoOp)
6081       SubE = CE->getSubExpr();
6082     SubE = SubE->IgnoreParens();
6083     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
6084       SubE = BE->getSubExpr();
6085     if (isa<LambdaExpr>(SubE)) {
6086       // For the conversion to block pointer on a lambda expression, we
6087       // construct a special BlockLiteral instead; this doesn't really make
6088       // a difference in ARC, but outside of ARC the resulting block literal
6089       // follows the normal lifetime rules for block literals instead of being
6090       // autoreleased.
6091       DiagnosticErrorTrap Trap(Diags);
6092       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
6093                                                      E->getExprLoc(),
6094                                                      Method, E);
6095       if (Exp.isInvalid())
6096         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
6097       return Exp;
6098     }
6099   }
6100
6101   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
6102                                           FoundDecl, Method);
6103   if (Exp.isInvalid())
6104     return true;
6105
6106   MemberExpr *ME = new (Context) MemberExpr(
6107       Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
6108       Context.BoundMemberTy, VK_RValue, OK_Ordinary);
6109   if (HadMultipleCandidates)
6110     ME->setHadMultipleCandidates(true);
6111   MarkMemberReferenced(ME);
6112
6113   QualType ResultType = Method->getReturnType();
6114   ExprValueKind VK = Expr::getValueKindForType(ResultType);
6115   ResultType = ResultType.getNonLValueExprType(Context);
6116
6117   CXXMemberCallExpr *CE =
6118     new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
6119                                     Exp.get()->getLocEnd());
6120   return CE;
6121 }
6122
6123 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6124                                       SourceLocation RParen) {
6125   // If the operand is an unresolved lookup expression, the expression is ill-
6126   // formed per [over.over]p1, because overloaded function names cannot be used
6127   // without arguments except in explicit contexts.
6128   ExprResult R = CheckPlaceholderExpr(Operand);
6129   if (R.isInvalid())
6130     return R;
6131
6132   // The operand may have been modified when checking the placeholder type.
6133   Operand = R.get();
6134
6135   if (ActiveTemplateInstantiations.empty() &&
6136       Operand->HasSideEffects(Context, false)) {
6137     // The expression operand for noexcept is in an unevaluated expression
6138     // context, so side effects could result in unintended consequences.
6139     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
6140   }
6141
6142   CanThrowResult CanThrow = canThrow(Operand);
6143   return new (Context)
6144       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
6145 }
6146
6147 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
6148                                    Expr *Operand, SourceLocation RParen) {
6149   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
6150 }
6151
6152 static bool IsSpecialDiscardedValue(Expr *E) {
6153   // In C++11, discarded-value expressions of a certain form are special,
6154   // according to [expr]p10:
6155   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
6156   //   expression is an lvalue of volatile-qualified type and it has
6157   //   one of the following forms:
6158   E = E->IgnoreParens();
6159
6160   //   - id-expression (5.1.1),
6161   if (isa<DeclRefExpr>(E))
6162     return true;
6163
6164   //   - subscripting (5.2.1),
6165   if (isa<ArraySubscriptExpr>(E))
6166     return true;
6167
6168   //   - class member access (5.2.5),
6169   if (isa<MemberExpr>(E))
6170     return true;
6171
6172   //   - indirection (5.3.1),
6173   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
6174     if (UO->getOpcode() == UO_Deref)
6175       return true;
6176
6177   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6178     //   - pointer-to-member operation (5.5),
6179     if (BO->isPtrMemOp())
6180       return true;
6181
6182     //   - comma expression (5.18) where the right operand is one of the above.
6183     if (BO->getOpcode() == BO_Comma)
6184       return IsSpecialDiscardedValue(BO->getRHS());
6185   }
6186
6187   //   - conditional expression (5.16) where both the second and the third
6188   //     operands are one of the above, or
6189   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
6190     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
6191            IsSpecialDiscardedValue(CO->getFalseExpr());
6192   // The related edge case of "*x ?: *x".
6193   if (BinaryConditionalOperator *BCO =
6194           dyn_cast<BinaryConditionalOperator>(E)) {
6195     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
6196       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
6197              IsSpecialDiscardedValue(BCO->getFalseExpr());
6198   }
6199
6200   // Objective-C++ extensions to the rule.
6201   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
6202     return true;
6203
6204   return false;
6205 }
6206
6207 /// Perform the conversions required for an expression used in a
6208 /// context that ignores the result.
6209 ExprResult Sema::IgnoredValueConversions(Expr *E) {
6210   if (E->hasPlaceholderType()) {
6211     ExprResult result = CheckPlaceholderExpr(E);
6212     if (result.isInvalid()) return E;
6213     E = result.get();
6214   }
6215
6216   // C99 6.3.2.1:
6217   //   [Except in specific positions,] an lvalue that does not have
6218   //   array type is converted to the value stored in the
6219   //   designated object (and is no longer an lvalue).
6220   if (E->isRValue()) {
6221     // In C, function designators (i.e. expressions of function type)
6222     // are r-values, but we still want to do function-to-pointer decay
6223     // on them.  This is both technically correct and convenient for
6224     // some clients.
6225     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
6226       return DefaultFunctionArrayConversion(E);
6227
6228     return E;
6229   }
6230
6231   if (getLangOpts().CPlusPlus)  {
6232     // The C++11 standard defines the notion of a discarded-value expression;
6233     // normally, we don't need to do anything to handle it, but if it is a
6234     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
6235     // conversion.
6236     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
6237         E->getType().isVolatileQualified() &&
6238         IsSpecialDiscardedValue(E)) {
6239       ExprResult Res = DefaultLvalueConversion(E);
6240       if (Res.isInvalid())
6241         return E;
6242       E = Res.get();
6243     } 
6244     return E;
6245   }
6246
6247   // GCC seems to also exclude expressions of incomplete enum type.
6248   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
6249     if (!T->getDecl()->isComplete()) {
6250       // FIXME: stupid workaround for a codegen bug!
6251       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
6252       return E;
6253     }
6254   }
6255
6256   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
6257   if (Res.isInvalid())
6258     return E;
6259   E = Res.get();
6260
6261   if (!E->getType()->isVoidType())
6262     RequireCompleteType(E->getExprLoc(), E->getType(),
6263                         diag::err_incomplete_type);
6264   return E;
6265 }
6266
6267 // If we can unambiguously determine whether Var can never be used
6268 // in a constant expression, return true.
6269 //  - if the variable and its initializer are non-dependent, then
6270 //    we can unambiguously check if the variable is a constant expression.
6271 //  - if the initializer is not value dependent - we can determine whether
6272 //    it can be used to initialize a constant expression.  If Init can not
6273 //    be used to initialize a constant expression we conclude that Var can 
6274 //    never be a constant expression.
6275 //  - FXIME: if the initializer is dependent, we can still do some analysis and
6276 //    identify certain cases unambiguously as non-const by using a Visitor:
6277 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
6278 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
6279 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 
6280     ASTContext &Context) {
6281   if (isa<ParmVarDecl>(Var)) return true;
6282   const VarDecl *DefVD = nullptr;
6283
6284   // If there is no initializer - this can not be a constant expression.
6285   if (!Var->getAnyInitializer(DefVD)) return true;
6286   assert(DefVD);
6287   if (DefVD->isWeak()) return false;
6288   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
6289
6290   Expr *Init = cast<Expr>(Eval->Value);
6291
6292   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
6293     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
6294     // of value-dependent expressions, and use it here to determine whether the
6295     // initializer is a potential constant expression.
6296     return false;
6297   }
6298
6299   return !IsVariableAConstantExpression(Var, Context); 
6300 }
6301
6302 /// \brief Check if the current lambda has any potential captures 
6303 /// that must be captured by any of its enclosing lambdas that are ready to 
6304 /// capture. If there is a lambda that can capture a nested 
6305 /// potential-capture, go ahead and do so.  Also, check to see if any 
6306 /// variables are uncaptureable or do not involve an odr-use so do not 
6307 /// need to be captured.
6308
6309 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
6310     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
6311
6312   assert(!S.isUnevaluatedContext());  
6313   assert(S.CurContext->isDependentContext()); 
6314   assert(CurrentLSI->CallOperator == S.CurContext && 
6315       "The current call operator must be synchronized with Sema's CurContext");
6316
6317   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
6318
6319   ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
6320       S.FunctionScopes.data(), S.FunctionScopes.size());
6321   
6322   // All the potentially captureable variables in the current nested
6323   // lambda (within a generic outer lambda), must be captured by an
6324   // outer lambda that is enclosed within a non-dependent context.
6325   const unsigned NumPotentialCaptures =
6326       CurrentLSI->getNumPotentialVariableCaptures();
6327   for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
6328     Expr *VarExpr = nullptr;
6329     VarDecl *Var = nullptr;
6330     CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
6331     // If the variable is clearly identified as non-odr-used and the full
6332     // expression is not instantiation dependent, only then do we not 
6333     // need to check enclosing lambda's for speculative captures.
6334     // For e.g.:
6335     // Even though 'x' is not odr-used, it should be captured.
6336     // int test() {
6337     //   const int x = 10;
6338     //   auto L = [=](auto a) {
6339     //     (void) +x + a;
6340     //   };
6341     // }
6342     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
6343         !IsFullExprInstantiationDependent)
6344       continue;
6345
6346     // If we have a capture-capable lambda for the variable, go ahead and
6347     // capture the variable in that lambda (and all its enclosing lambdas).
6348     if (const Optional<unsigned> Index =
6349             getStackIndexOfNearestEnclosingCaptureCapableLambda(
6350                 FunctionScopesArrayRef, Var, S)) {
6351       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6352       MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
6353                          &FunctionScopeIndexOfCapturableLambda);
6354     } 
6355     const bool IsVarNeverAConstantExpression = 
6356         VariableCanNeverBeAConstantExpression(Var, S.Context);
6357     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
6358       // This full expression is not instantiation dependent or the variable
6359       // can not be used in a constant expression - which means 
6360       // this variable must be odr-used here, so diagnose a 
6361       // capture violation early, if the variable is un-captureable.
6362       // This is purely for diagnosing errors early.  Otherwise, this
6363       // error would get diagnosed when the lambda becomes capture ready.
6364       QualType CaptureType, DeclRefType;
6365       SourceLocation ExprLoc = VarExpr->getExprLoc();
6366       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6367                           /*EllipsisLoc*/ SourceLocation(), 
6368                           /*BuildAndDiagnose*/false, CaptureType, 
6369                           DeclRefType, nullptr)) {
6370         // We will never be able to capture this variable, and we need
6371         // to be able to in any and all instantiations, so diagnose it.
6372         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6373                           /*EllipsisLoc*/ SourceLocation(), 
6374                           /*BuildAndDiagnose*/true, CaptureType, 
6375                           DeclRefType, nullptr);
6376       }
6377     }
6378   }
6379
6380   // Check if 'this' needs to be captured.
6381   if (CurrentLSI->hasPotentialThisCapture()) {
6382     // If we have a capture-capable lambda for 'this', go ahead and capture
6383     // 'this' in that lambda (and all its enclosing lambdas).
6384     if (const Optional<unsigned> Index =
6385             getStackIndexOfNearestEnclosingCaptureCapableLambda(
6386                 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
6387       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6388       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
6389                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
6390                             &FunctionScopeIndexOfCapturableLambda);
6391     }
6392   }
6393
6394   // Reset all the potential captures at the end of each full-expression.
6395   CurrentLSI->clearPotentialCaptures();
6396 }
6397
6398 static ExprResult attemptRecovery(Sema &SemaRef,
6399                                   const TypoCorrectionConsumer &Consumer,
6400                                   TypoCorrection TC) {
6401   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
6402                  Consumer.getLookupResult().getLookupKind());
6403   const CXXScopeSpec *SS = Consumer.getSS();
6404   CXXScopeSpec NewSS;
6405
6406   // Use an approprate CXXScopeSpec for building the expr.
6407   if (auto *NNS = TC.getCorrectionSpecifier())
6408     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
6409   else if (SS && !TC.WillReplaceSpecifier())
6410     NewSS = *SS;
6411
6412   if (auto *ND = TC.getFoundDecl()) {
6413     R.setLookupName(ND->getDeclName());
6414     R.addDecl(ND);
6415     if (ND->isCXXClassMember()) {
6416       // Figure out the correct naming class to add to the LookupResult.
6417       CXXRecordDecl *Record = nullptr;
6418       if (auto *NNS = TC.getCorrectionSpecifier())
6419         Record = NNS->getAsType()->getAsCXXRecordDecl();
6420       if (!Record)
6421         Record =
6422             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
6423       if (Record)
6424         R.setNamingClass(Record);
6425
6426       // Detect and handle the case where the decl might be an implicit
6427       // member.
6428       bool MightBeImplicitMember;
6429       if (!Consumer.isAddressOfOperand())
6430         MightBeImplicitMember = true;
6431       else if (!NewSS.isEmpty())
6432         MightBeImplicitMember = false;
6433       else if (R.isOverloadedResult())
6434         MightBeImplicitMember = false;
6435       else if (R.isUnresolvableResult())
6436         MightBeImplicitMember = true;
6437       else
6438         MightBeImplicitMember = isa<FieldDecl>(ND) ||
6439                                 isa<IndirectFieldDecl>(ND) ||
6440                                 isa<MSPropertyDecl>(ND);
6441
6442       if (MightBeImplicitMember)
6443         return SemaRef.BuildPossibleImplicitMemberExpr(
6444             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
6445             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
6446     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
6447       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
6448                                         Ivar->getIdentifier());
6449     }
6450   }
6451
6452   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
6453                                           /*AcceptInvalidDecl*/ true);
6454 }
6455
6456 namespace {
6457 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
6458   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
6459
6460 public:
6461   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
6462       : TypoExprs(TypoExprs) {}
6463   bool VisitTypoExpr(TypoExpr *TE) {
6464     TypoExprs.insert(TE);
6465     return true;
6466   }
6467 };
6468
6469 class TransformTypos : public TreeTransform<TransformTypos> {
6470   typedef TreeTransform<TransformTypos> BaseTransform;
6471
6472   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
6473                      // process of being initialized.
6474   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
6475   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
6476   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
6477   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
6478
6479   /// \brief Emit diagnostics for all of the TypoExprs encountered.
6480   /// If the TypoExprs were successfully corrected, then the diagnostics should
6481   /// suggest the corrections. Otherwise the diagnostics will not suggest
6482   /// anything (having been passed an empty TypoCorrection).
6483   void EmitAllDiagnostics() {
6484     for (auto E : TypoExprs) {
6485       TypoExpr *TE = cast<TypoExpr>(E);
6486       auto &State = SemaRef.getTypoExprState(TE);
6487       if (State.DiagHandler) {
6488         TypoCorrection TC = State.Consumer->getCurrentCorrection();
6489         ExprResult Replacement = TransformCache[TE];
6490
6491         // Extract the NamedDecl from the transformed TypoExpr and add it to the
6492         // TypoCorrection, replacing the existing decls. This ensures the right
6493         // NamedDecl is used in diagnostics e.g. in the case where overload
6494         // resolution was used to select one from several possible decls that
6495         // had been stored in the TypoCorrection.
6496         if (auto *ND = getDeclFromExpr(
6497                 Replacement.isInvalid() ? nullptr : Replacement.get()))
6498           TC.setCorrectionDecl(ND);
6499
6500         State.DiagHandler(TC);
6501       }
6502       SemaRef.clearDelayedTypo(TE);
6503     }
6504   }
6505
6506   /// \brief If corrections for the first TypoExpr have been exhausted for a
6507   /// given combination of the other TypoExprs, retry those corrections against
6508   /// the next combination of substitutions for the other TypoExprs by advancing
6509   /// to the next potential correction of the second TypoExpr. For the second
6510   /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
6511   /// the stream is reset and the next TypoExpr's stream is advanced by one (a
6512   /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
6513   /// TransformCache). Returns true if there is still any untried combinations
6514   /// of corrections.
6515   bool CheckAndAdvanceTypoExprCorrectionStreams() {
6516     for (auto TE : TypoExprs) {
6517       auto &State = SemaRef.getTypoExprState(TE);
6518       TransformCache.erase(TE);
6519       if (!State.Consumer->finished())
6520         return true;
6521       State.Consumer->resetCorrectionStream();
6522     }
6523     return false;
6524   }
6525
6526   NamedDecl *getDeclFromExpr(Expr *E) {
6527     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
6528       E = OverloadResolution[OE];
6529
6530     if (!E)
6531       return nullptr;
6532     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
6533       return DRE->getFoundDecl();
6534     if (auto *ME = dyn_cast<MemberExpr>(E))
6535       return ME->getFoundDecl();
6536     // FIXME: Add any other expr types that could be be seen by the delayed typo
6537     // correction TreeTransform for which the corresponding TypoCorrection could
6538     // contain multiple decls.
6539     return nullptr;
6540   }
6541
6542   ExprResult TryTransform(Expr *E) {
6543     Sema::SFINAETrap Trap(SemaRef);
6544     ExprResult Res = TransformExpr(E);
6545     if (Trap.hasErrorOccurred() || Res.isInvalid())
6546       return ExprError();
6547
6548     return ExprFilter(Res.get());
6549   }
6550
6551 public:
6552   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
6553       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
6554
6555   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
6556                                    MultiExprArg Args,
6557                                    SourceLocation RParenLoc,
6558                                    Expr *ExecConfig = nullptr) {
6559     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
6560                                                  RParenLoc, ExecConfig);
6561     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
6562       if (Result.isUsable()) {
6563         Expr *ResultCall = Result.get();
6564         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
6565           ResultCall = BE->getSubExpr();
6566         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
6567           OverloadResolution[OE] = CE->getCallee();
6568       }
6569     }
6570     return Result;
6571   }
6572
6573   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
6574
6575   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
6576
6577   ExprResult Transform(Expr *E) {
6578     ExprResult Res;
6579     while (true) {
6580       Res = TryTransform(E);
6581
6582       // Exit if either the transform was valid or if there were no TypoExprs
6583       // to transform that still have any untried correction candidates..
6584       if (!Res.isInvalid() ||
6585           !CheckAndAdvanceTypoExprCorrectionStreams())
6586         break;
6587     }
6588
6589     // Ensure none of the TypoExprs have multiple typo correction candidates
6590     // with the same edit length that pass all the checks and filters.
6591     // TODO: Properly handle various permutations of possible corrections when
6592     // there is more than one potentially ambiguous typo correction.
6593     // Also, disable typo correction while attempting the transform when
6594     // handling potentially ambiguous typo corrections as any new TypoExprs will
6595     // have been introduced by the application of one of the correction
6596     // candidates and add little to no value if corrected.
6597     SemaRef.DisableTypoCorrection = true;
6598     while (!AmbiguousTypoExprs.empty()) {
6599       auto TE  = AmbiguousTypoExprs.back();
6600       auto Cached = TransformCache[TE];
6601       auto &State = SemaRef.getTypoExprState(TE);
6602       State.Consumer->saveCurrentPosition();
6603       TransformCache.erase(TE);
6604       if (!TryTransform(E).isInvalid()) {
6605         State.Consumer->resetCorrectionStream();
6606         TransformCache.erase(TE);
6607         Res = ExprError();
6608         break;
6609       }
6610       AmbiguousTypoExprs.remove(TE);
6611       State.Consumer->restoreSavedPosition();
6612       TransformCache[TE] = Cached;
6613     }
6614     SemaRef.DisableTypoCorrection = false;
6615
6616     // Ensure that all of the TypoExprs within the current Expr have been found.
6617     if (!Res.isUsable())
6618       FindTypoExprs(TypoExprs).TraverseStmt(E);
6619
6620     EmitAllDiagnostics();
6621
6622     return Res;
6623   }
6624
6625   ExprResult TransformTypoExpr(TypoExpr *E) {
6626     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
6627     // cached transformation result if there is one and the TypoExpr isn't the
6628     // first one that was encountered.
6629     auto &CacheEntry = TransformCache[E];
6630     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
6631       return CacheEntry;
6632     }
6633
6634     auto &State = SemaRef.getTypoExprState(E);
6635     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
6636
6637     // For the first TypoExpr and an uncached TypoExpr, find the next likely
6638     // typo correction and return it.
6639     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
6640       if (InitDecl && TC.getFoundDecl() == InitDecl)
6641         continue;
6642       ExprResult NE = State.RecoveryHandler ?
6643           State.RecoveryHandler(SemaRef, E, TC) :
6644           attemptRecovery(SemaRef, *State.Consumer, TC);
6645       if (!NE.isInvalid()) {
6646         // Check whether there may be a second viable correction with the same
6647         // edit distance; if so, remember this TypoExpr may have an ambiguous
6648         // correction so it can be more thoroughly vetted later.
6649         TypoCorrection Next;
6650         if ((Next = State.Consumer->peekNextCorrection()) &&
6651             Next.getEditDistance(false) == TC.getEditDistance(false)) {
6652           AmbiguousTypoExprs.insert(E);
6653         } else {
6654           AmbiguousTypoExprs.remove(E);
6655         }
6656         assert(!NE.isUnset() &&
6657                "Typo was transformed into a valid-but-null ExprResult");
6658         return CacheEntry = NE;
6659       }
6660     }
6661     return CacheEntry = ExprError();
6662   }
6663 };
6664 }
6665
6666 ExprResult
6667 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
6668                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
6669   // If the current evaluation context indicates there are uncorrected typos
6670   // and the current expression isn't guaranteed to not have typos, try to
6671   // resolve any TypoExpr nodes that might be in the expression.
6672   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
6673       (E->isTypeDependent() || E->isValueDependent() ||
6674        E->isInstantiationDependent())) {
6675     auto TyposInContext = ExprEvalContexts.back().NumTypos;
6676     assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
6677     ExprEvalContexts.back().NumTypos = ~0U;
6678     auto TyposResolved = DelayedTypos.size();
6679     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
6680     ExprEvalContexts.back().NumTypos = TyposInContext;
6681     TyposResolved -= DelayedTypos.size();
6682     if (Result.isInvalid() || Result.get() != E) {
6683       ExprEvalContexts.back().NumTypos -= TyposResolved;
6684       return Result;
6685     }
6686     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
6687   }
6688   return E;
6689 }
6690
6691 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
6692                                      bool DiscardedValue,
6693                                      bool IsConstexpr, 
6694                                      bool IsLambdaInitCaptureInitializer) {
6695   ExprResult FullExpr = FE;
6696
6697   if (!FullExpr.get())
6698     return ExprError();
6699  
6700   // If we are an init-expression in a lambdas init-capture, we should not 
6701   // diagnose an unexpanded pack now (will be diagnosed once lambda-expr 
6702   // containing full-expression is done).
6703   // template<class ... Ts> void test(Ts ... t) {
6704   //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
6705   //     return a;
6706   //   }() ...);
6707   // }
6708   // FIXME: This is a hack. It would be better if we pushed the lambda scope
6709   // when we parse the lambda introducer, and teach capturing (but not
6710   // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
6711   // corresponding class yet (that is, have LambdaScopeInfo either represent a
6712   // lambda where we've entered the introducer but not the body, or represent a
6713   // lambda where we've entered the body, depending on where the
6714   // parser/instantiation has got to).
6715   if (!IsLambdaInitCaptureInitializer && 
6716       DiagnoseUnexpandedParameterPack(FullExpr.get()))
6717     return ExprError();
6718
6719   // Top-level expressions default to 'id' when we're in a debugger.
6720   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
6721       FullExpr.get()->getType() == Context.UnknownAnyTy) {
6722     FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
6723     if (FullExpr.isInvalid())
6724       return ExprError();
6725   }
6726
6727   if (DiscardedValue) {
6728     FullExpr = CheckPlaceholderExpr(FullExpr.get());
6729     if (FullExpr.isInvalid())
6730       return ExprError();
6731
6732     FullExpr = IgnoredValueConversions(FullExpr.get());
6733     if (FullExpr.isInvalid())
6734       return ExprError();
6735   }
6736
6737   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
6738   if (FullExpr.isInvalid())
6739     return ExprError();
6740
6741   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
6742
6743   // At the end of this full expression (which could be a deeply nested 
6744   // lambda), if there is a potential capture within the nested lambda, 
6745   // have the outer capture-able lambda try and capture it.
6746   // Consider the following code:
6747   // void f(int, int);
6748   // void f(const int&, double);
6749   // void foo() {   
6750   //  const int x = 10, y = 20;
6751   //  auto L = [=](auto a) {
6752   //      auto M = [=](auto b) {
6753   //         f(x, b); <-- requires x to be captured by L and M
6754   //         f(y, a); <-- requires y to be captured by L, but not all Ms
6755   //      };
6756   //   };
6757   // }
6758
6759   // FIXME: Also consider what happens for something like this that involves 
6760   // the gnu-extension statement-expressions or even lambda-init-captures:   
6761   //   void f() {
6762   //     const int n = 0;
6763   //     auto L =  [&](auto a) {
6764   //       +n + ({ 0; a; });
6765   //     };
6766   //   }
6767   // 
6768   // Here, we see +n, and then the full-expression 0; ends, so we don't 
6769   // capture n (and instead remove it from our list of potential captures), 
6770   // and then the full-expression +n + ({ 0; }); ends, but it's too late 
6771   // for us to see that we need to capture n after all.
6772
6773   LambdaScopeInfo *const CurrentLSI = getCurLambda();
6774   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 
6775   // even if CurContext is not a lambda call operator. Refer to that Bug Report
6776   // for an example of the code that might cause this asynchrony.  
6777   // By ensuring we are in the context of a lambda's call operator
6778   // we can fix the bug (we only need to check whether we need to capture
6779   // if we are within a lambda's body); but per the comments in that 
6780   // PR, a proper fix would entail :
6781   //   "Alternative suggestion:
6782   //   - Add to Sema an integer holding the smallest (outermost) scope 
6783   //     index that we are *lexically* within, and save/restore/set to 
6784   //     FunctionScopes.size() in InstantiatingTemplate's 
6785   //     constructor/destructor.
6786   //  - Teach the handful of places that iterate over FunctionScopes to 
6787   //    stop at the outermost enclosing lexical scope."
6788   const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6789   if (IsInLambdaDeclContext && CurrentLSI &&
6790       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6791     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
6792                                                               *this);
6793   return MaybeCreateExprWithCleanups(FullExpr);
6794 }
6795
6796 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6797   if (!FullStmt) return StmtError();
6798
6799   return MaybeCreateStmtWithCleanups(FullStmt);
6800 }
6801
6802 Sema::IfExistsResult 
6803 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6804                                    CXXScopeSpec &SS,
6805                                    const DeclarationNameInfo &TargetNameInfo) {
6806   DeclarationName TargetName = TargetNameInfo.getName();
6807   if (!TargetName)
6808     return IER_DoesNotExist;
6809   
6810   // If the name itself is dependent, then the result is dependent.
6811   if (TargetName.isDependentName())
6812     return IER_Dependent;
6813   
6814   // Do the redeclaration lookup in the current scope.
6815   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6816                  Sema::NotForRedeclaration);
6817   LookupParsedName(R, S, &SS);
6818   R.suppressDiagnostics();
6819   
6820   switch (R.getResultKind()) {
6821   case LookupResult::Found:
6822   case LookupResult::FoundOverloaded:
6823   case LookupResult::FoundUnresolvedValue:
6824   case LookupResult::Ambiguous:
6825     return IER_Exists;
6826     
6827   case LookupResult::NotFound:
6828     return IER_DoesNotExist;
6829     
6830   case LookupResult::NotFoundInCurrentInstantiation:
6831     return IER_Dependent;
6832   }
6833
6834   llvm_unreachable("Invalid LookupResult Kind!");
6835 }
6836
6837 Sema::IfExistsResult 
6838 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6839                                    bool IsIfExists, CXXScopeSpec &SS,
6840                                    UnqualifiedId &Name) {
6841   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6842   
6843   // Check for unexpanded parameter packs.
6844   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6845   collectUnexpandedParameterPacks(SS, Unexpanded);
6846   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6847   if (!Unexpanded.empty()) {
6848     DiagnoseUnexpandedParameterPacks(KeywordLoc,
6849                                      IsIfExists? UPPC_IfExists 
6850                                                : UPPC_IfNotExists, 
6851                                      Unexpanded);
6852     return IER_Error;
6853   }
6854   
6855   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6856 }