]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaExprMember.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaExprMember.cpp
1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis member access expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24
25 using namespace clang;
26 using namespace sema;
27
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33                                      const BaseSet &Bases) {
34   auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35     return !Bases.count(Base->getCanonicalDecl());
36   };
37   return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38 }
39
40 enum IMAKind {
41   /// The reference is definitely not an instance member access.
42   IMA_Static,
43
44   /// The reference may be an implicit instance member access.
45   IMA_Mixed,
46
47   /// The reference may be to an instance member, but it might be invalid if
48   /// so, because the context is not an instance method.
49   IMA_Mixed_StaticContext,
50
51   /// The reference may be to an instance member, but it is invalid if
52   /// so, because the context is from an unrelated class.
53   IMA_Mixed_Unrelated,
54
55   /// The reference is definitely an implicit instance member access.
56   IMA_Instance,
57
58   /// The reference may be to an unresolved using declaration.
59   IMA_Unresolved,
60
61   /// The reference is a contextually-permitted abstract member reference.
62   IMA_Abstract,
63
64   /// The reference may be to an unresolved using declaration and the
65   /// context is not an instance method.
66   IMA_Unresolved_StaticContext,
67
68   // The reference refers to a field which is not a member of the containing
69   // class, which is allowed because we're in C++11 mode and the context is
70   // unevaluated.
71   IMA_Field_Uneval_Context,
72
73   /// All possible referrents are instance members and the current
74   /// context is not an instance method.
75   IMA_Error_StaticContext,
76
77   /// All possible referrents are instance members of an unrelated
78   /// class.
79   IMA_Error_Unrelated
80 };
81
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression.  Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member.  This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89                                             const LookupResult &R) {
90   assert(!R.empty() && (*R.begin())->isCXXClassMember());
91
92   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93
94   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96
97   if (R.isUnresolvableResult())
98     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99
100   // Collect all the declaring classes of instance members we find.
101   bool hasNonInstance = false;
102   bool isField = false;
103   BaseSet Classes;
104   for (NamedDecl *D : R) {
105     // Look through any using decls.
106     D = D->getUnderlyingDecl();
107
108     if (D->isCXXInstanceMember()) {
109       isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
110                  isa<IndirectFieldDecl>(D);
111
112       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
113       Classes.insert(R->getCanonicalDecl());
114     } else
115       hasNonInstance = true;
116   }
117
118   // If we didn't find any instance members, it can't be an implicit
119   // member reference.
120   if (Classes.empty())
121     return IMA_Static;
122
123   // C++11 [expr.prim.general]p12:
124   //   An id-expression that denotes a non-static data member or non-static
125   //   member function of a class can only be used:
126   //   (...)
127   //   - if that id-expression denotes a non-static data member and it
128   //     appears in an unevaluated operand.
129   //
130   // This rule is specific to C++11.  However, we also permit this form
131   // in unevaluated inline assembly operands, like the operand to a SIZE.
132   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
133   assert(!AbstractInstanceResult);
134   switch (SemaRef.ExprEvalContexts.back().Context) {
135   case Sema::ExpressionEvaluationContext::Unevaluated:
136   case Sema::ExpressionEvaluationContext::UnevaluatedList:
137     if (isField && SemaRef.getLangOpts().CPlusPlus11)
138       AbstractInstanceResult = IMA_Field_Uneval_Context;
139     break;
140
141   case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
142     AbstractInstanceResult = IMA_Abstract;
143     break;
144
145   case Sema::ExpressionEvaluationContext::DiscardedStatement:
146   case Sema::ExpressionEvaluationContext::ConstantEvaluated:
147   case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
148   case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
149     break;
150   }
151
152   // If the current context is not an instance method, it can't be
153   // an implicit member reference.
154   if (isStaticContext) {
155     if (hasNonInstance)
156       return IMA_Mixed_StaticContext;
157
158     return AbstractInstanceResult ? AbstractInstanceResult
159                                   : IMA_Error_StaticContext;
160   }
161
162   CXXRecordDecl *contextClass;
163   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
164     contextClass = MD->getParent()->getCanonicalDecl();
165   else
166     contextClass = cast<CXXRecordDecl>(DC);
167
168   // [class.mfct.non-static]p3:
169   // ...is used in the body of a non-static member function of class X,
170   // if name lookup (3.4.1) resolves the name in the id-expression to a
171   // non-static non-type member of some class C [...]
172   // ...if C is not X or a base class of X, the class member access expression
173   // is ill-formed.
174   if (R.getNamingClass() &&
175       contextClass->getCanonicalDecl() !=
176         R.getNamingClass()->getCanonicalDecl()) {
177     // If the naming class is not the current context, this was a qualified
178     // member name lookup, and it's sufficient to check that we have the naming
179     // class as a base class.
180     Classes.clear();
181     Classes.insert(R.getNamingClass()->getCanonicalDecl());
182   }
183
184   // If we can prove that the current context is unrelated to all the
185   // declaring classes, it can't be an implicit member reference (in
186   // which case it's an error if any of those members are selected).
187   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
188     return hasNonInstance ? IMA_Mixed_Unrelated :
189            AbstractInstanceResult ? AbstractInstanceResult :
190                                     IMA_Error_Unrelated;
191
192   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
193 }
194
195 /// Diagnose a reference to a field with no object available.
196 static void diagnoseInstanceReference(Sema &SemaRef,
197                                       const CXXScopeSpec &SS,
198                                       NamedDecl *Rep,
199                                       const DeclarationNameInfo &nameInfo) {
200   SourceLocation Loc = nameInfo.getLoc();
201   SourceRange Range(Loc);
202   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
203
204   // Look through using shadow decls and aliases.
205   Rep = Rep->getUnderlyingDecl();
206
207   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
208   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
209   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
210   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
211
212   bool InStaticMethod = Method && Method->isStatic();
213   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
214
215   if (IsField && InStaticMethod)
216     // "invalid use of member 'x' in static member function"
217     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
218         << Range << nameInfo.getName();
219   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
220            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
221     // Unqualified lookup in a non-static member function found a member of an
222     // enclosing class.
223     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
224       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
225   else if (IsField)
226     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
227       << nameInfo.getName() << Range;
228   else
229     SemaRef.Diag(Loc, diag::err_member_call_without_object)
230       << Range;
231 }
232
233 /// Builds an expression which might be an implicit member expression.
234 ExprResult
235 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
236                                       SourceLocation TemplateKWLoc,
237                                       LookupResult &R,
238                                 const TemplateArgumentListInfo *TemplateArgs,
239                                       const Scope *S) {
240   switch (ClassifyImplicitMemberAccess(*this, R)) {
241   case IMA_Instance:
242     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
243
244   case IMA_Mixed:
245   case IMA_Mixed_Unrelated:
246   case IMA_Unresolved:
247     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
248                                    S);
249
250   case IMA_Field_Uneval_Context:
251     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
252       << R.getLookupNameInfo().getName();
253     LLVM_FALLTHROUGH;
254   case IMA_Static:
255   case IMA_Abstract:
256   case IMA_Mixed_StaticContext:
257   case IMA_Unresolved_StaticContext:
258     if (TemplateArgs || TemplateKWLoc.isValid())
259       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
260     return BuildDeclarationNameExpr(SS, R, false);
261
262   case IMA_Error_StaticContext:
263   case IMA_Error_Unrelated:
264     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
265                               R.getLookupNameInfo());
266     return ExprError();
267   }
268
269   llvm_unreachable("unexpected instance member access kind");
270 }
271
272 /// Determine whether input char is from rgba component set.
273 static bool
274 IsRGBA(char c) {
275   switch (c) {
276   case 'r':
277   case 'g':
278   case 'b':
279   case 'a':
280     return true;
281   default:
282     return false;
283   }
284 }
285
286 // OpenCL v1.1, s6.1.7
287 // The component swizzle length must be in accordance with the acceptable
288 // vector sizes.
289 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
290 {
291   return (len >= 1 && len <= 4) || len == 8 || len == 16;
292 }
293
294 /// Check an ext-vector component access expression.
295 ///
296 /// VK should be set in advance to the value kind of the base
297 /// expression.
298 static QualType
299 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
300                         SourceLocation OpLoc, const IdentifierInfo *CompName,
301                         SourceLocation CompLoc) {
302   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
303   // see FIXME there.
304   //
305   // FIXME: This logic can be greatly simplified by splitting it along
306   // halving/not halving and reworking the component checking.
307   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
308
309   // The vector accessor can't exceed the number of elements.
310   const char *compStr = CompName->getNameStart();
311
312   // This flag determines whether or not the component is one of the four
313   // special names that indicate a subset of exactly half the elements are
314   // to be selected.
315   bool HalvingSwizzle = false;
316
317   // This flag determines whether or not CompName has an 's' char prefix,
318   // indicating that it is a string of hex values to be used as vector indices.
319   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
320
321   bool HasRepeated = false;
322   bool HasIndex[16] = {};
323
324   int Idx;
325
326   // Check that we've found one of the special components, or that the component
327   // names must come from the same set.
328   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
329       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
330     HalvingSwizzle = true;
331   } else if (!HexSwizzle &&
332              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
333     bool HasRGBA = IsRGBA(*compStr);
334     do {
335       // Ensure that xyzw and rgba components don't intermingle.
336       if (HasRGBA != IsRGBA(*compStr))
337         break;
338       if (HasIndex[Idx]) HasRepeated = true;
339       HasIndex[Idx] = true;
340       compStr++;
341     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
342
343     // Emit a warning if an rgba selector is used earlier than OpenCL 2.2
344     if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
345       if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 220) {
346         const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
347         S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
348           << StringRef(DiagBegin, 1)
349           << S.getLangOpts().OpenCLVersion << SourceRange(CompLoc);
350       }
351     }
352   } else {
353     if (HexSwizzle) compStr++;
354     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
355       if (HasIndex[Idx]) HasRepeated = true;
356       HasIndex[Idx] = true;
357       compStr++;
358     }
359   }
360
361   if (!HalvingSwizzle && *compStr) {
362     // We didn't get to the end of the string. This means the component names
363     // didn't come from the same set *or* we encountered an illegal name.
364     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
365       << StringRef(compStr, 1) << SourceRange(CompLoc);
366     return QualType();
367   }
368
369   // Ensure no component accessor exceeds the width of the vector type it
370   // operates on.
371   if (!HalvingSwizzle) {
372     compStr = CompName->getNameStart();
373
374     if (HexSwizzle)
375       compStr++;
376
377     while (*compStr) {
378       if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
379         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
380           << baseType << SourceRange(CompLoc);
381         return QualType();
382       }
383     }
384   }
385
386   // OpenCL mode requires swizzle length to be in accordance with accepted
387   // sizes. Clang however supports arbitrary lengths for other languages.
388   if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
389     unsigned SwizzleLength = CompName->getLength();
390
391     if (HexSwizzle)
392       SwizzleLength--;
393
394     if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
395       S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
396         << SwizzleLength << SourceRange(CompLoc);
397       return QualType();
398     }
399   }
400
401   // The component accessor looks fine - now we need to compute the actual type.
402   // The vector type is implied by the component accessor. For example,
403   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
404   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
405   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
406   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
407                                      : CompName->getLength();
408   if (HexSwizzle)
409     CompSize--;
410
411   if (CompSize == 1)
412     return vecType->getElementType();
413
414   if (HasRepeated) VK = VK_RValue;
415
416   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
417   // Now look up the TypeDefDecl from the vector type. Without this,
418   // diagostics look bad. We want extended vector types to appear built-in.
419   for (Sema::ExtVectorDeclsType::iterator
420          I = S.ExtVectorDecls.begin(S.getExternalSource()),
421          E = S.ExtVectorDecls.end();
422        I != E; ++I) {
423     if ((*I)->getUnderlyingType() == VT)
424       return S.Context.getTypedefType(*I);
425   }
426
427   return VT; // should never get here (a typedef type should always be found).
428 }
429
430 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
431                                                 IdentifierInfo *Member,
432                                                 const Selector &Sel,
433                                                 ASTContext &Context) {
434   if (Member)
435     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
436             Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
437       return PD;
438   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
439     return OMD;
440
441   for (const auto *I : PDecl->protocols()) {
442     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
443                                                            Context))
444       return D;
445   }
446   return nullptr;
447 }
448
449 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
450                                       IdentifierInfo *Member,
451                                       const Selector &Sel,
452                                       ASTContext &Context) {
453   // Check protocols on qualified interfaces.
454   Decl *GDecl = nullptr;
455   for (const auto *I : QIdTy->quals()) {
456     if (Member)
457       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
458               Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
459         GDecl = PD;
460         break;
461       }
462     // Also must look for a getter or setter name which uses property syntax.
463     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
464       GDecl = OMD;
465       break;
466     }
467   }
468   if (!GDecl) {
469     for (const auto *I : QIdTy->quals()) {
470       // Search in the protocol-qualifier list of current protocol.
471       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
472       if (GDecl)
473         return GDecl;
474     }
475   }
476   return GDecl;
477 }
478
479 ExprResult
480 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
481                                bool IsArrow, SourceLocation OpLoc,
482                                const CXXScopeSpec &SS,
483                                SourceLocation TemplateKWLoc,
484                                NamedDecl *FirstQualifierInScope,
485                                const DeclarationNameInfo &NameInfo,
486                                const TemplateArgumentListInfo *TemplateArgs) {
487   // Even in dependent contexts, try to diagnose base expressions with
488   // obviously wrong types, e.g.:
489   //
490   // T* t;
491   // t.f;
492   //
493   // In Obj-C++, however, the above expression is valid, since it could be
494   // accessing the 'f' property if T is an Obj-C interface. The extra check
495   // allows this, while still reporting an error if T is a struct pointer.
496   if (!IsArrow) {
497     const PointerType *PT = BaseType->getAs<PointerType>();
498     if (PT && (!getLangOpts().ObjC ||
499                PT->getPointeeType()->isRecordType())) {
500       assert(BaseExpr && "cannot happen with implicit member accesses");
501       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
502         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
503       return ExprError();
504     }
505   }
506
507   assert(BaseType->isDependentType() ||
508          NameInfo.getName().isDependentName() ||
509          isDependentScopeSpecifier(SS));
510
511   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
512   // must have pointer type, and the accessed type is the pointee.
513   return CXXDependentScopeMemberExpr::Create(
514       Context, BaseExpr, BaseType, IsArrow, OpLoc,
515       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
516       NameInfo, TemplateArgs);
517 }
518
519 /// We know that the given qualified member reference points only to
520 /// declarations which do not belong to the static type of the base
521 /// expression.  Diagnose the problem.
522 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
523                                              Expr *BaseExpr,
524                                              QualType BaseType,
525                                              const CXXScopeSpec &SS,
526                                              NamedDecl *rep,
527                                        const DeclarationNameInfo &nameInfo) {
528   // If this is an implicit member access, use a different set of
529   // diagnostics.
530   if (!BaseExpr)
531     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
532
533   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
534     << SS.getRange() << rep << BaseType;
535 }
536
537 // Check whether the declarations we found through a nested-name
538 // specifier in a member expression are actually members of the base
539 // type.  The restriction here is:
540 //
541 //   C++ [expr.ref]p2:
542 //     ... In these cases, the id-expression shall name a
543 //     member of the class or of one of its base classes.
544 //
545 // So it's perfectly legitimate for the nested-name specifier to name
546 // an unrelated class, and for us to find an overload set including
547 // decls from classes which are not superclasses, as long as the decl
548 // we actually pick through overload resolution is from a superclass.
549 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
550                                          QualType BaseType,
551                                          const CXXScopeSpec &SS,
552                                          const LookupResult &R) {
553   CXXRecordDecl *BaseRecord =
554     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
555   if (!BaseRecord) {
556     // We can't check this yet because the base type is still
557     // dependent.
558     assert(BaseType->isDependentType());
559     return false;
560   }
561
562   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
563     // If this is an implicit member reference and we find a
564     // non-instance member, it's not an error.
565     if (!BaseExpr && !(*I)->isCXXInstanceMember())
566       return false;
567
568     // Note that we use the DC of the decl, not the underlying decl.
569     DeclContext *DC = (*I)->getDeclContext();
570     while (DC->isTransparentContext())
571       DC = DC->getParent();
572
573     if (!DC->isRecord())
574       continue;
575
576     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
577     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
578         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
579       return false;
580   }
581
582   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
583                                    R.getRepresentativeDecl(),
584                                    R.getLookupNameInfo());
585   return true;
586 }
587
588 namespace {
589
590 // Callback to only accept typo corrections that are either a ValueDecl or a
591 // FunctionTemplateDecl and are declared in the current record or, for a C++
592 // classes, one of its base classes.
593 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
594 public:
595   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
596       : Record(RTy->getDecl()) {
597     // Don't add bare keywords to the consumer since they will always fail
598     // validation by virtue of not being associated with any decls.
599     WantTypeSpecifiers = false;
600     WantExpressionKeywords = false;
601     WantCXXNamedCasts = false;
602     WantFunctionLikeCasts = false;
603     WantRemainingKeywords = false;
604   }
605
606   bool ValidateCandidate(const TypoCorrection &candidate) override {
607     NamedDecl *ND = candidate.getCorrectionDecl();
608     // Don't accept candidates that cannot be member functions, constants,
609     // variables, or templates.
610     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
611       return false;
612
613     // Accept candidates that occur in the current record.
614     if (Record->containsDecl(ND))
615       return true;
616
617     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
618       // Accept candidates that occur in any of the current class' base classes.
619       for (const auto &BS : RD->bases()) {
620         if (const RecordType *BSTy =
621                 dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
622           if (BSTy->getDecl()->containsDecl(ND))
623             return true;
624         }
625       }
626     }
627
628     return false;
629   }
630
631   std::unique_ptr<CorrectionCandidateCallback> clone() override {
632     return llvm::make_unique<RecordMemberExprValidatorCCC>(*this);
633   }
634
635 private:
636   const RecordDecl *const Record;
637 };
638
639 }
640
641 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
642                                      Expr *BaseExpr,
643                                      const RecordType *RTy,
644                                      SourceLocation OpLoc, bool IsArrow,
645                                      CXXScopeSpec &SS, bool HasTemplateArgs,
646                                      SourceLocation TemplateKWLoc,
647                                      TypoExpr *&TE) {
648   SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
649   RecordDecl *RDecl = RTy->getDecl();
650   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
651       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
652                                   diag::err_typecheck_incomplete_tag,
653                                   BaseRange))
654     return true;
655
656   if (HasTemplateArgs || TemplateKWLoc.isValid()) {
657     // LookupTemplateName doesn't expect these both to exist simultaneously.
658     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
659
660     bool MOUS;
661     return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
662                                       TemplateKWLoc);
663   }
664
665   DeclContext *DC = RDecl;
666   if (SS.isSet()) {
667     // If the member name was a qualified-id, look into the
668     // nested-name-specifier.
669     DC = SemaRef.computeDeclContext(SS, false);
670
671     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
672       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
673           << SS.getRange() << DC;
674       return true;
675     }
676
677     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
678
679     if (!isa<TypeDecl>(DC)) {
680       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
681           << DC << SS.getRange();
682       return true;
683     }
684   }
685
686   // The record definition is complete, now look up the member.
687   SemaRef.LookupQualifiedName(R, DC, SS);
688
689   if (!R.empty())
690     return false;
691
692   DeclarationName Typo = R.getLookupName();
693   SourceLocation TypoLoc = R.getNameLoc();
694
695   struct QueryState {
696     Sema &SemaRef;
697     DeclarationNameInfo NameInfo;
698     Sema::LookupNameKind LookupKind;
699     Sema::RedeclarationKind Redecl;
700   };
701   QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
702                   R.redeclarationKind()};
703   RecordMemberExprValidatorCCC CCC(RTy);
704   TE = SemaRef.CorrectTypoDelayed(
705       R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
706       [=, &SemaRef](const TypoCorrection &TC) {
707         if (TC) {
708           assert(!TC.isKeyword() &&
709                  "Got a keyword as a correction for a member!");
710           bool DroppedSpecifier =
711               TC.WillReplaceSpecifier() &&
712               Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
713           SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
714                                        << Typo << DC << DroppedSpecifier
715                                        << SS.getRange());
716         } else {
717           SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
718         }
719       },
720       [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
721         LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
722         R.clear(); // Ensure there's no decls lingering in the shared state.
723         R.suppressDiagnostics();
724         R.setLookupName(TC.getCorrection());
725         for (NamedDecl *ND : TC)
726           R.addDecl(ND);
727         R.resolveKind();
728         return SemaRef.BuildMemberReferenceExpr(
729             BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
730             nullptr, R, nullptr, nullptr);
731       },
732       Sema::CTK_ErrorRecovery, DC);
733
734   return false;
735 }
736
737 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
738                                    ExprResult &BaseExpr, bool &IsArrow,
739                                    SourceLocation OpLoc, CXXScopeSpec &SS,
740                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
741                                    SourceLocation TemplateKWLoc);
742
743 ExprResult
744 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
745                                SourceLocation OpLoc, bool IsArrow,
746                                CXXScopeSpec &SS,
747                                SourceLocation TemplateKWLoc,
748                                NamedDecl *FirstQualifierInScope,
749                                const DeclarationNameInfo &NameInfo,
750                                const TemplateArgumentListInfo *TemplateArgs,
751                                const Scope *S,
752                                ActOnMemberAccessExtraArgs *ExtraArgs) {
753   if (BaseType->isDependentType() ||
754       (SS.isSet() && isDependentScopeSpecifier(SS)))
755     return ActOnDependentMemberExpr(Base, BaseType,
756                                     IsArrow, OpLoc,
757                                     SS, TemplateKWLoc, FirstQualifierInScope,
758                                     NameInfo, TemplateArgs);
759
760   LookupResult R(*this, NameInfo, LookupMemberName);
761
762   // Implicit member accesses.
763   if (!Base) {
764     TypoExpr *TE = nullptr;
765     QualType RecordTy = BaseType;
766     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
767     if (LookupMemberExprInRecord(
768             *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
769             SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
770       return ExprError();
771     if (TE)
772       return TE;
773
774   // Explicit member accesses.
775   } else {
776     ExprResult BaseResult = Base;
777     ExprResult Result =
778         LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
779                          ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
780                          TemplateArgs != nullptr, TemplateKWLoc);
781
782     if (BaseResult.isInvalid())
783       return ExprError();
784     Base = BaseResult.get();
785
786     if (Result.isInvalid())
787       return ExprError();
788
789     if (Result.get())
790       return Result;
791
792     // LookupMemberExpr can modify Base, and thus change BaseType
793     BaseType = Base->getType();
794   }
795
796   return BuildMemberReferenceExpr(Base, BaseType,
797                                   OpLoc, IsArrow, SS, TemplateKWLoc,
798                                   FirstQualifierInScope, R, TemplateArgs, S,
799                                   false, ExtraArgs);
800 }
801
802 ExprResult
803 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
804                                                SourceLocation loc,
805                                                IndirectFieldDecl *indirectField,
806                                                DeclAccessPair foundDecl,
807                                                Expr *baseObjectExpr,
808                                                SourceLocation opLoc) {
809   // First, build the expression that refers to the base object.
810
811   // Case 1:  the base of the indirect field is not a field.
812   VarDecl *baseVariable = indirectField->getVarDecl();
813   CXXScopeSpec EmptySS;
814   if (baseVariable) {
815     assert(baseVariable->getType()->isRecordType());
816
817     // In principle we could have a member access expression that
818     // accesses an anonymous struct/union that's a static member of
819     // the base object's class.  However, under the current standard,
820     // static data members cannot be anonymous structs or unions.
821     // Supporting this is as easy as building a MemberExpr here.
822     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
823
824     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
825
826     ExprResult result
827       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
828     if (result.isInvalid()) return ExprError();
829
830     baseObjectExpr = result.get();
831   }
832
833   assert((baseVariable || baseObjectExpr) &&
834          "referencing anonymous struct/union without a base variable or "
835          "expression");
836
837   // Build the implicit member references to the field of the
838   // anonymous struct/union.
839   Expr *result = baseObjectExpr;
840   IndirectFieldDecl::chain_iterator
841   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
842
843   // Case 2: the base of the indirect field is a field and the user
844   // wrote a member expression.
845   if (!baseVariable) {
846     FieldDecl *field = cast<FieldDecl>(*FI);
847
848     bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
849
850     // Make a nameInfo that properly uses the anonymous name.
851     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
852
853     // Build the first member access in the chain with full information.
854     result =
855         BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
856                                 SS, field, foundDecl, memberNameInfo)
857             .get();
858     if (!result)
859       return ExprError();
860   }
861
862   // In all cases, we should now skip the first declaration in the chain.
863   ++FI;
864
865   while (FI != FEnd) {
866     FieldDecl *field = cast<FieldDecl>(*FI++);
867
868     // FIXME: these are somewhat meaningless
869     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
870     DeclAccessPair fakeFoundDecl =
871         DeclAccessPair::make(field, field->getAccess());
872
873     result =
874         BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
875                                 (FI == FEnd ? SS : EmptySS), field,
876                                 fakeFoundDecl, memberNameInfo)
877             .get();
878   }
879
880   return result;
881 }
882
883 static ExprResult
884 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
885                        const CXXScopeSpec &SS,
886                        MSPropertyDecl *PD,
887                        const DeclarationNameInfo &NameInfo) {
888   // Property names are always simple identifiers and therefore never
889   // require any interesting additional storage.
890   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
891                                            S.Context.PseudoObjectTy, VK_LValue,
892                                            SS.getWithLocInContext(S.Context),
893                                            NameInfo.getLoc());
894 }
895
896 MemberExpr *Sema::BuildMemberExpr(
897     Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
898     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
899     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
900     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
901     const TemplateArgumentListInfo *TemplateArgs) {
902   NestedNameSpecifierLoc NNS =
903       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
904   return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
905                          FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
906                          VK, OK, TemplateArgs);
907 }
908
909 MemberExpr *Sema::BuildMemberExpr(
910     Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
911     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
912     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
913     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
914     const TemplateArgumentListInfo *TemplateArgs) {
915   assert((!IsArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
916   MemberExpr *E =
917       MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
918                          Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
919                          VK, OK, getNonOdrUseReasonInCurrentContext(Member));
920   E->setHadMultipleCandidates(HadMultipleCandidates);
921   MarkMemberReferenced(E);
922   return E;
923 }
924
925 /// Determine if the given scope is within a function-try-block handler.
926 static bool IsInFnTryBlockHandler(const Scope *S) {
927   // Walk the scope stack until finding a FnTryCatchScope, or leave the
928   // function scope. If a FnTryCatchScope is found, check whether the TryScope
929   // flag is set. If it is not, it's a function-try-block handler.
930   for (; S != S->getFnParent(); S = S->getParent()) {
931     if (S->getFlags() & Scope::FnTryCatchScope)
932       return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
933   }
934   return false;
935 }
936
937 static VarDecl *
938 getVarTemplateSpecialization(Sema &S, VarTemplateDecl *VarTempl,
939                       const TemplateArgumentListInfo *TemplateArgs,
940                       const DeclarationNameInfo &MemberNameInfo,
941                       SourceLocation TemplateKWLoc) {
942   if (!TemplateArgs) {
943     S.diagnoseMissingTemplateArguments(TemplateName(VarTempl),
944                                        MemberNameInfo.getBeginLoc());
945     return nullptr;
946   }
947
948   DeclResult VDecl = S.CheckVarTemplateId(
949       VarTempl, TemplateKWLoc, MemberNameInfo.getLoc(), *TemplateArgs);
950   if (VDecl.isInvalid())
951     return nullptr;
952   VarDecl *Var = cast<VarDecl>(VDecl.get());
953   if (!Var->getTemplateSpecializationKind())
954     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
955                                        MemberNameInfo.getLoc());
956   return Var;
957 }
958
959 ExprResult
960 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
961                                SourceLocation OpLoc, bool IsArrow,
962                                const CXXScopeSpec &SS,
963                                SourceLocation TemplateKWLoc,
964                                NamedDecl *FirstQualifierInScope,
965                                LookupResult &R,
966                                const TemplateArgumentListInfo *TemplateArgs,
967                                const Scope *S,
968                                bool SuppressQualifierCheck,
969                                ActOnMemberAccessExtraArgs *ExtraArgs) {
970   QualType BaseType = BaseExprType;
971   if (IsArrow) {
972     assert(BaseType->isPointerType());
973     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
974   }
975   R.setBaseObjectType(BaseType);
976
977   // C++1z [expr.ref]p2:
978   //   For the first option (dot) the first expression shall be a glvalue [...]
979   if (!IsArrow && BaseExpr && BaseExpr->isRValue()) {
980     ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
981     if (Converted.isInvalid())
982       return ExprError();
983     BaseExpr = Converted.get();
984   }
985
986
987   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
988   DeclarationName MemberName = MemberNameInfo.getName();
989   SourceLocation MemberLoc = MemberNameInfo.getLoc();
990
991   if (R.isAmbiguous())
992     return ExprError();
993
994   // [except.handle]p10: Referring to any non-static member or base class of an
995   // object in the handler for a function-try-block of a constructor or
996   // destructor for that object results in undefined behavior.
997   const auto *FD = getCurFunctionDecl();
998   if (S && BaseExpr && FD &&
999       (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
1000       isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
1001       IsInFnTryBlockHandler(S))
1002     Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
1003         << isa<CXXDestructorDecl>(FD);
1004
1005   if (R.empty()) {
1006     // Rederive where we looked up.
1007     DeclContext *DC = (SS.isSet()
1008                        ? computeDeclContext(SS, false)
1009                        : BaseType->getAs<RecordType>()->getDecl());
1010
1011     if (ExtraArgs) {
1012       ExprResult RetryExpr;
1013       if (!IsArrow && BaseExpr) {
1014         SFINAETrap Trap(*this, true);
1015         ParsedType ObjectType;
1016         bool MayBePseudoDestructor = false;
1017         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1018                                                  OpLoc, tok::arrow, ObjectType,
1019                                                  MayBePseudoDestructor);
1020         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1021           CXXScopeSpec TempSS(SS);
1022           RetryExpr = ActOnMemberAccessExpr(
1023               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1024               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1025         }
1026         if (Trap.hasErrorOccurred())
1027           RetryExpr = ExprError();
1028       }
1029       if (RetryExpr.isUsable()) {
1030         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1031           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1032         return RetryExpr;
1033       }
1034     }
1035
1036     Diag(R.getNameLoc(), diag::err_no_member)
1037       << MemberName << DC
1038       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1039     return ExprError();
1040   }
1041
1042   // Diagnose lookups that find only declarations from a non-base
1043   // type.  This is possible for either qualified lookups (which may
1044   // have been qualified with an unrelated type) or implicit member
1045   // expressions (which were found with unqualified lookup and thus
1046   // may have come from an enclosing scope).  Note that it's okay for
1047   // lookup to find declarations from a non-base type as long as those
1048   // aren't the ones picked by overload resolution.
1049   if ((SS.isSet() || !BaseExpr ||
1050        (isa<CXXThisExpr>(BaseExpr) &&
1051         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1052       !SuppressQualifierCheck &&
1053       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1054     return ExprError();
1055
1056   // Construct an unresolved result if we in fact got an unresolved
1057   // result.
1058   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1059     // Suppress any lookup-related diagnostics; we'll do these when we
1060     // pick a member.
1061     R.suppressDiagnostics();
1062
1063     UnresolvedMemberExpr *MemExpr
1064       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1065                                      BaseExpr, BaseExprType,
1066                                      IsArrow, OpLoc,
1067                                      SS.getWithLocInContext(Context),
1068                                      TemplateKWLoc, MemberNameInfo,
1069                                      TemplateArgs, R.begin(), R.end());
1070
1071     return MemExpr;
1072   }
1073
1074   assert(R.isSingleResult());
1075   DeclAccessPair FoundDecl = R.begin().getPair();
1076   NamedDecl *MemberDecl = R.getFoundDecl();
1077
1078   // FIXME: diagnose the presence of template arguments now.
1079
1080   // If the decl being referenced had an error, return an error for this
1081   // sub-expr without emitting another error, in order to avoid cascading
1082   // error cases.
1083   if (MemberDecl->isInvalidDecl())
1084     return ExprError();
1085
1086   // Handle the implicit-member-access case.
1087   if (!BaseExpr) {
1088     // If this is not an instance member, convert to a non-member access.
1089     if (!MemberDecl->isCXXInstanceMember()) {
1090       // If this is a variable template, get the instantiated variable
1091       // declaration corresponding to the supplied template arguments
1092       // (while emitting diagnostics as necessary) that will be referenced
1093       // by this expression.
1094       assert((!TemplateArgs || isa<VarTemplateDecl>(MemberDecl)) &&
1095              "How did we get template arguments here sans a variable template");
1096       if (isa<VarTemplateDecl>(MemberDecl)) {
1097         MemberDecl = getVarTemplateSpecialization(
1098             *this, cast<VarTemplateDecl>(MemberDecl), TemplateArgs,
1099             R.getLookupNameInfo(), TemplateKWLoc);
1100         if (!MemberDecl)
1101           return ExprError();
1102       }
1103       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1104                                       FoundDecl, TemplateArgs);
1105     }
1106     SourceLocation Loc = R.getNameLoc();
1107     if (SS.getRange().isValid())
1108       Loc = SS.getRange().getBegin();
1109     BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1110   }
1111
1112   // Check the use of this member.
1113   if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1114     return ExprError();
1115
1116   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1117     return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1118                                    MemberNameInfo);
1119
1120   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1121     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1122                                   MemberNameInfo);
1123
1124   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1125     // We may have found a field within an anonymous union or struct
1126     // (C++ [class.union]).
1127     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1128                                                     FoundDecl, BaseExpr,
1129                                                     OpLoc);
1130
1131   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1132     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1133                            FoundDecl, /*HadMultipleCandidates=*/false,
1134                            MemberNameInfo, Var->getType().getNonReferenceType(),
1135                            VK_LValue, OK_Ordinary);
1136   }
1137
1138   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1139     ExprValueKind valueKind;
1140     QualType type;
1141     if (MemberFn->isInstance()) {
1142       valueKind = VK_RValue;
1143       type = Context.BoundMemberTy;
1144     } else {
1145       valueKind = VK_LValue;
1146       type = MemberFn->getType();
1147     }
1148
1149     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1150                            MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1151                            MemberNameInfo, type, valueKind, OK_Ordinary);
1152   }
1153   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1154
1155   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1156     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1157                            FoundDecl, /*HadMultipleCandidates=*/false,
1158                            MemberNameInfo, Enum->getType(), VK_RValue,
1159                            OK_Ordinary);
1160   }
1161   if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1162     if (VarDecl *Var = getVarTemplateSpecialization(
1163             *this, VarTempl, TemplateArgs, MemberNameInfo, TemplateKWLoc))
1164       return BuildMemberExpr(
1165           BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl,
1166           /*HadMultipleCandidates=*/false, MemberNameInfo,
1167           Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary);
1168     return ExprError();
1169   }
1170
1171   // We found something that we didn't expect. Complain.
1172   if (isa<TypeDecl>(MemberDecl))
1173     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1174       << MemberName << BaseType << int(IsArrow);
1175   else
1176     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1177       << MemberName << BaseType << int(IsArrow);
1178
1179   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1180     << MemberName;
1181   R.suppressDiagnostics();
1182   return ExprError();
1183 }
1184
1185 /// Given that normal member access failed on the given expression,
1186 /// and given that the expression's type involves builtin-id or
1187 /// builtin-Class, decide whether substituting in the redefinition
1188 /// types would be profitable.  The redefinition type is whatever
1189 /// this translation unit tried to typedef to id/Class;  we store
1190 /// it to the side and then re-use it in places like this.
1191 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1192   const ObjCObjectPointerType *opty
1193     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1194   if (!opty) return false;
1195
1196   const ObjCObjectType *ty = opty->getObjectType();
1197
1198   QualType redef;
1199   if (ty->isObjCId()) {
1200     redef = S.Context.getObjCIdRedefinitionType();
1201   } else if (ty->isObjCClass()) {
1202     redef = S.Context.getObjCClassRedefinitionType();
1203   } else {
1204     return false;
1205   }
1206
1207   // Do the substitution as long as the redefinition type isn't just a
1208   // possibly-qualified pointer to builtin-id or builtin-Class again.
1209   opty = redef->getAs<ObjCObjectPointerType>();
1210   if (opty && !opty->getObjectType()->getInterface())
1211     return false;
1212
1213   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1214   return true;
1215 }
1216
1217 static bool isRecordType(QualType T) {
1218   return T->isRecordType();
1219 }
1220 static bool isPointerToRecordType(QualType T) {
1221   if (const PointerType *PT = T->getAs<PointerType>())
1222     return PT->getPointeeType()->isRecordType();
1223   return false;
1224 }
1225
1226 /// Perform conversions on the LHS of a member access expression.
1227 ExprResult
1228 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1229   if (IsArrow && !Base->getType()->isFunctionType())
1230     return DefaultFunctionArrayLvalueConversion(Base);
1231
1232   return CheckPlaceholderExpr(Base);
1233 }
1234
1235 /// Look up the given member of the given non-type-dependent
1236 /// expression.  This can return in one of two ways:
1237 ///  * If it returns a sentinel null-but-valid result, the caller will
1238 ///    assume that lookup was performed and the results written into
1239 ///    the provided structure.  It will take over from there.
1240 ///  * Otherwise, the returned expression will be produced in place of
1241 ///    an ordinary member expression.
1242 ///
1243 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1244 /// fixed for ObjC++.
1245 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1246                                    ExprResult &BaseExpr, bool &IsArrow,
1247                                    SourceLocation OpLoc, CXXScopeSpec &SS,
1248                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
1249                                    SourceLocation TemplateKWLoc) {
1250   assert(BaseExpr.get() && "no base expression");
1251
1252   // Perform default conversions.
1253   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1254   if (BaseExpr.isInvalid())
1255     return ExprError();
1256
1257   QualType BaseType = BaseExpr.get()->getType();
1258   assert(!BaseType->isDependentType());
1259
1260   DeclarationName MemberName = R.getLookupName();
1261   SourceLocation MemberLoc = R.getNameLoc();
1262
1263   // For later type-checking purposes, turn arrow accesses into dot
1264   // accesses.  The only access type we support that doesn't follow
1265   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1266   // and those never use arrows, so this is unaffected.
1267   if (IsArrow) {
1268     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1269       BaseType = Ptr->getPointeeType();
1270     else if (const ObjCObjectPointerType *Ptr
1271                = BaseType->getAs<ObjCObjectPointerType>())
1272       BaseType = Ptr->getPointeeType();
1273     else if (BaseType->isRecordType()) {
1274       // Recover from arrow accesses to records, e.g.:
1275       //   struct MyRecord foo;
1276       //   foo->bar
1277       // This is actually well-formed in C++ if MyRecord has an
1278       // overloaded operator->, but that should have been dealt with
1279       // by now--or a diagnostic message already issued if a problem
1280       // was encountered while looking for the overloaded operator->.
1281       if (!S.getLangOpts().CPlusPlus) {
1282         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1283           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1284           << FixItHint::CreateReplacement(OpLoc, ".");
1285       }
1286       IsArrow = false;
1287     } else if (BaseType->isFunctionType()) {
1288       goto fail;
1289     } else {
1290       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1291         << BaseType << BaseExpr.get()->getSourceRange();
1292       return ExprError();
1293     }
1294   }
1295
1296   // Handle field access to simple records.
1297   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1298     TypoExpr *TE = nullptr;
1299     if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1300                                  HasTemplateArgs, TemplateKWLoc, TE))
1301       return ExprError();
1302
1303     // Returning valid-but-null is how we indicate to the caller that
1304     // the lookup result was filled in. If typo correction was attempted and
1305     // failed, the lookup result will have been cleared--that combined with the
1306     // valid-but-null ExprResult will trigger the appropriate diagnostics.
1307     return ExprResult(TE);
1308   }
1309
1310   // Handle ivar access to Objective-C objects.
1311   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1312     if (!SS.isEmpty() && !SS.isInvalid()) {
1313       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1314         << 1 << SS.getScopeRep()
1315         << FixItHint::CreateRemoval(SS.getRange());
1316       SS.clear();
1317     }
1318
1319     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1320
1321     // There are three cases for the base type:
1322     //   - builtin id (qualified or unqualified)
1323     //   - builtin Class (qualified or unqualified)
1324     //   - an interface
1325     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1326     if (!IDecl) {
1327       if (S.getLangOpts().ObjCAutoRefCount &&
1328           (OTy->isObjCId() || OTy->isObjCClass()))
1329         goto fail;
1330       // There's an implicit 'isa' ivar on all objects.
1331       // But we only actually find it this way on objects of type 'id',
1332       // apparently.
1333       if (OTy->isObjCId() && Member->isStr("isa"))
1334         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1335                                            OpLoc, S.Context.getObjCClassType());
1336       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1337         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1338                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1339       goto fail;
1340     }
1341
1342     if (S.RequireCompleteType(OpLoc, BaseType,
1343                               diag::err_typecheck_incomplete_tag,
1344                               BaseExpr.get()))
1345       return ExprError();
1346
1347     ObjCInterfaceDecl *ClassDeclared = nullptr;
1348     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1349
1350     if (!IV) {
1351       // Attempt to correct for typos in ivar names.
1352       DeclFilterCCC<ObjCIvarDecl> Validator{};
1353       Validator.IsObjCIvarLookup = IsArrow;
1354       if (TypoCorrection Corrected = S.CorrectTypo(
1355               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1356               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1357         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1358         S.diagnoseTypo(
1359             Corrected,
1360             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1361                 << IDecl->getDeclName() << MemberName);
1362
1363         // Figure out the class that declares the ivar.
1364         assert(!ClassDeclared);
1365
1366         Decl *D = cast<Decl>(IV->getDeclContext());
1367         if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1368           D = Category->getClassInterface();
1369
1370         if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1371           ClassDeclared = Implementation->getClassInterface();
1372         else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1373           ClassDeclared = Interface;
1374
1375         assert(ClassDeclared && "cannot query interface");
1376       } else {
1377         if (IsArrow &&
1378             IDecl->FindPropertyDeclaration(
1379                 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1380           S.Diag(MemberLoc, diag::err_property_found_suggest)
1381               << Member << BaseExpr.get()->getType()
1382               << FixItHint::CreateReplacement(OpLoc, ".");
1383           return ExprError();
1384         }
1385
1386         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1387             << IDecl->getDeclName() << MemberName
1388             << BaseExpr.get()->getSourceRange();
1389         return ExprError();
1390       }
1391     }
1392
1393     assert(ClassDeclared);
1394
1395     // If the decl being referenced had an error, return an error for this
1396     // sub-expr without emitting another error, in order to avoid cascading
1397     // error cases.
1398     if (IV->isInvalidDecl())
1399       return ExprError();
1400
1401     // Check whether we can reference this field.
1402     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1403       return ExprError();
1404     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1405         IV->getAccessControl() != ObjCIvarDecl::Package) {
1406       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1407       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1408         ClassOfMethodDecl =  MD->getClassInterface();
1409       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1410         // Case of a c-function declared inside an objc implementation.
1411         // FIXME: For a c-style function nested inside an objc implementation
1412         // class, there is no implementation context available, so we pass
1413         // down the context as argument to this routine. Ideally, this context
1414         // need be passed down in the AST node and somehow calculated from the
1415         // AST for a function decl.
1416         if (ObjCImplementationDecl *IMPD =
1417               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1418           ClassOfMethodDecl = IMPD->getClassInterface();
1419         else if (ObjCCategoryImplDecl* CatImplClass =
1420                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1421           ClassOfMethodDecl = CatImplClass->getClassInterface();
1422       }
1423       if (!S.getLangOpts().DebuggerSupport) {
1424         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1425           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1426               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1427             S.Diag(MemberLoc, diag::err_private_ivar_access)
1428               << IV->getDeclName();
1429         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1430           // @protected
1431           S.Diag(MemberLoc, diag::err_protected_ivar_access)
1432               << IV->getDeclName();
1433       }
1434     }
1435     bool warn = true;
1436     if (S.getLangOpts().ObjCWeak) {
1437       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1438       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1439         if (UO->getOpcode() == UO_Deref)
1440           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1441
1442       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1443         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1444           S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1445           warn = false;
1446         }
1447     }
1448     if (warn) {
1449       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1450         ObjCMethodFamily MF = MD->getMethodFamily();
1451         warn = (MF != OMF_init && MF != OMF_dealloc &&
1452                 MF != OMF_finalize &&
1453                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1454       }
1455       if (warn)
1456         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1457     }
1458
1459     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1460         IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1461         IsArrow);
1462
1463     if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1464       if (!S.isUnevaluatedContext() &&
1465           !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1466         S.getCurFunction()->recordUseOfWeak(Result);
1467     }
1468
1469     return Result;
1470   }
1471
1472   // Objective-C property access.
1473   const ObjCObjectPointerType *OPT;
1474   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1475     if (!SS.isEmpty() && !SS.isInvalid()) {
1476       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1477           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1478       SS.clear();
1479     }
1480
1481     // This actually uses the base as an r-value.
1482     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1483     if (BaseExpr.isInvalid())
1484       return ExprError();
1485
1486     assert(S.Context.hasSameUnqualifiedType(BaseType,
1487                                             BaseExpr.get()->getType()));
1488
1489     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1490
1491     const ObjCObjectType *OT = OPT->getObjectType();
1492
1493     // id, with and without qualifiers.
1494     if (OT->isObjCId()) {
1495       // Check protocols on qualified interfaces.
1496       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1497       if (Decl *PMDecl =
1498               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1499         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1500           // Check the use of this declaration
1501           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1502             return ExprError();
1503
1504           return new (S.Context)
1505               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1506                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1507         }
1508
1509         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1510           Selector SetterSel =
1511             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1512                                                    S.PP.getSelectorTable(),
1513                                                    Member);
1514           ObjCMethodDecl *SMD = nullptr;
1515           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1516                                                      /*Property id*/ nullptr,
1517                                                      SetterSel, S.Context))
1518             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1519
1520           return new (S.Context)
1521               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1522                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1523         }
1524       }
1525       // Use of id.member can only be for a property reference. Do not
1526       // use the 'id' redefinition in this case.
1527       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1528         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1529                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1530
1531       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1532                          << MemberName << BaseType);
1533     }
1534
1535     // 'Class', unqualified only.
1536     if (OT->isObjCClass()) {
1537       // Only works in a method declaration (??!).
1538       ObjCMethodDecl *MD = S.getCurMethodDecl();
1539       if (!MD) {
1540         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1541           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1542                                   ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1543
1544         goto fail;
1545       }
1546
1547       // Also must look for a getter name which uses property syntax.
1548       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1549       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1550       if (!IFace)
1551         goto fail;
1552
1553       ObjCMethodDecl *Getter;
1554       if ((Getter = IFace->lookupClassMethod(Sel))) {
1555         // Check the use of this method.
1556         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1557           return ExprError();
1558       } else
1559         Getter = IFace->lookupPrivateMethod(Sel, false);
1560       // If we found a getter then this may be a valid dot-reference, we
1561       // will look for the matching setter, in case it is needed.
1562       Selector SetterSel =
1563         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1564                                                S.PP.getSelectorTable(),
1565                                                Member);
1566       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1567       if (!Setter) {
1568         // If this reference is in an @implementation, also check for 'private'
1569         // methods.
1570         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1571       }
1572
1573       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1574         return ExprError();
1575
1576       if (Getter || Setter) {
1577         return new (S.Context) ObjCPropertyRefExpr(
1578             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1579             OK_ObjCProperty, MemberLoc, BaseExpr.get());
1580       }
1581
1582       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1583         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1584                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1585
1586       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1587                          << MemberName << BaseType);
1588     }
1589
1590     // Normal property access.
1591     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1592                                        MemberLoc, SourceLocation(), QualType(),
1593                                        false);
1594   }
1595
1596   // Handle 'field access' to vectors, such as 'V.xx'.
1597   if (BaseType->isExtVectorType()) {
1598     // FIXME: this expr should store IsArrow.
1599     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1600     ExprValueKind VK;
1601     if (IsArrow)
1602       VK = VK_LValue;
1603     else {
1604       if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1605         VK = POE->getSyntacticForm()->getValueKind();
1606       else
1607         VK = BaseExpr.get()->getValueKind();
1608     }
1609
1610     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1611                                            Member, MemberLoc);
1612     if (ret.isNull())
1613       return ExprError();
1614     Qualifiers BaseQ =
1615         S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1616     ret = S.Context.getQualifiedType(ret, BaseQ);
1617
1618     return new (S.Context)
1619         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1620   }
1621
1622   // Adjust builtin-sel to the appropriate redefinition type if that's
1623   // not just a pointer to builtin-sel again.
1624   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1625       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1626     BaseExpr = S.ImpCastExprToType(
1627         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1628     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1629                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1630   }
1631
1632   // Failure cases.
1633  fail:
1634
1635   // Recover from dot accesses to pointers, e.g.:
1636   //   type *foo;
1637   //   foo.bar
1638   // This is actually well-formed in two cases:
1639   //   - 'type' is an Objective C type
1640   //   - 'bar' is a pseudo-destructor name which happens to refer to
1641   //     the appropriate pointer type
1642   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1643     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1644         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1645       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1646           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1647           << FixItHint::CreateReplacement(OpLoc, "->");
1648
1649       // Recurse as an -> access.
1650       IsArrow = true;
1651       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1652                               ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1653     }
1654   }
1655
1656   // If the user is trying to apply -> or . to a function name, it's probably
1657   // because they forgot parentheses to call that function.
1658   if (S.tryToRecoverWithCall(
1659           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1660           /*complain*/ false,
1661           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1662     if (BaseExpr.isInvalid())
1663       return ExprError();
1664     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1665     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1666                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1667   }
1668
1669   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1670     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1671
1672   return ExprError();
1673 }
1674
1675 /// The main callback when the parser finds something like
1676 ///   expression . [nested-name-specifier] identifier
1677 ///   expression -> [nested-name-specifier] identifier
1678 /// where 'identifier' encompasses a fairly broad spectrum of
1679 /// possibilities, including destructor and operator references.
1680 ///
1681 /// \param OpKind either tok::arrow or tok::period
1682 /// \param ObjCImpDecl the current Objective-C \@implementation
1683 ///   decl; this is an ugly hack around the fact that Objective-C
1684 ///   \@implementations aren't properly put in the context chain
1685 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1686                                        SourceLocation OpLoc,
1687                                        tok::TokenKind OpKind,
1688                                        CXXScopeSpec &SS,
1689                                        SourceLocation TemplateKWLoc,
1690                                        UnqualifiedId &Id,
1691                                        Decl *ObjCImpDecl) {
1692   if (SS.isSet() && SS.isInvalid())
1693     return ExprError();
1694
1695   // Warn about the explicit constructor calls Microsoft extension.
1696   if (getLangOpts().MicrosoftExt &&
1697       Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1698     Diag(Id.getSourceRange().getBegin(),
1699          diag::ext_ms_explicit_constructor_call);
1700
1701   TemplateArgumentListInfo TemplateArgsBuffer;
1702
1703   // Decompose the name into its component parts.
1704   DeclarationNameInfo NameInfo;
1705   const TemplateArgumentListInfo *TemplateArgs;
1706   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1707                          NameInfo, TemplateArgs);
1708
1709   DeclarationName Name = NameInfo.getName();
1710   bool IsArrow = (OpKind == tok::arrow);
1711
1712   NamedDecl *FirstQualifierInScope
1713     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1714
1715   // This is a postfix expression, so get rid of ParenListExprs.
1716   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1717   if (Result.isInvalid()) return ExprError();
1718   Base = Result.get();
1719
1720   if (Base->getType()->isDependentType() || Name.isDependentName() ||
1721       isDependentScopeSpecifier(SS)) {
1722     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1723                                     TemplateKWLoc, FirstQualifierInScope,
1724                                     NameInfo, TemplateArgs);
1725   }
1726
1727   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1728   ExprResult Res = BuildMemberReferenceExpr(
1729       Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1730       FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1731
1732   if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1733     CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1734
1735   return Res;
1736 }
1737
1738 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1739   QualType ResultTy = E->getType();
1740
1741   // Do not warn on member accesses to arrays since this returns an array
1742   // lvalue and does not actually dereference memory.
1743   if (isa<ArrayType>(ResultTy))
1744     return;
1745
1746   if (E->isArrow()) {
1747     if (const auto *Ptr = dyn_cast<PointerType>(
1748             E->getBase()->getType().getDesugaredType(Context))) {
1749       if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1750         ExprEvalContexts.back().PossibleDerefs.insert(E);
1751     }
1752   }
1753 }
1754
1755 ExprResult
1756 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1757                               SourceLocation OpLoc, const CXXScopeSpec &SS,
1758                               FieldDecl *Field, DeclAccessPair FoundDecl,
1759                               const DeclarationNameInfo &MemberNameInfo) {
1760   // x.a is an l-value if 'a' has a reference type. Otherwise:
1761   // x.a is an l-value/x-value/pr-value if the base is (and note
1762   //   that *x is always an l-value), except that if the base isn't
1763   //   an ordinary object then we must have an rvalue.
1764   ExprValueKind VK = VK_LValue;
1765   ExprObjectKind OK = OK_Ordinary;
1766   if (!IsArrow) {
1767     if (BaseExpr->getObjectKind() == OK_Ordinary)
1768       VK = BaseExpr->getValueKind();
1769     else
1770       VK = VK_RValue;
1771   }
1772   if (VK != VK_RValue && Field->isBitField())
1773     OK = OK_BitField;
1774
1775   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1776   QualType MemberType = Field->getType();
1777   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1778     MemberType = Ref->getPointeeType();
1779     VK = VK_LValue;
1780   } else {
1781     QualType BaseType = BaseExpr->getType();
1782     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1783
1784     Qualifiers BaseQuals = BaseType.getQualifiers();
1785
1786     // GC attributes are never picked up by members.
1787     BaseQuals.removeObjCGCAttr();
1788
1789     // CVR attributes from the base are picked up by members,
1790     // except that 'mutable' members don't pick up 'const'.
1791     if (Field->isMutable()) BaseQuals.removeConst();
1792
1793     Qualifiers MemberQuals =
1794         Context.getCanonicalType(MemberType).getQualifiers();
1795
1796     assert(!MemberQuals.hasAddressSpace());
1797
1798     Qualifiers Combined = BaseQuals + MemberQuals;
1799     if (Combined != MemberQuals)
1800       MemberType = Context.getQualifiedType(MemberType, Combined);
1801   }
1802
1803   auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1804   if (!(CurMethod && CurMethod->isDefaulted()))
1805     UnusedPrivateFields.remove(Field);
1806
1807   ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1808                                                   FoundDecl, Field);
1809   if (Base.isInvalid())
1810     return ExprError();
1811
1812   // Build a reference to a private copy for non-static data members in
1813   // non-static member functions, privatized by OpenMP constructs.
1814   if (getLangOpts().OpenMP && IsArrow &&
1815       !CurContext->isDependentContext() &&
1816       isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1817     if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1818       return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1819                                    MemberNameInfo.getLoc());
1820     }
1821   }
1822
1823   return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1824                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1825                          /*HadMultipleCandidates=*/false, MemberNameInfo,
1826                          MemberType, VK, OK);
1827 }
1828
1829 /// Builds an implicit member access expression.  The current context
1830 /// is known to be an instance method, and the given unqualified lookup
1831 /// set is known to contain only instance members, at least one of which
1832 /// is from an appropriate type.
1833 ExprResult
1834 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1835                               SourceLocation TemplateKWLoc,
1836                               LookupResult &R,
1837                               const TemplateArgumentListInfo *TemplateArgs,
1838                               bool IsKnownInstance, const Scope *S) {
1839   assert(!R.empty() && !R.isAmbiguous());
1840
1841   SourceLocation loc = R.getNameLoc();
1842
1843   // If this is known to be an instance access, go ahead and build an
1844   // implicit 'this' expression now.
1845   // 'this' expression now.
1846   QualType ThisTy = getCurrentThisType();
1847   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1848
1849   Expr *baseExpr = nullptr; // null signifies implicit access
1850   if (IsKnownInstance) {
1851     SourceLocation Loc = R.getNameLoc();
1852     if (SS.getRange().isValid())
1853       Loc = SS.getRange().getBegin();
1854     baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1855   }
1856
1857   return BuildMemberReferenceExpr(baseExpr, ThisTy,
1858                                   /*OpLoc*/ SourceLocation(),
1859                                   /*IsArrow*/ true,
1860                                   SS, TemplateKWLoc,
1861                                   /*FirstQualifierInScope*/ nullptr,
1862                                   R, TemplateArgs, S);
1863 }