]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
Update clang to trunk r256633.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaOverload.cpp
1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Overload.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/TypeOrdering.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/Basic/DiagnosticOptions.h"
24 #include "clang/Basic/PartialDiagnostic.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include <algorithm>
36 #include <cstdlib>
37
38 using namespace clang;
39 using namespace sema;
40
41 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42   return std::any_of(FD->param_begin(), FD->param_end(),
43                      std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
44 }
45
46 /// A convenience routine for creating a decayed reference to a function.
47 static ExprResult
48 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
49                       bool HadMultipleCandidates,
50                       SourceLocation Loc = SourceLocation(), 
51                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
52   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
53     return ExprError(); 
54   // If FoundDecl is different from Fn (such as if one is a template
55   // and the other a specialization), make sure DiagnoseUseOfDecl is 
56   // called on both.
57   // FIXME: This would be more comprehensively addressed by modifying
58   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
59   // being used.
60   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
61     return ExprError();
62   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
63                                                  VK_LValue, Loc, LocInfo);
64   if (HadMultipleCandidates)
65     DRE->setHadMultipleCandidates(true);
66
67   S.MarkDeclRefReferenced(DRE);
68   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
69                              CK_FunctionToPointerDecay);
70 }
71
72 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
73                                  bool InOverloadResolution,
74                                  StandardConversionSequence &SCS,
75                                  bool CStyle,
76                                  bool AllowObjCWritebackConversion);
77
78 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
79                                                  QualType &ToType,
80                                                  bool InOverloadResolution,
81                                                  StandardConversionSequence &SCS,
82                                                  bool CStyle);
83 static OverloadingResult
84 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
85                         UserDefinedConversionSequence& User,
86                         OverloadCandidateSet& Conversions,
87                         bool AllowExplicit,
88                         bool AllowObjCConversionOnExplicit);
89
90
91 static ImplicitConversionSequence::CompareKind
92 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
93                                    const StandardConversionSequence& SCS1,
94                                    const StandardConversionSequence& SCS2);
95
96 static ImplicitConversionSequence::CompareKind
97 CompareQualificationConversions(Sema &S,
98                                 const StandardConversionSequence& SCS1,
99                                 const StandardConversionSequence& SCS2);
100
101 static ImplicitConversionSequence::CompareKind
102 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
103                                 const StandardConversionSequence& SCS1,
104                                 const StandardConversionSequence& SCS2);
105
106 /// GetConversionRank - Retrieve the implicit conversion rank
107 /// corresponding to the given implicit conversion kind.
108 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
109   static const ImplicitConversionRank
110     Rank[(int)ICK_Num_Conversion_Kinds] = {
111     ICR_Exact_Match,
112     ICR_Exact_Match,
113     ICR_Exact_Match,
114     ICR_Exact_Match,
115     ICR_Exact_Match,
116     ICR_Exact_Match,
117     ICR_Promotion,
118     ICR_Promotion,
119     ICR_Promotion,
120     ICR_Conversion,
121     ICR_Conversion,
122     ICR_Conversion,
123     ICR_Conversion,
124     ICR_Conversion,
125     ICR_Conversion,
126     ICR_Conversion,
127     ICR_Conversion,
128     ICR_Conversion,
129     ICR_Conversion,
130     ICR_Conversion,
131     ICR_Complex_Real_Conversion,
132     ICR_Conversion,
133     ICR_Conversion,
134     ICR_Writeback_Conversion,
135     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
136                      // it was omitted by the patch that added
137                      // ICK_Zero_Event_Conversion
138     ICR_C_Conversion
139   };
140   return Rank[(int)Kind];
141 }
142
143 /// GetImplicitConversionName - Return the name of this kind of
144 /// implicit conversion.
145 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
146   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
147     "No conversion",
148     "Lvalue-to-rvalue",
149     "Array-to-pointer",
150     "Function-to-pointer",
151     "Noreturn adjustment",
152     "Qualification",
153     "Integral promotion",
154     "Floating point promotion",
155     "Complex promotion",
156     "Integral conversion",
157     "Floating conversion",
158     "Complex conversion",
159     "Floating-integral conversion",
160     "Pointer conversion",
161     "Pointer-to-member conversion",
162     "Boolean conversion",
163     "Compatible-types conversion",
164     "Derived-to-base conversion",
165     "Vector conversion",
166     "Vector splat",
167     "Complex-real conversion",
168     "Block Pointer conversion",
169     "Transparent Union Conversion",
170     "Writeback conversion",
171     "OpenCL Zero Event Conversion",
172     "C specific type conversion"
173   };
174   return Name[Kind];
175 }
176
177 /// StandardConversionSequence - Set the standard conversion
178 /// sequence to the identity conversion.
179 void StandardConversionSequence::setAsIdentityConversion() {
180   First = ICK_Identity;
181   Second = ICK_Identity;
182   Third = ICK_Identity;
183   DeprecatedStringLiteralToCharPtr = false;
184   QualificationIncludesObjCLifetime = false;
185   ReferenceBinding = false;
186   DirectBinding = false;
187   IsLvalueReference = true;
188   BindsToFunctionLvalue = false;
189   BindsToRvalue = false;
190   BindsImplicitObjectArgumentWithoutRefQualifier = false;
191   ObjCLifetimeConversionBinding = false;
192   CopyConstructor = nullptr;
193 }
194
195 /// getRank - Retrieve the rank of this standard conversion sequence
196 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
197 /// implicit conversions.
198 ImplicitConversionRank StandardConversionSequence::getRank() const {
199   ImplicitConversionRank Rank = ICR_Exact_Match;
200   if  (GetConversionRank(First) > Rank)
201     Rank = GetConversionRank(First);
202   if  (GetConversionRank(Second) > Rank)
203     Rank = GetConversionRank(Second);
204   if  (GetConversionRank(Third) > Rank)
205     Rank = GetConversionRank(Third);
206   return Rank;
207 }
208
209 /// isPointerConversionToBool - Determines whether this conversion is
210 /// a conversion of a pointer or pointer-to-member to bool. This is
211 /// used as part of the ranking of standard conversion sequences
212 /// (C++ 13.3.3.2p4).
213 bool StandardConversionSequence::isPointerConversionToBool() const {
214   // Note that FromType has not necessarily been transformed by the
215   // array-to-pointer or function-to-pointer implicit conversions, so
216   // check for their presence as well as checking whether FromType is
217   // a pointer.
218   if (getToType(1)->isBooleanType() &&
219       (getFromType()->isPointerType() ||
220        getFromType()->isObjCObjectPointerType() ||
221        getFromType()->isBlockPointerType() ||
222        getFromType()->isNullPtrType() ||
223        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
224     return true;
225
226   return false;
227 }
228
229 /// isPointerConversionToVoidPointer - Determines whether this
230 /// conversion is a conversion of a pointer to a void pointer. This is
231 /// used as part of the ranking of standard conversion sequences (C++
232 /// 13.3.3.2p4).
233 bool
234 StandardConversionSequence::
235 isPointerConversionToVoidPointer(ASTContext& Context) const {
236   QualType FromType = getFromType();
237   QualType ToType = getToType(1);
238
239   // Note that FromType has not necessarily been transformed by the
240   // array-to-pointer implicit conversion, so check for its presence
241   // and redo the conversion to get a pointer.
242   if (First == ICK_Array_To_Pointer)
243     FromType = Context.getArrayDecayedType(FromType);
244
245   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
246     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
247       return ToPtrType->getPointeeType()->isVoidType();
248
249   return false;
250 }
251
252 /// Skip any implicit casts which could be either part of a narrowing conversion
253 /// or after one in an implicit conversion.
254 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
255   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
256     switch (ICE->getCastKind()) {
257     case CK_NoOp:
258     case CK_IntegralCast:
259     case CK_IntegralToBoolean:
260     case CK_IntegralToFloating:
261     case CK_FloatingToIntegral:
262     case CK_FloatingToBoolean:
263     case CK_FloatingCast:
264       Converted = ICE->getSubExpr();
265       continue;
266
267     default:
268       return Converted;
269     }
270   }
271
272   return Converted;
273 }
274
275 /// Check if this standard conversion sequence represents a narrowing
276 /// conversion, according to C++11 [dcl.init.list]p7.
277 ///
278 /// \param Ctx  The AST context.
279 /// \param Converted  The result of applying this standard conversion sequence.
280 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
281 ///        value of the expression prior to the narrowing conversion.
282 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
283 ///        type of the expression prior to the narrowing conversion.
284 NarrowingKind
285 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
286                                              const Expr *Converted,
287                                              APValue &ConstantValue,
288                                              QualType &ConstantType) const {
289   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
290
291   // C++11 [dcl.init.list]p7:
292   //   A narrowing conversion is an implicit conversion ...
293   QualType FromType = getToType(0);
294   QualType ToType = getToType(1);
295   switch (Second) {
296   // 'bool' is an integral type; dispatch to the right place to handle it.
297   case ICK_Boolean_Conversion:
298     if (FromType->isRealFloatingType())
299       goto FloatingIntegralConversion;
300     if (FromType->isIntegralOrUnscopedEnumerationType())
301       goto IntegralConversion;
302     // Boolean conversions can be from pointers and pointers to members
303     // [conv.bool], and those aren't considered narrowing conversions.
304     return NK_Not_Narrowing;
305
306   // -- from a floating-point type to an integer type, or
307   //
308   // -- from an integer type or unscoped enumeration type to a floating-point
309   //    type, except where the source is a constant expression and the actual
310   //    value after conversion will fit into the target type and will produce
311   //    the original value when converted back to the original type, or
312   case ICK_Floating_Integral:
313   FloatingIntegralConversion:
314     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
315       return NK_Type_Narrowing;
316     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
317       llvm::APSInt IntConstantValue;
318       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
319       if (Initializer &&
320           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
321         // Convert the integer to the floating type.
322         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
323         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
324                                 llvm::APFloat::rmNearestTiesToEven);
325         // And back.
326         llvm::APSInt ConvertedValue = IntConstantValue;
327         bool ignored;
328         Result.convertToInteger(ConvertedValue,
329                                 llvm::APFloat::rmTowardZero, &ignored);
330         // If the resulting value is different, this was a narrowing conversion.
331         if (IntConstantValue != ConvertedValue) {
332           ConstantValue = APValue(IntConstantValue);
333           ConstantType = Initializer->getType();
334           return NK_Constant_Narrowing;
335         }
336       } else {
337         // Variables are always narrowings.
338         return NK_Variable_Narrowing;
339       }
340     }
341     return NK_Not_Narrowing;
342
343   // -- from long double to double or float, or from double to float, except
344   //    where the source is a constant expression and the actual value after
345   //    conversion is within the range of values that can be represented (even
346   //    if it cannot be represented exactly), or
347   case ICK_Floating_Conversion:
348     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
349         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
350       // FromType is larger than ToType.
351       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
352       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
353         // Constant!
354         assert(ConstantValue.isFloat());
355         llvm::APFloat FloatVal = ConstantValue.getFloat();
356         // Convert the source value into the target type.
357         bool ignored;
358         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
359           Ctx.getFloatTypeSemantics(ToType),
360           llvm::APFloat::rmNearestTiesToEven, &ignored);
361         // If there was no overflow, the source value is within the range of
362         // values that can be represented.
363         if (ConvertStatus & llvm::APFloat::opOverflow) {
364           ConstantType = Initializer->getType();
365           return NK_Constant_Narrowing;
366         }
367       } else {
368         return NK_Variable_Narrowing;
369       }
370     }
371     return NK_Not_Narrowing;
372
373   // -- from an integer type or unscoped enumeration type to an integer type
374   //    that cannot represent all the values of the original type, except where
375   //    the source is a constant expression and the actual value after
376   //    conversion will fit into the target type and will produce the original
377   //    value when converted back to the original type.
378   case ICK_Integral_Conversion:
379   IntegralConversion: {
380     assert(FromType->isIntegralOrUnscopedEnumerationType());
381     assert(ToType->isIntegralOrUnscopedEnumerationType());
382     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
383     const unsigned FromWidth = Ctx.getIntWidth(FromType);
384     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
385     const unsigned ToWidth = Ctx.getIntWidth(ToType);
386
387     if (FromWidth > ToWidth ||
388         (FromWidth == ToWidth && FromSigned != ToSigned) ||
389         (FromSigned && !ToSigned)) {
390       // Not all values of FromType can be represented in ToType.
391       llvm::APSInt InitializerValue;
392       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
393       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
394         // Such conversions on variables are always narrowing.
395         return NK_Variable_Narrowing;
396       }
397       bool Narrowing = false;
398       if (FromWidth < ToWidth) {
399         // Negative -> unsigned is narrowing. Otherwise, more bits is never
400         // narrowing.
401         if (InitializerValue.isSigned() && InitializerValue.isNegative())
402           Narrowing = true;
403       } else {
404         // Add a bit to the InitializerValue so we don't have to worry about
405         // signed vs. unsigned comparisons.
406         InitializerValue = InitializerValue.extend(
407           InitializerValue.getBitWidth() + 1);
408         // Convert the initializer to and from the target width and signed-ness.
409         llvm::APSInt ConvertedValue = InitializerValue;
410         ConvertedValue = ConvertedValue.trunc(ToWidth);
411         ConvertedValue.setIsSigned(ToSigned);
412         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
413         ConvertedValue.setIsSigned(InitializerValue.isSigned());
414         // If the result is different, this was a narrowing conversion.
415         if (ConvertedValue != InitializerValue)
416           Narrowing = true;
417       }
418       if (Narrowing) {
419         ConstantType = Initializer->getType();
420         ConstantValue = APValue(InitializerValue);
421         return NK_Constant_Narrowing;
422       }
423     }
424     return NK_Not_Narrowing;
425   }
426
427   default:
428     // Other kinds of conversions are not narrowings.
429     return NK_Not_Narrowing;
430   }
431 }
432
433 /// dump - Print this standard conversion sequence to standard
434 /// error. Useful for debugging overloading issues.
435 void StandardConversionSequence::dump() const {
436   raw_ostream &OS = llvm::errs();
437   bool PrintedSomething = false;
438   if (First != ICK_Identity) {
439     OS << GetImplicitConversionName(First);
440     PrintedSomething = true;
441   }
442
443   if (Second != ICK_Identity) {
444     if (PrintedSomething) {
445       OS << " -> ";
446     }
447     OS << GetImplicitConversionName(Second);
448
449     if (CopyConstructor) {
450       OS << " (by copy constructor)";
451     } else if (DirectBinding) {
452       OS << " (direct reference binding)";
453     } else if (ReferenceBinding) {
454       OS << " (reference binding)";
455     }
456     PrintedSomething = true;
457   }
458
459   if (Third != ICK_Identity) {
460     if (PrintedSomething) {
461       OS << " -> ";
462     }
463     OS << GetImplicitConversionName(Third);
464     PrintedSomething = true;
465   }
466
467   if (!PrintedSomething) {
468     OS << "No conversions required";
469   }
470 }
471
472 /// dump - Print this user-defined conversion sequence to standard
473 /// error. Useful for debugging overloading issues.
474 void UserDefinedConversionSequence::dump() const {
475   raw_ostream &OS = llvm::errs();
476   if (Before.First || Before.Second || Before.Third) {
477     Before.dump();
478     OS << " -> ";
479   }
480   if (ConversionFunction)
481     OS << '\'' << *ConversionFunction << '\'';
482   else
483     OS << "aggregate initialization";
484   if (After.First || After.Second || After.Third) {
485     OS << " -> ";
486     After.dump();
487   }
488 }
489
490 /// dump - Print this implicit conversion sequence to standard
491 /// error. Useful for debugging overloading issues.
492 void ImplicitConversionSequence::dump() const {
493   raw_ostream &OS = llvm::errs();
494   if (isStdInitializerListElement())
495     OS << "Worst std::initializer_list element conversion: ";
496   switch (ConversionKind) {
497   case StandardConversion:
498     OS << "Standard conversion: ";
499     Standard.dump();
500     break;
501   case UserDefinedConversion:
502     OS << "User-defined conversion: ";
503     UserDefined.dump();
504     break;
505   case EllipsisConversion:
506     OS << "Ellipsis conversion";
507     break;
508   case AmbiguousConversion:
509     OS << "Ambiguous conversion";
510     break;
511   case BadConversion:
512     OS << "Bad conversion";
513     break;
514   }
515
516   OS << "\n";
517 }
518
519 void AmbiguousConversionSequence::construct() {
520   new (&conversions()) ConversionSet();
521 }
522
523 void AmbiguousConversionSequence::destruct() {
524   conversions().~ConversionSet();
525 }
526
527 void
528 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
529   FromTypePtr = O.FromTypePtr;
530   ToTypePtr = O.ToTypePtr;
531   new (&conversions()) ConversionSet(O.conversions());
532 }
533
534 namespace {
535   // Structure used by DeductionFailureInfo to store
536   // template argument information.
537   struct DFIArguments {
538     TemplateArgument FirstArg;
539     TemplateArgument SecondArg;
540   };
541   // Structure used by DeductionFailureInfo to store
542   // template parameter and template argument information.
543   struct DFIParamWithArguments : DFIArguments {
544     TemplateParameter Param;
545   };
546 }
547
548 /// \brief Convert from Sema's representation of template deduction information
549 /// to the form used in overload-candidate information.
550 DeductionFailureInfo
551 clang::MakeDeductionFailureInfo(ASTContext &Context,
552                                 Sema::TemplateDeductionResult TDK,
553                                 TemplateDeductionInfo &Info) {
554   DeductionFailureInfo Result;
555   Result.Result = static_cast<unsigned>(TDK);
556   Result.HasDiagnostic = false;
557   Result.Data = nullptr;
558   switch (TDK) {
559   case Sema::TDK_Success:
560   case Sema::TDK_Invalid:
561   case Sema::TDK_InstantiationDepth:
562   case Sema::TDK_TooManyArguments:
563   case Sema::TDK_TooFewArguments:
564     break;
565
566   case Sema::TDK_Incomplete:
567   case Sema::TDK_InvalidExplicitArguments:
568     Result.Data = Info.Param.getOpaqueValue();
569     break;
570
571   case Sema::TDK_NonDeducedMismatch: {
572     // FIXME: Should allocate from normal heap so that we can free this later.
573     DFIArguments *Saved = new (Context) DFIArguments;
574     Saved->FirstArg = Info.FirstArg;
575     Saved->SecondArg = Info.SecondArg;
576     Result.Data = Saved;
577     break;
578   }
579
580   case Sema::TDK_Inconsistent:
581   case Sema::TDK_Underqualified: {
582     // FIXME: Should allocate from normal heap so that we can free this later.
583     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
584     Saved->Param = Info.Param;
585     Saved->FirstArg = Info.FirstArg;
586     Saved->SecondArg = Info.SecondArg;
587     Result.Data = Saved;
588     break;
589   }
590
591   case Sema::TDK_SubstitutionFailure:
592     Result.Data = Info.take();
593     if (Info.hasSFINAEDiagnostic()) {
594       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
595           SourceLocation(), PartialDiagnostic::NullDiagnostic());
596       Info.takeSFINAEDiagnostic(*Diag);
597       Result.HasDiagnostic = true;
598     }
599     break;
600
601   case Sema::TDK_FailedOverloadResolution:
602     Result.Data = Info.Expression;
603     break;
604
605   case Sema::TDK_MiscellaneousDeductionFailure:
606     break;
607   }
608
609   return Result;
610 }
611
612 void DeductionFailureInfo::Destroy() {
613   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
614   case Sema::TDK_Success:
615   case Sema::TDK_Invalid:
616   case Sema::TDK_InstantiationDepth:
617   case Sema::TDK_Incomplete:
618   case Sema::TDK_TooManyArguments:
619   case Sema::TDK_TooFewArguments:
620   case Sema::TDK_InvalidExplicitArguments:
621   case Sema::TDK_FailedOverloadResolution:
622     break;
623
624   case Sema::TDK_Inconsistent:
625   case Sema::TDK_Underqualified:
626   case Sema::TDK_NonDeducedMismatch:
627     // FIXME: Destroy the data?
628     Data = nullptr;
629     break;
630
631   case Sema::TDK_SubstitutionFailure:
632     // FIXME: Destroy the template argument list?
633     Data = nullptr;
634     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
635       Diag->~PartialDiagnosticAt();
636       HasDiagnostic = false;
637     }
638     break;
639
640   // Unhandled
641   case Sema::TDK_MiscellaneousDeductionFailure:
642     break;
643   }
644 }
645
646 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
647   if (HasDiagnostic)
648     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
649   return nullptr;
650 }
651
652 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
653   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
654   case Sema::TDK_Success:
655   case Sema::TDK_Invalid:
656   case Sema::TDK_InstantiationDepth:
657   case Sema::TDK_TooManyArguments:
658   case Sema::TDK_TooFewArguments:
659   case Sema::TDK_SubstitutionFailure:
660   case Sema::TDK_NonDeducedMismatch:
661   case Sema::TDK_FailedOverloadResolution:
662     return TemplateParameter();
663
664   case Sema::TDK_Incomplete:
665   case Sema::TDK_InvalidExplicitArguments:
666     return TemplateParameter::getFromOpaqueValue(Data);
667
668   case Sema::TDK_Inconsistent:
669   case Sema::TDK_Underqualified:
670     return static_cast<DFIParamWithArguments*>(Data)->Param;
671
672   // Unhandled
673   case Sema::TDK_MiscellaneousDeductionFailure:
674     break;
675   }
676
677   return TemplateParameter();
678 }
679
680 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
681   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
682   case Sema::TDK_Success:
683   case Sema::TDK_Invalid:
684   case Sema::TDK_InstantiationDepth:
685   case Sema::TDK_TooManyArguments:
686   case Sema::TDK_TooFewArguments:
687   case Sema::TDK_Incomplete:
688   case Sema::TDK_InvalidExplicitArguments:
689   case Sema::TDK_Inconsistent:
690   case Sema::TDK_Underqualified:
691   case Sema::TDK_NonDeducedMismatch:
692   case Sema::TDK_FailedOverloadResolution:
693     return nullptr;
694
695   case Sema::TDK_SubstitutionFailure:
696     return static_cast<TemplateArgumentList*>(Data);
697
698   // Unhandled
699   case Sema::TDK_MiscellaneousDeductionFailure:
700     break;
701   }
702
703   return nullptr;
704 }
705
706 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
707   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
708   case Sema::TDK_Success:
709   case Sema::TDK_Invalid:
710   case Sema::TDK_InstantiationDepth:
711   case Sema::TDK_Incomplete:
712   case Sema::TDK_TooManyArguments:
713   case Sema::TDK_TooFewArguments:
714   case Sema::TDK_InvalidExplicitArguments:
715   case Sema::TDK_SubstitutionFailure:
716   case Sema::TDK_FailedOverloadResolution:
717     return nullptr;
718
719   case Sema::TDK_Inconsistent:
720   case Sema::TDK_Underqualified:
721   case Sema::TDK_NonDeducedMismatch:
722     return &static_cast<DFIArguments*>(Data)->FirstArg;
723
724   // Unhandled
725   case Sema::TDK_MiscellaneousDeductionFailure:
726     break;
727   }
728
729   return nullptr;
730 }
731
732 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
733   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
734   case Sema::TDK_Success:
735   case Sema::TDK_Invalid:
736   case Sema::TDK_InstantiationDepth:
737   case Sema::TDK_Incomplete:
738   case Sema::TDK_TooManyArguments:
739   case Sema::TDK_TooFewArguments:
740   case Sema::TDK_InvalidExplicitArguments:
741   case Sema::TDK_SubstitutionFailure:
742   case Sema::TDK_FailedOverloadResolution:
743     return nullptr;
744
745   case Sema::TDK_Inconsistent:
746   case Sema::TDK_Underqualified:
747   case Sema::TDK_NonDeducedMismatch:
748     return &static_cast<DFIArguments*>(Data)->SecondArg;
749
750   // Unhandled
751   case Sema::TDK_MiscellaneousDeductionFailure:
752     break;
753   }
754
755   return nullptr;
756 }
757
758 Expr *DeductionFailureInfo::getExpr() {
759   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
760         Sema::TDK_FailedOverloadResolution)
761     return static_cast<Expr*>(Data);
762
763   return nullptr;
764 }
765
766 void OverloadCandidateSet::destroyCandidates() {
767   for (iterator i = begin(), e = end(); i != e; ++i) {
768     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
769       i->Conversions[ii].~ImplicitConversionSequence();
770     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
771       i->DeductionFailure.Destroy();
772   }
773 }
774
775 void OverloadCandidateSet::clear() {
776   destroyCandidates();
777   NumInlineSequences = 0;
778   Candidates.clear();
779   Functions.clear();
780 }
781
782 namespace {
783   class UnbridgedCastsSet {
784     struct Entry {
785       Expr **Addr;
786       Expr *Saved;
787     };
788     SmallVector<Entry, 2> Entries;
789     
790   public:
791     void save(Sema &S, Expr *&E) {
792       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
793       Entry entry = { &E, E };
794       Entries.push_back(entry);
795       E = S.stripARCUnbridgedCast(E);
796     }
797
798     void restore() {
799       for (SmallVectorImpl<Entry>::iterator
800              i = Entries.begin(), e = Entries.end(); i != e; ++i) 
801         *i->Addr = i->Saved;
802     }
803   };
804 }
805
806 /// checkPlaceholderForOverload - Do any interesting placeholder-like
807 /// preprocessing on the given expression.
808 ///
809 /// \param unbridgedCasts a collection to which to add unbridged casts;
810 ///   without this, they will be immediately diagnosed as errors
811 ///
812 /// Return true on unrecoverable error.
813 static bool
814 checkPlaceholderForOverload(Sema &S, Expr *&E,
815                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
816   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
817     // We can't handle overloaded expressions here because overload
818     // resolution might reasonably tweak them.
819     if (placeholder->getKind() == BuiltinType::Overload) return false;
820
821     // If the context potentially accepts unbridged ARC casts, strip
822     // the unbridged cast and add it to the collection for later restoration.
823     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
824         unbridgedCasts) {
825       unbridgedCasts->save(S, E);
826       return false;
827     }
828
829     // Go ahead and check everything else.
830     ExprResult result = S.CheckPlaceholderExpr(E);
831     if (result.isInvalid())
832       return true;
833
834     E = result.get();
835     return false;
836   }
837
838   // Nothing to do.
839   return false;
840 }
841
842 /// checkArgPlaceholdersForOverload - Check a set of call operands for
843 /// placeholders.
844 static bool checkArgPlaceholdersForOverload(Sema &S,
845                                             MultiExprArg Args,
846                                             UnbridgedCastsSet &unbridged) {
847   for (unsigned i = 0, e = Args.size(); i != e; ++i)
848     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
849       return true;
850
851   return false;
852 }
853
854 // IsOverload - Determine whether the given New declaration is an
855 // overload of the declarations in Old. This routine returns false if
856 // New and Old cannot be overloaded, e.g., if New has the same
857 // signature as some function in Old (C++ 1.3.10) or if the Old
858 // declarations aren't functions (or function templates) at all. When
859 // it does return false, MatchedDecl will point to the decl that New
860 // cannot be overloaded with.  This decl may be a UsingShadowDecl on
861 // top of the underlying declaration.
862 //
863 // Example: Given the following input:
864 //
865 //   void f(int, float); // #1
866 //   void f(int, int); // #2
867 //   int f(int, int); // #3
868 //
869 // When we process #1, there is no previous declaration of "f",
870 // so IsOverload will not be used.
871 //
872 // When we process #2, Old contains only the FunctionDecl for #1.  By
873 // comparing the parameter types, we see that #1 and #2 are overloaded
874 // (since they have different signatures), so this routine returns
875 // false; MatchedDecl is unchanged.
876 //
877 // When we process #3, Old is an overload set containing #1 and #2. We
878 // compare the signatures of #3 to #1 (they're overloaded, so we do
879 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
880 // identical (return types of functions are not part of the
881 // signature), IsOverload returns false and MatchedDecl will be set to
882 // point to the FunctionDecl for #2.
883 //
884 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
885 // into a class by a using declaration.  The rules for whether to hide
886 // shadow declarations ignore some properties which otherwise figure
887 // into a function template's signature.
888 Sema::OverloadKind
889 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
890                     NamedDecl *&Match, bool NewIsUsingDecl) {
891   for (LookupResult::iterator I = Old.begin(), E = Old.end();
892          I != E; ++I) {
893     NamedDecl *OldD = *I;
894
895     bool OldIsUsingDecl = false;
896     if (isa<UsingShadowDecl>(OldD)) {
897       OldIsUsingDecl = true;
898
899       // We can always introduce two using declarations into the same
900       // context, even if they have identical signatures.
901       if (NewIsUsingDecl) continue;
902
903       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
904     }
905
906     // A using-declaration does not conflict with another declaration
907     // if one of them is hidden.
908     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
909       continue;
910
911     // If either declaration was introduced by a using declaration,
912     // we'll need to use slightly different rules for matching.
913     // Essentially, these rules are the normal rules, except that
914     // function templates hide function templates with different
915     // return types or template parameter lists.
916     bool UseMemberUsingDeclRules =
917       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
918       !New->getFriendObjectKind();
919
920     if (FunctionDecl *OldF = OldD->getAsFunction()) {
921       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
922         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
923           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
924           continue;
925         }
926
927         if (!isa<FunctionTemplateDecl>(OldD) &&
928             !shouldLinkPossiblyHiddenDecl(*I, New))
929           continue;
930
931         Match = *I;
932         return Ovl_Match;
933       }
934     } else if (isa<UsingDecl>(OldD)) {
935       // We can overload with these, which can show up when doing
936       // redeclaration checks for UsingDecls.
937       assert(Old.getLookupKind() == LookupUsingDeclName);
938     } else if (isa<TagDecl>(OldD)) {
939       // We can always overload with tags by hiding them.
940     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
941       // Optimistically assume that an unresolved using decl will
942       // overload; if it doesn't, we'll have to diagnose during
943       // template instantiation.
944     } else {
945       // (C++ 13p1):
946       //   Only function declarations can be overloaded; object and type
947       //   declarations cannot be overloaded.
948       Match = *I;
949       return Ovl_NonFunction;
950     }
951   }
952
953   return Ovl_Overload;
954 }
955
956 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
957                       bool UseUsingDeclRules) {
958   // C++ [basic.start.main]p2: This function shall not be overloaded.
959   if (New->isMain())
960     return false;
961
962   // MSVCRT user defined entry points cannot be overloaded.
963   if (New->isMSVCRTEntryPoint())
964     return false;
965
966   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
967   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
968
969   // C++ [temp.fct]p2:
970   //   A function template can be overloaded with other function templates
971   //   and with normal (non-template) functions.
972   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
973     return true;
974
975   // Is the function New an overload of the function Old?
976   QualType OldQType = Context.getCanonicalType(Old->getType());
977   QualType NewQType = Context.getCanonicalType(New->getType());
978
979   // Compare the signatures (C++ 1.3.10) of the two functions to
980   // determine whether they are overloads. If we find any mismatch
981   // in the signature, they are overloads.
982
983   // If either of these functions is a K&R-style function (no
984   // prototype), then we consider them to have matching signatures.
985   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
986       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
987     return false;
988
989   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
990   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
991
992   // The signature of a function includes the types of its
993   // parameters (C++ 1.3.10), which includes the presence or absence
994   // of the ellipsis; see C++ DR 357).
995   if (OldQType != NewQType &&
996       (OldType->getNumParams() != NewType->getNumParams() ||
997        OldType->isVariadic() != NewType->isVariadic() ||
998        !FunctionParamTypesAreEqual(OldType, NewType)))
999     return true;
1000
1001   // C++ [temp.over.link]p4:
1002   //   The signature of a function template consists of its function
1003   //   signature, its return type and its template parameter list. The names
1004   //   of the template parameters are significant only for establishing the
1005   //   relationship between the template parameters and the rest of the
1006   //   signature.
1007   //
1008   // We check the return type and template parameter lists for function
1009   // templates first; the remaining checks follow.
1010   //
1011   // However, we don't consider either of these when deciding whether
1012   // a member introduced by a shadow declaration is hidden.
1013   if (!UseUsingDeclRules && NewTemplate &&
1014       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1015                                        OldTemplate->getTemplateParameters(),
1016                                        false, TPL_TemplateMatch) ||
1017        OldType->getReturnType() != NewType->getReturnType()))
1018     return true;
1019
1020   // If the function is a class member, its signature includes the
1021   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1022   //
1023   // As part of this, also check whether one of the member functions
1024   // is static, in which case they are not overloads (C++
1025   // 13.1p2). While not part of the definition of the signature,
1026   // this check is important to determine whether these functions
1027   // can be overloaded.
1028   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1029   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1030   if (OldMethod && NewMethod &&
1031       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1032     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1033       if (!UseUsingDeclRules &&
1034           (OldMethod->getRefQualifier() == RQ_None ||
1035            NewMethod->getRefQualifier() == RQ_None)) {
1036         // C++0x [over.load]p2:
1037         //   - Member function declarations with the same name and the same
1038         //     parameter-type-list as well as member function template
1039         //     declarations with the same name, the same parameter-type-list, and
1040         //     the same template parameter lists cannot be overloaded if any of
1041         //     them, but not all, have a ref-qualifier (8.3.5).
1042         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1043           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1044         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1045       }
1046       return true;
1047     }
1048
1049     // We may not have applied the implicit const for a constexpr member
1050     // function yet (because we haven't yet resolved whether this is a static
1051     // or non-static member function). Add it now, on the assumption that this
1052     // is a redeclaration of OldMethod.
1053     unsigned OldQuals = OldMethod->getTypeQualifiers();
1054     unsigned NewQuals = NewMethod->getTypeQualifiers();
1055     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1056         !isa<CXXConstructorDecl>(NewMethod))
1057       NewQuals |= Qualifiers::Const;
1058
1059     // We do not allow overloading based off of '__restrict'.
1060     OldQuals &= ~Qualifiers::Restrict;
1061     NewQuals &= ~Qualifiers::Restrict;
1062     if (OldQuals != NewQuals)
1063       return true;
1064   }
1065
1066   // Though pass_object_size is placed on parameters and takes an argument, we
1067   // consider it to be a function-level modifier for the sake of function
1068   // identity. Either the function has one or more parameters with
1069   // pass_object_size or it doesn't.
1070   if (functionHasPassObjectSizeParams(New) !=
1071       functionHasPassObjectSizeParams(Old))
1072     return true;
1073
1074   // enable_if attributes are an order-sensitive part of the signature.
1075   for (specific_attr_iterator<EnableIfAttr>
1076          NewI = New->specific_attr_begin<EnableIfAttr>(),
1077          NewE = New->specific_attr_end<EnableIfAttr>(),
1078          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1079          OldE = Old->specific_attr_end<EnableIfAttr>();
1080        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1081     if (NewI == NewE || OldI == OldE)
1082       return true;
1083     llvm::FoldingSetNodeID NewID, OldID;
1084     NewI->getCond()->Profile(NewID, Context, true);
1085     OldI->getCond()->Profile(OldID, Context, true);
1086     if (NewID != OldID)
1087       return true;
1088   }
1089
1090   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads) {
1091     CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1092                        OldTarget = IdentifyCUDATarget(Old);
1093     if (NewTarget == CFT_InvalidTarget || NewTarget == CFT_Global)
1094       return false;
1095
1096     assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
1097
1098     // Don't allow mixing of HD with other kinds. This guarantees that
1099     // we have only one viable function with this signature on any
1100     // side of CUDA compilation .
1101     if ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice))
1102       return false;
1103
1104     // Allow overloading of functions with same signature, but
1105     // different CUDA target attributes.
1106     return NewTarget != OldTarget;
1107   }
1108
1109   // The signatures match; this is not an overload.
1110   return false;
1111 }
1112
1113 /// \brief Checks availability of the function depending on the current
1114 /// function context. Inside an unavailable function, unavailability is ignored.
1115 ///
1116 /// \returns true if \arg FD is unavailable and current context is inside
1117 /// an available function, false otherwise.
1118 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1119   return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1120 }
1121
1122 /// \brief Tries a user-defined conversion from From to ToType.
1123 ///
1124 /// Produces an implicit conversion sequence for when a standard conversion
1125 /// is not an option. See TryImplicitConversion for more information.
1126 static ImplicitConversionSequence
1127 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1128                          bool SuppressUserConversions,
1129                          bool AllowExplicit,
1130                          bool InOverloadResolution,
1131                          bool CStyle,
1132                          bool AllowObjCWritebackConversion,
1133                          bool AllowObjCConversionOnExplicit) {
1134   ImplicitConversionSequence ICS;
1135
1136   if (SuppressUserConversions) {
1137     // We're not in the case above, so there is no conversion that
1138     // we can perform.
1139     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1140     return ICS;
1141   }
1142
1143   // Attempt user-defined conversion.
1144   OverloadCandidateSet Conversions(From->getExprLoc(),
1145                                    OverloadCandidateSet::CSK_Normal);
1146   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1147                                   Conversions, AllowExplicit,
1148                                   AllowObjCConversionOnExplicit)) {
1149   case OR_Success:
1150   case OR_Deleted:
1151     ICS.setUserDefined();
1152     ICS.UserDefined.Before.setAsIdentityConversion();
1153     // C++ [over.ics.user]p4:
1154     //   A conversion of an expression of class type to the same class
1155     //   type is given Exact Match rank, and a conversion of an
1156     //   expression of class type to a base class of that type is
1157     //   given Conversion rank, in spite of the fact that a copy
1158     //   constructor (i.e., a user-defined conversion function) is
1159     //   called for those cases.
1160     if (CXXConstructorDecl *Constructor
1161           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1162       QualType FromCanon
1163         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1164       QualType ToCanon
1165         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1166       if (Constructor->isCopyConstructor() &&
1167           (FromCanon == ToCanon ||
1168            S.IsDerivedFrom(From->getLocStart(), FromCanon, ToCanon))) {
1169         // Turn this into a "standard" conversion sequence, so that it
1170         // gets ranked with standard conversion sequences.
1171         ICS.setStandard();
1172         ICS.Standard.setAsIdentityConversion();
1173         ICS.Standard.setFromType(From->getType());
1174         ICS.Standard.setAllToTypes(ToType);
1175         ICS.Standard.CopyConstructor = Constructor;
1176         if (ToCanon != FromCanon)
1177           ICS.Standard.Second = ICK_Derived_To_Base;
1178       }
1179     }
1180     break;
1181
1182   case OR_Ambiguous:
1183     ICS.setAmbiguous();
1184     ICS.Ambiguous.setFromType(From->getType());
1185     ICS.Ambiguous.setToType(ToType);
1186     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1187          Cand != Conversions.end(); ++Cand)
1188       if (Cand->Viable)
1189         ICS.Ambiguous.addConversion(Cand->Function);
1190     break;
1191
1192     // Fall through.
1193   case OR_No_Viable_Function:
1194     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1195     break;
1196   }
1197
1198   return ICS;
1199 }
1200
1201 /// TryImplicitConversion - Attempt to perform an implicit conversion
1202 /// from the given expression (Expr) to the given type (ToType). This
1203 /// function returns an implicit conversion sequence that can be used
1204 /// to perform the initialization. Given
1205 ///
1206 ///   void f(float f);
1207 ///   void g(int i) { f(i); }
1208 ///
1209 /// this routine would produce an implicit conversion sequence to
1210 /// describe the initialization of f from i, which will be a standard
1211 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1212 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1213 //
1214 /// Note that this routine only determines how the conversion can be
1215 /// performed; it does not actually perform the conversion. As such,
1216 /// it will not produce any diagnostics if no conversion is available,
1217 /// but will instead return an implicit conversion sequence of kind
1218 /// "BadConversion".
1219 ///
1220 /// If @p SuppressUserConversions, then user-defined conversions are
1221 /// not permitted.
1222 /// If @p AllowExplicit, then explicit user-defined conversions are
1223 /// permitted.
1224 ///
1225 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1226 /// writeback conversion, which allows __autoreleasing id* parameters to
1227 /// be initialized with __strong id* or __weak id* arguments.
1228 static ImplicitConversionSequence
1229 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1230                       bool SuppressUserConversions,
1231                       bool AllowExplicit,
1232                       bool InOverloadResolution,
1233                       bool CStyle,
1234                       bool AllowObjCWritebackConversion,
1235                       bool AllowObjCConversionOnExplicit) {
1236   ImplicitConversionSequence ICS;
1237   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1238                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1239     ICS.setStandard();
1240     return ICS;
1241   }
1242
1243   if (!S.getLangOpts().CPlusPlus) {
1244     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1245     return ICS;
1246   }
1247
1248   // C++ [over.ics.user]p4:
1249   //   A conversion of an expression of class type to the same class
1250   //   type is given Exact Match rank, and a conversion of an
1251   //   expression of class type to a base class of that type is
1252   //   given Conversion rank, in spite of the fact that a copy/move
1253   //   constructor (i.e., a user-defined conversion function) is
1254   //   called for those cases.
1255   QualType FromType = From->getType();
1256   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1257       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1258        S.IsDerivedFrom(From->getLocStart(), FromType, ToType))) {
1259     ICS.setStandard();
1260     ICS.Standard.setAsIdentityConversion();
1261     ICS.Standard.setFromType(FromType);
1262     ICS.Standard.setAllToTypes(ToType);
1263
1264     // We don't actually check at this point whether there is a valid
1265     // copy/move constructor, since overloading just assumes that it
1266     // exists. When we actually perform initialization, we'll find the
1267     // appropriate constructor to copy the returned object, if needed.
1268     ICS.Standard.CopyConstructor = nullptr;
1269
1270     // Determine whether this is considered a derived-to-base conversion.
1271     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1272       ICS.Standard.Second = ICK_Derived_To_Base;
1273
1274     return ICS;
1275   }
1276
1277   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1278                                   AllowExplicit, InOverloadResolution, CStyle,
1279                                   AllowObjCWritebackConversion,
1280                                   AllowObjCConversionOnExplicit);
1281 }
1282
1283 ImplicitConversionSequence
1284 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1285                             bool SuppressUserConversions,
1286                             bool AllowExplicit,
1287                             bool InOverloadResolution,
1288                             bool CStyle,
1289                             bool AllowObjCWritebackConversion) {
1290   return ::TryImplicitConversion(*this, From, ToType, 
1291                                  SuppressUserConversions, AllowExplicit,
1292                                  InOverloadResolution, CStyle, 
1293                                  AllowObjCWritebackConversion,
1294                                  /*AllowObjCConversionOnExplicit=*/false);
1295 }
1296
1297 /// PerformImplicitConversion - Perform an implicit conversion of the
1298 /// expression From to the type ToType. Returns the
1299 /// converted expression. Flavor is the kind of conversion we're
1300 /// performing, used in the error message. If @p AllowExplicit,
1301 /// explicit user-defined conversions are permitted.
1302 ExprResult
1303 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1304                                 AssignmentAction Action, bool AllowExplicit) {
1305   ImplicitConversionSequence ICS;
1306   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1307 }
1308
1309 ExprResult
1310 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1311                                 AssignmentAction Action, bool AllowExplicit,
1312                                 ImplicitConversionSequence& ICS) {
1313   if (checkPlaceholderForOverload(*this, From))
1314     return ExprError();
1315
1316   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1317   bool AllowObjCWritebackConversion
1318     = getLangOpts().ObjCAutoRefCount && 
1319       (Action == AA_Passing || Action == AA_Sending);
1320   if (getLangOpts().ObjC1)
1321     CheckObjCBridgeRelatedConversions(From->getLocStart(),
1322                                       ToType, From->getType(), From);
1323   ICS = ::TryImplicitConversion(*this, From, ToType,
1324                                 /*SuppressUserConversions=*/false,
1325                                 AllowExplicit,
1326                                 /*InOverloadResolution=*/false,
1327                                 /*CStyle=*/false,
1328                                 AllowObjCWritebackConversion,
1329                                 /*AllowObjCConversionOnExplicit=*/false);
1330   return PerformImplicitConversion(From, ToType, ICS, Action);
1331 }
1332
1333 /// \brief Determine whether the conversion from FromType to ToType is a valid
1334 /// conversion that strips "noreturn" off the nested function type.
1335 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1336                                 QualType &ResultTy) {
1337   if (Context.hasSameUnqualifiedType(FromType, ToType))
1338     return false;
1339
1340   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1341   // where F adds one of the following at most once:
1342   //   - a pointer
1343   //   - a member pointer
1344   //   - a block pointer
1345   CanQualType CanTo = Context.getCanonicalType(ToType);
1346   CanQualType CanFrom = Context.getCanonicalType(FromType);
1347   Type::TypeClass TyClass = CanTo->getTypeClass();
1348   if (TyClass != CanFrom->getTypeClass()) return false;
1349   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1350     if (TyClass == Type::Pointer) {
1351       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1352       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1353     } else if (TyClass == Type::BlockPointer) {
1354       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1355       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1356     } else if (TyClass == Type::MemberPointer) {
1357       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1358       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1359     } else {
1360       return false;
1361     }
1362
1363     TyClass = CanTo->getTypeClass();
1364     if (TyClass != CanFrom->getTypeClass()) return false;
1365     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1366       return false;
1367   }
1368
1369   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1370   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1371   if (!EInfo.getNoReturn()) return false;
1372
1373   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1374   assert(QualType(FromFn, 0).isCanonical());
1375   if (QualType(FromFn, 0) != CanTo) return false;
1376
1377   ResultTy = ToType;
1378   return true;
1379 }
1380
1381 /// \brief Determine whether the conversion from FromType to ToType is a valid
1382 /// vector conversion.
1383 ///
1384 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1385 /// conversion.
1386 static bool IsVectorConversion(Sema &S, QualType FromType,
1387                                QualType ToType, ImplicitConversionKind &ICK) {
1388   // We need at least one of these types to be a vector type to have a vector
1389   // conversion.
1390   if (!ToType->isVectorType() && !FromType->isVectorType())
1391     return false;
1392
1393   // Identical types require no conversions.
1394   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1395     return false;
1396
1397   // There are no conversions between extended vector types, only identity.
1398   if (ToType->isExtVectorType()) {
1399     // There are no conversions between extended vector types other than the
1400     // identity conversion.
1401     if (FromType->isExtVectorType())
1402       return false;
1403
1404     // Vector splat from any arithmetic type to a vector.
1405     if (FromType->isArithmeticType()) {
1406       ICK = ICK_Vector_Splat;
1407       return true;
1408     }
1409   }
1410
1411   // We can perform the conversion between vector types in the following cases:
1412   // 1)vector types are equivalent AltiVec and GCC vector types
1413   // 2)lax vector conversions are permitted and the vector types are of the
1414   //   same size
1415   if (ToType->isVectorType() && FromType->isVectorType()) {
1416     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1417         S.isLaxVectorConversion(FromType, ToType)) {
1418       ICK = ICK_Vector_Conversion;
1419       return true;
1420     }
1421   }
1422
1423   return false;
1424 }
1425
1426 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1427                                 bool InOverloadResolution,
1428                                 StandardConversionSequence &SCS,
1429                                 bool CStyle);
1430
1431 /// IsStandardConversion - Determines whether there is a standard
1432 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1433 /// expression From to the type ToType. Standard conversion sequences
1434 /// only consider non-class types; for conversions that involve class
1435 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1436 /// contain the standard conversion sequence required to perform this
1437 /// conversion and this routine will return true. Otherwise, this
1438 /// routine will return false and the value of SCS is unspecified.
1439 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1440                                  bool InOverloadResolution,
1441                                  StandardConversionSequence &SCS,
1442                                  bool CStyle,
1443                                  bool AllowObjCWritebackConversion) {
1444   QualType FromType = From->getType();
1445
1446   // Standard conversions (C++ [conv])
1447   SCS.setAsIdentityConversion();
1448   SCS.IncompatibleObjC = false;
1449   SCS.setFromType(FromType);
1450   SCS.CopyConstructor = nullptr;
1451
1452   // There are no standard conversions for class types in C++, so
1453   // abort early. When overloading in C, however, we do permit them.
1454   if (S.getLangOpts().CPlusPlus &&
1455       (FromType->isRecordType() || ToType->isRecordType()))
1456     return false;
1457
1458   // The first conversion can be an lvalue-to-rvalue conversion,
1459   // array-to-pointer conversion, or function-to-pointer conversion
1460   // (C++ 4p1).
1461
1462   if (FromType == S.Context.OverloadTy) {
1463     DeclAccessPair AccessPair;
1464     if (FunctionDecl *Fn
1465           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1466                                                  AccessPair)) {
1467       // We were able to resolve the address of the overloaded function,
1468       // so we can convert to the type of that function.
1469       FromType = Fn->getType();
1470       SCS.setFromType(FromType);
1471
1472       // we can sometimes resolve &foo<int> regardless of ToType, so check
1473       // if the type matches (identity) or we are converting to bool
1474       if (!S.Context.hasSameUnqualifiedType(
1475                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1476         QualType resultTy;
1477         // if the function type matches except for [[noreturn]], it's ok
1478         if (!S.IsNoReturnConversion(FromType,
1479               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1480           // otherwise, only a boolean conversion is standard   
1481           if (!ToType->isBooleanType()) 
1482             return false; 
1483       }
1484
1485       // Check if the "from" expression is taking the address of an overloaded
1486       // function and recompute the FromType accordingly. Take advantage of the
1487       // fact that non-static member functions *must* have such an address-of
1488       // expression. 
1489       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1490       if (Method && !Method->isStatic()) {
1491         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1492                "Non-unary operator on non-static member address");
1493         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1494                == UO_AddrOf &&
1495                "Non-address-of operator on non-static member address");
1496         const Type *ClassType
1497           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1498         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1499       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1500         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1501                UO_AddrOf &&
1502                "Non-address-of operator for overloaded function expression");
1503         FromType = S.Context.getPointerType(FromType);
1504       }
1505
1506       // Check that we've computed the proper type after overload resolution.
1507       assert(S.Context.hasSameType(
1508         FromType,
1509         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1510     } else {
1511       return false;
1512     }
1513   }
1514   // Lvalue-to-rvalue conversion (C++11 4.1):
1515   //   A glvalue (3.10) of a non-function, non-array type T can
1516   //   be converted to a prvalue.
1517   bool argIsLValue = From->isGLValue();
1518   if (argIsLValue &&
1519       !FromType->isFunctionType() && !FromType->isArrayType() &&
1520       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1521     SCS.First = ICK_Lvalue_To_Rvalue;
1522
1523     // C11 6.3.2.1p2:
1524     //   ... if the lvalue has atomic type, the value has the non-atomic version 
1525     //   of the type of the lvalue ...
1526     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1527       FromType = Atomic->getValueType();
1528
1529     // If T is a non-class type, the type of the rvalue is the
1530     // cv-unqualified version of T. Otherwise, the type of the rvalue
1531     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1532     // just strip the qualifiers because they don't matter.
1533     FromType = FromType.getUnqualifiedType();
1534   } else if (FromType->isArrayType()) {
1535     // Array-to-pointer conversion (C++ 4.2)
1536     SCS.First = ICK_Array_To_Pointer;
1537
1538     // An lvalue or rvalue of type "array of N T" or "array of unknown
1539     // bound of T" can be converted to an rvalue of type "pointer to
1540     // T" (C++ 4.2p1).
1541     FromType = S.Context.getArrayDecayedType(FromType);
1542
1543     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1544       // This conversion is deprecated in C++03 (D.4)
1545       SCS.DeprecatedStringLiteralToCharPtr = true;
1546
1547       // For the purpose of ranking in overload resolution
1548       // (13.3.3.1.1), this conversion is considered an
1549       // array-to-pointer conversion followed by a qualification
1550       // conversion (4.4). (C++ 4.2p2)
1551       SCS.Second = ICK_Identity;
1552       SCS.Third = ICK_Qualification;
1553       SCS.QualificationIncludesObjCLifetime = false;
1554       SCS.setAllToTypes(FromType);
1555       return true;
1556     }
1557   } else if (FromType->isFunctionType() && argIsLValue) {
1558     // Function-to-pointer conversion (C++ 4.3).
1559     SCS.First = ICK_Function_To_Pointer;
1560
1561     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1562       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1563         if (!S.checkAddressOfFunctionIsAvailable(FD))
1564           return false;
1565
1566     // An lvalue of function type T can be converted to an rvalue of
1567     // type "pointer to T." The result is a pointer to the
1568     // function. (C++ 4.3p1).
1569     FromType = S.Context.getPointerType(FromType);
1570   } else {
1571     // We don't require any conversions for the first step.
1572     SCS.First = ICK_Identity;
1573   }
1574   SCS.setToType(0, FromType);
1575
1576   // The second conversion can be an integral promotion, floating
1577   // point promotion, integral conversion, floating point conversion,
1578   // floating-integral conversion, pointer conversion,
1579   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1580   // For overloading in C, this can also be a "compatible-type"
1581   // conversion.
1582   bool IncompatibleObjC = false;
1583   ImplicitConversionKind SecondICK = ICK_Identity;
1584   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1585     // The unqualified versions of the types are the same: there's no
1586     // conversion to do.
1587     SCS.Second = ICK_Identity;
1588   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1589     // Integral promotion (C++ 4.5).
1590     SCS.Second = ICK_Integral_Promotion;
1591     FromType = ToType.getUnqualifiedType();
1592   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1593     // Floating point promotion (C++ 4.6).
1594     SCS.Second = ICK_Floating_Promotion;
1595     FromType = ToType.getUnqualifiedType();
1596   } else if (S.IsComplexPromotion(FromType, ToType)) {
1597     // Complex promotion (Clang extension)
1598     SCS.Second = ICK_Complex_Promotion;
1599     FromType = ToType.getUnqualifiedType();
1600   } else if (ToType->isBooleanType() &&
1601              (FromType->isArithmeticType() ||
1602               FromType->isAnyPointerType() ||
1603               FromType->isBlockPointerType() ||
1604               FromType->isMemberPointerType() ||
1605               FromType->isNullPtrType())) {
1606     // Boolean conversions (C++ 4.12).
1607     SCS.Second = ICK_Boolean_Conversion;
1608     FromType = S.Context.BoolTy;
1609   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1610              ToType->isIntegralType(S.Context)) {
1611     // Integral conversions (C++ 4.7).
1612     SCS.Second = ICK_Integral_Conversion;
1613     FromType = ToType.getUnqualifiedType();
1614   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1615     // Complex conversions (C99 6.3.1.6)
1616     SCS.Second = ICK_Complex_Conversion;
1617     FromType = ToType.getUnqualifiedType();
1618   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1619              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1620     // Complex-real conversions (C99 6.3.1.7)
1621     SCS.Second = ICK_Complex_Real;
1622     FromType = ToType.getUnqualifiedType();
1623   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1624     // Floating point conversions (C++ 4.8).
1625     SCS.Second = ICK_Floating_Conversion;
1626     FromType = ToType.getUnqualifiedType();
1627   } else if ((FromType->isRealFloatingType() &&
1628               ToType->isIntegralType(S.Context)) ||
1629              (FromType->isIntegralOrUnscopedEnumerationType() &&
1630               ToType->isRealFloatingType())) {
1631     // Floating-integral conversions (C++ 4.9).
1632     SCS.Second = ICK_Floating_Integral;
1633     FromType = ToType.getUnqualifiedType();
1634   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1635     SCS.Second = ICK_Block_Pointer_Conversion;
1636   } else if (AllowObjCWritebackConversion &&
1637              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1638     SCS.Second = ICK_Writeback_Conversion;
1639   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1640                                    FromType, IncompatibleObjC)) {
1641     // Pointer conversions (C++ 4.10).
1642     SCS.Second = ICK_Pointer_Conversion;
1643     SCS.IncompatibleObjC = IncompatibleObjC;
1644     FromType = FromType.getUnqualifiedType();
1645   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1646                                          InOverloadResolution, FromType)) {
1647     // Pointer to member conversions (4.11).
1648     SCS.Second = ICK_Pointer_Member;
1649   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1650     SCS.Second = SecondICK;
1651     FromType = ToType.getUnqualifiedType();
1652   } else if (!S.getLangOpts().CPlusPlus &&
1653              S.Context.typesAreCompatible(ToType, FromType)) {
1654     // Compatible conversions (Clang extension for C function overloading)
1655     SCS.Second = ICK_Compatible_Conversion;
1656     FromType = ToType.getUnqualifiedType();
1657   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1658     // Treat a conversion that strips "noreturn" as an identity conversion.
1659     SCS.Second = ICK_NoReturn_Adjustment;
1660   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1661                                              InOverloadResolution,
1662                                              SCS, CStyle)) {
1663     SCS.Second = ICK_TransparentUnionConversion;
1664     FromType = ToType;
1665   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1666                                  CStyle)) {
1667     // tryAtomicConversion has updated the standard conversion sequence
1668     // appropriately.
1669     return true;
1670   } else if (ToType->isEventT() &&
1671              From->isIntegerConstantExpr(S.getASTContext()) &&
1672              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1673     SCS.Second = ICK_Zero_Event_Conversion;
1674     FromType = ToType;
1675   } else {
1676     // No second conversion required.
1677     SCS.Second = ICK_Identity;
1678   }
1679   SCS.setToType(1, FromType);
1680
1681   QualType CanonFrom;
1682   QualType CanonTo;
1683   // The third conversion can be a qualification conversion (C++ 4p1).
1684   bool ObjCLifetimeConversion;
1685   if (S.IsQualificationConversion(FromType, ToType, CStyle, 
1686                                   ObjCLifetimeConversion)) {
1687     SCS.Third = ICK_Qualification;
1688     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1689     FromType = ToType;
1690     CanonFrom = S.Context.getCanonicalType(FromType);
1691     CanonTo = S.Context.getCanonicalType(ToType);
1692   } else {
1693     // No conversion required
1694     SCS.Third = ICK_Identity;
1695
1696     // C++ [over.best.ics]p6:
1697     //   [...] Any difference in top-level cv-qualification is
1698     //   subsumed by the initialization itself and does not constitute
1699     //   a conversion. [...]
1700     CanonFrom = S.Context.getCanonicalType(FromType);
1701     CanonTo = S.Context.getCanonicalType(ToType);
1702     if (CanonFrom.getLocalUnqualifiedType()
1703                                        == CanonTo.getLocalUnqualifiedType() &&
1704         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1705       FromType = ToType;
1706       CanonFrom = CanonTo;
1707     }
1708   }
1709   SCS.setToType(2, FromType);
1710
1711   if (CanonFrom == CanonTo)
1712     return true;
1713
1714   // If we have not converted the argument type to the parameter type,
1715   // this is a bad conversion sequence, unless we're resolving an overload in C.
1716   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1717     return false;
1718
1719   ExprResult ER = ExprResult{From};
1720   auto Conv = S.CheckSingleAssignmentConstraints(ToType, ER,
1721                                                  /*Diagnose=*/false,
1722                                                  /*DiagnoseCFAudited=*/false,
1723                                                  /*ConvertRHS=*/false);
1724   if (Conv != Sema::Compatible)
1725     return false;
1726
1727   SCS.setAllToTypes(ToType);
1728   // We need to set all three because we want this conversion to rank terribly,
1729   // and we don't know what conversions it may overlap with.
1730   SCS.First = ICK_C_Only_Conversion;
1731   SCS.Second = ICK_C_Only_Conversion;
1732   SCS.Third = ICK_C_Only_Conversion;
1733   return true;
1734 }
1735   
1736 static bool
1737 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
1738                                      QualType &ToType,
1739                                      bool InOverloadResolution,
1740                                      StandardConversionSequence &SCS,
1741                                      bool CStyle) {
1742     
1743   const RecordType *UT = ToType->getAsUnionType();
1744   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1745     return false;
1746   // The field to initialize within the transparent union.
1747   RecordDecl *UD = UT->getDecl();
1748   // It's compatible if the expression matches any of the fields.
1749   for (const auto *it : UD->fields()) {
1750     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1751                              CStyle, /*ObjCWritebackConversion=*/false)) {
1752       ToType = it->getType();
1753       return true;
1754     }
1755   }
1756   return false;
1757 }
1758
1759 /// IsIntegralPromotion - Determines whether the conversion from the
1760 /// expression From (whose potentially-adjusted type is FromType) to
1761 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1762 /// sets PromotedType to the promoted type.
1763 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1764   const BuiltinType *To = ToType->getAs<BuiltinType>();
1765   // All integers are built-in.
1766   if (!To) {
1767     return false;
1768   }
1769
1770   // An rvalue of type char, signed char, unsigned char, short int, or
1771   // unsigned short int can be converted to an rvalue of type int if
1772   // int can represent all the values of the source type; otherwise,
1773   // the source rvalue can be converted to an rvalue of type unsigned
1774   // int (C++ 4.5p1).
1775   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1776       !FromType->isEnumeralType()) {
1777     if (// We can promote any signed, promotable integer type to an int
1778         (FromType->isSignedIntegerType() ||
1779          // We can promote any unsigned integer type whose size is
1780          // less than int to an int.
1781          (!FromType->isSignedIntegerType() &&
1782           Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1783       return To->getKind() == BuiltinType::Int;
1784     }
1785
1786     return To->getKind() == BuiltinType::UInt;
1787   }
1788
1789   // C++11 [conv.prom]p3:
1790   //   A prvalue of an unscoped enumeration type whose underlying type is not
1791   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1792   //   following types that can represent all the values of the enumeration
1793   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1794   //   unsigned int, long int, unsigned long int, long long int, or unsigned
1795   //   long long int. If none of the types in that list can represent all the
1796   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1797   //   type can be converted to an rvalue a prvalue of the extended integer type
1798   //   with lowest integer conversion rank (4.13) greater than the rank of long
1799   //   long in which all the values of the enumeration can be represented. If
1800   //   there are two such extended types, the signed one is chosen.
1801   // C++11 [conv.prom]p4:
1802   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1803   //   can be converted to a prvalue of its underlying type. Moreover, if
1804   //   integral promotion can be applied to its underlying type, a prvalue of an
1805   //   unscoped enumeration type whose underlying type is fixed can also be
1806   //   converted to a prvalue of the promoted underlying type.
1807   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1808     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1809     // provided for a scoped enumeration.
1810     if (FromEnumType->getDecl()->isScoped())
1811       return false;
1812
1813     // We can perform an integral promotion to the underlying type of the enum,
1814     // even if that's not the promoted type. Note that the check for promoting
1815     // the underlying type is based on the type alone, and does not consider
1816     // the bitfield-ness of the actual source expression.
1817     if (FromEnumType->getDecl()->isFixed()) {
1818       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1819       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1820              IsIntegralPromotion(nullptr, Underlying, ToType);
1821     }
1822
1823     // We have already pre-calculated the promotion type, so this is trivial.
1824     if (ToType->isIntegerType() &&
1825         isCompleteType(From->getLocStart(), FromType))
1826       return Context.hasSameUnqualifiedType(
1827           ToType, FromEnumType->getDecl()->getPromotionType());
1828   }
1829
1830   // C++0x [conv.prom]p2:
1831   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1832   //   to an rvalue a prvalue of the first of the following types that can
1833   //   represent all the values of its underlying type: int, unsigned int,
1834   //   long int, unsigned long int, long long int, or unsigned long long int.
1835   //   If none of the types in that list can represent all the values of its
1836   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1837   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1838   //   type.
1839   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1840       ToType->isIntegerType()) {
1841     // Determine whether the type we're converting from is signed or
1842     // unsigned.
1843     bool FromIsSigned = FromType->isSignedIntegerType();
1844     uint64_t FromSize = Context.getTypeSize(FromType);
1845
1846     // The types we'll try to promote to, in the appropriate
1847     // order. Try each of these types.
1848     QualType PromoteTypes[6] = {
1849       Context.IntTy, Context.UnsignedIntTy,
1850       Context.LongTy, Context.UnsignedLongTy ,
1851       Context.LongLongTy, Context.UnsignedLongLongTy
1852     };
1853     for (int Idx = 0; Idx < 6; ++Idx) {
1854       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1855       if (FromSize < ToSize ||
1856           (FromSize == ToSize &&
1857            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1858         // We found the type that we can promote to. If this is the
1859         // type we wanted, we have a promotion. Otherwise, no
1860         // promotion.
1861         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1862       }
1863     }
1864   }
1865
1866   // An rvalue for an integral bit-field (9.6) can be converted to an
1867   // rvalue of type int if int can represent all the values of the
1868   // bit-field; otherwise, it can be converted to unsigned int if
1869   // unsigned int can represent all the values of the bit-field. If
1870   // the bit-field is larger yet, no integral promotion applies to
1871   // it. If the bit-field has an enumerated type, it is treated as any
1872   // other value of that type for promotion purposes (C++ 4.5p3).
1873   // FIXME: We should delay checking of bit-fields until we actually perform the
1874   // conversion.
1875   if (From) {
1876     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1877       llvm::APSInt BitWidth;
1878       if (FromType->isIntegralType(Context) &&
1879           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1880         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1881         ToSize = Context.getTypeSize(ToType);
1882
1883         // Are we promoting to an int from a bitfield that fits in an int?
1884         if (BitWidth < ToSize ||
1885             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1886           return To->getKind() == BuiltinType::Int;
1887         }
1888
1889         // Are we promoting to an unsigned int from an unsigned bitfield
1890         // that fits into an unsigned int?
1891         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1892           return To->getKind() == BuiltinType::UInt;
1893         }
1894
1895         return false;
1896       }
1897     }
1898   }
1899
1900   // An rvalue of type bool can be converted to an rvalue of type int,
1901   // with false becoming zero and true becoming one (C++ 4.5p4).
1902   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1903     return true;
1904   }
1905
1906   return false;
1907 }
1908
1909 /// IsFloatingPointPromotion - Determines whether the conversion from
1910 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1911 /// returns true and sets PromotedType to the promoted type.
1912 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1913   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1914     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1915       /// An rvalue of type float can be converted to an rvalue of type
1916       /// double. (C++ 4.6p1).
1917       if (FromBuiltin->getKind() == BuiltinType::Float &&
1918           ToBuiltin->getKind() == BuiltinType::Double)
1919         return true;
1920
1921       // C99 6.3.1.5p1:
1922       //   When a float is promoted to double or long double, or a
1923       //   double is promoted to long double [...].
1924       if (!getLangOpts().CPlusPlus &&
1925           (FromBuiltin->getKind() == BuiltinType::Float ||
1926            FromBuiltin->getKind() == BuiltinType::Double) &&
1927           (ToBuiltin->getKind() == BuiltinType::LongDouble))
1928         return true;
1929
1930       // Half can be promoted to float.
1931       if (!getLangOpts().NativeHalfType &&
1932            FromBuiltin->getKind() == BuiltinType::Half &&
1933           ToBuiltin->getKind() == BuiltinType::Float)
1934         return true;
1935     }
1936
1937   return false;
1938 }
1939
1940 /// \brief Determine if a conversion is a complex promotion.
1941 ///
1942 /// A complex promotion is defined as a complex -> complex conversion
1943 /// where the conversion between the underlying real types is a
1944 /// floating-point or integral promotion.
1945 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1946   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1947   if (!FromComplex)
1948     return false;
1949
1950   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1951   if (!ToComplex)
1952     return false;
1953
1954   return IsFloatingPointPromotion(FromComplex->getElementType(),
1955                                   ToComplex->getElementType()) ||
1956     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
1957                         ToComplex->getElementType());
1958 }
1959
1960 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1961 /// the pointer type FromPtr to a pointer to type ToPointee, with the
1962 /// same type qualifiers as FromPtr has on its pointee type. ToType,
1963 /// if non-empty, will be a pointer to ToType that may or may not have
1964 /// the right set of qualifiers on its pointee.
1965 ///
1966 static QualType
1967 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1968                                    QualType ToPointee, QualType ToType,
1969                                    ASTContext &Context,
1970                                    bool StripObjCLifetime = false) {
1971   assert((FromPtr->getTypeClass() == Type::Pointer ||
1972           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1973          "Invalid similarly-qualified pointer type");
1974
1975   /// Conversions to 'id' subsume cv-qualifier conversions.
1976   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 
1977     return ToType.getUnqualifiedType();
1978
1979   QualType CanonFromPointee
1980     = Context.getCanonicalType(FromPtr->getPointeeType());
1981   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1982   Qualifiers Quals = CanonFromPointee.getQualifiers();
1983
1984   if (StripObjCLifetime)
1985     Quals.removeObjCLifetime();
1986   
1987   // Exact qualifier match -> return the pointer type we're converting to.
1988   if (CanonToPointee.getLocalQualifiers() == Quals) {
1989     // ToType is exactly what we need. Return it.
1990     if (!ToType.isNull())
1991       return ToType.getUnqualifiedType();
1992
1993     // Build a pointer to ToPointee. It has the right qualifiers
1994     // already.
1995     if (isa<ObjCObjectPointerType>(ToType))
1996       return Context.getObjCObjectPointerType(ToPointee);
1997     return Context.getPointerType(ToPointee);
1998   }
1999
2000   // Just build a canonical type that has the right qualifiers.
2001   QualType QualifiedCanonToPointee
2002     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2003
2004   if (isa<ObjCObjectPointerType>(ToType))
2005     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2006   return Context.getPointerType(QualifiedCanonToPointee);
2007 }
2008
2009 static bool isNullPointerConstantForConversion(Expr *Expr,
2010                                                bool InOverloadResolution,
2011                                                ASTContext &Context) {
2012   // Handle value-dependent integral null pointer constants correctly.
2013   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2014   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2015       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2016     return !InOverloadResolution;
2017
2018   return Expr->isNullPointerConstant(Context,
2019                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2020                                         : Expr::NPC_ValueDependentIsNull);
2021 }
2022
2023 /// IsPointerConversion - Determines whether the conversion of the
2024 /// expression From, which has the (possibly adjusted) type FromType,
2025 /// can be converted to the type ToType via a pointer conversion (C++
2026 /// 4.10). If so, returns true and places the converted type (that
2027 /// might differ from ToType in its cv-qualifiers at some level) into
2028 /// ConvertedType.
2029 ///
2030 /// This routine also supports conversions to and from block pointers
2031 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2032 /// pointers to interfaces. FIXME: Once we've determined the
2033 /// appropriate overloading rules for Objective-C, we may want to
2034 /// split the Objective-C checks into a different routine; however,
2035 /// GCC seems to consider all of these conversions to be pointer
2036 /// conversions, so for now they live here. IncompatibleObjC will be
2037 /// set if the conversion is an allowed Objective-C conversion that
2038 /// should result in a warning.
2039 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2040                                bool InOverloadResolution,
2041                                QualType& ConvertedType,
2042                                bool &IncompatibleObjC) {
2043   IncompatibleObjC = false;
2044   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2045                               IncompatibleObjC))
2046     return true;
2047
2048   // Conversion from a null pointer constant to any Objective-C pointer type.
2049   if (ToType->isObjCObjectPointerType() &&
2050       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2051     ConvertedType = ToType;
2052     return true;
2053   }
2054
2055   // Blocks: Block pointers can be converted to void*.
2056   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2057       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2058     ConvertedType = ToType;
2059     return true;
2060   }
2061   // Blocks: A null pointer constant can be converted to a block
2062   // pointer type.
2063   if (ToType->isBlockPointerType() &&
2064       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2065     ConvertedType = ToType;
2066     return true;
2067   }
2068
2069   // If the left-hand-side is nullptr_t, the right side can be a null
2070   // pointer constant.
2071   if (ToType->isNullPtrType() &&
2072       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2073     ConvertedType = ToType;
2074     return true;
2075   }
2076
2077   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2078   if (!ToTypePtr)
2079     return false;
2080
2081   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2082   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2083     ConvertedType = ToType;
2084     return true;
2085   }
2086
2087   // Beyond this point, both types need to be pointers
2088   // , including objective-c pointers.
2089   QualType ToPointeeType = ToTypePtr->getPointeeType();
2090   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2091       !getLangOpts().ObjCAutoRefCount) {
2092     ConvertedType = BuildSimilarlyQualifiedPointerType(
2093                                       FromType->getAs<ObjCObjectPointerType>(),
2094                                                        ToPointeeType,
2095                                                        ToType, Context);
2096     return true;
2097   }
2098   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2099   if (!FromTypePtr)
2100     return false;
2101
2102   QualType FromPointeeType = FromTypePtr->getPointeeType();
2103
2104   // If the unqualified pointee types are the same, this can't be a
2105   // pointer conversion, so don't do all of the work below.
2106   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2107     return false;
2108
2109   // An rvalue of type "pointer to cv T," where T is an object type,
2110   // can be converted to an rvalue of type "pointer to cv void" (C++
2111   // 4.10p2).
2112   if (FromPointeeType->isIncompleteOrObjectType() &&
2113       ToPointeeType->isVoidType()) {
2114     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2115                                                        ToPointeeType,
2116                                                        ToType, Context,
2117                                                    /*StripObjCLifetime=*/true);
2118     return true;
2119   }
2120
2121   // MSVC allows implicit function to void* type conversion.
2122   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2123       ToPointeeType->isVoidType()) {
2124     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2125                                                        ToPointeeType,
2126                                                        ToType, Context);
2127     return true;
2128   }
2129
2130   // When we're overloading in C, we allow a special kind of pointer
2131   // conversion for compatible-but-not-identical pointee types.
2132   if (!getLangOpts().CPlusPlus &&
2133       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2134     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2135                                                        ToPointeeType,
2136                                                        ToType, Context);
2137     return true;
2138   }
2139
2140   // C++ [conv.ptr]p3:
2141   //
2142   //   An rvalue of type "pointer to cv D," where D is a class type,
2143   //   can be converted to an rvalue of type "pointer to cv B," where
2144   //   B is a base class (clause 10) of D. If B is an inaccessible
2145   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2146   //   necessitates this conversion is ill-formed. The result of the
2147   //   conversion is a pointer to the base class sub-object of the
2148   //   derived class object. The null pointer value is converted to
2149   //   the null pointer value of the destination type.
2150   //
2151   // Note that we do not check for ambiguity or inaccessibility
2152   // here. That is handled by CheckPointerConversion.
2153   if (getLangOpts().CPlusPlus &&
2154       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2155       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2156       IsDerivedFrom(From->getLocStart(), FromPointeeType, ToPointeeType)) {
2157     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2158                                                        ToPointeeType,
2159                                                        ToType, Context);
2160     return true;
2161   }
2162
2163   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2164       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2165     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2166                                                        ToPointeeType,
2167                                                        ToType, Context);
2168     return true;
2169   }
2170   
2171   return false;
2172 }
2173  
2174 /// \brief Adopt the given qualifiers for the given type.
2175 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2176   Qualifiers TQs = T.getQualifiers();
2177   
2178   // Check whether qualifiers already match.
2179   if (TQs == Qs)
2180     return T;
2181   
2182   if (Qs.compatiblyIncludes(TQs))
2183     return Context.getQualifiedType(T, Qs);
2184   
2185   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2186 }
2187
2188 /// isObjCPointerConversion - Determines whether this is an
2189 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2190 /// with the same arguments and return values.
2191 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2192                                    QualType& ConvertedType,
2193                                    bool &IncompatibleObjC) {
2194   if (!getLangOpts().ObjC1)
2195     return false;
2196
2197   // The set of qualifiers on the type we're converting from.
2198   Qualifiers FromQualifiers = FromType.getQualifiers();
2199   
2200   // First, we handle all conversions on ObjC object pointer types.
2201   const ObjCObjectPointerType* ToObjCPtr =
2202     ToType->getAs<ObjCObjectPointerType>();
2203   const ObjCObjectPointerType *FromObjCPtr =
2204     FromType->getAs<ObjCObjectPointerType>();
2205
2206   if (ToObjCPtr && FromObjCPtr) {
2207     // If the pointee types are the same (ignoring qualifications),
2208     // then this is not a pointer conversion.
2209     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2210                                        FromObjCPtr->getPointeeType()))
2211       return false;
2212
2213     // Conversion between Objective-C pointers.
2214     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2215       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2216       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2217       if (getLangOpts().CPlusPlus && LHS && RHS &&
2218           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2219                                                 FromObjCPtr->getPointeeType()))
2220         return false;
2221       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2222                                                    ToObjCPtr->getPointeeType(),
2223                                                          ToType, Context);
2224       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2225       return true;
2226     }
2227
2228     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2229       // Okay: this is some kind of implicit downcast of Objective-C
2230       // interfaces, which is permitted. However, we're going to
2231       // complain about it.
2232       IncompatibleObjC = true;
2233       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2234                                                    ToObjCPtr->getPointeeType(),
2235                                                          ToType, Context);
2236       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2237       return true;
2238     }
2239   }
2240   // Beyond this point, both types need to be C pointers or block pointers.
2241   QualType ToPointeeType;
2242   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2243     ToPointeeType = ToCPtr->getPointeeType();
2244   else if (const BlockPointerType *ToBlockPtr =
2245             ToType->getAs<BlockPointerType>()) {
2246     // Objective C++: We're able to convert from a pointer to any object
2247     // to a block pointer type.
2248     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2249       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2250       return true;
2251     }
2252     ToPointeeType = ToBlockPtr->getPointeeType();
2253   }
2254   else if (FromType->getAs<BlockPointerType>() &&
2255            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2256     // Objective C++: We're able to convert from a block pointer type to a
2257     // pointer to any object.
2258     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2259     return true;
2260   }
2261   else
2262     return false;
2263
2264   QualType FromPointeeType;
2265   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2266     FromPointeeType = FromCPtr->getPointeeType();
2267   else if (const BlockPointerType *FromBlockPtr =
2268            FromType->getAs<BlockPointerType>())
2269     FromPointeeType = FromBlockPtr->getPointeeType();
2270   else
2271     return false;
2272
2273   // If we have pointers to pointers, recursively check whether this
2274   // is an Objective-C conversion.
2275   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2276       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2277                               IncompatibleObjC)) {
2278     // We always complain about this conversion.
2279     IncompatibleObjC = true;
2280     ConvertedType = Context.getPointerType(ConvertedType);
2281     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2282     return true;
2283   }
2284   // Allow conversion of pointee being objective-c pointer to another one;
2285   // as in I* to id.
2286   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2287       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2288       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2289                               IncompatibleObjC)) {
2290         
2291     ConvertedType = Context.getPointerType(ConvertedType);
2292     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2293     return true;
2294   }
2295
2296   // If we have pointers to functions or blocks, check whether the only
2297   // differences in the argument and result types are in Objective-C
2298   // pointer conversions. If so, we permit the conversion (but
2299   // complain about it).
2300   const FunctionProtoType *FromFunctionType
2301     = FromPointeeType->getAs<FunctionProtoType>();
2302   const FunctionProtoType *ToFunctionType
2303     = ToPointeeType->getAs<FunctionProtoType>();
2304   if (FromFunctionType && ToFunctionType) {
2305     // If the function types are exactly the same, this isn't an
2306     // Objective-C pointer conversion.
2307     if (Context.getCanonicalType(FromPointeeType)
2308           == Context.getCanonicalType(ToPointeeType))
2309       return false;
2310
2311     // Perform the quick checks that will tell us whether these
2312     // function types are obviously different.
2313     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2314         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2315         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2316       return false;
2317
2318     bool HasObjCConversion = false;
2319     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2320         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2321       // Okay, the types match exactly. Nothing to do.
2322     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2323                                        ToFunctionType->getReturnType(),
2324                                        ConvertedType, IncompatibleObjC)) {
2325       // Okay, we have an Objective-C pointer conversion.
2326       HasObjCConversion = true;
2327     } else {
2328       // Function types are too different. Abort.
2329       return false;
2330     }
2331
2332     // Check argument types.
2333     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2334          ArgIdx != NumArgs; ++ArgIdx) {
2335       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2336       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2337       if (Context.getCanonicalType(FromArgType)
2338             == Context.getCanonicalType(ToArgType)) {
2339         // Okay, the types match exactly. Nothing to do.
2340       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2341                                          ConvertedType, IncompatibleObjC)) {
2342         // Okay, we have an Objective-C pointer conversion.
2343         HasObjCConversion = true;
2344       } else {
2345         // Argument types are too different. Abort.
2346         return false;
2347       }
2348     }
2349
2350     if (HasObjCConversion) {
2351       // We had an Objective-C conversion. Allow this pointer
2352       // conversion, but complain about it.
2353       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2354       IncompatibleObjC = true;
2355       return true;
2356     }
2357   }
2358
2359   return false;
2360 }
2361
2362 /// \brief Determine whether this is an Objective-C writeback conversion,
2363 /// used for parameter passing when performing automatic reference counting.
2364 ///
2365 /// \param FromType The type we're converting form.
2366 ///
2367 /// \param ToType The type we're converting to.
2368 ///
2369 /// \param ConvertedType The type that will be produced after applying
2370 /// this conversion.
2371 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2372                                      QualType &ConvertedType) {
2373   if (!getLangOpts().ObjCAutoRefCount || 
2374       Context.hasSameUnqualifiedType(FromType, ToType))
2375     return false;
2376   
2377   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2378   QualType ToPointee;
2379   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2380     ToPointee = ToPointer->getPointeeType();
2381   else
2382     return false;
2383   
2384   Qualifiers ToQuals = ToPointee.getQualifiers();
2385   if (!ToPointee->isObjCLifetimeType() || 
2386       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2387       !ToQuals.withoutObjCLifetime().empty())
2388     return false;
2389   
2390   // Argument must be a pointer to __strong to __weak.
2391   QualType FromPointee;
2392   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2393     FromPointee = FromPointer->getPointeeType();
2394   else
2395     return false;
2396   
2397   Qualifiers FromQuals = FromPointee.getQualifiers();
2398   if (!FromPointee->isObjCLifetimeType() ||
2399       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2400        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2401     return false;
2402   
2403   // Make sure that we have compatible qualifiers.
2404   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2405   if (!ToQuals.compatiblyIncludes(FromQuals))
2406     return false;
2407   
2408   // Remove qualifiers from the pointee type we're converting from; they
2409   // aren't used in the compatibility check belong, and we'll be adding back
2410   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2411   FromPointee = FromPointee.getUnqualifiedType();
2412   
2413   // The unqualified form of the pointee types must be compatible.
2414   ToPointee = ToPointee.getUnqualifiedType();
2415   bool IncompatibleObjC;
2416   if (Context.typesAreCompatible(FromPointee, ToPointee))
2417     FromPointee = ToPointee;
2418   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2419                                     IncompatibleObjC))
2420     return false;
2421   
2422   /// \brief Construct the type we're converting to, which is a pointer to
2423   /// __autoreleasing pointee.
2424   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2425   ConvertedType = Context.getPointerType(FromPointee);
2426   return true;
2427 }
2428
2429 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2430                                     QualType& ConvertedType) {
2431   QualType ToPointeeType;
2432   if (const BlockPointerType *ToBlockPtr =
2433         ToType->getAs<BlockPointerType>())
2434     ToPointeeType = ToBlockPtr->getPointeeType();
2435   else
2436     return false;
2437   
2438   QualType FromPointeeType;
2439   if (const BlockPointerType *FromBlockPtr =
2440       FromType->getAs<BlockPointerType>())
2441     FromPointeeType = FromBlockPtr->getPointeeType();
2442   else
2443     return false;
2444   // We have pointer to blocks, check whether the only
2445   // differences in the argument and result types are in Objective-C
2446   // pointer conversions. If so, we permit the conversion.
2447   
2448   const FunctionProtoType *FromFunctionType
2449     = FromPointeeType->getAs<FunctionProtoType>();
2450   const FunctionProtoType *ToFunctionType
2451     = ToPointeeType->getAs<FunctionProtoType>();
2452   
2453   if (!FromFunctionType || !ToFunctionType)
2454     return false;
2455
2456   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2457     return true;
2458     
2459   // Perform the quick checks that will tell us whether these
2460   // function types are obviously different.
2461   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2462       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2463     return false;
2464     
2465   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2466   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2467   if (FromEInfo != ToEInfo)
2468     return false;
2469
2470   bool IncompatibleObjC = false;
2471   if (Context.hasSameType(FromFunctionType->getReturnType(),
2472                           ToFunctionType->getReturnType())) {
2473     // Okay, the types match exactly. Nothing to do.
2474   } else {
2475     QualType RHS = FromFunctionType->getReturnType();
2476     QualType LHS = ToFunctionType->getReturnType();
2477     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2478         !RHS.hasQualifiers() && LHS.hasQualifiers())
2479        LHS = LHS.getUnqualifiedType();
2480
2481      if (Context.hasSameType(RHS,LHS)) {
2482        // OK exact match.
2483      } else if (isObjCPointerConversion(RHS, LHS,
2484                                         ConvertedType, IncompatibleObjC)) {
2485      if (IncompatibleObjC)
2486        return false;
2487      // Okay, we have an Objective-C pointer conversion.
2488      }
2489      else
2490        return false;
2491    }
2492     
2493    // Check argument types.
2494    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2495         ArgIdx != NumArgs; ++ArgIdx) {
2496      IncompatibleObjC = false;
2497      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2498      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2499      if (Context.hasSameType(FromArgType, ToArgType)) {
2500        // Okay, the types match exactly. Nothing to do.
2501      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2502                                         ConvertedType, IncompatibleObjC)) {
2503        if (IncompatibleObjC)
2504          return false;
2505        // Okay, we have an Objective-C pointer conversion.
2506      } else
2507        // Argument types are too different. Abort.
2508        return false;
2509    }
2510    if (LangOpts.ObjCAutoRefCount && 
2511        !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 
2512                                                     ToFunctionType))
2513      return false;
2514    
2515    ConvertedType = ToType;
2516    return true;
2517 }
2518
2519 enum {
2520   ft_default,
2521   ft_different_class,
2522   ft_parameter_arity,
2523   ft_parameter_mismatch,
2524   ft_return_type,
2525   ft_qualifer_mismatch
2526 };
2527
2528 /// Attempts to get the FunctionProtoType from a Type. Handles
2529 /// MemberFunctionPointers properly.
2530 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2531   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2532     return FPT;
2533
2534   if (auto *MPT = FromType->getAs<MemberPointerType>())
2535     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2536
2537   return nullptr;
2538 }
2539
2540 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2541 /// function types.  Catches different number of parameter, mismatch in
2542 /// parameter types, and different return types.
2543 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2544                                       QualType FromType, QualType ToType) {
2545   // If either type is not valid, include no extra info.
2546   if (FromType.isNull() || ToType.isNull()) {
2547     PDiag << ft_default;
2548     return;
2549   }
2550
2551   // Get the function type from the pointers.
2552   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2553     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2554                             *ToMember = ToType->getAs<MemberPointerType>();
2555     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2556       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2557             << QualType(FromMember->getClass(), 0);
2558       return;
2559     }
2560     FromType = FromMember->getPointeeType();
2561     ToType = ToMember->getPointeeType();
2562   }
2563
2564   if (FromType->isPointerType())
2565     FromType = FromType->getPointeeType();
2566   if (ToType->isPointerType())
2567     ToType = ToType->getPointeeType();
2568
2569   // Remove references.
2570   FromType = FromType.getNonReferenceType();
2571   ToType = ToType.getNonReferenceType();
2572
2573   // Don't print extra info for non-specialized template functions.
2574   if (FromType->isInstantiationDependentType() &&
2575       !FromType->getAs<TemplateSpecializationType>()) {
2576     PDiag << ft_default;
2577     return;
2578   }
2579
2580   // No extra info for same types.
2581   if (Context.hasSameType(FromType, ToType)) {
2582     PDiag << ft_default;
2583     return;
2584   }
2585
2586   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2587                           *ToFunction = tryGetFunctionProtoType(ToType);
2588
2589   // Both types need to be function types.
2590   if (!FromFunction || !ToFunction) {
2591     PDiag << ft_default;
2592     return;
2593   }
2594
2595   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2596     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2597           << FromFunction->getNumParams();
2598     return;
2599   }
2600
2601   // Handle different parameter types.
2602   unsigned ArgPos;
2603   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2604     PDiag << ft_parameter_mismatch << ArgPos + 1
2605           << ToFunction->getParamType(ArgPos)
2606           << FromFunction->getParamType(ArgPos);
2607     return;
2608   }
2609
2610   // Handle different return type.
2611   if (!Context.hasSameType(FromFunction->getReturnType(),
2612                            ToFunction->getReturnType())) {
2613     PDiag << ft_return_type << ToFunction->getReturnType()
2614           << FromFunction->getReturnType();
2615     return;
2616   }
2617
2618   unsigned FromQuals = FromFunction->getTypeQuals(),
2619            ToQuals = ToFunction->getTypeQuals();
2620   if (FromQuals != ToQuals) {
2621     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2622     return;
2623   }
2624
2625   // Unable to find a difference, so add no extra info.
2626   PDiag << ft_default;
2627 }
2628
2629 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2630 /// for equality of their argument types. Caller has already checked that
2631 /// they have same number of arguments.  If the parameters are different,
2632 /// ArgPos will have the parameter index of the first different parameter.
2633 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2634                                       const FunctionProtoType *NewType,
2635                                       unsigned *ArgPos) {
2636   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2637                                               N = NewType->param_type_begin(),
2638                                               E = OldType->param_type_end();
2639        O && (O != E); ++O, ++N) {
2640     if (!Context.hasSameType(O->getUnqualifiedType(),
2641                              N->getUnqualifiedType())) {
2642       if (ArgPos)
2643         *ArgPos = O - OldType->param_type_begin();
2644       return false;
2645     }
2646   }
2647   return true;
2648 }
2649
2650 /// CheckPointerConversion - Check the pointer conversion from the
2651 /// expression From to the type ToType. This routine checks for
2652 /// ambiguous or inaccessible derived-to-base pointer
2653 /// conversions for which IsPointerConversion has already returned
2654 /// true. It returns true and produces a diagnostic if there was an
2655 /// error, or returns false otherwise.
2656 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2657                                   CastKind &Kind,
2658                                   CXXCastPath& BasePath,
2659                                   bool IgnoreBaseAccess) {
2660   QualType FromType = From->getType();
2661   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2662
2663   Kind = CK_BitCast;
2664
2665   if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2666       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2667       Expr::NPCK_ZeroExpression) {
2668     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2669       DiagRuntimeBehavior(From->getExprLoc(), From,
2670                           PDiag(diag::warn_impcast_bool_to_null_pointer)
2671                             << ToType << From->getSourceRange());
2672     else if (!isUnevaluatedContext())
2673       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2674         << ToType << From->getSourceRange();
2675   }
2676   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2677     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2678       QualType FromPointeeType = FromPtrType->getPointeeType(),
2679                ToPointeeType   = ToPtrType->getPointeeType();
2680
2681       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2682           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2683         // We must have a derived-to-base conversion. Check an
2684         // ambiguous or inaccessible conversion.
2685         if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2686                                          From->getExprLoc(),
2687                                          From->getSourceRange(), &BasePath,
2688                                          IgnoreBaseAccess))
2689           return true;
2690
2691         // The conversion was successful.
2692         Kind = CK_DerivedToBase;
2693       }
2694
2695       if (!IsCStyleOrFunctionalCast && FromPointeeType->isFunctionType() &&
2696           ToPointeeType->isVoidType()) {
2697         assert(getLangOpts().MSVCCompat &&
2698                "this should only be possible with MSVCCompat!");
2699         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2700             << From->getSourceRange();
2701       }
2702     }
2703   } else if (const ObjCObjectPointerType *ToPtrType =
2704                ToType->getAs<ObjCObjectPointerType>()) {
2705     if (const ObjCObjectPointerType *FromPtrType =
2706           FromType->getAs<ObjCObjectPointerType>()) {
2707       // Objective-C++ conversions are always okay.
2708       // FIXME: We should have a different class of conversions for the
2709       // Objective-C++ implicit conversions.
2710       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2711         return false;
2712     } else if (FromType->isBlockPointerType()) {
2713       Kind = CK_BlockPointerToObjCPointerCast;
2714     } else {
2715       Kind = CK_CPointerToObjCPointerCast;
2716     }
2717   } else if (ToType->isBlockPointerType()) {
2718     if (!FromType->isBlockPointerType())
2719       Kind = CK_AnyPointerToBlockPointerCast;
2720   }
2721
2722   // We shouldn't fall into this case unless it's valid for other
2723   // reasons.
2724   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2725     Kind = CK_NullToPointer;
2726
2727   return false;
2728 }
2729
2730 /// IsMemberPointerConversion - Determines whether the conversion of the
2731 /// expression From, which has the (possibly adjusted) type FromType, can be
2732 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2733 /// If so, returns true and places the converted type (that might differ from
2734 /// ToType in its cv-qualifiers at some level) into ConvertedType.
2735 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2736                                      QualType ToType,
2737                                      bool InOverloadResolution,
2738                                      QualType &ConvertedType) {
2739   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2740   if (!ToTypePtr)
2741     return false;
2742
2743   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2744   if (From->isNullPointerConstant(Context,
2745                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2746                                         : Expr::NPC_ValueDependentIsNull)) {
2747     ConvertedType = ToType;
2748     return true;
2749   }
2750
2751   // Otherwise, both types have to be member pointers.
2752   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2753   if (!FromTypePtr)
2754     return false;
2755
2756   // A pointer to member of B can be converted to a pointer to member of D,
2757   // where D is derived from B (C++ 4.11p2).
2758   QualType FromClass(FromTypePtr->getClass(), 0);
2759   QualType ToClass(ToTypePtr->getClass(), 0);
2760
2761   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2762       IsDerivedFrom(From->getLocStart(), ToClass, FromClass)) {
2763     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2764                                                  ToClass.getTypePtr());
2765     return true;
2766   }
2767
2768   return false;
2769 }
2770
2771 /// CheckMemberPointerConversion - Check the member pointer conversion from the
2772 /// expression From to the type ToType. This routine checks for ambiguous or
2773 /// virtual or inaccessible base-to-derived member pointer conversions
2774 /// for which IsMemberPointerConversion has already returned true. It returns
2775 /// true and produces a diagnostic if there was an error, or returns false
2776 /// otherwise.
2777 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2778                                         CastKind &Kind,
2779                                         CXXCastPath &BasePath,
2780                                         bool IgnoreBaseAccess) {
2781   QualType FromType = From->getType();
2782   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2783   if (!FromPtrType) {
2784     // This must be a null pointer to member pointer conversion
2785     assert(From->isNullPointerConstant(Context,
2786                                        Expr::NPC_ValueDependentIsNull) &&
2787            "Expr must be null pointer constant!");
2788     Kind = CK_NullToMemberPointer;
2789     return false;
2790   }
2791
2792   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2793   assert(ToPtrType && "No member pointer cast has a target type "
2794                       "that is not a member pointer.");
2795
2796   QualType FromClass = QualType(FromPtrType->getClass(), 0);
2797   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2798
2799   // FIXME: What about dependent types?
2800   assert(FromClass->isRecordType() && "Pointer into non-class.");
2801   assert(ToClass->isRecordType() && "Pointer into non-class.");
2802
2803   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2804                      /*DetectVirtual=*/true);
2805   bool DerivationOkay =
2806       IsDerivedFrom(From->getLocStart(), ToClass, FromClass, Paths);
2807   assert(DerivationOkay &&
2808          "Should not have been called if derivation isn't OK.");
2809   (void)DerivationOkay;
2810
2811   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2812                                   getUnqualifiedType())) {
2813     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2814     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2815       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2816     return true;
2817   }
2818
2819   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2820     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2821       << FromClass << ToClass << QualType(VBase, 0)
2822       << From->getSourceRange();
2823     return true;
2824   }
2825
2826   if (!IgnoreBaseAccess)
2827     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2828                          Paths.front(),
2829                          diag::err_downcast_from_inaccessible_base);
2830
2831   // Must be a base to derived member conversion.
2832   BuildBasePathArray(Paths, BasePath);
2833   Kind = CK_BaseToDerivedMemberPointer;
2834   return false;
2835 }
2836
2837 /// Determine whether the lifetime conversion between the two given
2838 /// qualifiers sets is nontrivial.
2839 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
2840                                                Qualifiers ToQuals) {
2841   // Converting anything to const __unsafe_unretained is trivial.
2842   if (ToQuals.hasConst() && 
2843       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
2844     return false;
2845
2846   return true;
2847 }
2848
2849 /// IsQualificationConversion - Determines whether the conversion from
2850 /// an rvalue of type FromType to ToType is a qualification conversion
2851 /// (C++ 4.4).
2852 ///
2853 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2854 /// when the qualification conversion involves a change in the Objective-C
2855 /// object lifetime.
2856 bool
2857 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2858                                 bool CStyle, bool &ObjCLifetimeConversion) {
2859   FromType = Context.getCanonicalType(FromType);
2860   ToType = Context.getCanonicalType(ToType);
2861   ObjCLifetimeConversion = false;
2862   
2863   // If FromType and ToType are the same type, this is not a
2864   // qualification conversion.
2865   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2866     return false;
2867
2868   // (C++ 4.4p4):
2869   //   A conversion can add cv-qualifiers at levels other than the first
2870   //   in multi-level pointers, subject to the following rules: [...]
2871   bool PreviousToQualsIncludeConst = true;
2872   bool UnwrappedAnyPointer = false;
2873   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2874     // Within each iteration of the loop, we check the qualifiers to
2875     // determine if this still looks like a qualification
2876     // conversion. Then, if all is well, we unwrap one more level of
2877     // pointers or pointers-to-members and do it all again
2878     // until there are no more pointers or pointers-to-members left to
2879     // unwrap.
2880     UnwrappedAnyPointer = true;
2881
2882     Qualifiers FromQuals = FromType.getQualifiers();
2883     Qualifiers ToQuals = ToType.getQualifiers();
2884     
2885     // Objective-C ARC:
2886     //   Check Objective-C lifetime conversions.
2887     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2888         UnwrappedAnyPointer) {
2889       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2890         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
2891           ObjCLifetimeConversion = true;
2892         FromQuals.removeObjCLifetime();
2893         ToQuals.removeObjCLifetime();
2894       } else {
2895         // Qualification conversions cannot cast between different
2896         // Objective-C lifetime qualifiers.
2897         return false;
2898       }
2899     }
2900     
2901     // Allow addition/removal of GC attributes but not changing GC attributes.
2902     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2903         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2904       FromQuals.removeObjCGCAttr();
2905       ToQuals.removeObjCGCAttr();
2906     }
2907     
2908     //   -- for every j > 0, if const is in cv 1,j then const is in cv
2909     //      2,j, and similarly for volatile.
2910     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2911       return false;
2912
2913     //   -- if the cv 1,j and cv 2,j are different, then const is in
2914     //      every cv for 0 < k < j.
2915     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2916         && !PreviousToQualsIncludeConst)
2917       return false;
2918
2919     // Keep track of whether all prior cv-qualifiers in the "to" type
2920     // include const.
2921     PreviousToQualsIncludeConst
2922       = PreviousToQualsIncludeConst && ToQuals.hasConst();
2923   }
2924
2925   // We are left with FromType and ToType being the pointee types
2926   // after unwrapping the original FromType and ToType the same number
2927   // of types. If we unwrapped any pointers, and if FromType and
2928   // ToType have the same unqualified type (since we checked
2929   // qualifiers above), then this is a qualification conversion.
2930   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2931 }
2932
2933 /// \brief - Determine whether this is a conversion from a scalar type to an
2934 /// atomic type.
2935 ///
2936 /// If successful, updates \c SCS's second and third steps in the conversion
2937 /// sequence to finish the conversion.
2938 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2939                                 bool InOverloadResolution,
2940                                 StandardConversionSequence &SCS,
2941                                 bool CStyle) {
2942   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2943   if (!ToAtomic)
2944     return false;
2945   
2946   StandardConversionSequence InnerSCS;
2947   if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 
2948                             InOverloadResolution, InnerSCS,
2949                             CStyle, /*AllowObjCWritebackConversion=*/false))
2950     return false;
2951   
2952   SCS.Second = InnerSCS.Second;
2953   SCS.setToType(1, InnerSCS.getToType(1));
2954   SCS.Third = InnerSCS.Third;
2955   SCS.QualificationIncludesObjCLifetime
2956     = InnerSCS.QualificationIncludesObjCLifetime;
2957   SCS.setToType(2, InnerSCS.getToType(2));
2958   return true;
2959 }
2960
2961 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2962                                               CXXConstructorDecl *Constructor,
2963                                               QualType Type) {
2964   const FunctionProtoType *CtorType =
2965       Constructor->getType()->getAs<FunctionProtoType>();
2966   if (CtorType->getNumParams() > 0) {
2967     QualType FirstArg = CtorType->getParamType(0);
2968     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2969       return true;
2970   }
2971   return false;
2972 }
2973
2974 static OverloadingResult
2975 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2976                                        CXXRecordDecl *To,
2977                                        UserDefinedConversionSequence &User,
2978                                        OverloadCandidateSet &CandidateSet,
2979                                        bool AllowExplicit) {
2980   DeclContext::lookup_result R = S.LookupConstructors(To);
2981   for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
2982        Con != ConEnd; ++Con) {
2983     NamedDecl *D = *Con;
2984     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2985
2986     // Find the constructor (which may be a template).
2987     CXXConstructorDecl *Constructor = nullptr;
2988     FunctionTemplateDecl *ConstructorTmpl
2989       = dyn_cast<FunctionTemplateDecl>(D);
2990     if (ConstructorTmpl)
2991       Constructor
2992         = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2993     else
2994       Constructor = cast<CXXConstructorDecl>(D);
2995
2996     bool Usable = !Constructor->isInvalidDecl() &&
2997                   S.isInitListConstructor(Constructor) &&
2998                   (AllowExplicit || !Constructor->isExplicit());
2999     if (Usable) {
3000       // If the first argument is (a reference to) the target type,
3001       // suppress conversions.
3002       bool SuppressUserConversions =
3003           isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
3004       if (ConstructorTmpl)
3005         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3006                                        /*ExplicitArgs*/ nullptr,
3007                                        From, CandidateSet,
3008                                        SuppressUserConversions);
3009       else
3010         S.AddOverloadCandidate(Constructor, FoundDecl,
3011                                From, CandidateSet,
3012                                SuppressUserConversions);
3013     }
3014   }
3015
3016   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3017
3018   OverloadCandidateSet::iterator Best;
3019   switch (auto Result = 
3020             CandidateSet.BestViableFunction(S, From->getLocStart(), 
3021                                             Best, true)) {
3022   case OR_Deleted:
3023   case OR_Success: {
3024     // Record the standard conversion we used and the conversion function.
3025     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3026     QualType ThisType = Constructor->getThisType(S.Context);
3027     // Initializer lists don't have conversions as such.
3028     User.Before.setAsIdentityConversion();
3029     User.HadMultipleCandidates = HadMultipleCandidates;
3030     User.ConversionFunction = Constructor;
3031     User.FoundConversionFunction = Best->FoundDecl;
3032     User.After.setAsIdentityConversion();
3033     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3034     User.After.setAllToTypes(ToType);
3035     return Result;
3036   }
3037
3038   case OR_No_Viable_Function:
3039     return OR_No_Viable_Function;
3040   case OR_Ambiguous:
3041     return OR_Ambiguous;
3042   }
3043
3044   llvm_unreachable("Invalid OverloadResult!");
3045 }
3046
3047 /// Determines whether there is a user-defined conversion sequence
3048 /// (C++ [over.ics.user]) that converts expression From to the type
3049 /// ToType. If such a conversion exists, User will contain the
3050 /// user-defined conversion sequence that performs such a conversion
3051 /// and this routine will return true. Otherwise, this routine returns
3052 /// false and User is unspecified.
3053 ///
3054 /// \param AllowExplicit  true if the conversion should consider C++0x
3055 /// "explicit" conversion functions as well as non-explicit conversion
3056 /// functions (C++0x [class.conv.fct]p2).
3057 ///
3058 /// \param AllowObjCConversionOnExplicit true if the conversion should
3059 /// allow an extra Objective-C pointer conversion on uses of explicit
3060 /// constructors. Requires \c AllowExplicit to also be set.
3061 static OverloadingResult
3062 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3063                         UserDefinedConversionSequence &User,
3064                         OverloadCandidateSet &CandidateSet,
3065                         bool AllowExplicit,
3066                         bool AllowObjCConversionOnExplicit) {
3067   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3068
3069   // Whether we will only visit constructors.
3070   bool ConstructorsOnly = false;
3071
3072   // If the type we are conversion to is a class type, enumerate its
3073   // constructors.
3074   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3075     // C++ [over.match.ctor]p1:
3076     //   When objects of class type are direct-initialized (8.5), or
3077     //   copy-initialized from an expression of the same or a
3078     //   derived class type (8.5), overload resolution selects the
3079     //   constructor. [...] For copy-initialization, the candidate
3080     //   functions are all the converting constructors (12.3.1) of
3081     //   that class. The argument list is the expression-list within
3082     //   the parentheses of the initializer.
3083     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3084         (From->getType()->getAs<RecordType>() &&
3085          S.IsDerivedFrom(From->getLocStart(), From->getType(), ToType)))
3086       ConstructorsOnly = true;
3087
3088     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3089       // We're not going to find any constructors.
3090     } else if (CXXRecordDecl *ToRecordDecl
3091                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3092
3093       Expr **Args = &From;
3094       unsigned NumArgs = 1;
3095       bool ListInitializing = false;
3096       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3097         // But first, see if there is an init-list-constructor that will work.
3098         OverloadingResult Result = IsInitializerListConstructorConversion(
3099             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3100         if (Result != OR_No_Viable_Function)
3101           return Result;
3102         // Never mind.
3103         CandidateSet.clear();
3104
3105         // If we're list-initializing, we pass the individual elements as
3106         // arguments, not the entire list.
3107         Args = InitList->getInits();
3108         NumArgs = InitList->getNumInits();
3109         ListInitializing = true;
3110       }
3111
3112       DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
3113       for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
3114            Con != ConEnd; ++Con) {
3115         NamedDecl *D = *Con;
3116         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3117
3118         // Find the constructor (which may be a template).
3119         CXXConstructorDecl *Constructor = nullptr;
3120         FunctionTemplateDecl *ConstructorTmpl
3121           = dyn_cast<FunctionTemplateDecl>(D);
3122         if (ConstructorTmpl)
3123           Constructor
3124             = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3125         else
3126           Constructor = cast<CXXConstructorDecl>(D);
3127
3128         bool Usable = !Constructor->isInvalidDecl();
3129         if (ListInitializing)
3130           Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3131         else
3132           Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3133         if (Usable) {
3134           bool SuppressUserConversions = !ConstructorsOnly;
3135           if (SuppressUserConversions && ListInitializing) {
3136             SuppressUserConversions = false;
3137             if (NumArgs == 1) {
3138               // If the first argument is (a reference to) the target type,
3139               // suppress conversions.
3140               SuppressUserConversions = isFirstArgumentCompatibleWithType(
3141                                                 S.Context, Constructor, ToType);
3142             }
3143           }
3144           if (ConstructorTmpl)
3145             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3146                                            /*ExplicitArgs*/ nullptr,
3147                                            llvm::makeArrayRef(Args, NumArgs),
3148                                            CandidateSet, SuppressUserConversions);
3149           else
3150             // Allow one user-defined conversion when user specifies a
3151             // From->ToType conversion via an static cast (c-style, etc).
3152             S.AddOverloadCandidate(Constructor, FoundDecl,
3153                                    llvm::makeArrayRef(Args, NumArgs),
3154                                    CandidateSet, SuppressUserConversions);
3155         }
3156       }
3157     }
3158   }
3159
3160   // Enumerate conversion functions, if we're allowed to.
3161   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3162   } else if (!S.isCompleteType(From->getLocStart(), From->getType())) {
3163     // No conversion functions from incomplete types.
3164   } else if (const RecordType *FromRecordType
3165                                    = From->getType()->getAs<RecordType>()) {
3166     if (CXXRecordDecl *FromRecordDecl
3167          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3168       // Add all of the conversion functions as candidates.
3169       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3170       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3171         DeclAccessPair FoundDecl = I.getPair();
3172         NamedDecl *D = FoundDecl.getDecl();
3173         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3174         if (isa<UsingShadowDecl>(D))
3175           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3176
3177         CXXConversionDecl *Conv;
3178         FunctionTemplateDecl *ConvTemplate;
3179         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3180           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3181         else
3182           Conv = cast<CXXConversionDecl>(D);
3183
3184         if (AllowExplicit || !Conv->isExplicit()) {
3185           if (ConvTemplate)
3186             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3187                                              ActingContext, From, ToType,
3188                                              CandidateSet,
3189                                              AllowObjCConversionOnExplicit);
3190           else
3191             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3192                                      From, ToType, CandidateSet,
3193                                      AllowObjCConversionOnExplicit);
3194         }
3195       }
3196     }
3197   }
3198
3199   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3200
3201   OverloadCandidateSet::iterator Best;
3202   switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
3203                                                         Best, true)) {
3204   case OR_Success:
3205   case OR_Deleted:
3206     // Record the standard conversion we used and the conversion function.
3207     if (CXXConstructorDecl *Constructor
3208           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3209       // C++ [over.ics.user]p1:
3210       //   If the user-defined conversion is specified by a
3211       //   constructor (12.3.1), the initial standard conversion
3212       //   sequence converts the source type to the type required by
3213       //   the argument of the constructor.
3214       //
3215       QualType ThisType = Constructor->getThisType(S.Context);
3216       if (isa<InitListExpr>(From)) {
3217         // Initializer lists don't have conversions as such.
3218         User.Before.setAsIdentityConversion();
3219       } else {
3220         if (Best->Conversions[0].isEllipsis())
3221           User.EllipsisConversion = true;
3222         else {
3223           User.Before = Best->Conversions[0].Standard;
3224           User.EllipsisConversion = false;
3225         }
3226       }
3227       User.HadMultipleCandidates = HadMultipleCandidates;
3228       User.ConversionFunction = Constructor;
3229       User.FoundConversionFunction = Best->FoundDecl;
3230       User.After.setAsIdentityConversion();
3231       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3232       User.After.setAllToTypes(ToType);
3233       return Result;
3234     }
3235     if (CXXConversionDecl *Conversion
3236                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3237       // C++ [over.ics.user]p1:
3238       //
3239       //   [...] If the user-defined conversion is specified by a
3240       //   conversion function (12.3.2), the initial standard
3241       //   conversion sequence converts the source type to the
3242       //   implicit object parameter of the conversion function.
3243       User.Before = Best->Conversions[0].Standard;
3244       User.HadMultipleCandidates = HadMultipleCandidates;
3245       User.ConversionFunction = Conversion;
3246       User.FoundConversionFunction = Best->FoundDecl;
3247       User.EllipsisConversion = false;
3248
3249       // C++ [over.ics.user]p2:
3250       //   The second standard conversion sequence converts the
3251       //   result of the user-defined conversion to the target type
3252       //   for the sequence. Since an implicit conversion sequence
3253       //   is an initialization, the special rules for
3254       //   initialization by user-defined conversion apply when
3255       //   selecting the best user-defined conversion for a
3256       //   user-defined conversion sequence (see 13.3.3 and
3257       //   13.3.3.1).
3258       User.After = Best->FinalConversion;
3259       return Result;
3260     }
3261     llvm_unreachable("Not a constructor or conversion function?");
3262
3263   case OR_No_Viable_Function:
3264     return OR_No_Viable_Function;
3265
3266   case OR_Ambiguous:
3267     return OR_Ambiguous;
3268   }
3269
3270   llvm_unreachable("Invalid OverloadResult!");
3271 }
3272
3273 bool
3274 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3275   ImplicitConversionSequence ICS;
3276   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3277                                     OverloadCandidateSet::CSK_Normal);
3278   OverloadingResult OvResult =
3279     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3280                             CandidateSet, false, false);
3281   if (OvResult == OR_Ambiguous)
3282     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
3283         << From->getType() << ToType << From->getSourceRange();
3284   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3285     if (!RequireCompleteType(From->getLocStart(), ToType,
3286                              diag::err_typecheck_nonviable_condition_incomplete,
3287                              From->getType(), From->getSourceRange()))
3288       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
3289           << false << From->getType() << From->getSourceRange() << ToType;
3290   } else
3291     return false;
3292   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3293   return true;
3294 }
3295
3296 /// \brief Compare the user-defined conversion functions or constructors
3297 /// of two user-defined conversion sequences to determine whether any ordering
3298 /// is possible.
3299 static ImplicitConversionSequence::CompareKind
3300 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3301                            FunctionDecl *Function2) {
3302   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3303     return ImplicitConversionSequence::Indistinguishable;
3304
3305   // Objective-C++:
3306   //   If both conversion functions are implicitly-declared conversions from
3307   //   a lambda closure type to a function pointer and a block pointer,
3308   //   respectively, always prefer the conversion to a function pointer,
3309   //   because the function pointer is more lightweight and is more likely
3310   //   to keep code working.
3311   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3312   if (!Conv1)
3313     return ImplicitConversionSequence::Indistinguishable;
3314
3315   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3316   if (!Conv2)
3317     return ImplicitConversionSequence::Indistinguishable;
3318
3319   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3320     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3321     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3322     if (Block1 != Block2)
3323       return Block1 ? ImplicitConversionSequence::Worse
3324                     : ImplicitConversionSequence::Better;
3325   }
3326
3327   return ImplicitConversionSequence::Indistinguishable;
3328 }
3329
3330 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3331     const ImplicitConversionSequence &ICS) {
3332   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3333          (ICS.isUserDefined() &&
3334           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3335 }
3336
3337 /// CompareImplicitConversionSequences - Compare two implicit
3338 /// conversion sequences to determine whether one is better than the
3339 /// other or if they are indistinguishable (C++ 13.3.3.2).
3340 static ImplicitConversionSequence::CompareKind
3341 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3342                                    const ImplicitConversionSequence& ICS1,
3343                                    const ImplicitConversionSequence& ICS2)
3344 {
3345   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3346   // conversion sequences (as defined in 13.3.3.1)
3347   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3348   //      conversion sequence than a user-defined conversion sequence or
3349   //      an ellipsis conversion sequence, and
3350   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3351   //      conversion sequence than an ellipsis conversion sequence
3352   //      (13.3.3.1.3).
3353   //
3354   // C++0x [over.best.ics]p10:
3355   //   For the purpose of ranking implicit conversion sequences as
3356   //   described in 13.3.3.2, the ambiguous conversion sequence is
3357   //   treated as a user-defined sequence that is indistinguishable
3358   //   from any other user-defined conversion sequence.
3359
3360   // String literal to 'char *' conversion has been deprecated in C++03. It has
3361   // been removed from C++11. We still accept this conversion, if it happens at
3362   // the best viable function. Otherwise, this conversion is considered worse
3363   // than ellipsis conversion. Consider this as an extension; this is not in the
3364   // standard. For example:
3365   //
3366   // int &f(...);    // #1
3367   // void f(char*);  // #2
3368   // void g() { int &r = f("foo"); }
3369   //
3370   // In C++03, we pick #2 as the best viable function.
3371   // In C++11, we pick #1 as the best viable function, because ellipsis
3372   // conversion is better than string-literal to char* conversion (since there
3373   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3374   // convert arguments, #2 would be the best viable function in C++11.
3375   // If the best viable function has this conversion, a warning will be issued
3376   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3377
3378   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3379       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3380       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3381     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3382                ? ImplicitConversionSequence::Worse
3383                : ImplicitConversionSequence::Better;
3384
3385   if (ICS1.getKindRank() < ICS2.getKindRank())
3386     return ImplicitConversionSequence::Better;
3387   if (ICS2.getKindRank() < ICS1.getKindRank())
3388     return ImplicitConversionSequence::Worse;
3389
3390   // The following checks require both conversion sequences to be of
3391   // the same kind.
3392   if (ICS1.getKind() != ICS2.getKind())
3393     return ImplicitConversionSequence::Indistinguishable;
3394
3395   ImplicitConversionSequence::CompareKind Result =
3396       ImplicitConversionSequence::Indistinguishable;
3397
3398   // Two implicit conversion sequences of the same form are
3399   // indistinguishable conversion sequences unless one of the
3400   // following rules apply: (C++ 13.3.3.2p3):
3401   
3402   // List-initialization sequence L1 is a better conversion sequence than
3403   // list-initialization sequence L2 if:
3404   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3405   //   if not that,
3406   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3407   //   and N1 is smaller than N2.,
3408   // even if one of the other rules in this paragraph would otherwise apply.
3409   if (!ICS1.isBad()) {
3410     if (ICS1.isStdInitializerListElement() &&
3411         !ICS2.isStdInitializerListElement())
3412       return ImplicitConversionSequence::Better;
3413     if (!ICS1.isStdInitializerListElement() &&
3414         ICS2.isStdInitializerListElement())
3415       return ImplicitConversionSequence::Worse;
3416   }
3417
3418   if (ICS1.isStandard())
3419     // Standard conversion sequence S1 is a better conversion sequence than
3420     // standard conversion sequence S2 if [...]
3421     Result = CompareStandardConversionSequences(S, Loc,
3422                                                 ICS1.Standard, ICS2.Standard);
3423   else if (ICS1.isUserDefined()) {
3424     // User-defined conversion sequence U1 is a better conversion
3425     // sequence than another user-defined conversion sequence U2 if
3426     // they contain the same user-defined conversion function or
3427     // constructor and if the second standard conversion sequence of
3428     // U1 is better than the second standard conversion sequence of
3429     // U2 (C++ 13.3.3.2p3).
3430     if (ICS1.UserDefined.ConversionFunction ==
3431           ICS2.UserDefined.ConversionFunction)
3432       Result = CompareStandardConversionSequences(S, Loc,
3433                                                   ICS1.UserDefined.After,
3434                                                   ICS2.UserDefined.After);
3435     else
3436       Result = compareConversionFunctions(S, 
3437                                           ICS1.UserDefined.ConversionFunction,
3438                                           ICS2.UserDefined.ConversionFunction);
3439   }
3440
3441   return Result;
3442 }
3443
3444 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3445   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3446     Qualifiers Quals;
3447     T1 = Context.getUnqualifiedArrayType(T1, Quals);
3448     T2 = Context.getUnqualifiedArrayType(T2, Quals);
3449   }
3450
3451   return Context.hasSameUnqualifiedType(T1, T2);
3452 }
3453
3454 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3455 // determine if one is a proper subset of the other.
3456 static ImplicitConversionSequence::CompareKind
3457 compareStandardConversionSubsets(ASTContext &Context,
3458                                  const StandardConversionSequence& SCS1,
3459                                  const StandardConversionSequence& SCS2) {
3460   ImplicitConversionSequence::CompareKind Result
3461     = ImplicitConversionSequence::Indistinguishable;
3462
3463   // the identity conversion sequence is considered to be a subsequence of
3464   // any non-identity conversion sequence
3465   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3466     return ImplicitConversionSequence::Better;
3467   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3468     return ImplicitConversionSequence::Worse;
3469
3470   if (SCS1.Second != SCS2.Second) {
3471     if (SCS1.Second == ICK_Identity)
3472       Result = ImplicitConversionSequence::Better;
3473     else if (SCS2.Second == ICK_Identity)
3474       Result = ImplicitConversionSequence::Worse;
3475     else
3476       return ImplicitConversionSequence::Indistinguishable;
3477   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3478     return ImplicitConversionSequence::Indistinguishable;
3479
3480   if (SCS1.Third == SCS2.Third) {
3481     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3482                              : ImplicitConversionSequence::Indistinguishable;
3483   }
3484
3485   if (SCS1.Third == ICK_Identity)
3486     return Result == ImplicitConversionSequence::Worse
3487              ? ImplicitConversionSequence::Indistinguishable
3488              : ImplicitConversionSequence::Better;
3489
3490   if (SCS2.Third == ICK_Identity)
3491     return Result == ImplicitConversionSequence::Better
3492              ? ImplicitConversionSequence::Indistinguishable
3493              : ImplicitConversionSequence::Worse;
3494
3495   return ImplicitConversionSequence::Indistinguishable;
3496 }
3497
3498 /// \brief Determine whether one of the given reference bindings is better
3499 /// than the other based on what kind of bindings they are.
3500 static bool
3501 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3502                              const StandardConversionSequence &SCS2) {
3503   // C++0x [over.ics.rank]p3b4:
3504   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3505   //      implicit object parameter of a non-static member function declared
3506   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3507   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3508   //      lvalue reference to a function lvalue and S2 binds an rvalue
3509   //      reference*.
3510   //
3511   // FIXME: Rvalue references. We're going rogue with the above edits,
3512   // because the semantics in the current C++0x working paper (N3225 at the
3513   // time of this writing) break the standard definition of std::forward
3514   // and std::reference_wrapper when dealing with references to functions.
3515   // Proposed wording changes submitted to CWG for consideration.
3516   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3517       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3518     return false;
3519
3520   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3521           SCS2.IsLvalueReference) ||
3522          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3523           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3524 }
3525
3526 /// CompareStandardConversionSequences - Compare two standard
3527 /// conversion sequences to determine whether one is better than the
3528 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3529 static ImplicitConversionSequence::CompareKind
3530 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3531                                    const StandardConversionSequence& SCS1,
3532                                    const StandardConversionSequence& SCS2)
3533 {
3534   // Standard conversion sequence S1 is a better conversion sequence
3535   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3536
3537   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3538   //     sequences in the canonical form defined by 13.3.3.1.1,
3539   //     excluding any Lvalue Transformation; the identity conversion
3540   //     sequence is considered to be a subsequence of any
3541   //     non-identity conversion sequence) or, if not that,
3542   if (ImplicitConversionSequence::CompareKind CK
3543         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3544     return CK;
3545
3546   //  -- the rank of S1 is better than the rank of S2 (by the rules
3547   //     defined below), or, if not that,
3548   ImplicitConversionRank Rank1 = SCS1.getRank();
3549   ImplicitConversionRank Rank2 = SCS2.getRank();
3550   if (Rank1 < Rank2)
3551     return ImplicitConversionSequence::Better;
3552   else if (Rank2 < Rank1)
3553     return ImplicitConversionSequence::Worse;
3554
3555   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3556   // are indistinguishable unless one of the following rules
3557   // applies:
3558
3559   //   A conversion that is not a conversion of a pointer, or
3560   //   pointer to member, to bool is better than another conversion
3561   //   that is such a conversion.
3562   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3563     return SCS2.isPointerConversionToBool()
3564              ? ImplicitConversionSequence::Better
3565              : ImplicitConversionSequence::Worse;
3566
3567   // C++ [over.ics.rank]p4b2:
3568   //
3569   //   If class B is derived directly or indirectly from class A,
3570   //   conversion of B* to A* is better than conversion of B* to
3571   //   void*, and conversion of A* to void* is better than conversion
3572   //   of B* to void*.
3573   bool SCS1ConvertsToVoid
3574     = SCS1.isPointerConversionToVoidPointer(S.Context);
3575   bool SCS2ConvertsToVoid
3576     = SCS2.isPointerConversionToVoidPointer(S.Context);
3577   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3578     // Exactly one of the conversion sequences is a conversion to
3579     // a void pointer; it's the worse conversion.
3580     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3581                               : ImplicitConversionSequence::Worse;
3582   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3583     // Neither conversion sequence converts to a void pointer; compare
3584     // their derived-to-base conversions.
3585     if (ImplicitConversionSequence::CompareKind DerivedCK
3586           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3587       return DerivedCK;
3588   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3589              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3590     // Both conversion sequences are conversions to void
3591     // pointers. Compare the source types to determine if there's an
3592     // inheritance relationship in their sources.
3593     QualType FromType1 = SCS1.getFromType();
3594     QualType FromType2 = SCS2.getFromType();
3595
3596     // Adjust the types we're converting from via the array-to-pointer
3597     // conversion, if we need to.
3598     if (SCS1.First == ICK_Array_To_Pointer)
3599       FromType1 = S.Context.getArrayDecayedType(FromType1);
3600     if (SCS2.First == ICK_Array_To_Pointer)
3601       FromType2 = S.Context.getArrayDecayedType(FromType2);
3602
3603     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3604     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3605
3606     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3607       return ImplicitConversionSequence::Better;
3608     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3609       return ImplicitConversionSequence::Worse;
3610
3611     // Objective-C++: If one interface is more specific than the
3612     // other, it is the better one.
3613     const ObjCObjectPointerType* FromObjCPtr1
3614       = FromType1->getAs<ObjCObjectPointerType>();
3615     const ObjCObjectPointerType* FromObjCPtr2
3616       = FromType2->getAs<ObjCObjectPointerType>();
3617     if (FromObjCPtr1 && FromObjCPtr2) {
3618       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 
3619                                                           FromObjCPtr2);
3620       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 
3621                                                            FromObjCPtr1);
3622       if (AssignLeft != AssignRight) {
3623         return AssignLeft? ImplicitConversionSequence::Better
3624                          : ImplicitConversionSequence::Worse;
3625       }
3626     }
3627   }
3628
3629   // Compare based on qualification conversions (C++ 13.3.3.2p3,
3630   // bullet 3).
3631   if (ImplicitConversionSequence::CompareKind QualCK
3632         = CompareQualificationConversions(S, SCS1, SCS2))
3633     return QualCK;
3634
3635   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3636     // Check for a better reference binding based on the kind of bindings.
3637     if (isBetterReferenceBindingKind(SCS1, SCS2))
3638       return ImplicitConversionSequence::Better;
3639     else if (isBetterReferenceBindingKind(SCS2, SCS1))
3640       return ImplicitConversionSequence::Worse;
3641
3642     // C++ [over.ics.rank]p3b4:
3643     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3644     //      which the references refer are the same type except for
3645     //      top-level cv-qualifiers, and the type to which the reference
3646     //      initialized by S2 refers is more cv-qualified than the type
3647     //      to which the reference initialized by S1 refers.
3648     QualType T1 = SCS1.getToType(2);
3649     QualType T2 = SCS2.getToType(2);
3650     T1 = S.Context.getCanonicalType(T1);
3651     T2 = S.Context.getCanonicalType(T2);
3652     Qualifiers T1Quals, T2Quals;
3653     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3654     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3655     if (UnqualT1 == UnqualT2) {
3656       // Objective-C++ ARC: If the references refer to objects with different
3657       // lifetimes, prefer bindings that don't change lifetime.
3658       if (SCS1.ObjCLifetimeConversionBinding != 
3659                                           SCS2.ObjCLifetimeConversionBinding) {
3660         return SCS1.ObjCLifetimeConversionBinding
3661                                            ? ImplicitConversionSequence::Worse
3662                                            : ImplicitConversionSequence::Better;
3663       }
3664       
3665       // If the type is an array type, promote the element qualifiers to the
3666       // type for comparison.
3667       if (isa<ArrayType>(T1) && T1Quals)
3668         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3669       if (isa<ArrayType>(T2) && T2Quals)
3670         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3671       if (T2.isMoreQualifiedThan(T1))
3672         return ImplicitConversionSequence::Better;
3673       else if (T1.isMoreQualifiedThan(T2))
3674         return ImplicitConversionSequence::Worse;      
3675     }
3676   }
3677
3678   // In Microsoft mode, prefer an integral conversion to a
3679   // floating-to-integral conversion if the integral conversion
3680   // is between types of the same size.
3681   // For example:
3682   // void f(float);
3683   // void f(int);
3684   // int main {
3685   //    long a;
3686   //    f(a);
3687   // }
3688   // Here, MSVC will call f(int) instead of generating a compile error
3689   // as clang will do in standard mode.
3690   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3691       SCS2.Second == ICK_Floating_Integral &&
3692       S.Context.getTypeSize(SCS1.getFromType()) ==
3693           S.Context.getTypeSize(SCS1.getToType(2)))
3694     return ImplicitConversionSequence::Better;
3695
3696   return ImplicitConversionSequence::Indistinguishable;
3697 }
3698
3699 /// CompareQualificationConversions - Compares two standard conversion
3700 /// sequences to determine whether they can be ranked based on their
3701 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3702 static ImplicitConversionSequence::CompareKind
3703 CompareQualificationConversions(Sema &S,
3704                                 const StandardConversionSequence& SCS1,
3705                                 const StandardConversionSequence& SCS2) {
3706   // C++ 13.3.3.2p3:
3707   //  -- S1 and S2 differ only in their qualification conversion and
3708   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3709   //     cv-qualification signature of type T1 is a proper subset of
3710   //     the cv-qualification signature of type T2, and S1 is not the
3711   //     deprecated string literal array-to-pointer conversion (4.2).
3712   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3713       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3714     return ImplicitConversionSequence::Indistinguishable;
3715
3716   // FIXME: the example in the standard doesn't use a qualification
3717   // conversion (!)
3718   QualType T1 = SCS1.getToType(2);
3719   QualType T2 = SCS2.getToType(2);
3720   T1 = S.Context.getCanonicalType(T1);
3721   T2 = S.Context.getCanonicalType(T2);
3722   Qualifiers T1Quals, T2Quals;
3723   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3724   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3725
3726   // If the types are the same, we won't learn anything by unwrapped
3727   // them.
3728   if (UnqualT1 == UnqualT2)
3729     return ImplicitConversionSequence::Indistinguishable;
3730
3731   // If the type is an array type, promote the element qualifiers to the type
3732   // for comparison.
3733   if (isa<ArrayType>(T1) && T1Quals)
3734     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3735   if (isa<ArrayType>(T2) && T2Quals)
3736     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3737
3738   ImplicitConversionSequence::CompareKind Result
3739     = ImplicitConversionSequence::Indistinguishable;
3740   
3741   // Objective-C++ ARC:
3742   //   Prefer qualification conversions not involving a change in lifetime
3743   //   to qualification conversions that do not change lifetime.
3744   if (SCS1.QualificationIncludesObjCLifetime != 
3745                                       SCS2.QualificationIncludesObjCLifetime) {
3746     Result = SCS1.QualificationIncludesObjCLifetime
3747                ? ImplicitConversionSequence::Worse
3748                : ImplicitConversionSequence::Better;
3749   }
3750   
3751   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3752     // Within each iteration of the loop, we check the qualifiers to
3753     // determine if this still looks like a qualification
3754     // conversion. Then, if all is well, we unwrap one more level of
3755     // pointers or pointers-to-members and do it all again
3756     // until there are no more pointers or pointers-to-members left
3757     // to unwrap. This essentially mimics what
3758     // IsQualificationConversion does, but here we're checking for a
3759     // strict subset of qualifiers.
3760     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3761       // The qualifiers are the same, so this doesn't tell us anything
3762       // about how the sequences rank.
3763       ;
3764     else if (T2.isMoreQualifiedThan(T1)) {
3765       // T1 has fewer qualifiers, so it could be the better sequence.
3766       if (Result == ImplicitConversionSequence::Worse)
3767         // Neither has qualifiers that are a subset of the other's
3768         // qualifiers.
3769         return ImplicitConversionSequence::Indistinguishable;
3770
3771       Result = ImplicitConversionSequence::Better;
3772     } else if (T1.isMoreQualifiedThan(T2)) {
3773       // T2 has fewer qualifiers, so it could be the better sequence.
3774       if (Result == ImplicitConversionSequence::Better)
3775         // Neither has qualifiers that are a subset of the other's
3776         // qualifiers.
3777         return ImplicitConversionSequence::Indistinguishable;
3778
3779       Result = ImplicitConversionSequence::Worse;
3780     } else {
3781       // Qualifiers are disjoint.
3782       return ImplicitConversionSequence::Indistinguishable;
3783     }
3784
3785     // If the types after this point are equivalent, we're done.
3786     if (S.Context.hasSameUnqualifiedType(T1, T2))
3787       break;
3788   }
3789
3790   // Check that the winning standard conversion sequence isn't using
3791   // the deprecated string literal array to pointer conversion.
3792   switch (Result) {
3793   case ImplicitConversionSequence::Better:
3794     if (SCS1.DeprecatedStringLiteralToCharPtr)
3795       Result = ImplicitConversionSequence::Indistinguishable;
3796     break;
3797
3798   case ImplicitConversionSequence::Indistinguishable:
3799     break;
3800
3801   case ImplicitConversionSequence::Worse:
3802     if (SCS2.DeprecatedStringLiteralToCharPtr)
3803       Result = ImplicitConversionSequence::Indistinguishable;
3804     break;
3805   }
3806
3807   return Result;
3808 }
3809
3810 /// CompareDerivedToBaseConversions - Compares two standard conversion
3811 /// sequences to determine whether they can be ranked based on their
3812 /// various kinds of derived-to-base conversions (C++
3813 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
3814 /// conversions between Objective-C interface types.
3815 static ImplicitConversionSequence::CompareKind
3816 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
3817                                 const StandardConversionSequence& SCS1,
3818                                 const StandardConversionSequence& SCS2) {
3819   QualType FromType1 = SCS1.getFromType();
3820   QualType ToType1 = SCS1.getToType(1);
3821   QualType FromType2 = SCS2.getFromType();
3822   QualType ToType2 = SCS2.getToType(1);
3823
3824   // Adjust the types we're converting from via the array-to-pointer
3825   // conversion, if we need to.
3826   if (SCS1.First == ICK_Array_To_Pointer)
3827     FromType1 = S.Context.getArrayDecayedType(FromType1);
3828   if (SCS2.First == ICK_Array_To_Pointer)
3829     FromType2 = S.Context.getArrayDecayedType(FromType2);
3830
3831   // Canonicalize all of the types.
3832   FromType1 = S.Context.getCanonicalType(FromType1);
3833   ToType1 = S.Context.getCanonicalType(ToType1);
3834   FromType2 = S.Context.getCanonicalType(FromType2);
3835   ToType2 = S.Context.getCanonicalType(ToType2);
3836
3837   // C++ [over.ics.rank]p4b3:
3838   //
3839   //   If class B is derived directly or indirectly from class A and
3840   //   class C is derived directly or indirectly from B,
3841   //
3842   // Compare based on pointer conversions.
3843   if (SCS1.Second == ICK_Pointer_Conversion &&
3844       SCS2.Second == ICK_Pointer_Conversion &&
3845       /*FIXME: Remove if Objective-C id conversions get their own rank*/
3846       FromType1->isPointerType() && FromType2->isPointerType() &&
3847       ToType1->isPointerType() && ToType2->isPointerType()) {
3848     QualType FromPointee1
3849       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3850     QualType ToPointee1
3851       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3852     QualType FromPointee2
3853       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3854     QualType ToPointee2
3855       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3856
3857     //   -- conversion of C* to B* is better than conversion of C* to A*,
3858     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3859       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
3860         return ImplicitConversionSequence::Better;
3861       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
3862         return ImplicitConversionSequence::Worse;
3863     }
3864
3865     //   -- conversion of B* to A* is better than conversion of C* to A*,
3866     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3867       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3868         return ImplicitConversionSequence::Better;
3869       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3870         return ImplicitConversionSequence::Worse;
3871     }
3872   } else if (SCS1.Second == ICK_Pointer_Conversion &&
3873              SCS2.Second == ICK_Pointer_Conversion) {
3874     const ObjCObjectPointerType *FromPtr1
3875       = FromType1->getAs<ObjCObjectPointerType>();
3876     const ObjCObjectPointerType *FromPtr2
3877       = FromType2->getAs<ObjCObjectPointerType>();
3878     const ObjCObjectPointerType *ToPtr1
3879       = ToType1->getAs<ObjCObjectPointerType>();
3880     const ObjCObjectPointerType *ToPtr2
3881       = ToType2->getAs<ObjCObjectPointerType>();
3882     
3883     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3884       // Apply the same conversion ranking rules for Objective-C pointer types
3885       // that we do for C++ pointers to class types. However, we employ the
3886       // Objective-C pseudo-subtyping relationship used for assignment of
3887       // Objective-C pointer types.
3888       bool FromAssignLeft
3889         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3890       bool FromAssignRight
3891         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3892       bool ToAssignLeft
3893         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3894       bool ToAssignRight
3895         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3896       
3897       // A conversion to an a non-id object pointer type or qualified 'id' 
3898       // type is better than a conversion to 'id'.
3899       if (ToPtr1->isObjCIdType() &&
3900           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3901         return ImplicitConversionSequence::Worse;
3902       if (ToPtr2->isObjCIdType() &&
3903           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3904         return ImplicitConversionSequence::Better;
3905       
3906       // A conversion to a non-id object pointer type is better than a 
3907       // conversion to a qualified 'id' type 
3908       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3909         return ImplicitConversionSequence::Worse;
3910       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3911         return ImplicitConversionSequence::Better;
3912   
3913       // A conversion to an a non-Class object pointer type or qualified 'Class' 
3914       // type is better than a conversion to 'Class'.
3915       if (ToPtr1->isObjCClassType() &&
3916           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3917         return ImplicitConversionSequence::Worse;
3918       if (ToPtr2->isObjCClassType() &&
3919           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3920         return ImplicitConversionSequence::Better;
3921       
3922       // A conversion to a non-Class object pointer type is better than a 
3923       // conversion to a qualified 'Class' type.
3924       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3925         return ImplicitConversionSequence::Worse;
3926       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3927         return ImplicitConversionSequence::Better;
3928
3929       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3930       if (S.Context.hasSameType(FromType1, FromType2) && 
3931           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3932           (ToAssignLeft != ToAssignRight))
3933         return ToAssignLeft? ImplicitConversionSequence::Worse
3934                            : ImplicitConversionSequence::Better;
3935
3936       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3937       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3938           (FromAssignLeft != FromAssignRight))
3939         return FromAssignLeft? ImplicitConversionSequence::Better
3940         : ImplicitConversionSequence::Worse;
3941     }
3942   }
3943   
3944   // Ranking of member-pointer types.
3945   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3946       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3947       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3948     const MemberPointerType * FromMemPointer1 =
3949                                         FromType1->getAs<MemberPointerType>();
3950     const MemberPointerType * ToMemPointer1 =
3951                                           ToType1->getAs<MemberPointerType>();
3952     const MemberPointerType * FromMemPointer2 =
3953                                           FromType2->getAs<MemberPointerType>();
3954     const MemberPointerType * ToMemPointer2 =
3955                                           ToType2->getAs<MemberPointerType>();
3956     const Type *FromPointeeType1 = FromMemPointer1->getClass();
3957     const Type *ToPointeeType1 = ToMemPointer1->getClass();
3958     const Type *FromPointeeType2 = FromMemPointer2->getClass();
3959     const Type *ToPointeeType2 = ToMemPointer2->getClass();
3960     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3961     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3962     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3963     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3964     // conversion of A::* to B::* is better than conversion of A::* to C::*,
3965     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3966       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
3967         return ImplicitConversionSequence::Worse;
3968       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
3969         return ImplicitConversionSequence::Better;
3970     }
3971     // conversion of B::* to C::* is better than conversion of A::* to C::*
3972     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3973       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3974         return ImplicitConversionSequence::Better;
3975       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3976         return ImplicitConversionSequence::Worse;
3977     }
3978   }
3979
3980   if (SCS1.Second == ICK_Derived_To_Base) {
3981     //   -- conversion of C to B is better than conversion of C to A,
3982     //   -- binding of an expression of type C to a reference of type
3983     //      B& is better than binding an expression of type C to a
3984     //      reference of type A&,
3985     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3986         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3987       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
3988         return ImplicitConversionSequence::Better;
3989       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
3990         return ImplicitConversionSequence::Worse;
3991     }
3992
3993     //   -- conversion of B to A is better than conversion of C to A.
3994     //   -- binding of an expression of type B to a reference of type
3995     //      A& is better than binding an expression of type C to a
3996     //      reference of type A&,
3997     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3998         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3999       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4000         return ImplicitConversionSequence::Better;
4001       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4002         return ImplicitConversionSequence::Worse;
4003     }
4004   }
4005
4006   return ImplicitConversionSequence::Indistinguishable;
4007 }
4008
4009 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
4010 /// C++ class.
4011 static bool isTypeValid(QualType T) {
4012   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4013     return !Record->isInvalidDecl();
4014
4015   return true;
4016 }
4017
4018 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4019 /// determine whether they are reference-related,
4020 /// reference-compatible, reference-compatible with added
4021 /// qualification, or incompatible, for use in C++ initialization by
4022 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4023 /// type, and the first type (T1) is the pointee type of the reference
4024 /// type being initialized.
4025 Sema::ReferenceCompareResult
4026 Sema::CompareReferenceRelationship(SourceLocation Loc,
4027                                    QualType OrigT1, QualType OrigT2,
4028                                    bool &DerivedToBase,
4029                                    bool &ObjCConversion,
4030                                    bool &ObjCLifetimeConversion) {
4031   assert(!OrigT1->isReferenceType() &&
4032     "T1 must be the pointee type of the reference type");
4033   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4034
4035   QualType T1 = Context.getCanonicalType(OrigT1);
4036   QualType T2 = Context.getCanonicalType(OrigT2);
4037   Qualifiers T1Quals, T2Quals;
4038   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4039   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4040
4041   // C++ [dcl.init.ref]p4:
4042   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4043   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4044   //   T1 is a base class of T2.
4045   DerivedToBase = false;
4046   ObjCConversion = false;
4047   ObjCLifetimeConversion = false;
4048   if (UnqualT1 == UnqualT2) {
4049     // Nothing to do.
4050   } else if (isCompleteType(Loc, OrigT2) &&
4051              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4052              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4053     DerivedToBase = true;
4054   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4055            UnqualT2->isObjCObjectOrInterfaceType() &&
4056            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4057     ObjCConversion = true;
4058   else
4059     return Ref_Incompatible;
4060
4061   // At this point, we know that T1 and T2 are reference-related (at
4062   // least).
4063
4064   // If the type is an array type, promote the element qualifiers to the type
4065   // for comparison.
4066   if (isa<ArrayType>(T1) && T1Quals)
4067     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4068   if (isa<ArrayType>(T2) && T2Quals)
4069     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4070
4071   // C++ [dcl.init.ref]p4:
4072   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4073   //   reference-related to T2 and cv1 is the same cv-qualification
4074   //   as, or greater cv-qualification than, cv2. For purposes of
4075   //   overload resolution, cases for which cv1 is greater
4076   //   cv-qualification than cv2 are identified as
4077   //   reference-compatible with added qualification (see 13.3.3.2).
4078   //
4079   // Note that we also require equivalence of Objective-C GC and address-space
4080   // qualifiers when performing these computations, so that e.g., an int in
4081   // address space 1 is not reference-compatible with an int in address
4082   // space 2.
4083   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4084       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4085     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4086       ObjCLifetimeConversion = true;
4087
4088     T1Quals.removeObjCLifetime();
4089     T2Quals.removeObjCLifetime();    
4090   }
4091     
4092   if (T1Quals == T2Quals)
4093     return Ref_Compatible;
4094   else if (T1Quals.compatiblyIncludes(T2Quals))
4095     return Ref_Compatible_With_Added_Qualification;
4096   else
4097     return Ref_Related;
4098 }
4099
4100 /// \brief Look for a user-defined conversion to an value reference-compatible
4101 ///        with DeclType. Return true if something definite is found.
4102 static bool
4103 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4104                          QualType DeclType, SourceLocation DeclLoc,
4105                          Expr *Init, QualType T2, bool AllowRvalues,
4106                          bool AllowExplicit) {
4107   assert(T2->isRecordType() && "Can only find conversions of record types.");
4108   CXXRecordDecl *T2RecordDecl
4109     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4110
4111   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
4112   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4113   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4114     NamedDecl *D = *I;
4115     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4116     if (isa<UsingShadowDecl>(D))
4117       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4118
4119     FunctionTemplateDecl *ConvTemplate
4120       = dyn_cast<FunctionTemplateDecl>(D);
4121     CXXConversionDecl *Conv;
4122     if (ConvTemplate)
4123       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4124     else
4125       Conv = cast<CXXConversionDecl>(D);
4126
4127     // If this is an explicit conversion, and we're not allowed to consider
4128     // explicit conversions, skip it.
4129     if (!AllowExplicit && Conv->isExplicit())
4130       continue;
4131
4132     if (AllowRvalues) {
4133       bool DerivedToBase = false;
4134       bool ObjCConversion = false;
4135       bool ObjCLifetimeConversion = false;
4136       
4137       // If we are initializing an rvalue reference, don't permit conversion
4138       // functions that return lvalues.
4139       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4140         const ReferenceType *RefType
4141           = Conv->getConversionType()->getAs<LValueReferenceType>();
4142         if (RefType && !RefType->getPointeeType()->isFunctionType())
4143           continue;
4144       }
4145       
4146       if (!ConvTemplate &&
4147           S.CompareReferenceRelationship(
4148             DeclLoc,
4149             Conv->getConversionType().getNonReferenceType()
4150               .getUnqualifiedType(),
4151             DeclType.getNonReferenceType().getUnqualifiedType(),
4152             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4153           Sema::Ref_Incompatible)
4154         continue;
4155     } else {
4156       // If the conversion function doesn't return a reference type,
4157       // it can't be considered for this conversion. An rvalue reference
4158       // is only acceptable if its referencee is a function type.
4159
4160       const ReferenceType *RefType =
4161         Conv->getConversionType()->getAs<ReferenceType>();
4162       if (!RefType ||
4163           (!RefType->isLValueReferenceType() &&
4164            !RefType->getPointeeType()->isFunctionType()))
4165         continue;
4166     }
4167
4168     if (ConvTemplate)
4169       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4170                                        Init, DeclType, CandidateSet,
4171                                        /*AllowObjCConversionOnExplicit=*/false);
4172     else
4173       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4174                                DeclType, CandidateSet,
4175                                /*AllowObjCConversionOnExplicit=*/false);
4176   }
4177
4178   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4179
4180   OverloadCandidateSet::iterator Best;
4181   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4182   case OR_Success:
4183     // C++ [over.ics.ref]p1:
4184     //
4185     //   [...] If the parameter binds directly to the result of
4186     //   applying a conversion function to the argument
4187     //   expression, the implicit conversion sequence is a
4188     //   user-defined conversion sequence (13.3.3.1.2), with the
4189     //   second standard conversion sequence either an identity
4190     //   conversion or, if the conversion function returns an
4191     //   entity of a type that is a derived class of the parameter
4192     //   type, a derived-to-base Conversion.
4193     if (!Best->FinalConversion.DirectBinding)
4194       return false;
4195
4196     ICS.setUserDefined();
4197     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4198     ICS.UserDefined.After = Best->FinalConversion;
4199     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4200     ICS.UserDefined.ConversionFunction = Best->Function;
4201     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4202     ICS.UserDefined.EllipsisConversion = false;
4203     assert(ICS.UserDefined.After.ReferenceBinding &&
4204            ICS.UserDefined.After.DirectBinding &&
4205            "Expected a direct reference binding!");
4206     return true;
4207
4208   case OR_Ambiguous:
4209     ICS.setAmbiguous();
4210     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4211          Cand != CandidateSet.end(); ++Cand)
4212       if (Cand->Viable)
4213         ICS.Ambiguous.addConversion(Cand->Function);
4214     return true;
4215
4216   case OR_No_Viable_Function:
4217   case OR_Deleted:
4218     // There was no suitable conversion, or we found a deleted
4219     // conversion; continue with other checks.
4220     return false;
4221   }
4222
4223   llvm_unreachable("Invalid OverloadResult!");
4224 }
4225
4226 /// \brief Compute an implicit conversion sequence for reference
4227 /// initialization.
4228 static ImplicitConversionSequence
4229 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4230                  SourceLocation DeclLoc,
4231                  bool SuppressUserConversions,
4232                  bool AllowExplicit) {
4233   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4234
4235   // Most paths end in a failed conversion.
4236   ImplicitConversionSequence ICS;
4237   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4238
4239   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4240   QualType T2 = Init->getType();
4241
4242   // If the initializer is the address of an overloaded function, try
4243   // to resolve the overloaded function. If all goes well, T2 is the
4244   // type of the resulting function.
4245   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4246     DeclAccessPair Found;
4247     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4248                                                                 false, Found))
4249       T2 = Fn->getType();
4250   }
4251
4252   // Compute some basic properties of the types and the initializer.
4253   bool isRValRef = DeclType->isRValueReferenceType();
4254   bool DerivedToBase = false;
4255   bool ObjCConversion = false;
4256   bool ObjCLifetimeConversion = false;
4257   Expr::Classification InitCategory = Init->Classify(S.Context);
4258   Sema::ReferenceCompareResult RefRelationship
4259     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4260                                      ObjCConversion, ObjCLifetimeConversion);
4261
4262
4263   // C++0x [dcl.init.ref]p5:
4264   //   A reference to type "cv1 T1" is initialized by an expression
4265   //   of type "cv2 T2" as follows:
4266
4267   //     -- If reference is an lvalue reference and the initializer expression
4268   if (!isRValRef) {
4269     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4270     //        reference-compatible with "cv2 T2," or
4271     //
4272     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4273     if (InitCategory.isLValue() &&
4274         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4275       // C++ [over.ics.ref]p1:
4276       //   When a parameter of reference type binds directly (8.5.3)
4277       //   to an argument expression, the implicit conversion sequence
4278       //   is the identity conversion, unless the argument expression
4279       //   has a type that is a derived class of the parameter type,
4280       //   in which case the implicit conversion sequence is a
4281       //   derived-to-base Conversion (13.3.3.1).
4282       ICS.setStandard();
4283       ICS.Standard.First = ICK_Identity;
4284       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4285                          : ObjCConversion? ICK_Compatible_Conversion
4286                          : ICK_Identity;
4287       ICS.Standard.Third = ICK_Identity;
4288       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4289       ICS.Standard.setToType(0, T2);
4290       ICS.Standard.setToType(1, T1);
4291       ICS.Standard.setToType(2, T1);
4292       ICS.Standard.ReferenceBinding = true;
4293       ICS.Standard.DirectBinding = true;
4294       ICS.Standard.IsLvalueReference = !isRValRef;
4295       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4296       ICS.Standard.BindsToRvalue = false;
4297       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4298       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4299       ICS.Standard.CopyConstructor = nullptr;
4300       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4301
4302       // Nothing more to do: the inaccessibility/ambiguity check for
4303       // derived-to-base conversions is suppressed when we're
4304       // computing the implicit conversion sequence (C++
4305       // [over.best.ics]p2).
4306       return ICS;
4307     }
4308
4309     //       -- has a class type (i.e., T2 is a class type), where T1 is
4310     //          not reference-related to T2, and can be implicitly
4311     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4312     //          is reference-compatible with "cv3 T3" 92) (this
4313     //          conversion is selected by enumerating the applicable
4314     //          conversion functions (13.3.1.6) and choosing the best
4315     //          one through overload resolution (13.3)),
4316     if (!SuppressUserConversions && T2->isRecordType() &&
4317         S.isCompleteType(DeclLoc, T2) &&
4318         RefRelationship == Sema::Ref_Incompatible) {
4319       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4320                                    Init, T2, /*AllowRvalues=*/false,
4321                                    AllowExplicit))
4322         return ICS;
4323     }
4324   }
4325
4326   //     -- Otherwise, the reference shall be an lvalue reference to a
4327   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4328   //        shall be an rvalue reference.
4329   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4330     return ICS;
4331
4332   //       -- If the initializer expression
4333   //
4334   //            -- is an xvalue, class prvalue, array prvalue or function
4335   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4336   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4337       (InitCategory.isXValue() ||
4338       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4339       (InitCategory.isLValue() && T2->isFunctionType()))) {
4340     ICS.setStandard();
4341     ICS.Standard.First = ICK_Identity;
4342     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4343                       : ObjCConversion? ICK_Compatible_Conversion
4344                       : ICK_Identity;
4345     ICS.Standard.Third = ICK_Identity;
4346     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4347     ICS.Standard.setToType(0, T2);
4348     ICS.Standard.setToType(1, T1);
4349     ICS.Standard.setToType(2, T1);
4350     ICS.Standard.ReferenceBinding = true;
4351     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4352     // binding unless we're binding to a class prvalue.
4353     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4354     // allow the use of rvalue references in C++98/03 for the benefit of
4355     // standard library implementors; therefore, we need the xvalue check here.
4356     ICS.Standard.DirectBinding =
4357       S.getLangOpts().CPlusPlus11 ||
4358       !(InitCategory.isPRValue() || T2->isRecordType());
4359     ICS.Standard.IsLvalueReference = !isRValRef;
4360     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4361     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4362     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4363     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4364     ICS.Standard.CopyConstructor = nullptr;
4365     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4366     return ICS;
4367   }
4368
4369   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4370   //               reference-related to T2, and can be implicitly converted to
4371   //               an xvalue, class prvalue, or function lvalue of type
4372   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4373   //               "cv3 T3",
4374   //
4375   //          then the reference is bound to the value of the initializer
4376   //          expression in the first case and to the result of the conversion
4377   //          in the second case (or, in either case, to an appropriate base
4378   //          class subobject).
4379   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4380       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4381       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4382                                Init, T2, /*AllowRvalues=*/true,
4383                                AllowExplicit)) {
4384     // In the second case, if the reference is an rvalue reference
4385     // and the second standard conversion sequence of the
4386     // user-defined conversion sequence includes an lvalue-to-rvalue
4387     // conversion, the program is ill-formed.
4388     if (ICS.isUserDefined() && isRValRef &&
4389         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4390       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4391
4392     return ICS;
4393   }
4394
4395   // A temporary of function type cannot be created; don't even try.
4396   if (T1->isFunctionType())
4397     return ICS;
4398
4399   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4400   //          initialized from the initializer expression using the
4401   //          rules for a non-reference copy initialization (8.5). The
4402   //          reference is then bound to the temporary. If T1 is
4403   //          reference-related to T2, cv1 must be the same
4404   //          cv-qualification as, or greater cv-qualification than,
4405   //          cv2; otherwise, the program is ill-formed.
4406   if (RefRelationship == Sema::Ref_Related) {
4407     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4408     // we would be reference-compatible or reference-compatible with
4409     // added qualification. But that wasn't the case, so the reference
4410     // initialization fails.
4411     //
4412     // Note that we only want to check address spaces and cvr-qualifiers here.
4413     // ObjC GC and lifetime qualifiers aren't important.
4414     Qualifiers T1Quals = T1.getQualifiers();
4415     Qualifiers T2Quals = T2.getQualifiers();
4416     T1Quals.removeObjCGCAttr();
4417     T1Quals.removeObjCLifetime();
4418     T2Quals.removeObjCGCAttr();
4419     T2Quals.removeObjCLifetime();
4420     if (!T1Quals.compatiblyIncludes(T2Quals))
4421       return ICS;
4422   }
4423
4424   // If at least one of the types is a class type, the types are not
4425   // related, and we aren't allowed any user conversions, the
4426   // reference binding fails. This case is important for breaking
4427   // recursion, since TryImplicitConversion below will attempt to
4428   // create a temporary through the use of a copy constructor.
4429   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4430       (T1->isRecordType() || T2->isRecordType()))
4431     return ICS;
4432
4433   // If T1 is reference-related to T2 and the reference is an rvalue
4434   // reference, the initializer expression shall not be an lvalue.
4435   if (RefRelationship >= Sema::Ref_Related &&
4436       isRValRef && Init->Classify(S.Context).isLValue())
4437     return ICS;
4438
4439   // C++ [over.ics.ref]p2:
4440   //   When a parameter of reference type is not bound directly to
4441   //   an argument expression, the conversion sequence is the one
4442   //   required to convert the argument expression to the
4443   //   underlying type of the reference according to
4444   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4445   //   to copy-initializing a temporary of the underlying type with
4446   //   the argument expression. Any difference in top-level
4447   //   cv-qualification is subsumed by the initialization itself
4448   //   and does not constitute a conversion.
4449   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4450                               /*AllowExplicit=*/false,
4451                               /*InOverloadResolution=*/false,
4452                               /*CStyle=*/false,
4453                               /*AllowObjCWritebackConversion=*/false,
4454                               /*AllowObjCConversionOnExplicit=*/false);
4455
4456   // Of course, that's still a reference binding.
4457   if (ICS.isStandard()) {
4458     ICS.Standard.ReferenceBinding = true;
4459     ICS.Standard.IsLvalueReference = !isRValRef;
4460     ICS.Standard.BindsToFunctionLvalue = false;
4461     ICS.Standard.BindsToRvalue = true;
4462     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4463     ICS.Standard.ObjCLifetimeConversionBinding = false;
4464   } else if (ICS.isUserDefined()) {
4465     const ReferenceType *LValRefType =
4466         ICS.UserDefined.ConversionFunction->getReturnType()
4467             ->getAs<LValueReferenceType>();
4468
4469     // C++ [over.ics.ref]p3:
4470     //   Except for an implicit object parameter, for which see 13.3.1, a
4471     //   standard conversion sequence cannot be formed if it requires [...]
4472     //   binding an rvalue reference to an lvalue other than a function
4473     //   lvalue.
4474     // Note that the function case is not possible here.
4475     if (DeclType->isRValueReferenceType() && LValRefType) {
4476       // FIXME: This is the wrong BadConversionSequence. The problem is binding
4477       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4478       // reference to an rvalue!
4479       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4480       return ICS;
4481     }
4482
4483     ICS.UserDefined.Before.setAsIdentityConversion();
4484     ICS.UserDefined.After.ReferenceBinding = true;
4485     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4486     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4487     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4488     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4489     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4490   }
4491
4492   return ICS;
4493 }
4494
4495 static ImplicitConversionSequence
4496 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4497                       bool SuppressUserConversions,
4498                       bool InOverloadResolution,
4499                       bool AllowObjCWritebackConversion,
4500                       bool AllowExplicit = false);
4501
4502 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4503 /// initializer list From.
4504 static ImplicitConversionSequence
4505 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4506                   bool SuppressUserConversions,
4507                   bool InOverloadResolution,
4508                   bool AllowObjCWritebackConversion) {
4509   // C++11 [over.ics.list]p1:
4510   //   When an argument is an initializer list, it is not an expression and
4511   //   special rules apply for converting it to a parameter type.
4512
4513   ImplicitConversionSequence Result;
4514   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4515
4516   // We need a complete type for what follows. Incomplete types can never be
4517   // initialized from init lists.
4518   if (!S.isCompleteType(From->getLocStart(), ToType))
4519     return Result;
4520
4521   // Per DR1467:
4522   //   If the parameter type is a class X and the initializer list has a single
4523   //   element of type cv U, where U is X or a class derived from X, the
4524   //   implicit conversion sequence is the one required to convert the element
4525   //   to the parameter type.
4526   //
4527   //   Otherwise, if the parameter type is a character array [... ]
4528   //   and the initializer list has a single element that is an
4529   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4530   //   implicit conversion sequence is the identity conversion.
4531   if (From->getNumInits() == 1) {
4532     if (ToType->isRecordType()) {
4533       QualType InitType = From->getInit(0)->getType();
4534       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4535           S.IsDerivedFrom(From->getLocStart(), InitType, ToType))
4536         return TryCopyInitialization(S, From->getInit(0), ToType,
4537                                      SuppressUserConversions,
4538                                      InOverloadResolution,
4539                                      AllowObjCWritebackConversion);
4540     }
4541     // FIXME: Check the other conditions here: array of character type,
4542     // initializer is a string literal.
4543     if (ToType->isArrayType()) {
4544       InitializedEntity Entity =
4545         InitializedEntity::InitializeParameter(S.Context, ToType,
4546                                                /*Consumed=*/false);
4547       if (S.CanPerformCopyInitialization(Entity, From)) {
4548         Result.setStandard();
4549         Result.Standard.setAsIdentityConversion();
4550         Result.Standard.setFromType(ToType);
4551         Result.Standard.setAllToTypes(ToType);
4552         return Result;
4553       }
4554     }
4555   }
4556
4557   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4558   // C++11 [over.ics.list]p2:
4559   //   If the parameter type is std::initializer_list<X> or "array of X" and
4560   //   all the elements can be implicitly converted to X, the implicit
4561   //   conversion sequence is the worst conversion necessary to convert an
4562   //   element of the list to X.
4563   //
4564   // C++14 [over.ics.list]p3:
4565   //   Otherwise, if the parameter type is "array of N X", if the initializer
4566   //   list has exactly N elements or if it has fewer than N elements and X is
4567   //   default-constructible, and if all the elements of the initializer list
4568   //   can be implicitly converted to X, the implicit conversion sequence is
4569   //   the worst conversion necessary to convert an element of the list to X.
4570   //
4571   // FIXME: We're missing a lot of these checks.
4572   bool toStdInitializerList = false;
4573   QualType X;
4574   if (ToType->isArrayType())
4575     X = S.Context.getAsArrayType(ToType)->getElementType();
4576   else
4577     toStdInitializerList = S.isStdInitializerList(ToType, &X);
4578   if (!X.isNull()) {
4579     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4580       Expr *Init = From->getInit(i);
4581       ImplicitConversionSequence ICS =
4582           TryCopyInitialization(S, Init, X, SuppressUserConversions,
4583                                 InOverloadResolution,
4584                                 AllowObjCWritebackConversion);
4585       // If a single element isn't convertible, fail.
4586       if (ICS.isBad()) {
4587         Result = ICS;
4588         break;
4589       }
4590       // Otherwise, look for the worst conversion.
4591       if (Result.isBad() ||
4592           CompareImplicitConversionSequences(S, From->getLocStart(), ICS,
4593                                              Result) ==
4594               ImplicitConversionSequence::Worse)
4595         Result = ICS;
4596     }
4597
4598     // For an empty list, we won't have computed any conversion sequence.
4599     // Introduce the identity conversion sequence.
4600     if (From->getNumInits() == 0) {
4601       Result.setStandard();
4602       Result.Standard.setAsIdentityConversion();
4603       Result.Standard.setFromType(ToType);
4604       Result.Standard.setAllToTypes(ToType);
4605     }
4606
4607     Result.setStdInitializerListElement(toStdInitializerList);
4608     return Result;
4609   }
4610
4611   // C++14 [over.ics.list]p4:
4612   // C++11 [over.ics.list]p3:
4613   //   Otherwise, if the parameter is a non-aggregate class X and overload
4614   //   resolution chooses a single best constructor [...] the implicit
4615   //   conversion sequence is a user-defined conversion sequence. If multiple
4616   //   constructors are viable but none is better than the others, the
4617   //   implicit conversion sequence is a user-defined conversion sequence.
4618   if (ToType->isRecordType() && !ToType->isAggregateType()) {
4619     // This function can deal with initializer lists.
4620     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4621                                     /*AllowExplicit=*/false,
4622                                     InOverloadResolution, /*CStyle=*/false,
4623                                     AllowObjCWritebackConversion,
4624                                     /*AllowObjCConversionOnExplicit=*/false);
4625   }
4626
4627   // C++14 [over.ics.list]p5:
4628   // C++11 [over.ics.list]p4:
4629   //   Otherwise, if the parameter has an aggregate type which can be
4630   //   initialized from the initializer list [...] the implicit conversion
4631   //   sequence is a user-defined conversion sequence.
4632   if (ToType->isAggregateType()) {
4633     // Type is an aggregate, argument is an init list. At this point it comes
4634     // down to checking whether the initialization works.
4635     // FIXME: Find out whether this parameter is consumed or not.
4636     InitializedEntity Entity =
4637         InitializedEntity::InitializeParameter(S.Context, ToType,
4638                                                /*Consumed=*/false);
4639     if (S.CanPerformCopyInitialization(Entity, From)) {
4640       Result.setUserDefined();
4641       Result.UserDefined.Before.setAsIdentityConversion();
4642       // Initializer lists don't have a type.
4643       Result.UserDefined.Before.setFromType(QualType());
4644       Result.UserDefined.Before.setAllToTypes(QualType());
4645
4646       Result.UserDefined.After.setAsIdentityConversion();
4647       Result.UserDefined.After.setFromType(ToType);
4648       Result.UserDefined.After.setAllToTypes(ToType);
4649       Result.UserDefined.ConversionFunction = nullptr;
4650     }
4651     return Result;
4652   }
4653
4654   // C++14 [over.ics.list]p6:
4655   // C++11 [over.ics.list]p5:
4656   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4657   if (ToType->isReferenceType()) {
4658     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4659     // mention initializer lists in any way. So we go by what list-
4660     // initialization would do and try to extrapolate from that.
4661
4662     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4663
4664     // If the initializer list has a single element that is reference-related
4665     // to the parameter type, we initialize the reference from that.
4666     if (From->getNumInits() == 1) {
4667       Expr *Init = From->getInit(0);
4668
4669       QualType T2 = Init->getType();
4670
4671       // If the initializer is the address of an overloaded function, try
4672       // to resolve the overloaded function. If all goes well, T2 is the
4673       // type of the resulting function.
4674       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4675         DeclAccessPair Found;
4676         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4677                                    Init, ToType, false, Found))
4678           T2 = Fn->getType();
4679       }
4680
4681       // Compute some basic properties of the types and the initializer.
4682       bool dummy1 = false;
4683       bool dummy2 = false;
4684       bool dummy3 = false;
4685       Sema::ReferenceCompareResult RefRelationship
4686         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4687                                          dummy2, dummy3);
4688
4689       if (RefRelationship >= Sema::Ref_Related) {
4690         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4691                                 SuppressUserConversions,
4692                                 /*AllowExplicit=*/false);
4693       }
4694     }
4695
4696     // Otherwise, we bind the reference to a temporary created from the
4697     // initializer list.
4698     Result = TryListConversion(S, From, T1, SuppressUserConversions,
4699                                InOverloadResolution,
4700                                AllowObjCWritebackConversion);
4701     if (Result.isFailure())
4702       return Result;
4703     assert(!Result.isEllipsis() &&
4704            "Sub-initialization cannot result in ellipsis conversion.");
4705
4706     // Can we even bind to a temporary?
4707     if (ToType->isRValueReferenceType() ||
4708         (T1.isConstQualified() && !T1.isVolatileQualified())) {
4709       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4710                                             Result.UserDefined.After;
4711       SCS.ReferenceBinding = true;
4712       SCS.IsLvalueReference = ToType->isLValueReferenceType();
4713       SCS.BindsToRvalue = true;
4714       SCS.BindsToFunctionLvalue = false;
4715       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4716       SCS.ObjCLifetimeConversionBinding = false;
4717     } else
4718       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4719                     From, ToType);
4720     return Result;
4721   }
4722
4723   // C++14 [over.ics.list]p7:
4724   // C++11 [over.ics.list]p6:
4725   //   Otherwise, if the parameter type is not a class:
4726   if (!ToType->isRecordType()) {
4727     //    - if the initializer list has one element that is not itself an
4728     //      initializer list, the implicit conversion sequence is the one
4729     //      required to convert the element to the parameter type.
4730     unsigned NumInits = From->getNumInits();
4731     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
4732       Result = TryCopyInitialization(S, From->getInit(0), ToType,
4733                                      SuppressUserConversions,
4734                                      InOverloadResolution,
4735                                      AllowObjCWritebackConversion);
4736     //    - if the initializer list has no elements, the implicit conversion
4737     //      sequence is the identity conversion.
4738     else if (NumInits == 0) {
4739       Result.setStandard();
4740       Result.Standard.setAsIdentityConversion();
4741       Result.Standard.setFromType(ToType);
4742       Result.Standard.setAllToTypes(ToType);
4743     }
4744     return Result;
4745   }
4746
4747   // C++14 [over.ics.list]p8:
4748   // C++11 [over.ics.list]p7:
4749   //   In all cases other than those enumerated above, no conversion is possible
4750   return Result;
4751 }
4752
4753 /// TryCopyInitialization - Try to copy-initialize a value of type
4754 /// ToType from the expression From. Return the implicit conversion
4755 /// sequence required to pass this argument, which may be a bad
4756 /// conversion sequence (meaning that the argument cannot be passed to
4757 /// a parameter of this type). If @p SuppressUserConversions, then we
4758 /// do not permit any user-defined conversion sequences.
4759 static ImplicitConversionSequence
4760 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4761                       bool SuppressUserConversions,
4762                       bool InOverloadResolution,
4763                       bool AllowObjCWritebackConversion,
4764                       bool AllowExplicit) {
4765   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4766     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4767                              InOverloadResolution,AllowObjCWritebackConversion);
4768
4769   if (ToType->isReferenceType())
4770     return TryReferenceInit(S, From, ToType,
4771                             /*FIXME:*/From->getLocStart(),
4772                             SuppressUserConversions,
4773                             AllowExplicit);
4774
4775   return TryImplicitConversion(S, From, ToType,
4776                                SuppressUserConversions,
4777                                /*AllowExplicit=*/false,
4778                                InOverloadResolution,
4779                                /*CStyle=*/false,
4780                                AllowObjCWritebackConversion,
4781                                /*AllowObjCConversionOnExplicit=*/false);
4782 }
4783
4784 static bool TryCopyInitialization(const CanQualType FromQTy,
4785                                   const CanQualType ToQTy,
4786                                   Sema &S,
4787                                   SourceLocation Loc,
4788                                   ExprValueKind FromVK) {
4789   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4790   ImplicitConversionSequence ICS =
4791     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4792
4793   return !ICS.isBad();
4794 }
4795
4796 /// TryObjectArgumentInitialization - Try to initialize the object
4797 /// parameter of the given member function (@c Method) from the
4798 /// expression @p From.
4799 static ImplicitConversionSequence
4800 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
4801                                 Expr::Classification FromClassification,
4802                                 CXXMethodDecl *Method,
4803                                 CXXRecordDecl *ActingContext) {
4804   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4805   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4806   //                 const volatile object.
4807   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4808     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4809   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4810
4811   // Set up the conversion sequence as a "bad" conversion, to allow us
4812   // to exit early.
4813   ImplicitConversionSequence ICS;
4814
4815   // We need to have an object of class type.
4816   if (const PointerType *PT = FromType->getAs<PointerType>()) {
4817     FromType = PT->getPointeeType();
4818
4819     // When we had a pointer, it's implicitly dereferenced, so we
4820     // better have an lvalue.
4821     assert(FromClassification.isLValue());
4822   }
4823
4824   assert(FromType->isRecordType());
4825
4826   // C++0x [over.match.funcs]p4:
4827   //   For non-static member functions, the type of the implicit object
4828   //   parameter is
4829   //
4830   //     - "lvalue reference to cv X" for functions declared without a
4831   //        ref-qualifier or with the & ref-qualifier
4832   //     - "rvalue reference to cv X" for functions declared with the &&
4833   //        ref-qualifier
4834   //
4835   // where X is the class of which the function is a member and cv is the
4836   // cv-qualification on the member function declaration.
4837   //
4838   // However, when finding an implicit conversion sequence for the argument, we
4839   // are not allowed to create temporaries or perform user-defined conversions
4840   // (C++ [over.match.funcs]p5). We perform a simplified version of
4841   // reference binding here, that allows class rvalues to bind to
4842   // non-constant references.
4843
4844   // First check the qualifiers.
4845   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4846   if (ImplicitParamType.getCVRQualifiers()
4847                                     != FromTypeCanon.getLocalCVRQualifiers() &&
4848       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4849     ICS.setBad(BadConversionSequence::bad_qualifiers,
4850                FromType, ImplicitParamType);
4851     return ICS;
4852   }
4853
4854   // Check that we have either the same type or a derived type. It
4855   // affects the conversion rank.
4856   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4857   ImplicitConversionKind SecondKind;
4858   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4859     SecondKind = ICK_Identity;
4860   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
4861     SecondKind = ICK_Derived_To_Base;
4862   else {
4863     ICS.setBad(BadConversionSequence::unrelated_class,
4864                FromType, ImplicitParamType);
4865     return ICS;
4866   }
4867
4868   // Check the ref-qualifier.
4869   switch (Method->getRefQualifier()) {
4870   case RQ_None:
4871     // Do nothing; we don't care about lvalueness or rvalueness.
4872     break;
4873
4874   case RQ_LValue:
4875     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4876       // non-const lvalue reference cannot bind to an rvalue
4877       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4878                  ImplicitParamType);
4879       return ICS;
4880     }
4881     break;
4882
4883   case RQ_RValue:
4884     if (!FromClassification.isRValue()) {
4885       // rvalue reference cannot bind to an lvalue
4886       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4887                  ImplicitParamType);
4888       return ICS;
4889     }
4890     break;
4891   }
4892
4893   // Success. Mark this as a reference binding.
4894   ICS.setStandard();
4895   ICS.Standard.setAsIdentityConversion();
4896   ICS.Standard.Second = SecondKind;
4897   ICS.Standard.setFromType(FromType);
4898   ICS.Standard.setAllToTypes(ImplicitParamType);
4899   ICS.Standard.ReferenceBinding = true;
4900   ICS.Standard.DirectBinding = true;
4901   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4902   ICS.Standard.BindsToFunctionLvalue = false;
4903   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4904   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4905     = (Method->getRefQualifier() == RQ_None);
4906   return ICS;
4907 }
4908
4909 /// PerformObjectArgumentInitialization - Perform initialization of
4910 /// the implicit object parameter for the given Method with the given
4911 /// expression.
4912 ExprResult
4913 Sema::PerformObjectArgumentInitialization(Expr *From,
4914                                           NestedNameSpecifier *Qualifier,
4915                                           NamedDecl *FoundDecl,
4916                                           CXXMethodDecl *Method) {
4917   QualType FromRecordType, DestType;
4918   QualType ImplicitParamRecordType  =
4919     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4920
4921   Expr::Classification FromClassification;
4922   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4923     FromRecordType = PT->getPointeeType();
4924     DestType = Method->getThisType(Context);
4925     FromClassification = Expr::Classification::makeSimpleLValue();
4926   } else {
4927     FromRecordType = From->getType();
4928     DestType = ImplicitParamRecordType;
4929     FromClassification = From->Classify(Context);
4930   }
4931
4932   // Note that we always use the true parent context when performing
4933   // the actual argument initialization.
4934   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
4935       *this, From->getLocStart(), From->getType(), FromClassification, Method,
4936       Method->getParent());
4937   if (ICS.isBad()) {
4938     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4939       Qualifiers FromQs = FromRecordType.getQualifiers();
4940       Qualifiers ToQs = DestType.getQualifiers();
4941       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4942       if (CVR) {
4943         Diag(From->getLocStart(),
4944              diag::err_member_function_call_bad_cvr)
4945           << Method->getDeclName() << FromRecordType << (CVR - 1)
4946           << From->getSourceRange();
4947         Diag(Method->getLocation(), diag::note_previous_decl)
4948           << Method->getDeclName();
4949         return ExprError();
4950       }
4951     }
4952
4953     return Diag(From->getLocStart(),
4954                 diag::err_implicit_object_parameter_init)
4955        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4956   }
4957
4958   if (ICS.Standard.Second == ICK_Derived_To_Base) {
4959     ExprResult FromRes =
4960       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4961     if (FromRes.isInvalid())
4962       return ExprError();
4963     From = FromRes.get();
4964   }
4965
4966   if (!Context.hasSameType(From->getType(), DestType))
4967     From = ImpCastExprToType(From, DestType, CK_NoOp,
4968                              From->getValueKind()).get();
4969   return From;
4970 }
4971
4972 /// TryContextuallyConvertToBool - Attempt to contextually convert the
4973 /// expression From to bool (C++0x [conv]p3).
4974 static ImplicitConversionSequence
4975 TryContextuallyConvertToBool(Sema &S, Expr *From) {
4976   return TryImplicitConversion(S, From, S.Context.BoolTy,
4977                                /*SuppressUserConversions=*/false,
4978                                /*AllowExplicit=*/true,
4979                                /*InOverloadResolution=*/false,
4980                                /*CStyle=*/false,
4981                                /*AllowObjCWritebackConversion=*/false,
4982                                /*AllowObjCConversionOnExplicit=*/false);
4983 }
4984
4985 /// PerformContextuallyConvertToBool - Perform a contextual conversion
4986 /// of the expression From to bool (C++0x [conv]p3).
4987 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4988   if (checkPlaceholderForOverload(*this, From))
4989     return ExprError();
4990
4991   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4992   if (!ICS.isBad())
4993     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4994
4995   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4996     return Diag(From->getLocStart(),
4997                 diag::err_typecheck_bool_condition)
4998                   << From->getType() << From->getSourceRange();
4999   return ExprError();
5000 }
5001
5002 /// Check that the specified conversion is permitted in a converted constant
5003 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5004 /// is acceptable.
5005 static bool CheckConvertedConstantConversions(Sema &S,
5006                                               StandardConversionSequence &SCS) {
5007   // Since we know that the target type is an integral or unscoped enumeration
5008   // type, most conversion kinds are impossible. All possible First and Third
5009   // conversions are fine.
5010   switch (SCS.Second) {
5011   case ICK_Identity:
5012   case ICK_NoReturn_Adjustment:
5013   case ICK_Integral_Promotion:
5014   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5015     return true;
5016
5017   case ICK_Boolean_Conversion:
5018     // Conversion from an integral or unscoped enumeration type to bool is
5019     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5020     // conversion, so we allow it in a converted constant expression.
5021     //
5022     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5023     // a lot of popular code. We should at least add a warning for this
5024     // (non-conforming) extension.
5025     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5026            SCS.getToType(2)->isBooleanType();
5027
5028   case ICK_Pointer_Conversion:
5029   case ICK_Pointer_Member:
5030     // C++1z: null pointer conversions and null member pointer conversions are
5031     // only permitted if the source type is std::nullptr_t.
5032     return SCS.getFromType()->isNullPtrType();
5033
5034   case ICK_Floating_Promotion:
5035   case ICK_Complex_Promotion:
5036   case ICK_Floating_Conversion:
5037   case ICK_Complex_Conversion:
5038   case ICK_Floating_Integral:
5039   case ICK_Compatible_Conversion:
5040   case ICK_Derived_To_Base:
5041   case ICK_Vector_Conversion:
5042   case ICK_Vector_Splat:
5043   case ICK_Complex_Real:
5044   case ICK_Block_Pointer_Conversion:
5045   case ICK_TransparentUnionConversion:
5046   case ICK_Writeback_Conversion:
5047   case ICK_Zero_Event_Conversion:
5048   case ICK_C_Only_Conversion:
5049     return false;
5050
5051   case ICK_Lvalue_To_Rvalue:
5052   case ICK_Array_To_Pointer:
5053   case ICK_Function_To_Pointer:
5054     llvm_unreachable("found a first conversion kind in Second");
5055
5056   case ICK_Qualification:
5057     llvm_unreachable("found a third conversion kind in Second");
5058
5059   case ICK_Num_Conversion_Kinds:
5060     break;
5061   }
5062
5063   llvm_unreachable("unknown conversion kind");
5064 }
5065
5066 /// CheckConvertedConstantExpression - Check that the expression From is a
5067 /// converted constant expression of type T, perform the conversion and produce
5068 /// the converted expression, per C++11 [expr.const]p3.
5069 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5070                                                    QualType T, APValue &Value,
5071                                                    Sema::CCEKind CCE,
5072                                                    bool RequireInt) {
5073   assert(S.getLangOpts().CPlusPlus11 &&
5074          "converted constant expression outside C++11");
5075
5076   if (checkPlaceholderForOverload(S, From))
5077     return ExprError();
5078
5079   // C++1z [expr.const]p3:
5080   //  A converted constant expression of type T is an expression,
5081   //  implicitly converted to type T, where the converted
5082   //  expression is a constant expression and the implicit conversion
5083   //  sequence contains only [... list of conversions ...].
5084   ImplicitConversionSequence ICS =
5085     TryCopyInitialization(S, From, T,
5086                           /*SuppressUserConversions=*/false,
5087                           /*InOverloadResolution=*/false,
5088                           /*AllowObjcWritebackConversion=*/false,
5089                           /*AllowExplicit=*/false);
5090   StandardConversionSequence *SCS = nullptr;
5091   switch (ICS.getKind()) {
5092   case ImplicitConversionSequence::StandardConversion:
5093     SCS = &ICS.Standard;
5094     break;
5095   case ImplicitConversionSequence::UserDefinedConversion:
5096     // We are converting to a non-class type, so the Before sequence
5097     // must be trivial.
5098     SCS = &ICS.UserDefined.After;
5099     break;
5100   case ImplicitConversionSequence::AmbiguousConversion:
5101   case ImplicitConversionSequence::BadConversion:
5102     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5103       return S.Diag(From->getLocStart(),
5104                     diag::err_typecheck_converted_constant_expression)
5105                 << From->getType() << From->getSourceRange() << T;
5106     return ExprError();
5107
5108   case ImplicitConversionSequence::EllipsisConversion:
5109     llvm_unreachable("ellipsis conversion in converted constant expression");
5110   }
5111
5112   // Check that we would only use permitted conversions.
5113   if (!CheckConvertedConstantConversions(S, *SCS)) {
5114     return S.Diag(From->getLocStart(),
5115                   diag::err_typecheck_converted_constant_expression_disallowed)
5116              << From->getType() << From->getSourceRange() << T;
5117   }
5118   // [...] and where the reference binding (if any) binds directly.
5119   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5120     return S.Diag(From->getLocStart(),
5121                   diag::err_typecheck_converted_constant_expression_indirect)
5122              << From->getType() << From->getSourceRange() << T;
5123   }
5124
5125   ExprResult Result =
5126       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5127   if (Result.isInvalid())
5128     return Result;
5129
5130   // Check for a narrowing implicit conversion.
5131   APValue PreNarrowingValue;
5132   QualType PreNarrowingType;
5133   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5134                                 PreNarrowingType)) {
5135   case NK_Variable_Narrowing:
5136     // Implicit conversion to a narrower type, and the value is not a constant
5137     // expression. We'll diagnose this in a moment.
5138   case NK_Not_Narrowing:
5139     break;
5140
5141   case NK_Constant_Narrowing:
5142     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5143       << CCE << /*Constant*/1
5144       << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5145     break;
5146
5147   case NK_Type_Narrowing:
5148     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5149       << CCE << /*Constant*/0 << From->getType() << T;
5150     break;
5151   }
5152
5153   // Check the expression is a constant expression.
5154   SmallVector<PartialDiagnosticAt, 8> Notes;
5155   Expr::EvalResult Eval;
5156   Eval.Diag = &Notes;
5157
5158   if ((T->isReferenceType()
5159            ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
5160            : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
5161       (RequireInt && !Eval.Val.isInt())) {
5162     // The expression can't be folded, so we can't keep it at this position in
5163     // the AST.
5164     Result = ExprError();
5165   } else {
5166     Value = Eval.Val;
5167
5168     if (Notes.empty()) {
5169       // It's a constant expression.
5170       return Result;
5171     }
5172   }
5173
5174   // It's not a constant expression. Produce an appropriate diagnostic.
5175   if (Notes.size() == 1 &&
5176       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5177     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5178   else {
5179     S.Diag(From->getLocStart(), diag::err_expr_not_cce)
5180       << CCE << From->getSourceRange();
5181     for (unsigned I = 0; I < Notes.size(); ++I)
5182       S.Diag(Notes[I].first, Notes[I].second);
5183   }
5184   return ExprError();
5185 }
5186
5187 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5188                                                   APValue &Value, CCEKind CCE) {
5189   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5190 }
5191
5192 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5193                                                   llvm::APSInt &Value,
5194                                                   CCEKind CCE) {
5195   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5196
5197   APValue V;
5198   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5199   if (!R.isInvalid())
5200     Value = V.getInt();
5201   return R;
5202 }
5203
5204
5205 /// dropPointerConversions - If the given standard conversion sequence
5206 /// involves any pointer conversions, remove them.  This may change
5207 /// the result type of the conversion sequence.
5208 static void dropPointerConversion(StandardConversionSequence &SCS) {
5209   if (SCS.Second == ICK_Pointer_Conversion) {
5210     SCS.Second = ICK_Identity;
5211     SCS.Third = ICK_Identity;
5212     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5213   }
5214 }
5215
5216 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5217 /// convert the expression From to an Objective-C pointer type.
5218 static ImplicitConversionSequence
5219 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5220   // Do an implicit conversion to 'id'.
5221   QualType Ty = S.Context.getObjCIdType();
5222   ImplicitConversionSequence ICS
5223     = TryImplicitConversion(S, From, Ty,
5224                             // FIXME: Are these flags correct?
5225                             /*SuppressUserConversions=*/false,
5226                             /*AllowExplicit=*/true,
5227                             /*InOverloadResolution=*/false,
5228                             /*CStyle=*/false,
5229                             /*AllowObjCWritebackConversion=*/false,
5230                             /*AllowObjCConversionOnExplicit=*/true);
5231
5232   // Strip off any final conversions to 'id'.
5233   switch (ICS.getKind()) {
5234   case ImplicitConversionSequence::BadConversion:
5235   case ImplicitConversionSequence::AmbiguousConversion:
5236   case ImplicitConversionSequence::EllipsisConversion:
5237     break;
5238
5239   case ImplicitConversionSequence::UserDefinedConversion:
5240     dropPointerConversion(ICS.UserDefined.After);
5241     break;
5242
5243   case ImplicitConversionSequence::StandardConversion:
5244     dropPointerConversion(ICS.Standard);
5245     break;
5246   }
5247
5248   return ICS;
5249 }
5250
5251 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5252 /// conversion of the expression From to an Objective-C pointer type.
5253 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5254   if (checkPlaceholderForOverload(*this, From))
5255     return ExprError();
5256
5257   QualType Ty = Context.getObjCIdType();
5258   ImplicitConversionSequence ICS =
5259     TryContextuallyConvertToObjCPointer(*this, From);
5260   if (!ICS.isBad())
5261     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5262   return ExprError();
5263 }
5264
5265 /// Determine whether the provided type is an integral type, or an enumeration
5266 /// type of a permitted flavor.
5267 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5268   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5269                                  : T->isIntegralOrUnscopedEnumerationType();
5270 }
5271
5272 static ExprResult
5273 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5274                             Sema::ContextualImplicitConverter &Converter,
5275                             QualType T, UnresolvedSetImpl &ViableConversions) {
5276
5277   if (Converter.Suppress)
5278     return ExprError();
5279
5280   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5281   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5282     CXXConversionDecl *Conv =
5283         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5284     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5285     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5286   }
5287   return From;
5288 }
5289
5290 static bool
5291 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5292                            Sema::ContextualImplicitConverter &Converter,
5293                            QualType T, bool HadMultipleCandidates,
5294                            UnresolvedSetImpl &ExplicitConversions) {
5295   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5296     DeclAccessPair Found = ExplicitConversions[0];
5297     CXXConversionDecl *Conversion =
5298         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5299
5300     // The user probably meant to invoke the given explicit
5301     // conversion; use it.
5302     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5303     std::string TypeStr;
5304     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5305
5306     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5307         << FixItHint::CreateInsertion(From->getLocStart(),
5308                                       "static_cast<" + TypeStr + ">(")
5309         << FixItHint::CreateInsertion(
5310                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
5311     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5312
5313     // If we aren't in a SFINAE context, build a call to the
5314     // explicit conversion function.
5315     if (SemaRef.isSFINAEContext())
5316       return true;
5317
5318     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5319     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5320                                                        HadMultipleCandidates);
5321     if (Result.isInvalid())
5322       return true;
5323     // Record usage of conversion in an implicit cast.
5324     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5325                                     CK_UserDefinedConversion, Result.get(),
5326                                     nullptr, Result.get()->getValueKind());
5327   }
5328   return false;
5329 }
5330
5331 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5332                              Sema::ContextualImplicitConverter &Converter,
5333                              QualType T, bool HadMultipleCandidates,
5334                              DeclAccessPair &Found) {
5335   CXXConversionDecl *Conversion =
5336       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5337   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5338
5339   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5340   if (!Converter.SuppressConversion) {
5341     if (SemaRef.isSFINAEContext())
5342       return true;
5343
5344     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5345         << From->getSourceRange();
5346   }
5347
5348   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5349                                                      HadMultipleCandidates);
5350   if (Result.isInvalid())
5351     return true;
5352   // Record usage of conversion in an implicit cast.
5353   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5354                                   CK_UserDefinedConversion, Result.get(),
5355                                   nullptr, Result.get()->getValueKind());
5356   return false;
5357 }
5358
5359 static ExprResult finishContextualImplicitConversion(
5360     Sema &SemaRef, SourceLocation Loc, Expr *From,
5361     Sema::ContextualImplicitConverter &Converter) {
5362   if (!Converter.match(From->getType()) && !Converter.Suppress)
5363     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5364         << From->getSourceRange();
5365
5366   return SemaRef.DefaultLvalueConversion(From);
5367 }
5368
5369 static void
5370 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5371                                   UnresolvedSetImpl &ViableConversions,
5372                                   OverloadCandidateSet &CandidateSet) {
5373   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5374     DeclAccessPair FoundDecl = ViableConversions[I];
5375     NamedDecl *D = FoundDecl.getDecl();
5376     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5377     if (isa<UsingShadowDecl>(D))
5378       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5379
5380     CXXConversionDecl *Conv;
5381     FunctionTemplateDecl *ConvTemplate;
5382     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5383       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5384     else
5385       Conv = cast<CXXConversionDecl>(D);
5386
5387     if (ConvTemplate)
5388       SemaRef.AddTemplateConversionCandidate(
5389         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5390         /*AllowObjCConversionOnExplicit=*/false);
5391     else
5392       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5393                                      ToType, CandidateSet,
5394                                      /*AllowObjCConversionOnExplicit=*/false);
5395   }
5396 }
5397
5398 /// \brief Attempt to convert the given expression to a type which is accepted
5399 /// by the given converter.
5400 ///
5401 /// This routine will attempt to convert an expression of class type to a
5402 /// type accepted by the specified converter. In C++11 and before, the class
5403 /// must have a single non-explicit conversion function converting to a matching
5404 /// type. In C++1y, there can be multiple such conversion functions, but only
5405 /// one target type.
5406 ///
5407 /// \param Loc The source location of the construct that requires the
5408 /// conversion.
5409 ///
5410 /// \param From The expression we're converting from.
5411 ///
5412 /// \param Converter Used to control and diagnose the conversion process.
5413 ///
5414 /// \returns The expression, converted to an integral or enumeration type if
5415 /// successful.
5416 ExprResult Sema::PerformContextualImplicitConversion(
5417     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5418   // We can't perform any more checking for type-dependent expressions.
5419   if (From->isTypeDependent())
5420     return From;
5421
5422   // Process placeholders immediately.
5423   if (From->hasPlaceholderType()) {
5424     ExprResult result = CheckPlaceholderExpr(From);
5425     if (result.isInvalid())
5426       return result;
5427     From = result.get();
5428   }
5429
5430   // If the expression already has a matching type, we're golden.
5431   QualType T = From->getType();
5432   if (Converter.match(T))
5433     return DefaultLvalueConversion(From);
5434
5435   // FIXME: Check for missing '()' if T is a function type?
5436
5437   // We can only perform contextual implicit conversions on objects of class
5438   // type.
5439   const RecordType *RecordTy = T->getAs<RecordType>();
5440   if (!RecordTy || !getLangOpts().CPlusPlus) {
5441     if (!Converter.Suppress)
5442       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5443     return From;
5444   }
5445
5446   // We must have a complete class type.
5447   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5448     ContextualImplicitConverter &Converter;
5449     Expr *From;
5450
5451     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5452         : Converter(Converter), From(From) {}
5453
5454     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5455       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5456     }
5457   } IncompleteDiagnoser(Converter, From);
5458
5459   if (Converter.Suppress ? !isCompleteType(Loc, T)
5460                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5461     return From;
5462
5463   // Look for a conversion to an integral or enumeration type.
5464   UnresolvedSet<4>
5465       ViableConversions; // These are *potentially* viable in C++1y.
5466   UnresolvedSet<4> ExplicitConversions;
5467   const auto &Conversions =
5468       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5469
5470   bool HadMultipleCandidates =
5471       (std::distance(Conversions.begin(), Conversions.end()) > 1);
5472
5473   // To check that there is only one target type, in C++1y:
5474   QualType ToType;
5475   bool HasUniqueTargetType = true;
5476
5477   // Collect explicit or viable (potentially in C++1y) conversions.
5478   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5479     NamedDecl *D = (*I)->getUnderlyingDecl();
5480     CXXConversionDecl *Conversion;
5481     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5482     if (ConvTemplate) {
5483       if (getLangOpts().CPlusPlus14)
5484         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5485       else
5486         continue; // C++11 does not consider conversion operator templates(?).
5487     } else
5488       Conversion = cast<CXXConversionDecl>(D);
5489
5490     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5491            "Conversion operator templates are considered potentially "
5492            "viable in C++1y");
5493
5494     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5495     if (Converter.match(CurToType) || ConvTemplate) {
5496
5497       if (Conversion->isExplicit()) {
5498         // FIXME: For C++1y, do we need this restriction?
5499         // cf. diagnoseNoViableConversion()
5500         if (!ConvTemplate)
5501           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5502       } else {
5503         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5504           if (ToType.isNull())
5505             ToType = CurToType.getUnqualifiedType();
5506           else if (HasUniqueTargetType &&
5507                    (CurToType.getUnqualifiedType() != ToType))
5508             HasUniqueTargetType = false;
5509         }
5510         ViableConversions.addDecl(I.getDecl(), I.getAccess());
5511       }
5512     }
5513   }
5514
5515   if (getLangOpts().CPlusPlus14) {
5516     // C++1y [conv]p6:
5517     // ... An expression e of class type E appearing in such a context
5518     // is said to be contextually implicitly converted to a specified
5519     // type T and is well-formed if and only if e can be implicitly
5520     // converted to a type T that is determined as follows: E is searched
5521     // for conversion functions whose return type is cv T or reference to
5522     // cv T such that T is allowed by the context. There shall be
5523     // exactly one such T.
5524
5525     // If no unique T is found:
5526     if (ToType.isNull()) {
5527       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5528                                      HadMultipleCandidates,
5529                                      ExplicitConversions))
5530         return ExprError();
5531       return finishContextualImplicitConversion(*this, Loc, From, Converter);
5532     }
5533
5534     // If more than one unique Ts are found:
5535     if (!HasUniqueTargetType)
5536       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5537                                          ViableConversions);
5538
5539     // If one unique T is found:
5540     // First, build a candidate set from the previously recorded
5541     // potentially viable conversions.
5542     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5543     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5544                                       CandidateSet);
5545
5546     // Then, perform overload resolution over the candidate set.
5547     OverloadCandidateSet::iterator Best;
5548     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5549     case OR_Success: {
5550       // Apply this conversion.
5551       DeclAccessPair Found =
5552           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5553       if (recordConversion(*this, Loc, From, Converter, T,
5554                            HadMultipleCandidates, Found))
5555         return ExprError();
5556       break;
5557     }
5558     case OR_Ambiguous:
5559       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5560                                          ViableConversions);
5561     case OR_No_Viable_Function:
5562       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5563                                      HadMultipleCandidates,
5564                                      ExplicitConversions))
5565         return ExprError();
5566     // fall through 'OR_Deleted' case.
5567     case OR_Deleted:
5568       // We'll complain below about a non-integral condition type.
5569       break;
5570     }
5571   } else {
5572     switch (ViableConversions.size()) {
5573     case 0: {
5574       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5575                                      HadMultipleCandidates,
5576                                      ExplicitConversions))
5577         return ExprError();
5578
5579       // We'll complain below about a non-integral condition type.
5580       break;
5581     }
5582     case 1: {
5583       // Apply this conversion.
5584       DeclAccessPair Found = ViableConversions[0];
5585       if (recordConversion(*this, Loc, From, Converter, T,
5586                            HadMultipleCandidates, Found))
5587         return ExprError();
5588       break;
5589     }
5590     default:
5591       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5592                                          ViableConversions);
5593     }
5594   }
5595
5596   return finishContextualImplicitConversion(*this, Loc, From, Converter);
5597 }
5598
5599 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5600 /// an acceptable non-member overloaded operator for a call whose
5601 /// arguments have types T1 (and, if non-empty, T2). This routine
5602 /// implements the check in C++ [over.match.oper]p3b2 concerning
5603 /// enumeration types.
5604 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5605                                                    FunctionDecl *Fn,
5606                                                    ArrayRef<Expr *> Args) {
5607   QualType T1 = Args[0]->getType();
5608   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5609
5610   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5611     return true;
5612
5613   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5614     return true;
5615
5616   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5617   if (Proto->getNumParams() < 1)
5618     return false;
5619
5620   if (T1->isEnumeralType()) {
5621     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5622     if (Context.hasSameUnqualifiedType(T1, ArgType))
5623       return true;
5624   }
5625
5626   if (Proto->getNumParams() < 2)
5627     return false;
5628
5629   if (!T2.isNull() && T2->isEnumeralType()) {
5630     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5631     if (Context.hasSameUnqualifiedType(T2, ArgType))
5632       return true;
5633   }
5634
5635   return false;
5636 }
5637
5638 /// AddOverloadCandidate - Adds the given function to the set of
5639 /// candidate functions, using the given function call arguments.  If
5640 /// @p SuppressUserConversions, then don't allow user-defined
5641 /// conversions via constructors or conversion operators.
5642 ///
5643 /// \param PartialOverloading true if we are performing "partial" overloading
5644 /// based on an incomplete set of function arguments. This feature is used by
5645 /// code completion.
5646 void
5647 Sema::AddOverloadCandidate(FunctionDecl *Function,
5648                            DeclAccessPair FoundDecl,
5649                            ArrayRef<Expr *> Args,
5650                            OverloadCandidateSet &CandidateSet,
5651                            bool SuppressUserConversions,
5652                            bool PartialOverloading,
5653                            bool AllowExplicit) {
5654   const FunctionProtoType *Proto
5655     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5656   assert(Proto && "Functions without a prototype cannot be overloaded");
5657   assert(!Function->getDescribedFunctionTemplate() &&
5658          "Use AddTemplateOverloadCandidate for function templates");
5659
5660   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5661     if (!isa<CXXConstructorDecl>(Method)) {
5662       // If we get here, it's because we're calling a member function
5663       // that is named without a member access expression (e.g.,
5664       // "this->f") that was either written explicitly or created
5665       // implicitly. This can happen with a qualified call to a member
5666       // function, e.g., X::f(). We use an empty type for the implied
5667       // object argument (C++ [over.call.func]p3), and the acting context
5668       // is irrelevant.
5669       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5670                          QualType(), Expr::Classification::makeSimpleLValue(),
5671                          Args, CandidateSet, SuppressUserConversions,
5672                          PartialOverloading);
5673       return;
5674     }
5675     // We treat a constructor like a non-member function, since its object
5676     // argument doesn't participate in overload resolution.
5677   }
5678
5679   if (!CandidateSet.isNewCandidate(Function))
5680     return;
5681
5682   // C++ [over.match.oper]p3:
5683   //   if no operand has a class type, only those non-member functions in the
5684   //   lookup set that have a first parameter of type T1 or "reference to
5685   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
5686   //   is a right operand) a second parameter of type T2 or "reference to
5687   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
5688   //   candidate functions.
5689   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
5690       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
5691     return;
5692
5693   // C++11 [class.copy]p11: [DR1402]
5694   //   A defaulted move constructor that is defined as deleted is ignored by
5695   //   overload resolution.
5696   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
5697   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
5698       Constructor->isMoveConstructor())
5699     return;
5700
5701   // Overload resolution is always an unevaluated context.
5702   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5703
5704   // Add this candidate
5705   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5706   Candidate.FoundDecl = FoundDecl;
5707   Candidate.Function = Function;
5708   Candidate.Viable = true;
5709   Candidate.IsSurrogate = false;
5710   Candidate.IgnoreObjectArgument = false;
5711   Candidate.ExplicitCallArguments = Args.size();
5712
5713   if (Constructor) {
5714     // C++ [class.copy]p3:
5715     //   A member function template is never instantiated to perform the copy
5716     //   of a class object to an object of its class type.
5717     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5718     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
5719         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5720          IsDerivedFrom(Args[0]->getLocStart(), Args[0]->getType(),
5721                        ClassType))) {
5722       Candidate.Viable = false;
5723       Candidate.FailureKind = ovl_fail_illegal_constructor;
5724       return;
5725     }
5726   }
5727
5728   unsigned NumParams = Proto->getNumParams();
5729
5730   // (C++ 13.3.2p2): A candidate function having fewer than m
5731   // parameters is viable only if it has an ellipsis in its parameter
5732   // list (8.3.5).
5733   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
5734       !Proto->isVariadic()) {
5735     Candidate.Viable = false;
5736     Candidate.FailureKind = ovl_fail_too_many_arguments;
5737     return;
5738   }
5739
5740   // (C++ 13.3.2p2): A candidate function having more than m parameters
5741   // is viable only if the (m+1)st parameter has a default argument
5742   // (8.3.6). For the purposes of overload resolution, the
5743   // parameter list is truncated on the right, so that there are
5744   // exactly m parameters.
5745   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5746   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5747     // Not enough arguments.
5748     Candidate.Viable = false;
5749     Candidate.FailureKind = ovl_fail_too_few_arguments;
5750     return;
5751   }
5752
5753   // (CUDA B.1): Check for invalid calls between targets.
5754   if (getLangOpts().CUDA)
5755     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5756       // Skip the check for callers that are implicit members, because in this
5757       // case we may not yet know what the member's target is; the target is
5758       // inferred for the member automatically, based on the bases and fields of
5759       // the class.
5760       if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
5761         Candidate.Viable = false;
5762         Candidate.FailureKind = ovl_fail_bad_target;
5763         return;
5764       }
5765
5766   // Determine the implicit conversion sequences for each of the
5767   // arguments.
5768   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5769     if (ArgIdx < NumParams) {
5770       // (C++ 13.3.2p3): for F to be a viable function, there shall
5771       // exist for each argument an implicit conversion sequence
5772       // (13.3.3.1) that converts that argument to the corresponding
5773       // parameter of F.
5774       QualType ParamType = Proto->getParamType(ArgIdx);
5775       Candidate.Conversions[ArgIdx]
5776         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5777                                 SuppressUserConversions,
5778                                 /*InOverloadResolution=*/true,
5779                                 /*AllowObjCWritebackConversion=*/
5780                                   getLangOpts().ObjCAutoRefCount,
5781                                 AllowExplicit);
5782       if (Candidate.Conversions[ArgIdx].isBad()) {
5783         Candidate.Viable = false;
5784         Candidate.FailureKind = ovl_fail_bad_conversion;
5785         return;
5786       }
5787     } else {
5788       // (C++ 13.3.2p2): For the purposes of overload resolution, any
5789       // argument for which there is no corresponding parameter is
5790       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5791       Candidate.Conversions[ArgIdx].setEllipsis();
5792     }
5793   }
5794
5795   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
5796     Candidate.Viable = false;
5797     Candidate.FailureKind = ovl_fail_enable_if;
5798     Candidate.DeductionFailure.Data = FailedAttr;
5799     return;
5800   }
5801 }
5802
5803 ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args,
5804                                        bool IsInstance) {
5805   SmallVector<ObjCMethodDecl*, 4> Methods;
5806   if (!CollectMultipleMethodsInGlobalPool(Sel, Methods, IsInstance))
5807     return nullptr;
5808     
5809   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5810     bool Match = true;
5811     ObjCMethodDecl *Method = Methods[b];
5812     unsigned NumNamedArgs = Sel.getNumArgs();
5813     // Method might have more arguments than selector indicates. This is due
5814     // to addition of c-style arguments in method.
5815     if (Method->param_size() > NumNamedArgs)
5816       NumNamedArgs = Method->param_size();
5817     if (Args.size() < NumNamedArgs)
5818       continue;
5819             
5820     for (unsigned i = 0; i < NumNamedArgs; i++) {
5821       // We can't do any type-checking on a type-dependent argument.
5822       if (Args[i]->isTypeDependent()) {
5823         Match = false;
5824         break;
5825       }
5826         
5827       ParmVarDecl *param = Method->parameters()[i];
5828       Expr *argExpr = Args[i];
5829       assert(argExpr && "SelectBestMethod(): missing expression");
5830                 
5831       // Strip the unbridged-cast placeholder expression off unless it's
5832       // a consumed argument.
5833       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
5834           !param->hasAttr<CFConsumedAttr>())
5835         argExpr = stripARCUnbridgedCast(argExpr);
5836                 
5837       // If the parameter is __unknown_anytype, move on to the next method.
5838       if (param->getType() == Context.UnknownAnyTy) {
5839         Match = false;
5840         break;
5841       }
5842
5843       ImplicitConversionSequence ConversionState
5844         = TryCopyInitialization(*this, argExpr, param->getType(),
5845                                 /*SuppressUserConversions*/false,
5846                                 /*InOverloadResolution=*/true,
5847                                 /*AllowObjCWritebackConversion=*/
5848                                 getLangOpts().ObjCAutoRefCount,
5849                                 /*AllowExplicit*/false);
5850         if (ConversionState.isBad()) {
5851           Match = false;
5852           break;
5853         }
5854     }
5855     // Promote additional arguments to variadic methods.
5856     if (Match && Method->isVariadic()) {
5857       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
5858         if (Args[i]->isTypeDependent()) {
5859           Match = false;
5860           break;
5861         }
5862         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
5863                                                           nullptr);
5864         if (Arg.isInvalid()) {
5865           Match = false;
5866           break;
5867         }
5868       }
5869     } else {
5870       // Check for extra arguments to non-variadic methods.
5871       if (Args.size() != NumNamedArgs)
5872         Match = false;
5873       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
5874         // Special case when selectors have no argument. In this case, select
5875         // one with the most general result type of 'id'.
5876         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5877           QualType ReturnT = Methods[b]->getReturnType();
5878           if (ReturnT->isObjCIdType())
5879             return Methods[b];
5880         }
5881       }
5882     }
5883
5884     if (Match)
5885       return Method;
5886   }
5887   return nullptr;
5888 }
5889
5890 // specific_attr_iterator iterates over enable_if attributes in reverse, and
5891 // enable_if is order-sensitive. As a result, we need to reverse things
5892 // sometimes. Size of 4 elements is arbitrary.
5893 static SmallVector<EnableIfAttr *, 4>
5894 getOrderedEnableIfAttrs(const FunctionDecl *Function) {
5895   SmallVector<EnableIfAttr *, 4> Result;
5896   if (!Function->hasAttrs())
5897     return Result;
5898
5899   const auto &FuncAttrs = Function->getAttrs();
5900   for (Attr *Attr : FuncAttrs)
5901     if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr))
5902       Result.push_back(EnableIf);
5903
5904   std::reverse(Result.begin(), Result.end());
5905   return Result;
5906 }
5907
5908 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
5909                                   bool MissingImplicitThis) {
5910   auto EnableIfAttrs = getOrderedEnableIfAttrs(Function);
5911   if (EnableIfAttrs.empty())
5912     return nullptr;
5913
5914   SFINAETrap Trap(*this);
5915   SmallVector<Expr *, 16> ConvertedArgs;
5916   bool InitializationFailed = false;
5917   bool ContainsValueDependentExpr = false;
5918
5919   // Convert the arguments.
5920   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5921     if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
5922         !cast<CXXMethodDecl>(Function)->isStatic() &&
5923         !isa<CXXConstructorDecl>(Function)) {
5924       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
5925       ExprResult R =
5926         PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
5927                                             Method, Method);
5928       if (R.isInvalid()) {
5929         InitializationFailed = true;
5930         break;
5931       }
5932       ContainsValueDependentExpr |= R.get()->isValueDependent();
5933       ConvertedArgs.push_back(R.get());
5934     } else {
5935       ExprResult R =
5936         PerformCopyInitialization(InitializedEntity::InitializeParameter(
5937                                                 Context,
5938                                                 Function->getParamDecl(i)),
5939                                   SourceLocation(),
5940                                   Args[i]);
5941       if (R.isInvalid()) {
5942         InitializationFailed = true;
5943         break;
5944       }
5945       ContainsValueDependentExpr |= R.get()->isValueDependent();
5946       ConvertedArgs.push_back(R.get());
5947     }
5948   }
5949
5950   if (InitializationFailed || Trap.hasErrorOccurred())
5951     return EnableIfAttrs[0];
5952
5953   // Push default arguments if needed.
5954   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
5955     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
5956       ParmVarDecl *P = Function->getParamDecl(i);
5957       ExprResult R = PerformCopyInitialization(
5958           InitializedEntity::InitializeParameter(Context,
5959                                                  Function->getParamDecl(i)),
5960           SourceLocation(),
5961           P->hasUninstantiatedDefaultArg() ? P->getUninstantiatedDefaultArg()
5962                                            : P->getDefaultArg());
5963       if (R.isInvalid()) {
5964         InitializationFailed = true;
5965         break;
5966       }
5967       ContainsValueDependentExpr |= R.get()->isValueDependent();
5968       ConvertedArgs.push_back(R.get());
5969     }
5970
5971     if (InitializationFailed || Trap.hasErrorOccurred())
5972       return EnableIfAttrs[0];
5973   }
5974
5975   for (auto *EIA : EnableIfAttrs) {
5976     APValue Result;
5977     if (EIA->getCond()->isValueDependent()) {
5978       // Don't even try now, we'll examine it after instantiation.
5979       continue;
5980     }
5981
5982     if (!EIA->getCond()->EvaluateWithSubstitution(
5983             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) {
5984       if (!ContainsValueDependentExpr)
5985         return EIA;
5986     } else if (!Result.isInt() || !Result.getInt().getBoolValue()) {
5987       return EIA;
5988     }
5989   }
5990   return nullptr;
5991 }
5992
5993 /// \brief Add all of the function declarations in the given function set to
5994 /// the overload candidate set.
5995 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5996                                  ArrayRef<Expr *> Args,
5997                                  OverloadCandidateSet& CandidateSet,
5998                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
5999                                  bool SuppressUserConversions,
6000                                  bool PartialOverloading) {
6001   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6002     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6003     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6004       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
6005         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6006                            cast<CXXMethodDecl>(FD)->getParent(),
6007                            Args[0]->getType(), Args[0]->Classify(Context),
6008                            Args.slice(1), CandidateSet,
6009                            SuppressUserConversions, PartialOverloading);
6010       else
6011         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
6012                              SuppressUserConversions, PartialOverloading);
6013     } else {
6014       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
6015       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
6016           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
6017         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
6018                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6019                                    ExplicitTemplateArgs,
6020                                    Args[0]->getType(),
6021                                    Args[0]->Classify(Context), Args.slice(1),
6022                                    CandidateSet, SuppressUserConversions,
6023                                    PartialOverloading);
6024       else
6025         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6026                                      ExplicitTemplateArgs, Args,
6027                                      CandidateSet, SuppressUserConversions,
6028                                      PartialOverloading);
6029     }
6030   }
6031 }
6032
6033 /// AddMethodCandidate - Adds a named decl (which is some kind of
6034 /// method) as a method candidate to the given overload set.
6035 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6036                               QualType ObjectType,
6037                               Expr::Classification ObjectClassification,
6038                               ArrayRef<Expr *> Args,
6039                               OverloadCandidateSet& CandidateSet,
6040                               bool SuppressUserConversions) {
6041   NamedDecl *Decl = FoundDecl.getDecl();
6042   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6043
6044   if (isa<UsingShadowDecl>(Decl))
6045     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6046
6047   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6048     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6049            "Expected a member function template");
6050     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6051                                /*ExplicitArgs*/ nullptr,
6052                                ObjectType, ObjectClassification,
6053                                Args, CandidateSet,
6054                                SuppressUserConversions);
6055   } else {
6056     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6057                        ObjectType, ObjectClassification,
6058                        Args,
6059                        CandidateSet, SuppressUserConversions);
6060   }
6061 }
6062
6063 /// AddMethodCandidate - Adds the given C++ member function to the set
6064 /// of candidate functions, using the given function call arguments
6065 /// and the object argument (@c Object). For example, in a call
6066 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6067 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6068 /// allow user-defined conversions via constructors or conversion
6069 /// operators.
6070 void
6071 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6072                          CXXRecordDecl *ActingContext, QualType ObjectType,
6073                          Expr::Classification ObjectClassification,
6074                          ArrayRef<Expr *> Args,
6075                          OverloadCandidateSet &CandidateSet,
6076                          bool SuppressUserConversions,
6077                          bool PartialOverloading) {
6078   const FunctionProtoType *Proto
6079     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6080   assert(Proto && "Methods without a prototype cannot be overloaded");
6081   assert(!isa<CXXConstructorDecl>(Method) &&
6082          "Use AddOverloadCandidate for constructors");
6083
6084   if (!CandidateSet.isNewCandidate(Method))
6085     return;
6086
6087   // C++11 [class.copy]p23: [DR1402]
6088   //   A defaulted move assignment operator that is defined as deleted is
6089   //   ignored by overload resolution.
6090   if (Method->isDefaulted() && Method->isDeleted() &&
6091       Method->isMoveAssignmentOperator())
6092     return;
6093
6094   // Overload resolution is always an unevaluated context.
6095   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6096
6097   // Add this candidate
6098   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6099   Candidate.FoundDecl = FoundDecl;
6100   Candidate.Function = Method;
6101   Candidate.IsSurrogate = false;
6102   Candidate.IgnoreObjectArgument = false;
6103   Candidate.ExplicitCallArguments = Args.size();
6104
6105   unsigned NumParams = Proto->getNumParams();
6106
6107   // (C++ 13.3.2p2): A candidate function having fewer than m
6108   // parameters is viable only if it has an ellipsis in its parameter
6109   // list (8.3.5).
6110   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6111       !Proto->isVariadic()) {
6112     Candidate.Viable = false;
6113     Candidate.FailureKind = ovl_fail_too_many_arguments;
6114     return;
6115   }
6116
6117   // (C++ 13.3.2p2): A candidate function having more than m parameters
6118   // is viable only if the (m+1)st parameter has a default argument
6119   // (8.3.6). For the purposes of overload resolution, the
6120   // parameter list is truncated on the right, so that there are
6121   // exactly m parameters.
6122   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6123   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6124     // Not enough arguments.
6125     Candidate.Viable = false;
6126     Candidate.FailureKind = ovl_fail_too_few_arguments;
6127     return;
6128   }
6129
6130   Candidate.Viable = true;
6131
6132   if (Method->isStatic() || ObjectType.isNull())
6133     // The implicit object argument is ignored.
6134     Candidate.IgnoreObjectArgument = true;
6135   else {
6136     // Determine the implicit conversion sequence for the object
6137     // parameter.
6138     Candidate.Conversions[0] = TryObjectArgumentInitialization(
6139         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6140         Method, ActingContext);
6141     if (Candidate.Conversions[0].isBad()) {
6142       Candidate.Viable = false;
6143       Candidate.FailureKind = ovl_fail_bad_conversion;
6144       return;
6145     }
6146   }
6147
6148   // (CUDA B.1): Check for invalid calls between targets.
6149   if (getLangOpts().CUDA)
6150     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6151       if (CheckCUDATarget(Caller, Method)) {
6152         Candidate.Viable = false;
6153         Candidate.FailureKind = ovl_fail_bad_target;
6154         return;
6155       }
6156
6157   // Determine the implicit conversion sequences for each of the
6158   // arguments.
6159   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6160     if (ArgIdx < NumParams) {
6161       // (C++ 13.3.2p3): for F to be a viable function, there shall
6162       // exist for each argument an implicit conversion sequence
6163       // (13.3.3.1) that converts that argument to the corresponding
6164       // parameter of F.
6165       QualType ParamType = Proto->getParamType(ArgIdx);
6166       Candidate.Conversions[ArgIdx + 1]
6167         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6168                                 SuppressUserConversions,
6169                                 /*InOverloadResolution=*/true,
6170                                 /*AllowObjCWritebackConversion=*/
6171                                   getLangOpts().ObjCAutoRefCount);
6172       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6173         Candidate.Viable = false;
6174         Candidate.FailureKind = ovl_fail_bad_conversion;
6175         return;
6176       }
6177     } else {
6178       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6179       // argument for which there is no corresponding parameter is
6180       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6181       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6182     }
6183   }
6184
6185   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6186     Candidate.Viable = false;
6187     Candidate.FailureKind = ovl_fail_enable_if;
6188     Candidate.DeductionFailure.Data = FailedAttr;
6189     return;
6190   }
6191 }
6192
6193 /// \brief Add a C++ member function template as a candidate to the candidate
6194 /// set, using template argument deduction to produce an appropriate member
6195 /// function template specialization.
6196 void
6197 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6198                                  DeclAccessPair FoundDecl,
6199                                  CXXRecordDecl *ActingContext,
6200                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6201                                  QualType ObjectType,
6202                                  Expr::Classification ObjectClassification,
6203                                  ArrayRef<Expr *> Args,
6204                                  OverloadCandidateSet& CandidateSet,
6205                                  bool SuppressUserConversions,
6206                                  bool PartialOverloading) {
6207   if (!CandidateSet.isNewCandidate(MethodTmpl))
6208     return;
6209
6210   // C++ [over.match.funcs]p7:
6211   //   In each case where a candidate is a function template, candidate
6212   //   function template specializations are generated using template argument
6213   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6214   //   candidate functions in the usual way.113) A given name can refer to one
6215   //   or more function templates and also to a set of overloaded non-template
6216   //   functions. In such a case, the candidate functions generated from each
6217   //   function template are combined with the set of non-template candidate
6218   //   functions.
6219   TemplateDeductionInfo Info(CandidateSet.getLocation());
6220   FunctionDecl *Specialization = nullptr;
6221   if (TemplateDeductionResult Result
6222       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
6223                                 Specialization, Info, PartialOverloading)) {
6224     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6225     Candidate.FoundDecl = FoundDecl;
6226     Candidate.Function = MethodTmpl->getTemplatedDecl();
6227     Candidate.Viable = false;
6228     Candidate.FailureKind = ovl_fail_bad_deduction;
6229     Candidate.IsSurrogate = false;
6230     Candidate.IgnoreObjectArgument = false;
6231     Candidate.ExplicitCallArguments = Args.size();
6232     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6233                                                           Info);
6234     return;
6235   }
6236
6237   // Add the function template specialization produced by template argument
6238   // deduction as a candidate.
6239   assert(Specialization && "Missing member function template specialization?");
6240   assert(isa<CXXMethodDecl>(Specialization) &&
6241          "Specialization is not a member function?");
6242   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6243                      ActingContext, ObjectType, ObjectClassification, Args,
6244                      CandidateSet, SuppressUserConversions, PartialOverloading);
6245 }
6246
6247 /// \brief Add a C++ function template specialization as a candidate
6248 /// in the candidate set, using template argument deduction to produce
6249 /// an appropriate function template specialization.
6250 void
6251 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
6252                                    DeclAccessPair FoundDecl,
6253                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6254                                    ArrayRef<Expr *> Args,
6255                                    OverloadCandidateSet& CandidateSet,
6256                                    bool SuppressUserConversions,
6257                                    bool PartialOverloading) {
6258   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6259     return;
6260
6261   // C++ [over.match.funcs]p7:
6262   //   In each case where a candidate is a function template, candidate
6263   //   function template specializations are generated using template argument
6264   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6265   //   candidate functions in the usual way.113) A given name can refer to one
6266   //   or more function templates and also to a set of overloaded non-template
6267   //   functions. In such a case, the candidate functions generated from each
6268   //   function template are combined with the set of non-template candidate
6269   //   functions.
6270   TemplateDeductionInfo Info(CandidateSet.getLocation());
6271   FunctionDecl *Specialization = nullptr;
6272   if (TemplateDeductionResult Result
6273         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
6274                                   Specialization, Info, PartialOverloading)) {
6275     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6276     Candidate.FoundDecl = FoundDecl;
6277     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6278     Candidate.Viable = false;
6279     Candidate.FailureKind = ovl_fail_bad_deduction;
6280     Candidate.IsSurrogate = false;
6281     Candidate.IgnoreObjectArgument = false;
6282     Candidate.ExplicitCallArguments = Args.size();
6283     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6284                                                           Info);
6285     return;
6286   }
6287
6288   // Add the function template specialization produced by template argument
6289   // deduction as a candidate.
6290   assert(Specialization && "Missing function template specialization?");
6291   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
6292                        SuppressUserConversions, PartialOverloading);
6293 }
6294
6295 /// Determine whether this is an allowable conversion from the result
6296 /// of an explicit conversion operator to the expected type, per C++
6297 /// [over.match.conv]p1 and [over.match.ref]p1.
6298 ///
6299 /// \param ConvType The return type of the conversion function.
6300 ///
6301 /// \param ToType The type we are converting to.
6302 ///
6303 /// \param AllowObjCPointerConversion Allow a conversion from one
6304 /// Objective-C pointer to another.
6305 ///
6306 /// \returns true if the conversion is allowable, false otherwise.
6307 static bool isAllowableExplicitConversion(Sema &S,
6308                                           QualType ConvType, QualType ToType,
6309                                           bool AllowObjCPointerConversion) {
6310   QualType ToNonRefType = ToType.getNonReferenceType();
6311
6312   // Easy case: the types are the same.
6313   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6314     return true;
6315
6316   // Allow qualification conversions.
6317   bool ObjCLifetimeConversion;
6318   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6319                                   ObjCLifetimeConversion))
6320     return true;
6321
6322   // If we're not allowed to consider Objective-C pointer conversions,
6323   // we're done.
6324   if (!AllowObjCPointerConversion)
6325     return false;
6326
6327   // Is this an Objective-C pointer conversion?
6328   bool IncompatibleObjC = false;
6329   QualType ConvertedType;
6330   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6331                                    IncompatibleObjC);
6332 }
6333                                           
6334 /// AddConversionCandidate - Add a C++ conversion function as a
6335 /// candidate in the candidate set (C++ [over.match.conv],
6336 /// C++ [over.match.copy]). From is the expression we're converting from,
6337 /// and ToType is the type that we're eventually trying to convert to
6338 /// (which may or may not be the same type as the type that the
6339 /// conversion function produces).
6340 void
6341 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
6342                              DeclAccessPair FoundDecl,
6343                              CXXRecordDecl *ActingContext,
6344                              Expr *From, QualType ToType,
6345                              OverloadCandidateSet& CandidateSet,
6346                              bool AllowObjCConversionOnExplicit) {
6347   assert(!Conversion->getDescribedFunctionTemplate() &&
6348          "Conversion function templates use AddTemplateConversionCandidate");
6349   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6350   if (!CandidateSet.isNewCandidate(Conversion))
6351     return;
6352
6353   // If the conversion function has an undeduced return type, trigger its
6354   // deduction now.
6355   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6356     if (DeduceReturnType(Conversion, From->getExprLoc()))
6357       return;
6358     ConvType = Conversion->getConversionType().getNonReferenceType();
6359   }
6360
6361   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6362   // operator is only a candidate if its return type is the target type or
6363   // can be converted to the target type with a qualification conversion.
6364   if (Conversion->isExplicit() && 
6365       !isAllowableExplicitConversion(*this, ConvType, ToType, 
6366                                      AllowObjCConversionOnExplicit))
6367     return;
6368
6369   // Overload resolution is always an unevaluated context.
6370   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6371
6372   // Add this candidate
6373   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6374   Candidate.FoundDecl = FoundDecl;
6375   Candidate.Function = Conversion;
6376   Candidate.IsSurrogate = false;
6377   Candidate.IgnoreObjectArgument = false;
6378   Candidate.FinalConversion.setAsIdentityConversion();
6379   Candidate.FinalConversion.setFromType(ConvType);
6380   Candidate.FinalConversion.setAllToTypes(ToType);
6381   Candidate.Viable = true;
6382   Candidate.ExplicitCallArguments = 1;
6383
6384   // C++ [over.match.funcs]p4:
6385   //   For conversion functions, the function is considered to be a member of
6386   //   the class of the implicit implied object argument for the purpose of
6387   //   defining the type of the implicit object parameter.
6388   //
6389   // Determine the implicit conversion sequence for the implicit
6390   // object parameter.
6391   QualType ImplicitParamType = From->getType();
6392   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6393     ImplicitParamType = FromPtrType->getPointeeType();
6394   CXXRecordDecl *ConversionContext
6395     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6396
6397   Candidate.Conversions[0] = TryObjectArgumentInitialization(
6398       *this, CandidateSet.getLocation(), From->getType(),
6399       From->Classify(Context), Conversion, ConversionContext);
6400
6401   if (Candidate.Conversions[0].isBad()) {
6402     Candidate.Viable = false;
6403     Candidate.FailureKind = ovl_fail_bad_conversion;
6404     return;
6405   }
6406
6407   // We won't go through a user-defined type conversion function to convert a
6408   // derived to base as such conversions are given Conversion Rank. They only
6409   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
6410   QualType FromCanon
6411     = Context.getCanonicalType(From->getType().getUnqualifiedType());
6412   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
6413   if (FromCanon == ToCanon ||
6414       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
6415     Candidate.Viable = false;
6416     Candidate.FailureKind = ovl_fail_trivial_conversion;
6417     return;
6418   }
6419
6420   // To determine what the conversion from the result of calling the
6421   // conversion function to the type we're eventually trying to
6422   // convert to (ToType), we need to synthesize a call to the
6423   // conversion function and attempt copy initialization from it. This
6424   // makes sure that we get the right semantics with respect to
6425   // lvalues/rvalues and the type. Fortunately, we can allocate this
6426   // call on the stack and we don't need its arguments to be
6427   // well-formed.
6428   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
6429                             VK_LValue, From->getLocStart());
6430   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
6431                                 Context.getPointerType(Conversion->getType()),
6432                                 CK_FunctionToPointerDecay,
6433                                 &ConversionRef, VK_RValue);
6434
6435   QualType ConversionType = Conversion->getConversionType();
6436   if (!isCompleteType(From->getLocStart(), ConversionType)) {
6437     Candidate.Viable = false;
6438     Candidate.FailureKind = ovl_fail_bad_final_conversion;
6439     return;
6440   }
6441
6442   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
6443
6444   // Note that it is safe to allocate CallExpr on the stack here because
6445   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
6446   // allocator).
6447   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
6448   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
6449                 From->getLocStart());
6450   ImplicitConversionSequence ICS =
6451     TryCopyInitialization(*this, &Call, ToType,
6452                           /*SuppressUserConversions=*/true,
6453                           /*InOverloadResolution=*/false,
6454                           /*AllowObjCWritebackConversion=*/false);
6455
6456   switch (ICS.getKind()) {
6457   case ImplicitConversionSequence::StandardConversion:
6458     Candidate.FinalConversion = ICS.Standard;
6459
6460     // C++ [over.ics.user]p3:
6461     //   If the user-defined conversion is specified by a specialization of a
6462     //   conversion function template, the second standard conversion sequence
6463     //   shall have exact match rank.
6464     if (Conversion->getPrimaryTemplate() &&
6465         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
6466       Candidate.Viable = false;
6467       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
6468       return;
6469     }
6470
6471     // C++0x [dcl.init.ref]p5:
6472     //    In the second case, if the reference is an rvalue reference and
6473     //    the second standard conversion sequence of the user-defined
6474     //    conversion sequence includes an lvalue-to-rvalue conversion, the
6475     //    program is ill-formed.
6476     if (ToType->isRValueReferenceType() &&
6477         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6478       Candidate.Viable = false;
6479       Candidate.FailureKind = ovl_fail_bad_final_conversion;
6480       return;
6481     }
6482     break;
6483
6484   case ImplicitConversionSequence::BadConversion:
6485     Candidate.Viable = false;
6486     Candidate.FailureKind = ovl_fail_bad_final_conversion;
6487     return;
6488
6489   default:
6490     llvm_unreachable(
6491            "Can only end up with a standard conversion sequence or failure");
6492   }
6493
6494   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6495     Candidate.Viable = false;
6496     Candidate.FailureKind = ovl_fail_enable_if;
6497     Candidate.DeductionFailure.Data = FailedAttr;
6498     return;
6499   }
6500 }
6501
6502 /// \brief Adds a conversion function template specialization
6503 /// candidate to the overload set, using template argument deduction
6504 /// to deduce the template arguments of the conversion function
6505 /// template from the type that we are converting to (C++
6506 /// [temp.deduct.conv]).
6507 void
6508 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
6509                                      DeclAccessPair FoundDecl,
6510                                      CXXRecordDecl *ActingDC,
6511                                      Expr *From, QualType ToType,
6512                                      OverloadCandidateSet &CandidateSet,
6513                                      bool AllowObjCConversionOnExplicit) {
6514   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
6515          "Only conversion function templates permitted here");
6516
6517   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6518     return;
6519
6520   TemplateDeductionInfo Info(CandidateSet.getLocation());
6521   CXXConversionDecl *Specialization = nullptr;
6522   if (TemplateDeductionResult Result
6523         = DeduceTemplateArguments(FunctionTemplate, ToType,
6524                                   Specialization, Info)) {
6525     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6526     Candidate.FoundDecl = FoundDecl;
6527     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6528     Candidate.Viable = false;
6529     Candidate.FailureKind = ovl_fail_bad_deduction;
6530     Candidate.IsSurrogate = false;
6531     Candidate.IgnoreObjectArgument = false;
6532     Candidate.ExplicitCallArguments = 1;
6533     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6534                                                           Info);
6535     return;
6536   }
6537
6538   // Add the conversion function template specialization produced by
6539   // template argument deduction as a candidate.
6540   assert(Specialization && "Missing function template specialization?");
6541   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6542                          CandidateSet, AllowObjCConversionOnExplicit);
6543 }
6544
6545 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6546 /// converts the given @c Object to a function pointer via the
6547 /// conversion function @c Conversion, and then attempts to call it
6548 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
6549 /// the type of function that we'll eventually be calling.
6550 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6551                                  DeclAccessPair FoundDecl,
6552                                  CXXRecordDecl *ActingContext,
6553                                  const FunctionProtoType *Proto,
6554                                  Expr *Object,
6555                                  ArrayRef<Expr *> Args,
6556                                  OverloadCandidateSet& CandidateSet) {
6557   if (!CandidateSet.isNewCandidate(Conversion))
6558     return;
6559
6560   // Overload resolution is always an unevaluated context.
6561   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6562
6563   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6564   Candidate.FoundDecl = FoundDecl;
6565   Candidate.Function = nullptr;
6566   Candidate.Surrogate = Conversion;
6567   Candidate.Viable = true;
6568   Candidate.IsSurrogate = true;
6569   Candidate.IgnoreObjectArgument = false;
6570   Candidate.ExplicitCallArguments = Args.size();
6571
6572   // Determine the implicit conversion sequence for the implicit
6573   // object parameter.
6574   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
6575       *this, CandidateSet.getLocation(), Object->getType(),
6576       Object->Classify(Context), Conversion, ActingContext);
6577   if (ObjectInit.isBad()) {
6578     Candidate.Viable = false;
6579     Candidate.FailureKind = ovl_fail_bad_conversion;
6580     Candidate.Conversions[0] = ObjectInit;
6581     return;
6582   }
6583
6584   // The first conversion is actually a user-defined conversion whose
6585   // first conversion is ObjectInit's standard conversion (which is
6586   // effectively a reference binding). Record it as such.
6587   Candidate.Conversions[0].setUserDefined();
6588   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6589   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6590   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6591   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6592   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6593   Candidate.Conversions[0].UserDefined.After
6594     = Candidate.Conversions[0].UserDefined.Before;
6595   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6596
6597   // Find the
6598   unsigned NumParams = Proto->getNumParams();
6599
6600   // (C++ 13.3.2p2): A candidate function having fewer than m
6601   // parameters is viable only if it has an ellipsis in its parameter
6602   // list (8.3.5).
6603   if (Args.size() > NumParams && !Proto->isVariadic()) {
6604     Candidate.Viable = false;
6605     Candidate.FailureKind = ovl_fail_too_many_arguments;
6606     return;
6607   }
6608
6609   // Function types don't have any default arguments, so just check if
6610   // we have enough arguments.
6611   if (Args.size() < NumParams) {
6612     // Not enough arguments.
6613     Candidate.Viable = false;
6614     Candidate.FailureKind = ovl_fail_too_few_arguments;
6615     return;
6616   }
6617
6618   // Determine the implicit conversion sequences for each of the
6619   // arguments.
6620   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6621     if (ArgIdx < NumParams) {
6622       // (C++ 13.3.2p3): for F to be a viable function, there shall
6623       // exist for each argument an implicit conversion sequence
6624       // (13.3.3.1) that converts that argument to the corresponding
6625       // parameter of F.
6626       QualType ParamType = Proto->getParamType(ArgIdx);
6627       Candidate.Conversions[ArgIdx + 1]
6628         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6629                                 /*SuppressUserConversions=*/false,
6630                                 /*InOverloadResolution=*/false,
6631                                 /*AllowObjCWritebackConversion=*/
6632                                   getLangOpts().ObjCAutoRefCount);
6633       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6634         Candidate.Viable = false;
6635         Candidate.FailureKind = ovl_fail_bad_conversion;
6636         return;
6637       }
6638     } else {
6639       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6640       // argument for which there is no corresponding parameter is
6641       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6642       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6643     }
6644   }
6645
6646   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6647     Candidate.Viable = false;
6648     Candidate.FailureKind = ovl_fail_enable_if;
6649     Candidate.DeductionFailure.Data = FailedAttr;
6650     return;
6651   }
6652 }
6653
6654 /// \brief Add overload candidates for overloaded operators that are
6655 /// member functions.
6656 ///
6657 /// Add the overloaded operator candidates that are member functions
6658 /// for the operator Op that was used in an operator expression such
6659 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
6660 /// CandidateSet will store the added overload candidates. (C++
6661 /// [over.match.oper]).
6662 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6663                                        SourceLocation OpLoc,
6664                                        ArrayRef<Expr *> Args,
6665                                        OverloadCandidateSet& CandidateSet,
6666                                        SourceRange OpRange) {
6667   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6668
6669   // C++ [over.match.oper]p3:
6670   //   For a unary operator @ with an operand of a type whose
6671   //   cv-unqualified version is T1, and for a binary operator @ with
6672   //   a left operand of a type whose cv-unqualified version is T1 and
6673   //   a right operand of a type whose cv-unqualified version is T2,
6674   //   three sets of candidate functions, designated member
6675   //   candidates, non-member candidates and built-in candidates, are
6676   //   constructed as follows:
6677   QualType T1 = Args[0]->getType();
6678
6679   //     -- If T1 is a complete class type or a class currently being
6680   //        defined, the set of member candidates is the result of the
6681   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6682   //        the set of member candidates is empty.
6683   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6684     // Complete the type if it can be completed.
6685     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
6686       return;
6687     // If the type is neither complete nor being defined, bail out now.
6688     if (!T1Rec->getDecl()->getDefinition())
6689       return;
6690
6691     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6692     LookupQualifiedName(Operators, T1Rec->getDecl());
6693     Operators.suppressDiagnostics();
6694
6695     for (LookupResult::iterator Oper = Operators.begin(),
6696                              OperEnd = Operators.end();
6697          Oper != OperEnd;
6698          ++Oper)
6699       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6700                          Args[0]->Classify(Context), 
6701                          Args.slice(1),
6702                          CandidateSet,
6703                          /* SuppressUserConversions = */ false);
6704   }
6705 }
6706
6707 /// AddBuiltinCandidate - Add a candidate for a built-in
6708 /// operator. ResultTy and ParamTys are the result and parameter types
6709 /// of the built-in candidate, respectively. Args and NumArgs are the
6710 /// arguments being passed to the candidate. IsAssignmentOperator
6711 /// should be true when this built-in candidate is an assignment
6712 /// operator. NumContextualBoolArguments is the number of arguments
6713 /// (at the beginning of the argument list) that will be contextually
6714 /// converted to bool.
6715 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6716                                ArrayRef<Expr *> Args,
6717                                OverloadCandidateSet& CandidateSet,
6718                                bool IsAssignmentOperator,
6719                                unsigned NumContextualBoolArguments) {
6720   // Overload resolution is always an unevaluated context.
6721   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6722
6723   // Add this candidate
6724   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6725   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
6726   Candidate.Function = nullptr;
6727   Candidate.IsSurrogate = false;
6728   Candidate.IgnoreObjectArgument = false;
6729   Candidate.BuiltinTypes.ResultTy = ResultTy;
6730   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6731     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6732
6733   // Determine the implicit conversion sequences for each of the
6734   // arguments.
6735   Candidate.Viable = true;
6736   Candidate.ExplicitCallArguments = Args.size();
6737   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6738     // C++ [over.match.oper]p4:
6739     //   For the built-in assignment operators, conversions of the
6740     //   left operand are restricted as follows:
6741     //     -- no temporaries are introduced to hold the left operand, and
6742     //     -- no user-defined conversions are applied to the left
6743     //        operand to achieve a type match with the left-most
6744     //        parameter of a built-in candidate.
6745     //
6746     // We block these conversions by turning off user-defined
6747     // conversions, since that is the only way that initialization of
6748     // a reference to a non-class type can occur from something that
6749     // is not of the same type.
6750     if (ArgIdx < NumContextualBoolArguments) {
6751       assert(ParamTys[ArgIdx] == Context.BoolTy &&
6752              "Contextual conversion to bool requires bool type");
6753       Candidate.Conversions[ArgIdx]
6754         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6755     } else {
6756       Candidate.Conversions[ArgIdx]
6757         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6758                                 ArgIdx == 0 && IsAssignmentOperator,
6759                                 /*InOverloadResolution=*/false,
6760                                 /*AllowObjCWritebackConversion=*/
6761                                   getLangOpts().ObjCAutoRefCount);
6762     }
6763     if (Candidate.Conversions[ArgIdx].isBad()) {
6764       Candidate.Viable = false;
6765       Candidate.FailureKind = ovl_fail_bad_conversion;
6766       break;
6767     }
6768   }
6769 }
6770
6771 namespace {
6772
6773 /// BuiltinCandidateTypeSet - A set of types that will be used for the
6774 /// candidate operator functions for built-in operators (C++
6775 /// [over.built]). The types are separated into pointer types and
6776 /// enumeration types.
6777 class BuiltinCandidateTypeSet  {
6778   /// TypeSet - A set of types.
6779   typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6780
6781   /// PointerTypes - The set of pointer types that will be used in the
6782   /// built-in candidates.
6783   TypeSet PointerTypes;
6784
6785   /// MemberPointerTypes - The set of member pointer types that will be
6786   /// used in the built-in candidates.
6787   TypeSet MemberPointerTypes;
6788
6789   /// EnumerationTypes - The set of enumeration types that will be
6790   /// used in the built-in candidates.
6791   TypeSet EnumerationTypes;
6792
6793   /// \brief The set of vector types that will be used in the built-in
6794   /// candidates.
6795   TypeSet VectorTypes;
6796
6797   /// \brief A flag indicating non-record types are viable candidates
6798   bool HasNonRecordTypes;
6799
6800   /// \brief A flag indicating whether either arithmetic or enumeration types
6801   /// were present in the candidate set.
6802   bool HasArithmeticOrEnumeralTypes;
6803
6804   /// \brief A flag indicating whether the nullptr type was present in the
6805   /// candidate set.
6806   bool HasNullPtrType;
6807   
6808   /// Sema - The semantic analysis instance where we are building the
6809   /// candidate type set.
6810   Sema &SemaRef;
6811
6812   /// Context - The AST context in which we will build the type sets.
6813   ASTContext &Context;
6814
6815   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6816                                                const Qualifiers &VisibleQuals);
6817   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6818
6819 public:
6820   /// iterator - Iterates through the types that are part of the set.
6821   typedef TypeSet::iterator iterator;
6822
6823   BuiltinCandidateTypeSet(Sema &SemaRef)
6824     : HasNonRecordTypes(false),
6825       HasArithmeticOrEnumeralTypes(false),
6826       HasNullPtrType(false),
6827       SemaRef(SemaRef),
6828       Context(SemaRef.Context) { }
6829
6830   void AddTypesConvertedFrom(QualType Ty,
6831                              SourceLocation Loc,
6832                              bool AllowUserConversions,
6833                              bool AllowExplicitConversions,
6834                              const Qualifiers &VisibleTypeConversionsQuals);
6835
6836   /// pointer_begin - First pointer type found;
6837   iterator pointer_begin() { return PointerTypes.begin(); }
6838
6839   /// pointer_end - Past the last pointer type found;
6840   iterator pointer_end() { return PointerTypes.end(); }
6841
6842   /// member_pointer_begin - First member pointer type found;
6843   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6844
6845   /// member_pointer_end - Past the last member pointer type found;
6846   iterator member_pointer_end() { return MemberPointerTypes.end(); }
6847
6848   /// enumeration_begin - First enumeration type found;
6849   iterator enumeration_begin() { return EnumerationTypes.begin(); }
6850
6851   /// enumeration_end - Past the last enumeration type found;
6852   iterator enumeration_end() { return EnumerationTypes.end(); }
6853
6854   iterator vector_begin() { return VectorTypes.begin(); }
6855   iterator vector_end() { return VectorTypes.end(); }
6856
6857   bool hasNonRecordTypes() { return HasNonRecordTypes; }
6858   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6859   bool hasNullPtrType() const { return HasNullPtrType; }
6860 };
6861
6862 } // end anonymous namespace
6863
6864 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6865 /// the set of pointer types along with any more-qualified variants of
6866 /// that type. For example, if @p Ty is "int const *", this routine
6867 /// will add "int const *", "int const volatile *", "int const
6868 /// restrict *", and "int const volatile restrict *" to the set of
6869 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6870 /// false otherwise.
6871 ///
6872 /// FIXME: what to do about extended qualifiers?
6873 bool
6874 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6875                                              const Qualifiers &VisibleQuals) {
6876
6877   // Insert this type.
6878   if (!PointerTypes.insert(Ty).second)
6879     return false;
6880
6881   QualType PointeeTy;
6882   const PointerType *PointerTy = Ty->getAs<PointerType>();
6883   bool buildObjCPtr = false;
6884   if (!PointerTy) {
6885     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6886     PointeeTy = PTy->getPointeeType();
6887     buildObjCPtr = true;
6888   } else {
6889     PointeeTy = PointerTy->getPointeeType();
6890   }
6891   
6892   // Don't add qualified variants of arrays. For one, they're not allowed
6893   // (the qualifier would sink to the element type), and for another, the
6894   // only overload situation where it matters is subscript or pointer +- int,
6895   // and those shouldn't have qualifier variants anyway.
6896   if (PointeeTy->isArrayType())
6897     return true;
6898   
6899   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6900   bool hasVolatile = VisibleQuals.hasVolatile();
6901   bool hasRestrict = VisibleQuals.hasRestrict();
6902
6903   // Iterate through all strict supersets of BaseCVR.
6904   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6905     if ((CVR | BaseCVR) != CVR) continue;
6906     // Skip over volatile if no volatile found anywhere in the types.
6907     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6908     
6909     // Skip over restrict if no restrict found anywhere in the types, or if
6910     // the type cannot be restrict-qualified.
6911     if ((CVR & Qualifiers::Restrict) &&
6912         (!hasRestrict ||
6913          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6914       continue;
6915   
6916     // Build qualified pointee type.
6917     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6918     
6919     // Build qualified pointer type.
6920     QualType QPointerTy;
6921     if (!buildObjCPtr)
6922       QPointerTy = Context.getPointerType(QPointeeTy);
6923     else
6924       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6925     
6926     // Insert qualified pointer type.
6927     PointerTypes.insert(QPointerTy);
6928   }
6929
6930   return true;
6931 }
6932
6933 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6934 /// to the set of pointer types along with any more-qualified variants of
6935 /// that type. For example, if @p Ty is "int const *", this routine
6936 /// will add "int const *", "int const volatile *", "int const
6937 /// restrict *", and "int const volatile restrict *" to the set of
6938 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6939 /// false otherwise.
6940 ///
6941 /// FIXME: what to do about extended qualifiers?
6942 bool
6943 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6944     QualType Ty) {
6945   // Insert this type.
6946   if (!MemberPointerTypes.insert(Ty).second)
6947     return false;
6948
6949   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6950   assert(PointerTy && "type was not a member pointer type!");
6951
6952   QualType PointeeTy = PointerTy->getPointeeType();
6953   // Don't add qualified variants of arrays. For one, they're not allowed
6954   // (the qualifier would sink to the element type), and for another, the
6955   // only overload situation where it matters is subscript or pointer +- int,
6956   // and those shouldn't have qualifier variants anyway.
6957   if (PointeeTy->isArrayType())
6958     return true;
6959   const Type *ClassTy = PointerTy->getClass();
6960
6961   // Iterate through all strict supersets of the pointee type's CVR
6962   // qualifiers.
6963   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6964   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6965     if ((CVR | BaseCVR) != CVR) continue;
6966
6967     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6968     MemberPointerTypes.insert(
6969       Context.getMemberPointerType(QPointeeTy, ClassTy));
6970   }
6971
6972   return true;
6973 }
6974
6975 /// AddTypesConvertedFrom - Add each of the types to which the type @p
6976 /// Ty can be implicit converted to the given set of @p Types. We're
6977 /// primarily interested in pointer types and enumeration types. We also
6978 /// take member pointer types, for the conditional operator.
6979 /// AllowUserConversions is true if we should look at the conversion
6980 /// functions of a class type, and AllowExplicitConversions if we
6981 /// should also include the explicit conversion functions of a class
6982 /// type.
6983 void
6984 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6985                                                SourceLocation Loc,
6986                                                bool AllowUserConversions,
6987                                                bool AllowExplicitConversions,
6988                                                const Qualifiers &VisibleQuals) {
6989   // Only deal with canonical types.
6990   Ty = Context.getCanonicalType(Ty);
6991
6992   // Look through reference types; they aren't part of the type of an
6993   // expression for the purposes of conversions.
6994   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6995     Ty = RefTy->getPointeeType();
6996
6997   // If we're dealing with an array type, decay to the pointer.
6998   if (Ty->isArrayType())
6999     Ty = SemaRef.Context.getArrayDecayedType(Ty);
7000
7001   // Otherwise, we don't care about qualifiers on the type.
7002   Ty = Ty.getLocalUnqualifiedType();
7003
7004   // Flag if we ever add a non-record type.
7005   const RecordType *TyRec = Ty->getAs<RecordType>();
7006   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7007
7008   // Flag if we encounter an arithmetic type.
7009   HasArithmeticOrEnumeralTypes =
7010     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7011
7012   if (Ty->isObjCIdType() || Ty->isObjCClassType())
7013     PointerTypes.insert(Ty);
7014   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7015     // Insert our type, and its more-qualified variants, into the set
7016     // of types.
7017     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7018       return;
7019   } else if (Ty->isMemberPointerType()) {
7020     // Member pointers are far easier, since the pointee can't be converted.
7021     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7022       return;
7023   } else if (Ty->isEnumeralType()) {
7024     HasArithmeticOrEnumeralTypes = true;
7025     EnumerationTypes.insert(Ty);
7026   } else if (Ty->isVectorType()) {
7027     // We treat vector types as arithmetic types in many contexts as an
7028     // extension.
7029     HasArithmeticOrEnumeralTypes = true;
7030     VectorTypes.insert(Ty);
7031   } else if (Ty->isNullPtrType()) {
7032     HasNullPtrType = true;
7033   } else if (AllowUserConversions && TyRec) {
7034     // No conversion functions in incomplete types.
7035     if (!SemaRef.isCompleteType(Loc, Ty))
7036       return;
7037
7038     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7039     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7040       if (isa<UsingShadowDecl>(D))
7041         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7042
7043       // Skip conversion function templates; they don't tell us anything
7044       // about which builtin types we can convert to.
7045       if (isa<FunctionTemplateDecl>(D))
7046         continue;
7047
7048       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7049       if (AllowExplicitConversions || !Conv->isExplicit()) {
7050         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7051                               VisibleQuals);
7052       }
7053     }
7054   }
7055 }
7056
7057 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
7058 /// the volatile- and non-volatile-qualified assignment operators for the
7059 /// given type to the candidate set.
7060 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7061                                                    QualType T,
7062                                                    ArrayRef<Expr *> Args,
7063                                     OverloadCandidateSet &CandidateSet) {
7064   QualType ParamTypes[2];
7065
7066   // T& operator=(T&, T)
7067   ParamTypes[0] = S.Context.getLValueReferenceType(T);
7068   ParamTypes[1] = T;
7069   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7070                         /*IsAssignmentOperator=*/true);
7071
7072   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7073     // volatile T& operator=(volatile T&, T)
7074     ParamTypes[0]
7075       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
7076     ParamTypes[1] = T;
7077     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7078                           /*IsAssignmentOperator=*/true);
7079   }
7080 }
7081
7082 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7083 /// if any, found in visible type conversion functions found in ArgExpr's type.
7084 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7085     Qualifiers VRQuals;
7086     const RecordType *TyRec;
7087     if (const MemberPointerType *RHSMPType =
7088         ArgExpr->getType()->getAs<MemberPointerType>())
7089       TyRec = RHSMPType->getClass()->getAs<RecordType>();
7090     else
7091       TyRec = ArgExpr->getType()->getAs<RecordType>();
7092     if (!TyRec) {
7093       // Just to be safe, assume the worst case.
7094       VRQuals.addVolatile();
7095       VRQuals.addRestrict();
7096       return VRQuals;
7097     }
7098
7099     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7100     if (!ClassDecl->hasDefinition())
7101       return VRQuals;
7102
7103     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7104       if (isa<UsingShadowDecl>(D))
7105         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7106       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7107         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7108         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7109           CanTy = ResTypeRef->getPointeeType();
7110         // Need to go down the pointer/mempointer chain and add qualifiers
7111         // as see them.
7112         bool done = false;
7113         while (!done) {
7114           if (CanTy.isRestrictQualified())
7115             VRQuals.addRestrict();
7116           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7117             CanTy = ResTypePtr->getPointeeType();
7118           else if (const MemberPointerType *ResTypeMPtr =
7119                 CanTy->getAs<MemberPointerType>())
7120             CanTy = ResTypeMPtr->getPointeeType();
7121           else
7122             done = true;
7123           if (CanTy.isVolatileQualified())
7124             VRQuals.addVolatile();
7125           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7126             return VRQuals;
7127         }
7128       }
7129     }
7130     return VRQuals;
7131 }
7132
7133 namespace {
7134
7135 /// \brief Helper class to manage the addition of builtin operator overload
7136 /// candidates. It provides shared state and utility methods used throughout
7137 /// the process, as well as a helper method to add each group of builtin
7138 /// operator overloads from the standard to a candidate set.
7139 class BuiltinOperatorOverloadBuilder {
7140   // Common instance state available to all overload candidate addition methods.
7141   Sema &S;
7142   ArrayRef<Expr *> Args;
7143   Qualifiers VisibleTypeConversionsQuals;
7144   bool HasArithmeticOrEnumeralCandidateType;
7145   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7146   OverloadCandidateSet &CandidateSet;
7147
7148   // Define some constants used to index and iterate over the arithemetic types
7149   // provided via the getArithmeticType() method below.
7150   // The "promoted arithmetic types" are the arithmetic
7151   // types are that preserved by promotion (C++ [over.built]p2).
7152   static const unsigned FirstIntegralType = 3;
7153   static const unsigned LastIntegralType = 20;
7154   static const unsigned FirstPromotedIntegralType = 3,
7155                         LastPromotedIntegralType = 11;
7156   static const unsigned FirstPromotedArithmeticType = 0,
7157                         LastPromotedArithmeticType = 11;
7158   static const unsigned NumArithmeticTypes = 20;
7159
7160   /// \brief Get the canonical type for a given arithmetic type index.
7161   CanQualType getArithmeticType(unsigned index) {
7162     assert(index < NumArithmeticTypes);
7163     static CanQualType ASTContext::* const
7164       ArithmeticTypes[NumArithmeticTypes] = {
7165       // Start of promoted types.
7166       &ASTContext::FloatTy,
7167       &ASTContext::DoubleTy,
7168       &ASTContext::LongDoubleTy,
7169
7170       // Start of integral types.
7171       &ASTContext::IntTy,
7172       &ASTContext::LongTy,
7173       &ASTContext::LongLongTy,
7174       &ASTContext::Int128Ty,
7175       &ASTContext::UnsignedIntTy,
7176       &ASTContext::UnsignedLongTy,
7177       &ASTContext::UnsignedLongLongTy,
7178       &ASTContext::UnsignedInt128Ty,
7179       // End of promoted types.
7180
7181       &ASTContext::BoolTy,
7182       &ASTContext::CharTy,
7183       &ASTContext::WCharTy,
7184       &ASTContext::Char16Ty,
7185       &ASTContext::Char32Ty,
7186       &ASTContext::SignedCharTy,
7187       &ASTContext::ShortTy,
7188       &ASTContext::UnsignedCharTy,
7189       &ASTContext::UnsignedShortTy,
7190       // End of integral types.
7191       // FIXME: What about complex? What about half?
7192     };
7193     return S.Context.*ArithmeticTypes[index];
7194   }
7195
7196   /// \brief Gets the canonical type resulting from the usual arithemetic
7197   /// converions for the given arithmetic types.
7198   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
7199     // Accelerator table for performing the usual arithmetic conversions.
7200     // The rules are basically:
7201     //   - if either is floating-point, use the wider floating-point
7202     //   - if same signedness, use the higher rank
7203     //   - if same size, use unsigned of the higher rank
7204     //   - use the larger type
7205     // These rules, together with the axiom that higher ranks are
7206     // never smaller, are sufficient to precompute all of these results
7207     // *except* when dealing with signed types of higher rank.
7208     // (we could precompute SLL x UI for all known platforms, but it's
7209     // better not to make any assumptions).
7210     // We assume that int128 has a higher rank than long long on all platforms.
7211     enum PromotedType {
7212             Dep=-1,
7213             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
7214     };
7215     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
7216                                         [LastPromotedArithmeticType] = {
7217 /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
7218 /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
7219 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
7220 /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
7221 /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
7222 /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
7223 /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
7224 /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
7225 /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
7226 /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
7227 /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
7228     };
7229
7230     assert(L < LastPromotedArithmeticType);
7231     assert(R < LastPromotedArithmeticType);
7232     int Idx = ConversionsTable[L][R];
7233
7234     // Fast path: the table gives us a concrete answer.
7235     if (Idx != Dep) return getArithmeticType(Idx);
7236
7237     // Slow path: we need to compare widths.
7238     // An invariant is that the signed type has higher rank.
7239     CanQualType LT = getArithmeticType(L),
7240                 RT = getArithmeticType(R);
7241     unsigned LW = S.Context.getIntWidth(LT),
7242              RW = S.Context.getIntWidth(RT);
7243
7244     // If they're different widths, use the signed type.
7245     if (LW > RW) return LT;
7246     else if (LW < RW) return RT;
7247
7248     // Otherwise, use the unsigned type of the signed type's rank.
7249     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
7250     assert(L == SLL || R == SLL);
7251     return S.Context.UnsignedLongLongTy;
7252   }
7253
7254   /// \brief Helper method to factor out the common pattern of adding overloads
7255   /// for '++' and '--' builtin operators.
7256   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7257                                            bool HasVolatile,
7258                                            bool HasRestrict) {
7259     QualType ParamTypes[2] = {
7260       S.Context.getLValueReferenceType(CandidateTy),
7261       S.Context.IntTy
7262     };
7263
7264     // Non-volatile version.
7265     if (Args.size() == 1)
7266       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7267     else
7268       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7269
7270     // Use a heuristic to reduce number of builtin candidates in the set:
7271     // add volatile version only if there are conversions to a volatile type.
7272     if (HasVolatile) {
7273       ParamTypes[0] =
7274         S.Context.getLValueReferenceType(
7275           S.Context.getVolatileType(CandidateTy));
7276       if (Args.size() == 1)
7277         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7278       else
7279         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7280     }
7281     
7282     // Add restrict version only if there are conversions to a restrict type
7283     // and our candidate type is a non-restrict-qualified pointer.
7284     if (HasRestrict && CandidateTy->isAnyPointerType() &&
7285         !CandidateTy.isRestrictQualified()) {
7286       ParamTypes[0]
7287         = S.Context.getLValueReferenceType(
7288             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7289       if (Args.size() == 1)
7290         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7291       else
7292         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7293       
7294       if (HasVolatile) {
7295         ParamTypes[0]
7296           = S.Context.getLValueReferenceType(
7297               S.Context.getCVRQualifiedType(CandidateTy,
7298                                             (Qualifiers::Volatile |
7299                                              Qualifiers::Restrict)));
7300         if (Args.size() == 1)
7301           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7302         else
7303           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7304       }
7305     }
7306
7307   }
7308
7309 public:
7310   BuiltinOperatorOverloadBuilder(
7311     Sema &S, ArrayRef<Expr *> Args,
7312     Qualifiers VisibleTypeConversionsQuals,
7313     bool HasArithmeticOrEnumeralCandidateType,
7314     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7315     OverloadCandidateSet &CandidateSet)
7316     : S(S), Args(Args),
7317       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7318       HasArithmeticOrEnumeralCandidateType(
7319         HasArithmeticOrEnumeralCandidateType),
7320       CandidateTypes(CandidateTypes),
7321       CandidateSet(CandidateSet) {
7322     // Validate some of our static helper constants in debug builds.
7323     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
7324            "Invalid first promoted integral type");
7325     assert(getArithmeticType(LastPromotedIntegralType - 1)
7326              == S.Context.UnsignedInt128Ty &&
7327            "Invalid last promoted integral type");
7328     assert(getArithmeticType(FirstPromotedArithmeticType)
7329              == S.Context.FloatTy &&
7330            "Invalid first promoted arithmetic type");
7331     assert(getArithmeticType(LastPromotedArithmeticType - 1)
7332              == S.Context.UnsignedInt128Ty &&
7333            "Invalid last promoted arithmetic type");
7334   }
7335
7336   // C++ [over.built]p3:
7337   //
7338   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
7339   //   is either volatile or empty, there exist candidate operator
7340   //   functions of the form
7341   //
7342   //       VQ T&      operator++(VQ T&);
7343   //       T          operator++(VQ T&, int);
7344   //
7345   // C++ [over.built]p4:
7346   //
7347   //   For every pair (T, VQ), where T is an arithmetic type other
7348   //   than bool, and VQ is either volatile or empty, there exist
7349   //   candidate operator functions of the form
7350   //
7351   //       VQ T&      operator--(VQ T&);
7352   //       T          operator--(VQ T&, int);
7353   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7354     if (!HasArithmeticOrEnumeralCandidateType)
7355       return;
7356
7357     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
7358          Arith < NumArithmeticTypes; ++Arith) {
7359       addPlusPlusMinusMinusStyleOverloads(
7360         getArithmeticType(Arith),
7361         VisibleTypeConversionsQuals.hasVolatile(),
7362         VisibleTypeConversionsQuals.hasRestrict());
7363     }
7364   }
7365
7366   // C++ [over.built]p5:
7367   //
7368   //   For every pair (T, VQ), where T is a cv-qualified or
7369   //   cv-unqualified object type, and VQ is either volatile or
7370   //   empty, there exist candidate operator functions of the form
7371   //
7372   //       T*VQ&      operator++(T*VQ&);
7373   //       T*VQ&      operator--(T*VQ&);
7374   //       T*         operator++(T*VQ&, int);
7375   //       T*         operator--(T*VQ&, int);
7376   void addPlusPlusMinusMinusPointerOverloads() {
7377     for (BuiltinCandidateTypeSet::iterator
7378               Ptr = CandidateTypes[0].pointer_begin(),
7379            PtrEnd = CandidateTypes[0].pointer_end();
7380          Ptr != PtrEnd; ++Ptr) {
7381       // Skip pointer types that aren't pointers to object types.
7382       if (!(*Ptr)->getPointeeType()->isObjectType())
7383         continue;
7384
7385       addPlusPlusMinusMinusStyleOverloads(*Ptr,
7386         (!(*Ptr).isVolatileQualified() &&
7387          VisibleTypeConversionsQuals.hasVolatile()),
7388         (!(*Ptr).isRestrictQualified() &&
7389          VisibleTypeConversionsQuals.hasRestrict()));
7390     }
7391   }
7392
7393   // C++ [over.built]p6:
7394   //   For every cv-qualified or cv-unqualified object type T, there
7395   //   exist candidate operator functions of the form
7396   //
7397   //       T&         operator*(T*);
7398   //
7399   // C++ [over.built]p7:
7400   //   For every function type T that does not have cv-qualifiers or a
7401   //   ref-qualifier, there exist candidate operator functions of the form
7402   //       T&         operator*(T*);
7403   void addUnaryStarPointerOverloads() {
7404     for (BuiltinCandidateTypeSet::iterator
7405               Ptr = CandidateTypes[0].pointer_begin(),
7406            PtrEnd = CandidateTypes[0].pointer_end();
7407          Ptr != PtrEnd; ++Ptr) {
7408       QualType ParamTy = *Ptr;
7409       QualType PointeeTy = ParamTy->getPointeeType();
7410       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7411         continue;
7412
7413       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7414         if (Proto->getTypeQuals() || Proto->getRefQualifier())
7415           continue;
7416
7417       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
7418                             &ParamTy, Args, CandidateSet);
7419     }
7420   }
7421
7422   // C++ [over.built]p9:
7423   //  For every promoted arithmetic type T, there exist candidate
7424   //  operator functions of the form
7425   //
7426   //       T         operator+(T);
7427   //       T         operator-(T);
7428   void addUnaryPlusOrMinusArithmeticOverloads() {
7429     if (!HasArithmeticOrEnumeralCandidateType)
7430       return;
7431
7432     for (unsigned Arith = FirstPromotedArithmeticType;
7433          Arith < LastPromotedArithmeticType; ++Arith) {
7434       QualType ArithTy = getArithmeticType(Arith);
7435       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
7436     }
7437
7438     // Extension: We also add these operators for vector types.
7439     for (BuiltinCandidateTypeSet::iterator
7440               Vec = CandidateTypes[0].vector_begin(),
7441            VecEnd = CandidateTypes[0].vector_end();
7442          Vec != VecEnd; ++Vec) {
7443       QualType VecTy = *Vec;
7444       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7445     }
7446   }
7447
7448   // C++ [over.built]p8:
7449   //   For every type T, there exist candidate operator functions of
7450   //   the form
7451   //
7452   //       T*         operator+(T*);
7453   void addUnaryPlusPointerOverloads() {
7454     for (BuiltinCandidateTypeSet::iterator
7455               Ptr = CandidateTypes[0].pointer_begin(),
7456            PtrEnd = CandidateTypes[0].pointer_end();
7457          Ptr != PtrEnd; ++Ptr) {
7458       QualType ParamTy = *Ptr;
7459       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
7460     }
7461   }
7462
7463   // C++ [over.built]p10:
7464   //   For every promoted integral type T, there exist candidate
7465   //   operator functions of the form
7466   //
7467   //        T         operator~(T);
7468   void addUnaryTildePromotedIntegralOverloads() {
7469     if (!HasArithmeticOrEnumeralCandidateType)
7470       return;
7471
7472     for (unsigned Int = FirstPromotedIntegralType;
7473          Int < LastPromotedIntegralType; ++Int) {
7474       QualType IntTy = getArithmeticType(Int);
7475       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
7476     }
7477
7478     // Extension: We also add this operator for vector types.
7479     for (BuiltinCandidateTypeSet::iterator
7480               Vec = CandidateTypes[0].vector_begin(),
7481            VecEnd = CandidateTypes[0].vector_end();
7482          Vec != VecEnd; ++Vec) {
7483       QualType VecTy = *Vec;
7484       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7485     }
7486   }
7487
7488   // C++ [over.match.oper]p16:
7489   //   For every pointer to member type T, there exist candidate operator
7490   //   functions of the form
7491   //
7492   //        bool operator==(T,T);
7493   //        bool operator!=(T,T);
7494   void addEqualEqualOrNotEqualMemberPointerOverloads() {
7495     /// Set of (canonical) types that we've already handled.
7496     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7497
7498     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7499       for (BuiltinCandidateTypeSet::iterator
7500                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7501              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7502            MemPtr != MemPtrEnd;
7503            ++MemPtr) {
7504         // Don't add the same builtin candidate twice.
7505         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7506           continue;
7507
7508         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7509         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7510       }
7511     }
7512   }
7513
7514   // C++ [over.built]p15:
7515   //
7516   //   For every T, where T is an enumeration type, a pointer type, or 
7517   //   std::nullptr_t, there exist candidate operator functions of the form
7518   //
7519   //        bool       operator<(T, T);
7520   //        bool       operator>(T, T);
7521   //        bool       operator<=(T, T);
7522   //        bool       operator>=(T, T);
7523   //        bool       operator==(T, T);
7524   //        bool       operator!=(T, T);
7525   void addRelationalPointerOrEnumeralOverloads() {
7526     // C++ [over.match.oper]p3:
7527     //   [...]the built-in candidates include all of the candidate operator
7528     //   functions defined in 13.6 that, compared to the given operator, [...]
7529     //   do not have the same parameter-type-list as any non-template non-member
7530     //   candidate.
7531     //
7532     // Note that in practice, this only affects enumeration types because there
7533     // aren't any built-in candidates of record type, and a user-defined operator
7534     // must have an operand of record or enumeration type. Also, the only other
7535     // overloaded operator with enumeration arguments, operator=,
7536     // cannot be overloaded for enumeration types, so this is the only place
7537     // where we must suppress candidates like this.
7538     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7539       UserDefinedBinaryOperators;
7540
7541     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7542       if (CandidateTypes[ArgIdx].enumeration_begin() !=
7543           CandidateTypes[ArgIdx].enumeration_end()) {
7544         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7545                                          CEnd = CandidateSet.end();
7546              C != CEnd; ++C) {
7547           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7548             continue;
7549
7550           if (C->Function->isFunctionTemplateSpecialization())
7551             continue;
7552
7553           QualType FirstParamType =
7554             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7555           QualType SecondParamType =
7556             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7557
7558           // Skip if either parameter isn't of enumeral type.
7559           if (!FirstParamType->isEnumeralType() ||
7560               !SecondParamType->isEnumeralType())
7561             continue;
7562
7563           // Add this operator to the set of known user-defined operators.
7564           UserDefinedBinaryOperators.insert(
7565             std::make_pair(S.Context.getCanonicalType(FirstParamType),
7566                            S.Context.getCanonicalType(SecondParamType)));
7567         }
7568       }
7569     }
7570
7571     /// Set of (canonical) types that we've already handled.
7572     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7573
7574     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7575       for (BuiltinCandidateTypeSet::iterator
7576                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7577              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7578            Ptr != PtrEnd; ++Ptr) {
7579         // Don't add the same builtin candidate twice.
7580         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7581           continue;
7582
7583         QualType ParamTypes[2] = { *Ptr, *Ptr };
7584         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7585       }
7586       for (BuiltinCandidateTypeSet::iterator
7587                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7588              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7589            Enum != EnumEnd; ++Enum) {
7590         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7591
7592         // Don't add the same builtin candidate twice, or if a user defined
7593         // candidate exists.
7594         if (!AddedTypes.insert(CanonType).second ||
7595             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7596                                                             CanonType)))
7597           continue;
7598
7599         QualType ParamTypes[2] = { *Enum, *Enum };
7600         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7601       }
7602       
7603       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7604         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7605         if (AddedTypes.insert(NullPtrTy).second &&
7606             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7607                                                              NullPtrTy))) {
7608           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7609           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7610                                 CandidateSet);
7611         }
7612       }
7613     }
7614   }
7615
7616   // C++ [over.built]p13:
7617   //
7618   //   For every cv-qualified or cv-unqualified object type T
7619   //   there exist candidate operator functions of the form
7620   //
7621   //      T*         operator+(T*, ptrdiff_t);
7622   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
7623   //      T*         operator-(T*, ptrdiff_t);
7624   //      T*         operator+(ptrdiff_t, T*);
7625   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
7626   //
7627   // C++ [over.built]p14:
7628   //
7629   //   For every T, where T is a pointer to object type, there
7630   //   exist candidate operator functions of the form
7631   //
7632   //      ptrdiff_t  operator-(T, T);
7633   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7634     /// Set of (canonical) types that we've already handled.
7635     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7636
7637     for (int Arg = 0; Arg < 2; ++Arg) {
7638       QualType AsymmetricParamTypes[2] = {
7639         S.Context.getPointerDiffType(),
7640         S.Context.getPointerDiffType(),
7641       };
7642       for (BuiltinCandidateTypeSet::iterator
7643                 Ptr = CandidateTypes[Arg].pointer_begin(),
7644              PtrEnd = CandidateTypes[Arg].pointer_end();
7645            Ptr != PtrEnd; ++Ptr) {
7646         QualType PointeeTy = (*Ptr)->getPointeeType();
7647         if (!PointeeTy->isObjectType())
7648           continue;
7649
7650         AsymmetricParamTypes[Arg] = *Ptr;
7651         if (Arg == 0 || Op == OO_Plus) {
7652           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7653           // T* operator+(ptrdiff_t, T*);
7654           S.AddBuiltinCandidate(*Ptr, AsymmetricParamTypes, Args, CandidateSet);
7655         }
7656         if (Op == OO_Minus) {
7657           // ptrdiff_t operator-(T, T);
7658           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7659             continue;
7660
7661           QualType ParamTypes[2] = { *Ptr, *Ptr };
7662           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7663                                 Args, CandidateSet);
7664         }
7665       }
7666     }
7667   }
7668
7669   // C++ [over.built]p12:
7670   //
7671   //   For every pair of promoted arithmetic types L and R, there
7672   //   exist candidate operator functions of the form
7673   //
7674   //        LR         operator*(L, R);
7675   //        LR         operator/(L, R);
7676   //        LR         operator+(L, R);
7677   //        LR         operator-(L, R);
7678   //        bool       operator<(L, R);
7679   //        bool       operator>(L, R);
7680   //        bool       operator<=(L, R);
7681   //        bool       operator>=(L, R);
7682   //        bool       operator==(L, R);
7683   //        bool       operator!=(L, R);
7684   //
7685   //   where LR is the result of the usual arithmetic conversions
7686   //   between types L and R.
7687   //
7688   // C++ [over.built]p24:
7689   //
7690   //   For every pair of promoted arithmetic types L and R, there exist
7691   //   candidate operator functions of the form
7692   //
7693   //        LR       operator?(bool, L, R);
7694   //
7695   //   where LR is the result of the usual arithmetic conversions
7696   //   between types L and R.
7697   // Our candidates ignore the first parameter.
7698   void addGenericBinaryArithmeticOverloads(bool isComparison) {
7699     if (!HasArithmeticOrEnumeralCandidateType)
7700       return;
7701
7702     for (unsigned Left = FirstPromotedArithmeticType;
7703          Left < LastPromotedArithmeticType; ++Left) {
7704       for (unsigned Right = FirstPromotedArithmeticType;
7705            Right < LastPromotedArithmeticType; ++Right) {
7706         QualType LandR[2] = { getArithmeticType(Left),
7707                               getArithmeticType(Right) };
7708         QualType Result =
7709           isComparison ? S.Context.BoolTy
7710                        : getUsualArithmeticConversions(Left, Right);
7711         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7712       }
7713     }
7714
7715     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7716     // conditional operator for vector types.
7717     for (BuiltinCandidateTypeSet::iterator
7718               Vec1 = CandidateTypes[0].vector_begin(),
7719            Vec1End = CandidateTypes[0].vector_end();
7720          Vec1 != Vec1End; ++Vec1) {
7721       for (BuiltinCandidateTypeSet::iterator
7722                 Vec2 = CandidateTypes[1].vector_begin(),
7723              Vec2End = CandidateTypes[1].vector_end();
7724            Vec2 != Vec2End; ++Vec2) {
7725         QualType LandR[2] = { *Vec1, *Vec2 };
7726         QualType Result = S.Context.BoolTy;
7727         if (!isComparison) {
7728           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7729             Result = *Vec1;
7730           else
7731             Result = *Vec2;
7732         }
7733
7734         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7735       }
7736     }
7737   }
7738
7739   // C++ [over.built]p17:
7740   //
7741   //   For every pair of promoted integral types L and R, there
7742   //   exist candidate operator functions of the form
7743   //
7744   //      LR         operator%(L, R);
7745   //      LR         operator&(L, R);
7746   //      LR         operator^(L, R);
7747   //      LR         operator|(L, R);
7748   //      L          operator<<(L, R);
7749   //      L          operator>>(L, R);
7750   //
7751   //   where LR is the result of the usual arithmetic conversions
7752   //   between types L and R.
7753   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7754     if (!HasArithmeticOrEnumeralCandidateType)
7755       return;
7756
7757     for (unsigned Left = FirstPromotedIntegralType;
7758          Left < LastPromotedIntegralType; ++Left) {
7759       for (unsigned Right = FirstPromotedIntegralType;
7760            Right < LastPromotedIntegralType; ++Right) {
7761         QualType LandR[2] = { getArithmeticType(Left),
7762                               getArithmeticType(Right) };
7763         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7764             ? LandR[0]
7765             : getUsualArithmeticConversions(Left, Right);
7766         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7767       }
7768     }
7769   }
7770
7771   // C++ [over.built]p20:
7772   //
7773   //   For every pair (T, VQ), where T is an enumeration or
7774   //   pointer to member type and VQ is either volatile or
7775   //   empty, there exist candidate operator functions of the form
7776   //
7777   //        VQ T&      operator=(VQ T&, T);
7778   void addAssignmentMemberPointerOrEnumeralOverloads() {
7779     /// Set of (canonical) types that we've already handled.
7780     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7781
7782     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7783       for (BuiltinCandidateTypeSet::iterator
7784                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7785              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7786            Enum != EnumEnd; ++Enum) {
7787         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
7788           continue;
7789
7790         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7791       }
7792
7793       for (BuiltinCandidateTypeSet::iterator
7794                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7795              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7796            MemPtr != MemPtrEnd; ++MemPtr) {
7797         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7798           continue;
7799
7800         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7801       }
7802     }
7803   }
7804
7805   // C++ [over.built]p19:
7806   //
7807   //   For every pair (T, VQ), where T is any type and VQ is either
7808   //   volatile or empty, there exist candidate operator functions
7809   //   of the form
7810   //
7811   //        T*VQ&      operator=(T*VQ&, T*);
7812   //
7813   // C++ [over.built]p21:
7814   //
7815   //   For every pair (T, VQ), where T is a cv-qualified or
7816   //   cv-unqualified object type and VQ is either volatile or
7817   //   empty, there exist candidate operator functions of the form
7818   //
7819   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7820   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7821   void addAssignmentPointerOverloads(bool isEqualOp) {
7822     /// Set of (canonical) types that we've already handled.
7823     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7824
7825     for (BuiltinCandidateTypeSet::iterator
7826               Ptr = CandidateTypes[0].pointer_begin(),
7827            PtrEnd = CandidateTypes[0].pointer_end();
7828          Ptr != PtrEnd; ++Ptr) {
7829       // If this is operator=, keep track of the builtin candidates we added.
7830       if (isEqualOp)
7831         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7832       else if (!(*Ptr)->getPointeeType()->isObjectType())
7833         continue;
7834
7835       // non-volatile version
7836       QualType ParamTypes[2] = {
7837         S.Context.getLValueReferenceType(*Ptr),
7838         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7839       };
7840       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7841                             /*IsAssigmentOperator=*/ isEqualOp);
7842
7843       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7844                           VisibleTypeConversionsQuals.hasVolatile();
7845       if (NeedVolatile) {
7846         // volatile version
7847         ParamTypes[0] =
7848           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7849         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7850                               /*IsAssigmentOperator=*/isEqualOp);
7851       }
7852       
7853       if (!(*Ptr).isRestrictQualified() &&
7854           VisibleTypeConversionsQuals.hasRestrict()) {
7855         // restrict version
7856         ParamTypes[0]
7857           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7858         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7859                               /*IsAssigmentOperator=*/isEqualOp);
7860         
7861         if (NeedVolatile) {
7862           // volatile restrict version
7863           ParamTypes[0]
7864             = S.Context.getLValueReferenceType(
7865                 S.Context.getCVRQualifiedType(*Ptr,
7866                                               (Qualifiers::Volatile |
7867                                                Qualifiers::Restrict)));
7868           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7869                                 /*IsAssigmentOperator=*/isEqualOp);
7870         }
7871       }
7872     }
7873
7874     if (isEqualOp) {
7875       for (BuiltinCandidateTypeSet::iterator
7876                 Ptr = CandidateTypes[1].pointer_begin(),
7877              PtrEnd = CandidateTypes[1].pointer_end();
7878            Ptr != PtrEnd; ++Ptr) {
7879         // Make sure we don't add the same candidate twice.
7880         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7881           continue;
7882
7883         QualType ParamTypes[2] = {
7884           S.Context.getLValueReferenceType(*Ptr),
7885           *Ptr,
7886         };
7887
7888         // non-volatile version
7889         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7890                               /*IsAssigmentOperator=*/true);
7891
7892         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7893                            VisibleTypeConversionsQuals.hasVolatile();
7894         if (NeedVolatile) {
7895           // volatile version
7896           ParamTypes[0] =
7897             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7898           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7899                                 /*IsAssigmentOperator=*/true);
7900         }
7901       
7902         if (!(*Ptr).isRestrictQualified() &&
7903             VisibleTypeConversionsQuals.hasRestrict()) {
7904           // restrict version
7905           ParamTypes[0]
7906             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7907           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7908                                 /*IsAssigmentOperator=*/true);
7909           
7910           if (NeedVolatile) {
7911             // volatile restrict version
7912             ParamTypes[0]
7913               = S.Context.getLValueReferenceType(
7914                   S.Context.getCVRQualifiedType(*Ptr,
7915                                                 (Qualifiers::Volatile |
7916                                                  Qualifiers::Restrict)));
7917             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7918                                   /*IsAssigmentOperator=*/true);
7919           }
7920         }
7921       }
7922     }
7923   }
7924
7925   // C++ [over.built]p18:
7926   //
7927   //   For every triple (L, VQ, R), where L is an arithmetic type,
7928   //   VQ is either volatile or empty, and R is a promoted
7929   //   arithmetic type, there exist candidate operator functions of
7930   //   the form
7931   //
7932   //        VQ L&      operator=(VQ L&, R);
7933   //        VQ L&      operator*=(VQ L&, R);
7934   //        VQ L&      operator/=(VQ L&, R);
7935   //        VQ L&      operator+=(VQ L&, R);
7936   //        VQ L&      operator-=(VQ L&, R);
7937   void addAssignmentArithmeticOverloads(bool isEqualOp) {
7938     if (!HasArithmeticOrEnumeralCandidateType)
7939       return;
7940
7941     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7942       for (unsigned Right = FirstPromotedArithmeticType;
7943            Right < LastPromotedArithmeticType; ++Right) {
7944         QualType ParamTypes[2];
7945         ParamTypes[1] = getArithmeticType(Right);
7946
7947         // Add this built-in operator as a candidate (VQ is empty).
7948         ParamTypes[0] =
7949           S.Context.getLValueReferenceType(getArithmeticType(Left));
7950         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7951                               /*IsAssigmentOperator=*/isEqualOp);
7952
7953         // Add this built-in operator as a candidate (VQ is 'volatile').
7954         if (VisibleTypeConversionsQuals.hasVolatile()) {
7955           ParamTypes[0] =
7956             S.Context.getVolatileType(getArithmeticType(Left));
7957           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7958           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7959                                 /*IsAssigmentOperator=*/isEqualOp);
7960         }
7961       }
7962     }
7963
7964     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7965     for (BuiltinCandidateTypeSet::iterator
7966               Vec1 = CandidateTypes[0].vector_begin(),
7967            Vec1End = CandidateTypes[0].vector_end();
7968          Vec1 != Vec1End; ++Vec1) {
7969       for (BuiltinCandidateTypeSet::iterator
7970                 Vec2 = CandidateTypes[1].vector_begin(),
7971              Vec2End = CandidateTypes[1].vector_end();
7972            Vec2 != Vec2End; ++Vec2) {
7973         QualType ParamTypes[2];
7974         ParamTypes[1] = *Vec2;
7975         // Add this built-in operator as a candidate (VQ is empty).
7976         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7977         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7978                               /*IsAssigmentOperator=*/isEqualOp);
7979
7980         // Add this built-in operator as a candidate (VQ is 'volatile').
7981         if (VisibleTypeConversionsQuals.hasVolatile()) {
7982           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7983           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7984           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7985                                 /*IsAssigmentOperator=*/isEqualOp);
7986         }
7987       }
7988     }
7989   }
7990
7991   // C++ [over.built]p22:
7992   //
7993   //   For every triple (L, VQ, R), where L is an integral type, VQ
7994   //   is either volatile or empty, and R is a promoted integral
7995   //   type, there exist candidate operator functions of the form
7996   //
7997   //        VQ L&       operator%=(VQ L&, R);
7998   //        VQ L&       operator<<=(VQ L&, R);
7999   //        VQ L&       operator>>=(VQ L&, R);
8000   //        VQ L&       operator&=(VQ L&, R);
8001   //        VQ L&       operator^=(VQ L&, R);
8002   //        VQ L&       operator|=(VQ L&, R);
8003   void addAssignmentIntegralOverloads() {
8004     if (!HasArithmeticOrEnumeralCandidateType)
8005       return;
8006
8007     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8008       for (unsigned Right = FirstPromotedIntegralType;
8009            Right < LastPromotedIntegralType; ++Right) {
8010         QualType ParamTypes[2];
8011         ParamTypes[1] = getArithmeticType(Right);
8012
8013         // Add this built-in operator as a candidate (VQ is empty).
8014         ParamTypes[0] =
8015           S.Context.getLValueReferenceType(getArithmeticType(Left));
8016         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
8017         if (VisibleTypeConversionsQuals.hasVolatile()) {
8018           // Add this built-in operator as a candidate (VQ is 'volatile').
8019           ParamTypes[0] = getArithmeticType(Left);
8020           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8021           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8022           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
8023         }
8024       }
8025     }
8026   }
8027
8028   // C++ [over.operator]p23:
8029   //
8030   //   There also exist candidate operator functions of the form
8031   //
8032   //        bool        operator!(bool);
8033   //        bool        operator&&(bool, bool);
8034   //        bool        operator||(bool, bool);
8035   void addExclaimOverload() {
8036     QualType ParamTy = S.Context.BoolTy;
8037     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
8038                           /*IsAssignmentOperator=*/false,
8039                           /*NumContextualBoolArguments=*/1);
8040   }
8041   void addAmpAmpOrPipePipeOverload() {
8042     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8043     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
8044                           /*IsAssignmentOperator=*/false,
8045                           /*NumContextualBoolArguments=*/2);
8046   }
8047
8048   // C++ [over.built]p13:
8049   //
8050   //   For every cv-qualified or cv-unqualified object type T there
8051   //   exist candidate operator functions of the form
8052   //
8053   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
8054   //        T&         operator[](T*, ptrdiff_t);
8055   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
8056   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
8057   //        T&         operator[](ptrdiff_t, T*);
8058   void addSubscriptOverloads() {
8059     for (BuiltinCandidateTypeSet::iterator
8060               Ptr = CandidateTypes[0].pointer_begin(),
8061            PtrEnd = CandidateTypes[0].pointer_end();
8062          Ptr != PtrEnd; ++Ptr) {
8063       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8064       QualType PointeeType = (*Ptr)->getPointeeType();
8065       if (!PointeeType->isObjectType())
8066         continue;
8067
8068       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
8069
8070       // T& operator[](T*, ptrdiff_t)
8071       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8072     }
8073
8074     for (BuiltinCandidateTypeSet::iterator
8075               Ptr = CandidateTypes[1].pointer_begin(),
8076            PtrEnd = CandidateTypes[1].pointer_end();
8077          Ptr != PtrEnd; ++Ptr) {
8078       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8079       QualType PointeeType = (*Ptr)->getPointeeType();
8080       if (!PointeeType->isObjectType())
8081         continue;
8082
8083       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
8084
8085       // T& operator[](ptrdiff_t, T*)
8086       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8087     }
8088   }
8089
8090   // C++ [over.built]p11:
8091   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8092   //    C1 is the same type as C2 or is a derived class of C2, T is an object
8093   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8094   //    there exist candidate operator functions of the form
8095   //
8096   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8097   //
8098   //    where CV12 is the union of CV1 and CV2.
8099   void addArrowStarOverloads() {
8100     for (BuiltinCandidateTypeSet::iterator
8101              Ptr = CandidateTypes[0].pointer_begin(),
8102            PtrEnd = CandidateTypes[0].pointer_end();
8103          Ptr != PtrEnd; ++Ptr) {
8104       QualType C1Ty = (*Ptr);
8105       QualType C1;
8106       QualifierCollector Q1;
8107       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8108       if (!isa<RecordType>(C1))
8109         continue;
8110       // heuristic to reduce number of builtin candidates in the set.
8111       // Add volatile/restrict version only if there are conversions to a
8112       // volatile/restrict type.
8113       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8114         continue;
8115       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8116         continue;
8117       for (BuiltinCandidateTypeSet::iterator
8118                 MemPtr = CandidateTypes[1].member_pointer_begin(),
8119              MemPtrEnd = CandidateTypes[1].member_pointer_end();
8120            MemPtr != MemPtrEnd; ++MemPtr) {
8121         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8122         QualType C2 = QualType(mptr->getClass(), 0);
8123         C2 = C2.getUnqualifiedType();
8124         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8125           break;
8126         QualType ParamTypes[2] = { *Ptr, *MemPtr };
8127         // build CV12 T&
8128         QualType T = mptr->getPointeeType();
8129         if (!VisibleTypeConversionsQuals.hasVolatile() &&
8130             T.isVolatileQualified())
8131           continue;
8132         if (!VisibleTypeConversionsQuals.hasRestrict() &&
8133             T.isRestrictQualified())
8134           continue;
8135         T = Q1.apply(S.Context, T);
8136         QualType ResultTy = S.Context.getLValueReferenceType(T);
8137         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8138       }
8139     }
8140   }
8141
8142   // Note that we don't consider the first argument, since it has been
8143   // contextually converted to bool long ago. The candidates below are
8144   // therefore added as binary.
8145   //
8146   // C++ [over.built]p25:
8147   //   For every type T, where T is a pointer, pointer-to-member, or scoped
8148   //   enumeration type, there exist candidate operator functions of the form
8149   //
8150   //        T        operator?(bool, T, T);
8151   //
8152   void addConditionalOperatorOverloads() {
8153     /// Set of (canonical) types that we've already handled.
8154     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8155
8156     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8157       for (BuiltinCandidateTypeSet::iterator
8158                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8159              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8160            Ptr != PtrEnd; ++Ptr) {
8161         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8162           continue;
8163
8164         QualType ParamTypes[2] = { *Ptr, *Ptr };
8165         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
8166       }
8167
8168       for (BuiltinCandidateTypeSet::iterator
8169                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8170              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8171            MemPtr != MemPtrEnd; ++MemPtr) {
8172         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8173           continue;
8174
8175         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8176         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
8177       }
8178
8179       if (S.getLangOpts().CPlusPlus11) {
8180         for (BuiltinCandidateTypeSet::iterator
8181                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8182                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8183              Enum != EnumEnd; ++Enum) {
8184           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8185             continue;
8186
8187           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8188             continue;
8189
8190           QualType ParamTypes[2] = { *Enum, *Enum };
8191           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
8192         }
8193       }
8194     }
8195   }
8196 };
8197
8198 } // end anonymous namespace
8199
8200 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8201 /// operator overloads to the candidate set (C++ [over.built]), based
8202 /// on the operator @p Op and the arguments given. For example, if the
8203 /// operator is a binary '+', this routine might add "int
8204 /// operator+(int, int)" to cover integer addition.
8205 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8206                                         SourceLocation OpLoc,
8207                                         ArrayRef<Expr *> Args,
8208                                         OverloadCandidateSet &CandidateSet) {
8209   // Find all of the types that the arguments can convert to, but only
8210   // if the operator we're looking at has built-in operator candidates
8211   // that make use of these types. Also record whether we encounter non-record
8212   // candidate types or either arithmetic or enumeral candidate types.
8213   Qualifiers VisibleTypeConversionsQuals;
8214   VisibleTypeConversionsQuals.addConst();
8215   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8216     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8217
8218   bool HasNonRecordCandidateType = false;
8219   bool HasArithmeticOrEnumeralCandidateType = false;
8220   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8221   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8222     CandidateTypes.emplace_back(*this);
8223     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8224                                                  OpLoc,
8225                                                  true,
8226                                                  (Op == OO_Exclaim ||
8227                                                   Op == OO_AmpAmp ||
8228                                                   Op == OO_PipePipe),
8229                                                  VisibleTypeConversionsQuals);
8230     HasNonRecordCandidateType = HasNonRecordCandidateType ||
8231         CandidateTypes[ArgIdx].hasNonRecordTypes();
8232     HasArithmeticOrEnumeralCandidateType =
8233         HasArithmeticOrEnumeralCandidateType ||
8234         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8235   }
8236
8237   // Exit early when no non-record types have been added to the candidate set
8238   // for any of the arguments to the operator.
8239   //
8240   // We can't exit early for !, ||, or &&, since there we have always have
8241   // 'bool' overloads.
8242   if (!HasNonRecordCandidateType &&
8243       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8244     return;
8245
8246   // Setup an object to manage the common state for building overloads.
8247   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8248                                            VisibleTypeConversionsQuals,
8249                                            HasArithmeticOrEnumeralCandidateType,
8250                                            CandidateTypes, CandidateSet);
8251
8252   // Dispatch over the operation to add in only those overloads which apply.
8253   switch (Op) {
8254   case OO_None:
8255   case NUM_OVERLOADED_OPERATORS:
8256     llvm_unreachable("Expected an overloaded operator");
8257
8258   case OO_New:
8259   case OO_Delete:
8260   case OO_Array_New:
8261   case OO_Array_Delete:
8262   case OO_Call:
8263     llvm_unreachable(
8264                     "Special operators don't use AddBuiltinOperatorCandidates");
8265
8266   case OO_Comma:
8267   case OO_Arrow:
8268   case OO_Coawait:
8269     // C++ [over.match.oper]p3:
8270     //   -- For the operator ',', the unary operator '&', the
8271     //      operator '->', or the operator 'co_await', the
8272     //      built-in candidates set is empty.
8273     break;
8274
8275   case OO_Plus: // '+' is either unary or binary
8276     if (Args.size() == 1)
8277       OpBuilder.addUnaryPlusPointerOverloads();
8278     // Fall through.
8279
8280   case OO_Minus: // '-' is either unary or binary
8281     if (Args.size() == 1) {
8282       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8283     } else {
8284       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8285       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8286     }
8287     break;
8288
8289   case OO_Star: // '*' is either unary or binary
8290     if (Args.size() == 1)
8291       OpBuilder.addUnaryStarPointerOverloads();
8292     else
8293       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8294     break;
8295
8296   case OO_Slash:
8297     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8298     break;
8299
8300   case OO_PlusPlus:
8301   case OO_MinusMinus:
8302     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8303     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8304     break;
8305
8306   case OO_EqualEqual:
8307   case OO_ExclaimEqual:
8308     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
8309     // Fall through.
8310
8311   case OO_Less:
8312   case OO_Greater:
8313   case OO_LessEqual:
8314   case OO_GreaterEqual:
8315     OpBuilder.addRelationalPointerOrEnumeralOverloads();
8316     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
8317     break;
8318
8319   case OO_Percent:
8320   case OO_Caret:
8321   case OO_Pipe:
8322   case OO_LessLess:
8323   case OO_GreaterGreater:
8324     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8325     break;
8326
8327   case OO_Amp: // '&' is either unary or binary
8328     if (Args.size() == 1)
8329       // C++ [over.match.oper]p3:
8330       //   -- For the operator ',', the unary operator '&', or the
8331       //      operator '->', the built-in candidates set is empty.
8332       break;
8333
8334     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8335     break;
8336
8337   case OO_Tilde:
8338     OpBuilder.addUnaryTildePromotedIntegralOverloads();
8339     break;
8340
8341   case OO_Equal:
8342     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8343     // Fall through.
8344
8345   case OO_PlusEqual:
8346   case OO_MinusEqual:
8347     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8348     // Fall through.
8349
8350   case OO_StarEqual:
8351   case OO_SlashEqual:
8352     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8353     break;
8354
8355   case OO_PercentEqual:
8356   case OO_LessLessEqual:
8357   case OO_GreaterGreaterEqual:
8358   case OO_AmpEqual:
8359   case OO_CaretEqual:
8360   case OO_PipeEqual:
8361     OpBuilder.addAssignmentIntegralOverloads();
8362     break;
8363
8364   case OO_Exclaim:
8365     OpBuilder.addExclaimOverload();
8366     break;
8367
8368   case OO_AmpAmp:
8369   case OO_PipePipe:
8370     OpBuilder.addAmpAmpOrPipePipeOverload();
8371     break;
8372
8373   case OO_Subscript:
8374     OpBuilder.addSubscriptOverloads();
8375     break;
8376
8377   case OO_ArrowStar:
8378     OpBuilder.addArrowStarOverloads();
8379     break;
8380
8381   case OO_Conditional:
8382     OpBuilder.addConditionalOperatorOverloads();
8383     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8384     break;
8385   }
8386 }
8387
8388 /// \brief Add function candidates found via argument-dependent lookup
8389 /// to the set of overloading candidates.
8390 ///
8391 /// This routine performs argument-dependent name lookup based on the
8392 /// given function name (which may also be an operator name) and adds
8393 /// all of the overload candidates found by ADL to the overload
8394 /// candidate set (C++ [basic.lookup.argdep]).
8395 void
8396 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8397                                            SourceLocation Loc,
8398                                            ArrayRef<Expr *> Args,
8399                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
8400                                            OverloadCandidateSet& CandidateSet,
8401                                            bool PartialOverloading) {
8402   ADLResult Fns;
8403
8404   // FIXME: This approach for uniquing ADL results (and removing
8405   // redundant candidates from the set) relies on pointer-equality,
8406   // which means we need to key off the canonical decl.  However,
8407   // always going back to the canonical decl might not get us the
8408   // right set of default arguments.  What default arguments are
8409   // we supposed to consider on ADL candidates, anyway?
8410
8411   // FIXME: Pass in the explicit template arguments?
8412   ArgumentDependentLookup(Name, Loc, Args, Fns);
8413
8414   // Erase all of the candidates we already knew about.
8415   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8416                                    CandEnd = CandidateSet.end();
8417        Cand != CandEnd; ++Cand)
8418     if (Cand->Function) {
8419       Fns.erase(Cand->Function);
8420       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8421         Fns.erase(FunTmpl);
8422     }
8423
8424   // For each of the ADL candidates we found, add it to the overload
8425   // set.
8426   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8427     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8428     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
8429       if (ExplicitTemplateArgs)
8430         continue;
8431
8432       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
8433                            PartialOverloading);
8434     } else
8435       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
8436                                    FoundDecl, ExplicitTemplateArgs,
8437                                    Args, CandidateSet, PartialOverloading);
8438   }
8439 }
8440
8441 // Determines whether Cand1 is "better" in terms of its enable_if attrs than
8442 // Cand2 for overloading. This function assumes that all of the enable_if attrs
8443 // on Cand1 and Cand2 have conditions that evaluate to true.
8444 //
8445 // Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
8446 // Cand1's first N enable_if attributes have precisely the same conditions as
8447 // Cand2's first N enable_if attributes (where N = the number of enable_if
8448 // attributes on Cand2), and Cand1 has more than N enable_if attributes.
8449 static bool hasBetterEnableIfAttrs(Sema &S, const FunctionDecl *Cand1,
8450                                    const FunctionDecl *Cand2) {
8451
8452   // FIXME: The next several lines are just
8453   // specific_attr_iterator<EnableIfAttr> but going in declaration order,
8454   // instead of reverse order which is how they're stored in the AST.
8455   auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1);
8456   auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2);
8457
8458   // Candidate 1 is better if it has strictly more attributes and
8459   // the common sequence is identical.
8460   if (Cand1Attrs.size() <= Cand2Attrs.size())
8461     return false;
8462
8463   auto Cand1I = Cand1Attrs.begin();
8464   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
8465   for (auto &Cand2A : Cand2Attrs) {
8466     Cand1ID.clear();
8467     Cand2ID.clear();
8468
8469     auto &Cand1A = *Cand1I++;
8470     Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true);
8471     Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true);
8472     if (Cand1ID != Cand2ID)
8473       return false;
8474   }
8475
8476   return true;
8477 }
8478
8479 /// isBetterOverloadCandidate - Determines whether the first overload
8480 /// candidate is a better candidate than the second (C++ 13.3.3p1).
8481 bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
8482                                       const OverloadCandidate &Cand2,
8483                                       SourceLocation Loc,
8484                                       bool UserDefinedConversion) {
8485   // Define viable functions to be better candidates than non-viable
8486   // functions.
8487   if (!Cand2.Viable)
8488     return Cand1.Viable;
8489   else if (!Cand1.Viable)
8490     return false;
8491
8492   // C++ [over.match.best]p1:
8493   //
8494   //   -- if F is a static member function, ICS1(F) is defined such
8495   //      that ICS1(F) is neither better nor worse than ICS1(G) for
8496   //      any function G, and, symmetrically, ICS1(G) is neither
8497   //      better nor worse than ICS1(F).
8498   unsigned StartArg = 0;
8499   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
8500     StartArg = 1;
8501
8502   // C++ [over.match.best]p1:
8503   //   A viable function F1 is defined to be a better function than another
8504   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
8505   //   conversion sequence than ICSi(F2), and then...
8506   unsigned NumArgs = Cand1.NumConversions;
8507   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
8508   bool HasBetterConversion = false;
8509   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8510     switch (CompareImplicitConversionSequences(S, Loc,
8511                                                Cand1.Conversions[ArgIdx],
8512                                                Cand2.Conversions[ArgIdx])) {
8513     case ImplicitConversionSequence::Better:
8514       // Cand1 has a better conversion sequence.
8515       HasBetterConversion = true;
8516       break;
8517
8518     case ImplicitConversionSequence::Worse:
8519       // Cand1 can't be better than Cand2.
8520       return false;
8521
8522     case ImplicitConversionSequence::Indistinguishable:
8523       // Do nothing.
8524       break;
8525     }
8526   }
8527
8528   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
8529   //       ICSj(F2), or, if not that,
8530   if (HasBetterConversion)
8531     return true;
8532
8533   //   -- the context is an initialization by user-defined conversion
8534   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
8535   //      from the return type of F1 to the destination type (i.e.,
8536   //      the type of the entity being initialized) is a better
8537   //      conversion sequence than the standard conversion sequence
8538   //      from the return type of F2 to the destination type.
8539   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
8540       isa<CXXConversionDecl>(Cand1.Function) &&
8541       isa<CXXConversionDecl>(Cand2.Function)) {
8542     // First check whether we prefer one of the conversion functions over the
8543     // other. This only distinguishes the results in non-standard, extension
8544     // cases such as the conversion from a lambda closure type to a function
8545     // pointer or block.
8546     ImplicitConversionSequence::CompareKind Result =
8547         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
8548     if (Result == ImplicitConversionSequence::Indistinguishable)
8549       Result = CompareStandardConversionSequences(S, Loc,
8550                                                   Cand1.FinalConversion,
8551                                                   Cand2.FinalConversion);
8552
8553     if (Result != ImplicitConversionSequence::Indistinguishable)
8554       return Result == ImplicitConversionSequence::Better;
8555
8556     // FIXME: Compare kind of reference binding if conversion functions
8557     // convert to a reference type used in direct reference binding, per
8558     // C++14 [over.match.best]p1 section 2 bullet 3.
8559   }
8560
8561   //    -- F1 is a non-template function and F2 is a function template
8562   //       specialization, or, if not that,
8563   bool Cand1IsSpecialization = Cand1.Function &&
8564                                Cand1.Function->getPrimaryTemplate();
8565   bool Cand2IsSpecialization = Cand2.Function &&
8566                                Cand2.Function->getPrimaryTemplate();
8567   if (Cand1IsSpecialization != Cand2IsSpecialization)
8568     return Cand2IsSpecialization;
8569
8570   //   -- F1 and F2 are function template specializations, and the function
8571   //      template for F1 is more specialized than the template for F2
8572   //      according to the partial ordering rules described in 14.5.5.2, or,
8573   //      if not that,
8574   if (Cand1IsSpecialization && Cand2IsSpecialization) {
8575     if (FunctionTemplateDecl *BetterTemplate
8576           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
8577                                          Cand2.Function->getPrimaryTemplate(),
8578                                          Loc,
8579                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
8580                                                              : TPOC_Call,
8581                                          Cand1.ExplicitCallArguments,
8582                                          Cand2.ExplicitCallArguments))
8583       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
8584   }
8585
8586   // Check for enable_if value-based overload resolution.
8587   if (Cand1.Function && Cand2.Function &&
8588       (Cand1.Function->hasAttr<EnableIfAttr>() ||
8589        Cand2.Function->hasAttr<EnableIfAttr>()))
8590     return hasBetterEnableIfAttrs(S, Cand1.Function, Cand2.Function);
8591
8592   if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
8593       Cand1.Function && Cand2.Function) {
8594     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
8595     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
8596            S.IdentifyCUDAPreference(Caller, Cand2.Function);
8597   }
8598
8599   bool HasPS1 = Cand1.Function != nullptr &&
8600                 functionHasPassObjectSizeParams(Cand1.Function);
8601   bool HasPS2 = Cand2.Function != nullptr &&
8602                 functionHasPassObjectSizeParams(Cand2.Function);
8603   return HasPS1 != HasPS2 && HasPS1;
8604 }
8605
8606 /// Determine whether two declarations are "equivalent" for the purposes of
8607 /// name lookup and overload resolution. This applies when the same internal/no
8608 /// linkage entity is defined by two modules (probably by textually including
8609 /// the same header). In such a case, we don't consider the declarations to
8610 /// declare the same entity, but we also don't want lookups with both
8611 /// declarations visible to be ambiguous in some cases (this happens when using
8612 /// a modularized libstdc++).
8613 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
8614                                                   const NamedDecl *B) {
8615   auto *VA = dyn_cast_or_null<ValueDecl>(A);
8616   auto *VB = dyn_cast_or_null<ValueDecl>(B);
8617   if (!VA || !VB)
8618     return false;
8619
8620   // The declarations must be declaring the same name as an internal linkage
8621   // entity in different modules.
8622   if (!VA->getDeclContext()->getRedeclContext()->Equals(
8623           VB->getDeclContext()->getRedeclContext()) ||
8624       getOwningModule(const_cast<ValueDecl *>(VA)) ==
8625           getOwningModule(const_cast<ValueDecl *>(VB)) ||
8626       VA->isExternallyVisible() || VB->isExternallyVisible())
8627     return false;
8628
8629   // Check that the declarations appear to be equivalent.
8630   //
8631   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
8632   // For constants and functions, we should check the initializer or body is
8633   // the same. For non-constant variables, we shouldn't allow it at all.
8634   if (Context.hasSameType(VA->getType(), VB->getType()))
8635     return true;
8636
8637   // Enum constants within unnamed enumerations will have different types, but
8638   // may still be similar enough to be interchangeable for our purposes.
8639   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
8640     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
8641       // Only handle anonymous enums. If the enumerations were named and
8642       // equivalent, they would have been merged to the same type.
8643       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
8644       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
8645       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
8646           !Context.hasSameType(EnumA->getIntegerType(),
8647                                EnumB->getIntegerType()))
8648         return false;
8649       // Allow this only if the value is the same for both enumerators.
8650       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
8651     }
8652   }
8653
8654   // Nothing else is sufficiently similar.
8655   return false;
8656 }
8657
8658 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
8659     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
8660   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
8661
8662   Module *M = getOwningModule(const_cast<NamedDecl*>(D));
8663   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
8664       << !M << (M ? M->getFullModuleName() : "");
8665
8666   for (auto *E : Equiv) {
8667     Module *M = getOwningModule(const_cast<NamedDecl*>(E));
8668     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
8669         << !M << (M ? M->getFullModuleName() : "");
8670   }
8671 }
8672
8673 /// \brief Computes the best viable function (C++ 13.3.3)
8674 /// within an overload candidate set.
8675 ///
8676 /// \param Loc The location of the function name (or operator symbol) for
8677 /// which overload resolution occurs.
8678 ///
8679 /// \param Best If overload resolution was successful or found a deleted
8680 /// function, \p Best points to the candidate function found.
8681 ///
8682 /// \returns The result of overload resolution.
8683 OverloadingResult
8684 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8685                                          iterator &Best,
8686                                          bool UserDefinedConversion) {
8687   // Find the best viable function.
8688   Best = end();
8689   for (iterator Cand = begin(); Cand != end(); ++Cand) {
8690     if (Cand->Viable)
8691       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8692                                                      UserDefinedConversion))
8693         Best = Cand;
8694   }
8695
8696   // If we didn't find any viable functions, abort.
8697   if (Best == end())
8698     return OR_No_Viable_Function;
8699
8700   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
8701
8702   // Make sure that this function is better than every other viable
8703   // function. If not, we have an ambiguity.
8704   for (iterator Cand = begin(); Cand != end(); ++Cand) {
8705     if (Cand->Viable &&
8706         Cand != Best &&
8707         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8708                                    UserDefinedConversion)) {
8709       if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
8710                                                    Cand->Function)) {
8711         EquivalentCands.push_back(Cand->Function);
8712         continue;
8713       }
8714
8715       Best = end();
8716       return OR_Ambiguous;
8717     }
8718   }
8719
8720   // Best is the best viable function.
8721   if (Best->Function &&
8722       (Best->Function->isDeleted() ||
8723        S.isFunctionConsideredUnavailable(Best->Function)))
8724     return OR_Deleted;
8725
8726   if (!EquivalentCands.empty())
8727     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
8728                                                     EquivalentCands);
8729
8730   return OR_Success;
8731 }
8732
8733 namespace {
8734
8735 enum OverloadCandidateKind {
8736   oc_function,
8737   oc_method,
8738   oc_constructor,
8739   oc_function_template,
8740   oc_method_template,
8741   oc_constructor_template,
8742   oc_implicit_default_constructor,
8743   oc_implicit_copy_constructor,
8744   oc_implicit_move_constructor,
8745   oc_implicit_copy_assignment,
8746   oc_implicit_move_assignment,
8747   oc_implicit_inherited_constructor
8748 };
8749
8750 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8751                                                 FunctionDecl *Fn,
8752                                                 std::string &Description) {
8753   bool isTemplate = false;
8754
8755   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8756     isTemplate = true;
8757     Description = S.getTemplateArgumentBindingsText(
8758       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8759   }
8760
8761   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8762     if (!Ctor->isImplicit())
8763       return isTemplate ? oc_constructor_template : oc_constructor;
8764
8765     if (Ctor->getInheritedConstructor())
8766       return oc_implicit_inherited_constructor;
8767
8768     if (Ctor->isDefaultConstructor())
8769       return oc_implicit_default_constructor;
8770
8771     if (Ctor->isMoveConstructor())
8772       return oc_implicit_move_constructor;
8773
8774     assert(Ctor->isCopyConstructor() &&
8775            "unexpected sort of implicit constructor");
8776     return oc_implicit_copy_constructor;
8777   }
8778
8779   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8780     // This actually gets spelled 'candidate function' for now, but
8781     // it doesn't hurt to split it out.
8782     if (!Meth->isImplicit())
8783       return isTemplate ? oc_method_template : oc_method;
8784
8785     if (Meth->isMoveAssignmentOperator())
8786       return oc_implicit_move_assignment;
8787
8788     if (Meth->isCopyAssignmentOperator())
8789       return oc_implicit_copy_assignment;
8790
8791     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8792     return oc_method;
8793   }
8794
8795   return isTemplate ? oc_function_template : oc_function;
8796 }
8797
8798 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
8799   const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
8800   if (!Ctor) return;
8801
8802   Ctor = Ctor->getInheritedConstructor();
8803   if (!Ctor) return;
8804
8805   S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
8806 }
8807
8808 } // end anonymous namespace
8809
8810 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
8811                                     const FunctionDecl *FD) {
8812   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
8813     bool AlwaysTrue;
8814     if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
8815       return false;
8816     if (!AlwaysTrue)
8817       return false;
8818   }
8819   return true;
8820 }
8821
8822 /// \brief Returns true if we can take the address of the function.
8823 ///
8824 /// \param Complain - If true, we'll emit a diagnostic
8825 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
8826 ///   we in overload resolution?
8827 /// \param Loc - The location of the statement we're complaining about. Ignored
8828 ///   if we're not complaining, or if we're in overload resolution.
8829 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
8830                                               bool Complain,
8831                                               bool InOverloadResolution,
8832                                               SourceLocation Loc) {
8833   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
8834     if (Complain) {
8835       if (InOverloadResolution)
8836         S.Diag(FD->getLocStart(),
8837                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
8838       else
8839         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
8840     }
8841     return false;
8842   }
8843
8844   auto I = std::find_if(FD->param_begin(), FD->param_end(),
8845                         std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
8846   if (I == FD->param_end())
8847     return true;
8848
8849   if (Complain) {
8850     // Add one to ParamNo because it's user-facing
8851     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
8852     if (InOverloadResolution)
8853       S.Diag(FD->getLocation(),
8854              diag::note_ovl_candidate_has_pass_object_size_params)
8855           << ParamNo;
8856     else
8857       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
8858           << FD << ParamNo;
8859   }
8860   return false;
8861 }
8862
8863 static bool checkAddressOfCandidateIsAvailable(Sema &S,
8864                                                const FunctionDecl *FD) {
8865   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
8866                                            /*InOverloadResolution=*/true,
8867                                            /*Loc=*/SourceLocation());
8868 }
8869
8870 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
8871                                              bool Complain,
8872                                              SourceLocation Loc) {
8873   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
8874                                              /*InOverloadResolution=*/false,
8875                                              Loc);
8876 }
8877
8878 // Notes the location of an overload candidate.
8879 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType,
8880                                  bool TakingAddress) {
8881   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
8882     return;
8883
8884   std::string FnDesc;
8885   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
8886   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
8887                              << (unsigned) K << FnDesc;
8888
8889   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
8890   Diag(Fn->getLocation(), PD);
8891   MaybeEmitInheritedConstructorNote(*this, Fn);
8892 }
8893
8894 // Notes the location of all overload candidates designated through
8895 // OverloadedExpr
8896 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
8897                                      bool TakingAddress) {
8898   assert(OverloadedExpr->getType() == Context.OverloadTy);
8899
8900   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
8901   OverloadExpr *OvlExpr = Ovl.Expression;
8902
8903   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8904                             IEnd = OvlExpr->decls_end(); 
8905        I != IEnd; ++I) {
8906     if (FunctionTemplateDecl *FunTmpl = 
8907                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
8908       NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType,
8909                             TakingAddress);
8910     } else if (FunctionDecl *Fun 
8911                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
8912       NoteOverloadCandidate(Fun, DestType, TakingAddress);
8913     }
8914   }
8915 }
8916
8917 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
8918 /// "lead" diagnostic; it will be given two arguments, the source and
8919 /// target types of the conversion.
8920 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
8921                                  Sema &S,
8922                                  SourceLocation CaretLoc,
8923                                  const PartialDiagnostic &PDiag) const {
8924   S.Diag(CaretLoc, PDiag)
8925     << Ambiguous.getFromType() << Ambiguous.getToType();
8926   // FIXME: The note limiting machinery is borrowed from
8927   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
8928   // refactoring here.
8929   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8930   unsigned CandsShown = 0;
8931   AmbiguousConversionSequence::const_iterator I, E;
8932   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8933     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8934       break;
8935     ++CandsShown;
8936     S.NoteOverloadCandidate(*I);
8937   }
8938   if (I != E)
8939     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8940 }
8941
8942 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
8943                                   unsigned I, bool TakingCandidateAddress) {
8944   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8945   assert(Conv.isBad());
8946   assert(Cand->Function && "for now, candidate must be a function");
8947   FunctionDecl *Fn = Cand->Function;
8948
8949   // There's a conversion slot for the object argument if this is a
8950   // non-constructor method.  Note that 'I' corresponds the
8951   // conversion-slot index.
8952   bool isObjectArgument = false;
8953   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8954     if (I == 0)
8955       isObjectArgument = true;
8956     else
8957       I--;
8958   }
8959
8960   std::string FnDesc;
8961   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8962
8963   Expr *FromExpr = Conv.Bad.FromExpr;
8964   QualType FromTy = Conv.Bad.getFromType();
8965   QualType ToTy = Conv.Bad.getToType();
8966
8967   if (FromTy == S.Context.OverloadTy) {
8968     assert(FromExpr && "overload set argument came from implicit argument?");
8969     Expr *E = FromExpr->IgnoreParens();
8970     if (isa<UnaryOperator>(E))
8971       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8972     DeclarationName Name = cast<OverloadExpr>(E)->getName();
8973
8974     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8975       << (unsigned) FnKind << FnDesc
8976       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8977       << ToTy << Name << I+1;
8978     MaybeEmitInheritedConstructorNote(S, Fn);
8979     return;
8980   }
8981
8982   // Do some hand-waving analysis to see if the non-viability is due
8983   // to a qualifier mismatch.
8984   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8985   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8986   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8987     CToTy = RT->getPointeeType();
8988   else {
8989     // TODO: detect and diagnose the full richness of const mismatches.
8990     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8991       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8992         CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8993   }
8994
8995   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8996       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8997     Qualifiers FromQs = CFromTy.getQualifiers();
8998     Qualifiers ToQs = CToTy.getQualifiers();
8999
9000     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9001       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9002         << (unsigned) FnKind << FnDesc
9003         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9004         << FromTy
9005         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
9006         << (unsigned) isObjectArgument << I+1;
9007       MaybeEmitInheritedConstructorNote(S, Fn);
9008       return;
9009     }
9010
9011     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9012       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9013         << (unsigned) FnKind << FnDesc
9014         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9015         << FromTy
9016         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9017         << (unsigned) isObjectArgument << I+1;
9018       MaybeEmitInheritedConstructorNote(S, Fn);
9019       return;
9020     }
9021
9022     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9023       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9024       << (unsigned) FnKind << FnDesc
9025       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9026       << FromTy
9027       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9028       << (unsigned) isObjectArgument << I+1;
9029       MaybeEmitInheritedConstructorNote(S, Fn);
9030       return;
9031     }
9032
9033     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9034     assert(CVR && "unexpected qualifiers mismatch");
9035
9036     if (isObjectArgument) {
9037       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9038         << (unsigned) FnKind << FnDesc
9039         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9040         << FromTy << (CVR - 1);
9041     } else {
9042       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9043         << (unsigned) FnKind << FnDesc
9044         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9045         << FromTy << (CVR - 1) << I+1;
9046     }
9047     MaybeEmitInheritedConstructorNote(S, Fn);
9048     return;
9049   }
9050
9051   // Special diagnostic for failure to convert an initializer list, since
9052   // telling the user that it has type void is not useful.
9053   if (FromExpr && isa<InitListExpr>(FromExpr)) {
9054     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9055       << (unsigned) FnKind << FnDesc
9056       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9057       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9058     MaybeEmitInheritedConstructorNote(S, Fn);
9059     return;
9060   }
9061
9062   // Diagnose references or pointers to incomplete types differently,
9063   // since it's far from impossible that the incompleteness triggered
9064   // the failure.
9065   QualType TempFromTy = FromTy.getNonReferenceType();
9066   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
9067     TempFromTy = PTy->getPointeeType();
9068   if (TempFromTy->isIncompleteType()) {
9069     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9070       << (unsigned) FnKind << FnDesc
9071       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9072       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9073     MaybeEmitInheritedConstructorNote(S, Fn);
9074     return;
9075   }
9076
9077   // Diagnose base -> derived pointer conversions.
9078   unsigned BaseToDerivedConversion = 0;
9079   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
9080     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9081       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9082                                                FromPtrTy->getPointeeType()) &&
9083           !FromPtrTy->getPointeeType()->isIncompleteType() &&
9084           !ToPtrTy->getPointeeType()->isIncompleteType() &&
9085           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9086                           FromPtrTy->getPointeeType()))
9087         BaseToDerivedConversion = 1;
9088     }
9089   } else if (const ObjCObjectPointerType *FromPtrTy
9090                                     = FromTy->getAs<ObjCObjectPointerType>()) {
9091     if (const ObjCObjectPointerType *ToPtrTy
9092                                         = ToTy->getAs<ObjCObjectPointerType>())
9093       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9094         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9095           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9096                                                 FromPtrTy->getPointeeType()) &&
9097               FromIface->isSuperClassOf(ToIface))
9098             BaseToDerivedConversion = 2;
9099   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
9100     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
9101         !FromTy->isIncompleteType() &&
9102         !ToRefTy->getPointeeType()->isIncompleteType() &&
9103         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9104       BaseToDerivedConversion = 3;
9105     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
9106                ToTy.getNonReferenceType().getCanonicalType() ==
9107                FromTy.getNonReferenceType().getCanonicalType()) {
9108       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9109         << (unsigned) FnKind << FnDesc
9110         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9111         << (unsigned) isObjectArgument << I + 1;
9112       MaybeEmitInheritedConstructorNote(S, Fn);
9113       return;
9114     }
9115   }
9116
9117   if (BaseToDerivedConversion) {
9118     S.Diag(Fn->getLocation(),
9119            diag::note_ovl_candidate_bad_base_to_derived_conv)
9120       << (unsigned) FnKind << FnDesc
9121       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9122       << (BaseToDerivedConversion - 1)
9123       << FromTy << ToTy << I+1;
9124     MaybeEmitInheritedConstructorNote(S, Fn);
9125     return;
9126   }
9127
9128   if (isa<ObjCObjectPointerType>(CFromTy) &&
9129       isa<PointerType>(CToTy)) {
9130       Qualifiers FromQs = CFromTy.getQualifiers();
9131       Qualifiers ToQs = CToTy.getQualifiers();
9132       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9133         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9134         << (unsigned) FnKind << FnDesc
9135         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9136         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9137         MaybeEmitInheritedConstructorNote(S, Fn);
9138         return;
9139       }
9140   }
9141
9142   if (TakingCandidateAddress &&
9143       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9144     return;
9145
9146   // Emit the generic diagnostic and, optionally, add the hints to it.
9147   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9148   FDiag << (unsigned) FnKind << FnDesc
9149     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9150     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
9151     << (unsigned) (Cand->Fix.Kind);
9152
9153   // If we can fix the conversion, suggest the FixIts.
9154   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9155        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9156     FDiag << *HI;
9157   S.Diag(Fn->getLocation(), FDiag);
9158
9159   MaybeEmitInheritedConstructorNote(S, Fn);
9160 }
9161
9162 /// Additional arity mismatch diagnosis specific to a function overload
9163 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
9164 /// over a candidate in any candidate set.
9165 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9166                                unsigned NumArgs) {
9167   FunctionDecl *Fn = Cand->Function;
9168   unsigned MinParams = Fn->getMinRequiredArguments();
9169
9170   // With invalid overloaded operators, it's possible that we think we
9171   // have an arity mismatch when in fact it looks like we have the
9172   // right number of arguments, because only overloaded operators have
9173   // the weird behavior of overloading member and non-member functions.
9174   // Just don't report anything.
9175   if (Fn->isInvalidDecl() && 
9176       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9177     return true;
9178
9179   if (NumArgs < MinParams) {
9180     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
9181            (Cand->FailureKind == ovl_fail_bad_deduction &&
9182             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
9183   } else {
9184     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
9185            (Cand->FailureKind == ovl_fail_bad_deduction &&
9186             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
9187   }
9188
9189   return false;
9190 }
9191
9192 /// General arity mismatch diagnosis over a candidate in a candidate set.
9193 static void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
9194   assert(isa<FunctionDecl>(D) &&
9195       "The templated declaration should at least be a function"
9196       " when diagnosing bad template argument deduction due to too many"
9197       " or too few arguments");
9198   
9199   FunctionDecl *Fn = cast<FunctionDecl>(D);
9200   
9201   // TODO: treat calls to a missing default constructor as a special case
9202   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9203   unsigned MinParams = Fn->getMinRequiredArguments();
9204
9205   // at least / at most / exactly
9206   unsigned mode, modeCount;
9207   if (NumFormalArgs < MinParams) {
9208     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9209         FnTy->isTemplateVariadic())
9210       mode = 0; // "at least"
9211     else
9212       mode = 2; // "exactly"
9213     modeCount = MinParams;
9214   } else {
9215     if (MinParams != FnTy->getNumParams())
9216       mode = 1; // "at most"
9217     else
9218       mode = 2; // "exactly"
9219     modeCount = FnTy->getNumParams();
9220   }
9221
9222   std::string Description;
9223   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
9224
9225   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
9226     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
9227       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9228       << mode << Fn->getParamDecl(0) << NumFormalArgs;
9229   else
9230     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
9231       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9232       << mode << modeCount << NumFormalArgs;
9233   MaybeEmitInheritedConstructorNote(S, Fn);
9234 }
9235
9236 /// Arity mismatch diagnosis specific to a function overload candidate.
9237 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
9238                                   unsigned NumFormalArgs) {
9239   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
9240     DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
9241 }
9242
9243 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
9244   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
9245     return FD->getDescribedFunctionTemplate();
9246   else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
9247     return RD->getDescribedClassTemplate();
9248
9249   llvm_unreachable("Unsupported: Getting the described template declaration"
9250                    " for bad deduction diagnosis");
9251 }
9252
9253 /// Diagnose a failed template-argument deduction.
9254 static void DiagnoseBadDeduction(Sema &S, Decl *Templated,
9255                                  DeductionFailureInfo &DeductionFailure,
9256                                  unsigned NumArgs,
9257                                  bool TakingCandidateAddress) {
9258   TemplateParameter Param = DeductionFailure.getTemplateParameter();
9259   NamedDecl *ParamD;
9260   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
9261   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
9262   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
9263   switch (DeductionFailure.Result) {
9264   case Sema::TDK_Success:
9265     llvm_unreachable("TDK_success while diagnosing bad deduction");
9266
9267   case Sema::TDK_Incomplete: {
9268     assert(ParamD && "no parameter found for incomplete deduction result");
9269     S.Diag(Templated->getLocation(),
9270            diag::note_ovl_candidate_incomplete_deduction)
9271         << ParamD->getDeclName();
9272     MaybeEmitInheritedConstructorNote(S, Templated);
9273     return;
9274   }
9275
9276   case Sema::TDK_Underqualified: {
9277     assert(ParamD && "no parameter found for bad qualifiers deduction result");
9278     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
9279
9280     QualType Param = DeductionFailure.getFirstArg()->getAsType();
9281
9282     // Param will have been canonicalized, but it should just be a
9283     // qualified version of ParamD, so move the qualifiers to that.
9284     QualifierCollector Qs;
9285     Qs.strip(Param);
9286     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
9287     assert(S.Context.hasSameType(Param, NonCanonParam));
9288
9289     // Arg has also been canonicalized, but there's nothing we can do
9290     // about that.  It also doesn't matter as much, because it won't
9291     // have any template parameters in it (because deduction isn't
9292     // done on dependent types).
9293     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
9294
9295     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
9296         << ParamD->getDeclName() << Arg << NonCanonParam;
9297     MaybeEmitInheritedConstructorNote(S, Templated);
9298     return;
9299   }
9300
9301   case Sema::TDK_Inconsistent: {
9302     assert(ParamD && "no parameter found for inconsistent deduction result");
9303     int which = 0;
9304     if (isa<TemplateTypeParmDecl>(ParamD))
9305       which = 0;
9306     else if (isa<NonTypeTemplateParmDecl>(ParamD))
9307       which = 1;
9308     else {
9309       which = 2;
9310     }
9311
9312     S.Diag(Templated->getLocation(),
9313            diag::note_ovl_candidate_inconsistent_deduction)
9314         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
9315         << *DeductionFailure.getSecondArg();
9316     MaybeEmitInheritedConstructorNote(S, Templated);
9317     return;
9318   }
9319
9320   case Sema::TDK_InvalidExplicitArguments:
9321     assert(ParamD && "no parameter found for invalid explicit arguments");
9322     if (ParamD->getDeclName())
9323       S.Diag(Templated->getLocation(),
9324              diag::note_ovl_candidate_explicit_arg_mismatch_named)
9325           << ParamD->getDeclName();
9326     else {
9327       int index = 0;
9328       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
9329         index = TTP->getIndex();
9330       else if (NonTypeTemplateParmDecl *NTTP
9331                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
9332         index = NTTP->getIndex();
9333       else
9334         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
9335       S.Diag(Templated->getLocation(),
9336              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
9337           << (index + 1);
9338     }
9339     MaybeEmitInheritedConstructorNote(S, Templated);
9340     return;
9341
9342   case Sema::TDK_TooManyArguments:
9343   case Sema::TDK_TooFewArguments:
9344     DiagnoseArityMismatch(S, Templated, NumArgs);
9345     return;
9346
9347   case Sema::TDK_InstantiationDepth:
9348     S.Diag(Templated->getLocation(),
9349            diag::note_ovl_candidate_instantiation_depth);
9350     MaybeEmitInheritedConstructorNote(S, Templated);
9351     return;
9352
9353   case Sema::TDK_SubstitutionFailure: {
9354     // Format the template argument list into the argument string.
9355     SmallString<128> TemplateArgString;
9356     if (TemplateArgumentList *Args =
9357             DeductionFailure.getTemplateArgumentList()) {
9358       TemplateArgString = " ";
9359       TemplateArgString += S.getTemplateArgumentBindingsText(
9360           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9361     }
9362
9363     // If this candidate was disabled by enable_if, say so.
9364     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
9365     if (PDiag && PDiag->second.getDiagID() ==
9366           diag::err_typename_nested_not_found_enable_if) {
9367       // FIXME: Use the source range of the condition, and the fully-qualified
9368       //        name of the enable_if template. These are both present in PDiag.
9369       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
9370         << "'enable_if'" << TemplateArgString;
9371       return;
9372     }
9373
9374     // Format the SFINAE diagnostic into the argument string.
9375     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
9376     //        formatted message in another diagnostic.
9377     SmallString<128> SFINAEArgString;
9378     SourceRange R;
9379     if (PDiag) {
9380       SFINAEArgString = ": ";
9381       R = SourceRange(PDiag->first, PDiag->first);
9382       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
9383     }
9384
9385     S.Diag(Templated->getLocation(),
9386            diag::note_ovl_candidate_substitution_failure)
9387         << TemplateArgString << SFINAEArgString << R;
9388     MaybeEmitInheritedConstructorNote(S, Templated);
9389     return;
9390   }
9391
9392   case Sema::TDK_FailedOverloadResolution: {
9393     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
9394     S.Diag(Templated->getLocation(),
9395            diag::note_ovl_candidate_failed_overload_resolution)
9396         << R.Expression->getName();
9397     return;
9398   }
9399
9400   case Sema::TDK_NonDeducedMismatch: {
9401     // FIXME: Provide a source location to indicate what we couldn't match.
9402     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
9403     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
9404     if (FirstTA.getKind() == TemplateArgument::Template &&
9405         SecondTA.getKind() == TemplateArgument::Template) {
9406       TemplateName FirstTN = FirstTA.getAsTemplate();
9407       TemplateName SecondTN = SecondTA.getAsTemplate();
9408       if (FirstTN.getKind() == TemplateName::Template &&
9409           SecondTN.getKind() == TemplateName::Template) {
9410         if (FirstTN.getAsTemplateDecl()->getName() ==
9411             SecondTN.getAsTemplateDecl()->getName()) {
9412           // FIXME: This fixes a bad diagnostic where both templates are named
9413           // the same.  This particular case is a bit difficult since:
9414           // 1) It is passed as a string to the diagnostic printer.
9415           // 2) The diagnostic printer only attempts to find a better
9416           //    name for types, not decls.
9417           // Ideally, this should folded into the diagnostic printer.
9418           S.Diag(Templated->getLocation(),
9419                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
9420               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
9421           return;
9422         }
9423       }
9424     }
9425
9426     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
9427         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
9428       return;
9429
9430     // FIXME: For generic lambda parameters, check if the function is a lambda
9431     // call operator, and if so, emit a prettier and more informative 
9432     // diagnostic that mentions 'auto' and lambda in addition to 
9433     // (or instead of?) the canonical template type parameters.
9434     S.Diag(Templated->getLocation(),
9435            diag::note_ovl_candidate_non_deduced_mismatch)
9436         << FirstTA << SecondTA;
9437     return;
9438   }
9439   // TODO: diagnose these individually, then kill off
9440   // note_ovl_candidate_bad_deduction, which is uselessly vague.
9441   case Sema::TDK_MiscellaneousDeductionFailure:
9442     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
9443     MaybeEmitInheritedConstructorNote(S, Templated);
9444     return;
9445   }
9446 }
9447
9448 /// Diagnose a failed template-argument deduction, for function calls.
9449 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
9450                                  unsigned NumArgs,
9451                                  bool TakingCandidateAddress) {
9452   unsigned TDK = Cand->DeductionFailure.Result;
9453   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
9454     if (CheckArityMismatch(S, Cand, NumArgs))
9455       return;
9456   }
9457   DiagnoseBadDeduction(S, Cand->Function, // pattern
9458                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
9459 }
9460
9461 /// CUDA: diagnose an invalid call across targets.
9462 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
9463   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
9464   FunctionDecl *Callee = Cand->Function;
9465
9466   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
9467                            CalleeTarget = S.IdentifyCUDATarget(Callee);
9468
9469   std::string FnDesc;
9470   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
9471
9472   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
9473       << (unsigned)FnKind << CalleeTarget << CallerTarget;
9474
9475   // This could be an implicit constructor for which we could not infer the
9476   // target due to a collsion. Diagnose that case.
9477   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
9478   if (Meth != nullptr && Meth->isImplicit()) {
9479     CXXRecordDecl *ParentClass = Meth->getParent();
9480     Sema::CXXSpecialMember CSM;
9481
9482     switch (FnKind) {
9483     default:
9484       return;
9485     case oc_implicit_default_constructor:
9486       CSM = Sema::CXXDefaultConstructor;
9487       break;
9488     case oc_implicit_copy_constructor:
9489       CSM = Sema::CXXCopyConstructor;
9490       break;
9491     case oc_implicit_move_constructor:
9492       CSM = Sema::CXXMoveConstructor;
9493       break;
9494     case oc_implicit_copy_assignment:
9495       CSM = Sema::CXXCopyAssignment;
9496       break;
9497     case oc_implicit_move_assignment:
9498       CSM = Sema::CXXMoveAssignment;
9499       break;
9500     };
9501
9502     bool ConstRHS = false;
9503     if (Meth->getNumParams()) {
9504       if (const ReferenceType *RT =
9505               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
9506         ConstRHS = RT->getPointeeType().isConstQualified();
9507       }
9508     }
9509
9510     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
9511                                               /* ConstRHS */ ConstRHS,
9512                                               /* Diagnose */ true);
9513   }
9514 }
9515
9516 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
9517   FunctionDecl *Callee = Cand->Function;
9518   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
9519
9520   S.Diag(Callee->getLocation(),
9521          diag::note_ovl_candidate_disabled_by_enable_if_attr)
9522       << Attr->getCond()->getSourceRange() << Attr->getMessage();
9523 }
9524
9525 /// Generates a 'note' diagnostic for an overload candidate.  We've
9526 /// already generated a primary error at the call site.
9527 ///
9528 /// It really does need to be a single diagnostic with its caret
9529 /// pointed at the candidate declaration.  Yes, this creates some
9530 /// major challenges of technical writing.  Yes, this makes pointing
9531 /// out problems with specific arguments quite awkward.  It's still
9532 /// better than generating twenty screens of text for every failed
9533 /// overload.
9534 ///
9535 /// It would be great to be able to express per-candidate problems
9536 /// more richly for those diagnostic clients that cared, but we'd
9537 /// still have to be just as careful with the default diagnostics.
9538 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
9539                                   unsigned NumArgs,
9540                                   bool TakingCandidateAddress) {
9541   FunctionDecl *Fn = Cand->Function;
9542
9543   // Note deleted candidates, but only if they're viable.
9544   if (Cand->Viable && (Fn->isDeleted() ||
9545       S.isFunctionConsideredUnavailable(Fn))) {
9546     std::string FnDesc;
9547     OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
9548
9549     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
9550       << FnKind << FnDesc
9551       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
9552     MaybeEmitInheritedConstructorNote(S, Fn);
9553     return;
9554   }
9555
9556   // We don't really have anything else to say about viable candidates.
9557   if (Cand->Viable) {
9558     S.NoteOverloadCandidate(Fn);
9559     return;
9560   }
9561
9562   switch (Cand->FailureKind) {
9563   case ovl_fail_too_many_arguments:
9564   case ovl_fail_too_few_arguments:
9565     return DiagnoseArityMismatch(S, Cand, NumArgs);
9566
9567   case ovl_fail_bad_deduction:
9568     return DiagnoseBadDeduction(S, Cand, NumArgs, TakingCandidateAddress);
9569
9570   case ovl_fail_illegal_constructor: {
9571     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
9572       << (Fn->getPrimaryTemplate() ? 1 : 0);
9573     MaybeEmitInheritedConstructorNote(S, Fn);
9574     return;
9575   }
9576
9577   case ovl_fail_trivial_conversion:
9578   case ovl_fail_bad_final_conversion:
9579   case ovl_fail_final_conversion_not_exact:
9580     return S.NoteOverloadCandidate(Fn);
9581
9582   case ovl_fail_bad_conversion: {
9583     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
9584     for (unsigned N = Cand->NumConversions; I != N; ++I)
9585       if (Cand->Conversions[I].isBad())
9586         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
9587
9588     // FIXME: this currently happens when we're called from SemaInit
9589     // when user-conversion overload fails.  Figure out how to handle
9590     // those conditions and diagnose them well.
9591     return S.NoteOverloadCandidate(Fn);
9592   }
9593
9594   case ovl_fail_bad_target:
9595     return DiagnoseBadTarget(S, Cand);
9596
9597   case ovl_fail_enable_if:
9598     return DiagnoseFailedEnableIfAttr(S, Cand);
9599   }
9600 }
9601
9602 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
9603   // Desugar the type of the surrogate down to a function type,
9604   // retaining as many typedefs as possible while still showing
9605   // the function type (and, therefore, its parameter types).
9606   QualType FnType = Cand->Surrogate->getConversionType();
9607   bool isLValueReference = false;
9608   bool isRValueReference = false;
9609   bool isPointer = false;
9610   if (const LValueReferenceType *FnTypeRef =
9611         FnType->getAs<LValueReferenceType>()) {
9612     FnType = FnTypeRef->getPointeeType();
9613     isLValueReference = true;
9614   } else if (const RValueReferenceType *FnTypeRef =
9615                FnType->getAs<RValueReferenceType>()) {
9616     FnType = FnTypeRef->getPointeeType();
9617     isRValueReference = true;
9618   }
9619   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
9620     FnType = FnTypePtr->getPointeeType();
9621     isPointer = true;
9622   }
9623   // Desugar down to a function type.
9624   FnType = QualType(FnType->getAs<FunctionType>(), 0);
9625   // Reconstruct the pointer/reference as appropriate.
9626   if (isPointer) FnType = S.Context.getPointerType(FnType);
9627   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
9628   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
9629
9630   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
9631     << FnType;
9632   MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
9633 }
9634
9635 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
9636                                          SourceLocation OpLoc,
9637                                          OverloadCandidate *Cand) {
9638   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
9639   std::string TypeStr("operator");
9640   TypeStr += Opc;
9641   TypeStr += "(";
9642   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
9643   if (Cand->NumConversions == 1) {
9644     TypeStr += ")";
9645     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
9646   } else {
9647     TypeStr += ", ";
9648     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
9649     TypeStr += ")";
9650     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
9651   }
9652 }
9653
9654 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
9655                                          OverloadCandidate *Cand) {
9656   unsigned NoOperands = Cand->NumConversions;
9657   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
9658     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
9659     if (ICS.isBad()) break; // all meaningless after first invalid
9660     if (!ICS.isAmbiguous()) continue;
9661
9662     ICS.DiagnoseAmbiguousConversion(S, OpLoc,
9663                               S.PDiag(diag::note_ambiguous_type_conversion));
9664   }
9665 }
9666
9667 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
9668   if (Cand->Function)
9669     return Cand->Function->getLocation();
9670   if (Cand->IsSurrogate)
9671     return Cand->Surrogate->getLocation();
9672   return SourceLocation();
9673 }
9674
9675 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
9676   switch ((Sema::TemplateDeductionResult)DFI.Result) {
9677   case Sema::TDK_Success:
9678     llvm_unreachable("TDK_success while diagnosing bad deduction");
9679
9680   case Sema::TDK_Invalid:
9681   case Sema::TDK_Incomplete:
9682     return 1;
9683
9684   case Sema::TDK_Underqualified:
9685   case Sema::TDK_Inconsistent:
9686     return 2;
9687
9688   case Sema::TDK_SubstitutionFailure:
9689   case Sema::TDK_NonDeducedMismatch:
9690   case Sema::TDK_MiscellaneousDeductionFailure:
9691     return 3;
9692
9693   case Sema::TDK_InstantiationDepth:
9694   case Sema::TDK_FailedOverloadResolution:
9695     return 4;
9696
9697   case Sema::TDK_InvalidExplicitArguments:
9698     return 5;
9699
9700   case Sema::TDK_TooManyArguments:
9701   case Sema::TDK_TooFewArguments:
9702     return 6;
9703   }
9704   llvm_unreachable("Unhandled deduction result");
9705 }
9706
9707 namespace {
9708 struct CompareOverloadCandidatesForDisplay {
9709   Sema &S;
9710   SourceLocation Loc;
9711   size_t NumArgs;
9712
9713   CompareOverloadCandidatesForDisplay(Sema &S, SourceLocation Loc, size_t nArgs)
9714       : S(S), NumArgs(nArgs) {}
9715
9716   bool operator()(const OverloadCandidate *L,
9717                   const OverloadCandidate *R) {
9718     // Fast-path this check.
9719     if (L == R) return false;
9720
9721     // Order first by viability.
9722     if (L->Viable) {
9723       if (!R->Viable) return true;
9724
9725       // TODO: introduce a tri-valued comparison for overload
9726       // candidates.  Would be more worthwhile if we had a sort
9727       // that could exploit it.
9728       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
9729       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
9730     } else if (R->Viable)
9731       return false;
9732
9733     assert(L->Viable == R->Viable);
9734
9735     // Criteria by which we can sort non-viable candidates:
9736     if (!L->Viable) {
9737       // 1. Arity mismatches come after other candidates.
9738       if (L->FailureKind == ovl_fail_too_many_arguments ||
9739           L->FailureKind == ovl_fail_too_few_arguments) {
9740         if (R->FailureKind == ovl_fail_too_many_arguments ||
9741             R->FailureKind == ovl_fail_too_few_arguments) {
9742           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
9743           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
9744           if (LDist == RDist) {
9745             if (L->FailureKind == R->FailureKind)
9746               // Sort non-surrogates before surrogates.
9747               return !L->IsSurrogate && R->IsSurrogate;
9748             // Sort candidates requiring fewer parameters than there were
9749             // arguments given after candidates requiring more parameters
9750             // than there were arguments given.
9751             return L->FailureKind == ovl_fail_too_many_arguments;
9752           }
9753           return LDist < RDist;
9754         }
9755         return false;
9756       }
9757       if (R->FailureKind == ovl_fail_too_many_arguments ||
9758           R->FailureKind == ovl_fail_too_few_arguments)
9759         return true;
9760
9761       // 2. Bad conversions come first and are ordered by the number
9762       // of bad conversions and quality of good conversions.
9763       if (L->FailureKind == ovl_fail_bad_conversion) {
9764         if (R->FailureKind != ovl_fail_bad_conversion)
9765           return true;
9766
9767         // The conversion that can be fixed with a smaller number of changes,
9768         // comes first.
9769         unsigned numLFixes = L->Fix.NumConversionsFixed;
9770         unsigned numRFixes = R->Fix.NumConversionsFixed;
9771         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
9772         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
9773         if (numLFixes != numRFixes) {
9774           return numLFixes < numRFixes;
9775         }
9776
9777         // If there's any ordering between the defined conversions...
9778         // FIXME: this might not be transitive.
9779         assert(L->NumConversions == R->NumConversions);
9780
9781         int leftBetter = 0;
9782         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
9783         for (unsigned E = L->NumConversions; I != E; ++I) {
9784           switch (CompareImplicitConversionSequences(S, Loc,
9785                                                      L->Conversions[I],
9786                                                      R->Conversions[I])) {
9787           case ImplicitConversionSequence::Better:
9788             leftBetter++;
9789             break;
9790
9791           case ImplicitConversionSequence::Worse:
9792             leftBetter--;
9793             break;
9794
9795           case ImplicitConversionSequence::Indistinguishable:
9796             break;
9797           }
9798         }
9799         if (leftBetter > 0) return true;
9800         if (leftBetter < 0) return false;
9801
9802       } else if (R->FailureKind == ovl_fail_bad_conversion)
9803         return false;
9804
9805       if (L->FailureKind == ovl_fail_bad_deduction) {
9806         if (R->FailureKind != ovl_fail_bad_deduction)
9807           return true;
9808
9809         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9810           return RankDeductionFailure(L->DeductionFailure)
9811                < RankDeductionFailure(R->DeductionFailure);
9812       } else if (R->FailureKind == ovl_fail_bad_deduction)
9813         return false;
9814
9815       // TODO: others?
9816     }
9817
9818     // Sort everything else by location.
9819     SourceLocation LLoc = GetLocationForCandidate(L);
9820     SourceLocation RLoc = GetLocationForCandidate(R);
9821
9822     // Put candidates without locations (e.g. builtins) at the end.
9823     if (LLoc.isInvalid()) return false;
9824     if (RLoc.isInvalid()) return true;
9825
9826     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9827   }
9828 };
9829 }
9830
9831 /// CompleteNonViableCandidate - Normally, overload resolution only
9832 /// computes up to the first. Produces the FixIt set if possible.
9833 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
9834                                        ArrayRef<Expr *> Args) {
9835   assert(!Cand->Viable);
9836
9837   // Don't do anything on failures other than bad conversion.
9838   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
9839
9840   // We only want the FixIts if all the arguments can be corrected.
9841   bool Unfixable = false;
9842   // Use a implicit copy initialization to check conversion fixes.
9843   Cand->Fix.setConversionChecker(TryCopyInitialization);
9844
9845   // Skip forward to the first bad conversion.
9846   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
9847   unsigned ConvCount = Cand->NumConversions;
9848   while (true) {
9849     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
9850     ConvIdx++;
9851     if (Cand->Conversions[ConvIdx - 1].isBad()) {
9852       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
9853       break;
9854     }
9855   }
9856
9857   if (ConvIdx == ConvCount)
9858     return;
9859
9860   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
9861          "remaining conversion is initialized?");
9862
9863   // FIXME: this should probably be preserved from the overload
9864   // operation somehow.
9865   bool SuppressUserConversions = false;
9866
9867   const FunctionProtoType* Proto;
9868   unsigned ArgIdx = ConvIdx;
9869
9870   if (Cand->IsSurrogate) {
9871     QualType ConvType
9872       = Cand->Surrogate->getConversionType().getNonReferenceType();
9873     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9874       ConvType = ConvPtrType->getPointeeType();
9875     Proto = ConvType->getAs<FunctionProtoType>();
9876     ArgIdx--;
9877   } else if (Cand->Function) {
9878     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
9879     if (isa<CXXMethodDecl>(Cand->Function) &&
9880         !isa<CXXConstructorDecl>(Cand->Function))
9881       ArgIdx--;
9882   } else {
9883     // Builtin binary operator with a bad first conversion.
9884     assert(ConvCount <= 3);
9885     for (; ConvIdx != ConvCount; ++ConvIdx)
9886       Cand->Conversions[ConvIdx]
9887         = TryCopyInitialization(S, Args[ConvIdx],
9888                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
9889                                 SuppressUserConversions,
9890                                 /*InOverloadResolution*/ true,
9891                                 /*AllowObjCWritebackConversion=*/
9892                                   S.getLangOpts().ObjCAutoRefCount);
9893     return;
9894   }
9895
9896   // Fill in the rest of the conversions.
9897   unsigned NumParams = Proto->getNumParams();
9898   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
9899     if (ArgIdx < NumParams) {
9900       Cand->Conversions[ConvIdx] = TryCopyInitialization(
9901           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
9902           /*InOverloadResolution=*/true,
9903           /*AllowObjCWritebackConversion=*/
9904           S.getLangOpts().ObjCAutoRefCount);
9905       // Store the FixIt in the candidate if it exists.
9906       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
9907         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
9908     }
9909     else
9910       Cand->Conversions[ConvIdx].setEllipsis();
9911   }
9912 }
9913
9914 /// PrintOverloadCandidates - When overload resolution fails, prints
9915 /// diagnostic messages containing the candidates in the candidate
9916 /// set.
9917 void OverloadCandidateSet::NoteCandidates(Sema &S,
9918                                           OverloadCandidateDisplayKind OCD,
9919                                           ArrayRef<Expr *> Args,
9920                                           StringRef Opc,
9921                                           SourceLocation OpLoc) {
9922   // Sort the candidates by viability and position.  Sorting directly would
9923   // be prohibitive, so we make a set of pointers and sort those.
9924   SmallVector<OverloadCandidate*, 32> Cands;
9925   if (OCD == OCD_AllCandidates) Cands.reserve(size());
9926   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9927     if (Cand->Viable)
9928       Cands.push_back(Cand);
9929     else if (OCD == OCD_AllCandidates) {
9930       CompleteNonViableCandidate(S, Cand, Args);
9931       if (Cand->Function || Cand->IsSurrogate)
9932         Cands.push_back(Cand);
9933       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
9934       // want to list every possible builtin candidate.
9935     }
9936   }
9937
9938   std::sort(Cands.begin(), Cands.end(),
9939             CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size()));
9940
9941   bool ReportedAmbiguousConversions = false;
9942
9943   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
9944   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9945   unsigned CandsShown = 0;
9946   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9947     OverloadCandidate *Cand = *I;
9948
9949     // Set an arbitrary limit on the number of candidate functions we'll spam
9950     // the user with.  FIXME: This limit should depend on details of the
9951     // candidate list.
9952     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
9953       break;
9954     }
9955     ++CandsShown;
9956
9957     if (Cand->Function)
9958       NoteFunctionCandidate(S, Cand, Args.size(),
9959                             /*TakingCandidateAddress=*/false);
9960     else if (Cand->IsSurrogate)
9961       NoteSurrogateCandidate(S, Cand);
9962     else {
9963       assert(Cand->Viable &&
9964              "Non-viable built-in candidates are not added to Cands.");
9965       // Generally we only see ambiguities including viable builtin
9966       // operators if overload resolution got screwed up by an
9967       // ambiguous user-defined conversion.
9968       //
9969       // FIXME: It's quite possible for different conversions to see
9970       // different ambiguities, though.
9971       if (!ReportedAmbiguousConversions) {
9972         NoteAmbiguousUserConversions(S, OpLoc, Cand);
9973         ReportedAmbiguousConversions = true;
9974       }
9975
9976       // If this is a viable builtin, print it.
9977       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
9978     }
9979   }
9980
9981   if (I != E)
9982     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
9983 }
9984
9985 static SourceLocation
9986 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
9987   return Cand->Specialization ? Cand->Specialization->getLocation()
9988                               : SourceLocation();
9989 }
9990
9991 namespace {
9992 struct CompareTemplateSpecCandidatesForDisplay {
9993   Sema &S;
9994   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
9995
9996   bool operator()(const TemplateSpecCandidate *L,
9997                   const TemplateSpecCandidate *R) {
9998     // Fast-path this check.
9999     if (L == R)
10000       return false;
10001
10002     // Assuming that both candidates are not matches...
10003
10004     // Sort by the ranking of deduction failures.
10005     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10006       return RankDeductionFailure(L->DeductionFailure) <
10007              RankDeductionFailure(R->DeductionFailure);
10008
10009     // Sort everything else by location.
10010     SourceLocation LLoc = GetLocationForCandidate(L);
10011     SourceLocation RLoc = GetLocationForCandidate(R);
10012
10013     // Put candidates without locations (e.g. builtins) at the end.
10014     if (LLoc.isInvalid())
10015       return false;
10016     if (RLoc.isInvalid())
10017       return true;
10018
10019     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10020   }
10021 };
10022 }
10023
10024 /// Diagnose a template argument deduction failure.
10025 /// We are treating these failures as overload failures due to bad
10026 /// deductions.
10027 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10028                                                  bool ForTakingAddress) {
10029   DiagnoseBadDeduction(S, Specialization, // pattern
10030                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10031 }
10032
10033 void TemplateSpecCandidateSet::destroyCandidates() {
10034   for (iterator i = begin(), e = end(); i != e; ++i) {
10035     i->DeductionFailure.Destroy();
10036   }
10037 }
10038
10039 void TemplateSpecCandidateSet::clear() {
10040   destroyCandidates();
10041   Candidates.clear();
10042 }
10043
10044 /// NoteCandidates - When no template specialization match is found, prints
10045 /// diagnostic messages containing the non-matching specializations that form
10046 /// the candidate set.
10047 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10048 /// OCD == OCD_AllCandidates and Cand->Viable == false.
10049 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10050   // Sort the candidates by position (assuming no candidate is a match).
10051   // Sorting directly would be prohibitive, so we make a set of pointers
10052   // and sort those.
10053   SmallVector<TemplateSpecCandidate *, 32> Cands;
10054   Cands.reserve(size());
10055   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10056     if (Cand->Specialization)
10057       Cands.push_back(Cand);
10058     // Otherwise, this is a non-matching builtin candidate.  We do not,
10059     // in general, want to list every possible builtin candidate.
10060   }
10061
10062   std::sort(Cands.begin(), Cands.end(),
10063             CompareTemplateSpecCandidatesForDisplay(S));
10064
10065   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10066   // for generalization purposes (?).
10067   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10068
10069   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10070   unsigned CandsShown = 0;
10071   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10072     TemplateSpecCandidate *Cand = *I;
10073
10074     // Set an arbitrary limit on the number of candidates we'll spam
10075     // the user with.  FIXME: This limit should depend on details of the
10076     // candidate list.
10077     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10078       break;
10079     ++CandsShown;
10080
10081     assert(Cand->Specialization &&
10082            "Non-matching built-in candidates are not added to Cands.");
10083     Cand->NoteDeductionFailure(S, ForTakingAddress);
10084   }
10085
10086   if (I != E)
10087     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
10088 }
10089
10090 // [PossiblyAFunctionType]  -->   [Return]
10091 // NonFunctionType --> NonFunctionType
10092 // R (A) --> R(A)
10093 // R (*)(A) --> R (A)
10094 // R (&)(A) --> R (A)
10095 // R (S::*)(A) --> R (A)
10096 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
10097   QualType Ret = PossiblyAFunctionType;
10098   if (const PointerType *ToTypePtr = 
10099     PossiblyAFunctionType->getAs<PointerType>())
10100     Ret = ToTypePtr->getPointeeType();
10101   else if (const ReferenceType *ToTypeRef = 
10102     PossiblyAFunctionType->getAs<ReferenceType>())
10103     Ret = ToTypeRef->getPointeeType();
10104   else if (const MemberPointerType *MemTypePtr =
10105     PossiblyAFunctionType->getAs<MemberPointerType>()) 
10106     Ret = MemTypePtr->getPointeeType();   
10107   Ret = 
10108     Context.getCanonicalType(Ret).getUnqualifiedType();
10109   return Ret;
10110 }
10111
10112 namespace {
10113 // A helper class to help with address of function resolution
10114 // - allows us to avoid passing around all those ugly parameters
10115 class AddressOfFunctionResolver {
10116   Sema& S;
10117   Expr* SourceExpr;
10118   const QualType& TargetType; 
10119   QualType TargetFunctionType; // Extracted function type from target type 
10120    
10121   bool Complain;
10122   //DeclAccessPair& ResultFunctionAccessPair;
10123   ASTContext& Context;
10124
10125   bool TargetTypeIsNonStaticMemberFunction;
10126   bool FoundNonTemplateFunction;
10127   bool StaticMemberFunctionFromBoundPointer;
10128   bool HasComplained;
10129
10130   OverloadExpr::FindResult OvlExprInfo; 
10131   OverloadExpr *OvlExpr;
10132   TemplateArgumentListInfo OvlExplicitTemplateArgs;
10133   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
10134   TemplateSpecCandidateSet FailedCandidates;
10135
10136 public:
10137   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
10138                             const QualType &TargetType, bool Complain)
10139       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
10140         Complain(Complain), Context(S.getASTContext()),
10141         TargetTypeIsNonStaticMemberFunction(
10142             !!TargetType->getAs<MemberPointerType>()),
10143         FoundNonTemplateFunction(false),
10144         StaticMemberFunctionFromBoundPointer(false),
10145         HasComplained(false),
10146         OvlExprInfo(OverloadExpr::find(SourceExpr)),
10147         OvlExpr(OvlExprInfo.Expression),
10148         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
10149     ExtractUnqualifiedFunctionTypeFromTargetType();
10150
10151     if (TargetFunctionType->isFunctionType()) {
10152       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
10153         if (!UME->isImplicitAccess() &&
10154             !S.ResolveSingleFunctionTemplateSpecialization(UME))
10155           StaticMemberFunctionFromBoundPointer = true;
10156     } else if (OvlExpr->hasExplicitTemplateArgs()) {
10157       DeclAccessPair dap;
10158       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
10159               OvlExpr, false, &dap)) {
10160         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
10161           if (!Method->isStatic()) {
10162             // If the target type is a non-function type and the function found
10163             // is a non-static member function, pretend as if that was the
10164             // target, it's the only possible type to end up with.
10165             TargetTypeIsNonStaticMemberFunction = true;
10166
10167             // And skip adding the function if its not in the proper form.
10168             // We'll diagnose this due to an empty set of functions.
10169             if (!OvlExprInfo.HasFormOfMemberPointer)
10170               return;
10171           }
10172
10173         Matches.push_back(std::make_pair(dap, Fn));
10174       }
10175       return;
10176     }
10177     
10178     if (OvlExpr->hasExplicitTemplateArgs())
10179       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
10180
10181     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
10182       // C++ [over.over]p4:
10183       //   If more than one function is selected, [...]
10184       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
10185         if (FoundNonTemplateFunction)
10186           EliminateAllTemplateMatches();
10187         else
10188           EliminateAllExceptMostSpecializedTemplate();
10189       }
10190     }
10191
10192     if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
10193         Matches.size() > 1)
10194       EliminateSuboptimalCudaMatches();
10195   }
10196
10197   bool hasComplained() const { return HasComplained; }
10198
10199 private:
10200   // Is A considered a better overload candidate for the desired type than B?
10201   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
10202     return hasBetterEnableIfAttrs(S, A, B);
10203   }
10204
10205   // Returns true if we've eliminated any (read: all but one) candidates, false
10206   // otherwise.
10207   bool eliminiateSuboptimalOverloadCandidates() {
10208     // Same algorithm as overload resolution -- one pass to pick the "best",
10209     // another pass to be sure that nothing is better than the best.
10210     auto Best = Matches.begin();
10211     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
10212       if (isBetterCandidate(I->second, Best->second))
10213         Best = I;
10214
10215     const FunctionDecl *BestFn = Best->second;
10216     auto IsBestOrInferiorToBest = [this, BestFn](
10217         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
10218       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
10219     };
10220
10221     // Note: We explicitly leave Matches unmodified if there isn't a clear best
10222     // option, so we can potentially give the user a better error
10223     if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest))
10224       return false;
10225     Matches[0] = *Best;
10226     Matches.resize(1);
10227     return true;
10228   }
10229
10230   bool isTargetTypeAFunction() const {
10231     return TargetFunctionType->isFunctionType();
10232   }
10233
10234   // [ToType]     [Return]
10235
10236   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
10237   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
10238   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
10239   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
10240     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
10241   }
10242
10243   // return true if any matching specializations were found
10244   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 
10245                                    const DeclAccessPair& CurAccessFunPair) {
10246     if (CXXMethodDecl *Method
10247               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
10248       // Skip non-static function templates when converting to pointer, and
10249       // static when converting to member pointer.
10250       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10251         return false;
10252     } 
10253     else if (TargetTypeIsNonStaticMemberFunction)
10254       return false;
10255
10256     // C++ [over.over]p2:
10257     //   If the name is a function template, template argument deduction is
10258     //   done (14.8.2.2), and if the argument deduction succeeds, the
10259     //   resulting template argument list is used to generate a single
10260     //   function template specialization, which is added to the set of
10261     //   overloaded functions considered.
10262     FunctionDecl *Specialization = nullptr;
10263     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10264     if (Sema::TemplateDeductionResult Result
10265           = S.DeduceTemplateArguments(FunctionTemplate, 
10266                                       &OvlExplicitTemplateArgs,
10267                                       TargetFunctionType, Specialization, 
10268                                       Info, /*InOverloadResolution=*/true)) {
10269       // Make a note of the failed deduction for diagnostics.
10270       FailedCandidates.addCandidate()
10271           .set(FunctionTemplate->getTemplatedDecl(),
10272                MakeDeductionFailureInfo(Context, Result, Info));
10273       return false;
10274     } 
10275     
10276     // Template argument deduction ensures that we have an exact match or
10277     // compatible pointer-to-function arguments that would be adjusted by ICS.
10278     // This function template specicalization works.
10279     Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
10280     assert(S.isSameOrCompatibleFunctionType(
10281               Context.getCanonicalType(Specialization->getType()),
10282               Context.getCanonicalType(TargetFunctionType)));
10283
10284     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
10285       return false;
10286
10287     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
10288     return true;
10289   }
10290   
10291   bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 
10292                                       const DeclAccessPair& CurAccessFunPair) {
10293     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
10294       // Skip non-static functions when converting to pointer, and static
10295       // when converting to member pointer.
10296       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10297         return false;
10298     } 
10299     else if (TargetTypeIsNonStaticMemberFunction)
10300       return false;
10301
10302     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
10303       if (S.getLangOpts().CUDA)
10304         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
10305           if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
10306             return false;
10307
10308       // If any candidate has a placeholder return type, trigger its deduction
10309       // now.
10310       if (S.getLangOpts().CPlusPlus14 &&
10311           FunDecl->getReturnType()->isUndeducedType() &&
10312           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain)) {
10313         HasComplained |= Complain;
10314         return false;
10315       }
10316
10317       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
10318         return false;
10319
10320       QualType ResultTy;
10321       if (Context.hasSameUnqualifiedType(TargetFunctionType, 
10322                                          FunDecl->getType()) ||
10323           S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
10324                                  ResultTy) ||
10325           (!S.getLangOpts().CPlusPlus && TargetType->isVoidPointerType())) {
10326         Matches.push_back(std::make_pair(
10327             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
10328         FoundNonTemplateFunction = true;
10329         return true;
10330       }
10331     }
10332     
10333     return false;
10334   }
10335   
10336   bool FindAllFunctionsThatMatchTargetTypeExactly() {
10337     bool Ret = false;
10338     
10339     // If the overload expression doesn't have the form of a pointer to
10340     // member, don't try to convert it to a pointer-to-member type.
10341     if (IsInvalidFormOfPointerToMemberFunction())
10342       return false;
10343
10344     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10345                                E = OvlExpr->decls_end(); 
10346          I != E; ++I) {
10347       // Look through any using declarations to find the underlying function.
10348       NamedDecl *Fn = (*I)->getUnderlyingDecl();
10349
10350       // C++ [over.over]p3:
10351       //   Non-member functions and static member functions match
10352       //   targets of type "pointer-to-function" or "reference-to-function."
10353       //   Nonstatic member functions match targets of
10354       //   type "pointer-to-member-function."
10355       // Note that according to DR 247, the containing class does not matter.
10356       if (FunctionTemplateDecl *FunctionTemplate
10357                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
10358         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
10359           Ret = true;
10360       }
10361       // If we have explicit template arguments supplied, skip non-templates.
10362       else if (!OvlExpr->hasExplicitTemplateArgs() &&
10363                AddMatchingNonTemplateFunction(Fn, I.getPair()))
10364         Ret = true;
10365     }
10366     assert(Ret || Matches.empty());
10367     return Ret;
10368   }
10369
10370   void EliminateAllExceptMostSpecializedTemplate() {
10371     //   [...] and any given function template specialization F1 is
10372     //   eliminated if the set contains a second function template
10373     //   specialization whose function template is more specialized
10374     //   than the function template of F1 according to the partial
10375     //   ordering rules of 14.5.5.2.
10376
10377     // The algorithm specified above is quadratic. We instead use a
10378     // two-pass algorithm (similar to the one used to identify the
10379     // best viable function in an overload set) that identifies the
10380     // best function template (if it exists).
10381
10382     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
10383     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
10384       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
10385
10386     // TODO: It looks like FailedCandidates does not serve much purpose
10387     // here, since the no_viable diagnostic has index 0.
10388     UnresolvedSetIterator Result = S.getMostSpecialized(
10389         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
10390         SourceExpr->getLocStart(), S.PDiag(),
10391         S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
10392                                                      .second->getDeclName(),
10393         S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
10394         Complain, TargetFunctionType);
10395
10396     if (Result != MatchesCopy.end()) {
10397       // Make it the first and only element
10398       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
10399       Matches[0].second = cast<FunctionDecl>(*Result);
10400       Matches.resize(1);
10401     } else
10402       HasComplained |= Complain;
10403   }
10404
10405   void EliminateAllTemplateMatches() {
10406     //   [...] any function template specializations in the set are
10407     //   eliminated if the set also contains a non-template function, [...]
10408     for (unsigned I = 0, N = Matches.size(); I != N; ) {
10409       if (Matches[I].second->getPrimaryTemplate() == nullptr)
10410         ++I;
10411       else {
10412         Matches[I] = Matches[--N];
10413         Matches.resize(N);
10414       }
10415     }
10416   }
10417
10418   void EliminateSuboptimalCudaMatches() {
10419     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
10420   }
10421
10422 public:
10423   void ComplainNoMatchesFound() const {
10424     assert(Matches.empty());
10425     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
10426         << OvlExpr->getName() << TargetFunctionType
10427         << OvlExpr->getSourceRange();
10428     if (FailedCandidates.empty())
10429       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
10430                                   /*TakingAddress=*/true);
10431     else {
10432       // We have some deduction failure messages. Use them to diagnose
10433       // the function templates, and diagnose the non-template candidates
10434       // normally.
10435       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10436                                  IEnd = OvlExpr->decls_end();
10437            I != IEnd; ++I)
10438         if (FunctionDecl *Fun =
10439                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
10440           if (!functionHasPassObjectSizeParams(Fun))
10441             S.NoteOverloadCandidate(Fun, TargetFunctionType,
10442                                     /*TakingAddress=*/true);
10443       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
10444     }
10445   }
10446
10447   bool IsInvalidFormOfPointerToMemberFunction() const {
10448     return TargetTypeIsNonStaticMemberFunction &&
10449       !OvlExprInfo.HasFormOfMemberPointer;
10450   }
10451
10452   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
10453       // TODO: Should we condition this on whether any functions might
10454       // have matched, or is it more appropriate to do that in callers?
10455       // TODO: a fixit wouldn't hurt.
10456       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
10457         << TargetType << OvlExpr->getSourceRange();
10458   }
10459
10460   bool IsStaticMemberFunctionFromBoundPointer() const {
10461     return StaticMemberFunctionFromBoundPointer;
10462   }
10463
10464   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
10465     S.Diag(OvlExpr->getLocStart(),
10466            diag::err_invalid_form_pointer_member_function)
10467       << OvlExpr->getSourceRange();
10468   }
10469
10470   void ComplainOfInvalidConversion() const {
10471     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
10472       << OvlExpr->getName() << TargetType;
10473   }
10474
10475   void ComplainMultipleMatchesFound() const {
10476     assert(Matches.size() > 1);
10477     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
10478       << OvlExpr->getName()
10479       << OvlExpr->getSourceRange();
10480     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
10481                                 /*TakingAddress=*/true);
10482   }
10483
10484   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
10485
10486   int getNumMatches() const { return Matches.size(); }
10487   
10488   FunctionDecl* getMatchingFunctionDecl() const {
10489     if (Matches.size() != 1) return nullptr;
10490     return Matches[0].second;
10491   }
10492   
10493   const DeclAccessPair* getMatchingFunctionAccessPair() const {
10494     if (Matches.size() != 1) return nullptr;
10495     return &Matches[0].first;
10496   }
10497 };
10498 }
10499
10500 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
10501 /// an overloaded function (C++ [over.over]), where @p From is an
10502 /// expression with overloaded function type and @p ToType is the type
10503 /// we're trying to resolve to. For example:
10504 ///
10505 /// @code
10506 /// int f(double);
10507 /// int f(int);
10508 ///
10509 /// int (*pfd)(double) = f; // selects f(double)
10510 /// @endcode
10511 ///
10512 /// This routine returns the resulting FunctionDecl if it could be
10513 /// resolved, and NULL otherwise. When @p Complain is true, this
10514 /// routine will emit diagnostics if there is an error.
10515 FunctionDecl *
10516 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
10517                                          QualType TargetType,
10518                                          bool Complain,
10519                                          DeclAccessPair &FoundResult,
10520                                          bool *pHadMultipleCandidates) {
10521   assert(AddressOfExpr->getType() == Context.OverloadTy);
10522
10523   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
10524                                      Complain);
10525   int NumMatches = Resolver.getNumMatches();
10526   FunctionDecl *Fn = nullptr;
10527   bool ShouldComplain = Complain && !Resolver.hasComplained();
10528   if (NumMatches == 0 && ShouldComplain) {
10529     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
10530       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
10531     else
10532       Resolver.ComplainNoMatchesFound();
10533   }
10534   else if (NumMatches > 1 && ShouldComplain)
10535     Resolver.ComplainMultipleMatchesFound();
10536   else if (NumMatches == 1) {
10537     Fn = Resolver.getMatchingFunctionDecl();
10538     assert(Fn);
10539     FoundResult = *Resolver.getMatchingFunctionAccessPair();
10540     if (Complain) {
10541       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
10542         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
10543       else
10544         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
10545     }
10546   }
10547
10548   if (pHadMultipleCandidates)
10549     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
10550   return Fn;
10551 }
10552
10553 /// \brief Given an expression that refers to an overloaded function, try to
10554 /// resolve that overloaded function expression down to a single function.
10555 ///
10556 /// This routine can only resolve template-ids that refer to a single function
10557 /// template, where that template-id refers to a single template whose template
10558 /// arguments are either provided by the template-id or have defaults,
10559 /// as described in C++0x [temp.arg.explicit]p3.
10560 ///
10561 /// If no template-ids are found, no diagnostics are emitted and NULL is
10562 /// returned.
10563 FunctionDecl *
10564 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 
10565                                                   bool Complain,
10566                                                   DeclAccessPair *FoundResult) {
10567   // C++ [over.over]p1:
10568   //   [...] [Note: any redundant set of parentheses surrounding the
10569   //   overloaded function name is ignored (5.1). ]
10570   // C++ [over.over]p1:
10571   //   [...] The overloaded function name can be preceded by the &
10572   //   operator.
10573
10574   // If we didn't actually find any template-ids, we're done.
10575   if (!ovl->hasExplicitTemplateArgs())
10576     return nullptr;
10577
10578   TemplateArgumentListInfo ExplicitTemplateArgs;
10579   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
10580   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
10581
10582   // Look through all of the overloaded functions, searching for one
10583   // whose type matches exactly.
10584   FunctionDecl *Matched = nullptr;
10585   for (UnresolvedSetIterator I = ovl->decls_begin(),
10586          E = ovl->decls_end(); I != E; ++I) {
10587     // C++0x [temp.arg.explicit]p3:
10588     //   [...] In contexts where deduction is done and fails, or in contexts
10589     //   where deduction is not done, if a template argument list is
10590     //   specified and it, along with any default template arguments,
10591     //   identifies a single function template specialization, then the
10592     //   template-id is an lvalue for the function template specialization.
10593     FunctionTemplateDecl *FunctionTemplate
10594       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
10595
10596     // C++ [over.over]p2:
10597     //   If the name is a function template, template argument deduction is
10598     //   done (14.8.2.2), and if the argument deduction succeeds, the
10599     //   resulting template argument list is used to generate a single
10600     //   function template specialization, which is added to the set of
10601     //   overloaded functions considered.
10602     FunctionDecl *Specialization = nullptr;
10603     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10604     if (TemplateDeductionResult Result
10605           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
10606                                     Specialization, Info,
10607                                     /*InOverloadResolution=*/true)) {
10608       // Make a note of the failed deduction for diagnostics.
10609       // TODO: Actually use the failed-deduction info?
10610       FailedCandidates.addCandidate()
10611           .set(FunctionTemplate->getTemplatedDecl(),
10612                MakeDeductionFailureInfo(Context, Result, Info));
10613       continue;
10614     }
10615
10616     assert(Specialization && "no specialization and no error?");
10617
10618     // Multiple matches; we can't resolve to a single declaration.
10619     if (Matched) {
10620       if (Complain) {
10621         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
10622           << ovl->getName();
10623         NoteAllOverloadCandidates(ovl);
10624       }
10625       return nullptr;
10626     }
10627     
10628     Matched = Specialization;
10629     if (FoundResult) *FoundResult = I.getPair();    
10630   }
10631
10632   if (Matched && getLangOpts().CPlusPlus14 &&
10633       Matched->getReturnType()->isUndeducedType() &&
10634       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
10635     return nullptr;
10636
10637   return Matched;
10638 }
10639
10640
10641
10642
10643 // Resolve and fix an overloaded expression that can be resolved
10644 // because it identifies a single function template specialization.
10645 //
10646 // Last three arguments should only be supplied if Complain = true
10647 //
10648 // Return true if it was logically possible to so resolve the
10649 // expression, regardless of whether or not it succeeded.  Always
10650 // returns true if 'complain' is set.
10651 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
10652                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
10653                       bool complain, SourceRange OpRangeForComplaining, 
10654                                            QualType DestTypeForComplaining, 
10655                                             unsigned DiagIDForComplaining) {
10656   assert(SrcExpr.get()->getType() == Context.OverloadTy);
10657
10658   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
10659
10660   DeclAccessPair found;
10661   ExprResult SingleFunctionExpression;
10662   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
10663                            ovl.Expression, /*complain*/ false, &found)) {
10664     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
10665       SrcExpr = ExprError();
10666       return true;
10667     }
10668
10669     // It is only correct to resolve to an instance method if we're
10670     // resolving a form that's permitted to be a pointer to member.
10671     // Otherwise we'll end up making a bound member expression, which
10672     // is illegal in all the contexts we resolve like this.
10673     if (!ovl.HasFormOfMemberPointer &&
10674         isa<CXXMethodDecl>(fn) &&
10675         cast<CXXMethodDecl>(fn)->isInstance()) {
10676       if (!complain) return false;
10677
10678       Diag(ovl.Expression->getExprLoc(),
10679            diag::err_bound_member_function)
10680         << 0 << ovl.Expression->getSourceRange();
10681
10682       // TODO: I believe we only end up here if there's a mix of
10683       // static and non-static candidates (otherwise the expression
10684       // would have 'bound member' type, not 'overload' type).
10685       // Ideally we would note which candidate was chosen and why
10686       // the static candidates were rejected.
10687       SrcExpr = ExprError();
10688       return true;
10689     }
10690
10691     // Fix the expression to refer to 'fn'.
10692     SingleFunctionExpression =
10693         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
10694
10695     // If desired, do function-to-pointer decay.
10696     if (doFunctionPointerConverion) {
10697       SingleFunctionExpression =
10698         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
10699       if (SingleFunctionExpression.isInvalid()) {
10700         SrcExpr = ExprError();
10701         return true;
10702       }
10703     }
10704   }
10705
10706   if (!SingleFunctionExpression.isUsable()) {
10707     if (complain) {
10708       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
10709         << ovl.Expression->getName()
10710         << DestTypeForComplaining
10711         << OpRangeForComplaining 
10712         << ovl.Expression->getQualifierLoc().getSourceRange();
10713       NoteAllOverloadCandidates(SrcExpr.get());
10714
10715       SrcExpr = ExprError();
10716       return true;
10717     }
10718
10719     return false;
10720   }
10721
10722   SrcExpr = SingleFunctionExpression;
10723   return true;
10724 }
10725
10726 /// \brief Add a single candidate to the overload set.
10727 static void AddOverloadedCallCandidate(Sema &S,
10728                                        DeclAccessPair FoundDecl,
10729                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
10730                                        ArrayRef<Expr *> Args,
10731                                        OverloadCandidateSet &CandidateSet,
10732                                        bool PartialOverloading,
10733                                        bool KnownValid) {
10734   NamedDecl *Callee = FoundDecl.getDecl();
10735   if (isa<UsingShadowDecl>(Callee))
10736     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
10737
10738   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
10739     if (ExplicitTemplateArgs) {
10740       assert(!KnownValid && "Explicit template arguments?");
10741       return;
10742     }
10743     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
10744                            /*SuppressUsedConversions=*/false,
10745                            PartialOverloading);
10746     return;
10747   }
10748
10749   if (FunctionTemplateDecl *FuncTemplate
10750       = dyn_cast<FunctionTemplateDecl>(Callee)) {
10751     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
10752                                    ExplicitTemplateArgs, Args, CandidateSet,
10753                                    /*SuppressUsedConversions=*/false,
10754                                    PartialOverloading);
10755     return;
10756   }
10757
10758   assert(!KnownValid && "unhandled case in overloaded call candidate");
10759 }
10760
10761 /// \brief Add the overload candidates named by callee and/or found by argument
10762 /// dependent lookup to the given overload set.
10763 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
10764                                        ArrayRef<Expr *> Args,
10765                                        OverloadCandidateSet &CandidateSet,
10766                                        bool PartialOverloading) {
10767
10768 #ifndef NDEBUG
10769   // Verify that ArgumentDependentLookup is consistent with the rules
10770   // in C++0x [basic.lookup.argdep]p3:
10771   //
10772   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
10773   //   and let Y be the lookup set produced by argument dependent
10774   //   lookup (defined as follows). If X contains
10775   //
10776   //     -- a declaration of a class member, or
10777   //
10778   //     -- a block-scope function declaration that is not a
10779   //        using-declaration, or
10780   //
10781   //     -- a declaration that is neither a function or a function
10782   //        template
10783   //
10784   //   then Y is empty.
10785
10786   if (ULE->requiresADL()) {
10787     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
10788            E = ULE->decls_end(); I != E; ++I) {
10789       assert(!(*I)->getDeclContext()->isRecord());
10790       assert(isa<UsingShadowDecl>(*I) ||
10791              !(*I)->getDeclContext()->isFunctionOrMethod());
10792       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
10793     }
10794   }
10795 #endif
10796
10797   // It would be nice to avoid this copy.
10798   TemplateArgumentListInfo TABuffer;
10799   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
10800   if (ULE->hasExplicitTemplateArgs()) {
10801     ULE->copyTemplateArgumentsInto(TABuffer);
10802     ExplicitTemplateArgs = &TABuffer;
10803   }
10804
10805   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
10806          E = ULE->decls_end(); I != E; ++I)
10807     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
10808                                CandidateSet, PartialOverloading,
10809                                /*KnownValid*/ true);
10810
10811   if (ULE->requiresADL())
10812     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
10813                                          Args, ExplicitTemplateArgs,
10814                                          CandidateSet, PartialOverloading);
10815 }
10816
10817 /// Determine whether a declaration with the specified name could be moved into
10818 /// a different namespace.
10819 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
10820   switch (Name.getCXXOverloadedOperator()) {
10821   case OO_New: case OO_Array_New:
10822   case OO_Delete: case OO_Array_Delete:
10823     return false;
10824
10825   default:
10826     return true;
10827   }
10828 }
10829
10830 /// Attempt to recover from an ill-formed use of a non-dependent name in a
10831 /// template, where the non-dependent name was declared after the template
10832 /// was defined. This is common in code written for a compilers which do not
10833 /// correctly implement two-stage name lookup.
10834 ///
10835 /// Returns true if a viable candidate was found and a diagnostic was issued.
10836 static bool
10837 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
10838                        const CXXScopeSpec &SS, LookupResult &R,
10839                        OverloadCandidateSet::CandidateSetKind CSK,
10840                        TemplateArgumentListInfo *ExplicitTemplateArgs,
10841                        ArrayRef<Expr *> Args,
10842                        bool *DoDiagnoseEmptyLookup = nullptr) {
10843   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
10844     return false;
10845
10846   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
10847     if (DC->isTransparentContext())
10848       continue;
10849
10850     SemaRef.LookupQualifiedName(R, DC);
10851
10852     if (!R.empty()) {
10853       R.suppressDiagnostics();
10854
10855       if (isa<CXXRecordDecl>(DC)) {
10856         // Don't diagnose names we find in classes; we get much better
10857         // diagnostics for these from DiagnoseEmptyLookup.
10858         R.clear();
10859         if (DoDiagnoseEmptyLookup)
10860           *DoDiagnoseEmptyLookup = true;
10861         return false;
10862       }
10863
10864       OverloadCandidateSet Candidates(FnLoc, CSK);
10865       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
10866         AddOverloadedCallCandidate(SemaRef, I.getPair(),
10867                                    ExplicitTemplateArgs, Args,
10868                                    Candidates, false, /*KnownValid*/ false);
10869
10870       OverloadCandidateSet::iterator Best;
10871       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
10872         // No viable functions. Don't bother the user with notes for functions
10873         // which don't work and shouldn't be found anyway.
10874         R.clear();
10875         return false;
10876       }
10877
10878       // Find the namespaces where ADL would have looked, and suggest
10879       // declaring the function there instead.
10880       Sema::AssociatedNamespaceSet AssociatedNamespaces;
10881       Sema::AssociatedClassSet AssociatedClasses;
10882       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
10883                                                  AssociatedNamespaces,
10884                                                  AssociatedClasses);
10885       Sema::AssociatedNamespaceSet SuggestedNamespaces;
10886       if (canBeDeclaredInNamespace(R.getLookupName())) {
10887         DeclContext *Std = SemaRef.getStdNamespace();
10888         for (Sema::AssociatedNamespaceSet::iterator
10889                it = AssociatedNamespaces.begin(),
10890                end = AssociatedNamespaces.end(); it != end; ++it) {
10891           // Never suggest declaring a function within namespace 'std'.
10892           if (Std && Std->Encloses(*it))
10893             continue;
10894
10895           // Never suggest declaring a function within a namespace with a
10896           // reserved name, like __gnu_cxx.
10897           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
10898           if (NS &&
10899               NS->getQualifiedNameAsString().find("__") != std::string::npos)
10900             continue;
10901
10902           SuggestedNamespaces.insert(*it);
10903         }
10904       }
10905
10906       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
10907         << R.getLookupName();
10908       if (SuggestedNamespaces.empty()) {
10909         SemaRef.Diag(Best->Function->getLocation(),
10910                      diag::note_not_found_by_two_phase_lookup)
10911           << R.getLookupName() << 0;
10912       } else if (SuggestedNamespaces.size() == 1) {
10913         SemaRef.Diag(Best->Function->getLocation(),
10914                      diag::note_not_found_by_two_phase_lookup)
10915           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
10916       } else {
10917         // FIXME: It would be useful to list the associated namespaces here,
10918         // but the diagnostics infrastructure doesn't provide a way to produce
10919         // a localized representation of a list of items.
10920         SemaRef.Diag(Best->Function->getLocation(),
10921                      diag::note_not_found_by_two_phase_lookup)
10922           << R.getLookupName() << 2;
10923       }
10924
10925       // Try to recover by calling this function.
10926       return true;
10927     }
10928
10929     R.clear();
10930   }
10931
10932   return false;
10933 }
10934
10935 /// Attempt to recover from ill-formed use of a non-dependent operator in a
10936 /// template, where the non-dependent operator was declared after the template
10937 /// was defined.
10938 ///
10939 /// Returns true if a viable candidate was found and a diagnostic was issued.
10940 static bool
10941 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
10942                                SourceLocation OpLoc,
10943                                ArrayRef<Expr *> Args) {
10944   DeclarationName OpName =
10945     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
10946   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
10947   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
10948                                 OverloadCandidateSet::CSK_Operator,
10949                                 /*ExplicitTemplateArgs=*/nullptr, Args);
10950 }
10951
10952 namespace {
10953 class BuildRecoveryCallExprRAII {
10954   Sema &SemaRef;
10955 public:
10956   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
10957     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
10958     SemaRef.IsBuildingRecoveryCallExpr = true;
10959   }
10960
10961   ~BuildRecoveryCallExprRAII() {
10962     SemaRef.IsBuildingRecoveryCallExpr = false;
10963   }
10964 };
10965
10966 }
10967
10968 static std::unique_ptr<CorrectionCandidateCallback>
10969 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
10970               bool HasTemplateArgs, bool AllowTypoCorrection) {
10971   if (!AllowTypoCorrection)
10972     return llvm::make_unique<NoTypoCorrectionCCC>();
10973   return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
10974                                                   HasTemplateArgs, ME);
10975 }
10976
10977 /// Attempts to recover from a call where no functions were found.
10978 ///
10979 /// Returns true if new candidates were found.
10980 static ExprResult
10981 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10982                       UnresolvedLookupExpr *ULE,
10983                       SourceLocation LParenLoc,
10984                       MutableArrayRef<Expr *> Args,
10985                       SourceLocation RParenLoc,
10986                       bool EmptyLookup, bool AllowTypoCorrection) {
10987   // Do not try to recover if it is already building a recovery call.
10988   // This stops infinite loops for template instantiations like
10989   //
10990   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
10991   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
10992   //
10993   if (SemaRef.IsBuildingRecoveryCallExpr)
10994     return ExprError();
10995   BuildRecoveryCallExprRAII RCE(SemaRef);
10996
10997   CXXScopeSpec SS;
10998   SS.Adopt(ULE->getQualifierLoc());
10999   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
11000
11001   TemplateArgumentListInfo TABuffer;
11002   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11003   if (ULE->hasExplicitTemplateArgs()) {
11004     ULE->copyTemplateArgumentsInto(TABuffer);
11005     ExplicitTemplateArgs = &TABuffer;
11006   }
11007
11008   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
11009                  Sema::LookupOrdinaryName);
11010   bool DoDiagnoseEmptyLookup = EmptyLookup;
11011   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
11012                               OverloadCandidateSet::CSK_Normal,
11013                               ExplicitTemplateArgs, Args,
11014                               &DoDiagnoseEmptyLookup) &&
11015     (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup(
11016         S, SS, R,
11017         MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
11018                       ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
11019         ExplicitTemplateArgs, Args)))
11020     return ExprError();
11021
11022   assert(!R.empty() && "lookup results empty despite recovery");
11023
11024   // Build an implicit member call if appropriate.  Just drop the
11025   // casts and such from the call, we don't really care.
11026   ExprResult NewFn = ExprError();
11027   if ((*R.begin())->isCXXClassMember())
11028     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
11029                                                     ExplicitTemplateArgs, S);
11030   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
11031     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
11032                                         ExplicitTemplateArgs);
11033   else
11034     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
11035
11036   if (NewFn.isInvalid())
11037     return ExprError();
11038
11039   // This shouldn't cause an infinite loop because we're giving it
11040   // an expression with viable lookup results, which should never
11041   // end up here.
11042   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
11043                                MultiExprArg(Args.data(), Args.size()),
11044                                RParenLoc);
11045 }
11046
11047 /// \brief Constructs and populates an OverloadedCandidateSet from
11048 /// the given function.
11049 /// \returns true when an the ExprResult output parameter has been set.
11050 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
11051                                   UnresolvedLookupExpr *ULE,
11052                                   MultiExprArg Args,
11053                                   SourceLocation RParenLoc,
11054                                   OverloadCandidateSet *CandidateSet,
11055                                   ExprResult *Result) {
11056 #ifndef NDEBUG
11057   if (ULE->requiresADL()) {
11058     // To do ADL, we must have found an unqualified name.
11059     assert(!ULE->getQualifier() && "qualified name with ADL");
11060
11061     // We don't perform ADL for implicit declarations of builtins.
11062     // Verify that this was correctly set up.
11063     FunctionDecl *F;
11064     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
11065         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
11066         F->getBuiltinID() && F->isImplicit())
11067       llvm_unreachable("performing ADL for builtin");
11068
11069     // We don't perform ADL in C.
11070     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
11071   }
11072 #endif
11073
11074   UnbridgedCastsSet UnbridgedCasts;
11075   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
11076     *Result = ExprError();
11077     return true;
11078   }
11079
11080   // Add the functions denoted by the callee to the set of candidate
11081   // functions, including those from argument-dependent lookup.
11082   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
11083
11084   if (getLangOpts().MSVCCompat &&
11085       CurContext->isDependentContext() && !isSFINAEContext() &&
11086       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
11087
11088     OverloadCandidateSet::iterator Best;
11089     if (CandidateSet->empty() ||
11090         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) ==
11091             OR_No_Viable_Function) {
11092       // In Microsoft mode, if we are inside a template class member function then
11093       // create a type dependent CallExpr. The goal is to postpone name lookup
11094       // to instantiation time to be able to search into type dependent base
11095       // classes.
11096       CallExpr *CE = new (Context) CallExpr(
11097           Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc);
11098       CE->setTypeDependent(true);
11099       CE->setValueDependent(true);
11100       CE->setInstantiationDependent(true);
11101       *Result = CE;
11102       return true;
11103     }
11104   }
11105
11106   if (CandidateSet->empty())
11107     return false;
11108
11109   UnbridgedCasts.restore();
11110   return false;
11111 }
11112
11113 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
11114 /// the completed call expression. If overload resolution fails, emits
11115 /// diagnostics and returns ExprError()
11116 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11117                                            UnresolvedLookupExpr *ULE,
11118                                            SourceLocation LParenLoc,
11119                                            MultiExprArg Args,
11120                                            SourceLocation RParenLoc,
11121                                            Expr *ExecConfig,
11122                                            OverloadCandidateSet *CandidateSet,
11123                                            OverloadCandidateSet::iterator *Best,
11124                                            OverloadingResult OverloadResult,
11125                                            bool AllowTypoCorrection) {
11126   if (CandidateSet->empty())
11127     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
11128                                  RParenLoc, /*EmptyLookup=*/true,
11129                                  AllowTypoCorrection);
11130
11131   switch (OverloadResult) {
11132   case OR_Success: {
11133     FunctionDecl *FDecl = (*Best)->Function;
11134     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
11135     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
11136       return ExprError();
11137     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11138     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11139                                          ExecConfig);
11140   }
11141
11142   case OR_No_Viable_Function: {
11143     // Try to recover by looking for viable functions which the user might
11144     // have meant to call.
11145     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
11146                                                 Args, RParenLoc,
11147                                                 /*EmptyLookup=*/false,
11148                                                 AllowTypoCorrection);
11149     if (!Recovery.isInvalid())
11150       return Recovery;
11151
11152     // If the user passes in a function that we can't take the address of, we
11153     // generally end up emitting really bad error messages. Here, we attempt to
11154     // emit better ones.
11155     for (const Expr *Arg : Args) {
11156       if (!Arg->getType()->isFunctionType())
11157         continue;
11158       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
11159         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
11160         if (FD &&
11161             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
11162                                                        Arg->getExprLoc()))
11163           return ExprError();
11164       }
11165     }
11166
11167     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_no_viable_function_in_call)
11168         << ULE->getName() << Fn->getSourceRange();
11169     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11170     break;
11171   }
11172
11173   case OR_Ambiguous:
11174     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
11175       << ULE->getName() << Fn->getSourceRange();
11176     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
11177     break;
11178
11179   case OR_Deleted: {
11180     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
11181       << (*Best)->Function->isDeleted()
11182       << ULE->getName()
11183       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
11184       << Fn->getSourceRange();
11185     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11186
11187     // We emitted an error for the unvailable/deleted function call but keep
11188     // the call in the AST.
11189     FunctionDecl *FDecl = (*Best)->Function;
11190     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11191     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11192                                          ExecConfig);
11193   }
11194   }
11195
11196   // Overload resolution failed.
11197   return ExprError();
11198 }
11199
11200 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
11201 /// (which eventually refers to the declaration Func) and the call
11202 /// arguments Args/NumArgs, attempt to resolve the function call down
11203 /// to a specific function. If overload resolution succeeds, returns
11204 /// the call expression produced by overload resolution.
11205 /// Otherwise, emits diagnostics and returns ExprError.
11206 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
11207                                          UnresolvedLookupExpr *ULE,
11208                                          SourceLocation LParenLoc,
11209                                          MultiExprArg Args,
11210                                          SourceLocation RParenLoc,
11211                                          Expr *ExecConfig,
11212                                          bool AllowTypoCorrection) {
11213   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
11214                                     OverloadCandidateSet::CSK_Normal);
11215   ExprResult result;
11216
11217   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
11218                              &result))
11219     return result;
11220
11221   OverloadCandidateSet::iterator Best;
11222   OverloadingResult OverloadResult =
11223       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
11224
11225   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
11226                                   RParenLoc, ExecConfig, &CandidateSet,
11227                                   &Best, OverloadResult,
11228                                   AllowTypoCorrection);
11229 }
11230
11231 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
11232   return Functions.size() > 1 ||
11233     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
11234 }
11235
11236 /// \brief Create a unary operation that may resolve to an overloaded
11237 /// operator.
11238 ///
11239 /// \param OpLoc The location of the operator itself (e.g., '*').
11240 ///
11241 /// \param Opc The UnaryOperatorKind that describes this operator.
11242 ///
11243 /// \param Fns The set of non-member functions that will be
11244 /// considered by overload resolution. The caller needs to build this
11245 /// set based on the context using, e.g.,
11246 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11247 /// set should not contain any member functions; those will be added
11248 /// by CreateOverloadedUnaryOp().
11249 ///
11250 /// \param Input The input argument.
11251 ExprResult
11252 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
11253                               const UnresolvedSetImpl &Fns,
11254                               Expr *Input) {
11255   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
11256   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
11257   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11258   // TODO: provide better source location info.
11259   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11260
11261   if (checkPlaceholderForOverload(*this, Input))
11262     return ExprError();
11263
11264   Expr *Args[2] = { Input, nullptr };
11265   unsigned NumArgs = 1;
11266
11267   // For post-increment and post-decrement, add the implicit '0' as
11268   // the second argument, so that we know this is a post-increment or
11269   // post-decrement.
11270   if (Opc == UO_PostInc || Opc == UO_PostDec) {
11271     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
11272     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
11273                                      SourceLocation());
11274     NumArgs = 2;
11275   }
11276
11277   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
11278
11279   if (Input->isTypeDependent()) {
11280     if (Fns.empty())
11281       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
11282                                          VK_RValue, OK_Ordinary, OpLoc);
11283
11284     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11285     UnresolvedLookupExpr *Fn
11286       = UnresolvedLookupExpr::Create(Context, NamingClass,
11287                                      NestedNameSpecifierLoc(), OpNameInfo,
11288                                      /*ADL*/ true, IsOverloaded(Fns),
11289                                      Fns.begin(), Fns.end());
11290     return new (Context)
11291         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
11292                             VK_RValue, OpLoc, false);
11293   }
11294
11295   // Build an empty overload set.
11296   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11297
11298   // Add the candidates from the given function set.
11299   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
11300
11301   // Add operator candidates that are member functions.
11302   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
11303
11304   // Add candidates from ADL.
11305   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
11306                                        /*ExplicitTemplateArgs*/nullptr,
11307                                        CandidateSet);
11308
11309   // Add builtin operator candidates.
11310   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
11311
11312   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11313
11314   // Perform overload resolution.
11315   OverloadCandidateSet::iterator Best;
11316   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11317   case OR_Success: {
11318     // We found a built-in operator or an overloaded operator.
11319     FunctionDecl *FnDecl = Best->Function;
11320
11321     if (FnDecl) {
11322       // We matched an overloaded operator. Build a call to that
11323       // operator.
11324
11325       // Convert the arguments.
11326       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11327         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
11328
11329         ExprResult InputRes =
11330           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
11331                                               Best->FoundDecl, Method);
11332         if (InputRes.isInvalid())
11333           return ExprError();
11334         Input = InputRes.get();
11335       } else {
11336         // Convert the arguments.
11337         ExprResult InputInit
11338           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11339                                                       Context,
11340                                                       FnDecl->getParamDecl(0)),
11341                                       SourceLocation(),
11342                                       Input);
11343         if (InputInit.isInvalid())
11344           return ExprError();
11345         Input = InputInit.get();
11346       }
11347
11348       // Build the actual expression node.
11349       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
11350                                                 HadMultipleCandidates, OpLoc);
11351       if (FnExpr.isInvalid())
11352         return ExprError();
11353
11354       // Determine the result type.
11355       QualType ResultTy = FnDecl->getReturnType();
11356       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11357       ResultTy = ResultTy.getNonLValueExprType(Context);
11358
11359       Args[0] = Input;
11360       CallExpr *TheCall =
11361         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
11362                                           ResultTy, VK, OpLoc, false);
11363
11364       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
11365         return ExprError();
11366
11367       return MaybeBindToTemporary(TheCall);
11368     } else {
11369       // We matched a built-in operator. Convert the arguments, then
11370       // break out so that we will build the appropriate built-in
11371       // operator node.
11372       ExprResult InputRes =
11373         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
11374                                   Best->Conversions[0], AA_Passing);
11375       if (InputRes.isInvalid())
11376         return ExprError();
11377       Input = InputRes.get();
11378       break;
11379     }
11380   }
11381
11382   case OR_No_Viable_Function:
11383     // This is an erroneous use of an operator which can be overloaded by
11384     // a non-member function. Check for non-member operators which were
11385     // defined too late to be candidates.
11386     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
11387       // FIXME: Recover by calling the found function.
11388       return ExprError();
11389
11390     // No viable function; fall through to handling this as a
11391     // built-in operator, which will produce an error message for us.
11392     break;
11393
11394   case OR_Ambiguous:
11395     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11396         << UnaryOperator::getOpcodeStr(Opc)
11397         << Input->getType()
11398         << Input->getSourceRange();
11399     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
11400                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11401     return ExprError();
11402
11403   case OR_Deleted:
11404     Diag(OpLoc, diag::err_ovl_deleted_oper)
11405       << Best->Function->isDeleted()
11406       << UnaryOperator::getOpcodeStr(Opc)
11407       << getDeletedOrUnavailableSuffix(Best->Function)
11408       << Input->getSourceRange();
11409     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
11410                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11411     return ExprError();
11412   }
11413
11414   // Either we found no viable overloaded operator or we matched a
11415   // built-in operator. In either case, fall through to trying to
11416   // build a built-in operation.
11417   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11418 }
11419
11420 /// \brief Create a binary operation that may resolve to an overloaded
11421 /// operator.
11422 ///
11423 /// \param OpLoc The location of the operator itself (e.g., '+').
11424 ///
11425 /// \param Opc The BinaryOperatorKind that describes this operator.
11426 ///
11427 /// \param Fns The set of non-member functions that will be
11428 /// considered by overload resolution. The caller needs to build this
11429 /// set based on the context using, e.g.,
11430 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11431 /// set should not contain any member functions; those will be added
11432 /// by CreateOverloadedBinOp().
11433 ///
11434 /// \param LHS Left-hand argument.
11435 /// \param RHS Right-hand argument.
11436 ExprResult
11437 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
11438                             BinaryOperatorKind Opc,
11439                             const UnresolvedSetImpl &Fns,
11440                             Expr *LHS, Expr *RHS) {
11441   Expr *Args[2] = { LHS, RHS };
11442   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
11443
11444   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
11445   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11446
11447   // If either side is type-dependent, create an appropriate dependent
11448   // expression.
11449   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11450     if (Fns.empty()) {
11451       // If there are no functions to store, just build a dependent
11452       // BinaryOperator or CompoundAssignment.
11453       if (Opc <= BO_Assign || Opc > BO_OrAssign)
11454         return new (Context) BinaryOperator(
11455             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
11456             OpLoc, FPFeatures.fp_contract);
11457
11458       return new (Context) CompoundAssignOperator(
11459           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
11460           Context.DependentTy, Context.DependentTy, OpLoc,
11461           FPFeatures.fp_contract);
11462     }
11463
11464     // FIXME: save results of ADL from here?
11465     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11466     // TODO: provide better source location info in DNLoc component.
11467     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11468     UnresolvedLookupExpr *Fn
11469       = UnresolvedLookupExpr::Create(Context, NamingClass, 
11470                                      NestedNameSpecifierLoc(), OpNameInfo, 
11471                                      /*ADL*/ true, IsOverloaded(Fns),
11472                                      Fns.begin(), Fns.end());
11473     return new (Context)
11474         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
11475                             VK_RValue, OpLoc, FPFeatures.fp_contract);
11476   }
11477
11478   // Always do placeholder-like conversions on the RHS.
11479   if (checkPlaceholderForOverload(*this, Args[1]))
11480     return ExprError();
11481
11482   // Do placeholder-like conversion on the LHS; note that we should
11483   // not get here with a PseudoObject LHS.
11484   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
11485   if (checkPlaceholderForOverload(*this, Args[0]))
11486     return ExprError();
11487
11488   // If this is the assignment operator, we only perform overload resolution
11489   // if the left-hand side is a class or enumeration type. This is actually
11490   // a hack. The standard requires that we do overload resolution between the
11491   // various built-in candidates, but as DR507 points out, this can lead to
11492   // problems. So we do it this way, which pretty much follows what GCC does.
11493   // Note that we go the traditional code path for compound assignment forms.
11494   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
11495     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11496
11497   // If this is the .* operator, which is not overloadable, just
11498   // create a built-in binary operator.
11499   if (Opc == BO_PtrMemD)
11500     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11501
11502   // Build an empty overload set.
11503   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11504
11505   // Add the candidates from the given function set.
11506   AddFunctionCandidates(Fns, Args, CandidateSet);
11507
11508   // Add operator candidates that are member functions.
11509   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11510
11511   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
11512   // performed for an assignment operator (nor for operator[] nor operator->,
11513   // which don't get here).
11514   if (Opc != BO_Assign)
11515     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
11516                                          /*ExplicitTemplateArgs*/ nullptr,
11517                                          CandidateSet);
11518
11519   // Add builtin operator candidates.
11520   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11521
11522   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11523
11524   // Perform overload resolution.
11525   OverloadCandidateSet::iterator Best;
11526   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11527     case OR_Success: {
11528       // We found a built-in operator or an overloaded operator.
11529       FunctionDecl *FnDecl = Best->Function;
11530
11531       if (FnDecl) {
11532         // We matched an overloaded operator. Build a call to that
11533         // operator.
11534
11535         // Convert the arguments.
11536         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11537           // Best->Access is only meaningful for class members.
11538           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
11539
11540           ExprResult Arg1 =
11541             PerformCopyInitialization(
11542               InitializedEntity::InitializeParameter(Context,
11543                                                      FnDecl->getParamDecl(0)),
11544               SourceLocation(), Args[1]);
11545           if (Arg1.isInvalid())
11546             return ExprError();
11547
11548           ExprResult Arg0 =
11549             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11550                                                 Best->FoundDecl, Method);
11551           if (Arg0.isInvalid())
11552             return ExprError();
11553           Args[0] = Arg0.getAs<Expr>();
11554           Args[1] = RHS = Arg1.getAs<Expr>();
11555         } else {
11556           // Convert the arguments.
11557           ExprResult Arg0 = PerformCopyInitialization(
11558             InitializedEntity::InitializeParameter(Context,
11559                                                    FnDecl->getParamDecl(0)),
11560             SourceLocation(), Args[0]);
11561           if (Arg0.isInvalid())
11562             return ExprError();
11563
11564           ExprResult Arg1 =
11565             PerformCopyInitialization(
11566               InitializedEntity::InitializeParameter(Context,
11567                                                      FnDecl->getParamDecl(1)),
11568               SourceLocation(), Args[1]);
11569           if (Arg1.isInvalid())
11570             return ExprError();
11571           Args[0] = LHS = Arg0.getAs<Expr>();
11572           Args[1] = RHS = Arg1.getAs<Expr>();
11573         }
11574
11575         // Build the actual expression node.
11576         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11577                                                   Best->FoundDecl,
11578                                                   HadMultipleCandidates, OpLoc);
11579         if (FnExpr.isInvalid())
11580           return ExprError();
11581
11582         // Determine the result type.
11583         QualType ResultTy = FnDecl->getReturnType();
11584         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11585         ResultTy = ResultTy.getNonLValueExprType(Context);
11586
11587         CXXOperatorCallExpr *TheCall =
11588           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
11589                                             Args, ResultTy, VK, OpLoc,
11590                                             FPFeatures.fp_contract);
11591
11592         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
11593                                 FnDecl))
11594           return ExprError();
11595
11596         ArrayRef<const Expr *> ArgsArray(Args, 2);
11597         // Cut off the implicit 'this'.
11598         if (isa<CXXMethodDecl>(FnDecl))
11599           ArgsArray = ArgsArray.slice(1);
11600
11601         // Check for a self move.
11602         if (Op == OO_Equal)
11603           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
11604
11605         checkCall(FnDecl, nullptr, ArgsArray, isa<CXXMethodDecl>(FnDecl), OpLoc, 
11606                   TheCall->getSourceRange(), VariadicDoesNotApply);
11607
11608         return MaybeBindToTemporary(TheCall);
11609       } else {
11610         // We matched a built-in operator. Convert the arguments, then
11611         // break out so that we will build the appropriate built-in
11612         // operator node.
11613         ExprResult ArgsRes0 =
11614           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11615                                     Best->Conversions[0], AA_Passing);
11616         if (ArgsRes0.isInvalid())
11617           return ExprError();
11618         Args[0] = ArgsRes0.get();
11619
11620         ExprResult ArgsRes1 =
11621           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11622                                     Best->Conversions[1], AA_Passing);
11623         if (ArgsRes1.isInvalid())
11624           return ExprError();
11625         Args[1] = ArgsRes1.get();
11626         break;
11627       }
11628     }
11629
11630     case OR_No_Viable_Function: {
11631       // C++ [over.match.oper]p9:
11632       //   If the operator is the operator , [...] and there are no
11633       //   viable functions, then the operator is assumed to be the
11634       //   built-in operator and interpreted according to clause 5.
11635       if (Opc == BO_Comma)
11636         break;
11637
11638       // For class as left operand for assignment or compound assigment
11639       // operator do not fall through to handling in built-in, but report that
11640       // no overloaded assignment operator found
11641       ExprResult Result = ExprError();
11642       if (Args[0]->getType()->isRecordType() &&
11643           Opc >= BO_Assign && Opc <= BO_OrAssign) {
11644         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
11645              << BinaryOperator::getOpcodeStr(Opc)
11646              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11647         if (Args[0]->getType()->isIncompleteType()) {
11648           Diag(OpLoc, diag::note_assign_lhs_incomplete)
11649             << Args[0]->getType()
11650             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11651         }
11652       } else {
11653         // This is an erroneous use of an operator which can be overloaded by
11654         // a non-member function. Check for non-member operators which were
11655         // defined too late to be candidates.
11656         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
11657           // FIXME: Recover by calling the found function.
11658           return ExprError();
11659
11660         // No viable function; try to create a built-in operation, which will
11661         // produce an error. Then, show the non-viable candidates.
11662         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11663       }
11664       assert(Result.isInvalid() &&
11665              "C++ binary operator overloading is missing candidates!");
11666       if (Result.isInvalid())
11667         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11668                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
11669       return Result;
11670     }
11671
11672     case OR_Ambiguous:
11673       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
11674           << BinaryOperator::getOpcodeStr(Opc)
11675           << Args[0]->getType() << Args[1]->getType()
11676           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11677       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11678                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
11679       return ExprError();
11680
11681     case OR_Deleted:
11682       if (isImplicitlyDeleted(Best->Function)) {
11683         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11684         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
11685           << Context.getRecordType(Method->getParent())
11686           << getSpecialMember(Method);
11687
11688         // The user probably meant to call this special member. Just
11689         // explain why it's deleted.
11690         NoteDeletedFunction(Method);
11691         return ExprError();
11692       } else {
11693         Diag(OpLoc, diag::err_ovl_deleted_oper)
11694           << Best->Function->isDeleted()
11695           << BinaryOperator::getOpcodeStr(Opc)
11696           << getDeletedOrUnavailableSuffix(Best->Function)
11697           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11698       }
11699       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11700                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
11701       return ExprError();
11702   }
11703
11704   // We matched a built-in operator; build it.
11705   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11706 }
11707
11708 ExprResult
11709 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
11710                                          SourceLocation RLoc,
11711                                          Expr *Base, Expr *Idx) {
11712   Expr *Args[2] = { Base, Idx };
11713   DeclarationName OpName =
11714       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
11715
11716   // If either side is type-dependent, create an appropriate dependent
11717   // expression.
11718   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11719
11720     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11721     // CHECKME: no 'operator' keyword?
11722     DeclarationNameInfo OpNameInfo(OpName, LLoc);
11723     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11724     UnresolvedLookupExpr *Fn
11725       = UnresolvedLookupExpr::Create(Context, NamingClass,
11726                                      NestedNameSpecifierLoc(), OpNameInfo,
11727                                      /*ADL*/ true, /*Overloaded*/ false,
11728                                      UnresolvedSetIterator(),
11729                                      UnresolvedSetIterator());
11730     // Can't add any actual overloads yet
11731
11732     return new (Context)
11733         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
11734                             Context.DependentTy, VK_RValue, RLoc, false);
11735   }
11736
11737   // Handle placeholders on both operands.
11738   if (checkPlaceholderForOverload(*this, Args[0]))
11739     return ExprError();
11740   if (checkPlaceholderForOverload(*this, Args[1]))
11741     return ExprError();
11742
11743   // Build an empty overload set.
11744   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
11745
11746   // Subscript can only be overloaded as a member function.
11747
11748   // Add operator candidates that are member functions.
11749   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11750
11751   // Add builtin operator candidates.
11752   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11753
11754   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11755
11756   // Perform overload resolution.
11757   OverloadCandidateSet::iterator Best;
11758   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
11759     case OR_Success: {
11760       // We found a built-in operator or an overloaded operator.
11761       FunctionDecl *FnDecl = Best->Function;
11762
11763       if (FnDecl) {
11764         // We matched an overloaded operator. Build a call to that
11765         // operator.
11766
11767         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
11768
11769         // Convert the arguments.
11770         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
11771         ExprResult Arg0 =
11772           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11773                                               Best->FoundDecl, Method);
11774         if (Arg0.isInvalid())
11775           return ExprError();
11776         Args[0] = Arg0.get();
11777
11778         // Convert the arguments.
11779         ExprResult InputInit
11780           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11781                                                       Context,
11782                                                       FnDecl->getParamDecl(0)),
11783                                       SourceLocation(),
11784                                       Args[1]);
11785         if (InputInit.isInvalid())
11786           return ExprError();
11787
11788         Args[1] = InputInit.getAs<Expr>();
11789
11790         // Build the actual expression node.
11791         DeclarationNameInfo OpLocInfo(OpName, LLoc);
11792         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11793         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11794                                                   Best->FoundDecl,
11795                                                   HadMultipleCandidates,
11796                                                   OpLocInfo.getLoc(),
11797                                                   OpLocInfo.getInfo());
11798         if (FnExpr.isInvalid())
11799           return ExprError();
11800
11801         // Determine the result type
11802         QualType ResultTy = FnDecl->getReturnType();
11803         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11804         ResultTy = ResultTy.getNonLValueExprType(Context);
11805
11806         CXXOperatorCallExpr *TheCall =
11807           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
11808                                             FnExpr.get(), Args,
11809                                             ResultTy, VK, RLoc,
11810                                             false);
11811
11812         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
11813           return ExprError();
11814
11815         return MaybeBindToTemporary(TheCall);
11816       } else {
11817         // We matched a built-in operator. Convert the arguments, then
11818         // break out so that we will build the appropriate built-in
11819         // operator node.
11820         ExprResult ArgsRes0 =
11821           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11822                                     Best->Conversions[0], AA_Passing);
11823         if (ArgsRes0.isInvalid())
11824           return ExprError();
11825         Args[0] = ArgsRes0.get();
11826
11827         ExprResult ArgsRes1 =
11828           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11829                                     Best->Conversions[1], AA_Passing);
11830         if (ArgsRes1.isInvalid())
11831           return ExprError();
11832         Args[1] = ArgsRes1.get();
11833
11834         break;
11835       }
11836     }
11837
11838     case OR_No_Viable_Function: {
11839       if (CandidateSet.empty())
11840         Diag(LLoc, diag::err_ovl_no_oper)
11841           << Args[0]->getType() << /*subscript*/ 0
11842           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11843       else
11844         Diag(LLoc, diag::err_ovl_no_viable_subscript)
11845           << Args[0]->getType()
11846           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11847       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11848                                   "[]", LLoc);
11849       return ExprError();
11850     }
11851
11852     case OR_Ambiguous:
11853       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
11854           << "[]"
11855           << Args[0]->getType() << Args[1]->getType()
11856           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11857       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11858                                   "[]", LLoc);
11859       return ExprError();
11860
11861     case OR_Deleted:
11862       Diag(LLoc, diag::err_ovl_deleted_oper)
11863         << Best->Function->isDeleted() << "[]"
11864         << getDeletedOrUnavailableSuffix(Best->Function)
11865         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11866       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11867                                   "[]", LLoc);
11868       return ExprError();
11869     }
11870
11871   // We matched a built-in operator; build it.
11872   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
11873 }
11874
11875 /// BuildCallToMemberFunction - Build a call to a member
11876 /// function. MemExpr is the expression that refers to the member
11877 /// function (and includes the object parameter), Args/NumArgs are the
11878 /// arguments to the function call (not including the object
11879 /// parameter). The caller needs to validate that the member
11880 /// expression refers to a non-static member function or an overloaded
11881 /// member function.
11882 ExprResult
11883 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
11884                                 SourceLocation LParenLoc,
11885                                 MultiExprArg Args,
11886                                 SourceLocation RParenLoc) {
11887   assert(MemExprE->getType() == Context.BoundMemberTy ||
11888          MemExprE->getType() == Context.OverloadTy);
11889
11890   // Dig out the member expression. This holds both the object
11891   // argument and the member function we're referring to.
11892   Expr *NakedMemExpr = MemExprE->IgnoreParens();
11893
11894   // Determine whether this is a call to a pointer-to-member function.
11895   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
11896     assert(op->getType() == Context.BoundMemberTy);
11897     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
11898
11899     QualType fnType =
11900       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
11901
11902     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
11903     QualType resultType = proto->getCallResultType(Context);
11904     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
11905
11906     // Check that the object type isn't more qualified than the
11907     // member function we're calling.
11908     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
11909
11910     QualType objectType = op->getLHS()->getType();
11911     if (op->getOpcode() == BO_PtrMemI)
11912       objectType = objectType->castAs<PointerType>()->getPointeeType();
11913     Qualifiers objectQuals = objectType.getQualifiers();
11914
11915     Qualifiers difference = objectQuals - funcQuals;
11916     difference.removeObjCGCAttr();
11917     difference.removeAddressSpace();
11918     if (difference) {
11919       std::string qualsString = difference.getAsString();
11920       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
11921         << fnType.getUnqualifiedType()
11922         << qualsString
11923         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
11924     }
11925
11926     CXXMemberCallExpr *call
11927       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11928                                         resultType, valueKind, RParenLoc);
11929
11930     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
11931                             call, nullptr))
11932       return ExprError();
11933
11934     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
11935       return ExprError();
11936
11937     if (CheckOtherCall(call, proto))
11938       return ExprError();
11939
11940     return MaybeBindToTemporary(call);
11941   }
11942
11943   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
11944     return new (Context)
11945         CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
11946
11947   UnbridgedCastsSet UnbridgedCasts;
11948   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11949     return ExprError();
11950
11951   MemberExpr *MemExpr;
11952   CXXMethodDecl *Method = nullptr;
11953   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
11954   NestedNameSpecifier *Qualifier = nullptr;
11955   if (isa<MemberExpr>(NakedMemExpr)) {
11956     MemExpr = cast<MemberExpr>(NakedMemExpr);
11957     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
11958     FoundDecl = MemExpr->getFoundDecl();
11959     Qualifier = MemExpr->getQualifier();
11960     UnbridgedCasts.restore();
11961   } else {
11962     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
11963     Qualifier = UnresExpr->getQualifier();
11964
11965     QualType ObjectType = UnresExpr->getBaseType();
11966     Expr::Classification ObjectClassification
11967       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
11968                             : UnresExpr->getBase()->Classify(Context);
11969
11970     // Add overload candidates
11971     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
11972                                       OverloadCandidateSet::CSK_Normal);
11973
11974     // FIXME: avoid copy.
11975     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
11976     if (UnresExpr->hasExplicitTemplateArgs()) {
11977       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11978       TemplateArgs = &TemplateArgsBuffer;
11979     }
11980
11981     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
11982            E = UnresExpr->decls_end(); I != E; ++I) {
11983
11984       NamedDecl *Func = *I;
11985       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
11986       if (isa<UsingShadowDecl>(Func))
11987         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
11988
11989
11990       // Microsoft supports direct constructor calls.
11991       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
11992         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
11993                              Args, CandidateSet);
11994       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
11995         // If explicit template arguments were provided, we can't call a
11996         // non-template member function.
11997         if (TemplateArgs)
11998           continue;
11999
12000         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
12001                            ObjectClassification, Args, CandidateSet,
12002                            /*SuppressUserConversions=*/false);
12003       } else {
12004         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
12005                                    I.getPair(), ActingDC, TemplateArgs,
12006                                    ObjectType,  ObjectClassification,
12007                                    Args, CandidateSet,
12008                                    /*SuppressUsedConversions=*/false);
12009       }
12010     }
12011
12012     DeclarationName DeclName = UnresExpr->getMemberName();
12013
12014     UnbridgedCasts.restore();
12015
12016     OverloadCandidateSet::iterator Best;
12017     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
12018                                             Best)) {
12019     case OR_Success:
12020       Method = cast<CXXMethodDecl>(Best->Function);
12021       FoundDecl = Best->FoundDecl;
12022       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
12023       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
12024         return ExprError();
12025       // If FoundDecl is different from Method (such as if one is a template
12026       // and the other a specialization), make sure DiagnoseUseOfDecl is 
12027       // called on both.
12028       // FIXME: This would be more comprehensively addressed by modifying
12029       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
12030       // being used.
12031       if (Method != FoundDecl.getDecl() && 
12032                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
12033         return ExprError();
12034       break;
12035
12036     case OR_No_Viable_Function:
12037       Diag(UnresExpr->getMemberLoc(),
12038            diag::err_ovl_no_viable_member_function_in_call)
12039         << DeclName << MemExprE->getSourceRange();
12040       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12041       // FIXME: Leaking incoming expressions!
12042       return ExprError();
12043
12044     case OR_Ambiguous:
12045       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
12046         << DeclName << MemExprE->getSourceRange();
12047       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12048       // FIXME: Leaking incoming expressions!
12049       return ExprError();
12050
12051     case OR_Deleted:
12052       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
12053         << Best->Function->isDeleted()
12054         << DeclName 
12055         << getDeletedOrUnavailableSuffix(Best->Function)
12056         << MemExprE->getSourceRange();
12057       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12058       // FIXME: Leaking incoming expressions!
12059       return ExprError();
12060     }
12061
12062     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
12063
12064     // If overload resolution picked a static member, build a
12065     // non-member call based on that function.
12066     if (Method->isStatic()) {
12067       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
12068                                    RParenLoc);
12069     }
12070
12071     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
12072   }
12073
12074   QualType ResultType = Method->getReturnType();
12075   ExprValueKind VK = Expr::getValueKindForType(ResultType);
12076   ResultType = ResultType.getNonLValueExprType(Context);
12077
12078   assert(Method && "Member call to something that isn't a method?");
12079   CXXMemberCallExpr *TheCall =
12080     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
12081                                     ResultType, VK, RParenLoc);
12082
12083   // (CUDA B.1): Check for invalid calls between targets.
12084   if (getLangOpts().CUDA) {
12085     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
12086       if (CheckCUDATarget(Caller, Method)) {
12087         Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
12088             << IdentifyCUDATarget(Method) << Method->getIdentifier()
12089             << IdentifyCUDATarget(Caller);
12090         return ExprError();
12091       }
12092     }
12093   }
12094
12095   // Check for a valid return type.
12096   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
12097                           TheCall, Method))
12098     return ExprError();
12099
12100   // Convert the object argument (for a non-static member function call).
12101   // We only need to do this if there was actually an overload; otherwise
12102   // it was done at lookup.
12103   if (!Method->isStatic()) {
12104     ExprResult ObjectArg =
12105       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
12106                                           FoundDecl, Method);
12107     if (ObjectArg.isInvalid())
12108       return ExprError();
12109     MemExpr->setBase(ObjectArg.get());
12110   }
12111
12112   // Convert the rest of the arguments
12113   const FunctionProtoType *Proto =
12114     Method->getType()->getAs<FunctionProtoType>();
12115   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
12116                               RParenLoc))
12117     return ExprError();
12118
12119   DiagnoseSentinelCalls(Method, LParenLoc, Args);
12120
12121   if (CheckFunctionCall(Method, TheCall, Proto))
12122     return ExprError();
12123
12124   // In the case the method to call was not selected by the overloading
12125   // resolution process, we still need to handle the enable_if attribute. Do
12126   // that here, so it will not hide previous -- and more relevant -- errors
12127   if (isa<MemberExpr>(NakedMemExpr)) {
12128     if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
12129       Diag(MemExprE->getLocStart(),
12130            diag::err_ovl_no_viable_member_function_in_call)
12131           << Method << Method->getSourceRange();
12132       Diag(Method->getLocation(),
12133            diag::note_ovl_candidate_disabled_by_enable_if_attr)
12134           << Attr->getCond()->getSourceRange() << Attr->getMessage();
12135       return ExprError();
12136     }
12137   }
12138
12139   if ((isa<CXXConstructorDecl>(CurContext) || 
12140        isa<CXXDestructorDecl>(CurContext)) && 
12141       TheCall->getMethodDecl()->isPure()) {
12142     const CXXMethodDecl *MD = TheCall->getMethodDecl();
12143
12144     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
12145         MemExpr->performsVirtualDispatch(getLangOpts())) {
12146       Diag(MemExpr->getLocStart(),
12147            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
12148         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
12149         << MD->getParent()->getDeclName();
12150
12151       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
12152       if (getLangOpts().AppleKext)
12153         Diag(MemExpr->getLocStart(),
12154              diag::note_pure_qualified_call_kext)
12155              << MD->getParent()->getDeclName()
12156              << MD->getDeclName();
12157     }
12158   }
12159   return MaybeBindToTemporary(TheCall);
12160 }
12161
12162 /// BuildCallToObjectOfClassType - Build a call to an object of class
12163 /// type (C++ [over.call.object]), which can end up invoking an
12164 /// overloaded function call operator (@c operator()) or performing a
12165 /// user-defined conversion on the object argument.
12166 ExprResult
12167 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
12168                                    SourceLocation LParenLoc,
12169                                    MultiExprArg Args,
12170                                    SourceLocation RParenLoc) {
12171   if (checkPlaceholderForOverload(*this, Obj))
12172     return ExprError();
12173   ExprResult Object = Obj;
12174
12175   UnbridgedCastsSet UnbridgedCasts;
12176   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12177     return ExprError();
12178
12179   assert(Object.get()->getType()->isRecordType() &&
12180          "Requires object type argument");
12181   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
12182
12183   // C++ [over.call.object]p1:
12184   //  If the primary-expression E in the function call syntax
12185   //  evaluates to a class object of type "cv T", then the set of
12186   //  candidate functions includes at least the function call
12187   //  operators of T. The function call operators of T are obtained by
12188   //  ordinary lookup of the name operator() in the context of
12189   //  (E).operator().
12190   OverloadCandidateSet CandidateSet(LParenLoc,
12191                                     OverloadCandidateSet::CSK_Operator);
12192   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
12193
12194   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
12195                           diag::err_incomplete_object_call, Object.get()))
12196     return true;
12197
12198   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
12199   LookupQualifiedName(R, Record->getDecl());
12200   R.suppressDiagnostics();
12201
12202   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12203        Oper != OperEnd; ++Oper) {
12204     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
12205                        Object.get()->Classify(Context),
12206                        Args, CandidateSet,
12207                        /*SuppressUserConversions=*/ false);
12208   }
12209
12210   // C++ [over.call.object]p2:
12211   //   In addition, for each (non-explicit in C++0x) conversion function 
12212   //   declared in T of the form
12213   //
12214   //        operator conversion-type-id () cv-qualifier;
12215   //
12216   //   where cv-qualifier is the same cv-qualification as, or a
12217   //   greater cv-qualification than, cv, and where conversion-type-id
12218   //   denotes the type "pointer to function of (P1,...,Pn) returning
12219   //   R", or the type "reference to pointer to function of
12220   //   (P1,...,Pn) returning R", or the type "reference to function
12221   //   of (P1,...,Pn) returning R", a surrogate call function [...]
12222   //   is also considered as a candidate function. Similarly,
12223   //   surrogate call functions are added to the set of candidate
12224   //   functions for each conversion function declared in an
12225   //   accessible base class provided the function is not hidden
12226   //   within T by another intervening declaration.
12227   const auto &Conversions =
12228       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
12229   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
12230     NamedDecl *D = *I;
12231     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
12232     if (isa<UsingShadowDecl>(D))
12233       D = cast<UsingShadowDecl>(D)->getTargetDecl();
12234
12235     // Skip over templated conversion functions; they aren't
12236     // surrogates.
12237     if (isa<FunctionTemplateDecl>(D))
12238       continue;
12239
12240     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
12241     if (!Conv->isExplicit()) {
12242       // Strip the reference type (if any) and then the pointer type (if
12243       // any) to get down to what might be a function type.
12244       QualType ConvType = Conv->getConversionType().getNonReferenceType();
12245       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
12246         ConvType = ConvPtrType->getPointeeType();
12247
12248       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
12249       {
12250         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
12251                               Object.get(), Args, CandidateSet);
12252       }
12253     }
12254   }
12255
12256   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12257
12258   // Perform overload resolution.
12259   OverloadCandidateSet::iterator Best;
12260   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
12261                              Best)) {
12262   case OR_Success:
12263     // Overload resolution succeeded; we'll build the appropriate call
12264     // below.
12265     break;
12266
12267   case OR_No_Viable_Function:
12268     if (CandidateSet.empty())
12269       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
12270         << Object.get()->getType() << /*call*/ 1
12271         << Object.get()->getSourceRange();
12272     else
12273       Diag(Object.get()->getLocStart(),
12274            diag::err_ovl_no_viable_object_call)
12275         << Object.get()->getType() << Object.get()->getSourceRange();
12276     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12277     break;
12278
12279   case OR_Ambiguous:
12280     Diag(Object.get()->getLocStart(),
12281          diag::err_ovl_ambiguous_object_call)
12282       << Object.get()->getType() << Object.get()->getSourceRange();
12283     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12284     break;
12285
12286   case OR_Deleted:
12287     Diag(Object.get()->getLocStart(),
12288          diag::err_ovl_deleted_object_call)
12289       << Best->Function->isDeleted()
12290       << Object.get()->getType() 
12291       << getDeletedOrUnavailableSuffix(Best->Function)
12292       << Object.get()->getSourceRange();
12293     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12294     break;
12295   }
12296
12297   if (Best == CandidateSet.end())
12298     return true;
12299
12300   UnbridgedCasts.restore();
12301
12302   if (Best->Function == nullptr) {
12303     // Since there is no function declaration, this is one of the
12304     // surrogate candidates. Dig out the conversion function.
12305     CXXConversionDecl *Conv
12306       = cast<CXXConversionDecl>(
12307                          Best->Conversions[0].UserDefined.ConversionFunction);
12308
12309     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
12310                               Best->FoundDecl);
12311     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
12312       return ExprError();
12313     assert(Conv == Best->FoundDecl.getDecl() && 
12314              "Found Decl & conversion-to-functionptr should be same, right?!");
12315     // We selected one of the surrogate functions that converts the
12316     // object parameter to a function pointer. Perform the conversion
12317     // on the object argument, then let ActOnCallExpr finish the job.
12318
12319     // Create an implicit member expr to refer to the conversion operator.
12320     // and then call it.
12321     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
12322                                              Conv, HadMultipleCandidates);
12323     if (Call.isInvalid())
12324       return ExprError();
12325     // Record usage of conversion in an implicit cast.
12326     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
12327                                     CK_UserDefinedConversion, Call.get(),
12328                                     nullptr, VK_RValue);
12329
12330     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
12331   }
12332
12333   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
12334
12335   // We found an overloaded operator(). Build a CXXOperatorCallExpr
12336   // that calls this method, using Object for the implicit object
12337   // parameter and passing along the remaining arguments.
12338   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12339
12340   // An error diagnostic has already been printed when parsing the declaration.
12341   if (Method->isInvalidDecl())
12342     return ExprError();
12343
12344   const FunctionProtoType *Proto =
12345     Method->getType()->getAs<FunctionProtoType>();
12346
12347   unsigned NumParams = Proto->getNumParams();
12348
12349   DeclarationNameInfo OpLocInfo(
12350                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
12351   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
12352   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12353                                            HadMultipleCandidates,
12354                                            OpLocInfo.getLoc(),
12355                                            OpLocInfo.getInfo());
12356   if (NewFn.isInvalid())
12357     return true;
12358
12359   // Build the full argument list for the method call (the implicit object
12360   // parameter is placed at the beginning of the list).
12361   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
12362   MethodArgs[0] = Object.get();
12363   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
12364
12365   // Once we've built TheCall, all of the expressions are properly
12366   // owned.
12367   QualType ResultTy = Method->getReturnType();
12368   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12369   ResultTy = ResultTy.getNonLValueExprType(Context);
12370
12371   CXXOperatorCallExpr *TheCall = new (Context)
12372       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
12373                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
12374                           ResultTy, VK, RParenLoc, false);
12375   MethodArgs.reset();
12376
12377   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
12378     return true;
12379
12380   // We may have default arguments. If so, we need to allocate more
12381   // slots in the call for them.
12382   if (Args.size() < NumParams)
12383     TheCall->setNumArgs(Context, NumParams + 1);
12384
12385   bool IsError = false;
12386
12387   // Initialize the implicit object parameter.
12388   ExprResult ObjRes =
12389     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
12390                                         Best->FoundDecl, Method);
12391   if (ObjRes.isInvalid())
12392     IsError = true;
12393   else
12394     Object = ObjRes;
12395   TheCall->setArg(0, Object.get());
12396
12397   // Check the argument types.
12398   for (unsigned i = 0; i != NumParams; i++) {
12399     Expr *Arg;
12400     if (i < Args.size()) {
12401       Arg = Args[i];
12402
12403       // Pass the argument.
12404
12405       ExprResult InputInit
12406         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12407                                                     Context,
12408                                                     Method->getParamDecl(i)),
12409                                     SourceLocation(), Arg);
12410
12411       IsError |= InputInit.isInvalid();
12412       Arg = InputInit.getAs<Expr>();
12413     } else {
12414       ExprResult DefArg
12415         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
12416       if (DefArg.isInvalid()) {
12417         IsError = true;
12418         break;
12419       }
12420
12421       Arg = DefArg.getAs<Expr>();
12422     }
12423
12424     TheCall->setArg(i + 1, Arg);
12425   }
12426
12427   // If this is a variadic call, handle args passed through "...".
12428   if (Proto->isVariadic()) {
12429     // Promote the arguments (C99 6.5.2.2p7).
12430     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
12431       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
12432                                                         nullptr);
12433       IsError |= Arg.isInvalid();
12434       TheCall->setArg(i + 1, Arg.get());
12435     }
12436   }
12437
12438   if (IsError) return true;
12439
12440   DiagnoseSentinelCalls(Method, LParenLoc, Args);
12441
12442   if (CheckFunctionCall(Method, TheCall, Proto))
12443     return true;
12444
12445   return MaybeBindToTemporary(TheCall);
12446 }
12447
12448 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
12449 ///  (if one exists), where @c Base is an expression of class type and
12450 /// @c Member is the name of the member we're trying to find.
12451 ExprResult
12452 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
12453                                bool *NoArrowOperatorFound) {
12454   assert(Base->getType()->isRecordType() &&
12455          "left-hand side must have class type");
12456
12457   if (checkPlaceholderForOverload(*this, Base))
12458     return ExprError();
12459
12460   SourceLocation Loc = Base->getExprLoc();
12461
12462   // C++ [over.ref]p1:
12463   //
12464   //   [...] An expression x->m is interpreted as (x.operator->())->m
12465   //   for a class object x of type T if T::operator->() exists and if
12466   //   the operator is selected as the best match function by the
12467   //   overload resolution mechanism (13.3).
12468   DeclarationName OpName =
12469     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
12470   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
12471   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
12472
12473   if (RequireCompleteType(Loc, Base->getType(),
12474                           diag::err_typecheck_incomplete_tag, Base))
12475     return ExprError();
12476
12477   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
12478   LookupQualifiedName(R, BaseRecord->getDecl());
12479   R.suppressDiagnostics();
12480
12481   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12482        Oper != OperEnd; ++Oper) {
12483     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
12484                        None, CandidateSet, /*SuppressUserConversions=*/false);
12485   }
12486
12487   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12488
12489   // Perform overload resolution.
12490   OverloadCandidateSet::iterator Best;
12491   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12492   case OR_Success:
12493     // Overload resolution succeeded; we'll build the call below.
12494     break;
12495
12496   case OR_No_Viable_Function:
12497     if (CandidateSet.empty()) {
12498       QualType BaseType = Base->getType();
12499       if (NoArrowOperatorFound) {
12500         // Report this specific error to the caller instead of emitting a
12501         // diagnostic, as requested.
12502         *NoArrowOperatorFound = true;
12503         return ExprError();
12504       }
12505       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
12506         << BaseType << Base->getSourceRange();
12507       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
12508         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
12509           << FixItHint::CreateReplacement(OpLoc, ".");
12510       }
12511     } else
12512       Diag(OpLoc, diag::err_ovl_no_viable_oper)
12513         << "operator->" << Base->getSourceRange();
12514     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12515     return ExprError();
12516
12517   case OR_Ambiguous:
12518     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
12519       << "->" << Base->getType() << Base->getSourceRange();
12520     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
12521     return ExprError();
12522
12523   case OR_Deleted:
12524     Diag(OpLoc,  diag::err_ovl_deleted_oper)
12525       << Best->Function->isDeleted()
12526       << "->" 
12527       << getDeletedOrUnavailableSuffix(Best->Function)
12528       << Base->getSourceRange();
12529     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12530     return ExprError();
12531   }
12532
12533   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
12534
12535   // Convert the object parameter.
12536   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12537   ExprResult BaseResult =
12538     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
12539                                         Best->FoundDecl, Method);
12540   if (BaseResult.isInvalid())
12541     return ExprError();
12542   Base = BaseResult.get();
12543
12544   // Build the operator call.
12545   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12546                                             HadMultipleCandidates, OpLoc);
12547   if (FnExpr.isInvalid())
12548     return ExprError();
12549
12550   QualType ResultTy = Method->getReturnType();
12551   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12552   ResultTy = ResultTy.getNonLValueExprType(Context);
12553   CXXOperatorCallExpr *TheCall =
12554     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
12555                                       Base, ResultTy, VK, OpLoc, false);
12556
12557   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
12558           return ExprError();
12559
12560   return MaybeBindToTemporary(TheCall);
12561 }
12562
12563 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
12564 /// a literal operator described by the provided lookup results.
12565 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
12566                                           DeclarationNameInfo &SuffixInfo,
12567                                           ArrayRef<Expr*> Args,
12568                                           SourceLocation LitEndLoc,
12569                                        TemplateArgumentListInfo *TemplateArgs) {
12570   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
12571
12572   OverloadCandidateSet CandidateSet(UDSuffixLoc,
12573                                     OverloadCandidateSet::CSK_Normal);
12574   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
12575                         /*SuppressUserConversions=*/true);
12576
12577   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12578
12579   // Perform overload resolution. This will usually be trivial, but might need
12580   // to perform substitutions for a literal operator template.
12581   OverloadCandidateSet::iterator Best;
12582   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
12583   case OR_Success:
12584   case OR_Deleted:
12585     break;
12586
12587   case OR_No_Viable_Function:
12588     Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
12589       << R.getLookupName();
12590     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12591     return ExprError();
12592
12593   case OR_Ambiguous:
12594     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
12595     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12596     return ExprError();
12597   }
12598
12599   FunctionDecl *FD = Best->Function;
12600   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
12601                                         HadMultipleCandidates,
12602                                         SuffixInfo.getLoc(),
12603                                         SuffixInfo.getInfo());
12604   if (Fn.isInvalid())
12605     return true;
12606
12607   // Check the argument types. This should almost always be a no-op, except
12608   // that array-to-pointer decay is applied to string literals.
12609   Expr *ConvArgs[2];
12610   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
12611     ExprResult InputInit = PerformCopyInitialization(
12612       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
12613       SourceLocation(), Args[ArgIdx]);
12614     if (InputInit.isInvalid())
12615       return true;
12616     ConvArgs[ArgIdx] = InputInit.get();
12617   }
12618
12619   QualType ResultTy = FD->getReturnType();
12620   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12621   ResultTy = ResultTy.getNonLValueExprType(Context);
12622
12623   UserDefinedLiteral *UDL =
12624     new (Context) UserDefinedLiteral(Context, Fn.get(),
12625                                      llvm::makeArrayRef(ConvArgs, Args.size()),
12626                                      ResultTy, VK, LitEndLoc, UDSuffixLoc);
12627
12628   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
12629     return ExprError();
12630
12631   if (CheckFunctionCall(FD, UDL, nullptr))
12632     return ExprError();
12633
12634   return MaybeBindToTemporary(UDL);
12635 }
12636
12637 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
12638 /// given LookupResult is non-empty, it is assumed to describe a member which
12639 /// will be invoked. Otherwise, the function will be found via argument
12640 /// dependent lookup.
12641 /// CallExpr is set to a valid expression and FRS_Success returned on success,
12642 /// otherwise CallExpr is set to ExprError() and some non-success value
12643 /// is returned.
12644 Sema::ForRangeStatus
12645 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
12646                                 SourceLocation RangeLoc,
12647                                 const DeclarationNameInfo &NameInfo,
12648                                 LookupResult &MemberLookup,
12649                                 OverloadCandidateSet *CandidateSet,
12650                                 Expr *Range, ExprResult *CallExpr) {
12651   Scope *S = nullptr;
12652
12653   CandidateSet->clear();
12654   if (!MemberLookup.empty()) {
12655     ExprResult MemberRef =
12656         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
12657                                  /*IsPtr=*/false, CXXScopeSpec(),
12658                                  /*TemplateKWLoc=*/SourceLocation(),
12659                                  /*FirstQualifierInScope=*/nullptr,
12660                                  MemberLookup,
12661                                  /*TemplateArgs=*/nullptr, S);
12662     if (MemberRef.isInvalid()) {
12663       *CallExpr = ExprError();
12664       return FRS_DiagnosticIssued;
12665     }
12666     *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
12667     if (CallExpr->isInvalid()) {
12668       *CallExpr = ExprError();
12669       return FRS_DiagnosticIssued;
12670     }
12671   } else {
12672     UnresolvedSet<0> FoundNames;
12673     UnresolvedLookupExpr *Fn =
12674       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
12675                                    NestedNameSpecifierLoc(), NameInfo,
12676                                    /*NeedsADL=*/true, /*Overloaded=*/false,
12677                                    FoundNames.begin(), FoundNames.end());
12678
12679     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
12680                                                     CandidateSet, CallExpr);
12681     if (CandidateSet->empty() || CandidateSetError) {
12682       *CallExpr = ExprError();
12683       return FRS_NoViableFunction;
12684     }
12685     OverloadCandidateSet::iterator Best;
12686     OverloadingResult OverloadResult =
12687         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
12688
12689     if (OverloadResult == OR_No_Viable_Function) {
12690       *CallExpr = ExprError();
12691       return FRS_NoViableFunction;
12692     }
12693     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
12694                                          Loc, nullptr, CandidateSet, &Best,
12695                                          OverloadResult,
12696                                          /*AllowTypoCorrection=*/false);
12697     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
12698       *CallExpr = ExprError();
12699       return FRS_DiagnosticIssued;
12700     }
12701   }
12702   return FRS_Success;
12703 }
12704
12705
12706 /// FixOverloadedFunctionReference - E is an expression that refers to
12707 /// a C++ overloaded function (possibly with some parentheses and
12708 /// perhaps a '&' around it). We have resolved the overloaded function
12709 /// to the function declaration Fn, so patch up the expression E to
12710 /// refer (possibly indirectly) to Fn. Returns the new expr.
12711 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
12712                                            FunctionDecl *Fn) {
12713   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
12714     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
12715                                                    Found, Fn);
12716     if (SubExpr == PE->getSubExpr())
12717       return PE;
12718
12719     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
12720   }
12721
12722   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12723     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
12724                                                    Found, Fn);
12725     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
12726                                SubExpr->getType()) &&
12727            "Implicit cast type cannot be determined from overload");
12728     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
12729     if (SubExpr == ICE->getSubExpr())
12730       return ICE;
12731
12732     return ImplicitCastExpr::Create(Context, ICE->getType(),
12733                                     ICE->getCastKind(),
12734                                     SubExpr, nullptr,
12735                                     ICE->getValueKind());
12736   }
12737
12738   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
12739     assert(UnOp->getOpcode() == UO_AddrOf &&
12740            "Can only take the address of an overloaded function");
12741     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12742       if (Method->isStatic()) {
12743         // Do nothing: static member functions aren't any different
12744         // from non-member functions.
12745       } else {
12746         // Fix the subexpression, which really has to be an
12747         // UnresolvedLookupExpr holding an overloaded member function
12748         // or template.
12749         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
12750                                                        Found, Fn);
12751         if (SubExpr == UnOp->getSubExpr())
12752           return UnOp;
12753
12754         assert(isa<DeclRefExpr>(SubExpr)
12755                && "fixed to something other than a decl ref");
12756         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
12757                && "fixed to a member ref with no nested name qualifier");
12758
12759         // We have taken the address of a pointer to member
12760         // function. Perform the computation here so that we get the
12761         // appropriate pointer to member type.
12762         QualType ClassType
12763           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
12764         QualType MemPtrType
12765           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
12766
12767         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
12768                                            VK_RValue, OK_Ordinary,
12769                                            UnOp->getOperatorLoc());
12770       }
12771     }
12772     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
12773                                                    Found, Fn);
12774     if (SubExpr == UnOp->getSubExpr())
12775       return UnOp;
12776
12777     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
12778                                      Context.getPointerType(SubExpr->getType()),
12779                                        VK_RValue, OK_Ordinary,
12780                                        UnOp->getOperatorLoc());
12781   }
12782
12783   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
12784     // FIXME: avoid copy.
12785     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12786     if (ULE->hasExplicitTemplateArgs()) {
12787       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
12788       TemplateArgs = &TemplateArgsBuffer;
12789     }
12790
12791     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
12792                                            ULE->getQualifierLoc(),
12793                                            ULE->getTemplateKeywordLoc(),
12794                                            Fn,
12795                                            /*enclosing*/ false, // FIXME?
12796                                            ULE->getNameLoc(),
12797                                            Fn->getType(),
12798                                            VK_LValue,
12799                                            Found.getDecl(),
12800                                            TemplateArgs);
12801     MarkDeclRefReferenced(DRE);
12802     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
12803     return DRE;
12804   }
12805
12806   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
12807     // FIXME: avoid copy.
12808     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12809     if (MemExpr->hasExplicitTemplateArgs()) {
12810       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
12811       TemplateArgs = &TemplateArgsBuffer;
12812     }
12813
12814     Expr *Base;
12815
12816     // If we're filling in a static method where we used to have an
12817     // implicit member access, rewrite to a simple decl ref.
12818     if (MemExpr->isImplicitAccess()) {
12819       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
12820         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
12821                                                MemExpr->getQualifierLoc(),
12822                                                MemExpr->getTemplateKeywordLoc(),
12823                                                Fn,
12824                                                /*enclosing*/ false,
12825                                                MemExpr->getMemberLoc(),
12826                                                Fn->getType(),
12827                                                VK_LValue,
12828                                                Found.getDecl(),
12829                                                TemplateArgs);
12830         MarkDeclRefReferenced(DRE);
12831         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
12832         return DRE;
12833       } else {
12834         SourceLocation Loc = MemExpr->getMemberLoc();
12835         if (MemExpr->getQualifier())
12836           Loc = MemExpr->getQualifierLoc().getBeginLoc();
12837         CheckCXXThisCapture(Loc);
12838         Base = new (Context) CXXThisExpr(Loc,
12839                                          MemExpr->getBaseType(),
12840                                          /*isImplicit=*/true);
12841       }
12842     } else
12843       Base = MemExpr->getBase();
12844
12845     ExprValueKind valueKind;
12846     QualType type;
12847     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
12848       valueKind = VK_LValue;
12849       type = Fn->getType();
12850     } else {
12851       valueKind = VK_RValue;
12852       type = Context.BoundMemberTy;
12853     }
12854
12855     MemberExpr *ME = MemberExpr::Create(
12856         Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
12857         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
12858         MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
12859         OK_Ordinary);
12860     ME->setHadMultipleCandidates(true);
12861     MarkMemberReferenced(ME);
12862     return ME;
12863   }
12864
12865   llvm_unreachable("Invalid reference to overloaded function");
12866 }
12867
12868 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
12869                                                 DeclAccessPair Found,
12870                                                 FunctionDecl *Fn) {
12871   return FixOverloadedFunctionReference(E.get(), Found, Fn);
12872 }