]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
Update llvm/clang to r240225.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaOverload.cpp
1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Overload.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/TypeOrdering.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/Basic/DiagnosticOptions.h"
24 #include "clang/Basic/PartialDiagnostic.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include <algorithm>
36 #include <cstdlib>
37
38 using namespace clang;
39 using namespace sema;
40
41 /// A convenience routine for creating a decayed reference to a function.
42 static ExprResult
43 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
44                       bool HadMultipleCandidates,
45                       SourceLocation Loc = SourceLocation(), 
46                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
47   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
48     return ExprError(); 
49   // If FoundDecl is different from Fn (such as if one is a template
50   // and the other a specialization), make sure DiagnoseUseOfDecl is 
51   // called on both.
52   // FIXME: This would be more comprehensively addressed by modifying
53   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
54   // being used.
55   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
56     return ExprError();
57   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
58                                                  VK_LValue, Loc, LocInfo);
59   if (HadMultipleCandidates)
60     DRE->setHadMultipleCandidates(true);
61
62   S.MarkDeclRefReferenced(DRE);
63
64   ExprResult E = DRE;
65   E = S.DefaultFunctionArrayConversion(E.get());
66   if (E.isInvalid())
67     return ExprError();
68   return E;
69 }
70
71 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
72                                  bool InOverloadResolution,
73                                  StandardConversionSequence &SCS,
74                                  bool CStyle,
75                                  bool AllowObjCWritebackConversion);
76
77 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
78                                                  QualType &ToType,
79                                                  bool InOverloadResolution,
80                                                  StandardConversionSequence &SCS,
81                                                  bool CStyle);
82 static OverloadingResult
83 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
84                         UserDefinedConversionSequence& User,
85                         OverloadCandidateSet& Conversions,
86                         bool AllowExplicit,
87                         bool AllowObjCConversionOnExplicit);
88
89
90 static ImplicitConversionSequence::CompareKind
91 CompareStandardConversionSequences(Sema &S,
92                                    const StandardConversionSequence& SCS1,
93                                    const StandardConversionSequence& SCS2);
94
95 static ImplicitConversionSequence::CompareKind
96 CompareQualificationConversions(Sema &S,
97                                 const StandardConversionSequence& SCS1,
98                                 const StandardConversionSequence& SCS2);
99
100 static ImplicitConversionSequence::CompareKind
101 CompareDerivedToBaseConversions(Sema &S,
102                                 const StandardConversionSequence& SCS1,
103                                 const StandardConversionSequence& SCS2);
104
105 /// GetConversionRank - Retrieve the implicit conversion rank
106 /// corresponding to the given implicit conversion kind.
107 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
108   static const ImplicitConversionRank
109     Rank[(int)ICK_Num_Conversion_Kinds] = {
110     ICR_Exact_Match,
111     ICR_Exact_Match,
112     ICR_Exact_Match,
113     ICR_Exact_Match,
114     ICR_Exact_Match,
115     ICR_Exact_Match,
116     ICR_Promotion,
117     ICR_Promotion,
118     ICR_Promotion,
119     ICR_Conversion,
120     ICR_Conversion,
121     ICR_Conversion,
122     ICR_Conversion,
123     ICR_Conversion,
124     ICR_Conversion,
125     ICR_Conversion,
126     ICR_Conversion,
127     ICR_Conversion,
128     ICR_Conversion,
129     ICR_Conversion,
130     ICR_Complex_Real_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_Writeback_Conversion
134   };
135   return Rank[(int)Kind];
136 }
137
138 /// GetImplicitConversionName - Return the name of this kind of
139 /// implicit conversion.
140 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
141   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
142     "No conversion",
143     "Lvalue-to-rvalue",
144     "Array-to-pointer",
145     "Function-to-pointer",
146     "Noreturn adjustment",
147     "Qualification",
148     "Integral promotion",
149     "Floating point promotion",
150     "Complex promotion",
151     "Integral conversion",
152     "Floating conversion",
153     "Complex conversion",
154     "Floating-integral conversion",
155     "Pointer conversion",
156     "Pointer-to-member conversion",
157     "Boolean conversion",
158     "Compatible-types conversion",
159     "Derived-to-base conversion",
160     "Vector conversion",
161     "Vector splat",
162     "Complex-real conversion",
163     "Block Pointer conversion",
164     "Transparent Union Conversion",
165     "Writeback conversion"
166   };
167   return Name[Kind];
168 }
169
170 /// StandardConversionSequence - Set the standard conversion
171 /// sequence to the identity conversion.
172 void StandardConversionSequence::setAsIdentityConversion() {
173   First = ICK_Identity;
174   Second = ICK_Identity;
175   Third = ICK_Identity;
176   DeprecatedStringLiteralToCharPtr = false;
177   QualificationIncludesObjCLifetime = false;
178   ReferenceBinding = false;
179   DirectBinding = false;
180   IsLvalueReference = true;
181   BindsToFunctionLvalue = false;
182   BindsToRvalue = false;
183   BindsImplicitObjectArgumentWithoutRefQualifier = false;
184   ObjCLifetimeConversionBinding = false;
185   CopyConstructor = nullptr;
186 }
187
188 /// getRank - Retrieve the rank of this standard conversion sequence
189 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
190 /// implicit conversions.
191 ImplicitConversionRank StandardConversionSequence::getRank() const {
192   ImplicitConversionRank Rank = ICR_Exact_Match;
193   if  (GetConversionRank(First) > Rank)
194     Rank = GetConversionRank(First);
195   if  (GetConversionRank(Second) > Rank)
196     Rank = GetConversionRank(Second);
197   if  (GetConversionRank(Third) > Rank)
198     Rank = GetConversionRank(Third);
199   return Rank;
200 }
201
202 /// isPointerConversionToBool - Determines whether this conversion is
203 /// a conversion of a pointer or pointer-to-member to bool. This is
204 /// used as part of the ranking of standard conversion sequences
205 /// (C++ 13.3.3.2p4).
206 bool StandardConversionSequence::isPointerConversionToBool() const {
207   // Note that FromType has not necessarily been transformed by the
208   // array-to-pointer or function-to-pointer implicit conversions, so
209   // check for their presence as well as checking whether FromType is
210   // a pointer.
211   if (getToType(1)->isBooleanType() &&
212       (getFromType()->isPointerType() ||
213        getFromType()->isObjCObjectPointerType() ||
214        getFromType()->isBlockPointerType() ||
215        getFromType()->isNullPtrType() ||
216        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
217     return true;
218
219   return false;
220 }
221
222 /// isPointerConversionToVoidPointer - Determines whether this
223 /// conversion is a conversion of a pointer to a void pointer. This is
224 /// used as part of the ranking of standard conversion sequences (C++
225 /// 13.3.3.2p4).
226 bool
227 StandardConversionSequence::
228 isPointerConversionToVoidPointer(ASTContext& Context) const {
229   QualType FromType = getFromType();
230   QualType ToType = getToType(1);
231
232   // Note that FromType has not necessarily been transformed by the
233   // array-to-pointer implicit conversion, so check for its presence
234   // and redo the conversion to get a pointer.
235   if (First == ICK_Array_To_Pointer)
236     FromType = Context.getArrayDecayedType(FromType);
237
238   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
239     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
240       return ToPtrType->getPointeeType()->isVoidType();
241
242   return false;
243 }
244
245 /// Skip any implicit casts which could be either part of a narrowing conversion
246 /// or after one in an implicit conversion.
247 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
248   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
249     switch (ICE->getCastKind()) {
250     case CK_NoOp:
251     case CK_IntegralCast:
252     case CK_IntegralToBoolean:
253     case CK_IntegralToFloating:
254     case CK_FloatingToIntegral:
255     case CK_FloatingToBoolean:
256     case CK_FloatingCast:
257       Converted = ICE->getSubExpr();
258       continue;
259
260     default:
261       return Converted;
262     }
263   }
264
265   return Converted;
266 }
267
268 /// Check if this standard conversion sequence represents a narrowing
269 /// conversion, according to C++11 [dcl.init.list]p7.
270 ///
271 /// \param Ctx  The AST context.
272 /// \param Converted  The result of applying this standard conversion sequence.
273 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
274 ///        value of the expression prior to the narrowing conversion.
275 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
276 ///        type of the expression prior to the narrowing conversion.
277 NarrowingKind
278 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
279                                              const Expr *Converted,
280                                              APValue &ConstantValue,
281                                              QualType &ConstantType) const {
282   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
283
284   // C++11 [dcl.init.list]p7:
285   //   A narrowing conversion is an implicit conversion ...
286   QualType FromType = getToType(0);
287   QualType ToType = getToType(1);
288   switch (Second) {
289   // 'bool' is an integral type; dispatch to the right place to handle it.
290   case ICK_Boolean_Conversion:
291     if (FromType->isRealFloatingType())
292       goto FloatingIntegralConversion;
293     if (FromType->isIntegralOrUnscopedEnumerationType())
294       goto IntegralConversion;
295     // Boolean conversions can be from pointers and pointers to members
296     // [conv.bool], and those aren't considered narrowing conversions.
297     return NK_Not_Narrowing;
298
299   // -- from a floating-point type to an integer type, or
300   //
301   // -- from an integer type or unscoped enumeration type to a floating-point
302   //    type, except where the source is a constant expression and the actual
303   //    value after conversion will fit into the target type and will produce
304   //    the original value when converted back to the original type, or
305   case ICK_Floating_Integral:
306   FloatingIntegralConversion:
307     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
308       return NK_Type_Narrowing;
309     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
310       llvm::APSInt IntConstantValue;
311       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
312       if (Initializer &&
313           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
314         // Convert the integer to the floating type.
315         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
316         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
317                                 llvm::APFloat::rmNearestTiesToEven);
318         // And back.
319         llvm::APSInt ConvertedValue = IntConstantValue;
320         bool ignored;
321         Result.convertToInteger(ConvertedValue,
322                                 llvm::APFloat::rmTowardZero, &ignored);
323         // If the resulting value is different, this was a narrowing conversion.
324         if (IntConstantValue != ConvertedValue) {
325           ConstantValue = APValue(IntConstantValue);
326           ConstantType = Initializer->getType();
327           return NK_Constant_Narrowing;
328         }
329       } else {
330         // Variables are always narrowings.
331         return NK_Variable_Narrowing;
332       }
333     }
334     return NK_Not_Narrowing;
335
336   // -- from long double to double or float, or from double to float, except
337   //    where the source is a constant expression and the actual value after
338   //    conversion is within the range of values that can be represented (even
339   //    if it cannot be represented exactly), or
340   case ICK_Floating_Conversion:
341     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
342         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
343       // FromType is larger than ToType.
344       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
345       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
346         // Constant!
347         assert(ConstantValue.isFloat());
348         llvm::APFloat FloatVal = ConstantValue.getFloat();
349         // Convert the source value into the target type.
350         bool ignored;
351         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
352           Ctx.getFloatTypeSemantics(ToType),
353           llvm::APFloat::rmNearestTiesToEven, &ignored);
354         // If there was no overflow, the source value is within the range of
355         // values that can be represented.
356         if (ConvertStatus & llvm::APFloat::opOverflow) {
357           ConstantType = Initializer->getType();
358           return NK_Constant_Narrowing;
359         }
360       } else {
361         return NK_Variable_Narrowing;
362       }
363     }
364     return NK_Not_Narrowing;
365
366   // -- from an integer type or unscoped enumeration type to an integer type
367   //    that cannot represent all the values of the original type, except where
368   //    the source is a constant expression and the actual value after
369   //    conversion will fit into the target type and will produce the original
370   //    value when converted back to the original type.
371   case ICK_Integral_Conversion:
372   IntegralConversion: {
373     assert(FromType->isIntegralOrUnscopedEnumerationType());
374     assert(ToType->isIntegralOrUnscopedEnumerationType());
375     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
376     const unsigned FromWidth = Ctx.getIntWidth(FromType);
377     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
378     const unsigned ToWidth = Ctx.getIntWidth(ToType);
379
380     if (FromWidth > ToWidth ||
381         (FromWidth == ToWidth && FromSigned != ToSigned) ||
382         (FromSigned && !ToSigned)) {
383       // Not all values of FromType can be represented in ToType.
384       llvm::APSInt InitializerValue;
385       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
386       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
387         // Such conversions on variables are always narrowing.
388         return NK_Variable_Narrowing;
389       }
390       bool Narrowing = false;
391       if (FromWidth < ToWidth) {
392         // Negative -> unsigned is narrowing. Otherwise, more bits is never
393         // narrowing.
394         if (InitializerValue.isSigned() && InitializerValue.isNegative())
395           Narrowing = true;
396       } else {
397         // Add a bit to the InitializerValue so we don't have to worry about
398         // signed vs. unsigned comparisons.
399         InitializerValue = InitializerValue.extend(
400           InitializerValue.getBitWidth() + 1);
401         // Convert the initializer to and from the target width and signed-ness.
402         llvm::APSInt ConvertedValue = InitializerValue;
403         ConvertedValue = ConvertedValue.trunc(ToWidth);
404         ConvertedValue.setIsSigned(ToSigned);
405         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
406         ConvertedValue.setIsSigned(InitializerValue.isSigned());
407         // If the result is different, this was a narrowing conversion.
408         if (ConvertedValue != InitializerValue)
409           Narrowing = true;
410       }
411       if (Narrowing) {
412         ConstantType = Initializer->getType();
413         ConstantValue = APValue(InitializerValue);
414         return NK_Constant_Narrowing;
415       }
416     }
417     return NK_Not_Narrowing;
418   }
419
420   default:
421     // Other kinds of conversions are not narrowings.
422     return NK_Not_Narrowing;
423   }
424 }
425
426 /// dump - Print this standard conversion sequence to standard
427 /// error. Useful for debugging overloading issues.
428 void StandardConversionSequence::dump() const {
429   raw_ostream &OS = llvm::errs();
430   bool PrintedSomething = false;
431   if (First != ICK_Identity) {
432     OS << GetImplicitConversionName(First);
433     PrintedSomething = true;
434   }
435
436   if (Second != ICK_Identity) {
437     if (PrintedSomething) {
438       OS << " -> ";
439     }
440     OS << GetImplicitConversionName(Second);
441
442     if (CopyConstructor) {
443       OS << " (by copy constructor)";
444     } else if (DirectBinding) {
445       OS << " (direct reference binding)";
446     } else if (ReferenceBinding) {
447       OS << " (reference binding)";
448     }
449     PrintedSomething = true;
450   }
451
452   if (Third != ICK_Identity) {
453     if (PrintedSomething) {
454       OS << " -> ";
455     }
456     OS << GetImplicitConversionName(Third);
457     PrintedSomething = true;
458   }
459
460   if (!PrintedSomething) {
461     OS << "No conversions required";
462   }
463 }
464
465 /// dump - Print this user-defined conversion sequence to standard
466 /// error. Useful for debugging overloading issues.
467 void UserDefinedConversionSequence::dump() const {
468   raw_ostream &OS = llvm::errs();
469   if (Before.First || Before.Second || Before.Third) {
470     Before.dump();
471     OS << " -> ";
472   }
473   if (ConversionFunction)
474     OS << '\'' << *ConversionFunction << '\'';
475   else
476     OS << "aggregate initialization";
477   if (After.First || After.Second || After.Third) {
478     OS << " -> ";
479     After.dump();
480   }
481 }
482
483 /// dump - Print this implicit conversion sequence to standard
484 /// error. Useful for debugging overloading issues.
485 void ImplicitConversionSequence::dump() const {
486   raw_ostream &OS = llvm::errs();
487   if (isStdInitializerListElement())
488     OS << "Worst std::initializer_list element conversion: ";
489   switch (ConversionKind) {
490   case StandardConversion:
491     OS << "Standard conversion: ";
492     Standard.dump();
493     break;
494   case UserDefinedConversion:
495     OS << "User-defined conversion: ";
496     UserDefined.dump();
497     break;
498   case EllipsisConversion:
499     OS << "Ellipsis conversion";
500     break;
501   case AmbiguousConversion:
502     OS << "Ambiguous conversion";
503     break;
504   case BadConversion:
505     OS << "Bad conversion";
506     break;
507   }
508
509   OS << "\n";
510 }
511
512 void AmbiguousConversionSequence::construct() {
513   new (&conversions()) ConversionSet();
514 }
515
516 void AmbiguousConversionSequence::destruct() {
517   conversions().~ConversionSet();
518 }
519
520 void
521 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
522   FromTypePtr = O.FromTypePtr;
523   ToTypePtr = O.ToTypePtr;
524   new (&conversions()) ConversionSet(O.conversions());
525 }
526
527 namespace {
528   // Structure used by DeductionFailureInfo to store
529   // template argument information.
530   struct DFIArguments {
531     TemplateArgument FirstArg;
532     TemplateArgument SecondArg;
533   };
534   // Structure used by DeductionFailureInfo to store
535   // template parameter and template argument information.
536   struct DFIParamWithArguments : DFIArguments {
537     TemplateParameter Param;
538   };
539 }
540
541 /// \brief Convert from Sema's representation of template deduction information
542 /// to the form used in overload-candidate information.
543 DeductionFailureInfo
544 clang::MakeDeductionFailureInfo(ASTContext &Context,
545                                 Sema::TemplateDeductionResult TDK,
546                                 TemplateDeductionInfo &Info) {
547   DeductionFailureInfo Result;
548   Result.Result = static_cast<unsigned>(TDK);
549   Result.HasDiagnostic = false;
550   Result.Data = nullptr;
551   switch (TDK) {
552   case Sema::TDK_Success:
553   case Sema::TDK_Invalid:
554   case Sema::TDK_InstantiationDepth:
555   case Sema::TDK_TooManyArguments:
556   case Sema::TDK_TooFewArguments:
557     break;
558
559   case Sema::TDK_Incomplete:
560   case Sema::TDK_InvalidExplicitArguments:
561     Result.Data = Info.Param.getOpaqueValue();
562     break;
563
564   case Sema::TDK_NonDeducedMismatch: {
565     // FIXME: Should allocate from normal heap so that we can free this later.
566     DFIArguments *Saved = new (Context) DFIArguments;
567     Saved->FirstArg = Info.FirstArg;
568     Saved->SecondArg = Info.SecondArg;
569     Result.Data = Saved;
570     break;
571   }
572
573   case Sema::TDK_Inconsistent:
574   case Sema::TDK_Underqualified: {
575     // FIXME: Should allocate from normal heap so that we can free this later.
576     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
577     Saved->Param = Info.Param;
578     Saved->FirstArg = Info.FirstArg;
579     Saved->SecondArg = Info.SecondArg;
580     Result.Data = Saved;
581     break;
582   }
583
584   case Sema::TDK_SubstitutionFailure:
585     Result.Data = Info.take();
586     if (Info.hasSFINAEDiagnostic()) {
587       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
588           SourceLocation(), PartialDiagnostic::NullDiagnostic());
589       Info.takeSFINAEDiagnostic(*Diag);
590       Result.HasDiagnostic = true;
591     }
592     break;
593
594   case Sema::TDK_FailedOverloadResolution:
595     Result.Data = Info.Expression;
596     break;
597
598   case Sema::TDK_MiscellaneousDeductionFailure:
599     break;
600   }
601
602   return Result;
603 }
604
605 void DeductionFailureInfo::Destroy() {
606   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
607   case Sema::TDK_Success:
608   case Sema::TDK_Invalid:
609   case Sema::TDK_InstantiationDepth:
610   case Sema::TDK_Incomplete:
611   case Sema::TDK_TooManyArguments:
612   case Sema::TDK_TooFewArguments:
613   case Sema::TDK_InvalidExplicitArguments:
614   case Sema::TDK_FailedOverloadResolution:
615     break;
616
617   case Sema::TDK_Inconsistent:
618   case Sema::TDK_Underqualified:
619   case Sema::TDK_NonDeducedMismatch:
620     // FIXME: Destroy the data?
621     Data = nullptr;
622     break;
623
624   case Sema::TDK_SubstitutionFailure:
625     // FIXME: Destroy the template argument list?
626     Data = nullptr;
627     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
628       Diag->~PartialDiagnosticAt();
629       HasDiagnostic = false;
630     }
631     break;
632
633   // Unhandled
634   case Sema::TDK_MiscellaneousDeductionFailure:
635     break;
636   }
637 }
638
639 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
640   if (HasDiagnostic)
641     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
642   return nullptr;
643 }
644
645 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
646   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
647   case Sema::TDK_Success:
648   case Sema::TDK_Invalid:
649   case Sema::TDK_InstantiationDepth:
650   case Sema::TDK_TooManyArguments:
651   case Sema::TDK_TooFewArguments:
652   case Sema::TDK_SubstitutionFailure:
653   case Sema::TDK_NonDeducedMismatch:
654   case Sema::TDK_FailedOverloadResolution:
655     return TemplateParameter();
656
657   case Sema::TDK_Incomplete:
658   case Sema::TDK_InvalidExplicitArguments:
659     return TemplateParameter::getFromOpaqueValue(Data);
660
661   case Sema::TDK_Inconsistent:
662   case Sema::TDK_Underqualified:
663     return static_cast<DFIParamWithArguments*>(Data)->Param;
664
665   // Unhandled
666   case Sema::TDK_MiscellaneousDeductionFailure:
667     break;
668   }
669
670   return TemplateParameter();
671 }
672
673 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
674   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
675   case Sema::TDK_Success:
676   case Sema::TDK_Invalid:
677   case Sema::TDK_InstantiationDepth:
678   case Sema::TDK_TooManyArguments:
679   case Sema::TDK_TooFewArguments:
680   case Sema::TDK_Incomplete:
681   case Sema::TDK_InvalidExplicitArguments:
682   case Sema::TDK_Inconsistent:
683   case Sema::TDK_Underqualified:
684   case Sema::TDK_NonDeducedMismatch:
685   case Sema::TDK_FailedOverloadResolution:
686     return nullptr;
687
688   case Sema::TDK_SubstitutionFailure:
689     return static_cast<TemplateArgumentList*>(Data);
690
691   // Unhandled
692   case Sema::TDK_MiscellaneousDeductionFailure:
693     break;
694   }
695
696   return nullptr;
697 }
698
699 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
700   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
701   case Sema::TDK_Success:
702   case Sema::TDK_Invalid:
703   case Sema::TDK_InstantiationDepth:
704   case Sema::TDK_Incomplete:
705   case Sema::TDK_TooManyArguments:
706   case Sema::TDK_TooFewArguments:
707   case Sema::TDK_InvalidExplicitArguments:
708   case Sema::TDK_SubstitutionFailure:
709   case Sema::TDK_FailedOverloadResolution:
710     return nullptr;
711
712   case Sema::TDK_Inconsistent:
713   case Sema::TDK_Underqualified:
714   case Sema::TDK_NonDeducedMismatch:
715     return &static_cast<DFIArguments*>(Data)->FirstArg;
716
717   // Unhandled
718   case Sema::TDK_MiscellaneousDeductionFailure:
719     break;
720   }
721
722   return nullptr;
723 }
724
725 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
726   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
727   case Sema::TDK_Success:
728   case Sema::TDK_Invalid:
729   case Sema::TDK_InstantiationDepth:
730   case Sema::TDK_Incomplete:
731   case Sema::TDK_TooManyArguments:
732   case Sema::TDK_TooFewArguments:
733   case Sema::TDK_InvalidExplicitArguments:
734   case Sema::TDK_SubstitutionFailure:
735   case Sema::TDK_FailedOverloadResolution:
736     return nullptr;
737
738   case Sema::TDK_Inconsistent:
739   case Sema::TDK_Underqualified:
740   case Sema::TDK_NonDeducedMismatch:
741     return &static_cast<DFIArguments*>(Data)->SecondArg;
742
743   // Unhandled
744   case Sema::TDK_MiscellaneousDeductionFailure:
745     break;
746   }
747
748   return nullptr;
749 }
750
751 Expr *DeductionFailureInfo::getExpr() {
752   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
753         Sema::TDK_FailedOverloadResolution)
754     return static_cast<Expr*>(Data);
755
756   return nullptr;
757 }
758
759 void OverloadCandidateSet::destroyCandidates() {
760   for (iterator i = begin(), e = end(); i != e; ++i) {
761     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
762       i->Conversions[ii].~ImplicitConversionSequence();
763     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
764       i->DeductionFailure.Destroy();
765   }
766 }
767
768 void OverloadCandidateSet::clear() {
769   destroyCandidates();
770   NumInlineSequences = 0;
771   Candidates.clear();
772   Functions.clear();
773 }
774
775 namespace {
776   class UnbridgedCastsSet {
777     struct Entry {
778       Expr **Addr;
779       Expr *Saved;
780     };
781     SmallVector<Entry, 2> Entries;
782     
783   public:
784     void save(Sema &S, Expr *&E) {
785       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
786       Entry entry = { &E, E };
787       Entries.push_back(entry);
788       E = S.stripARCUnbridgedCast(E);
789     }
790
791     void restore() {
792       for (SmallVectorImpl<Entry>::iterator
793              i = Entries.begin(), e = Entries.end(); i != e; ++i) 
794         *i->Addr = i->Saved;
795     }
796   };
797 }
798
799 /// checkPlaceholderForOverload - Do any interesting placeholder-like
800 /// preprocessing on the given expression.
801 ///
802 /// \param unbridgedCasts a collection to which to add unbridged casts;
803 ///   without this, they will be immediately diagnosed as errors
804 ///
805 /// Return true on unrecoverable error.
806 static bool
807 checkPlaceholderForOverload(Sema &S, Expr *&E,
808                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
809   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
810     // We can't handle overloaded expressions here because overload
811     // resolution might reasonably tweak them.
812     if (placeholder->getKind() == BuiltinType::Overload) return false;
813
814     // If the context potentially accepts unbridged ARC casts, strip
815     // the unbridged cast and add it to the collection for later restoration.
816     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
817         unbridgedCasts) {
818       unbridgedCasts->save(S, E);
819       return false;
820     }
821
822     // Go ahead and check everything else.
823     ExprResult result = S.CheckPlaceholderExpr(E);
824     if (result.isInvalid())
825       return true;
826
827     E = result.get();
828     return false;
829   }
830
831   // Nothing to do.
832   return false;
833 }
834
835 /// checkArgPlaceholdersForOverload - Check a set of call operands for
836 /// placeholders.
837 static bool checkArgPlaceholdersForOverload(Sema &S,
838                                             MultiExprArg Args,
839                                             UnbridgedCastsSet &unbridged) {
840   for (unsigned i = 0, e = Args.size(); i != e; ++i)
841     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
842       return true;
843
844   return false;
845 }
846
847 // IsOverload - Determine whether the given New declaration is an
848 // overload of the declarations in Old. This routine returns false if
849 // New and Old cannot be overloaded, e.g., if New has the same
850 // signature as some function in Old (C++ 1.3.10) or if the Old
851 // declarations aren't functions (or function templates) at all. When
852 // it does return false, MatchedDecl will point to the decl that New
853 // cannot be overloaded with.  This decl may be a UsingShadowDecl on
854 // top of the underlying declaration.
855 //
856 // Example: Given the following input:
857 //
858 //   void f(int, float); // #1
859 //   void f(int, int); // #2
860 //   int f(int, int); // #3
861 //
862 // When we process #1, there is no previous declaration of "f",
863 // so IsOverload will not be used.
864 //
865 // When we process #2, Old contains only the FunctionDecl for #1.  By
866 // comparing the parameter types, we see that #1 and #2 are overloaded
867 // (since they have different signatures), so this routine returns
868 // false; MatchedDecl is unchanged.
869 //
870 // When we process #3, Old is an overload set containing #1 and #2. We
871 // compare the signatures of #3 to #1 (they're overloaded, so we do
872 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
873 // identical (return types of functions are not part of the
874 // signature), IsOverload returns false and MatchedDecl will be set to
875 // point to the FunctionDecl for #2.
876 //
877 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
878 // into a class by a using declaration.  The rules for whether to hide
879 // shadow declarations ignore some properties which otherwise figure
880 // into a function template's signature.
881 Sema::OverloadKind
882 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
883                     NamedDecl *&Match, bool NewIsUsingDecl) {
884   for (LookupResult::iterator I = Old.begin(), E = Old.end();
885          I != E; ++I) {
886     NamedDecl *OldD = *I;
887
888     bool OldIsUsingDecl = false;
889     if (isa<UsingShadowDecl>(OldD)) {
890       OldIsUsingDecl = true;
891
892       // We can always introduce two using declarations into the same
893       // context, even if they have identical signatures.
894       if (NewIsUsingDecl) continue;
895
896       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
897     }
898
899     // If either declaration was introduced by a using declaration,
900     // we'll need to use slightly different rules for matching.
901     // Essentially, these rules are the normal rules, except that
902     // function templates hide function templates with different
903     // return types or template parameter lists.
904     bool UseMemberUsingDeclRules =
905       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
906       !New->getFriendObjectKind();
907
908     if (FunctionDecl *OldF = OldD->getAsFunction()) {
909       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
910         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
911           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
912           continue;
913         }
914
915         if (!isa<FunctionTemplateDecl>(OldD) &&
916             !shouldLinkPossiblyHiddenDecl(*I, New))
917           continue;
918
919         Match = *I;
920         return Ovl_Match;
921       }
922     } else if (isa<UsingDecl>(OldD)) {
923       // We can overload with these, which can show up when doing
924       // redeclaration checks for UsingDecls.
925       assert(Old.getLookupKind() == LookupUsingDeclName);
926     } else if (isa<TagDecl>(OldD)) {
927       // We can always overload with tags by hiding them.
928     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
929       // Optimistically assume that an unresolved using decl will
930       // overload; if it doesn't, we'll have to diagnose during
931       // template instantiation.
932     } else {
933       // (C++ 13p1):
934       //   Only function declarations can be overloaded; object and type
935       //   declarations cannot be overloaded.
936       Match = *I;
937       return Ovl_NonFunction;
938     }
939   }
940
941   return Ovl_Overload;
942 }
943
944 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
945                       bool UseUsingDeclRules) {
946   // C++ [basic.start.main]p2: This function shall not be overloaded.
947   if (New->isMain())
948     return false;
949
950   // MSVCRT user defined entry points cannot be overloaded.
951   if (New->isMSVCRTEntryPoint())
952     return false;
953
954   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
955   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
956
957   // C++ [temp.fct]p2:
958   //   A function template can be overloaded with other function templates
959   //   and with normal (non-template) functions.
960   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
961     return true;
962
963   // Is the function New an overload of the function Old?
964   QualType OldQType = Context.getCanonicalType(Old->getType());
965   QualType NewQType = Context.getCanonicalType(New->getType());
966
967   // Compare the signatures (C++ 1.3.10) of the two functions to
968   // determine whether they are overloads. If we find any mismatch
969   // in the signature, they are overloads.
970
971   // If either of these functions is a K&R-style function (no
972   // prototype), then we consider them to have matching signatures.
973   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
974       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
975     return false;
976
977   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
978   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
979
980   // The signature of a function includes the types of its
981   // parameters (C++ 1.3.10), which includes the presence or absence
982   // of the ellipsis; see C++ DR 357).
983   if (OldQType != NewQType &&
984       (OldType->getNumParams() != NewType->getNumParams() ||
985        OldType->isVariadic() != NewType->isVariadic() ||
986        !FunctionParamTypesAreEqual(OldType, NewType)))
987     return true;
988
989   // C++ [temp.over.link]p4:
990   //   The signature of a function template consists of its function
991   //   signature, its return type and its template parameter list. The names
992   //   of the template parameters are significant only for establishing the
993   //   relationship between the template parameters and the rest of the
994   //   signature.
995   //
996   // We check the return type and template parameter lists for function
997   // templates first; the remaining checks follow.
998   //
999   // However, we don't consider either of these when deciding whether
1000   // a member introduced by a shadow declaration is hidden.
1001   if (!UseUsingDeclRules && NewTemplate &&
1002       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1003                                        OldTemplate->getTemplateParameters(),
1004                                        false, TPL_TemplateMatch) ||
1005        OldType->getReturnType() != NewType->getReturnType()))
1006     return true;
1007
1008   // If the function is a class member, its signature includes the
1009   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1010   //
1011   // As part of this, also check whether one of the member functions
1012   // is static, in which case they are not overloads (C++
1013   // 13.1p2). While not part of the definition of the signature,
1014   // this check is important to determine whether these functions
1015   // can be overloaded.
1016   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1017   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1018   if (OldMethod && NewMethod &&
1019       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1020     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1021       if (!UseUsingDeclRules &&
1022           (OldMethod->getRefQualifier() == RQ_None ||
1023            NewMethod->getRefQualifier() == RQ_None)) {
1024         // C++0x [over.load]p2:
1025         //   - Member function declarations with the same name and the same
1026         //     parameter-type-list as well as member function template
1027         //     declarations with the same name, the same parameter-type-list, and
1028         //     the same template parameter lists cannot be overloaded if any of
1029         //     them, but not all, have a ref-qualifier (8.3.5).
1030         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1031           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1032         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1033       }
1034       return true;
1035     }
1036
1037     // We may not have applied the implicit const for a constexpr member
1038     // function yet (because we haven't yet resolved whether this is a static
1039     // or non-static member function). Add it now, on the assumption that this
1040     // is a redeclaration of OldMethod.
1041     unsigned OldQuals = OldMethod->getTypeQualifiers();
1042     unsigned NewQuals = NewMethod->getTypeQualifiers();
1043     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1044         !isa<CXXConstructorDecl>(NewMethod))
1045       NewQuals |= Qualifiers::Const;
1046
1047     // We do not allow overloading based off of '__restrict'.
1048     OldQuals &= ~Qualifiers::Restrict;
1049     NewQuals &= ~Qualifiers::Restrict;
1050     if (OldQuals != NewQuals)
1051       return true;
1052   }
1053
1054   // enable_if attributes are an order-sensitive part of the signature.
1055   for (specific_attr_iterator<EnableIfAttr>
1056          NewI = New->specific_attr_begin<EnableIfAttr>(),
1057          NewE = New->specific_attr_end<EnableIfAttr>(),
1058          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1059          OldE = Old->specific_attr_end<EnableIfAttr>();
1060        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1061     if (NewI == NewE || OldI == OldE)
1062       return true;
1063     llvm::FoldingSetNodeID NewID, OldID;
1064     NewI->getCond()->Profile(NewID, Context, true);
1065     OldI->getCond()->Profile(OldID, Context, true);
1066     if (NewID != OldID)
1067       return true;
1068   }
1069
1070   // The signatures match; this is not an overload.
1071   return false;
1072 }
1073
1074 /// \brief Checks availability of the function depending on the current
1075 /// function context. Inside an unavailable function, unavailability is ignored.
1076 ///
1077 /// \returns true if \arg FD is unavailable and current context is inside
1078 /// an available function, false otherwise.
1079 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1080   return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1081 }
1082
1083 /// \brief Tries a user-defined conversion from From to ToType.
1084 ///
1085 /// Produces an implicit conversion sequence for when a standard conversion
1086 /// is not an option. See TryImplicitConversion for more information.
1087 static ImplicitConversionSequence
1088 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1089                          bool SuppressUserConversions,
1090                          bool AllowExplicit,
1091                          bool InOverloadResolution,
1092                          bool CStyle,
1093                          bool AllowObjCWritebackConversion,
1094                          bool AllowObjCConversionOnExplicit) {
1095   ImplicitConversionSequence ICS;
1096
1097   if (SuppressUserConversions) {
1098     // We're not in the case above, so there is no conversion that
1099     // we can perform.
1100     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1101     return ICS;
1102   }
1103
1104   // Attempt user-defined conversion.
1105   OverloadCandidateSet Conversions(From->getExprLoc(),
1106                                    OverloadCandidateSet::CSK_Normal);
1107   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1108                                   Conversions, AllowExplicit,
1109                                   AllowObjCConversionOnExplicit)) {
1110   case OR_Success:
1111   case OR_Deleted:
1112     ICS.setUserDefined();
1113     ICS.UserDefined.Before.setAsIdentityConversion();
1114     // C++ [over.ics.user]p4:
1115     //   A conversion of an expression of class type to the same class
1116     //   type is given Exact Match rank, and a conversion of an
1117     //   expression of class type to a base class of that type is
1118     //   given Conversion rank, in spite of the fact that a copy
1119     //   constructor (i.e., a user-defined conversion function) is
1120     //   called for those cases.
1121     if (CXXConstructorDecl *Constructor
1122           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1123       QualType FromCanon
1124         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1125       QualType ToCanon
1126         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1127       if (Constructor->isCopyConstructor() &&
1128           (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1129         // Turn this into a "standard" conversion sequence, so that it
1130         // gets ranked with standard conversion sequences.
1131         ICS.setStandard();
1132         ICS.Standard.setAsIdentityConversion();
1133         ICS.Standard.setFromType(From->getType());
1134         ICS.Standard.setAllToTypes(ToType);
1135         ICS.Standard.CopyConstructor = Constructor;
1136         if (ToCanon != FromCanon)
1137           ICS.Standard.Second = ICK_Derived_To_Base;
1138       }
1139     }
1140     break;
1141
1142   case OR_Ambiguous:
1143     ICS.setAmbiguous();
1144     ICS.Ambiguous.setFromType(From->getType());
1145     ICS.Ambiguous.setToType(ToType);
1146     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1147          Cand != Conversions.end(); ++Cand)
1148       if (Cand->Viable)
1149         ICS.Ambiguous.addConversion(Cand->Function);
1150     break;
1151
1152     // Fall through.
1153   case OR_No_Viable_Function:
1154     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1155     break;
1156   }
1157
1158   return ICS;
1159 }
1160
1161 /// TryImplicitConversion - Attempt to perform an implicit conversion
1162 /// from the given expression (Expr) to the given type (ToType). This
1163 /// function returns an implicit conversion sequence that can be used
1164 /// to perform the initialization. Given
1165 ///
1166 ///   void f(float f);
1167 ///   void g(int i) { f(i); }
1168 ///
1169 /// this routine would produce an implicit conversion sequence to
1170 /// describe the initialization of f from i, which will be a standard
1171 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1172 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1173 //
1174 /// Note that this routine only determines how the conversion can be
1175 /// performed; it does not actually perform the conversion. As such,
1176 /// it will not produce any diagnostics if no conversion is available,
1177 /// but will instead return an implicit conversion sequence of kind
1178 /// "BadConversion".
1179 ///
1180 /// If @p SuppressUserConversions, then user-defined conversions are
1181 /// not permitted.
1182 /// If @p AllowExplicit, then explicit user-defined conversions are
1183 /// permitted.
1184 ///
1185 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1186 /// writeback conversion, which allows __autoreleasing id* parameters to
1187 /// be initialized with __strong id* or __weak id* arguments.
1188 static ImplicitConversionSequence
1189 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1190                       bool SuppressUserConversions,
1191                       bool AllowExplicit,
1192                       bool InOverloadResolution,
1193                       bool CStyle,
1194                       bool AllowObjCWritebackConversion,
1195                       bool AllowObjCConversionOnExplicit) {
1196   ImplicitConversionSequence ICS;
1197   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1198                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1199     ICS.setStandard();
1200     return ICS;
1201   }
1202
1203   if (!S.getLangOpts().CPlusPlus) {
1204     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1205     return ICS;
1206   }
1207
1208   // C++ [over.ics.user]p4:
1209   //   A conversion of an expression of class type to the same class
1210   //   type is given Exact Match rank, and a conversion of an
1211   //   expression of class type to a base class of that type is
1212   //   given Conversion rank, in spite of the fact that a copy/move
1213   //   constructor (i.e., a user-defined conversion function) is
1214   //   called for those cases.
1215   QualType FromType = From->getType();
1216   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1217       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1218        S.IsDerivedFrom(FromType, ToType))) {
1219     ICS.setStandard();
1220     ICS.Standard.setAsIdentityConversion();
1221     ICS.Standard.setFromType(FromType);
1222     ICS.Standard.setAllToTypes(ToType);
1223
1224     // We don't actually check at this point whether there is a valid
1225     // copy/move constructor, since overloading just assumes that it
1226     // exists. When we actually perform initialization, we'll find the
1227     // appropriate constructor to copy the returned object, if needed.
1228     ICS.Standard.CopyConstructor = nullptr;
1229
1230     // Determine whether this is considered a derived-to-base conversion.
1231     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1232       ICS.Standard.Second = ICK_Derived_To_Base;
1233
1234     return ICS;
1235   }
1236
1237   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1238                                   AllowExplicit, InOverloadResolution, CStyle,
1239                                   AllowObjCWritebackConversion,
1240                                   AllowObjCConversionOnExplicit);
1241 }
1242
1243 ImplicitConversionSequence
1244 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1245                             bool SuppressUserConversions,
1246                             bool AllowExplicit,
1247                             bool InOverloadResolution,
1248                             bool CStyle,
1249                             bool AllowObjCWritebackConversion) {
1250   return ::TryImplicitConversion(*this, From, ToType, 
1251                                  SuppressUserConversions, AllowExplicit,
1252                                  InOverloadResolution, CStyle, 
1253                                  AllowObjCWritebackConversion,
1254                                  /*AllowObjCConversionOnExplicit=*/false);
1255 }
1256
1257 /// PerformImplicitConversion - Perform an implicit conversion of the
1258 /// expression From to the type ToType. Returns the
1259 /// converted expression. Flavor is the kind of conversion we're
1260 /// performing, used in the error message. If @p AllowExplicit,
1261 /// explicit user-defined conversions are permitted.
1262 ExprResult
1263 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1264                                 AssignmentAction Action, bool AllowExplicit) {
1265   ImplicitConversionSequence ICS;
1266   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1267 }
1268
1269 ExprResult
1270 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1271                                 AssignmentAction Action, bool AllowExplicit,
1272                                 ImplicitConversionSequence& ICS) {
1273   if (checkPlaceholderForOverload(*this, From))
1274     return ExprError();
1275
1276   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1277   bool AllowObjCWritebackConversion
1278     = getLangOpts().ObjCAutoRefCount && 
1279       (Action == AA_Passing || Action == AA_Sending);
1280   if (getLangOpts().ObjC1)
1281     CheckObjCBridgeRelatedConversions(From->getLocStart(),
1282                                       ToType, From->getType(), From);
1283   ICS = ::TryImplicitConversion(*this, From, ToType,
1284                                 /*SuppressUserConversions=*/false,
1285                                 AllowExplicit,
1286                                 /*InOverloadResolution=*/false,
1287                                 /*CStyle=*/false,
1288                                 AllowObjCWritebackConversion,
1289                                 /*AllowObjCConversionOnExplicit=*/false);
1290   return PerformImplicitConversion(From, ToType, ICS, Action);
1291 }
1292
1293 /// \brief Determine whether the conversion from FromType to ToType is a valid
1294 /// conversion that strips "noreturn" off the nested function type.
1295 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1296                                 QualType &ResultTy) {
1297   if (Context.hasSameUnqualifiedType(FromType, ToType))
1298     return false;
1299
1300   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1301   // where F adds one of the following at most once:
1302   //   - a pointer
1303   //   - a member pointer
1304   //   - a block pointer
1305   CanQualType CanTo = Context.getCanonicalType(ToType);
1306   CanQualType CanFrom = Context.getCanonicalType(FromType);
1307   Type::TypeClass TyClass = CanTo->getTypeClass();
1308   if (TyClass != CanFrom->getTypeClass()) return false;
1309   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1310     if (TyClass == Type::Pointer) {
1311       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1312       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1313     } else if (TyClass == Type::BlockPointer) {
1314       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1315       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1316     } else if (TyClass == Type::MemberPointer) {
1317       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1318       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1319     } else {
1320       return false;
1321     }
1322
1323     TyClass = CanTo->getTypeClass();
1324     if (TyClass != CanFrom->getTypeClass()) return false;
1325     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1326       return false;
1327   }
1328
1329   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1330   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1331   if (!EInfo.getNoReturn()) return false;
1332
1333   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1334   assert(QualType(FromFn, 0).isCanonical());
1335   if (QualType(FromFn, 0) != CanTo) return false;
1336
1337   ResultTy = ToType;
1338   return true;
1339 }
1340
1341 /// \brief Determine whether the conversion from FromType to ToType is a valid
1342 /// vector conversion.
1343 ///
1344 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1345 /// conversion.
1346 static bool IsVectorConversion(Sema &S, QualType FromType,
1347                                QualType ToType, ImplicitConversionKind &ICK) {
1348   // We need at least one of these types to be a vector type to have a vector
1349   // conversion.
1350   if (!ToType->isVectorType() && !FromType->isVectorType())
1351     return false;
1352
1353   // Identical types require no conversions.
1354   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1355     return false;
1356
1357   // There are no conversions between extended vector types, only identity.
1358   if (ToType->isExtVectorType()) {
1359     // There are no conversions between extended vector types other than the
1360     // identity conversion.
1361     if (FromType->isExtVectorType())
1362       return false;
1363
1364     // Vector splat from any arithmetic type to a vector.
1365     if (FromType->isArithmeticType()) {
1366       ICK = ICK_Vector_Splat;
1367       return true;
1368     }
1369   }
1370
1371   // We can perform the conversion between vector types in the following cases:
1372   // 1)vector types are equivalent AltiVec and GCC vector types
1373   // 2)lax vector conversions are permitted and the vector types are of the
1374   //   same size
1375   if (ToType->isVectorType() && FromType->isVectorType()) {
1376     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1377         S.isLaxVectorConversion(FromType, ToType)) {
1378       ICK = ICK_Vector_Conversion;
1379       return true;
1380     }
1381   }
1382
1383   return false;
1384 }
1385
1386 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1387                                 bool InOverloadResolution,
1388                                 StandardConversionSequence &SCS,
1389                                 bool CStyle);
1390   
1391 /// IsStandardConversion - Determines whether there is a standard
1392 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1393 /// expression From to the type ToType. Standard conversion sequences
1394 /// only consider non-class types; for conversions that involve class
1395 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1396 /// contain the standard conversion sequence required to perform this
1397 /// conversion and this routine will return true. Otherwise, this
1398 /// routine will return false and the value of SCS is unspecified.
1399 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1400                                  bool InOverloadResolution,
1401                                  StandardConversionSequence &SCS,
1402                                  bool CStyle,
1403                                  bool AllowObjCWritebackConversion) {
1404   QualType FromType = From->getType();
1405
1406   // Standard conversions (C++ [conv])
1407   SCS.setAsIdentityConversion();
1408   SCS.IncompatibleObjC = false;
1409   SCS.setFromType(FromType);
1410   SCS.CopyConstructor = nullptr;
1411
1412   // There are no standard conversions for class types in C++, so
1413   // abort early. When overloading in C, however, we do permit
1414   if (FromType->isRecordType() || ToType->isRecordType()) {
1415     if (S.getLangOpts().CPlusPlus)
1416       return false;
1417
1418     // When we're overloading in C, we allow, as standard conversions,
1419   }
1420
1421   // The first conversion can be an lvalue-to-rvalue conversion,
1422   // array-to-pointer conversion, or function-to-pointer conversion
1423   // (C++ 4p1).
1424
1425   if (FromType == S.Context.OverloadTy) {
1426     DeclAccessPair AccessPair;
1427     if (FunctionDecl *Fn
1428           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1429                                                  AccessPair)) {
1430       // We were able to resolve the address of the overloaded function,
1431       // so we can convert to the type of that function.
1432       FromType = Fn->getType();
1433       SCS.setFromType(FromType);
1434
1435       // we can sometimes resolve &foo<int> regardless of ToType, so check
1436       // if the type matches (identity) or we are converting to bool
1437       if (!S.Context.hasSameUnqualifiedType(
1438                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1439         QualType resultTy;
1440         // if the function type matches except for [[noreturn]], it's ok
1441         if (!S.IsNoReturnConversion(FromType,
1442               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1443           // otherwise, only a boolean conversion is standard   
1444           if (!ToType->isBooleanType()) 
1445             return false; 
1446       }
1447
1448       // Check if the "from" expression is taking the address of an overloaded
1449       // function and recompute the FromType accordingly. Take advantage of the
1450       // fact that non-static member functions *must* have such an address-of
1451       // expression. 
1452       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1453       if (Method && !Method->isStatic()) {
1454         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1455                "Non-unary operator on non-static member address");
1456         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1457                == UO_AddrOf &&
1458                "Non-address-of operator on non-static member address");
1459         const Type *ClassType
1460           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1461         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1462       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1463         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1464                UO_AddrOf &&
1465                "Non-address-of operator for overloaded function expression");
1466         FromType = S.Context.getPointerType(FromType);
1467       }
1468
1469       // Check that we've computed the proper type after overload resolution.
1470       assert(S.Context.hasSameType(
1471         FromType,
1472         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1473     } else {
1474       return false;
1475     }
1476   }
1477   // Lvalue-to-rvalue conversion (C++11 4.1):
1478   //   A glvalue (3.10) of a non-function, non-array type T can
1479   //   be converted to a prvalue.
1480   bool argIsLValue = From->isGLValue();
1481   if (argIsLValue &&
1482       !FromType->isFunctionType() && !FromType->isArrayType() &&
1483       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1484     SCS.First = ICK_Lvalue_To_Rvalue;
1485
1486     // C11 6.3.2.1p2:
1487     //   ... if the lvalue has atomic type, the value has the non-atomic version 
1488     //   of the type of the lvalue ...
1489     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1490       FromType = Atomic->getValueType();
1491
1492     // If T is a non-class type, the type of the rvalue is the
1493     // cv-unqualified version of T. Otherwise, the type of the rvalue
1494     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1495     // just strip the qualifiers because they don't matter.
1496     FromType = FromType.getUnqualifiedType();
1497   } else if (FromType->isArrayType()) {
1498     // Array-to-pointer conversion (C++ 4.2)
1499     SCS.First = ICK_Array_To_Pointer;
1500
1501     // An lvalue or rvalue of type "array of N T" or "array of unknown
1502     // bound of T" can be converted to an rvalue of type "pointer to
1503     // T" (C++ 4.2p1).
1504     FromType = S.Context.getArrayDecayedType(FromType);
1505
1506     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1507       // This conversion is deprecated in C++03 (D.4)
1508       SCS.DeprecatedStringLiteralToCharPtr = true;
1509
1510       // For the purpose of ranking in overload resolution
1511       // (13.3.3.1.1), this conversion is considered an
1512       // array-to-pointer conversion followed by a qualification
1513       // conversion (4.4). (C++ 4.2p2)
1514       SCS.Second = ICK_Identity;
1515       SCS.Third = ICK_Qualification;
1516       SCS.QualificationIncludesObjCLifetime = false;
1517       SCS.setAllToTypes(FromType);
1518       return true;
1519     }
1520   } else if (FromType->isFunctionType() && argIsLValue) {
1521     // Function-to-pointer conversion (C++ 4.3).
1522     SCS.First = ICK_Function_To_Pointer;
1523
1524     // An lvalue of function type T can be converted to an rvalue of
1525     // type "pointer to T." The result is a pointer to the
1526     // function. (C++ 4.3p1).
1527     FromType = S.Context.getPointerType(FromType);
1528   } else {
1529     // We don't require any conversions for the first step.
1530     SCS.First = ICK_Identity;
1531   }
1532   SCS.setToType(0, FromType);
1533
1534   // The second conversion can be an integral promotion, floating
1535   // point promotion, integral conversion, floating point conversion,
1536   // floating-integral conversion, pointer conversion,
1537   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1538   // For overloading in C, this can also be a "compatible-type"
1539   // conversion.
1540   bool IncompatibleObjC = false;
1541   ImplicitConversionKind SecondICK = ICK_Identity;
1542   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1543     // The unqualified versions of the types are the same: there's no
1544     // conversion to do.
1545     SCS.Second = ICK_Identity;
1546   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1547     // Integral promotion (C++ 4.5).
1548     SCS.Second = ICK_Integral_Promotion;
1549     FromType = ToType.getUnqualifiedType();
1550   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1551     // Floating point promotion (C++ 4.6).
1552     SCS.Second = ICK_Floating_Promotion;
1553     FromType = ToType.getUnqualifiedType();
1554   } else if (S.IsComplexPromotion(FromType, ToType)) {
1555     // Complex promotion (Clang extension)
1556     SCS.Second = ICK_Complex_Promotion;
1557     FromType = ToType.getUnqualifiedType();
1558   } else if (ToType->isBooleanType() &&
1559              (FromType->isArithmeticType() ||
1560               FromType->isAnyPointerType() ||
1561               FromType->isBlockPointerType() ||
1562               FromType->isMemberPointerType() ||
1563               FromType->isNullPtrType())) {
1564     // Boolean conversions (C++ 4.12).
1565     SCS.Second = ICK_Boolean_Conversion;
1566     FromType = S.Context.BoolTy;
1567   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1568              ToType->isIntegralType(S.Context)) {
1569     // Integral conversions (C++ 4.7).
1570     SCS.Second = ICK_Integral_Conversion;
1571     FromType = ToType.getUnqualifiedType();
1572   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1573     // Complex conversions (C99 6.3.1.6)
1574     SCS.Second = ICK_Complex_Conversion;
1575     FromType = ToType.getUnqualifiedType();
1576   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1577              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1578     // Complex-real conversions (C99 6.3.1.7)
1579     SCS.Second = ICK_Complex_Real;
1580     FromType = ToType.getUnqualifiedType();
1581   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1582     // Floating point conversions (C++ 4.8).
1583     SCS.Second = ICK_Floating_Conversion;
1584     FromType = ToType.getUnqualifiedType();
1585   } else if ((FromType->isRealFloatingType() &&
1586               ToType->isIntegralType(S.Context)) ||
1587              (FromType->isIntegralOrUnscopedEnumerationType() &&
1588               ToType->isRealFloatingType())) {
1589     // Floating-integral conversions (C++ 4.9).
1590     SCS.Second = ICK_Floating_Integral;
1591     FromType = ToType.getUnqualifiedType();
1592   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1593     SCS.Second = ICK_Block_Pointer_Conversion;
1594   } else if (AllowObjCWritebackConversion &&
1595              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1596     SCS.Second = ICK_Writeback_Conversion;
1597   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1598                                    FromType, IncompatibleObjC)) {
1599     // Pointer conversions (C++ 4.10).
1600     SCS.Second = ICK_Pointer_Conversion;
1601     SCS.IncompatibleObjC = IncompatibleObjC;
1602     FromType = FromType.getUnqualifiedType();
1603   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1604                                          InOverloadResolution, FromType)) {
1605     // Pointer to member conversions (4.11).
1606     SCS.Second = ICK_Pointer_Member;
1607   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1608     SCS.Second = SecondICK;
1609     FromType = ToType.getUnqualifiedType();
1610   } else if (!S.getLangOpts().CPlusPlus &&
1611              S.Context.typesAreCompatible(ToType, FromType)) {
1612     // Compatible conversions (Clang extension for C function overloading)
1613     SCS.Second = ICK_Compatible_Conversion;
1614     FromType = ToType.getUnqualifiedType();
1615   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1616     // Treat a conversion that strips "noreturn" as an identity conversion.
1617     SCS.Second = ICK_NoReturn_Adjustment;
1618   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1619                                              InOverloadResolution,
1620                                              SCS, CStyle)) {
1621     SCS.Second = ICK_TransparentUnionConversion;
1622     FromType = ToType;
1623   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1624                                  CStyle)) {
1625     // tryAtomicConversion has updated the standard conversion sequence
1626     // appropriately.
1627     return true;
1628   } else if (ToType->isEventT() && 
1629              From->isIntegerConstantExpr(S.getASTContext()) &&
1630              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1631     SCS.Second = ICK_Zero_Event_Conversion;
1632     FromType = ToType;
1633   } else {
1634     // No second conversion required.
1635     SCS.Second = ICK_Identity;
1636   }
1637   SCS.setToType(1, FromType);
1638
1639   QualType CanonFrom;
1640   QualType CanonTo;
1641   // The third conversion can be a qualification conversion (C++ 4p1).
1642   bool ObjCLifetimeConversion;
1643   if (S.IsQualificationConversion(FromType, ToType, CStyle, 
1644                                   ObjCLifetimeConversion)) {
1645     SCS.Third = ICK_Qualification;
1646     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1647     FromType = ToType;
1648     CanonFrom = S.Context.getCanonicalType(FromType);
1649     CanonTo = S.Context.getCanonicalType(ToType);
1650   } else {
1651     // No conversion required
1652     SCS.Third = ICK_Identity;
1653
1654     // C++ [over.best.ics]p6:
1655     //   [...] Any difference in top-level cv-qualification is
1656     //   subsumed by the initialization itself and does not constitute
1657     //   a conversion. [...]
1658     CanonFrom = S.Context.getCanonicalType(FromType);
1659     CanonTo = S.Context.getCanonicalType(ToType);
1660     if (CanonFrom.getLocalUnqualifiedType()
1661                                        == CanonTo.getLocalUnqualifiedType() &&
1662         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1663       FromType = ToType;
1664       CanonFrom = CanonTo;
1665     }
1666   }
1667   SCS.setToType(2, FromType);
1668
1669   // If we have not converted the argument type to the parameter type,
1670   // this is a bad conversion sequence.
1671   if (CanonFrom != CanonTo)
1672     return false;
1673
1674   return true;
1675 }
1676   
1677 static bool
1678 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
1679                                      QualType &ToType,
1680                                      bool InOverloadResolution,
1681                                      StandardConversionSequence &SCS,
1682                                      bool CStyle) {
1683     
1684   const RecordType *UT = ToType->getAsUnionType();
1685   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1686     return false;
1687   // The field to initialize within the transparent union.
1688   RecordDecl *UD = UT->getDecl();
1689   // It's compatible if the expression matches any of the fields.
1690   for (const auto *it : UD->fields()) {
1691     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1692                              CStyle, /*ObjCWritebackConversion=*/false)) {
1693       ToType = it->getType();
1694       return true;
1695     }
1696   }
1697   return false;
1698 }
1699
1700 /// IsIntegralPromotion - Determines whether the conversion from the
1701 /// expression From (whose potentially-adjusted type is FromType) to
1702 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1703 /// sets PromotedType to the promoted type.
1704 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1705   const BuiltinType *To = ToType->getAs<BuiltinType>();
1706   // All integers are built-in.
1707   if (!To) {
1708     return false;
1709   }
1710
1711   // An rvalue of type char, signed char, unsigned char, short int, or
1712   // unsigned short int can be converted to an rvalue of type int if
1713   // int can represent all the values of the source type; otherwise,
1714   // the source rvalue can be converted to an rvalue of type unsigned
1715   // int (C++ 4.5p1).
1716   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1717       !FromType->isEnumeralType()) {
1718     if (// We can promote any signed, promotable integer type to an int
1719         (FromType->isSignedIntegerType() ||
1720          // We can promote any unsigned integer type whose size is
1721          // less than int to an int.
1722          (!FromType->isSignedIntegerType() &&
1723           Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1724       return To->getKind() == BuiltinType::Int;
1725     }
1726
1727     return To->getKind() == BuiltinType::UInt;
1728   }
1729
1730   // C++11 [conv.prom]p3:
1731   //   A prvalue of an unscoped enumeration type whose underlying type is not
1732   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1733   //   following types that can represent all the values of the enumeration
1734   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1735   //   unsigned int, long int, unsigned long int, long long int, or unsigned
1736   //   long long int. If none of the types in that list can represent all the
1737   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1738   //   type can be converted to an rvalue a prvalue of the extended integer type
1739   //   with lowest integer conversion rank (4.13) greater than the rank of long
1740   //   long in which all the values of the enumeration can be represented. If
1741   //   there are two such extended types, the signed one is chosen.
1742   // C++11 [conv.prom]p4:
1743   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1744   //   can be converted to a prvalue of its underlying type. Moreover, if
1745   //   integral promotion can be applied to its underlying type, a prvalue of an
1746   //   unscoped enumeration type whose underlying type is fixed can also be
1747   //   converted to a prvalue of the promoted underlying type.
1748   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1749     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1750     // provided for a scoped enumeration.
1751     if (FromEnumType->getDecl()->isScoped())
1752       return false;
1753
1754     // We can perform an integral promotion to the underlying type of the enum,
1755     // even if that's not the promoted type. Note that the check for promoting
1756     // the underlying type is based on the type alone, and does not consider
1757     // the bitfield-ness of the actual source expression.
1758     if (FromEnumType->getDecl()->isFixed()) {
1759       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1760       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1761              IsIntegralPromotion(nullptr, Underlying, ToType);
1762     }
1763
1764     // We have already pre-calculated the promotion type, so this is trivial.
1765     if (ToType->isIntegerType() &&
1766         !RequireCompleteType(From->getLocStart(), FromType, 0))
1767       return Context.hasSameUnqualifiedType(
1768           ToType, FromEnumType->getDecl()->getPromotionType());
1769   }
1770
1771   // C++0x [conv.prom]p2:
1772   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1773   //   to an rvalue a prvalue of the first of the following types that can
1774   //   represent all the values of its underlying type: int, unsigned int,
1775   //   long int, unsigned long int, long long int, or unsigned long long int.
1776   //   If none of the types in that list can represent all the values of its
1777   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1778   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1779   //   type.
1780   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1781       ToType->isIntegerType()) {
1782     // Determine whether the type we're converting from is signed or
1783     // unsigned.
1784     bool FromIsSigned = FromType->isSignedIntegerType();
1785     uint64_t FromSize = Context.getTypeSize(FromType);
1786
1787     // The types we'll try to promote to, in the appropriate
1788     // order. Try each of these types.
1789     QualType PromoteTypes[6] = {
1790       Context.IntTy, Context.UnsignedIntTy,
1791       Context.LongTy, Context.UnsignedLongTy ,
1792       Context.LongLongTy, Context.UnsignedLongLongTy
1793     };
1794     for (int Idx = 0; Idx < 6; ++Idx) {
1795       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1796       if (FromSize < ToSize ||
1797           (FromSize == ToSize &&
1798            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1799         // We found the type that we can promote to. If this is the
1800         // type we wanted, we have a promotion. Otherwise, no
1801         // promotion.
1802         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1803       }
1804     }
1805   }
1806
1807   // An rvalue for an integral bit-field (9.6) can be converted to an
1808   // rvalue of type int if int can represent all the values of the
1809   // bit-field; otherwise, it can be converted to unsigned int if
1810   // unsigned int can represent all the values of the bit-field. If
1811   // the bit-field is larger yet, no integral promotion applies to
1812   // it. If the bit-field has an enumerated type, it is treated as any
1813   // other value of that type for promotion purposes (C++ 4.5p3).
1814   // FIXME: We should delay checking of bit-fields until we actually perform the
1815   // conversion.
1816   if (From) {
1817     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1818       llvm::APSInt BitWidth;
1819       if (FromType->isIntegralType(Context) &&
1820           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1821         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1822         ToSize = Context.getTypeSize(ToType);
1823
1824         // Are we promoting to an int from a bitfield that fits in an int?
1825         if (BitWidth < ToSize ||
1826             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1827           return To->getKind() == BuiltinType::Int;
1828         }
1829
1830         // Are we promoting to an unsigned int from an unsigned bitfield
1831         // that fits into an unsigned int?
1832         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1833           return To->getKind() == BuiltinType::UInt;
1834         }
1835
1836         return false;
1837       }
1838     }
1839   }
1840
1841   // An rvalue of type bool can be converted to an rvalue of type int,
1842   // with false becoming zero and true becoming one (C++ 4.5p4).
1843   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1844     return true;
1845   }
1846
1847   return false;
1848 }
1849
1850 /// IsFloatingPointPromotion - Determines whether the conversion from
1851 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1852 /// returns true and sets PromotedType to the promoted type.
1853 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1854   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1855     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1856       /// An rvalue of type float can be converted to an rvalue of type
1857       /// double. (C++ 4.6p1).
1858       if (FromBuiltin->getKind() == BuiltinType::Float &&
1859           ToBuiltin->getKind() == BuiltinType::Double)
1860         return true;
1861
1862       // C99 6.3.1.5p1:
1863       //   When a float is promoted to double or long double, or a
1864       //   double is promoted to long double [...].
1865       if (!getLangOpts().CPlusPlus &&
1866           (FromBuiltin->getKind() == BuiltinType::Float ||
1867            FromBuiltin->getKind() == BuiltinType::Double) &&
1868           (ToBuiltin->getKind() == BuiltinType::LongDouble))
1869         return true;
1870
1871       // Half can be promoted to float.
1872       if (!getLangOpts().NativeHalfType &&
1873            FromBuiltin->getKind() == BuiltinType::Half &&
1874           ToBuiltin->getKind() == BuiltinType::Float)
1875         return true;
1876     }
1877
1878   return false;
1879 }
1880
1881 /// \brief Determine if a conversion is a complex promotion.
1882 ///
1883 /// A complex promotion is defined as a complex -> complex conversion
1884 /// where the conversion between the underlying real types is a
1885 /// floating-point or integral promotion.
1886 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1887   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1888   if (!FromComplex)
1889     return false;
1890
1891   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1892   if (!ToComplex)
1893     return false;
1894
1895   return IsFloatingPointPromotion(FromComplex->getElementType(),
1896                                   ToComplex->getElementType()) ||
1897     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
1898                         ToComplex->getElementType());
1899 }
1900
1901 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1902 /// the pointer type FromPtr to a pointer to type ToPointee, with the
1903 /// same type qualifiers as FromPtr has on its pointee type. ToType,
1904 /// if non-empty, will be a pointer to ToType that may or may not have
1905 /// the right set of qualifiers on its pointee.
1906 ///
1907 static QualType
1908 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1909                                    QualType ToPointee, QualType ToType,
1910                                    ASTContext &Context,
1911                                    bool StripObjCLifetime = false) {
1912   assert((FromPtr->getTypeClass() == Type::Pointer ||
1913           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1914          "Invalid similarly-qualified pointer type");
1915
1916   /// Conversions to 'id' subsume cv-qualifier conversions.
1917   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 
1918     return ToType.getUnqualifiedType();
1919
1920   QualType CanonFromPointee
1921     = Context.getCanonicalType(FromPtr->getPointeeType());
1922   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1923   Qualifiers Quals = CanonFromPointee.getQualifiers();
1924
1925   if (StripObjCLifetime)
1926     Quals.removeObjCLifetime();
1927   
1928   // Exact qualifier match -> return the pointer type we're converting to.
1929   if (CanonToPointee.getLocalQualifiers() == Quals) {
1930     // ToType is exactly what we need. Return it.
1931     if (!ToType.isNull())
1932       return ToType.getUnqualifiedType();
1933
1934     // Build a pointer to ToPointee. It has the right qualifiers
1935     // already.
1936     if (isa<ObjCObjectPointerType>(ToType))
1937       return Context.getObjCObjectPointerType(ToPointee);
1938     return Context.getPointerType(ToPointee);
1939   }
1940
1941   // Just build a canonical type that has the right qualifiers.
1942   QualType QualifiedCanonToPointee
1943     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1944
1945   if (isa<ObjCObjectPointerType>(ToType))
1946     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1947   return Context.getPointerType(QualifiedCanonToPointee);
1948 }
1949
1950 static bool isNullPointerConstantForConversion(Expr *Expr,
1951                                                bool InOverloadResolution,
1952                                                ASTContext &Context) {
1953   // Handle value-dependent integral null pointer constants correctly.
1954   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1955   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1956       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1957     return !InOverloadResolution;
1958
1959   return Expr->isNullPointerConstant(Context,
1960                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1961                                         : Expr::NPC_ValueDependentIsNull);
1962 }
1963
1964 /// IsPointerConversion - Determines whether the conversion of the
1965 /// expression From, which has the (possibly adjusted) type FromType,
1966 /// can be converted to the type ToType via a pointer conversion (C++
1967 /// 4.10). If so, returns true and places the converted type (that
1968 /// might differ from ToType in its cv-qualifiers at some level) into
1969 /// ConvertedType.
1970 ///
1971 /// This routine also supports conversions to and from block pointers
1972 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
1973 /// pointers to interfaces. FIXME: Once we've determined the
1974 /// appropriate overloading rules for Objective-C, we may want to
1975 /// split the Objective-C checks into a different routine; however,
1976 /// GCC seems to consider all of these conversions to be pointer
1977 /// conversions, so for now they live here. IncompatibleObjC will be
1978 /// set if the conversion is an allowed Objective-C conversion that
1979 /// should result in a warning.
1980 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1981                                bool InOverloadResolution,
1982                                QualType& ConvertedType,
1983                                bool &IncompatibleObjC) {
1984   IncompatibleObjC = false;
1985   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1986                               IncompatibleObjC))
1987     return true;
1988
1989   // Conversion from a null pointer constant to any Objective-C pointer type.
1990   if (ToType->isObjCObjectPointerType() &&
1991       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1992     ConvertedType = ToType;
1993     return true;
1994   }
1995
1996   // Blocks: Block pointers can be converted to void*.
1997   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1998       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1999     ConvertedType = ToType;
2000     return true;
2001   }
2002   // Blocks: A null pointer constant can be converted to a block
2003   // pointer type.
2004   if (ToType->isBlockPointerType() &&
2005       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2006     ConvertedType = ToType;
2007     return true;
2008   }
2009
2010   // If the left-hand-side is nullptr_t, the right side can be a null
2011   // pointer constant.
2012   if (ToType->isNullPtrType() &&
2013       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2014     ConvertedType = ToType;
2015     return true;
2016   }
2017
2018   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2019   if (!ToTypePtr)
2020     return false;
2021
2022   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2023   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2024     ConvertedType = ToType;
2025     return true;
2026   }
2027
2028   // Beyond this point, both types need to be pointers
2029   // , including objective-c pointers.
2030   QualType ToPointeeType = ToTypePtr->getPointeeType();
2031   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2032       !getLangOpts().ObjCAutoRefCount) {
2033     ConvertedType = BuildSimilarlyQualifiedPointerType(
2034                                       FromType->getAs<ObjCObjectPointerType>(),
2035                                                        ToPointeeType,
2036                                                        ToType, Context);
2037     return true;
2038   }
2039   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2040   if (!FromTypePtr)
2041     return false;
2042
2043   QualType FromPointeeType = FromTypePtr->getPointeeType();
2044
2045   // If the unqualified pointee types are the same, this can't be a
2046   // pointer conversion, so don't do all of the work below.
2047   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2048     return false;
2049
2050   // An rvalue of type "pointer to cv T," where T is an object type,
2051   // can be converted to an rvalue of type "pointer to cv void" (C++
2052   // 4.10p2).
2053   if (FromPointeeType->isIncompleteOrObjectType() &&
2054       ToPointeeType->isVoidType()) {
2055     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2056                                                        ToPointeeType,
2057                                                        ToType, Context,
2058                                                    /*StripObjCLifetime=*/true);
2059     return true;
2060   }
2061
2062   // MSVC allows implicit function to void* type conversion.
2063   if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2064       ToPointeeType->isVoidType()) {
2065     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2066                                                        ToPointeeType,
2067                                                        ToType, Context);
2068     return true;
2069   }
2070
2071   // When we're overloading in C, we allow a special kind of pointer
2072   // conversion for compatible-but-not-identical pointee types.
2073   if (!getLangOpts().CPlusPlus &&
2074       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2075     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2076                                                        ToPointeeType,
2077                                                        ToType, Context);
2078     return true;
2079   }
2080
2081   // C++ [conv.ptr]p3:
2082   //
2083   //   An rvalue of type "pointer to cv D," where D is a class type,
2084   //   can be converted to an rvalue of type "pointer to cv B," where
2085   //   B is a base class (clause 10) of D. If B is an inaccessible
2086   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2087   //   necessitates this conversion is ill-formed. The result of the
2088   //   conversion is a pointer to the base class sub-object of the
2089   //   derived class object. The null pointer value is converted to
2090   //   the null pointer value of the destination type.
2091   //
2092   // Note that we do not check for ambiguity or inaccessibility
2093   // here. That is handled by CheckPointerConversion.
2094   if (getLangOpts().CPlusPlus &&
2095       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2096       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2097       !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2098       IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2099     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2100                                                        ToPointeeType,
2101                                                        ToType, Context);
2102     return true;
2103   }
2104
2105   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2106       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2107     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2108                                                        ToPointeeType,
2109                                                        ToType, Context);
2110     return true;
2111   }
2112   
2113   return false;
2114 }
2115  
2116 /// \brief Adopt the given qualifiers for the given type.
2117 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2118   Qualifiers TQs = T.getQualifiers();
2119   
2120   // Check whether qualifiers already match.
2121   if (TQs == Qs)
2122     return T;
2123   
2124   if (Qs.compatiblyIncludes(TQs))
2125     return Context.getQualifiedType(T, Qs);
2126   
2127   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2128 }
2129
2130 /// isObjCPointerConversion - Determines whether this is an
2131 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2132 /// with the same arguments and return values.
2133 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2134                                    QualType& ConvertedType,
2135                                    bool &IncompatibleObjC) {
2136   if (!getLangOpts().ObjC1)
2137     return false;
2138
2139   // The set of qualifiers on the type we're converting from.
2140   Qualifiers FromQualifiers = FromType.getQualifiers();
2141   
2142   // First, we handle all conversions on ObjC object pointer types.
2143   const ObjCObjectPointerType* ToObjCPtr =
2144     ToType->getAs<ObjCObjectPointerType>();
2145   const ObjCObjectPointerType *FromObjCPtr =
2146     FromType->getAs<ObjCObjectPointerType>();
2147
2148   if (ToObjCPtr && FromObjCPtr) {
2149     // If the pointee types are the same (ignoring qualifications),
2150     // then this is not a pointer conversion.
2151     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2152                                        FromObjCPtr->getPointeeType()))
2153       return false;
2154
2155     // Check for compatible 
2156     // Objective C++: We're able to convert between "id" or "Class" and a
2157     // pointer to any interface (in both directions).
2158     if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2159       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2160       return true;
2161     }
2162     // Conversions with Objective-C's id<...>.
2163     if ((FromObjCPtr->isObjCQualifiedIdType() ||
2164          ToObjCPtr->isObjCQualifiedIdType()) &&
2165         Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2166                                                   /*compare=*/false)) {
2167       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2168       return true;
2169     }
2170     // Objective C++: We're able to convert from a pointer to an
2171     // interface to a pointer to a different interface.
2172     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2173       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2174       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2175       if (getLangOpts().CPlusPlus && LHS && RHS &&
2176           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2177                                                 FromObjCPtr->getPointeeType()))
2178         return false;
2179       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2180                                                    ToObjCPtr->getPointeeType(),
2181                                                          ToType, Context);
2182       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2183       return true;
2184     }
2185
2186     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2187       // Okay: this is some kind of implicit downcast of Objective-C
2188       // interfaces, which is permitted. However, we're going to
2189       // complain about it.
2190       IncompatibleObjC = true;
2191       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2192                                                    ToObjCPtr->getPointeeType(),
2193                                                          ToType, Context);
2194       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2195       return true;
2196     }
2197   }
2198   // Beyond this point, both types need to be C pointers or block pointers.
2199   QualType ToPointeeType;
2200   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2201     ToPointeeType = ToCPtr->getPointeeType();
2202   else if (const BlockPointerType *ToBlockPtr =
2203             ToType->getAs<BlockPointerType>()) {
2204     // Objective C++: We're able to convert from a pointer to any object
2205     // to a block pointer type.
2206     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2207       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2208       return true;
2209     }
2210     ToPointeeType = ToBlockPtr->getPointeeType();
2211   }
2212   else if (FromType->getAs<BlockPointerType>() &&
2213            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2214     // Objective C++: We're able to convert from a block pointer type to a
2215     // pointer to any object.
2216     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2217     return true;
2218   }
2219   else
2220     return false;
2221
2222   QualType FromPointeeType;
2223   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2224     FromPointeeType = FromCPtr->getPointeeType();
2225   else if (const BlockPointerType *FromBlockPtr =
2226            FromType->getAs<BlockPointerType>())
2227     FromPointeeType = FromBlockPtr->getPointeeType();
2228   else
2229     return false;
2230
2231   // If we have pointers to pointers, recursively check whether this
2232   // is an Objective-C conversion.
2233   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2234       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2235                               IncompatibleObjC)) {
2236     // We always complain about this conversion.
2237     IncompatibleObjC = true;
2238     ConvertedType = Context.getPointerType(ConvertedType);
2239     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2240     return true;
2241   }
2242   // Allow conversion of pointee being objective-c pointer to another one;
2243   // as in I* to id.
2244   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2245       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2246       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2247                               IncompatibleObjC)) {
2248         
2249     ConvertedType = Context.getPointerType(ConvertedType);
2250     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2251     return true;
2252   }
2253
2254   // If we have pointers to functions or blocks, check whether the only
2255   // differences in the argument and result types are in Objective-C
2256   // pointer conversions. If so, we permit the conversion (but
2257   // complain about it).
2258   const FunctionProtoType *FromFunctionType
2259     = FromPointeeType->getAs<FunctionProtoType>();
2260   const FunctionProtoType *ToFunctionType
2261     = ToPointeeType->getAs<FunctionProtoType>();
2262   if (FromFunctionType && ToFunctionType) {
2263     // If the function types are exactly the same, this isn't an
2264     // Objective-C pointer conversion.
2265     if (Context.getCanonicalType(FromPointeeType)
2266           == Context.getCanonicalType(ToPointeeType))
2267       return false;
2268
2269     // Perform the quick checks that will tell us whether these
2270     // function types are obviously different.
2271     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2272         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2273         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2274       return false;
2275
2276     bool HasObjCConversion = false;
2277     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2278         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2279       // Okay, the types match exactly. Nothing to do.
2280     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2281                                        ToFunctionType->getReturnType(),
2282                                        ConvertedType, IncompatibleObjC)) {
2283       // Okay, we have an Objective-C pointer conversion.
2284       HasObjCConversion = true;
2285     } else {
2286       // Function types are too different. Abort.
2287       return false;
2288     }
2289
2290     // Check argument types.
2291     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2292          ArgIdx != NumArgs; ++ArgIdx) {
2293       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2294       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2295       if (Context.getCanonicalType(FromArgType)
2296             == Context.getCanonicalType(ToArgType)) {
2297         // Okay, the types match exactly. Nothing to do.
2298       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2299                                          ConvertedType, IncompatibleObjC)) {
2300         // Okay, we have an Objective-C pointer conversion.
2301         HasObjCConversion = true;
2302       } else {
2303         // Argument types are too different. Abort.
2304         return false;
2305       }
2306     }
2307
2308     if (HasObjCConversion) {
2309       // We had an Objective-C conversion. Allow this pointer
2310       // conversion, but complain about it.
2311       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2312       IncompatibleObjC = true;
2313       return true;
2314     }
2315   }
2316
2317   return false;
2318 }
2319
2320 /// \brief Determine whether this is an Objective-C writeback conversion,
2321 /// used for parameter passing when performing automatic reference counting.
2322 ///
2323 /// \param FromType The type we're converting form.
2324 ///
2325 /// \param ToType The type we're converting to.
2326 ///
2327 /// \param ConvertedType The type that will be produced after applying
2328 /// this conversion.
2329 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2330                                      QualType &ConvertedType) {
2331   if (!getLangOpts().ObjCAutoRefCount || 
2332       Context.hasSameUnqualifiedType(FromType, ToType))
2333     return false;
2334   
2335   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2336   QualType ToPointee;
2337   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2338     ToPointee = ToPointer->getPointeeType();
2339   else
2340     return false;
2341   
2342   Qualifiers ToQuals = ToPointee.getQualifiers();
2343   if (!ToPointee->isObjCLifetimeType() || 
2344       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2345       !ToQuals.withoutObjCLifetime().empty())
2346     return false;
2347   
2348   // Argument must be a pointer to __strong to __weak.
2349   QualType FromPointee;
2350   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2351     FromPointee = FromPointer->getPointeeType();
2352   else
2353     return false;
2354   
2355   Qualifiers FromQuals = FromPointee.getQualifiers();
2356   if (!FromPointee->isObjCLifetimeType() ||
2357       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2358        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2359     return false;
2360   
2361   // Make sure that we have compatible qualifiers.
2362   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2363   if (!ToQuals.compatiblyIncludes(FromQuals))
2364     return false;
2365   
2366   // Remove qualifiers from the pointee type we're converting from; they
2367   // aren't used in the compatibility check belong, and we'll be adding back
2368   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2369   FromPointee = FromPointee.getUnqualifiedType();
2370   
2371   // The unqualified form of the pointee types must be compatible.
2372   ToPointee = ToPointee.getUnqualifiedType();
2373   bool IncompatibleObjC;
2374   if (Context.typesAreCompatible(FromPointee, ToPointee))
2375     FromPointee = ToPointee;
2376   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2377                                     IncompatibleObjC))
2378     return false;
2379   
2380   /// \brief Construct the type we're converting to, which is a pointer to
2381   /// __autoreleasing pointee.
2382   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2383   ConvertedType = Context.getPointerType(FromPointee);
2384   return true;
2385 }
2386
2387 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2388                                     QualType& ConvertedType) {
2389   QualType ToPointeeType;
2390   if (const BlockPointerType *ToBlockPtr =
2391         ToType->getAs<BlockPointerType>())
2392     ToPointeeType = ToBlockPtr->getPointeeType();
2393   else
2394     return false;
2395   
2396   QualType FromPointeeType;
2397   if (const BlockPointerType *FromBlockPtr =
2398       FromType->getAs<BlockPointerType>())
2399     FromPointeeType = FromBlockPtr->getPointeeType();
2400   else
2401     return false;
2402   // We have pointer to blocks, check whether the only
2403   // differences in the argument and result types are in Objective-C
2404   // pointer conversions. If so, we permit the conversion.
2405   
2406   const FunctionProtoType *FromFunctionType
2407     = FromPointeeType->getAs<FunctionProtoType>();
2408   const FunctionProtoType *ToFunctionType
2409     = ToPointeeType->getAs<FunctionProtoType>();
2410   
2411   if (!FromFunctionType || !ToFunctionType)
2412     return false;
2413
2414   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2415     return true;
2416     
2417   // Perform the quick checks that will tell us whether these
2418   // function types are obviously different.
2419   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2420       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2421     return false;
2422     
2423   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2424   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2425   if (FromEInfo != ToEInfo)
2426     return false;
2427
2428   bool IncompatibleObjC = false;
2429   if (Context.hasSameType(FromFunctionType->getReturnType(),
2430                           ToFunctionType->getReturnType())) {
2431     // Okay, the types match exactly. Nothing to do.
2432   } else {
2433     QualType RHS = FromFunctionType->getReturnType();
2434     QualType LHS = ToFunctionType->getReturnType();
2435     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2436         !RHS.hasQualifiers() && LHS.hasQualifiers())
2437        LHS = LHS.getUnqualifiedType();
2438
2439      if (Context.hasSameType(RHS,LHS)) {
2440        // OK exact match.
2441      } else if (isObjCPointerConversion(RHS, LHS,
2442                                         ConvertedType, IncompatibleObjC)) {
2443      if (IncompatibleObjC)
2444        return false;
2445      // Okay, we have an Objective-C pointer conversion.
2446      }
2447      else
2448        return false;
2449    }
2450     
2451    // Check argument types.
2452    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2453         ArgIdx != NumArgs; ++ArgIdx) {
2454      IncompatibleObjC = false;
2455      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2456      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2457      if (Context.hasSameType(FromArgType, ToArgType)) {
2458        // Okay, the types match exactly. Nothing to do.
2459      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2460                                         ConvertedType, IncompatibleObjC)) {
2461        if (IncompatibleObjC)
2462          return false;
2463        // Okay, we have an Objective-C pointer conversion.
2464      } else
2465        // Argument types are too different. Abort.
2466        return false;
2467    }
2468    if (LangOpts.ObjCAutoRefCount && 
2469        !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 
2470                                                     ToFunctionType))
2471      return false;
2472    
2473    ConvertedType = ToType;
2474    return true;
2475 }
2476
2477 enum {
2478   ft_default,
2479   ft_different_class,
2480   ft_parameter_arity,
2481   ft_parameter_mismatch,
2482   ft_return_type,
2483   ft_qualifer_mismatch
2484 };
2485
2486 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2487 /// function types.  Catches different number of parameter, mismatch in
2488 /// parameter types, and different return types.
2489 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2490                                       QualType FromType, QualType ToType) {
2491   // If either type is not valid, include no extra info.
2492   if (FromType.isNull() || ToType.isNull()) {
2493     PDiag << ft_default;
2494     return;
2495   }
2496
2497   // Get the function type from the pointers.
2498   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2499     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2500                             *ToMember = ToType->getAs<MemberPointerType>();
2501     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2502       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2503             << QualType(FromMember->getClass(), 0);
2504       return;
2505     }
2506     FromType = FromMember->getPointeeType();
2507     ToType = ToMember->getPointeeType();
2508   }
2509
2510   if (FromType->isPointerType())
2511     FromType = FromType->getPointeeType();
2512   if (ToType->isPointerType())
2513     ToType = ToType->getPointeeType();
2514
2515   // Remove references.
2516   FromType = FromType.getNonReferenceType();
2517   ToType = ToType.getNonReferenceType();
2518
2519   // Don't print extra info for non-specialized template functions.
2520   if (FromType->isInstantiationDependentType() &&
2521       !FromType->getAs<TemplateSpecializationType>()) {
2522     PDiag << ft_default;
2523     return;
2524   }
2525
2526   // No extra info for same types.
2527   if (Context.hasSameType(FromType, ToType)) {
2528     PDiag << ft_default;
2529     return;
2530   }
2531
2532   const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2533                           *ToFunction = ToType->getAs<FunctionProtoType>();
2534
2535   // Both types need to be function types.
2536   if (!FromFunction || !ToFunction) {
2537     PDiag << ft_default;
2538     return;
2539   }
2540
2541   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2542     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2543           << FromFunction->getNumParams();
2544     return;
2545   }
2546
2547   // Handle different parameter types.
2548   unsigned ArgPos;
2549   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2550     PDiag << ft_parameter_mismatch << ArgPos + 1
2551           << ToFunction->getParamType(ArgPos)
2552           << FromFunction->getParamType(ArgPos);
2553     return;
2554   }
2555
2556   // Handle different return type.
2557   if (!Context.hasSameType(FromFunction->getReturnType(),
2558                            ToFunction->getReturnType())) {
2559     PDiag << ft_return_type << ToFunction->getReturnType()
2560           << FromFunction->getReturnType();
2561     return;
2562   }
2563
2564   unsigned FromQuals = FromFunction->getTypeQuals(),
2565            ToQuals = ToFunction->getTypeQuals();
2566   if (FromQuals != ToQuals) {
2567     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2568     return;
2569   }
2570
2571   // Unable to find a difference, so add no extra info.
2572   PDiag << ft_default;
2573 }
2574
2575 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2576 /// for equality of their argument types. Caller has already checked that
2577 /// they have same number of arguments.  If the parameters are different,
2578 /// ArgPos will have the parameter index of the first different parameter.
2579 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2580                                       const FunctionProtoType *NewType,
2581                                       unsigned *ArgPos) {
2582   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2583                                               N = NewType->param_type_begin(),
2584                                               E = OldType->param_type_end();
2585        O && (O != E); ++O, ++N) {
2586     if (!Context.hasSameType(O->getUnqualifiedType(),
2587                              N->getUnqualifiedType())) {
2588       if (ArgPos)
2589         *ArgPos = O - OldType->param_type_begin();
2590       return false;
2591     }
2592   }
2593   return true;
2594 }
2595
2596 /// CheckPointerConversion - Check the pointer conversion from the
2597 /// expression From to the type ToType. This routine checks for
2598 /// ambiguous or inaccessible derived-to-base pointer
2599 /// conversions for which IsPointerConversion has already returned
2600 /// true. It returns true and produces a diagnostic if there was an
2601 /// error, or returns false otherwise.
2602 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2603                                   CastKind &Kind,
2604                                   CXXCastPath& BasePath,
2605                                   bool IgnoreBaseAccess) {
2606   QualType FromType = From->getType();
2607   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2608
2609   Kind = CK_BitCast;
2610
2611   if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2612       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2613       Expr::NPCK_ZeroExpression) {
2614     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2615       DiagRuntimeBehavior(From->getExprLoc(), From,
2616                           PDiag(diag::warn_impcast_bool_to_null_pointer)
2617                             << ToType << From->getSourceRange());
2618     else if (!isUnevaluatedContext())
2619       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2620         << ToType << From->getSourceRange();
2621   }
2622   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2623     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2624       QualType FromPointeeType = FromPtrType->getPointeeType(),
2625                ToPointeeType   = ToPtrType->getPointeeType();
2626
2627       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2628           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2629         // We must have a derived-to-base conversion. Check an
2630         // ambiguous or inaccessible conversion.
2631         if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2632                                          From->getExprLoc(),
2633                                          From->getSourceRange(), &BasePath,
2634                                          IgnoreBaseAccess))
2635           return true;
2636
2637         // The conversion was successful.
2638         Kind = CK_DerivedToBase;
2639       }
2640     }
2641   } else if (const ObjCObjectPointerType *ToPtrType =
2642                ToType->getAs<ObjCObjectPointerType>()) {
2643     if (const ObjCObjectPointerType *FromPtrType =
2644           FromType->getAs<ObjCObjectPointerType>()) {
2645       // Objective-C++ conversions are always okay.
2646       // FIXME: We should have a different class of conversions for the
2647       // Objective-C++ implicit conversions.
2648       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2649         return false;
2650     } else if (FromType->isBlockPointerType()) {
2651       Kind = CK_BlockPointerToObjCPointerCast;
2652     } else {
2653       Kind = CK_CPointerToObjCPointerCast;
2654     }
2655   } else if (ToType->isBlockPointerType()) {
2656     if (!FromType->isBlockPointerType())
2657       Kind = CK_AnyPointerToBlockPointerCast;
2658   }
2659
2660   // We shouldn't fall into this case unless it's valid for other
2661   // reasons.
2662   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2663     Kind = CK_NullToPointer;
2664
2665   return false;
2666 }
2667
2668 /// IsMemberPointerConversion - Determines whether the conversion of the
2669 /// expression From, which has the (possibly adjusted) type FromType, can be
2670 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2671 /// If so, returns true and places the converted type (that might differ from
2672 /// ToType in its cv-qualifiers at some level) into ConvertedType.
2673 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2674                                      QualType ToType,
2675                                      bool InOverloadResolution,
2676                                      QualType &ConvertedType) {
2677   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2678   if (!ToTypePtr)
2679     return false;
2680
2681   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2682   if (From->isNullPointerConstant(Context,
2683                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2684                                         : Expr::NPC_ValueDependentIsNull)) {
2685     ConvertedType = ToType;
2686     return true;
2687   }
2688
2689   // Otherwise, both types have to be member pointers.
2690   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2691   if (!FromTypePtr)
2692     return false;
2693
2694   // A pointer to member of B can be converted to a pointer to member of D,
2695   // where D is derived from B (C++ 4.11p2).
2696   QualType FromClass(FromTypePtr->getClass(), 0);
2697   QualType ToClass(ToTypePtr->getClass(), 0);
2698
2699   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2700       !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2701       IsDerivedFrom(ToClass, FromClass)) {
2702     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2703                                                  ToClass.getTypePtr());
2704     return true;
2705   }
2706
2707   return false;
2708 }
2709
2710 /// CheckMemberPointerConversion - Check the member pointer conversion from the
2711 /// expression From to the type ToType. This routine checks for ambiguous or
2712 /// virtual or inaccessible base-to-derived member pointer conversions
2713 /// for which IsMemberPointerConversion has already returned true. It returns
2714 /// true and produces a diagnostic if there was an error, or returns false
2715 /// otherwise.
2716 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2717                                         CastKind &Kind,
2718                                         CXXCastPath &BasePath,
2719                                         bool IgnoreBaseAccess) {
2720   QualType FromType = From->getType();
2721   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2722   if (!FromPtrType) {
2723     // This must be a null pointer to member pointer conversion
2724     assert(From->isNullPointerConstant(Context,
2725                                        Expr::NPC_ValueDependentIsNull) &&
2726            "Expr must be null pointer constant!");
2727     Kind = CK_NullToMemberPointer;
2728     return false;
2729   }
2730
2731   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2732   assert(ToPtrType && "No member pointer cast has a target type "
2733                       "that is not a member pointer.");
2734
2735   QualType FromClass = QualType(FromPtrType->getClass(), 0);
2736   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2737
2738   // FIXME: What about dependent types?
2739   assert(FromClass->isRecordType() && "Pointer into non-class.");
2740   assert(ToClass->isRecordType() && "Pointer into non-class.");
2741
2742   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2743                      /*DetectVirtual=*/true);
2744   bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2745   assert(DerivationOkay &&
2746          "Should not have been called if derivation isn't OK.");
2747   (void)DerivationOkay;
2748
2749   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2750                                   getUnqualifiedType())) {
2751     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2752     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2753       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2754     return true;
2755   }
2756
2757   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2758     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2759       << FromClass << ToClass << QualType(VBase, 0)
2760       << From->getSourceRange();
2761     return true;
2762   }
2763
2764   if (!IgnoreBaseAccess)
2765     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2766                          Paths.front(),
2767                          diag::err_downcast_from_inaccessible_base);
2768
2769   // Must be a base to derived member conversion.
2770   BuildBasePathArray(Paths, BasePath);
2771   Kind = CK_BaseToDerivedMemberPointer;
2772   return false;
2773 }
2774
2775 /// Determine whether the lifetime conversion between the two given
2776 /// qualifiers sets is nontrivial.
2777 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
2778                                                Qualifiers ToQuals) {
2779   // Converting anything to const __unsafe_unretained is trivial.
2780   if (ToQuals.hasConst() && 
2781       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
2782     return false;
2783
2784   return true;
2785 }
2786
2787 /// IsQualificationConversion - Determines whether the conversion from
2788 /// an rvalue of type FromType to ToType is a qualification conversion
2789 /// (C++ 4.4).
2790 ///
2791 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2792 /// when the qualification conversion involves a change in the Objective-C
2793 /// object lifetime.
2794 bool
2795 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2796                                 bool CStyle, bool &ObjCLifetimeConversion) {
2797   FromType = Context.getCanonicalType(FromType);
2798   ToType = Context.getCanonicalType(ToType);
2799   ObjCLifetimeConversion = false;
2800   
2801   // If FromType and ToType are the same type, this is not a
2802   // qualification conversion.
2803   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2804     return false;
2805
2806   // (C++ 4.4p4):
2807   //   A conversion can add cv-qualifiers at levels other than the first
2808   //   in multi-level pointers, subject to the following rules: [...]
2809   bool PreviousToQualsIncludeConst = true;
2810   bool UnwrappedAnyPointer = false;
2811   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2812     // Within each iteration of the loop, we check the qualifiers to
2813     // determine if this still looks like a qualification
2814     // conversion. Then, if all is well, we unwrap one more level of
2815     // pointers or pointers-to-members and do it all again
2816     // until there are no more pointers or pointers-to-members left to
2817     // unwrap.
2818     UnwrappedAnyPointer = true;
2819
2820     Qualifiers FromQuals = FromType.getQualifiers();
2821     Qualifiers ToQuals = ToType.getQualifiers();
2822     
2823     // Objective-C ARC:
2824     //   Check Objective-C lifetime conversions.
2825     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2826         UnwrappedAnyPointer) {
2827       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2828         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
2829           ObjCLifetimeConversion = true;
2830         FromQuals.removeObjCLifetime();
2831         ToQuals.removeObjCLifetime();
2832       } else {
2833         // Qualification conversions cannot cast between different
2834         // Objective-C lifetime qualifiers.
2835         return false;
2836       }
2837     }
2838     
2839     // Allow addition/removal of GC attributes but not changing GC attributes.
2840     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2841         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2842       FromQuals.removeObjCGCAttr();
2843       ToQuals.removeObjCGCAttr();
2844     }
2845     
2846     //   -- for every j > 0, if const is in cv 1,j then const is in cv
2847     //      2,j, and similarly for volatile.
2848     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2849       return false;
2850
2851     //   -- if the cv 1,j and cv 2,j are different, then const is in
2852     //      every cv for 0 < k < j.
2853     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2854         && !PreviousToQualsIncludeConst)
2855       return false;
2856
2857     // Keep track of whether all prior cv-qualifiers in the "to" type
2858     // include const.
2859     PreviousToQualsIncludeConst
2860       = PreviousToQualsIncludeConst && ToQuals.hasConst();
2861   }
2862
2863   // We are left with FromType and ToType being the pointee types
2864   // after unwrapping the original FromType and ToType the same number
2865   // of types. If we unwrapped any pointers, and if FromType and
2866   // ToType have the same unqualified type (since we checked
2867   // qualifiers above), then this is a qualification conversion.
2868   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2869 }
2870
2871 /// \brief - Determine whether this is a conversion from a scalar type to an
2872 /// atomic type.
2873 ///
2874 /// If successful, updates \c SCS's second and third steps in the conversion
2875 /// sequence to finish the conversion.
2876 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2877                                 bool InOverloadResolution,
2878                                 StandardConversionSequence &SCS,
2879                                 bool CStyle) {
2880   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2881   if (!ToAtomic)
2882     return false;
2883   
2884   StandardConversionSequence InnerSCS;
2885   if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 
2886                             InOverloadResolution, InnerSCS,
2887                             CStyle, /*AllowObjCWritebackConversion=*/false))
2888     return false;
2889   
2890   SCS.Second = InnerSCS.Second;
2891   SCS.setToType(1, InnerSCS.getToType(1));
2892   SCS.Third = InnerSCS.Third;
2893   SCS.QualificationIncludesObjCLifetime
2894     = InnerSCS.QualificationIncludesObjCLifetime;
2895   SCS.setToType(2, InnerSCS.getToType(2));
2896   return true;
2897 }
2898
2899 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2900                                               CXXConstructorDecl *Constructor,
2901                                               QualType Type) {
2902   const FunctionProtoType *CtorType =
2903       Constructor->getType()->getAs<FunctionProtoType>();
2904   if (CtorType->getNumParams() > 0) {
2905     QualType FirstArg = CtorType->getParamType(0);
2906     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2907       return true;
2908   }
2909   return false;
2910 }
2911
2912 static OverloadingResult
2913 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2914                                        CXXRecordDecl *To,
2915                                        UserDefinedConversionSequence &User,
2916                                        OverloadCandidateSet &CandidateSet,
2917                                        bool AllowExplicit) {
2918   DeclContext::lookup_result R = S.LookupConstructors(To);
2919   for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
2920        Con != ConEnd; ++Con) {
2921     NamedDecl *D = *Con;
2922     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2923
2924     // Find the constructor (which may be a template).
2925     CXXConstructorDecl *Constructor = nullptr;
2926     FunctionTemplateDecl *ConstructorTmpl
2927       = dyn_cast<FunctionTemplateDecl>(D);
2928     if (ConstructorTmpl)
2929       Constructor
2930         = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2931     else
2932       Constructor = cast<CXXConstructorDecl>(D);
2933
2934     bool Usable = !Constructor->isInvalidDecl() &&
2935                   S.isInitListConstructor(Constructor) &&
2936                   (AllowExplicit || !Constructor->isExplicit());
2937     if (Usable) {
2938       // If the first argument is (a reference to) the target type,
2939       // suppress conversions.
2940       bool SuppressUserConversions =
2941           isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2942       if (ConstructorTmpl)
2943         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2944                                        /*ExplicitArgs*/ nullptr,
2945                                        From, CandidateSet,
2946                                        SuppressUserConversions);
2947       else
2948         S.AddOverloadCandidate(Constructor, FoundDecl,
2949                                From, CandidateSet,
2950                                SuppressUserConversions);
2951     }
2952   }
2953
2954   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2955
2956   OverloadCandidateSet::iterator Best;
2957   switch (auto Result = 
2958             CandidateSet.BestViableFunction(S, From->getLocStart(), 
2959                                             Best, true)) {
2960   case OR_Deleted:
2961   case OR_Success: {
2962     // Record the standard conversion we used and the conversion function.
2963     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2964     QualType ThisType = Constructor->getThisType(S.Context);
2965     // Initializer lists don't have conversions as such.
2966     User.Before.setAsIdentityConversion();
2967     User.HadMultipleCandidates = HadMultipleCandidates;
2968     User.ConversionFunction = Constructor;
2969     User.FoundConversionFunction = Best->FoundDecl;
2970     User.After.setAsIdentityConversion();
2971     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2972     User.After.setAllToTypes(ToType);
2973     return Result;
2974   }
2975
2976   case OR_No_Viable_Function:
2977     return OR_No_Viable_Function;
2978   case OR_Ambiguous:
2979     return OR_Ambiguous;
2980   }
2981
2982   llvm_unreachable("Invalid OverloadResult!");
2983 }
2984
2985 /// Determines whether there is a user-defined conversion sequence
2986 /// (C++ [over.ics.user]) that converts expression From to the type
2987 /// ToType. If such a conversion exists, User will contain the
2988 /// user-defined conversion sequence that performs such a conversion
2989 /// and this routine will return true. Otherwise, this routine returns
2990 /// false and User is unspecified.
2991 ///
2992 /// \param AllowExplicit  true if the conversion should consider C++0x
2993 /// "explicit" conversion functions as well as non-explicit conversion
2994 /// functions (C++0x [class.conv.fct]p2).
2995 ///
2996 /// \param AllowObjCConversionOnExplicit true if the conversion should
2997 /// allow an extra Objective-C pointer conversion on uses of explicit
2998 /// constructors. Requires \c AllowExplicit to also be set.
2999 static OverloadingResult
3000 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3001                         UserDefinedConversionSequence &User,
3002                         OverloadCandidateSet &CandidateSet,
3003                         bool AllowExplicit,
3004                         bool AllowObjCConversionOnExplicit) {
3005   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3006
3007   // Whether we will only visit constructors.
3008   bool ConstructorsOnly = false;
3009
3010   // If the type we are conversion to is a class type, enumerate its
3011   // constructors.
3012   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3013     // C++ [over.match.ctor]p1:
3014     //   When objects of class type are direct-initialized (8.5), or
3015     //   copy-initialized from an expression of the same or a
3016     //   derived class type (8.5), overload resolution selects the
3017     //   constructor. [...] For copy-initialization, the candidate
3018     //   functions are all the converting constructors (12.3.1) of
3019     //   that class. The argument list is the expression-list within
3020     //   the parentheses of the initializer.
3021     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3022         (From->getType()->getAs<RecordType>() &&
3023          S.IsDerivedFrom(From->getType(), ToType)))
3024       ConstructorsOnly = true;
3025
3026     S.RequireCompleteType(From->getExprLoc(), ToType, 0);
3027     // RequireCompleteType may have returned true due to some invalid decl
3028     // during template instantiation, but ToType may be complete enough now
3029     // to try to recover.
3030     if (ToType->isIncompleteType()) {
3031       // We're not going to find any constructors.
3032     } else if (CXXRecordDecl *ToRecordDecl
3033                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3034
3035       Expr **Args = &From;
3036       unsigned NumArgs = 1;
3037       bool ListInitializing = false;
3038       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3039         // But first, see if there is an init-list-constructor that will work.
3040         OverloadingResult Result = IsInitializerListConstructorConversion(
3041             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3042         if (Result != OR_No_Viable_Function)
3043           return Result;
3044         // Never mind.
3045         CandidateSet.clear();
3046
3047         // If we're list-initializing, we pass the individual elements as
3048         // arguments, not the entire list.
3049         Args = InitList->getInits();
3050         NumArgs = InitList->getNumInits();
3051         ListInitializing = true;
3052       }
3053
3054       DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
3055       for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
3056            Con != ConEnd; ++Con) {
3057         NamedDecl *D = *Con;
3058         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3059
3060         // Find the constructor (which may be a template).
3061         CXXConstructorDecl *Constructor = nullptr;
3062         FunctionTemplateDecl *ConstructorTmpl
3063           = dyn_cast<FunctionTemplateDecl>(D);
3064         if (ConstructorTmpl)
3065           Constructor
3066             = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3067         else
3068           Constructor = cast<CXXConstructorDecl>(D);
3069
3070         bool Usable = !Constructor->isInvalidDecl();
3071         if (ListInitializing)
3072           Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3073         else
3074           Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3075         if (Usable) {
3076           bool SuppressUserConversions = !ConstructorsOnly;
3077           if (SuppressUserConversions && ListInitializing) {
3078             SuppressUserConversions = false;
3079             if (NumArgs == 1) {
3080               // If the first argument is (a reference to) the target type,
3081               // suppress conversions.
3082               SuppressUserConversions = isFirstArgumentCompatibleWithType(
3083                                                 S.Context, Constructor, ToType);
3084             }
3085           }
3086           if (ConstructorTmpl)
3087             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3088                                            /*ExplicitArgs*/ nullptr,
3089                                            llvm::makeArrayRef(Args, NumArgs),
3090                                            CandidateSet, SuppressUserConversions);
3091           else
3092             // Allow one user-defined conversion when user specifies a
3093             // From->ToType conversion via an static cast (c-style, etc).
3094             S.AddOverloadCandidate(Constructor, FoundDecl,
3095                                    llvm::makeArrayRef(Args, NumArgs),
3096                                    CandidateSet, SuppressUserConversions);
3097         }
3098       }
3099     }
3100   }
3101
3102   // Enumerate conversion functions, if we're allowed to.
3103   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3104   } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3105     // No conversion functions from incomplete types.
3106   } else if (const RecordType *FromRecordType
3107                                    = From->getType()->getAs<RecordType>()) {
3108     if (CXXRecordDecl *FromRecordDecl
3109          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3110       // Add all of the conversion functions as candidates.
3111       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3112       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3113         DeclAccessPair FoundDecl = I.getPair();
3114         NamedDecl *D = FoundDecl.getDecl();
3115         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3116         if (isa<UsingShadowDecl>(D))
3117           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3118
3119         CXXConversionDecl *Conv;
3120         FunctionTemplateDecl *ConvTemplate;
3121         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3122           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3123         else
3124           Conv = cast<CXXConversionDecl>(D);
3125
3126         if (AllowExplicit || !Conv->isExplicit()) {
3127           if (ConvTemplate)
3128             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3129                                              ActingContext, From, ToType,
3130                                              CandidateSet,
3131                                              AllowObjCConversionOnExplicit);
3132           else
3133             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3134                                      From, ToType, CandidateSet,
3135                                      AllowObjCConversionOnExplicit);
3136         }
3137       }
3138     }
3139   }
3140
3141   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3142
3143   OverloadCandidateSet::iterator Best;
3144   switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
3145                                                         Best, true)) {
3146   case OR_Success:
3147   case OR_Deleted:
3148     // Record the standard conversion we used and the conversion function.
3149     if (CXXConstructorDecl *Constructor
3150           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3151       // C++ [over.ics.user]p1:
3152       //   If the user-defined conversion is specified by a
3153       //   constructor (12.3.1), the initial standard conversion
3154       //   sequence converts the source type to the type required by
3155       //   the argument of the constructor.
3156       //
3157       QualType ThisType = Constructor->getThisType(S.Context);
3158       if (isa<InitListExpr>(From)) {
3159         // Initializer lists don't have conversions as such.
3160         User.Before.setAsIdentityConversion();
3161       } else {
3162         if (Best->Conversions[0].isEllipsis())
3163           User.EllipsisConversion = true;
3164         else {
3165           User.Before = Best->Conversions[0].Standard;
3166           User.EllipsisConversion = false;
3167         }
3168       }
3169       User.HadMultipleCandidates = HadMultipleCandidates;
3170       User.ConversionFunction = Constructor;
3171       User.FoundConversionFunction = Best->FoundDecl;
3172       User.After.setAsIdentityConversion();
3173       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3174       User.After.setAllToTypes(ToType);
3175       return Result;
3176     }
3177     if (CXXConversionDecl *Conversion
3178                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3179       // C++ [over.ics.user]p1:
3180       //
3181       //   [...] If the user-defined conversion is specified by a
3182       //   conversion function (12.3.2), the initial standard
3183       //   conversion sequence converts the source type to the
3184       //   implicit object parameter of the conversion function.
3185       User.Before = Best->Conversions[0].Standard;
3186       User.HadMultipleCandidates = HadMultipleCandidates;
3187       User.ConversionFunction = Conversion;
3188       User.FoundConversionFunction = Best->FoundDecl;
3189       User.EllipsisConversion = false;
3190
3191       // C++ [over.ics.user]p2:
3192       //   The second standard conversion sequence converts the
3193       //   result of the user-defined conversion to the target type
3194       //   for the sequence. Since an implicit conversion sequence
3195       //   is an initialization, the special rules for
3196       //   initialization by user-defined conversion apply when
3197       //   selecting the best user-defined conversion for a
3198       //   user-defined conversion sequence (see 13.3.3 and
3199       //   13.3.3.1).
3200       User.After = Best->FinalConversion;
3201       return Result;
3202     }
3203     llvm_unreachable("Not a constructor or conversion function?");
3204
3205   case OR_No_Viable_Function:
3206     return OR_No_Viable_Function;
3207
3208   case OR_Ambiguous:
3209     return OR_Ambiguous;
3210   }
3211
3212   llvm_unreachable("Invalid OverloadResult!");
3213 }
3214
3215 bool
3216 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3217   ImplicitConversionSequence ICS;
3218   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3219                                     OverloadCandidateSet::CSK_Normal);
3220   OverloadingResult OvResult =
3221     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3222                             CandidateSet, false, false);
3223   if (OvResult == OR_Ambiguous)
3224     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
3225         << From->getType() << ToType << From->getSourceRange();
3226   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3227     if (!RequireCompleteType(From->getLocStart(), ToType,
3228                              diag::err_typecheck_nonviable_condition_incomplete,
3229                              From->getType(), From->getSourceRange()))
3230       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
3231           << From->getType() << From->getSourceRange() << ToType;
3232   } else
3233     return false;
3234   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3235   return true;
3236 }
3237
3238 /// \brief Compare the user-defined conversion functions or constructors
3239 /// of two user-defined conversion sequences to determine whether any ordering
3240 /// is possible.
3241 static ImplicitConversionSequence::CompareKind
3242 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3243                            FunctionDecl *Function2) {
3244   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3245     return ImplicitConversionSequence::Indistinguishable;
3246
3247   // Objective-C++:
3248   //   If both conversion functions are implicitly-declared conversions from
3249   //   a lambda closure type to a function pointer and a block pointer,
3250   //   respectively, always prefer the conversion to a function pointer,
3251   //   because the function pointer is more lightweight and is more likely
3252   //   to keep code working.
3253   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3254   if (!Conv1)
3255     return ImplicitConversionSequence::Indistinguishable;
3256
3257   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3258   if (!Conv2)
3259     return ImplicitConversionSequence::Indistinguishable;
3260
3261   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3262     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3263     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3264     if (Block1 != Block2)
3265       return Block1 ? ImplicitConversionSequence::Worse
3266                     : ImplicitConversionSequence::Better;
3267   }
3268
3269   return ImplicitConversionSequence::Indistinguishable;
3270 }
3271
3272 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3273     const ImplicitConversionSequence &ICS) {
3274   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3275          (ICS.isUserDefined() &&
3276           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3277 }
3278
3279 /// CompareImplicitConversionSequences - Compare two implicit
3280 /// conversion sequences to determine whether one is better than the
3281 /// other or if they are indistinguishable (C++ 13.3.3.2).
3282 static ImplicitConversionSequence::CompareKind
3283 CompareImplicitConversionSequences(Sema &S,
3284                                    const ImplicitConversionSequence& ICS1,
3285                                    const ImplicitConversionSequence& ICS2)
3286 {
3287   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3288   // conversion sequences (as defined in 13.3.3.1)
3289   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3290   //      conversion sequence than a user-defined conversion sequence or
3291   //      an ellipsis conversion sequence, and
3292   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3293   //      conversion sequence than an ellipsis conversion sequence
3294   //      (13.3.3.1.3).
3295   //
3296   // C++0x [over.best.ics]p10:
3297   //   For the purpose of ranking implicit conversion sequences as
3298   //   described in 13.3.3.2, the ambiguous conversion sequence is
3299   //   treated as a user-defined sequence that is indistinguishable
3300   //   from any other user-defined conversion sequence.
3301
3302   // String literal to 'char *' conversion has been deprecated in C++03. It has
3303   // been removed from C++11. We still accept this conversion, if it happens at
3304   // the best viable function. Otherwise, this conversion is considered worse
3305   // than ellipsis conversion. Consider this as an extension; this is not in the
3306   // standard. For example:
3307   //
3308   // int &f(...);    // #1
3309   // void f(char*);  // #2
3310   // void g() { int &r = f("foo"); }
3311   //
3312   // In C++03, we pick #2 as the best viable function.
3313   // In C++11, we pick #1 as the best viable function, because ellipsis
3314   // conversion is better than string-literal to char* conversion (since there
3315   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3316   // convert arguments, #2 would be the best viable function in C++11.
3317   // If the best viable function has this conversion, a warning will be issued
3318   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3319
3320   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3321       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3322       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3323     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3324                ? ImplicitConversionSequence::Worse
3325                : ImplicitConversionSequence::Better;
3326
3327   if (ICS1.getKindRank() < ICS2.getKindRank())
3328     return ImplicitConversionSequence::Better;
3329   if (ICS2.getKindRank() < ICS1.getKindRank())
3330     return ImplicitConversionSequence::Worse;
3331
3332   // The following checks require both conversion sequences to be of
3333   // the same kind.
3334   if (ICS1.getKind() != ICS2.getKind())
3335     return ImplicitConversionSequence::Indistinguishable;
3336
3337   ImplicitConversionSequence::CompareKind Result =
3338       ImplicitConversionSequence::Indistinguishable;
3339
3340   // Two implicit conversion sequences of the same form are
3341   // indistinguishable conversion sequences unless one of the
3342   // following rules apply: (C++ 13.3.3.2p3):
3343   
3344   // List-initialization sequence L1 is a better conversion sequence than
3345   // list-initialization sequence L2 if:
3346   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3347   //   if not that,
3348   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3349   //   and N1 is smaller than N2.,
3350   // even if one of the other rules in this paragraph would otherwise apply.
3351   if (!ICS1.isBad()) {
3352     if (ICS1.isStdInitializerListElement() &&
3353         !ICS2.isStdInitializerListElement())
3354       return ImplicitConversionSequence::Better;
3355     if (!ICS1.isStdInitializerListElement() &&
3356         ICS2.isStdInitializerListElement())
3357       return ImplicitConversionSequence::Worse;
3358   }
3359
3360   if (ICS1.isStandard())
3361     // Standard conversion sequence S1 is a better conversion sequence than
3362     // standard conversion sequence S2 if [...]
3363     Result = CompareStandardConversionSequences(S,
3364                                                 ICS1.Standard, ICS2.Standard);
3365   else if (ICS1.isUserDefined()) {
3366     // User-defined conversion sequence U1 is a better conversion
3367     // sequence than another user-defined conversion sequence U2 if
3368     // they contain the same user-defined conversion function or
3369     // constructor and if the second standard conversion sequence of
3370     // U1 is better than the second standard conversion sequence of
3371     // U2 (C++ 13.3.3.2p3).
3372     if (ICS1.UserDefined.ConversionFunction ==
3373           ICS2.UserDefined.ConversionFunction)
3374       Result = CompareStandardConversionSequences(S,
3375                                                   ICS1.UserDefined.After,
3376                                                   ICS2.UserDefined.After);
3377     else
3378       Result = compareConversionFunctions(S, 
3379                                           ICS1.UserDefined.ConversionFunction,
3380                                           ICS2.UserDefined.ConversionFunction);
3381   }
3382
3383   return Result;
3384 }
3385
3386 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3387   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3388     Qualifiers Quals;
3389     T1 = Context.getUnqualifiedArrayType(T1, Quals);
3390     T2 = Context.getUnqualifiedArrayType(T2, Quals);
3391   }
3392
3393   return Context.hasSameUnqualifiedType(T1, T2);
3394 }
3395
3396 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3397 // determine if one is a proper subset of the other.
3398 static ImplicitConversionSequence::CompareKind
3399 compareStandardConversionSubsets(ASTContext &Context,
3400                                  const StandardConversionSequence& SCS1,
3401                                  const StandardConversionSequence& SCS2) {
3402   ImplicitConversionSequence::CompareKind Result
3403     = ImplicitConversionSequence::Indistinguishable;
3404
3405   // the identity conversion sequence is considered to be a subsequence of
3406   // any non-identity conversion sequence
3407   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3408     return ImplicitConversionSequence::Better;
3409   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3410     return ImplicitConversionSequence::Worse;
3411
3412   if (SCS1.Second != SCS2.Second) {
3413     if (SCS1.Second == ICK_Identity)
3414       Result = ImplicitConversionSequence::Better;
3415     else if (SCS2.Second == ICK_Identity)
3416       Result = ImplicitConversionSequence::Worse;
3417     else
3418       return ImplicitConversionSequence::Indistinguishable;
3419   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3420     return ImplicitConversionSequence::Indistinguishable;
3421
3422   if (SCS1.Third == SCS2.Third) {
3423     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3424                              : ImplicitConversionSequence::Indistinguishable;
3425   }
3426
3427   if (SCS1.Third == ICK_Identity)
3428     return Result == ImplicitConversionSequence::Worse
3429              ? ImplicitConversionSequence::Indistinguishable
3430              : ImplicitConversionSequence::Better;
3431
3432   if (SCS2.Third == ICK_Identity)
3433     return Result == ImplicitConversionSequence::Better
3434              ? ImplicitConversionSequence::Indistinguishable
3435              : ImplicitConversionSequence::Worse;
3436
3437   return ImplicitConversionSequence::Indistinguishable;
3438 }
3439
3440 /// \brief Determine whether one of the given reference bindings is better
3441 /// than the other based on what kind of bindings they are.
3442 static bool
3443 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3444                              const StandardConversionSequence &SCS2) {
3445   // C++0x [over.ics.rank]p3b4:
3446   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3447   //      implicit object parameter of a non-static member function declared
3448   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3449   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3450   //      lvalue reference to a function lvalue and S2 binds an rvalue
3451   //      reference*.
3452   //
3453   // FIXME: Rvalue references. We're going rogue with the above edits,
3454   // because the semantics in the current C++0x working paper (N3225 at the
3455   // time of this writing) break the standard definition of std::forward
3456   // and std::reference_wrapper when dealing with references to functions.
3457   // Proposed wording changes submitted to CWG for consideration.
3458   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3459       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3460     return false;
3461
3462   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3463           SCS2.IsLvalueReference) ||
3464          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3465           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3466 }
3467
3468 /// CompareStandardConversionSequences - Compare two standard
3469 /// conversion sequences to determine whether one is better than the
3470 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3471 static ImplicitConversionSequence::CompareKind
3472 CompareStandardConversionSequences(Sema &S,
3473                                    const StandardConversionSequence& SCS1,
3474                                    const StandardConversionSequence& SCS2)
3475 {
3476   // Standard conversion sequence S1 is a better conversion sequence
3477   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3478
3479   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3480   //     sequences in the canonical form defined by 13.3.3.1.1,
3481   //     excluding any Lvalue Transformation; the identity conversion
3482   //     sequence is considered to be a subsequence of any
3483   //     non-identity conversion sequence) or, if not that,
3484   if (ImplicitConversionSequence::CompareKind CK
3485         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3486     return CK;
3487
3488   //  -- the rank of S1 is better than the rank of S2 (by the rules
3489   //     defined below), or, if not that,
3490   ImplicitConversionRank Rank1 = SCS1.getRank();
3491   ImplicitConversionRank Rank2 = SCS2.getRank();
3492   if (Rank1 < Rank2)
3493     return ImplicitConversionSequence::Better;
3494   else if (Rank2 < Rank1)
3495     return ImplicitConversionSequence::Worse;
3496
3497   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3498   // are indistinguishable unless one of the following rules
3499   // applies:
3500
3501   //   A conversion that is not a conversion of a pointer, or
3502   //   pointer to member, to bool is better than another conversion
3503   //   that is such a conversion.
3504   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3505     return SCS2.isPointerConversionToBool()
3506              ? ImplicitConversionSequence::Better
3507              : ImplicitConversionSequence::Worse;
3508
3509   // C++ [over.ics.rank]p4b2:
3510   //
3511   //   If class B is derived directly or indirectly from class A,
3512   //   conversion of B* to A* is better than conversion of B* to
3513   //   void*, and conversion of A* to void* is better than conversion
3514   //   of B* to void*.
3515   bool SCS1ConvertsToVoid
3516     = SCS1.isPointerConversionToVoidPointer(S.Context);
3517   bool SCS2ConvertsToVoid
3518     = SCS2.isPointerConversionToVoidPointer(S.Context);
3519   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3520     // Exactly one of the conversion sequences is a conversion to
3521     // a void pointer; it's the worse conversion.
3522     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3523                               : ImplicitConversionSequence::Worse;
3524   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3525     // Neither conversion sequence converts to a void pointer; compare
3526     // their derived-to-base conversions.
3527     if (ImplicitConversionSequence::CompareKind DerivedCK
3528           = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3529       return DerivedCK;
3530   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3531              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3532     // Both conversion sequences are conversions to void
3533     // pointers. Compare the source types to determine if there's an
3534     // inheritance relationship in their sources.
3535     QualType FromType1 = SCS1.getFromType();
3536     QualType FromType2 = SCS2.getFromType();
3537
3538     // Adjust the types we're converting from via the array-to-pointer
3539     // conversion, if we need to.
3540     if (SCS1.First == ICK_Array_To_Pointer)
3541       FromType1 = S.Context.getArrayDecayedType(FromType1);
3542     if (SCS2.First == ICK_Array_To_Pointer)
3543       FromType2 = S.Context.getArrayDecayedType(FromType2);
3544
3545     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3546     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3547
3548     if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3549       return ImplicitConversionSequence::Better;
3550     else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3551       return ImplicitConversionSequence::Worse;
3552
3553     // Objective-C++: If one interface is more specific than the
3554     // other, it is the better one.
3555     const ObjCObjectPointerType* FromObjCPtr1
3556       = FromType1->getAs<ObjCObjectPointerType>();
3557     const ObjCObjectPointerType* FromObjCPtr2
3558       = FromType2->getAs<ObjCObjectPointerType>();
3559     if (FromObjCPtr1 && FromObjCPtr2) {
3560       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 
3561                                                           FromObjCPtr2);
3562       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 
3563                                                            FromObjCPtr1);
3564       if (AssignLeft != AssignRight) {
3565         return AssignLeft? ImplicitConversionSequence::Better
3566                          : ImplicitConversionSequence::Worse;
3567       }
3568     }
3569   }
3570
3571   // Compare based on qualification conversions (C++ 13.3.3.2p3,
3572   // bullet 3).
3573   if (ImplicitConversionSequence::CompareKind QualCK
3574         = CompareQualificationConversions(S, SCS1, SCS2))
3575     return QualCK;
3576
3577   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3578     // Check for a better reference binding based on the kind of bindings.
3579     if (isBetterReferenceBindingKind(SCS1, SCS2))
3580       return ImplicitConversionSequence::Better;
3581     else if (isBetterReferenceBindingKind(SCS2, SCS1))
3582       return ImplicitConversionSequence::Worse;
3583
3584     // C++ [over.ics.rank]p3b4:
3585     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3586     //      which the references refer are the same type except for
3587     //      top-level cv-qualifiers, and the type to which the reference
3588     //      initialized by S2 refers is more cv-qualified than the type
3589     //      to which the reference initialized by S1 refers.
3590     QualType T1 = SCS1.getToType(2);
3591     QualType T2 = SCS2.getToType(2);
3592     T1 = S.Context.getCanonicalType(T1);
3593     T2 = S.Context.getCanonicalType(T2);
3594     Qualifiers T1Quals, T2Quals;
3595     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3596     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3597     if (UnqualT1 == UnqualT2) {
3598       // Objective-C++ ARC: If the references refer to objects with different
3599       // lifetimes, prefer bindings that don't change lifetime.
3600       if (SCS1.ObjCLifetimeConversionBinding != 
3601                                           SCS2.ObjCLifetimeConversionBinding) {
3602         return SCS1.ObjCLifetimeConversionBinding
3603                                            ? ImplicitConversionSequence::Worse
3604                                            : ImplicitConversionSequence::Better;
3605       }
3606       
3607       // If the type is an array type, promote the element qualifiers to the
3608       // type for comparison.
3609       if (isa<ArrayType>(T1) && T1Quals)
3610         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3611       if (isa<ArrayType>(T2) && T2Quals)
3612         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3613       if (T2.isMoreQualifiedThan(T1))
3614         return ImplicitConversionSequence::Better;
3615       else if (T1.isMoreQualifiedThan(T2))
3616         return ImplicitConversionSequence::Worse;      
3617     }
3618   }
3619
3620   // In Microsoft mode, prefer an integral conversion to a
3621   // floating-to-integral conversion if the integral conversion
3622   // is between types of the same size.
3623   // For example:
3624   // void f(float);
3625   // void f(int);
3626   // int main {
3627   //    long a;
3628   //    f(a);
3629   // }
3630   // Here, MSVC will call f(int) instead of generating a compile error
3631   // as clang will do in standard mode.
3632   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3633       SCS2.Second == ICK_Floating_Integral &&
3634       S.Context.getTypeSize(SCS1.getFromType()) ==
3635           S.Context.getTypeSize(SCS1.getToType(2)))
3636     return ImplicitConversionSequence::Better;
3637
3638   return ImplicitConversionSequence::Indistinguishable;
3639 }
3640
3641 /// CompareQualificationConversions - Compares two standard conversion
3642 /// sequences to determine whether they can be ranked based on their
3643 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3644 static ImplicitConversionSequence::CompareKind
3645 CompareQualificationConversions(Sema &S,
3646                                 const StandardConversionSequence& SCS1,
3647                                 const StandardConversionSequence& SCS2) {
3648   // C++ 13.3.3.2p3:
3649   //  -- S1 and S2 differ only in their qualification conversion and
3650   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3651   //     cv-qualification signature of type T1 is a proper subset of
3652   //     the cv-qualification signature of type T2, and S1 is not the
3653   //     deprecated string literal array-to-pointer conversion (4.2).
3654   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3655       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3656     return ImplicitConversionSequence::Indistinguishable;
3657
3658   // FIXME: the example in the standard doesn't use a qualification
3659   // conversion (!)
3660   QualType T1 = SCS1.getToType(2);
3661   QualType T2 = SCS2.getToType(2);
3662   T1 = S.Context.getCanonicalType(T1);
3663   T2 = S.Context.getCanonicalType(T2);
3664   Qualifiers T1Quals, T2Quals;
3665   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3666   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3667
3668   // If the types are the same, we won't learn anything by unwrapped
3669   // them.
3670   if (UnqualT1 == UnqualT2)
3671     return ImplicitConversionSequence::Indistinguishable;
3672
3673   // If the type is an array type, promote the element qualifiers to the type
3674   // for comparison.
3675   if (isa<ArrayType>(T1) && T1Quals)
3676     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3677   if (isa<ArrayType>(T2) && T2Quals)
3678     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3679
3680   ImplicitConversionSequence::CompareKind Result
3681     = ImplicitConversionSequence::Indistinguishable;
3682   
3683   // Objective-C++ ARC:
3684   //   Prefer qualification conversions not involving a change in lifetime
3685   //   to qualification conversions that do not change lifetime.
3686   if (SCS1.QualificationIncludesObjCLifetime != 
3687                                       SCS2.QualificationIncludesObjCLifetime) {
3688     Result = SCS1.QualificationIncludesObjCLifetime
3689                ? ImplicitConversionSequence::Worse
3690                : ImplicitConversionSequence::Better;
3691   }
3692   
3693   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3694     // Within each iteration of the loop, we check the qualifiers to
3695     // determine if this still looks like a qualification
3696     // conversion. Then, if all is well, we unwrap one more level of
3697     // pointers or pointers-to-members and do it all again
3698     // until there are no more pointers or pointers-to-members left
3699     // to unwrap. This essentially mimics what
3700     // IsQualificationConversion does, but here we're checking for a
3701     // strict subset of qualifiers.
3702     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3703       // The qualifiers are the same, so this doesn't tell us anything
3704       // about how the sequences rank.
3705       ;
3706     else if (T2.isMoreQualifiedThan(T1)) {
3707       // T1 has fewer qualifiers, so it could be the better sequence.
3708       if (Result == ImplicitConversionSequence::Worse)
3709         // Neither has qualifiers that are a subset of the other's
3710         // qualifiers.
3711         return ImplicitConversionSequence::Indistinguishable;
3712
3713       Result = ImplicitConversionSequence::Better;
3714     } else if (T1.isMoreQualifiedThan(T2)) {
3715       // T2 has fewer qualifiers, so it could be the better sequence.
3716       if (Result == ImplicitConversionSequence::Better)
3717         // Neither has qualifiers that are a subset of the other's
3718         // qualifiers.
3719         return ImplicitConversionSequence::Indistinguishable;
3720
3721       Result = ImplicitConversionSequence::Worse;
3722     } else {
3723       // Qualifiers are disjoint.
3724       return ImplicitConversionSequence::Indistinguishable;
3725     }
3726
3727     // If the types after this point are equivalent, we're done.
3728     if (S.Context.hasSameUnqualifiedType(T1, T2))
3729       break;
3730   }
3731
3732   // Check that the winning standard conversion sequence isn't using
3733   // the deprecated string literal array to pointer conversion.
3734   switch (Result) {
3735   case ImplicitConversionSequence::Better:
3736     if (SCS1.DeprecatedStringLiteralToCharPtr)
3737       Result = ImplicitConversionSequence::Indistinguishable;
3738     break;
3739
3740   case ImplicitConversionSequence::Indistinguishable:
3741     break;
3742
3743   case ImplicitConversionSequence::Worse:
3744     if (SCS2.DeprecatedStringLiteralToCharPtr)
3745       Result = ImplicitConversionSequence::Indistinguishable;
3746     break;
3747   }
3748
3749   return Result;
3750 }
3751
3752 /// CompareDerivedToBaseConversions - Compares two standard conversion
3753 /// sequences to determine whether they can be ranked based on their
3754 /// various kinds of derived-to-base conversions (C++
3755 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
3756 /// conversions between Objective-C interface types.
3757 static ImplicitConversionSequence::CompareKind
3758 CompareDerivedToBaseConversions(Sema &S,
3759                                 const StandardConversionSequence& SCS1,
3760                                 const StandardConversionSequence& SCS2) {
3761   QualType FromType1 = SCS1.getFromType();
3762   QualType ToType1 = SCS1.getToType(1);
3763   QualType FromType2 = SCS2.getFromType();
3764   QualType ToType2 = SCS2.getToType(1);
3765
3766   // Adjust the types we're converting from via the array-to-pointer
3767   // conversion, if we need to.
3768   if (SCS1.First == ICK_Array_To_Pointer)
3769     FromType1 = S.Context.getArrayDecayedType(FromType1);
3770   if (SCS2.First == ICK_Array_To_Pointer)
3771     FromType2 = S.Context.getArrayDecayedType(FromType2);
3772
3773   // Canonicalize all of the types.
3774   FromType1 = S.Context.getCanonicalType(FromType1);
3775   ToType1 = S.Context.getCanonicalType(ToType1);
3776   FromType2 = S.Context.getCanonicalType(FromType2);
3777   ToType2 = S.Context.getCanonicalType(ToType2);
3778
3779   // C++ [over.ics.rank]p4b3:
3780   //
3781   //   If class B is derived directly or indirectly from class A and
3782   //   class C is derived directly or indirectly from B,
3783   //
3784   // Compare based on pointer conversions.
3785   if (SCS1.Second == ICK_Pointer_Conversion &&
3786       SCS2.Second == ICK_Pointer_Conversion &&
3787       /*FIXME: Remove if Objective-C id conversions get their own rank*/
3788       FromType1->isPointerType() && FromType2->isPointerType() &&
3789       ToType1->isPointerType() && ToType2->isPointerType()) {
3790     QualType FromPointee1
3791       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3792     QualType ToPointee1
3793       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3794     QualType FromPointee2
3795       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3796     QualType ToPointee2
3797       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3798
3799     //   -- conversion of C* to B* is better than conversion of C* to A*,
3800     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3801       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3802         return ImplicitConversionSequence::Better;
3803       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3804         return ImplicitConversionSequence::Worse;
3805     }
3806
3807     //   -- conversion of B* to A* is better than conversion of C* to A*,
3808     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3809       if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3810         return ImplicitConversionSequence::Better;
3811       else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3812         return ImplicitConversionSequence::Worse;
3813     }
3814   } else if (SCS1.Second == ICK_Pointer_Conversion &&
3815              SCS2.Second == ICK_Pointer_Conversion) {
3816     const ObjCObjectPointerType *FromPtr1
3817       = FromType1->getAs<ObjCObjectPointerType>();
3818     const ObjCObjectPointerType *FromPtr2
3819       = FromType2->getAs<ObjCObjectPointerType>();
3820     const ObjCObjectPointerType *ToPtr1
3821       = ToType1->getAs<ObjCObjectPointerType>();
3822     const ObjCObjectPointerType *ToPtr2
3823       = ToType2->getAs<ObjCObjectPointerType>();
3824     
3825     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3826       // Apply the same conversion ranking rules for Objective-C pointer types
3827       // that we do for C++ pointers to class types. However, we employ the
3828       // Objective-C pseudo-subtyping relationship used for assignment of
3829       // Objective-C pointer types.
3830       bool FromAssignLeft
3831         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3832       bool FromAssignRight
3833         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3834       bool ToAssignLeft
3835         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3836       bool ToAssignRight
3837         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3838       
3839       // A conversion to an a non-id object pointer type or qualified 'id' 
3840       // type is better than a conversion to 'id'.
3841       if (ToPtr1->isObjCIdType() &&
3842           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3843         return ImplicitConversionSequence::Worse;
3844       if (ToPtr2->isObjCIdType() &&
3845           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3846         return ImplicitConversionSequence::Better;
3847       
3848       // A conversion to a non-id object pointer type is better than a 
3849       // conversion to a qualified 'id' type 
3850       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3851         return ImplicitConversionSequence::Worse;
3852       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3853         return ImplicitConversionSequence::Better;
3854   
3855       // A conversion to an a non-Class object pointer type or qualified 'Class' 
3856       // type is better than a conversion to 'Class'.
3857       if (ToPtr1->isObjCClassType() &&
3858           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3859         return ImplicitConversionSequence::Worse;
3860       if (ToPtr2->isObjCClassType() &&
3861           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3862         return ImplicitConversionSequence::Better;
3863       
3864       // A conversion to a non-Class object pointer type is better than a 
3865       // conversion to a qualified 'Class' type.
3866       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3867         return ImplicitConversionSequence::Worse;
3868       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3869         return ImplicitConversionSequence::Better;
3870
3871       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3872       if (S.Context.hasSameType(FromType1, FromType2) && 
3873           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3874           (ToAssignLeft != ToAssignRight))
3875         return ToAssignLeft? ImplicitConversionSequence::Worse
3876                            : ImplicitConversionSequence::Better;
3877
3878       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3879       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3880           (FromAssignLeft != FromAssignRight))
3881         return FromAssignLeft? ImplicitConversionSequence::Better
3882         : ImplicitConversionSequence::Worse;
3883     }
3884   }
3885   
3886   // Ranking of member-pointer types.
3887   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3888       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3889       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3890     const MemberPointerType * FromMemPointer1 =
3891                                         FromType1->getAs<MemberPointerType>();
3892     const MemberPointerType * ToMemPointer1 =
3893                                           ToType1->getAs<MemberPointerType>();
3894     const MemberPointerType * FromMemPointer2 =
3895                                           FromType2->getAs<MemberPointerType>();
3896     const MemberPointerType * ToMemPointer2 =
3897                                           ToType2->getAs<MemberPointerType>();
3898     const Type *FromPointeeType1 = FromMemPointer1->getClass();
3899     const Type *ToPointeeType1 = ToMemPointer1->getClass();
3900     const Type *FromPointeeType2 = FromMemPointer2->getClass();
3901     const Type *ToPointeeType2 = ToMemPointer2->getClass();
3902     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3903     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3904     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3905     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3906     // conversion of A::* to B::* is better than conversion of A::* to C::*,
3907     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3908       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3909         return ImplicitConversionSequence::Worse;
3910       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3911         return ImplicitConversionSequence::Better;
3912     }
3913     // conversion of B::* to C::* is better than conversion of A::* to C::*
3914     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3915       if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3916         return ImplicitConversionSequence::Better;
3917       else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3918         return ImplicitConversionSequence::Worse;
3919     }
3920   }
3921
3922   if (SCS1.Second == ICK_Derived_To_Base) {
3923     //   -- conversion of C to B is better than conversion of C to A,
3924     //   -- binding of an expression of type C to a reference of type
3925     //      B& is better than binding an expression of type C to a
3926     //      reference of type A&,
3927     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3928         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3929       if (S.IsDerivedFrom(ToType1, ToType2))
3930         return ImplicitConversionSequence::Better;
3931       else if (S.IsDerivedFrom(ToType2, ToType1))
3932         return ImplicitConversionSequence::Worse;
3933     }
3934
3935     //   -- conversion of B to A is better than conversion of C to A.
3936     //   -- binding of an expression of type B to a reference of type
3937     //      A& is better than binding an expression of type C to a
3938     //      reference of type A&,
3939     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3940         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3941       if (S.IsDerivedFrom(FromType2, FromType1))
3942         return ImplicitConversionSequence::Better;
3943       else if (S.IsDerivedFrom(FromType1, FromType2))
3944         return ImplicitConversionSequence::Worse;
3945     }
3946   }
3947
3948   return ImplicitConversionSequence::Indistinguishable;
3949 }
3950
3951 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
3952 /// C++ class.
3953 static bool isTypeValid(QualType T) {
3954   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3955     return !Record->isInvalidDecl();
3956
3957   return true;
3958 }
3959
3960 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
3961 /// determine whether they are reference-related,
3962 /// reference-compatible, reference-compatible with added
3963 /// qualification, or incompatible, for use in C++ initialization by
3964 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3965 /// type, and the first type (T1) is the pointee type of the reference
3966 /// type being initialized.
3967 Sema::ReferenceCompareResult
3968 Sema::CompareReferenceRelationship(SourceLocation Loc,
3969                                    QualType OrigT1, QualType OrigT2,
3970                                    bool &DerivedToBase,
3971                                    bool &ObjCConversion,
3972                                    bool &ObjCLifetimeConversion) {
3973   assert(!OrigT1->isReferenceType() &&
3974     "T1 must be the pointee type of the reference type");
3975   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3976
3977   QualType T1 = Context.getCanonicalType(OrigT1);
3978   QualType T2 = Context.getCanonicalType(OrigT2);
3979   Qualifiers T1Quals, T2Quals;
3980   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3981   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3982
3983   // C++ [dcl.init.ref]p4:
3984   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3985   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3986   //   T1 is a base class of T2.
3987   DerivedToBase = false;
3988   ObjCConversion = false;
3989   ObjCLifetimeConversion = false;
3990   if (UnqualT1 == UnqualT2) {
3991     // Nothing to do.
3992   } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3993              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
3994              IsDerivedFrom(UnqualT2, UnqualT1))
3995     DerivedToBase = true;
3996   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3997            UnqualT2->isObjCObjectOrInterfaceType() &&
3998            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3999     ObjCConversion = true;
4000   else
4001     return Ref_Incompatible;
4002
4003   // At this point, we know that T1 and T2 are reference-related (at
4004   // least).
4005
4006   // If the type is an array type, promote the element qualifiers to the type
4007   // for comparison.
4008   if (isa<ArrayType>(T1) && T1Quals)
4009     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4010   if (isa<ArrayType>(T2) && T2Quals)
4011     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4012
4013   // C++ [dcl.init.ref]p4:
4014   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4015   //   reference-related to T2 and cv1 is the same cv-qualification
4016   //   as, or greater cv-qualification than, cv2. For purposes of
4017   //   overload resolution, cases for which cv1 is greater
4018   //   cv-qualification than cv2 are identified as
4019   //   reference-compatible with added qualification (see 13.3.3.2).
4020   //
4021   // Note that we also require equivalence of Objective-C GC and address-space
4022   // qualifiers when performing these computations, so that e.g., an int in
4023   // address space 1 is not reference-compatible with an int in address
4024   // space 2.
4025   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4026       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4027     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4028       ObjCLifetimeConversion = true;
4029
4030     T1Quals.removeObjCLifetime();
4031     T2Quals.removeObjCLifetime();    
4032   }
4033     
4034   if (T1Quals == T2Quals)
4035     return Ref_Compatible;
4036   else if (T1Quals.compatiblyIncludes(T2Quals))
4037     return Ref_Compatible_With_Added_Qualification;
4038   else
4039     return Ref_Related;
4040 }
4041
4042 /// \brief Look for a user-defined conversion to an value reference-compatible
4043 ///        with DeclType. Return true if something definite is found.
4044 static bool
4045 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4046                          QualType DeclType, SourceLocation DeclLoc,
4047                          Expr *Init, QualType T2, bool AllowRvalues,
4048                          bool AllowExplicit) {
4049   assert(T2->isRecordType() && "Can only find conversions of record types.");
4050   CXXRecordDecl *T2RecordDecl
4051     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4052
4053   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
4054   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4055   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4056     NamedDecl *D = *I;
4057     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4058     if (isa<UsingShadowDecl>(D))
4059       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4060
4061     FunctionTemplateDecl *ConvTemplate
4062       = dyn_cast<FunctionTemplateDecl>(D);
4063     CXXConversionDecl *Conv;
4064     if (ConvTemplate)
4065       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4066     else
4067       Conv = cast<CXXConversionDecl>(D);
4068
4069     // If this is an explicit conversion, and we're not allowed to consider
4070     // explicit conversions, skip it.
4071     if (!AllowExplicit && Conv->isExplicit())
4072       continue;
4073
4074     if (AllowRvalues) {
4075       bool DerivedToBase = false;
4076       bool ObjCConversion = false;
4077       bool ObjCLifetimeConversion = false;
4078       
4079       // If we are initializing an rvalue reference, don't permit conversion
4080       // functions that return lvalues.
4081       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4082         const ReferenceType *RefType
4083           = Conv->getConversionType()->getAs<LValueReferenceType>();
4084         if (RefType && !RefType->getPointeeType()->isFunctionType())
4085           continue;
4086       }
4087       
4088       if (!ConvTemplate &&
4089           S.CompareReferenceRelationship(
4090             DeclLoc,
4091             Conv->getConversionType().getNonReferenceType()
4092               .getUnqualifiedType(),
4093             DeclType.getNonReferenceType().getUnqualifiedType(),
4094             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4095           Sema::Ref_Incompatible)
4096         continue;
4097     } else {
4098       // If the conversion function doesn't return a reference type,
4099       // it can't be considered for this conversion. An rvalue reference
4100       // is only acceptable if its referencee is a function type.
4101
4102       const ReferenceType *RefType =
4103         Conv->getConversionType()->getAs<ReferenceType>();
4104       if (!RefType ||
4105           (!RefType->isLValueReferenceType() &&
4106            !RefType->getPointeeType()->isFunctionType()))
4107         continue;
4108     }
4109
4110     if (ConvTemplate)
4111       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4112                                        Init, DeclType, CandidateSet,
4113                                        /*AllowObjCConversionOnExplicit=*/false);
4114     else
4115       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4116                                DeclType, CandidateSet,
4117                                /*AllowObjCConversionOnExplicit=*/false);
4118   }
4119
4120   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4121
4122   OverloadCandidateSet::iterator Best;
4123   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4124   case OR_Success:
4125     // C++ [over.ics.ref]p1:
4126     //
4127     //   [...] If the parameter binds directly to the result of
4128     //   applying a conversion function to the argument
4129     //   expression, the implicit conversion sequence is a
4130     //   user-defined conversion sequence (13.3.3.1.2), with the
4131     //   second standard conversion sequence either an identity
4132     //   conversion or, if the conversion function returns an
4133     //   entity of a type that is a derived class of the parameter
4134     //   type, a derived-to-base Conversion.
4135     if (!Best->FinalConversion.DirectBinding)
4136       return false;
4137
4138     ICS.setUserDefined();
4139     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4140     ICS.UserDefined.After = Best->FinalConversion;
4141     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4142     ICS.UserDefined.ConversionFunction = Best->Function;
4143     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4144     ICS.UserDefined.EllipsisConversion = false;
4145     assert(ICS.UserDefined.After.ReferenceBinding &&
4146            ICS.UserDefined.After.DirectBinding &&
4147            "Expected a direct reference binding!");
4148     return true;
4149
4150   case OR_Ambiguous:
4151     ICS.setAmbiguous();
4152     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4153          Cand != CandidateSet.end(); ++Cand)
4154       if (Cand->Viable)
4155         ICS.Ambiguous.addConversion(Cand->Function);
4156     return true;
4157
4158   case OR_No_Viable_Function:
4159   case OR_Deleted:
4160     // There was no suitable conversion, or we found a deleted
4161     // conversion; continue with other checks.
4162     return false;
4163   }
4164
4165   llvm_unreachable("Invalid OverloadResult!");
4166 }
4167
4168 /// \brief Compute an implicit conversion sequence for reference
4169 /// initialization.
4170 static ImplicitConversionSequence
4171 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4172                  SourceLocation DeclLoc,
4173                  bool SuppressUserConversions,
4174                  bool AllowExplicit) {
4175   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4176
4177   // Most paths end in a failed conversion.
4178   ImplicitConversionSequence ICS;
4179   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4180
4181   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4182   QualType T2 = Init->getType();
4183
4184   // If the initializer is the address of an overloaded function, try
4185   // to resolve the overloaded function. If all goes well, T2 is the
4186   // type of the resulting function.
4187   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4188     DeclAccessPair Found;
4189     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4190                                                                 false, Found))
4191       T2 = Fn->getType();
4192   }
4193
4194   // Compute some basic properties of the types and the initializer.
4195   bool isRValRef = DeclType->isRValueReferenceType();
4196   bool DerivedToBase = false;
4197   bool ObjCConversion = false;
4198   bool ObjCLifetimeConversion = false;
4199   Expr::Classification InitCategory = Init->Classify(S.Context);
4200   Sema::ReferenceCompareResult RefRelationship
4201     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4202                                      ObjCConversion, ObjCLifetimeConversion);
4203
4204
4205   // C++0x [dcl.init.ref]p5:
4206   //   A reference to type "cv1 T1" is initialized by an expression
4207   //   of type "cv2 T2" as follows:
4208
4209   //     -- If reference is an lvalue reference and the initializer expression
4210   if (!isRValRef) {
4211     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4212     //        reference-compatible with "cv2 T2," or
4213     //
4214     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4215     if (InitCategory.isLValue() &&
4216         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4217       // C++ [over.ics.ref]p1:
4218       //   When a parameter of reference type binds directly (8.5.3)
4219       //   to an argument expression, the implicit conversion sequence
4220       //   is the identity conversion, unless the argument expression
4221       //   has a type that is a derived class of the parameter type,
4222       //   in which case the implicit conversion sequence is a
4223       //   derived-to-base Conversion (13.3.3.1).
4224       ICS.setStandard();
4225       ICS.Standard.First = ICK_Identity;
4226       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4227                          : ObjCConversion? ICK_Compatible_Conversion
4228                          : ICK_Identity;
4229       ICS.Standard.Third = ICK_Identity;
4230       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4231       ICS.Standard.setToType(0, T2);
4232       ICS.Standard.setToType(1, T1);
4233       ICS.Standard.setToType(2, T1);
4234       ICS.Standard.ReferenceBinding = true;
4235       ICS.Standard.DirectBinding = true;
4236       ICS.Standard.IsLvalueReference = !isRValRef;
4237       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4238       ICS.Standard.BindsToRvalue = false;
4239       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4240       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4241       ICS.Standard.CopyConstructor = nullptr;
4242       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4243
4244       // Nothing more to do: the inaccessibility/ambiguity check for
4245       // derived-to-base conversions is suppressed when we're
4246       // computing the implicit conversion sequence (C++
4247       // [over.best.ics]p2).
4248       return ICS;
4249     }
4250
4251     //       -- has a class type (i.e., T2 is a class type), where T1 is
4252     //          not reference-related to T2, and can be implicitly
4253     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4254     //          is reference-compatible with "cv3 T3" 92) (this
4255     //          conversion is selected by enumerating the applicable
4256     //          conversion functions (13.3.1.6) and choosing the best
4257     //          one through overload resolution (13.3)),
4258     if (!SuppressUserConversions && T2->isRecordType() &&
4259         !S.RequireCompleteType(DeclLoc, T2, 0) &&
4260         RefRelationship == Sema::Ref_Incompatible) {
4261       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4262                                    Init, T2, /*AllowRvalues=*/false,
4263                                    AllowExplicit))
4264         return ICS;
4265     }
4266   }
4267
4268   //     -- Otherwise, the reference shall be an lvalue reference to a
4269   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4270   //        shall be an rvalue reference.
4271   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4272     return ICS;
4273
4274   //       -- If the initializer expression
4275   //
4276   //            -- is an xvalue, class prvalue, array prvalue or function
4277   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4278   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4279       (InitCategory.isXValue() ||
4280       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4281       (InitCategory.isLValue() && T2->isFunctionType()))) {
4282     ICS.setStandard();
4283     ICS.Standard.First = ICK_Identity;
4284     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4285                       : ObjCConversion? ICK_Compatible_Conversion
4286                       : ICK_Identity;
4287     ICS.Standard.Third = ICK_Identity;
4288     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4289     ICS.Standard.setToType(0, T2);
4290     ICS.Standard.setToType(1, T1);
4291     ICS.Standard.setToType(2, T1);
4292     ICS.Standard.ReferenceBinding = true;
4293     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4294     // binding unless we're binding to a class prvalue.
4295     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4296     // allow the use of rvalue references in C++98/03 for the benefit of
4297     // standard library implementors; therefore, we need the xvalue check here.
4298     ICS.Standard.DirectBinding =
4299       S.getLangOpts().CPlusPlus11 ||
4300       !(InitCategory.isPRValue() || T2->isRecordType());
4301     ICS.Standard.IsLvalueReference = !isRValRef;
4302     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4303     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4304     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4305     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4306     ICS.Standard.CopyConstructor = nullptr;
4307     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4308     return ICS;
4309   }
4310
4311   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4312   //               reference-related to T2, and can be implicitly converted to
4313   //               an xvalue, class prvalue, or function lvalue of type
4314   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4315   //               "cv3 T3",
4316   //
4317   //          then the reference is bound to the value of the initializer
4318   //          expression in the first case and to the result of the conversion
4319   //          in the second case (or, in either case, to an appropriate base
4320   //          class subobject).
4321   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4322       T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4323       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4324                                Init, T2, /*AllowRvalues=*/true,
4325                                AllowExplicit)) {
4326     // In the second case, if the reference is an rvalue reference
4327     // and the second standard conversion sequence of the
4328     // user-defined conversion sequence includes an lvalue-to-rvalue
4329     // conversion, the program is ill-formed.
4330     if (ICS.isUserDefined() && isRValRef &&
4331         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4332       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4333
4334     return ICS;
4335   }
4336
4337   // A temporary of function type cannot be created; don't even try.
4338   if (T1->isFunctionType())
4339     return ICS;
4340
4341   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4342   //          initialized from the initializer expression using the
4343   //          rules for a non-reference copy initialization (8.5). The
4344   //          reference is then bound to the temporary. If T1 is
4345   //          reference-related to T2, cv1 must be the same
4346   //          cv-qualification as, or greater cv-qualification than,
4347   //          cv2; otherwise, the program is ill-formed.
4348   if (RefRelationship == Sema::Ref_Related) {
4349     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4350     // we would be reference-compatible or reference-compatible with
4351     // added qualification. But that wasn't the case, so the reference
4352     // initialization fails.
4353     //
4354     // Note that we only want to check address spaces and cvr-qualifiers here.
4355     // ObjC GC and lifetime qualifiers aren't important.
4356     Qualifiers T1Quals = T1.getQualifiers();
4357     Qualifiers T2Quals = T2.getQualifiers();
4358     T1Quals.removeObjCGCAttr();
4359     T1Quals.removeObjCLifetime();
4360     T2Quals.removeObjCGCAttr();
4361     T2Quals.removeObjCLifetime();
4362     if (!T1Quals.compatiblyIncludes(T2Quals))
4363       return ICS;
4364   }
4365
4366   // If at least one of the types is a class type, the types are not
4367   // related, and we aren't allowed any user conversions, the
4368   // reference binding fails. This case is important for breaking
4369   // recursion, since TryImplicitConversion below will attempt to
4370   // create a temporary through the use of a copy constructor.
4371   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4372       (T1->isRecordType() || T2->isRecordType()))
4373     return ICS;
4374
4375   // If T1 is reference-related to T2 and the reference is an rvalue
4376   // reference, the initializer expression shall not be an lvalue.
4377   if (RefRelationship >= Sema::Ref_Related &&
4378       isRValRef && Init->Classify(S.Context).isLValue())
4379     return ICS;
4380
4381   // C++ [over.ics.ref]p2:
4382   //   When a parameter of reference type is not bound directly to
4383   //   an argument expression, the conversion sequence is the one
4384   //   required to convert the argument expression to the
4385   //   underlying type of the reference according to
4386   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4387   //   to copy-initializing a temporary of the underlying type with
4388   //   the argument expression. Any difference in top-level
4389   //   cv-qualification is subsumed by the initialization itself
4390   //   and does not constitute a conversion.
4391   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4392                               /*AllowExplicit=*/false,
4393                               /*InOverloadResolution=*/false,
4394                               /*CStyle=*/false,
4395                               /*AllowObjCWritebackConversion=*/false,
4396                               /*AllowObjCConversionOnExplicit=*/false);
4397
4398   // Of course, that's still a reference binding.
4399   if (ICS.isStandard()) {
4400     ICS.Standard.ReferenceBinding = true;
4401     ICS.Standard.IsLvalueReference = !isRValRef;
4402     ICS.Standard.BindsToFunctionLvalue = false;
4403     ICS.Standard.BindsToRvalue = true;
4404     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4405     ICS.Standard.ObjCLifetimeConversionBinding = false;
4406   } else if (ICS.isUserDefined()) {
4407     const ReferenceType *LValRefType =
4408         ICS.UserDefined.ConversionFunction->getReturnType()
4409             ->getAs<LValueReferenceType>();
4410
4411     // C++ [over.ics.ref]p3:
4412     //   Except for an implicit object parameter, for which see 13.3.1, a
4413     //   standard conversion sequence cannot be formed if it requires [...]
4414     //   binding an rvalue reference to an lvalue other than a function
4415     //   lvalue.
4416     // Note that the function case is not possible here.
4417     if (DeclType->isRValueReferenceType() && LValRefType) {
4418       // FIXME: This is the wrong BadConversionSequence. The problem is binding
4419       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4420       // reference to an rvalue!
4421       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4422       return ICS;
4423     }
4424
4425     ICS.UserDefined.Before.setAsIdentityConversion();
4426     ICS.UserDefined.After.ReferenceBinding = true;
4427     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4428     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4429     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4430     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4431     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4432   }
4433
4434   return ICS;
4435 }
4436
4437 static ImplicitConversionSequence
4438 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4439                       bool SuppressUserConversions,
4440                       bool InOverloadResolution,
4441                       bool AllowObjCWritebackConversion,
4442                       bool AllowExplicit = false);
4443
4444 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4445 /// initializer list From.
4446 static ImplicitConversionSequence
4447 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4448                   bool SuppressUserConversions,
4449                   bool InOverloadResolution,
4450                   bool AllowObjCWritebackConversion) {
4451   // C++11 [over.ics.list]p1:
4452   //   When an argument is an initializer list, it is not an expression and
4453   //   special rules apply for converting it to a parameter type.
4454
4455   ImplicitConversionSequence Result;
4456   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4457
4458   // We need a complete type for what follows. Incomplete types can never be
4459   // initialized from init lists.
4460   if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4461     return Result;
4462
4463   // Per DR1467:
4464   //   If the parameter type is a class X and the initializer list has a single
4465   //   element of type cv U, where U is X or a class derived from X, the
4466   //   implicit conversion sequence is the one required to convert the element
4467   //   to the parameter type.
4468   //
4469   //   Otherwise, if the parameter type is a character array [... ]
4470   //   and the initializer list has a single element that is an
4471   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4472   //   implicit conversion sequence is the identity conversion.
4473   if (From->getNumInits() == 1) {
4474     if (ToType->isRecordType()) {
4475       QualType InitType = From->getInit(0)->getType();
4476       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4477           S.IsDerivedFrom(InitType, ToType))
4478         return TryCopyInitialization(S, From->getInit(0), ToType,
4479                                      SuppressUserConversions,
4480                                      InOverloadResolution,
4481                                      AllowObjCWritebackConversion);
4482     }
4483     // FIXME: Check the other conditions here: array of character type,
4484     // initializer is a string literal.
4485     if (ToType->isArrayType()) {
4486       InitializedEntity Entity =
4487         InitializedEntity::InitializeParameter(S.Context, ToType,
4488                                                /*Consumed=*/false);
4489       if (S.CanPerformCopyInitialization(Entity, From)) {
4490         Result.setStandard();
4491         Result.Standard.setAsIdentityConversion();
4492         Result.Standard.setFromType(ToType);
4493         Result.Standard.setAllToTypes(ToType);
4494         return Result;
4495       }
4496     }
4497   }
4498
4499   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4500   // C++11 [over.ics.list]p2:
4501   //   If the parameter type is std::initializer_list<X> or "array of X" and
4502   //   all the elements can be implicitly converted to X, the implicit
4503   //   conversion sequence is the worst conversion necessary to convert an
4504   //   element of the list to X.
4505   //
4506   // C++14 [over.ics.list]p3:
4507   //   Otherwise, if the parameter type is "array of N X", if the initializer
4508   //   list has exactly N elements or if it has fewer than N elements and X is
4509   //   default-constructible, and if all the elements of the initializer list
4510   //   can be implicitly converted to X, the implicit conversion sequence is
4511   //   the worst conversion necessary to convert an element of the list to X.
4512   //
4513   // FIXME: We're missing a lot of these checks.
4514   bool toStdInitializerList = false;
4515   QualType X;
4516   if (ToType->isArrayType())
4517     X = S.Context.getAsArrayType(ToType)->getElementType();
4518   else
4519     toStdInitializerList = S.isStdInitializerList(ToType, &X);
4520   if (!X.isNull()) {
4521     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4522       Expr *Init = From->getInit(i);
4523       ImplicitConversionSequence ICS =
4524           TryCopyInitialization(S, Init, X, SuppressUserConversions,
4525                                 InOverloadResolution,
4526                                 AllowObjCWritebackConversion);
4527       // If a single element isn't convertible, fail.
4528       if (ICS.isBad()) {
4529         Result = ICS;
4530         break;
4531       }
4532       // Otherwise, look for the worst conversion.
4533       if (Result.isBad() ||
4534           CompareImplicitConversionSequences(S, ICS, Result) ==
4535               ImplicitConversionSequence::Worse)
4536         Result = ICS;
4537     }
4538
4539     // For an empty list, we won't have computed any conversion sequence.
4540     // Introduce the identity conversion sequence.
4541     if (From->getNumInits() == 0) {
4542       Result.setStandard();
4543       Result.Standard.setAsIdentityConversion();
4544       Result.Standard.setFromType(ToType);
4545       Result.Standard.setAllToTypes(ToType);
4546     }
4547
4548     Result.setStdInitializerListElement(toStdInitializerList);
4549     return Result;
4550   }
4551
4552   // C++14 [over.ics.list]p4:
4553   // C++11 [over.ics.list]p3:
4554   //   Otherwise, if the parameter is a non-aggregate class X and overload
4555   //   resolution chooses a single best constructor [...] the implicit
4556   //   conversion sequence is a user-defined conversion sequence. If multiple
4557   //   constructors are viable but none is better than the others, the
4558   //   implicit conversion sequence is a user-defined conversion sequence.
4559   if (ToType->isRecordType() && !ToType->isAggregateType()) {
4560     // This function can deal with initializer lists.
4561     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4562                                     /*AllowExplicit=*/false,
4563                                     InOverloadResolution, /*CStyle=*/false,
4564                                     AllowObjCWritebackConversion,
4565                                     /*AllowObjCConversionOnExplicit=*/false);
4566   }
4567
4568   // C++14 [over.ics.list]p5:
4569   // C++11 [over.ics.list]p4:
4570   //   Otherwise, if the parameter has an aggregate type which can be
4571   //   initialized from the initializer list [...] the implicit conversion
4572   //   sequence is a user-defined conversion sequence.
4573   if (ToType->isAggregateType()) {
4574     // Type is an aggregate, argument is an init list. At this point it comes
4575     // down to checking whether the initialization works.
4576     // FIXME: Find out whether this parameter is consumed or not.
4577     InitializedEntity Entity =
4578         InitializedEntity::InitializeParameter(S.Context, ToType,
4579                                                /*Consumed=*/false);
4580     if (S.CanPerformCopyInitialization(Entity, From)) {
4581       Result.setUserDefined();
4582       Result.UserDefined.Before.setAsIdentityConversion();
4583       // Initializer lists don't have a type.
4584       Result.UserDefined.Before.setFromType(QualType());
4585       Result.UserDefined.Before.setAllToTypes(QualType());
4586
4587       Result.UserDefined.After.setAsIdentityConversion();
4588       Result.UserDefined.After.setFromType(ToType);
4589       Result.UserDefined.After.setAllToTypes(ToType);
4590       Result.UserDefined.ConversionFunction = nullptr;
4591     }
4592     return Result;
4593   }
4594
4595   // C++14 [over.ics.list]p6:
4596   // C++11 [over.ics.list]p5:
4597   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4598   if (ToType->isReferenceType()) {
4599     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4600     // mention initializer lists in any way. So we go by what list-
4601     // initialization would do and try to extrapolate from that.
4602
4603     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4604
4605     // If the initializer list has a single element that is reference-related
4606     // to the parameter type, we initialize the reference from that.
4607     if (From->getNumInits() == 1) {
4608       Expr *Init = From->getInit(0);
4609
4610       QualType T2 = Init->getType();
4611
4612       // If the initializer is the address of an overloaded function, try
4613       // to resolve the overloaded function. If all goes well, T2 is the
4614       // type of the resulting function.
4615       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4616         DeclAccessPair Found;
4617         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4618                                    Init, ToType, false, Found))
4619           T2 = Fn->getType();
4620       }
4621
4622       // Compute some basic properties of the types and the initializer.
4623       bool dummy1 = false;
4624       bool dummy2 = false;
4625       bool dummy3 = false;
4626       Sema::ReferenceCompareResult RefRelationship
4627         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4628                                          dummy2, dummy3);
4629
4630       if (RefRelationship >= Sema::Ref_Related) {
4631         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4632                                 SuppressUserConversions,
4633                                 /*AllowExplicit=*/false);
4634       }
4635     }
4636
4637     // Otherwise, we bind the reference to a temporary created from the
4638     // initializer list.
4639     Result = TryListConversion(S, From, T1, SuppressUserConversions,
4640                                InOverloadResolution,
4641                                AllowObjCWritebackConversion);
4642     if (Result.isFailure())
4643       return Result;
4644     assert(!Result.isEllipsis() &&
4645            "Sub-initialization cannot result in ellipsis conversion.");
4646
4647     // Can we even bind to a temporary?
4648     if (ToType->isRValueReferenceType() ||
4649         (T1.isConstQualified() && !T1.isVolatileQualified())) {
4650       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4651                                             Result.UserDefined.After;
4652       SCS.ReferenceBinding = true;
4653       SCS.IsLvalueReference = ToType->isLValueReferenceType();
4654       SCS.BindsToRvalue = true;
4655       SCS.BindsToFunctionLvalue = false;
4656       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4657       SCS.ObjCLifetimeConversionBinding = false;
4658     } else
4659       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4660                     From, ToType);
4661     return Result;
4662   }
4663
4664   // C++14 [over.ics.list]p7:
4665   // C++11 [over.ics.list]p6:
4666   //   Otherwise, if the parameter type is not a class:
4667   if (!ToType->isRecordType()) {
4668     //    - if the initializer list has one element that is not itself an
4669     //      initializer list, the implicit conversion sequence is the one
4670     //      required to convert the element to the parameter type.
4671     unsigned NumInits = From->getNumInits();
4672     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
4673       Result = TryCopyInitialization(S, From->getInit(0), ToType,
4674                                      SuppressUserConversions,
4675                                      InOverloadResolution,
4676                                      AllowObjCWritebackConversion);
4677     //    - if the initializer list has no elements, the implicit conversion
4678     //      sequence is the identity conversion.
4679     else if (NumInits == 0) {
4680       Result.setStandard();
4681       Result.Standard.setAsIdentityConversion();
4682       Result.Standard.setFromType(ToType);
4683       Result.Standard.setAllToTypes(ToType);
4684     }
4685     return Result;
4686   }
4687
4688   // C++14 [over.ics.list]p8:
4689   // C++11 [over.ics.list]p7:
4690   //   In all cases other than those enumerated above, no conversion is possible
4691   return Result;
4692 }
4693
4694 /// TryCopyInitialization - Try to copy-initialize a value of type
4695 /// ToType from the expression From. Return the implicit conversion
4696 /// sequence required to pass this argument, which may be a bad
4697 /// conversion sequence (meaning that the argument cannot be passed to
4698 /// a parameter of this type). If @p SuppressUserConversions, then we
4699 /// do not permit any user-defined conversion sequences.
4700 static ImplicitConversionSequence
4701 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4702                       bool SuppressUserConversions,
4703                       bool InOverloadResolution,
4704                       bool AllowObjCWritebackConversion,
4705                       bool AllowExplicit) {
4706   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4707     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4708                              InOverloadResolution,AllowObjCWritebackConversion);
4709
4710   if (ToType->isReferenceType())
4711     return TryReferenceInit(S, From, ToType,
4712                             /*FIXME:*/From->getLocStart(),
4713                             SuppressUserConversions,
4714                             AllowExplicit);
4715
4716   return TryImplicitConversion(S, From, ToType,
4717                                SuppressUserConversions,
4718                                /*AllowExplicit=*/false,
4719                                InOverloadResolution,
4720                                /*CStyle=*/false,
4721                                AllowObjCWritebackConversion,
4722                                /*AllowObjCConversionOnExplicit=*/false);
4723 }
4724
4725 static bool TryCopyInitialization(const CanQualType FromQTy,
4726                                   const CanQualType ToQTy,
4727                                   Sema &S,
4728                                   SourceLocation Loc,
4729                                   ExprValueKind FromVK) {
4730   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4731   ImplicitConversionSequence ICS =
4732     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4733
4734   return !ICS.isBad();
4735 }
4736
4737 /// TryObjectArgumentInitialization - Try to initialize the object
4738 /// parameter of the given member function (@c Method) from the
4739 /// expression @p From.
4740 static ImplicitConversionSequence
4741 TryObjectArgumentInitialization(Sema &S, QualType FromType,
4742                                 Expr::Classification FromClassification,
4743                                 CXXMethodDecl *Method,
4744                                 CXXRecordDecl *ActingContext) {
4745   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4746   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4747   //                 const volatile object.
4748   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4749     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4750   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4751
4752   // Set up the conversion sequence as a "bad" conversion, to allow us
4753   // to exit early.
4754   ImplicitConversionSequence ICS;
4755
4756   // We need to have an object of class type.
4757   if (const PointerType *PT = FromType->getAs<PointerType>()) {
4758     FromType = PT->getPointeeType();
4759
4760     // When we had a pointer, it's implicitly dereferenced, so we
4761     // better have an lvalue.
4762     assert(FromClassification.isLValue());
4763   }
4764
4765   assert(FromType->isRecordType());
4766
4767   // C++0x [over.match.funcs]p4:
4768   //   For non-static member functions, the type of the implicit object
4769   //   parameter is
4770   //
4771   //     - "lvalue reference to cv X" for functions declared without a
4772   //        ref-qualifier or with the & ref-qualifier
4773   //     - "rvalue reference to cv X" for functions declared with the &&
4774   //        ref-qualifier
4775   //
4776   // where X is the class of which the function is a member and cv is the
4777   // cv-qualification on the member function declaration.
4778   //
4779   // However, when finding an implicit conversion sequence for the argument, we
4780   // are not allowed to create temporaries or perform user-defined conversions
4781   // (C++ [over.match.funcs]p5). We perform a simplified version of
4782   // reference binding here, that allows class rvalues to bind to
4783   // non-constant references.
4784
4785   // First check the qualifiers.
4786   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4787   if (ImplicitParamType.getCVRQualifiers()
4788                                     != FromTypeCanon.getLocalCVRQualifiers() &&
4789       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4790     ICS.setBad(BadConversionSequence::bad_qualifiers,
4791                FromType, ImplicitParamType);
4792     return ICS;
4793   }
4794
4795   // Check that we have either the same type or a derived type. It
4796   // affects the conversion rank.
4797   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4798   ImplicitConversionKind SecondKind;
4799   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4800     SecondKind = ICK_Identity;
4801   } else if (S.IsDerivedFrom(FromType, ClassType))
4802     SecondKind = ICK_Derived_To_Base;
4803   else {
4804     ICS.setBad(BadConversionSequence::unrelated_class,
4805                FromType, ImplicitParamType);
4806     return ICS;
4807   }
4808
4809   // Check the ref-qualifier.
4810   switch (Method->getRefQualifier()) {
4811   case RQ_None:
4812     // Do nothing; we don't care about lvalueness or rvalueness.
4813     break;
4814
4815   case RQ_LValue:
4816     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4817       // non-const lvalue reference cannot bind to an rvalue
4818       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4819                  ImplicitParamType);
4820       return ICS;
4821     }
4822     break;
4823
4824   case RQ_RValue:
4825     if (!FromClassification.isRValue()) {
4826       // rvalue reference cannot bind to an lvalue
4827       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4828                  ImplicitParamType);
4829       return ICS;
4830     }
4831     break;
4832   }
4833
4834   // Success. Mark this as a reference binding.
4835   ICS.setStandard();
4836   ICS.Standard.setAsIdentityConversion();
4837   ICS.Standard.Second = SecondKind;
4838   ICS.Standard.setFromType(FromType);
4839   ICS.Standard.setAllToTypes(ImplicitParamType);
4840   ICS.Standard.ReferenceBinding = true;
4841   ICS.Standard.DirectBinding = true;
4842   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4843   ICS.Standard.BindsToFunctionLvalue = false;
4844   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4845   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4846     = (Method->getRefQualifier() == RQ_None);
4847   return ICS;
4848 }
4849
4850 /// PerformObjectArgumentInitialization - Perform initialization of
4851 /// the implicit object parameter for the given Method with the given
4852 /// expression.
4853 ExprResult
4854 Sema::PerformObjectArgumentInitialization(Expr *From,
4855                                           NestedNameSpecifier *Qualifier,
4856                                           NamedDecl *FoundDecl,
4857                                           CXXMethodDecl *Method) {
4858   QualType FromRecordType, DestType;
4859   QualType ImplicitParamRecordType  =
4860     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4861
4862   Expr::Classification FromClassification;
4863   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4864     FromRecordType = PT->getPointeeType();
4865     DestType = Method->getThisType(Context);
4866     FromClassification = Expr::Classification::makeSimpleLValue();
4867   } else {
4868     FromRecordType = From->getType();
4869     DestType = ImplicitParamRecordType;
4870     FromClassification = From->Classify(Context);
4871   }
4872
4873   // Note that we always use the true parent context when performing
4874   // the actual argument initialization.
4875   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
4876       *this, From->getType(), FromClassification, Method, Method->getParent());
4877   if (ICS.isBad()) {
4878     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4879       Qualifiers FromQs = FromRecordType.getQualifiers();
4880       Qualifiers ToQs = DestType.getQualifiers();
4881       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4882       if (CVR) {
4883         Diag(From->getLocStart(),
4884              diag::err_member_function_call_bad_cvr)
4885           << Method->getDeclName() << FromRecordType << (CVR - 1)
4886           << From->getSourceRange();
4887         Diag(Method->getLocation(), diag::note_previous_decl)
4888           << Method->getDeclName();
4889         return ExprError();
4890       }
4891     }
4892
4893     return Diag(From->getLocStart(),
4894                 diag::err_implicit_object_parameter_init)
4895        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4896   }
4897
4898   if (ICS.Standard.Second == ICK_Derived_To_Base) {
4899     ExprResult FromRes =
4900       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4901     if (FromRes.isInvalid())
4902       return ExprError();
4903     From = FromRes.get();
4904   }
4905
4906   if (!Context.hasSameType(From->getType(), DestType))
4907     From = ImpCastExprToType(From, DestType, CK_NoOp,
4908                              From->getValueKind()).get();
4909   return From;
4910 }
4911
4912 /// TryContextuallyConvertToBool - Attempt to contextually convert the
4913 /// expression From to bool (C++0x [conv]p3).
4914 static ImplicitConversionSequence
4915 TryContextuallyConvertToBool(Sema &S, Expr *From) {
4916   return TryImplicitConversion(S, From, S.Context.BoolTy,
4917                                /*SuppressUserConversions=*/false,
4918                                /*AllowExplicit=*/true,
4919                                /*InOverloadResolution=*/false,
4920                                /*CStyle=*/false,
4921                                /*AllowObjCWritebackConversion=*/false,
4922                                /*AllowObjCConversionOnExplicit=*/false);
4923 }
4924
4925 /// PerformContextuallyConvertToBool - Perform a contextual conversion
4926 /// of the expression From to bool (C++0x [conv]p3).
4927 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4928   if (checkPlaceholderForOverload(*this, From))
4929     return ExprError();
4930
4931   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4932   if (!ICS.isBad())
4933     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4934
4935   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4936     return Diag(From->getLocStart(),
4937                 diag::err_typecheck_bool_condition)
4938                   << From->getType() << From->getSourceRange();
4939   return ExprError();
4940 }
4941
4942 /// Check that the specified conversion is permitted in a converted constant
4943 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
4944 /// is acceptable.
4945 static bool CheckConvertedConstantConversions(Sema &S,
4946                                               StandardConversionSequence &SCS) {
4947   // Since we know that the target type is an integral or unscoped enumeration
4948   // type, most conversion kinds are impossible. All possible First and Third
4949   // conversions are fine.
4950   switch (SCS.Second) {
4951   case ICK_Identity:
4952   case ICK_NoReturn_Adjustment:
4953   case ICK_Integral_Promotion:
4954   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
4955     return true;
4956
4957   case ICK_Boolean_Conversion:
4958     // Conversion from an integral or unscoped enumeration type to bool is
4959     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
4960     // conversion, so we allow it in a converted constant expression.
4961     //
4962     // FIXME: Per core issue 1407, we should not allow this, but that breaks
4963     // a lot of popular code. We should at least add a warning for this
4964     // (non-conforming) extension.
4965     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4966            SCS.getToType(2)->isBooleanType();
4967
4968   case ICK_Pointer_Conversion:
4969   case ICK_Pointer_Member:
4970     // C++1z: null pointer conversions and null member pointer conversions are
4971     // only permitted if the source type is std::nullptr_t.
4972     return SCS.getFromType()->isNullPtrType();
4973
4974   case ICK_Floating_Promotion:
4975   case ICK_Complex_Promotion:
4976   case ICK_Floating_Conversion:
4977   case ICK_Complex_Conversion:
4978   case ICK_Floating_Integral:
4979   case ICK_Compatible_Conversion:
4980   case ICK_Derived_To_Base:
4981   case ICK_Vector_Conversion:
4982   case ICK_Vector_Splat:
4983   case ICK_Complex_Real:
4984   case ICK_Block_Pointer_Conversion:
4985   case ICK_TransparentUnionConversion:
4986   case ICK_Writeback_Conversion:
4987   case ICK_Zero_Event_Conversion:
4988     return false;
4989
4990   case ICK_Lvalue_To_Rvalue:
4991   case ICK_Array_To_Pointer:
4992   case ICK_Function_To_Pointer:
4993     llvm_unreachable("found a first conversion kind in Second");
4994
4995   case ICK_Qualification:
4996     llvm_unreachable("found a third conversion kind in Second");
4997
4998   case ICK_Num_Conversion_Kinds:
4999     break;
5000   }
5001
5002   llvm_unreachable("unknown conversion kind");
5003 }
5004
5005 /// CheckConvertedConstantExpression - Check that the expression From is a
5006 /// converted constant expression of type T, perform the conversion and produce
5007 /// the converted expression, per C++11 [expr.const]p3.
5008 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5009                                                    QualType T, APValue &Value,
5010                                                    Sema::CCEKind CCE,
5011                                                    bool RequireInt) {
5012   assert(S.getLangOpts().CPlusPlus11 &&
5013          "converted constant expression outside C++11");
5014
5015   if (checkPlaceholderForOverload(S, From))
5016     return ExprError();
5017
5018   // C++1z [expr.const]p3:
5019   //  A converted constant expression of type T is an expression,
5020   //  implicitly converted to type T, where the converted
5021   //  expression is a constant expression and the implicit conversion
5022   //  sequence contains only [... list of conversions ...].
5023   ImplicitConversionSequence ICS =
5024     TryCopyInitialization(S, From, T,
5025                           /*SuppressUserConversions=*/false,
5026                           /*InOverloadResolution=*/false,
5027                           /*AllowObjcWritebackConversion=*/false,
5028                           /*AllowExplicit=*/false);
5029   StandardConversionSequence *SCS = nullptr;
5030   switch (ICS.getKind()) {
5031   case ImplicitConversionSequence::StandardConversion:
5032     SCS = &ICS.Standard;
5033     break;
5034   case ImplicitConversionSequence::UserDefinedConversion:
5035     // We are converting to a non-class type, so the Before sequence
5036     // must be trivial.
5037     SCS = &ICS.UserDefined.After;
5038     break;
5039   case ImplicitConversionSequence::AmbiguousConversion:
5040   case ImplicitConversionSequence::BadConversion:
5041     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5042       return S.Diag(From->getLocStart(),
5043                     diag::err_typecheck_converted_constant_expression)
5044                 << From->getType() << From->getSourceRange() << T;
5045     return ExprError();
5046
5047   case ImplicitConversionSequence::EllipsisConversion:
5048     llvm_unreachable("ellipsis conversion in converted constant expression");
5049   }
5050
5051   // Check that we would only use permitted conversions.
5052   if (!CheckConvertedConstantConversions(S, *SCS)) {
5053     return S.Diag(From->getLocStart(),
5054                   diag::err_typecheck_converted_constant_expression_disallowed)
5055              << From->getType() << From->getSourceRange() << T;
5056   }
5057   // [...] and where the reference binding (if any) binds directly.
5058   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5059     return S.Diag(From->getLocStart(),
5060                   diag::err_typecheck_converted_constant_expression_indirect)
5061              << From->getType() << From->getSourceRange() << T;
5062   }
5063
5064   ExprResult Result =
5065       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5066   if (Result.isInvalid())
5067     return Result;
5068
5069   // Check for a narrowing implicit conversion.
5070   APValue PreNarrowingValue;
5071   QualType PreNarrowingType;
5072   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5073                                 PreNarrowingType)) {
5074   case NK_Variable_Narrowing:
5075     // Implicit conversion to a narrower type, and the value is not a constant
5076     // expression. We'll diagnose this in a moment.
5077   case NK_Not_Narrowing:
5078     break;
5079
5080   case NK_Constant_Narrowing:
5081     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5082       << CCE << /*Constant*/1
5083       << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5084     break;
5085
5086   case NK_Type_Narrowing:
5087     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5088       << CCE << /*Constant*/0 << From->getType() << T;
5089     break;
5090   }
5091
5092   // Check the expression is a constant expression.
5093   SmallVector<PartialDiagnosticAt, 8> Notes;
5094   Expr::EvalResult Eval;
5095   Eval.Diag = &Notes;
5096
5097   if ((T->isReferenceType()
5098            ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
5099            : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
5100       (RequireInt && !Eval.Val.isInt())) {
5101     // The expression can't be folded, so we can't keep it at this position in
5102     // the AST.
5103     Result = ExprError();
5104   } else {
5105     Value = Eval.Val;
5106
5107     if (Notes.empty()) {
5108       // It's a constant expression.
5109       return Result;
5110     }
5111   }
5112
5113   // It's not a constant expression. Produce an appropriate diagnostic.
5114   if (Notes.size() == 1 &&
5115       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5116     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5117   else {
5118     S.Diag(From->getLocStart(), diag::err_expr_not_cce)
5119       << CCE << From->getSourceRange();
5120     for (unsigned I = 0; I < Notes.size(); ++I)
5121       S.Diag(Notes[I].first, Notes[I].second);
5122   }
5123   return ExprError();
5124 }
5125
5126 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5127                                                   APValue &Value, CCEKind CCE) {
5128   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5129 }
5130
5131 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5132                                                   llvm::APSInt &Value,
5133                                                   CCEKind CCE) {
5134   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5135
5136   APValue V;
5137   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5138   if (!R.isInvalid())
5139     Value = V.getInt();
5140   return R;
5141 }
5142
5143
5144 /// dropPointerConversions - If the given standard conversion sequence
5145 /// involves any pointer conversions, remove them.  This may change
5146 /// the result type of the conversion sequence.
5147 static void dropPointerConversion(StandardConversionSequence &SCS) {
5148   if (SCS.Second == ICK_Pointer_Conversion) {
5149     SCS.Second = ICK_Identity;
5150     SCS.Third = ICK_Identity;
5151     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5152   }
5153 }
5154
5155 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5156 /// convert the expression From to an Objective-C pointer type.
5157 static ImplicitConversionSequence
5158 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5159   // Do an implicit conversion to 'id'.
5160   QualType Ty = S.Context.getObjCIdType();
5161   ImplicitConversionSequence ICS
5162     = TryImplicitConversion(S, From, Ty,
5163                             // FIXME: Are these flags correct?
5164                             /*SuppressUserConversions=*/false,
5165                             /*AllowExplicit=*/true,
5166                             /*InOverloadResolution=*/false,
5167                             /*CStyle=*/false,
5168                             /*AllowObjCWritebackConversion=*/false,
5169                             /*AllowObjCConversionOnExplicit=*/true);
5170
5171   // Strip off any final conversions to 'id'.
5172   switch (ICS.getKind()) {
5173   case ImplicitConversionSequence::BadConversion:
5174   case ImplicitConversionSequence::AmbiguousConversion:
5175   case ImplicitConversionSequence::EllipsisConversion:
5176     break;
5177
5178   case ImplicitConversionSequence::UserDefinedConversion:
5179     dropPointerConversion(ICS.UserDefined.After);
5180     break;
5181
5182   case ImplicitConversionSequence::StandardConversion:
5183     dropPointerConversion(ICS.Standard);
5184     break;
5185   }
5186
5187   return ICS;
5188 }
5189
5190 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5191 /// conversion of the expression From to an Objective-C pointer type.
5192 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5193   if (checkPlaceholderForOverload(*this, From))
5194     return ExprError();
5195
5196   QualType Ty = Context.getObjCIdType();
5197   ImplicitConversionSequence ICS =
5198     TryContextuallyConvertToObjCPointer(*this, From);
5199   if (!ICS.isBad())
5200     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5201   return ExprError();
5202 }
5203
5204 /// Determine whether the provided type is an integral type, or an enumeration
5205 /// type of a permitted flavor.
5206 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5207   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5208                                  : T->isIntegralOrUnscopedEnumerationType();
5209 }
5210
5211 static ExprResult
5212 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5213                             Sema::ContextualImplicitConverter &Converter,
5214                             QualType T, UnresolvedSetImpl &ViableConversions) {
5215
5216   if (Converter.Suppress)
5217     return ExprError();
5218
5219   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5220   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5221     CXXConversionDecl *Conv =
5222         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5223     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5224     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5225   }
5226   return From;
5227 }
5228
5229 static bool
5230 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5231                            Sema::ContextualImplicitConverter &Converter,
5232                            QualType T, bool HadMultipleCandidates,
5233                            UnresolvedSetImpl &ExplicitConversions) {
5234   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5235     DeclAccessPair Found = ExplicitConversions[0];
5236     CXXConversionDecl *Conversion =
5237         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5238
5239     // The user probably meant to invoke the given explicit
5240     // conversion; use it.
5241     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5242     std::string TypeStr;
5243     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5244
5245     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5246         << FixItHint::CreateInsertion(From->getLocStart(),
5247                                       "static_cast<" + TypeStr + ">(")
5248         << FixItHint::CreateInsertion(
5249                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
5250     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5251
5252     // If we aren't in a SFINAE context, build a call to the
5253     // explicit conversion function.
5254     if (SemaRef.isSFINAEContext())
5255       return true;
5256
5257     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5258     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5259                                                        HadMultipleCandidates);
5260     if (Result.isInvalid())
5261       return true;
5262     // Record usage of conversion in an implicit cast.
5263     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5264                                     CK_UserDefinedConversion, Result.get(),
5265                                     nullptr, Result.get()->getValueKind());
5266   }
5267   return false;
5268 }
5269
5270 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5271                              Sema::ContextualImplicitConverter &Converter,
5272                              QualType T, bool HadMultipleCandidates,
5273                              DeclAccessPair &Found) {
5274   CXXConversionDecl *Conversion =
5275       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5276   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5277
5278   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5279   if (!Converter.SuppressConversion) {
5280     if (SemaRef.isSFINAEContext())
5281       return true;
5282
5283     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5284         << From->getSourceRange();
5285   }
5286
5287   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5288                                                      HadMultipleCandidates);
5289   if (Result.isInvalid())
5290     return true;
5291   // Record usage of conversion in an implicit cast.
5292   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5293                                   CK_UserDefinedConversion, Result.get(),
5294                                   nullptr, Result.get()->getValueKind());
5295   return false;
5296 }
5297
5298 static ExprResult finishContextualImplicitConversion(
5299     Sema &SemaRef, SourceLocation Loc, Expr *From,
5300     Sema::ContextualImplicitConverter &Converter) {
5301   if (!Converter.match(From->getType()) && !Converter.Suppress)
5302     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5303         << From->getSourceRange();
5304
5305   return SemaRef.DefaultLvalueConversion(From);
5306 }
5307
5308 static void
5309 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5310                                   UnresolvedSetImpl &ViableConversions,
5311                                   OverloadCandidateSet &CandidateSet) {
5312   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5313     DeclAccessPair FoundDecl = ViableConversions[I];
5314     NamedDecl *D = FoundDecl.getDecl();
5315     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5316     if (isa<UsingShadowDecl>(D))
5317       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5318
5319     CXXConversionDecl *Conv;
5320     FunctionTemplateDecl *ConvTemplate;
5321     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5322       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5323     else
5324       Conv = cast<CXXConversionDecl>(D);
5325
5326     if (ConvTemplate)
5327       SemaRef.AddTemplateConversionCandidate(
5328         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5329         /*AllowObjCConversionOnExplicit=*/false);
5330     else
5331       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5332                                      ToType, CandidateSet,
5333                                      /*AllowObjCConversionOnExplicit=*/false);
5334   }
5335 }
5336
5337 /// \brief Attempt to convert the given expression to a type which is accepted
5338 /// by the given converter.
5339 ///
5340 /// This routine will attempt to convert an expression of class type to a
5341 /// type accepted by the specified converter. In C++11 and before, the class
5342 /// must have a single non-explicit conversion function converting to a matching
5343 /// type. In C++1y, there can be multiple such conversion functions, but only
5344 /// one target type.
5345 ///
5346 /// \param Loc The source location of the construct that requires the
5347 /// conversion.
5348 ///
5349 /// \param From The expression we're converting from.
5350 ///
5351 /// \param Converter Used to control and diagnose the conversion process.
5352 ///
5353 /// \returns The expression, converted to an integral or enumeration type if
5354 /// successful.
5355 ExprResult Sema::PerformContextualImplicitConversion(
5356     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5357   // We can't perform any more checking for type-dependent expressions.
5358   if (From->isTypeDependent())
5359     return From;
5360
5361   // Process placeholders immediately.
5362   if (From->hasPlaceholderType()) {
5363     ExprResult result = CheckPlaceholderExpr(From);
5364     if (result.isInvalid())
5365       return result;
5366     From = result.get();
5367   }
5368
5369   // If the expression already has a matching type, we're golden.
5370   QualType T = From->getType();
5371   if (Converter.match(T))
5372     return DefaultLvalueConversion(From);
5373
5374   // FIXME: Check for missing '()' if T is a function type?
5375
5376   // We can only perform contextual implicit conversions on objects of class
5377   // type.
5378   const RecordType *RecordTy = T->getAs<RecordType>();
5379   if (!RecordTy || !getLangOpts().CPlusPlus) {
5380     if (!Converter.Suppress)
5381       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5382     return From;
5383   }
5384
5385   // We must have a complete class type.
5386   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5387     ContextualImplicitConverter &Converter;
5388     Expr *From;
5389
5390     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5391         : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
5392
5393     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5394       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5395     }
5396   } IncompleteDiagnoser(Converter, From);
5397
5398   if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5399     return From;
5400
5401   // Look for a conversion to an integral or enumeration type.
5402   UnresolvedSet<4>
5403       ViableConversions; // These are *potentially* viable in C++1y.
5404   UnresolvedSet<4> ExplicitConversions;
5405   const auto &Conversions =
5406       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5407
5408   bool HadMultipleCandidates =
5409       (std::distance(Conversions.begin(), Conversions.end()) > 1);
5410
5411   // To check that there is only one target type, in C++1y:
5412   QualType ToType;
5413   bool HasUniqueTargetType = true;
5414
5415   // Collect explicit or viable (potentially in C++1y) conversions.
5416   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5417     NamedDecl *D = (*I)->getUnderlyingDecl();
5418     CXXConversionDecl *Conversion;
5419     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5420     if (ConvTemplate) {
5421       if (getLangOpts().CPlusPlus14)
5422         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5423       else
5424         continue; // C++11 does not consider conversion operator templates(?).
5425     } else
5426       Conversion = cast<CXXConversionDecl>(D);
5427
5428     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5429            "Conversion operator templates are considered potentially "
5430            "viable in C++1y");
5431
5432     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5433     if (Converter.match(CurToType) || ConvTemplate) {
5434
5435       if (Conversion->isExplicit()) {
5436         // FIXME: For C++1y, do we need this restriction?
5437         // cf. diagnoseNoViableConversion()
5438         if (!ConvTemplate)
5439           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5440       } else {
5441         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5442           if (ToType.isNull())
5443             ToType = CurToType.getUnqualifiedType();
5444           else if (HasUniqueTargetType &&
5445                    (CurToType.getUnqualifiedType() != ToType))
5446             HasUniqueTargetType = false;
5447         }
5448         ViableConversions.addDecl(I.getDecl(), I.getAccess());
5449       }
5450     }
5451   }
5452
5453   if (getLangOpts().CPlusPlus14) {
5454     // C++1y [conv]p6:
5455     // ... An expression e of class type E appearing in such a context
5456     // is said to be contextually implicitly converted to a specified
5457     // type T and is well-formed if and only if e can be implicitly
5458     // converted to a type T that is determined as follows: E is searched
5459     // for conversion functions whose return type is cv T or reference to
5460     // cv T such that T is allowed by the context. There shall be
5461     // exactly one such T.
5462
5463     // If no unique T is found:
5464     if (ToType.isNull()) {
5465       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5466                                      HadMultipleCandidates,
5467                                      ExplicitConversions))
5468         return ExprError();
5469       return finishContextualImplicitConversion(*this, Loc, From, Converter);
5470     }
5471
5472     // If more than one unique Ts are found:
5473     if (!HasUniqueTargetType)
5474       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5475                                          ViableConversions);
5476
5477     // If one unique T is found:
5478     // First, build a candidate set from the previously recorded
5479     // potentially viable conversions.
5480     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5481     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5482                                       CandidateSet);
5483
5484     // Then, perform overload resolution over the candidate set.
5485     OverloadCandidateSet::iterator Best;
5486     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5487     case OR_Success: {
5488       // Apply this conversion.
5489       DeclAccessPair Found =
5490           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5491       if (recordConversion(*this, Loc, From, Converter, T,
5492                            HadMultipleCandidates, Found))
5493         return ExprError();
5494       break;
5495     }
5496     case OR_Ambiguous:
5497       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5498                                          ViableConversions);
5499     case OR_No_Viable_Function:
5500       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5501                                      HadMultipleCandidates,
5502                                      ExplicitConversions))
5503         return ExprError();
5504     // fall through 'OR_Deleted' case.
5505     case OR_Deleted:
5506       // We'll complain below about a non-integral condition type.
5507       break;
5508     }
5509   } else {
5510     switch (ViableConversions.size()) {
5511     case 0: {
5512       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5513                                      HadMultipleCandidates,
5514                                      ExplicitConversions))
5515         return ExprError();
5516
5517       // We'll complain below about a non-integral condition type.
5518       break;
5519     }
5520     case 1: {
5521       // Apply this conversion.
5522       DeclAccessPair Found = ViableConversions[0];
5523       if (recordConversion(*this, Loc, From, Converter, T,
5524                            HadMultipleCandidates, Found))
5525         return ExprError();
5526       break;
5527     }
5528     default:
5529       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5530                                          ViableConversions);
5531     }
5532   }
5533
5534   return finishContextualImplicitConversion(*this, Loc, From, Converter);
5535 }
5536
5537 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5538 /// an acceptable non-member overloaded operator for a call whose
5539 /// arguments have types T1 (and, if non-empty, T2). This routine
5540 /// implements the check in C++ [over.match.oper]p3b2 concerning
5541 /// enumeration types.
5542 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5543                                                    FunctionDecl *Fn,
5544                                                    ArrayRef<Expr *> Args) {
5545   QualType T1 = Args[0]->getType();
5546   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5547
5548   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5549     return true;
5550
5551   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5552     return true;
5553
5554   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5555   if (Proto->getNumParams() < 1)
5556     return false;
5557
5558   if (T1->isEnumeralType()) {
5559     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5560     if (Context.hasSameUnqualifiedType(T1, ArgType))
5561       return true;
5562   }
5563
5564   if (Proto->getNumParams() < 2)
5565     return false;
5566
5567   if (!T2.isNull() && T2->isEnumeralType()) {
5568     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5569     if (Context.hasSameUnqualifiedType(T2, ArgType))
5570       return true;
5571   }
5572
5573   return false;
5574 }
5575
5576 /// AddOverloadCandidate - Adds the given function to the set of
5577 /// candidate functions, using the given function call arguments.  If
5578 /// @p SuppressUserConversions, then don't allow user-defined
5579 /// conversions via constructors or conversion operators.
5580 ///
5581 /// \param PartialOverloading true if we are performing "partial" overloading
5582 /// based on an incomplete set of function arguments. This feature is used by
5583 /// code completion.
5584 void
5585 Sema::AddOverloadCandidate(FunctionDecl *Function,
5586                            DeclAccessPair FoundDecl,
5587                            ArrayRef<Expr *> Args,
5588                            OverloadCandidateSet &CandidateSet,
5589                            bool SuppressUserConversions,
5590                            bool PartialOverloading,
5591                            bool AllowExplicit) {
5592   const FunctionProtoType *Proto
5593     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5594   assert(Proto && "Functions without a prototype cannot be overloaded");
5595   assert(!Function->getDescribedFunctionTemplate() &&
5596          "Use AddTemplateOverloadCandidate for function templates");
5597
5598   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5599     if (!isa<CXXConstructorDecl>(Method)) {
5600       // If we get here, it's because we're calling a member function
5601       // that is named without a member access expression (e.g.,
5602       // "this->f") that was either written explicitly or created
5603       // implicitly. This can happen with a qualified call to a member
5604       // function, e.g., X::f(). We use an empty type for the implied
5605       // object argument (C++ [over.call.func]p3), and the acting context
5606       // is irrelevant.
5607       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5608                          QualType(), Expr::Classification::makeSimpleLValue(),
5609                          Args, CandidateSet, SuppressUserConversions,
5610                          PartialOverloading);
5611       return;
5612     }
5613     // We treat a constructor like a non-member function, since its object
5614     // argument doesn't participate in overload resolution.
5615   }
5616
5617   if (!CandidateSet.isNewCandidate(Function))
5618     return;
5619
5620   // C++ [over.match.oper]p3:
5621   //   if no operand has a class type, only those non-member functions in the
5622   //   lookup set that have a first parameter of type T1 or "reference to
5623   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
5624   //   is a right operand) a second parameter of type T2 or "reference to
5625   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
5626   //   candidate functions.
5627   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
5628       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
5629     return;
5630
5631   // C++11 [class.copy]p11: [DR1402]
5632   //   A defaulted move constructor that is defined as deleted is ignored by
5633   //   overload resolution.
5634   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
5635   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
5636       Constructor->isMoveConstructor())
5637     return;
5638
5639   // Overload resolution is always an unevaluated context.
5640   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5641
5642   // Add this candidate
5643   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5644   Candidate.FoundDecl = FoundDecl;
5645   Candidate.Function = Function;
5646   Candidate.Viable = true;
5647   Candidate.IsSurrogate = false;
5648   Candidate.IgnoreObjectArgument = false;
5649   Candidate.ExplicitCallArguments = Args.size();
5650
5651   if (Constructor) {
5652     // C++ [class.copy]p3:
5653     //   A member function template is never instantiated to perform the copy
5654     //   of a class object to an object of its class type.
5655     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5656     if (Args.size() == 1 &&
5657         Constructor->isSpecializationCopyingObject() &&
5658         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5659          IsDerivedFrom(Args[0]->getType(), ClassType))) {
5660       Candidate.Viable = false;
5661       Candidate.FailureKind = ovl_fail_illegal_constructor;
5662       return;
5663     }
5664   }
5665
5666   unsigned NumParams = Proto->getNumParams();
5667
5668   // (C++ 13.3.2p2): A candidate function having fewer than m
5669   // parameters is viable only if it has an ellipsis in its parameter
5670   // list (8.3.5).
5671   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
5672       !Proto->isVariadic()) {
5673     Candidate.Viable = false;
5674     Candidate.FailureKind = ovl_fail_too_many_arguments;
5675     return;
5676   }
5677
5678   // (C++ 13.3.2p2): A candidate function having more than m parameters
5679   // is viable only if the (m+1)st parameter has a default argument
5680   // (8.3.6). For the purposes of overload resolution, the
5681   // parameter list is truncated on the right, so that there are
5682   // exactly m parameters.
5683   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5684   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5685     // Not enough arguments.
5686     Candidate.Viable = false;
5687     Candidate.FailureKind = ovl_fail_too_few_arguments;
5688     return;
5689   }
5690
5691   // (CUDA B.1): Check for invalid calls between targets.
5692   if (getLangOpts().CUDA)
5693     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5694       // Skip the check for callers that are implicit members, because in this
5695       // case we may not yet know what the member's target is; the target is
5696       // inferred for the member automatically, based on the bases and fields of
5697       // the class.
5698       if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
5699         Candidate.Viable = false;
5700         Candidate.FailureKind = ovl_fail_bad_target;
5701         return;
5702       }
5703
5704   // Determine the implicit conversion sequences for each of the
5705   // arguments.
5706   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5707     if (ArgIdx < NumParams) {
5708       // (C++ 13.3.2p3): for F to be a viable function, there shall
5709       // exist for each argument an implicit conversion sequence
5710       // (13.3.3.1) that converts that argument to the corresponding
5711       // parameter of F.
5712       QualType ParamType = Proto->getParamType(ArgIdx);
5713       Candidate.Conversions[ArgIdx]
5714         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5715                                 SuppressUserConversions,
5716                                 /*InOverloadResolution=*/true,
5717                                 /*AllowObjCWritebackConversion=*/
5718                                   getLangOpts().ObjCAutoRefCount,
5719                                 AllowExplicit);
5720       if (Candidate.Conversions[ArgIdx].isBad()) {
5721         Candidate.Viable = false;
5722         Candidate.FailureKind = ovl_fail_bad_conversion;
5723         return;
5724       }
5725     } else {
5726       // (C++ 13.3.2p2): For the purposes of overload resolution, any
5727       // argument for which there is no corresponding parameter is
5728       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5729       Candidate.Conversions[ArgIdx].setEllipsis();
5730     }
5731   }
5732
5733   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
5734     Candidate.Viable = false;
5735     Candidate.FailureKind = ovl_fail_enable_if;
5736     Candidate.DeductionFailure.Data = FailedAttr;
5737     return;
5738   }
5739 }
5740
5741 ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args,
5742                                        bool IsInstance) {
5743   SmallVector<ObjCMethodDecl*, 4> Methods;
5744   if (!CollectMultipleMethodsInGlobalPool(Sel, Methods, IsInstance))
5745     return nullptr;
5746     
5747   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5748     bool Match = true;
5749     ObjCMethodDecl *Method = Methods[b];
5750     unsigned NumNamedArgs = Sel.getNumArgs();
5751     // Method might have more arguments than selector indicates. This is due
5752     // to addition of c-style arguments in method.
5753     if (Method->param_size() > NumNamedArgs)
5754       NumNamedArgs = Method->param_size();
5755     if (Args.size() < NumNamedArgs)
5756       continue;
5757             
5758     for (unsigned i = 0; i < NumNamedArgs; i++) {
5759       // We can't do any type-checking on a type-dependent argument.
5760       if (Args[i]->isTypeDependent()) {
5761         Match = false;
5762         break;
5763       }
5764         
5765       ParmVarDecl *param = Method->parameters()[i];
5766       Expr *argExpr = Args[i];
5767       assert(argExpr && "SelectBestMethod(): missing expression");
5768                 
5769       // Strip the unbridged-cast placeholder expression off unless it's
5770       // a consumed argument.
5771       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
5772           !param->hasAttr<CFConsumedAttr>())
5773         argExpr = stripARCUnbridgedCast(argExpr);
5774                 
5775       // If the parameter is __unknown_anytype, move on to the next method.
5776       if (param->getType() == Context.UnknownAnyTy) {
5777         Match = false;
5778         break;
5779       }
5780                 
5781       ImplicitConversionSequence ConversionState
5782         = TryCopyInitialization(*this, argExpr, param->getType(),
5783                                 /*SuppressUserConversions*/false,
5784                                 /*InOverloadResolution=*/true,
5785                                 /*AllowObjCWritebackConversion=*/
5786                                 getLangOpts().ObjCAutoRefCount,
5787                                 /*AllowExplicit*/false);
5788         if (ConversionState.isBad()) {
5789           Match = false;
5790           break;
5791         }
5792     }
5793     // Promote additional arguments to variadic methods.
5794     if (Match && Method->isVariadic()) {
5795       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
5796         if (Args[i]->isTypeDependent()) {
5797           Match = false;
5798           break;
5799         }
5800         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
5801                                                           nullptr);
5802         if (Arg.isInvalid()) {
5803           Match = false;
5804           break;
5805         }
5806       }
5807     } else {
5808       // Check for extra arguments to non-variadic methods.
5809       if (Args.size() != NumNamedArgs)
5810         Match = false;
5811       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
5812         // Special case when selectors have no argument. In this case, select
5813         // one with the most general result type of 'id'.
5814         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5815           QualType ReturnT = Methods[b]->getReturnType();
5816           if (ReturnT->isObjCIdType())
5817             return Methods[b];
5818         }
5819       }
5820     }
5821
5822     if (Match)
5823       return Method;
5824   }
5825   return nullptr;
5826 }
5827
5828 static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); }
5829
5830 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
5831                                   bool MissingImplicitThis) {
5832   // FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but
5833   // we need to find the first failing one.
5834   if (!Function->hasAttrs())
5835     return nullptr;
5836   AttrVec Attrs = Function->getAttrs();
5837   AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(),
5838                                        IsNotEnableIfAttr);
5839   if (Attrs.begin() == E)
5840     return nullptr;
5841   std::reverse(Attrs.begin(), E);
5842
5843   SFINAETrap Trap(*this);
5844
5845   // Convert the arguments.
5846   SmallVector<Expr *, 16> ConvertedArgs;
5847   bool InitializationFailed = false;
5848   bool ContainsValueDependentExpr = false;
5849   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5850     if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
5851         !cast<CXXMethodDecl>(Function)->isStatic() &&
5852         !isa<CXXConstructorDecl>(Function)) {
5853       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
5854       ExprResult R =
5855         PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
5856                                             Method, Method);
5857       if (R.isInvalid()) {
5858         InitializationFailed = true;
5859         break;
5860       }
5861       ContainsValueDependentExpr |= R.get()->isValueDependent();
5862       ConvertedArgs.push_back(R.get());
5863     } else {
5864       ExprResult R =
5865         PerformCopyInitialization(InitializedEntity::InitializeParameter(
5866                                                 Context,
5867                                                 Function->getParamDecl(i)),
5868                                   SourceLocation(),
5869                                   Args[i]);
5870       if (R.isInvalid()) {
5871         InitializationFailed = true;
5872         break;
5873       }
5874       ContainsValueDependentExpr |= R.get()->isValueDependent();
5875       ConvertedArgs.push_back(R.get());
5876     }
5877   }
5878
5879   if (InitializationFailed || Trap.hasErrorOccurred())
5880     return cast<EnableIfAttr>(Attrs[0]);
5881
5882   for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) {
5883     APValue Result;
5884     EnableIfAttr *EIA = cast<EnableIfAttr>(*I);
5885     if (EIA->getCond()->isValueDependent()) {
5886       // Don't even try now, we'll examine it after instantiation.
5887       continue;
5888     }
5889
5890     if (!EIA->getCond()->EvaluateWithSubstitution(
5891             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) {
5892       if (!ContainsValueDependentExpr)
5893         return EIA;
5894     } else if (!Result.isInt() || !Result.getInt().getBoolValue()) {
5895       return EIA;
5896     }
5897   }
5898   return nullptr;
5899 }
5900
5901 /// \brief Add all of the function declarations in the given function set to
5902 /// the overload candidate set.
5903 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5904                                  ArrayRef<Expr *> Args,
5905                                  OverloadCandidateSet& CandidateSet,
5906                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
5907                                  bool SuppressUserConversions,
5908                                  bool PartialOverloading) {
5909   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5910     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5911     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5912       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5913         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5914                            cast<CXXMethodDecl>(FD)->getParent(),
5915                            Args[0]->getType(), Args[0]->Classify(Context),
5916                            Args.slice(1), CandidateSet,
5917                            SuppressUserConversions, PartialOverloading);
5918       else
5919         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5920                              SuppressUserConversions, PartialOverloading);
5921     } else {
5922       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5923       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5924           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5925         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5926                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5927                                    ExplicitTemplateArgs,
5928                                    Args[0]->getType(),
5929                                    Args[0]->Classify(Context), Args.slice(1),
5930                                    CandidateSet, SuppressUserConversions,
5931                                    PartialOverloading);
5932       else
5933         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5934                                      ExplicitTemplateArgs, Args,
5935                                      CandidateSet, SuppressUserConversions,
5936                                      PartialOverloading);
5937     }
5938   }
5939 }
5940
5941 /// AddMethodCandidate - Adds a named decl (which is some kind of
5942 /// method) as a method candidate to the given overload set.
5943 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5944                               QualType ObjectType,
5945                               Expr::Classification ObjectClassification,
5946                               ArrayRef<Expr *> Args,
5947                               OverloadCandidateSet& CandidateSet,
5948                               bool SuppressUserConversions) {
5949   NamedDecl *Decl = FoundDecl.getDecl();
5950   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5951
5952   if (isa<UsingShadowDecl>(Decl))
5953     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5954
5955   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5956     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5957            "Expected a member function template");
5958     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5959                                /*ExplicitArgs*/ nullptr,
5960                                ObjectType, ObjectClassification,
5961                                Args, CandidateSet,
5962                                SuppressUserConversions);
5963   } else {
5964     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5965                        ObjectType, ObjectClassification,
5966                        Args,
5967                        CandidateSet, SuppressUserConversions);
5968   }
5969 }
5970
5971 /// AddMethodCandidate - Adds the given C++ member function to the set
5972 /// of candidate functions, using the given function call arguments
5973 /// and the object argument (@c Object). For example, in a call
5974 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5975 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5976 /// allow user-defined conversions via constructors or conversion
5977 /// operators.
5978 void
5979 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5980                          CXXRecordDecl *ActingContext, QualType ObjectType,
5981                          Expr::Classification ObjectClassification,
5982                          ArrayRef<Expr *> Args,
5983                          OverloadCandidateSet &CandidateSet,
5984                          bool SuppressUserConversions,
5985                          bool PartialOverloading) {
5986   const FunctionProtoType *Proto
5987     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5988   assert(Proto && "Methods without a prototype cannot be overloaded");
5989   assert(!isa<CXXConstructorDecl>(Method) &&
5990          "Use AddOverloadCandidate for constructors");
5991
5992   if (!CandidateSet.isNewCandidate(Method))
5993     return;
5994
5995   // C++11 [class.copy]p23: [DR1402]
5996   //   A defaulted move assignment operator that is defined as deleted is
5997   //   ignored by overload resolution.
5998   if (Method->isDefaulted() && Method->isDeleted() &&
5999       Method->isMoveAssignmentOperator())
6000     return;
6001
6002   // Overload resolution is always an unevaluated context.
6003   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6004
6005   // Add this candidate
6006   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6007   Candidate.FoundDecl = FoundDecl;
6008   Candidate.Function = Method;
6009   Candidate.IsSurrogate = false;
6010   Candidate.IgnoreObjectArgument = false;
6011   Candidate.ExplicitCallArguments = Args.size();
6012
6013   unsigned NumParams = Proto->getNumParams();
6014
6015   // (C++ 13.3.2p2): A candidate function having fewer than m
6016   // parameters is viable only if it has an ellipsis in its parameter
6017   // list (8.3.5).
6018   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6019       !Proto->isVariadic()) {
6020     Candidate.Viable = false;
6021     Candidate.FailureKind = ovl_fail_too_many_arguments;
6022     return;
6023   }
6024
6025   // (C++ 13.3.2p2): A candidate function having more than m parameters
6026   // is viable only if the (m+1)st parameter has a default argument
6027   // (8.3.6). For the purposes of overload resolution, the
6028   // parameter list is truncated on the right, so that there are
6029   // exactly m parameters.
6030   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6031   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6032     // Not enough arguments.
6033     Candidate.Viable = false;
6034     Candidate.FailureKind = ovl_fail_too_few_arguments;
6035     return;
6036   }
6037
6038   Candidate.Viable = true;
6039
6040   if (Method->isStatic() || ObjectType.isNull())
6041     // The implicit object argument is ignored.
6042     Candidate.IgnoreObjectArgument = true;
6043   else {
6044     // Determine the implicit conversion sequence for the object
6045     // parameter.
6046     Candidate.Conversions[0]
6047       = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
6048                                         Method, ActingContext);
6049     if (Candidate.Conversions[0].isBad()) {
6050       Candidate.Viable = false;
6051       Candidate.FailureKind = ovl_fail_bad_conversion;
6052       return;
6053     }
6054   }
6055
6056   // (CUDA B.1): Check for invalid calls between targets.
6057   if (getLangOpts().CUDA)
6058     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6059       if (CheckCUDATarget(Caller, Method)) {
6060         Candidate.Viable = false;
6061         Candidate.FailureKind = ovl_fail_bad_target;
6062         return;
6063       }
6064
6065   // Determine the implicit conversion sequences for each of the
6066   // arguments.
6067   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6068     if (ArgIdx < NumParams) {
6069       // (C++ 13.3.2p3): for F to be a viable function, there shall
6070       // exist for each argument an implicit conversion sequence
6071       // (13.3.3.1) that converts that argument to the corresponding
6072       // parameter of F.
6073       QualType ParamType = Proto->getParamType(ArgIdx);
6074       Candidate.Conversions[ArgIdx + 1]
6075         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6076                                 SuppressUserConversions,
6077                                 /*InOverloadResolution=*/true,
6078                                 /*AllowObjCWritebackConversion=*/
6079                                   getLangOpts().ObjCAutoRefCount);
6080       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6081         Candidate.Viable = false;
6082         Candidate.FailureKind = ovl_fail_bad_conversion;
6083         return;
6084       }
6085     } else {
6086       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6087       // argument for which there is no corresponding parameter is
6088       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6089       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6090     }
6091   }
6092
6093   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6094     Candidate.Viable = false;
6095     Candidate.FailureKind = ovl_fail_enable_if;
6096     Candidate.DeductionFailure.Data = FailedAttr;
6097     return;
6098   }
6099 }
6100
6101 /// \brief Add a C++ member function template as a candidate to the candidate
6102 /// set, using template argument deduction to produce an appropriate member
6103 /// function template specialization.
6104 void
6105 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6106                                  DeclAccessPair FoundDecl,
6107                                  CXXRecordDecl *ActingContext,
6108                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6109                                  QualType ObjectType,
6110                                  Expr::Classification ObjectClassification,
6111                                  ArrayRef<Expr *> Args,
6112                                  OverloadCandidateSet& CandidateSet,
6113                                  bool SuppressUserConversions,
6114                                  bool PartialOverloading) {
6115   if (!CandidateSet.isNewCandidate(MethodTmpl))
6116     return;
6117
6118   // C++ [over.match.funcs]p7:
6119   //   In each case where a candidate is a function template, candidate
6120   //   function template specializations are generated using template argument
6121   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6122   //   candidate functions in the usual way.113) A given name can refer to one
6123   //   or more function templates and also to a set of overloaded non-template
6124   //   functions. In such a case, the candidate functions generated from each
6125   //   function template are combined with the set of non-template candidate
6126   //   functions.
6127   TemplateDeductionInfo Info(CandidateSet.getLocation());
6128   FunctionDecl *Specialization = nullptr;
6129   if (TemplateDeductionResult Result
6130       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
6131                                 Specialization, Info, PartialOverloading)) {
6132     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6133     Candidate.FoundDecl = FoundDecl;
6134     Candidate.Function = MethodTmpl->getTemplatedDecl();
6135     Candidate.Viable = false;
6136     Candidate.FailureKind = ovl_fail_bad_deduction;
6137     Candidate.IsSurrogate = false;
6138     Candidate.IgnoreObjectArgument = false;
6139     Candidate.ExplicitCallArguments = Args.size();
6140     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6141                                                           Info);
6142     return;
6143   }
6144
6145   // Add the function template specialization produced by template argument
6146   // deduction as a candidate.
6147   assert(Specialization && "Missing member function template specialization?");
6148   assert(isa<CXXMethodDecl>(Specialization) &&
6149          "Specialization is not a member function?");
6150   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6151                      ActingContext, ObjectType, ObjectClassification, Args,
6152                      CandidateSet, SuppressUserConversions, PartialOverloading);
6153 }
6154
6155 /// \brief Add a C++ function template specialization as a candidate
6156 /// in the candidate set, using template argument deduction to produce
6157 /// an appropriate function template specialization.
6158 void
6159 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
6160                                    DeclAccessPair FoundDecl,
6161                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6162                                    ArrayRef<Expr *> Args,
6163                                    OverloadCandidateSet& CandidateSet,
6164                                    bool SuppressUserConversions,
6165                                    bool PartialOverloading) {
6166   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6167     return;
6168
6169   // C++ [over.match.funcs]p7:
6170   //   In each case where a candidate is a function template, candidate
6171   //   function template specializations are generated using template argument
6172   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6173   //   candidate functions in the usual way.113) A given name can refer to one
6174   //   or more function templates and also to a set of overloaded non-template
6175   //   functions. In such a case, the candidate functions generated from each
6176   //   function template are combined with the set of non-template candidate
6177   //   functions.
6178   TemplateDeductionInfo Info(CandidateSet.getLocation());
6179   FunctionDecl *Specialization = nullptr;
6180   if (TemplateDeductionResult Result
6181         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
6182                                   Specialization, Info, PartialOverloading)) {
6183     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6184     Candidate.FoundDecl = FoundDecl;
6185     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6186     Candidate.Viable = false;
6187     Candidate.FailureKind = ovl_fail_bad_deduction;
6188     Candidate.IsSurrogate = false;
6189     Candidate.IgnoreObjectArgument = false;
6190     Candidate.ExplicitCallArguments = Args.size();
6191     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6192                                                           Info);
6193     return;
6194   }
6195
6196   // Add the function template specialization produced by template argument
6197   // deduction as a candidate.
6198   assert(Specialization && "Missing function template specialization?");
6199   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
6200                        SuppressUserConversions, PartialOverloading);
6201 }
6202
6203 /// Determine whether this is an allowable conversion from the result
6204 /// of an explicit conversion operator to the expected type, per C++
6205 /// [over.match.conv]p1 and [over.match.ref]p1.
6206 ///
6207 /// \param ConvType The return type of the conversion function.
6208 ///
6209 /// \param ToType The type we are converting to.
6210 ///
6211 /// \param AllowObjCPointerConversion Allow a conversion from one
6212 /// Objective-C pointer to another.
6213 ///
6214 /// \returns true if the conversion is allowable, false otherwise.
6215 static bool isAllowableExplicitConversion(Sema &S,
6216                                           QualType ConvType, QualType ToType,
6217                                           bool AllowObjCPointerConversion) {
6218   QualType ToNonRefType = ToType.getNonReferenceType();
6219
6220   // Easy case: the types are the same.
6221   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6222     return true;
6223
6224   // Allow qualification conversions.
6225   bool ObjCLifetimeConversion;
6226   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6227                                   ObjCLifetimeConversion))
6228     return true;
6229
6230   // If we're not allowed to consider Objective-C pointer conversions,
6231   // we're done.
6232   if (!AllowObjCPointerConversion)
6233     return false;
6234
6235   // Is this an Objective-C pointer conversion?
6236   bool IncompatibleObjC = false;
6237   QualType ConvertedType;
6238   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6239                                    IncompatibleObjC);
6240 }
6241                                           
6242 /// AddConversionCandidate - Add a C++ conversion function as a
6243 /// candidate in the candidate set (C++ [over.match.conv],
6244 /// C++ [over.match.copy]). From is the expression we're converting from,
6245 /// and ToType is the type that we're eventually trying to convert to
6246 /// (which may or may not be the same type as the type that the
6247 /// conversion function produces).
6248 void
6249 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
6250                              DeclAccessPair FoundDecl,
6251                              CXXRecordDecl *ActingContext,
6252                              Expr *From, QualType ToType,
6253                              OverloadCandidateSet& CandidateSet,
6254                              bool AllowObjCConversionOnExplicit) {
6255   assert(!Conversion->getDescribedFunctionTemplate() &&
6256          "Conversion function templates use AddTemplateConversionCandidate");
6257   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6258   if (!CandidateSet.isNewCandidate(Conversion))
6259     return;
6260
6261   // If the conversion function has an undeduced return type, trigger its
6262   // deduction now.
6263   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6264     if (DeduceReturnType(Conversion, From->getExprLoc()))
6265       return;
6266     ConvType = Conversion->getConversionType().getNonReferenceType();
6267   }
6268
6269   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6270   // operator is only a candidate if its return type is the target type or
6271   // can be converted to the target type with a qualification conversion.
6272   if (Conversion->isExplicit() && 
6273       !isAllowableExplicitConversion(*this, ConvType, ToType, 
6274                                      AllowObjCConversionOnExplicit))
6275     return;
6276
6277   // Overload resolution is always an unevaluated context.
6278   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6279
6280   // Add this candidate
6281   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6282   Candidate.FoundDecl = FoundDecl;
6283   Candidate.Function = Conversion;
6284   Candidate.IsSurrogate = false;
6285   Candidate.IgnoreObjectArgument = false;
6286   Candidate.FinalConversion.setAsIdentityConversion();
6287   Candidate.FinalConversion.setFromType(ConvType);
6288   Candidate.FinalConversion.setAllToTypes(ToType);
6289   Candidate.Viable = true;
6290   Candidate.ExplicitCallArguments = 1;
6291
6292   // C++ [over.match.funcs]p4:
6293   //   For conversion functions, the function is considered to be a member of
6294   //   the class of the implicit implied object argument for the purpose of
6295   //   defining the type of the implicit object parameter.
6296   //
6297   // Determine the implicit conversion sequence for the implicit
6298   // object parameter.
6299   QualType ImplicitParamType = From->getType();
6300   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6301     ImplicitParamType = FromPtrType->getPointeeType();
6302   CXXRecordDecl *ConversionContext
6303     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6304
6305   Candidate.Conversions[0]
6306     = TryObjectArgumentInitialization(*this, From->getType(),
6307                                       From->Classify(Context),
6308                                       Conversion, ConversionContext);
6309
6310   if (Candidate.Conversions[0].isBad()) {
6311     Candidate.Viable = false;
6312     Candidate.FailureKind = ovl_fail_bad_conversion;
6313     return;
6314   }
6315
6316   // We won't go through a user-defined type conversion function to convert a
6317   // derived to base as such conversions are given Conversion Rank. They only
6318   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
6319   QualType FromCanon
6320     = Context.getCanonicalType(From->getType().getUnqualifiedType());
6321   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
6322   if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
6323     Candidate.Viable = false;
6324     Candidate.FailureKind = ovl_fail_trivial_conversion;
6325     return;
6326   }
6327
6328   // To determine what the conversion from the result of calling the
6329   // conversion function to the type we're eventually trying to
6330   // convert to (ToType), we need to synthesize a call to the
6331   // conversion function and attempt copy initialization from it. This
6332   // makes sure that we get the right semantics with respect to
6333   // lvalues/rvalues and the type. Fortunately, we can allocate this
6334   // call on the stack and we don't need its arguments to be
6335   // well-formed.
6336   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
6337                             VK_LValue, From->getLocStart());
6338   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
6339                                 Context.getPointerType(Conversion->getType()),
6340                                 CK_FunctionToPointerDecay,
6341                                 &ConversionRef, VK_RValue);
6342
6343   QualType ConversionType = Conversion->getConversionType();
6344   if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
6345     Candidate.Viable = false;
6346     Candidate.FailureKind = ovl_fail_bad_final_conversion;
6347     return;
6348   }
6349
6350   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
6351
6352   // Note that it is safe to allocate CallExpr on the stack here because
6353   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
6354   // allocator).
6355   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
6356   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
6357                 From->getLocStart());
6358   ImplicitConversionSequence ICS =
6359     TryCopyInitialization(*this, &Call, ToType,
6360                           /*SuppressUserConversions=*/true,
6361                           /*InOverloadResolution=*/false,
6362                           /*AllowObjCWritebackConversion=*/false);
6363
6364   switch (ICS.getKind()) {
6365   case ImplicitConversionSequence::StandardConversion:
6366     Candidate.FinalConversion = ICS.Standard;
6367
6368     // C++ [over.ics.user]p3:
6369     //   If the user-defined conversion is specified by a specialization of a
6370     //   conversion function template, the second standard conversion sequence
6371     //   shall have exact match rank.
6372     if (Conversion->getPrimaryTemplate() &&
6373         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
6374       Candidate.Viable = false;
6375       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
6376       return;
6377     }
6378
6379     // C++0x [dcl.init.ref]p5:
6380     //    In the second case, if the reference is an rvalue reference and
6381     //    the second standard conversion sequence of the user-defined
6382     //    conversion sequence includes an lvalue-to-rvalue conversion, the
6383     //    program is ill-formed.
6384     if (ToType->isRValueReferenceType() &&
6385         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6386       Candidate.Viable = false;
6387       Candidate.FailureKind = ovl_fail_bad_final_conversion;
6388       return;
6389     }
6390     break;
6391
6392   case ImplicitConversionSequence::BadConversion:
6393     Candidate.Viable = false;
6394     Candidate.FailureKind = ovl_fail_bad_final_conversion;
6395     return;
6396
6397   default:
6398     llvm_unreachable(
6399            "Can only end up with a standard conversion sequence or failure");
6400   }
6401
6402   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6403     Candidate.Viable = false;
6404     Candidate.FailureKind = ovl_fail_enable_if;
6405     Candidate.DeductionFailure.Data = FailedAttr;
6406     return;
6407   }
6408 }
6409
6410 /// \brief Adds a conversion function template specialization
6411 /// candidate to the overload set, using template argument deduction
6412 /// to deduce the template arguments of the conversion function
6413 /// template from the type that we are converting to (C++
6414 /// [temp.deduct.conv]).
6415 void
6416 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
6417                                      DeclAccessPair FoundDecl,
6418                                      CXXRecordDecl *ActingDC,
6419                                      Expr *From, QualType ToType,
6420                                      OverloadCandidateSet &CandidateSet,
6421                                      bool AllowObjCConversionOnExplicit) {
6422   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
6423          "Only conversion function templates permitted here");
6424
6425   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6426     return;
6427
6428   TemplateDeductionInfo Info(CandidateSet.getLocation());
6429   CXXConversionDecl *Specialization = nullptr;
6430   if (TemplateDeductionResult Result
6431         = DeduceTemplateArguments(FunctionTemplate, ToType,
6432                                   Specialization, Info)) {
6433     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6434     Candidate.FoundDecl = FoundDecl;
6435     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6436     Candidate.Viable = false;
6437     Candidate.FailureKind = ovl_fail_bad_deduction;
6438     Candidate.IsSurrogate = false;
6439     Candidate.IgnoreObjectArgument = false;
6440     Candidate.ExplicitCallArguments = 1;
6441     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6442                                                           Info);
6443     return;
6444   }
6445
6446   // Add the conversion function template specialization produced by
6447   // template argument deduction as a candidate.
6448   assert(Specialization && "Missing function template specialization?");
6449   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6450                          CandidateSet, AllowObjCConversionOnExplicit);
6451 }
6452
6453 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6454 /// converts the given @c Object to a function pointer via the
6455 /// conversion function @c Conversion, and then attempts to call it
6456 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
6457 /// the type of function that we'll eventually be calling.
6458 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6459                                  DeclAccessPair FoundDecl,
6460                                  CXXRecordDecl *ActingContext,
6461                                  const FunctionProtoType *Proto,
6462                                  Expr *Object,
6463                                  ArrayRef<Expr *> Args,
6464                                  OverloadCandidateSet& CandidateSet) {
6465   if (!CandidateSet.isNewCandidate(Conversion))
6466     return;
6467
6468   // Overload resolution is always an unevaluated context.
6469   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6470
6471   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6472   Candidate.FoundDecl = FoundDecl;
6473   Candidate.Function = nullptr;
6474   Candidate.Surrogate = Conversion;
6475   Candidate.Viable = true;
6476   Candidate.IsSurrogate = true;
6477   Candidate.IgnoreObjectArgument = false;
6478   Candidate.ExplicitCallArguments = Args.size();
6479
6480   // Determine the implicit conversion sequence for the implicit
6481   // object parameter.
6482   ImplicitConversionSequence ObjectInit
6483     = TryObjectArgumentInitialization(*this, Object->getType(),
6484                                       Object->Classify(Context),
6485                                       Conversion, ActingContext);
6486   if (ObjectInit.isBad()) {
6487     Candidate.Viable = false;
6488     Candidate.FailureKind = ovl_fail_bad_conversion;
6489     Candidate.Conversions[0] = ObjectInit;
6490     return;
6491   }
6492
6493   // The first conversion is actually a user-defined conversion whose
6494   // first conversion is ObjectInit's standard conversion (which is
6495   // effectively a reference binding). Record it as such.
6496   Candidate.Conversions[0].setUserDefined();
6497   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6498   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6499   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6500   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6501   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6502   Candidate.Conversions[0].UserDefined.After
6503     = Candidate.Conversions[0].UserDefined.Before;
6504   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6505
6506   // Find the
6507   unsigned NumParams = Proto->getNumParams();
6508
6509   // (C++ 13.3.2p2): A candidate function having fewer than m
6510   // parameters is viable only if it has an ellipsis in its parameter
6511   // list (8.3.5).
6512   if (Args.size() > NumParams && !Proto->isVariadic()) {
6513     Candidate.Viable = false;
6514     Candidate.FailureKind = ovl_fail_too_many_arguments;
6515     return;
6516   }
6517
6518   // Function types don't have any default arguments, so just check if
6519   // we have enough arguments.
6520   if (Args.size() < NumParams) {
6521     // Not enough arguments.
6522     Candidate.Viable = false;
6523     Candidate.FailureKind = ovl_fail_too_few_arguments;
6524     return;
6525   }
6526
6527   // Determine the implicit conversion sequences for each of the
6528   // arguments.
6529   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6530     if (ArgIdx < NumParams) {
6531       // (C++ 13.3.2p3): for F to be a viable function, there shall
6532       // exist for each argument an implicit conversion sequence
6533       // (13.3.3.1) that converts that argument to the corresponding
6534       // parameter of F.
6535       QualType ParamType = Proto->getParamType(ArgIdx);
6536       Candidate.Conversions[ArgIdx + 1]
6537         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6538                                 /*SuppressUserConversions=*/false,
6539                                 /*InOverloadResolution=*/false,
6540                                 /*AllowObjCWritebackConversion=*/
6541                                   getLangOpts().ObjCAutoRefCount);
6542       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6543         Candidate.Viable = false;
6544         Candidate.FailureKind = ovl_fail_bad_conversion;
6545         return;
6546       }
6547     } else {
6548       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6549       // argument for which there is no corresponding parameter is
6550       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6551       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6552     }
6553   }
6554
6555   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6556     Candidate.Viable = false;
6557     Candidate.FailureKind = ovl_fail_enable_if;
6558     Candidate.DeductionFailure.Data = FailedAttr;
6559     return;
6560   }
6561 }
6562
6563 /// \brief Add overload candidates for overloaded operators that are
6564 /// member functions.
6565 ///
6566 /// Add the overloaded operator candidates that are member functions
6567 /// for the operator Op that was used in an operator expression such
6568 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
6569 /// CandidateSet will store the added overload candidates. (C++
6570 /// [over.match.oper]).
6571 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6572                                        SourceLocation OpLoc,
6573                                        ArrayRef<Expr *> Args,
6574                                        OverloadCandidateSet& CandidateSet,
6575                                        SourceRange OpRange) {
6576   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6577
6578   // C++ [over.match.oper]p3:
6579   //   For a unary operator @ with an operand of a type whose
6580   //   cv-unqualified version is T1, and for a binary operator @ with
6581   //   a left operand of a type whose cv-unqualified version is T1 and
6582   //   a right operand of a type whose cv-unqualified version is T2,
6583   //   three sets of candidate functions, designated member
6584   //   candidates, non-member candidates and built-in candidates, are
6585   //   constructed as follows:
6586   QualType T1 = Args[0]->getType();
6587
6588   //     -- If T1 is a complete class type or a class currently being
6589   //        defined, the set of member candidates is the result of the
6590   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6591   //        the set of member candidates is empty.
6592   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6593     // Complete the type if it can be completed.
6594     RequireCompleteType(OpLoc, T1, 0);
6595     // If the type is neither complete nor being defined, bail out now.
6596     if (!T1Rec->getDecl()->getDefinition())
6597       return;
6598
6599     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6600     LookupQualifiedName(Operators, T1Rec->getDecl());
6601     Operators.suppressDiagnostics();
6602
6603     for (LookupResult::iterator Oper = Operators.begin(),
6604                              OperEnd = Operators.end();
6605          Oper != OperEnd;
6606          ++Oper)
6607       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6608                          Args[0]->Classify(Context), 
6609                          Args.slice(1),
6610                          CandidateSet,
6611                          /* SuppressUserConversions = */ false);
6612   }
6613 }
6614
6615 /// AddBuiltinCandidate - Add a candidate for a built-in
6616 /// operator. ResultTy and ParamTys are the result and parameter types
6617 /// of the built-in candidate, respectively. Args and NumArgs are the
6618 /// arguments being passed to the candidate. IsAssignmentOperator
6619 /// should be true when this built-in candidate is an assignment
6620 /// operator. NumContextualBoolArguments is the number of arguments
6621 /// (at the beginning of the argument list) that will be contextually
6622 /// converted to bool.
6623 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6624                                ArrayRef<Expr *> Args,
6625                                OverloadCandidateSet& CandidateSet,
6626                                bool IsAssignmentOperator,
6627                                unsigned NumContextualBoolArguments) {
6628   // Overload resolution is always an unevaluated context.
6629   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6630
6631   // Add this candidate
6632   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6633   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
6634   Candidate.Function = nullptr;
6635   Candidate.IsSurrogate = false;
6636   Candidate.IgnoreObjectArgument = false;
6637   Candidate.BuiltinTypes.ResultTy = ResultTy;
6638   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6639     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6640
6641   // Determine the implicit conversion sequences for each of the
6642   // arguments.
6643   Candidate.Viable = true;
6644   Candidate.ExplicitCallArguments = Args.size();
6645   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6646     // C++ [over.match.oper]p4:
6647     //   For the built-in assignment operators, conversions of the
6648     //   left operand are restricted as follows:
6649     //     -- no temporaries are introduced to hold the left operand, and
6650     //     -- no user-defined conversions are applied to the left
6651     //        operand to achieve a type match with the left-most
6652     //        parameter of a built-in candidate.
6653     //
6654     // We block these conversions by turning off user-defined
6655     // conversions, since that is the only way that initialization of
6656     // a reference to a non-class type can occur from something that
6657     // is not of the same type.
6658     if (ArgIdx < NumContextualBoolArguments) {
6659       assert(ParamTys[ArgIdx] == Context.BoolTy &&
6660              "Contextual conversion to bool requires bool type");
6661       Candidate.Conversions[ArgIdx]
6662         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6663     } else {
6664       Candidate.Conversions[ArgIdx]
6665         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6666                                 ArgIdx == 0 && IsAssignmentOperator,
6667                                 /*InOverloadResolution=*/false,
6668                                 /*AllowObjCWritebackConversion=*/
6669                                   getLangOpts().ObjCAutoRefCount);
6670     }
6671     if (Candidate.Conversions[ArgIdx].isBad()) {
6672       Candidate.Viable = false;
6673       Candidate.FailureKind = ovl_fail_bad_conversion;
6674       break;
6675     }
6676   }
6677 }
6678
6679 namespace {
6680
6681 /// BuiltinCandidateTypeSet - A set of types that will be used for the
6682 /// candidate operator functions for built-in operators (C++
6683 /// [over.built]). The types are separated into pointer types and
6684 /// enumeration types.
6685 class BuiltinCandidateTypeSet  {
6686   /// TypeSet - A set of types.
6687   typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6688
6689   /// PointerTypes - The set of pointer types that will be used in the
6690   /// built-in candidates.
6691   TypeSet PointerTypes;
6692
6693   /// MemberPointerTypes - The set of member pointer types that will be
6694   /// used in the built-in candidates.
6695   TypeSet MemberPointerTypes;
6696
6697   /// EnumerationTypes - The set of enumeration types that will be
6698   /// used in the built-in candidates.
6699   TypeSet EnumerationTypes;
6700
6701   /// \brief The set of vector types that will be used in the built-in
6702   /// candidates.
6703   TypeSet VectorTypes;
6704
6705   /// \brief A flag indicating non-record types are viable candidates
6706   bool HasNonRecordTypes;
6707
6708   /// \brief A flag indicating whether either arithmetic or enumeration types
6709   /// were present in the candidate set.
6710   bool HasArithmeticOrEnumeralTypes;
6711
6712   /// \brief A flag indicating whether the nullptr type was present in the
6713   /// candidate set.
6714   bool HasNullPtrType;
6715   
6716   /// Sema - The semantic analysis instance where we are building the
6717   /// candidate type set.
6718   Sema &SemaRef;
6719
6720   /// Context - The AST context in which we will build the type sets.
6721   ASTContext &Context;
6722
6723   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6724                                                const Qualifiers &VisibleQuals);
6725   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6726
6727 public:
6728   /// iterator - Iterates through the types that are part of the set.
6729   typedef TypeSet::iterator iterator;
6730
6731   BuiltinCandidateTypeSet(Sema &SemaRef)
6732     : HasNonRecordTypes(false),
6733       HasArithmeticOrEnumeralTypes(false),
6734       HasNullPtrType(false),
6735       SemaRef(SemaRef),
6736       Context(SemaRef.Context) { }
6737
6738   void AddTypesConvertedFrom(QualType Ty,
6739                              SourceLocation Loc,
6740                              bool AllowUserConversions,
6741                              bool AllowExplicitConversions,
6742                              const Qualifiers &VisibleTypeConversionsQuals);
6743
6744   /// pointer_begin - First pointer type found;
6745   iterator pointer_begin() { return PointerTypes.begin(); }
6746
6747   /// pointer_end - Past the last pointer type found;
6748   iterator pointer_end() { return PointerTypes.end(); }
6749
6750   /// member_pointer_begin - First member pointer type found;
6751   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6752
6753   /// member_pointer_end - Past the last member pointer type found;
6754   iterator member_pointer_end() { return MemberPointerTypes.end(); }
6755
6756   /// enumeration_begin - First enumeration type found;
6757   iterator enumeration_begin() { return EnumerationTypes.begin(); }
6758
6759   /// enumeration_end - Past the last enumeration type found;
6760   iterator enumeration_end() { return EnumerationTypes.end(); }
6761
6762   iterator vector_begin() { return VectorTypes.begin(); }
6763   iterator vector_end() { return VectorTypes.end(); }
6764
6765   bool hasNonRecordTypes() { return HasNonRecordTypes; }
6766   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6767   bool hasNullPtrType() const { return HasNullPtrType; }
6768 };
6769
6770 } // end anonymous namespace
6771
6772 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6773 /// the set of pointer types along with any more-qualified variants of
6774 /// that type. For example, if @p Ty is "int const *", this routine
6775 /// will add "int const *", "int const volatile *", "int const
6776 /// restrict *", and "int const volatile restrict *" to the set of
6777 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6778 /// false otherwise.
6779 ///
6780 /// FIXME: what to do about extended qualifiers?
6781 bool
6782 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6783                                              const Qualifiers &VisibleQuals) {
6784
6785   // Insert this type.
6786   if (!PointerTypes.insert(Ty).second)
6787     return false;
6788
6789   QualType PointeeTy;
6790   const PointerType *PointerTy = Ty->getAs<PointerType>();
6791   bool buildObjCPtr = false;
6792   if (!PointerTy) {
6793     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6794     PointeeTy = PTy->getPointeeType();
6795     buildObjCPtr = true;
6796   } else {
6797     PointeeTy = PointerTy->getPointeeType();
6798   }
6799   
6800   // Don't add qualified variants of arrays. For one, they're not allowed
6801   // (the qualifier would sink to the element type), and for another, the
6802   // only overload situation where it matters is subscript or pointer +- int,
6803   // and those shouldn't have qualifier variants anyway.
6804   if (PointeeTy->isArrayType())
6805     return true;
6806   
6807   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6808   bool hasVolatile = VisibleQuals.hasVolatile();
6809   bool hasRestrict = VisibleQuals.hasRestrict();
6810
6811   // Iterate through all strict supersets of BaseCVR.
6812   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6813     if ((CVR | BaseCVR) != CVR) continue;
6814     // Skip over volatile if no volatile found anywhere in the types.
6815     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6816     
6817     // Skip over restrict if no restrict found anywhere in the types, or if
6818     // the type cannot be restrict-qualified.
6819     if ((CVR & Qualifiers::Restrict) &&
6820         (!hasRestrict ||
6821          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6822       continue;
6823   
6824     // Build qualified pointee type.
6825     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6826     
6827     // Build qualified pointer type.
6828     QualType QPointerTy;
6829     if (!buildObjCPtr)
6830       QPointerTy = Context.getPointerType(QPointeeTy);
6831     else
6832       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6833     
6834     // Insert qualified pointer type.
6835     PointerTypes.insert(QPointerTy);
6836   }
6837
6838   return true;
6839 }
6840
6841 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6842 /// to the set of pointer types along with any more-qualified variants of
6843 /// that type. For example, if @p Ty is "int const *", this routine
6844 /// will add "int const *", "int const volatile *", "int const
6845 /// restrict *", and "int const volatile restrict *" to the set of
6846 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6847 /// false otherwise.
6848 ///
6849 /// FIXME: what to do about extended qualifiers?
6850 bool
6851 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6852     QualType Ty) {
6853   // Insert this type.
6854   if (!MemberPointerTypes.insert(Ty).second)
6855     return false;
6856
6857   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6858   assert(PointerTy && "type was not a member pointer type!");
6859
6860   QualType PointeeTy = PointerTy->getPointeeType();
6861   // Don't add qualified variants of arrays. For one, they're not allowed
6862   // (the qualifier would sink to the element type), and for another, the
6863   // only overload situation where it matters is subscript or pointer +- int,
6864   // and those shouldn't have qualifier variants anyway.
6865   if (PointeeTy->isArrayType())
6866     return true;
6867   const Type *ClassTy = PointerTy->getClass();
6868
6869   // Iterate through all strict supersets of the pointee type's CVR
6870   // qualifiers.
6871   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6872   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6873     if ((CVR | BaseCVR) != CVR) continue;
6874
6875     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6876     MemberPointerTypes.insert(
6877       Context.getMemberPointerType(QPointeeTy, ClassTy));
6878   }
6879
6880   return true;
6881 }
6882
6883 /// AddTypesConvertedFrom - Add each of the types to which the type @p
6884 /// Ty can be implicit converted to the given set of @p Types. We're
6885 /// primarily interested in pointer types and enumeration types. We also
6886 /// take member pointer types, for the conditional operator.
6887 /// AllowUserConversions is true if we should look at the conversion
6888 /// functions of a class type, and AllowExplicitConversions if we
6889 /// should also include the explicit conversion functions of a class
6890 /// type.
6891 void
6892 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6893                                                SourceLocation Loc,
6894                                                bool AllowUserConversions,
6895                                                bool AllowExplicitConversions,
6896                                                const Qualifiers &VisibleQuals) {
6897   // Only deal with canonical types.
6898   Ty = Context.getCanonicalType(Ty);
6899
6900   // Look through reference types; they aren't part of the type of an
6901   // expression for the purposes of conversions.
6902   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6903     Ty = RefTy->getPointeeType();
6904
6905   // If we're dealing with an array type, decay to the pointer.
6906   if (Ty->isArrayType())
6907     Ty = SemaRef.Context.getArrayDecayedType(Ty);
6908
6909   // Otherwise, we don't care about qualifiers on the type.
6910   Ty = Ty.getLocalUnqualifiedType();
6911
6912   // Flag if we ever add a non-record type.
6913   const RecordType *TyRec = Ty->getAs<RecordType>();
6914   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6915
6916   // Flag if we encounter an arithmetic type.
6917   HasArithmeticOrEnumeralTypes =
6918     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6919
6920   if (Ty->isObjCIdType() || Ty->isObjCClassType())
6921     PointerTypes.insert(Ty);
6922   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6923     // Insert our type, and its more-qualified variants, into the set
6924     // of types.
6925     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6926       return;
6927   } else if (Ty->isMemberPointerType()) {
6928     // Member pointers are far easier, since the pointee can't be converted.
6929     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6930       return;
6931   } else if (Ty->isEnumeralType()) {
6932     HasArithmeticOrEnumeralTypes = true;
6933     EnumerationTypes.insert(Ty);
6934   } else if (Ty->isVectorType()) {
6935     // We treat vector types as arithmetic types in many contexts as an
6936     // extension.
6937     HasArithmeticOrEnumeralTypes = true;
6938     VectorTypes.insert(Ty);
6939   } else if (Ty->isNullPtrType()) {
6940     HasNullPtrType = true;
6941   } else if (AllowUserConversions && TyRec) {
6942     // No conversion functions in incomplete types.
6943     if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6944       return;
6945
6946     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6947     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
6948       if (isa<UsingShadowDecl>(D))
6949         D = cast<UsingShadowDecl>(D)->getTargetDecl();
6950
6951       // Skip conversion function templates; they don't tell us anything
6952       // about which builtin types we can convert to.
6953       if (isa<FunctionTemplateDecl>(D))
6954         continue;
6955
6956       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6957       if (AllowExplicitConversions || !Conv->isExplicit()) {
6958         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6959                               VisibleQuals);
6960       }
6961     }
6962   }
6963 }
6964
6965 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6966 /// the volatile- and non-volatile-qualified assignment operators for the
6967 /// given type to the candidate set.
6968 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6969                                                    QualType T,
6970                                                    ArrayRef<Expr *> Args,
6971                                     OverloadCandidateSet &CandidateSet) {
6972   QualType ParamTypes[2];
6973
6974   // T& operator=(T&, T)
6975   ParamTypes[0] = S.Context.getLValueReferenceType(T);
6976   ParamTypes[1] = T;
6977   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6978                         /*IsAssignmentOperator=*/true);
6979
6980   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6981     // volatile T& operator=(volatile T&, T)
6982     ParamTypes[0]
6983       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6984     ParamTypes[1] = T;
6985     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6986                           /*IsAssignmentOperator=*/true);
6987   }
6988 }
6989
6990 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6991 /// if any, found in visible type conversion functions found in ArgExpr's type.
6992 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6993     Qualifiers VRQuals;
6994     const RecordType *TyRec;
6995     if (const MemberPointerType *RHSMPType =
6996         ArgExpr->getType()->getAs<MemberPointerType>())
6997       TyRec = RHSMPType->getClass()->getAs<RecordType>();
6998     else
6999       TyRec = ArgExpr->getType()->getAs<RecordType>();
7000     if (!TyRec) {
7001       // Just to be safe, assume the worst case.
7002       VRQuals.addVolatile();
7003       VRQuals.addRestrict();
7004       return VRQuals;
7005     }
7006
7007     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7008     if (!ClassDecl->hasDefinition())
7009       return VRQuals;
7010
7011     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7012       if (isa<UsingShadowDecl>(D))
7013         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7014       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7015         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7016         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7017           CanTy = ResTypeRef->getPointeeType();
7018         // Need to go down the pointer/mempointer chain and add qualifiers
7019         // as see them.
7020         bool done = false;
7021         while (!done) {
7022           if (CanTy.isRestrictQualified())
7023             VRQuals.addRestrict();
7024           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7025             CanTy = ResTypePtr->getPointeeType();
7026           else if (const MemberPointerType *ResTypeMPtr =
7027                 CanTy->getAs<MemberPointerType>())
7028             CanTy = ResTypeMPtr->getPointeeType();
7029           else
7030             done = true;
7031           if (CanTy.isVolatileQualified())
7032             VRQuals.addVolatile();
7033           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7034             return VRQuals;
7035         }
7036       }
7037     }
7038     return VRQuals;
7039 }
7040
7041 namespace {
7042
7043 /// \brief Helper class to manage the addition of builtin operator overload
7044 /// candidates. It provides shared state and utility methods used throughout
7045 /// the process, as well as a helper method to add each group of builtin
7046 /// operator overloads from the standard to a candidate set.
7047 class BuiltinOperatorOverloadBuilder {
7048   // Common instance state available to all overload candidate addition methods.
7049   Sema &S;
7050   ArrayRef<Expr *> Args;
7051   Qualifiers VisibleTypeConversionsQuals;
7052   bool HasArithmeticOrEnumeralCandidateType;
7053   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7054   OverloadCandidateSet &CandidateSet;
7055
7056   // Define some constants used to index and iterate over the arithemetic types
7057   // provided via the getArithmeticType() method below.
7058   // The "promoted arithmetic types" are the arithmetic
7059   // types are that preserved by promotion (C++ [over.built]p2).
7060   static const unsigned FirstIntegralType = 3;
7061   static const unsigned LastIntegralType = 20;
7062   static const unsigned FirstPromotedIntegralType = 3,
7063                         LastPromotedIntegralType = 11;
7064   static const unsigned FirstPromotedArithmeticType = 0,
7065                         LastPromotedArithmeticType = 11;
7066   static const unsigned NumArithmeticTypes = 20;
7067
7068   /// \brief Get the canonical type for a given arithmetic type index.
7069   CanQualType getArithmeticType(unsigned index) {
7070     assert(index < NumArithmeticTypes);
7071     static CanQualType ASTContext::* const
7072       ArithmeticTypes[NumArithmeticTypes] = {
7073       // Start of promoted types.
7074       &ASTContext::FloatTy,
7075       &ASTContext::DoubleTy,
7076       &ASTContext::LongDoubleTy,
7077
7078       // Start of integral types.
7079       &ASTContext::IntTy,
7080       &ASTContext::LongTy,
7081       &ASTContext::LongLongTy,
7082       &ASTContext::Int128Ty,
7083       &ASTContext::UnsignedIntTy,
7084       &ASTContext::UnsignedLongTy,
7085       &ASTContext::UnsignedLongLongTy,
7086       &ASTContext::UnsignedInt128Ty,
7087       // End of promoted types.
7088
7089       &ASTContext::BoolTy,
7090       &ASTContext::CharTy,
7091       &ASTContext::WCharTy,
7092       &ASTContext::Char16Ty,
7093       &ASTContext::Char32Ty,
7094       &ASTContext::SignedCharTy,
7095       &ASTContext::ShortTy,
7096       &ASTContext::UnsignedCharTy,
7097       &ASTContext::UnsignedShortTy,
7098       // End of integral types.
7099       // FIXME: What about complex? What about half?
7100     };
7101     return S.Context.*ArithmeticTypes[index];
7102   }
7103
7104   /// \brief Gets the canonical type resulting from the usual arithemetic
7105   /// converions for the given arithmetic types.
7106   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
7107     // Accelerator table for performing the usual arithmetic conversions.
7108     // The rules are basically:
7109     //   - if either is floating-point, use the wider floating-point
7110     //   - if same signedness, use the higher rank
7111     //   - if same size, use unsigned of the higher rank
7112     //   - use the larger type
7113     // These rules, together with the axiom that higher ranks are
7114     // never smaller, are sufficient to precompute all of these results
7115     // *except* when dealing with signed types of higher rank.
7116     // (we could precompute SLL x UI for all known platforms, but it's
7117     // better not to make any assumptions).
7118     // We assume that int128 has a higher rank than long long on all platforms.
7119     enum PromotedType {
7120             Dep=-1,
7121             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
7122     };
7123     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
7124                                         [LastPromotedArithmeticType] = {
7125 /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
7126 /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
7127 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
7128 /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
7129 /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
7130 /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
7131 /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
7132 /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
7133 /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
7134 /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
7135 /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
7136     };
7137
7138     assert(L < LastPromotedArithmeticType);
7139     assert(R < LastPromotedArithmeticType);
7140     int Idx = ConversionsTable[L][R];
7141
7142     // Fast path: the table gives us a concrete answer.
7143     if (Idx != Dep) return getArithmeticType(Idx);
7144
7145     // Slow path: we need to compare widths.
7146     // An invariant is that the signed type has higher rank.
7147     CanQualType LT = getArithmeticType(L),
7148                 RT = getArithmeticType(R);
7149     unsigned LW = S.Context.getIntWidth(LT),
7150              RW = S.Context.getIntWidth(RT);
7151
7152     // If they're different widths, use the signed type.
7153     if (LW > RW) return LT;
7154     else if (LW < RW) return RT;
7155
7156     // Otherwise, use the unsigned type of the signed type's rank.
7157     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
7158     assert(L == SLL || R == SLL);
7159     return S.Context.UnsignedLongLongTy;
7160   }
7161
7162   /// \brief Helper method to factor out the common pattern of adding overloads
7163   /// for '++' and '--' builtin operators.
7164   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7165                                            bool HasVolatile,
7166                                            bool HasRestrict) {
7167     QualType ParamTypes[2] = {
7168       S.Context.getLValueReferenceType(CandidateTy),
7169       S.Context.IntTy
7170     };
7171
7172     // Non-volatile version.
7173     if (Args.size() == 1)
7174       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7175     else
7176       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7177
7178     // Use a heuristic to reduce number of builtin candidates in the set:
7179     // add volatile version only if there are conversions to a volatile type.
7180     if (HasVolatile) {
7181       ParamTypes[0] =
7182         S.Context.getLValueReferenceType(
7183           S.Context.getVolatileType(CandidateTy));
7184       if (Args.size() == 1)
7185         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7186       else
7187         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7188     }
7189     
7190     // Add restrict version only if there are conversions to a restrict type
7191     // and our candidate type is a non-restrict-qualified pointer.
7192     if (HasRestrict && CandidateTy->isAnyPointerType() &&
7193         !CandidateTy.isRestrictQualified()) {
7194       ParamTypes[0]
7195         = S.Context.getLValueReferenceType(
7196             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7197       if (Args.size() == 1)
7198         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7199       else
7200         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7201       
7202       if (HasVolatile) {
7203         ParamTypes[0]
7204           = S.Context.getLValueReferenceType(
7205               S.Context.getCVRQualifiedType(CandidateTy,
7206                                             (Qualifiers::Volatile |
7207                                              Qualifiers::Restrict)));
7208         if (Args.size() == 1)
7209           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7210         else
7211           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7212       }
7213     }
7214
7215   }
7216
7217 public:
7218   BuiltinOperatorOverloadBuilder(
7219     Sema &S, ArrayRef<Expr *> Args,
7220     Qualifiers VisibleTypeConversionsQuals,
7221     bool HasArithmeticOrEnumeralCandidateType,
7222     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7223     OverloadCandidateSet &CandidateSet)
7224     : S(S), Args(Args),
7225       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7226       HasArithmeticOrEnumeralCandidateType(
7227         HasArithmeticOrEnumeralCandidateType),
7228       CandidateTypes(CandidateTypes),
7229       CandidateSet(CandidateSet) {
7230     // Validate some of our static helper constants in debug builds.
7231     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
7232            "Invalid first promoted integral type");
7233     assert(getArithmeticType(LastPromotedIntegralType - 1)
7234              == S.Context.UnsignedInt128Ty &&
7235            "Invalid last promoted integral type");
7236     assert(getArithmeticType(FirstPromotedArithmeticType)
7237              == S.Context.FloatTy &&
7238            "Invalid first promoted arithmetic type");
7239     assert(getArithmeticType(LastPromotedArithmeticType - 1)
7240              == S.Context.UnsignedInt128Ty &&
7241            "Invalid last promoted arithmetic type");
7242   }
7243
7244   // C++ [over.built]p3:
7245   //
7246   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
7247   //   is either volatile or empty, there exist candidate operator
7248   //   functions of the form
7249   //
7250   //       VQ T&      operator++(VQ T&);
7251   //       T          operator++(VQ T&, int);
7252   //
7253   // C++ [over.built]p4:
7254   //
7255   //   For every pair (T, VQ), where T is an arithmetic type other
7256   //   than bool, and VQ is either volatile or empty, there exist
7257   //   candidate operator functions of the form
7258   //
7259   //       VQ T&      operator--(VQ T&);
7260   //       T          operator--(VQ T&, int);
7261   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7262     if (!HasArithmeticOrEnumeralCandidateType)
7263       return;
7264
7265     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
7266          Arith < NumArithmeticTypes; ++Arith) {
7267       addPlusPlusMinusMinusStyleOverloads(
7268         getArithmeticType(Arith),
7269         VisibleTypeConversionsQuals.hasVolatile(),
7270         VisibleTypeConversionsQuals.hasRestrict());
7271     }
7272   }
7273
7274   // C++ [over.built]p5:
7275   //
7276   //   For every pair (T, VQ), where T is a cv-qualified or
7277   //   cv-unqualified object type, and VQ is either volatile or
7278   //   empty, there exist candidate operator functions of the form
7279   //
7280   //       T*VQ&      operator++(T*VQ&);
7281   //       T*VQ&      operator--(T*VQ&);
7282   //       T*         operator++(T*VQ&, int);
7283   //       T*         operator--(T*VQ&, int);
7284   void addPlusPlusMinusMinusPointerOverloads() {
7285     for (BuiltinCandidateTypeSet::iterator
7286               Ptr = CandidateTypes[0].pointer_begin(),
7287            PtrEnd = CandidateTypes[0].pointer_end();
7288          Ptr != PtrEnd; ++Ptr) {
7289       // Skip pointer types that aren't pointers to object types.
7290       if (!(*Ptr)->getPointeeType()->isObjectType())
7291         continue;
7292
7293       addPlusPlusMinusMinusStyleOverloads(*Ptr,
7294         (!(*Ptr).isVolatileQualified() &&
7295          VisibleTypeConversionsQuals.hasVolatile()),
7296         (!(*Ptr).isRestrictQualified() &&
7297          VisibleTypeConversionsQuals.hasRestrict()));
7298     }
7299   }
7300
7301   // C++ [over.built]p6:
7302   //   For every cv-qualified or cv-unqualified object type T, there
7303   //   exist candidate operator functions of the form
7304   //
7305   //       T&         operator*(T*);
7306   //
7307   // C++ [over.built]p7:
7308   //   For every function type T that does not have cv-qualifiers or a
7309   //   ref-qualifier, there exist candidate operator functions of the form
7310   //       T&         operator*(T*);
7311   void addUnaryStarPointerOverloads() {
7312     for (BuiltinCandidateTypeSet::iterator
7313               Ptr = CandidateTypes[0].pointer_begin(),
7314            PtrEnd = CandidateTypes[0].pointer_end();
7315          Ptr != PtrEnd; ++Ptr) {
7316       QualType ParamTy = *Ptr;
7317       QualType PointeeTy = ParamTy->getPointeeType();
7318       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7319         continue;
7320
7321       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7322         if (Proto->getTypeQuals() || Proto->getRefQualifier())
7323           continue;
7324
7325       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
7326                             &ParamTy, Args, CandidateSet);
7327     }
7328   }
7329
7330   // C++ [over.built]p9:
7331   //  For every promoted arithmetic type T, there exist candidate
7332   //  operator functions of the form
7333   //
7334   //       T         operator+(T);
7335   //       T         operator-(T);
7336   void addUnaryPlusOrMinusArithmeticOverloads() {
7337     if (!HasArithmeticOrEnumeralCandidateType)
7338       return;
7339
7340     for (unsigned Arith = FirstPromotedArithmeticType;
7341          Arith < LastPromotedArithmeticType; ++Arith) {
7342       QualType ArithTy = getArithmeticType(Arith);
7343       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
7344     }
7345
7346     // Extension: We also add these operators for vector types.
7347     for (BuiltinCandidateTypeSet::iterator
7348               Vec = CandidateTypes[0].vector_begin(),
7349            VecEnd = CandidateTypes[0].vector_end();
7350          Vec != VecEnd; ++Vec) {
7351       QualType VecTy = *Vec;
7352       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7353     }
7354   }
7355
7356   // C++ [over.built]p8:
7357   //   For every type T, there exist candidate operator functions of
7358   //   the form
7359   //
7360   //       T*         operator+(T*);
7361   void addUnaryPlusPointerOverloads() {
7362     for (BuiltinCandidateTypeSet::iterator
7363               Ptr = CandidateTypes[0].pointer_begin(),
7364            PtrEnd = CandidateTypes[0].pointer_end();
7365          Ptr != PtrEnd; ++Ptr) {
7366       QualType ParamTy = *Ptr;
7367       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
7368     }
7369   }
7370
7371   // C++ [over.built]p10:
7372   //   For every promoted integral type T, there exist candidate
7373   //   operator functions of the form
7374   //
7375   //        T         operator~(T);
7376   void addUnaryTildePromotedIntegralOverloads() {
7377     if (!HasArithmeticOrEnumeralCandidateType)
7378       return;
7379
7380     for (unsigned Int = FirstPromotedIntegralType;
7381          Int < LastPromotedIntegralType; ++Int) {
7382       QualType IntTy = getArithmeticType(Int);
7383       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
7384     }
7385
7386     // Extension: We also add this operator for vector types.
7387     for (BuiltinCandidateTypeSet::iterator
7388               Vec = CandidateTypes[0].vector_begin(),
7389            VecEnd = CandidateTypes[0].vector_end();
7390          Vec != VecEnd; ++Vec) {
7391       QualType VecTy = *Vec;
7392       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7393     }
7394   }
7395
7396   // C++ [over.match.oper]p16:
7397   //   For every pointer to member type T, there exist candidate operator
7398   //   functions of the form
7399   //
7400   //        bool operator==(T,T);
7401   //        bool operator!=(T,T);
7402   void addEqualEqualOrNotEqualMemberPointerOverloads() {
7403     /// Set of (canonical) types that we've already handled.
7404     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7405
7406     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7407       for (BuiltinCandidateTypeSet::iterator
7408                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7409              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7410            MemPtr != MemPtrEnd;
7411            ++MemPtr) {
7412         // Don't add the same builtin candidate twice.
7413         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7414           continue;
7415
7416         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7417         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7418       }
7419     }
7420   }
7421
7422   // C++ [over.built]p15:
7423   //
7424   //   For every T, where T is an enumeration type, a pointer type, or 
7425   //   std::nullptr_t, there exist candidate operator functions of the form
7426   //
7427   //        bool       operator<(T, T);
7428   //        bool       operator>(T, T);
7429   //        bool       operator<=(T, T);
7430   //        bool       operator>=(T, T);
7431   //        bool       operator==(T, T);
7432   //        bool       operator!=(T, T);
7433   void addRelationalPointerOrEnumeralOverloads() {
7434     // C++ [over.match.oper]p3:
7435     //   [...]the built-in candidates include all of the candidate operator
7436     //   functions defined in 13.6 that, compared to the given operator, [...]
7437     //   do not have the same parameter-type-list as any non-template non-member
7438     //   candidate.
7439     //
7440     // Note that in practice, this only affects enumeration types because there
7441     // aren't any built-in candidates of record type, and a user-defined operator
7442     // must have an operand of record or enumeration type. Also, the only other
7443     // overloaded operator with enumeration arguments, operator=,
7444     // cannot be overloaded for enumeration types, so this is the only place
7445     // where we must suppress candidates like this.
7446     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7447       UserDefinedBinaryOperators;
7448
7449     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7450       if (CandidateTypes[ArgIdx].enumeration_begin() !=
7451           CandidateTypes[ArgIdx].enumeration_end()) {
7452         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7453                                          CEnd = CandidateSet.end();
7454              C != CEnd; ++C) {
7455           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7456             continue;
7457
7458           if (C->Function->isFunctionTemplateSpecialization())
7459             continue;
7460
7461           QualType FirstParamType =
7462             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7463           QualType SecondParamType =
7464             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7465
7466           // Skip if either parameter isn't of enumeral type.
7467           if (!FirstParamType->isEnumeralType() ||
7468               !SecondParamType->isEnumeralType())
7469             continue;
7470
7471           // Add this operator to the set of known user-defined operators.
7472           UserDefinedBinaryOperators.insert(
7473             std::make_pair(S.Context.getCanonicalType(FirstParamType),
7474                            S.Context.getCanonicalType(SecondParamType)));
7475         }
7476       }
7477     }
7478
7479     /// Set of (canonical) types that we've already handled.
7480     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7481
7482     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7483       for (BuiltinCandidateTypeSet::iterator
7484                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7485              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7486            Ptr != PtrEnd; ++Ptr) {
7487         // Don't add the same builtin candidate twice.
7488         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7489           continue;
7490
7491         QualType ParamTypes[2] = { *Ptr, *Ptr };
7492         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7493       }
7494       for (BuiltinCandidateTypeSet::iterator
7495                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7496              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7497            Enum != EnumEnd; ++Enum) {
7498         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7499
7500         // Don't add the same builtin candidate twice, or if a user defined
7501         // candidate exists.
7502         if (!AddedTypes.insert(CanonType).second ||
7503             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7504                                                             CanonType)))
7505           continue;
7506
7507         QualType ParamTypes[2] = { *Enum, *Enum };
7508         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7509       }
7510       
7511       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7512         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7513         if (AddedTypes.insert(NullPtrTy).second &&
7514             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7515                                                              NullPtrTy))) {
7516           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7517           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7518                                 CandidateSet);
7519         }
7520       }
7521     }
7522   }
7523
7524   // C++ [over.built]p13:
7525   //
7526   //   For every cv-qualified or cv-unqualified object type T
7527   //   there exist candidate operator functions of the form
7528   //
7529   //      T*         operator+(T*, ptrdiff_t);
7530   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
7531   //      T*         operator-(T*, ptrdiff_t);
7532   //      T*         operator+(ptrdiff_t, T*);
7533   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
7534   //
7535   // C++ [over.built]p14:
7536   //
7537   //   For every T, where T is a pointer to object type, there
7538   //   exist candidate operator functions of the form
7539   //
7540   //      ptrdiff_t  operator-(T, T);
7541   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7542     /// Set of (canonical) types that we've already handled.
7543     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7544
7545     for (int Arg = 0; Arg < 2; ++Arg) {
7546       QualType AsymetricParamTypes[2] = {
7547         S.Context.getPointerDiffType(),
7548         S.Context.getPointerDiffType(),
7549       };
7550       for (BuiltinCandidateTypeSet::iterator
7551                 Ptr = CandidateTypes[Arg].pointer_begin(),
7552              PtrEnd = CandidateTypes[Arg].pointer_end();
7553            Ptr != PtrEnd; ++Ptr) {
7554         QualType PointeeTy = (*Ptr)->getPointeeType();
7555         if (!PointeeTy->isObjectType())
7556           continue;
7557
7558         AsymetricParamTypes[Arg] = *Ptr;
7559         if (Arg == 0 || Op == OO_Plus) {
7560           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7561           // T* operator+(ptrdiff_t, T*);
7562           S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
7563         }
7564         if (Op == OO_Minus) {
7565           // ptrdiff_t operator-(T, T);
7566           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7567             continue;
7568
7569           QualType ParamTypes[2] = { *Ptr, *Ptr };
7570           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7571                                 Args, CandidateSet);
7572         }
7573       }
7574     }
7575   }
7576
7577   // C++ [over.built]p12:
7578   //
7579   //   For every pair of promoted arithmetic types L and R, there
7580   //   exist candidate operator functions of the form
7581   //
7582   //        LR         operator*(L, R);
7583   //        LR         operator/(L, R);
7584   //        LR         operator+(L, R);
7585   //        LR         operator-(L, R);
7586   //        bool       operator<(L, R);
7587   //        bool       operator>(L, R);
7588   //        bool       operator<=(L, R);
7589   //        bool       operator>=(L, R);
7590   //        bool       operator==(L, R);
7591   //        bool       operator!=(L, R);
7592   //
7593   //   where LR is the result of the usual arithmetic conversions
7594   //   between types L and R.
7595   //
7596   // C++ [over.built]p24:
7597   //
7598   //   For every pair of promoted arithmetic types L and R, there exist
7599   //   candidate operator functions of the form
7600   //
7601   //        LR       operator?(bool, L, R);
7602   //
7603   //   where LR is the result of the usual arithmetic conversions
7604   //   between types L and R.
7605   // Our candidates ignore the first parameter.
7606   void addGenericBinaryArithmeticOverloads(bool isComparison) {
7607     if (!HasArithmeticOrEnumeralCandidateType)
7608       return;
7609
7610     for (unsigned Left = FirstPromotedArithmeticType;
7611          Left < LastPromotedArithmeticType; ++Left) {
7612       for (unsigned Right = FirstPromotedArithmeticType;
7613            Right < LastPromotedArithmeticType; ++Right) {
7614         QualType LandR[2] = { getArithmeticType(Left),
7615                               getArithmeticType(Right) };
7616         QualType Result =
7617           isComparison ? S.Context.BoolTy
7618                        : getUsualArithmeticConversions(Left, Right);
7619         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7620       }
7621     }
7622
7623     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7624     // conditional operator for vector types.
7625     for (BuiltinCandidateTypeSet::iterator
7626               Vec1 = CandidateTypes[0].vector_begin(),
7627            Vec1End = CandidateTypes[0].vector_end();
7628          Vec1 != Vec1End; ++Vec1) {
7629       for (BuiltinCandidateTypeSet::iterator
7630                 Vec2 = CandidateTypes[1].vector_begin(),
7631              Vec2End = CandidateTypes[1].vector_end();
7632            Vec2 != Vec2End; ++Vec2) {
7633         QualType LandR[2] = { *Vec1, *Vec2 };
7634         QualType Result = S.Context.BoolTy;
7635         if (!isComparison) {
7636           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7637             Result = *Vec1;
7638           else
7639             Result = *Vec2;
7640         }
7641
7642         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7643       }
7644     }
7645   }
7646
7647   // C++ [over.built]p17:
7648   //
7649   //   For every pair of promoted integral types L and R, there
7650   //   exist candidate operator functions of the form
7651   //
7652   //      LR         operator%(L, R);
7653   //      LR         operator&(L, R);
7654   //      LR         operator^(L, R);
7655   //      LR         operator|(L, R);
7656   //      L          operator<<(L, R);
7657   //      L          operator>>(L, R);
7658   //
7659   //   where LR is the result of the usual arithmetic conversions
7660   //   between types L and R.
7661   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7662     if (!HasArithmeticOrEnumeralCandidateType)
7663       return;
7664
7665     for (unsigned Left = FirstPromotedIntegralType;
7666          Left < LastPromotedIntegralType; ++Left) {
7667       for (unsigned Right = FirstPromotedIntegralType;
7668            Right < LastPromotedIntegralType; ++Right) {
7669         QualType LandR[2] = { getArithmeticType(Left),
7670                               getArithmeticType(Right) };
7671         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7672             ? LandR[0]
7673             : getUsualArithmeticConversions(Left, Right);
7674         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7675       }
7676     }
7677   }
7678
7679   // C++ [over.built]p20:
7680   //
7681   //   For every pair (T, VQ), where T is an enumeration or
7682   //   pointer to member type and VQ is either volatile or
7683   //   empty, there exist candidate operator functions of the form
7684   //
7685   //        VQ T&      operator=(VQ T&, T);
7686   void addAssignmentMemberPointerOrEnumeralOverloads() {
7687     /// Set of (canonical) types that we've already handled.
7688     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7689
7690     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7691       for (BuiltinCandidateTypeSet::iterator
7692                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7693              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7694            Enum != EnumEnd; ++Enum) {
7695         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
7696           continue;
7697
7698         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7699       }
7700
7701       for (BuiltinCandidateTypeSet::iterator
7702                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7703              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7704            MemPtr != MemPtrEnd; ++MemPtr) {
7705         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7706           continue;
7707
7708         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7709       }
7710     }
7711   }
7712
7713   // C++ [over.built]p19:
7714   //
7715   //   For every pair (T, VQ), where T is any type and VQ is either
7716   //   volatile or empty, there exist candidate operator functions
7717   //   of the form
7718   //
7719   //        T*VQ&      operator=(T*VQ&, T*);
7720   //
7721   // C++ [over.built]p21:
7722   //
7723   //   For every pair (T, VQ), where T is a cv-qualified or
7724   //   cv-unqualified object type and VQ is either volatile or
7725   //   empty, there exist candidate operator functions of the form
7726   //
7727   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7728   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7729   void addAssignmentPointerOverloads(bool isEqualOp) {
7730     /// Set of (canonical) types that we've already handled.
7731     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7732
7733     for (BuiltinCandidateTypeSet::iterator
7734               Ptr = CandidateTypes[0].pointer_begin(),
7735            PtrEnd = CandidateTypes[0].pointer_end();
7736          Ptr != PtrEnd; ++Ptr) {
7737       // If this is operator=, keep track of the builtin candidates we added.
7738       if (isEqualOp)
7739         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7740       else if (!(*Ptr)->getPointeeType()->isObjectType())
7741         continue;
7742
7743       // non-volatile version
7744       QualType ParamTypes[2] = {
7745         S.Context.getLValueReferenceType(*Ptr),
7746         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7747       };
7748       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7749                             /*IsAssigmentOperator=*/ isEqualOp);
7750
7751       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7752                           VisibleTypeConversionsQuals.hasVolatile();
7753       if (NeedVolatile) {
7754         // volatile version
7755         ParamTypes[0] =
7756           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7757         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7758                               /*IsAssigmentOperator=*/isEqualOp);
7759       }
7760       
7761       if (!(*Ptr).isRestrictQualified() &&
7762           VisibleTypeConversionsQuals.hasRestrict()) {
7763         // restrict version
7764         ParamTypes[0]
7765           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7766         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7767                               /*IsAssigmentOperator=*/isEqualOp);
7768         
7769         if (NeedVolatile) {
7770           // volatile restrict version
7771           ParamTypes[0]
7772             = S.Context.getLValueReferenceType(
7773                 S.Context.getCVRQualifiedType(*Ptr,
7774                                               (Qualifiers::Volatile |
7775                                                Qualifiers::Restrict)));
7776           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7777                                 /*IsAssigmentOperator=*/isEqualOp);
7778         }
7779       }
7780     }
7781
7782     if (isEqualOp) {
7783       for (BuiltinCandidateTypeSet::iterator
7784                 Ptr = CandidateTypes[1].pointer_begin(),
7785              PtrEnd = CandidateTypes[1].pointer_end();
7786            Ptr != PtrEnd; ++Ptr) {
7787         // Make sure we don't add the same candidate twice.
7788         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7789           continue;
7790
7791         QualType ParamTypes[2] = {
7792           S.Context.getLValueReferenceType(*Ptr),
7793           *Ptr,
7794         };
7795
7796         // non-volatile version
7797         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7798                               /*IsAssigmentOperator=*/true);
7799
7800         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7801                            VisibleTypeConversionsQuals.hasVolatile();
7802         if (NeedVolatile) {
7803           // volatile version
7804           ParamTypes[0] =
7805             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7806           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7807                                 /*IsAssigmentOperator=*/true);
7808         }
7809       
7810         if (!(*Ptr).isRestrictQualified() &&
7811             VisibleTypeConversionsQuals.hasRestrict()) {
7812           // restrict version
7813           ParamTypes[0]
7814             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7815           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7816                                 /*IsAssigmentOperator=*/true);
7817           
7818           if (NeedVolatile) {
7819             // volatile restrict version
7820             ParamTypes[0]
7821               = S.Context.getLValueReferenceType(
7822                   S.Context.getCVRQualifiedType(*Ptr,
7823                                                 (Qualifiers::Volatile |
7824                                                  Qualifiers::Restrict)));
7825             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7826                                   /*IsAssigmentOperator=*/true);
7827           }
7828         }
7829       }
7830     }
7831   }
7832
7833   // C++ [over.built]p18:
7834   //
7835   //   For every triple (L, VQ, R), where L is an arithmetic type,
7836   //   VQ is either volatile or empty, and R is a promoted
7837   //   arithmetic type, there exist candidate operator functions of
7838   //   the form
7839   //
7840   //        VQ L&      operator=(VQ L&, R);
7841   //        VQ L&      operator*=(VQ L&, R);
7842   //        VQ L&      operator/=(VQ L&, R);
7843   //        VQ L&      operator+=(VQ L&, R);
7844   //        VQ L&      operator-=(VQ L&, R);
7845   void addAssignmentArithmeticOverloads(bool isEqualOp) {
7846     if (!HasArithmeticOrEnumeralCandidateType)
7847       return;
7848
7849     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7850       for (unsigned Right = FirstPromotedArithmeticType;
7851            Right < LastPromotedArithmeticType; ++Right) {
7852         QualType ParamTypes[2];
7853         ParamTypes[1] = getArithmeticType(Right);
7854
7855         // Add this built-in operator as a candidate (VQ is empty).
7856         ParamTypes[0] =
7857           S.Context.getLValueReferenceType(getArithmeticType(Left));
7858         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7859                               /*IsAssigmentOperator=*/isEqualOp);
7860
7861         // Add this built-in operator as a candidate (VQ is 'volatile').
7862         if (VisibleTypeConversionsQuals.hasVolatile()) {
7863           ParamTypes[0] =
7864             S.Context.getVolatileType(getArithmeticType(Left));
7865           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7866           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7867                                 /*IsAssigmentOperator=*/isEqualOp);
7868         }
7869       }
7870     }
7871
7872     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7873     for (BuiltinCandidateTypeSet::iterator
7874               Vec1 = CandidateTypes[0].vector_begin(),
7875            Vec1End = CandidateTypes[0].vector_end();
7876          Vec1 != Vec1End; ++Vec1) {
7877       for (BuiltinCandidateTypeSet::iterator
7878                 Vec2 = CandidateTypes[1].vector_begin(),
7879              Vec2End = CandidateTypes[1].vector_end();
7880            Vec2 != Vec2End; ++Vec2) {
7881         QualType ParamTypes[2];
7882         ParamTypes[1] = *Vec2;
7883         // Add this built-in operator as a candidate (VQ is empty).
7884         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7885         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7886                               /*IsAssigmentOperator=*/isEqualOp);
7887
7888         // Add this built-in operator as a candidate (VQ is 'volatile').
7889         if (VisibleTypeConversionsQuals.hasVolatile()) {
7890           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7891           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7892           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7893                                 /*IsAssigmentOperator=*/isEqualOp);
7894         }
7895       }
7896     }
7897   }
7898
7899   // C++ [over.built]p22:
7900   //
7901   //   For every triple (L, VQ, R), where L is an integral type, VQ
7902   //   is either volatile or empty, and R is a promoted integral
7903   //   type, there exist candidate operator functions of the form
7904   //
7905   //        VQ L&       operator%=(VQ L&, R);
7906   //        VQ L&       operator<<=(VQ L&, R);
7907   //        VQ L&       operator>>=(VQ L&, R);
7908   //        VQ L&       operator&=(VQ L&, R);
7909   //        VQ L&       operator^=(VQ L&, R);
7910   //        VQ L&       operator|=(VQ L&, R);
7911   void addAssignmentIntegralOverloads() {
7912     if (!HasArithmeticOrEnumeralCandidateType)
7913       return;
7914
7915     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7916       for (unsigned Right = FirstPromotedIntegralType;
7917            Right < LastPromotedIntegralType; ++Right) {
7918         QualType ParamTypes[2];
7919         ParamTypes[1] = getArithmeticType(Right);
7920
7921         // Add this built-in operator as a candidate (VQ is empty).
7922         ParamTypes[0] =
7923           S.Context.getLValueReferenceType(getArithmeticType(Left));
7924         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7925         if (VisibleTypeConversionsQuals.hasVolatile()) {
7926           // Add this built-in operator as a candidate (VQ is 'volatile').
7927           ParamTypes[0] = getArithmeticType(Left);
7928           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7929           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7930           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7931         }
7932       }
7933     }
7934   }
7935
7936   // C++ [over.operator]p23:
7937   //
7938   //   There also exist candidate operator functions of the form
7939   //
7940   //        bool        operator!(bool);
7941   //        bool        operator&&(bool, bool);
7942   //        bool        operator||(bool, bool);
7943   void addExclaimOverload() {
7944     QualType ParamTy = S.Context.BoolTy;
7945     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
7946                           /*IsAssignmentOperator=*/false,
7947                           /*NumContextualBoolArguments=*/1);
7948   }
7949   void addAmpAmpOrPipePipeOverload() {
7950     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7951     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
7952                           /*IsAssignmentOperator=*/false,
7953                           /*NumContextualBoolArguments=*/2);
7954   }
7955
7956   // C++ [over.built]p13:
7957   //
7958   //   For every cv-qualified or cv-unqualified object type T there
7959   //   exist candidate operator functions of the form
7960   //
7961   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7962   //        T&         operator[](T*, ptrdiff_t);
7963   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7964   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7965   //        T&         operator[](ptrdiff_t, T*);
7966   void addSubscriptOverloads() {
7967     for (BuiltinCandidateTypeSet::iterator
7968               Ptr = CandidateTypes[0].pointer_begin(),
7969            PtrEnd = CandidateTypes[0].pointer_end();
7970          Ptr != PtrEnd; ++Ptr) {
7971       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7972       QualType PointeeType = (*Ptr)->getPointeeType();
7973       if (!PointeeType->isObjectType())
7974         continue;
7975
7976       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7977
7978       // T& operator[](T*, ptrdiff_t)
7979       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7980     }
7981
7982     for (BuiltinCandidateTypeSet::iterator
7983               Ptr = CandidateTypes[1].pointer_begin(),
7984            PtrEnd = CandidateTypes[1].pointer_end();
7985          Ptr != PtrEnd; ++Ptr) {
7986       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7987       QualType PointeeType = (*Ptr)->getPointeeType();
7988       if (!PointeeType->isObjectType())
7989         continue;
7990
7991       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7992
7993       // T& operator[](ptrdiff_t, T*)
7994       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7995     }
7996   }
7997
7998   // C++ [over.built]p11:
7999   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8000   //    C1 is the same type as C2 or is a derived class of C2, T is an object
8001   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8002   //    there exist candidate operator functions of the form
8003   //
8004   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8005   //
8006   //    where CV12 is the union of CV1 and CV2.
8007   void addArrowStarOverloads() {
8008     for (BuiltinCandidateTypeSet::iterator
8009              Ptr = CandidateTypes[0].pointer_begin(),
8010            PtrEnd = CandidateTypes[0].pointer_end();
8011          Ptr != PtrEnd; ++Ptr) {
8012       QualType C1Ty = (*Ptr);
8013       QualType C1;
8014       QualifierCollector Q1;
8015       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8016       if (!isa<RecordType>(C1))
8017         continue;
8018       // heuristic to reduce number of builtin candidates in the set.
8019       // Add volatile/restrict version only if there are conversions to a
8020       // volatile/restrict type.
8021       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8022         continue;
8023       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8024         continue;
8025       for (BuiltinCandidateTypeSet::iterator
8026                 MemPtr = CandidateTypes[1].member_pointer_begin(),
8027              MemPtrEnd = CandidateTypes[1].member_pointer_end();
8028            MemPtr != MemPtrEnd; ++MemPtr) {
8029         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8030         QualType C2 = QualType(mptr->getClass(), 0);
8031         C2 = C2.getUnqualifiedType();
8032         if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
8033           break;
8034         QualType ParamTypes[2] = { *Ptr, *MemPtr };
8035         // build CV12 T&
8036         QualType T = mptr->getPointeeType();
8037         if (!VisibleTypeConversionsQuals.hasVolatile() &&
8038             T.isVolatileQualified())
8039           continue;
8040         if (!VisibleTypeConversionsQuals.hasRestrict() &&
8041             T.isRestrictQualified())
8042           continue;
8043         T = Q1.apply(S.Context, T);
8044         QualType ResultTy = S.Context.getLValueReferenceType(T);
8045         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8046       }
8047     }
8048   }
8049
8050   // Note that we don't consider the first argument, since it has been
8051   // contextually converted to bool long ago. The candidates below are
8052   // therefore added as binary.
8053   //
8054   // C++ [over.built]p25:
8055   //   For every type T, where T is a pointer, pointer-to-member, or scoped
8056   //   enumeration type, there exist candidate operator functions of the form
8057   //
8058   //        T        operator?(bool, T, T);
8059   //
8060   void addConditionalOperatorOverloads() {
8061     /// Set of (canonical) types that we've already handled.
8062     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8063
8064     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8065       for (BuiltinCandidateTypeSet::iterator
8066                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8067              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8068            Ptr != PtrEnd; ++Ptr) {
8069         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8070           continue;
8071
8072         QualType ParamTypes[2] = { *Ptr, *Ptr };
8073         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
8074       }
8075
8076       for (BuiltinCandidateTypeSet::iterator
8077                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8078              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8079            MemPtr != MemPtrEnd; ++MemPtr) {
8080         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8081           continue;
8082
8083         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8084         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
8085       }
8086
8087       if (S.getLangOpts().CPlusPlus11) {
8088         for (BuiltinCandidateTypeSet::iterator
8089                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8090                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8091              Enum != EnumEnd; ++Enum) {
8092           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8093             continue;
8094
8095           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8096             continue;
8097
8098           QualType ParamTypes[2] = { *Enum, *Enum };
8099           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
8100         }
8101       }
8102     }
8103   }
8104 };
8105
8106 } // end anonymous namespace
8107
8108 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8109 /// operator overloads to the candidate set (C++ [over.built]), based
8110 /// on the operator @p Op and the arguments given. For example, if the
8111 /// operator is a binary '+', this routine might add "int
8112 /// operator+(int, int)" to cover integer addition.
8113 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8114                                         SourceLocation OpLoc,
8115                                         ArrayRef<Expr *> Args,
8116                                         OverloadCandidateSet &CandidateSet) {
8117   // Find all of the types that the arguments can convert to, but only
8118   // if the operator we're looking at has built-in operator candidates
8119   // that make use of these types. Also record whether we encounter non-record
8120   // candidate types or either arithmetic or enumeral candidate types.
8121   Qualifiers VisibleTypeConversionsQuals;
8122   VisibleTypeConversionsQuals.addConst();
8123   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8124     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8125
8126   bool HasNonRecordCandidateType = false;
8127   bool HasArithmeticOrEnumeralCandidateType = false;
8128   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8129   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8130     CandidateTypes.emplace_back(*this);
8131     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8132                                                  OpLoc,
8133                                                  true,
8134                                                  (Op == OO_Exclaim ||
8135                                                   Op == OO_AmpAmp ||
8136                                                   Op == OO_PipePipe),
8137                                                  VisibleTypeConversionsQuals);
8138     HasNonRecordCandidateType = HasNonRecordCandidateType ||
8139         CandidateTypes[ArgIdx].hasNonRecordTypes();
8140     HasArithmeticOrEnumeralCandidateType =
8141         HasArithmeticOrEnumeralCandidateType ||
8142         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8143   }
8144
8145   // Exit early when no non-record types have been added to the candidate set
8146   // for any of the arguments to the operator.
8147   //
8148   // We can't exit early for !, ||, or &&, since there we have always have
8149   // 'bool' overloads.
8150   if (!HasNonRecordCandidateType &&
8151       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8152     return;
8153
8154   // Setup an object to manage the common state for building overloads.
8155   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8156                                            VisibleTypeConversionsQuals,
8157                                            HasArithmeticOrEnumeralCandidateType,
8158                                            CandidateTypes, CandidateSet);
8159
8160   // Dispatch over the operation to add in only those overloads which apply.
8161   switch (Op) {
8162   case OO_None:
8163   case NUM_OVERLOADED_OPERATORS:
8164     llvm_unreachable("Expected an overloaded operator");
8165
8166   case OO_New:
8167   case OO_Delete:
8168   case OO_Array_New:
8169   case OO_Array_Delete:
8170   case OO_Call:
8171     llvm_unreachable(
8172                     "Special operators don't use AddBuiltinOperatorCandidates");
8173
8174   case OO_Comma:
8175   case OO_Arrow:
8176     // C++ [over.match.oper]p3:
8177     //   -- For the operator ',', the unary operator '&', or the
8178     //      operator '->', the built-in candidates set is empty.
8179     break;
8180
8181   case OO_Plus: // '+' is either unary or binary
8182     if (Args.size() == 1)
8183       OpBuilder.addUnaryPlusPointerOverloads();
8184     // Fall through.
8185
8186   case OO_Minus: // '-' is either unary or binary
8187     if (Args.size() == 1) {
8188       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8189     } else {
8190       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8191       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8192     }
8193     break;
8194
8195   case OO_Star: // '*' is either unary or binary
8196     if (Args.size() == 1)
8197       OpBuilder.addUnaryStarPointerOverloads();
8198     else
8199       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8200     break;
8201
8202   case OO_Slash:
8203     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8204     break;
8205
8206   case OO_PlusPlus:
8207   case OO_MinusMinus:
8208     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8209     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8210     break;
8211
8212   case OO_EqualEqual:
8213   case OO_ExclaimEqual:
8214     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
8215     // Fall through.
8216
8217   case OO_Less:
8218   case OO_Greater:
8219   case OO_LessEqual:
8220   case OO_GreaterEqual:
8221     OpBuilder.addRelationalPointerOrEnumeralOverloads();
8222     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
8223     break;
8224
8225   case OO_Percent:
8226   case OO_Caret:
8227   case OO_Pipe:
8228   case OO_LessLess:
8229   case OO_GreaterGreater:
8230     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8231     break;
8232
8233   case OO_Amp: // '&' is either unary or binary
8234     if (Args.size() == 1)
8235       // C++ [over.match.oper]p3:
8236       //   -- For the operator ',', the unary operator '&', or the
8237       //      operator '->', the built-in candidates set is empty.
8238       break;
8239
8240     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8241     break;
8242
8243   case OO_Tilde:
8244     OpBuilder.addUnaryTildePromotedIntegralOverloads();
8245     break;
8246
8247   case OO_Equal:
8248     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8249     // Fall through.
8250
8251   case OO_PlusEqual:
8252   case OO_MinusEqual:
8253     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8254     // Fall through.
8255
8256   case OO_StarEqual:
8257   case OO_SlashEqual:
8258     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8259     break;
8260
8261   case OO_PercentEqual:
8262   case OO_LessLessEqual:
8263   case OO_GreaterGreaterEqual:
8264   case OO_AmpEqual:
8265   case OO_CaretEqual:
8266   case OO_PipeEqual:
8267     OpBuilder.addAssignmentIntegralOverloads();
8268     break;
8269
8270   case OO_Exclaim:
8271     OpBuilder.addExclaimOverload();
8272     break;
8273
8274   case OO_AmpAmp:
8275   case OO_PipePipe:
8276     OpBuilder.addAmpAmpOrPipePipeOverload();
8277     break;
8278
8279   case OO_Subscript:
8280     OpBuilder.addSubscriptOverloads();
8281     break;
8282
8283   case OO_ArrowStar:
8284     OpBuilder.addArrowStarOverloads();
8285     break;
8286
8287   case OO_Conditional:
8288     OpBuilder.addConditionalOperatorOverloads();
8289     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8290     break;
8291   }
8292 }
8293
8294 /// \brief Add function candidates found via argument-dependent lookup
8295 /// to the set of overloading candidates.
8296 ///
8297 /// This routine performs argument-dependent name lookup based on the
8298 /// given function name (which may also be an operator name) and adds
8299 /// all of the overload candidates found by ADL to the overload
8300 /// candidate set (C++ [basic.lookup.argdep]).
8301 void
8302 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8303                                            SourceLocation Loc,
8304                                            ArrayRef<Expr *> Args,
8305                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
8306                                            OverloadCandidateSet& CandidateSet,
8307                                            bool PartialOverloading) {
8308   ADLResult Fns;
8309
8310   // FIXME: This approach for uniquing ADL results (and removing
8311   // redundant candidates from the set) relies on pointer-equality,
8312   // which means we need to key off the canonical decl.  However,
8313   // always going back to the canonical decl might not get us the
8314   // right set of default arguments.  What default arguments are
8315   // we supposed to consider on ADL candidates, anyway?
8316
8317   // FIXME: Pass in the explicit template arguments?
8318   ArgumentDependentLookup(Name, Loc, Args, Fns);
8319
8320   // Erase all of the candidates we already knew about.
8321   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8322                                    CandEnd = CandidateSet.end();
8323        Cand != CandEnd; ++Cand)
8324     if (Cand->Function) {
8325       Fns.erase(Cand->Function);
8326       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8327         Fns.erase(FunTmpl);
8328     }
8329
8330   // For each of the ADL candidates we found, add it to the overload
8331   // set.
8332   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8333     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8334     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
8335       if (ExplicitTemplateArgs)
8336         continue;
8337
8338       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
8339                            PartialOverloading);
8340     } else
8341       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
8342                                    FoundDecl, ExplicitTemplateArgs,
8343                                    Args, CandidateSet, PartialOverloading);
8344   }
8345 }
8346
8347 /// isBetterOverloadCandidate - Determines whether the first overload
8348 /// candidate is a better candidate than the second (C++ 13.3.3p1).
8349 bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
8350                                       const OverloadCandidate &Cand2,
8351                                       SourceLocation Loc,
8352                                       bool UserDefinedConversion) {
8353   // Define viable functions to be better candidates than non-viable
8354   // functions.
8355   if (!Cand2.Viable)
8356     return Cand1.Viable;
8357   else if (!Cand1.Viable)
8358     return false;
8359
8360   // C++ [over.match.best]p1:
8361   //
8362   //   -- if F is a static member function, ICS1(F) is defined such
8363   //      that ICS1(F) is neither better nor worse than ICS1(G) for
8364   //      any function G, and, symmetrically, ICS1(G) is neither
8365   //      better nor worse than ICS1(F).
8366   unsigned StartArg = 0;
8367   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
8368     StartArg = 1;
8369
8370   // C++ [over.match.best]p1:
8371   //   A viable function F1 is defined to be a better function than another
8372   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
8373   //   conversion sequence than ICSi(F2), and then...
8374   unsigned NumArgs = Cand1.NumConversions;
8375   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
8376   bool HasBetterConversion = false;
8377   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8378     switch (CompareImplicitConversionSequences(S,
8379                                                Cand1.Conversions[ArgIdx],
8380                                                Cand2.Conversions[ArgIdx])) {
8381     case ImplicitConversionSequence::Better:
8382       // Cand1 has a better conversion sequence.
8383       HasBetterConversion = true;
8384       break;
8385
8386     case ImplicitConversionSequence::Worse:
8387       // Cand1 can't be better than Cand2.
8388       return false;
8389
8390     case ImplicitConversionSequence::Indistinguishable:
8391       // Do nothing.
8392       break;
8393     }
8394   }
8395
8396   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
8397   //       ICSj(F2), or, if not that,
8398   if (HasBetterConversion)
8399     return true;
8400
8401   //   -- the context is an initialization by user-defined conversion
8402   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
8403   //      from the return type of F1 to the destination type (i.e.,
8404   //      the type of the entity being initialized) is a better
8405   //      conversion sequence than the standard conversion sequence
8406   //      from the return type of F2 to the destination type.
8407   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
8408       isa<CXXConversionDecl>(Cand1.Function) &&
8409       isa<CXXConversionDecl>(Cand2.Function)) {
8410     // First check whether we prefer one of the conversion functions over the
8411     // other. This only distinguishes the results in non-standard, extension
8412     // cases such as the conversion from a lambda closure type to a function
8413     // pointer or block.
8414     ImplicitConversionSequence::CompareKind Result =
8415         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
8416     if (Result == ImplicitConversionSequence::Indistinguishable)
8417       Result = CompareStandardConversionSequences(S,
8418                                                   Cand1.FinalConversion,
8419                                                   Cand2.FinalConversion);
8420
8421     if (Result != ImplicitConversionSequence::Indistinguishable)
8422       return Result == ImplicitConversionSequence::Better;
8423
8424     // FIXME: Compare kind of reference binding if conversion functions
8425     // convert to a reference type used in direct reference binding, per
8426     // C++14 [over.match.best]p1 section 2 bullet 3.
8427   }
8428
8429   //    -- F1 is a non-template function and F2 is a function template
8430   //       specialization, or, if not that,
8431   bool Cand1IsSpecialization = Cand1.Function &&
8432                                Cand1.Function->getPrimaryTemplate();
8433   bool Cand2IsSpecialization = Cand2.Function &&
8434                                Cand2.Function->getPrimaryTemplate();
8435   if (Cand1IsSpecialization != Cand2IsSpecialization)
8436     return Cand2IsSpecialization;
8437
8438   //   -- F1 and F2 are function template specializations, and the function
8439   //      template for F1 is more specialized than the template for F2
8440   //      according to the partial ordering rules described in 14.5.5.2, or,
8441   //      if not that,
8442   if (Cand1IsSpecialization && Cand2IsSpecialization) {
8443     if (FunctionTemplateDecl *BetterTemplate
8444           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
8445                                          Cand2.Function->getPrimaryTemplate(),
8446                                          Loc,
8447                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
8448                                                              : TPOC_Call,
8449                                          Cand1.ExplicitCallArguments,
8450                                          Cand2.ExplicitCallArguments))
8451       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
8452   }
8453
8454   // Check for enable_if value-based overload resolution.
8455   if (Cand1.Function && Cand2.Function &&
8456       (Cand1.Function->hasAttr<EnableIfAttr>() ||
8457        Cand2.Function->hasAttr<EnableIfAttr>())) {
8458     // FIXME: The next several lines are just
8459     // specific_attr_iterator<EnableIfAttr> but going in declaration order,
8460     // instead of reverse order which is how they're stored in the AST.
8461     AttrVec Cand1Attrs;
8462     if (Cand1.Function->hasAttrs()) {
8463       Cand1Attrs = Cand1.Function->getAttrs();
8464       Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(),
8465                                       IsNotEnableIfAttr),
8466                        Cand1Attrs.end());
8467       std::reverse(Cand1Attrs.begin(), Cand1Attrs.end());
8468     }
8469
8470     AttrVec Cand2Attrs;
8471     if (Cand2.Function->hasAttrs()) {
8472       Cand2Attrs = Cand2.Function->getAttrs();
8473       Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(),
8474                                       IsNotEnableIfAttr),
8475                        Cand2Attrs.end());
8476       std::reverse(Cand2Attrs.begin(), Cand2Attrs.end());
8477     }
8478
8479     // Candidate 1 is better if it has strictly more attributes and
8480     // the common sequence is identical.
8481     if (Cand1Attrs.size() <= Cand2Attrs.size())
8482       return false;
8483
8484     auto Cand1I = Cand1Attrs.begin();
8485     for (auto &Cand2A : Cand2Attrs) {
8486       auto &Cand1A = *Cand1I++;
8487       llvm::FoldingSetNodeID Cand1ID, Cand2ID;
8488       cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID,
8489                                                      S.getASTContext(), true);
8490       cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID,
8491                                                      S.getASTContext(), true);
8492       if (Cand1ID != Cand2ID)
8493         return false;
8494     }
8495
8496     return true;
8497   }
8498
8499   return false;
8500 }
8501
8502 /// \brief Computes the best viable function (C++ 13.3.3)
8503 /// within an overload candidate set.
8504 ///
8505 /// \param Loc The location of the function name (or operator symbol) for
8506 /// which overload resolution occurs.
8507 ///
8508 /// \param Best If overload resolution was successful or found a deleted
8509 /// function, \p Best points to the candidate function found.
8510 ///
8511 /// \returns The result of overload resolution.
8512 OverloadingResult
8513 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8514                                          iterator &Best,
8515                                          bool UserDefinedConversion) {
8516   // Find the best viable function.
8517   Best = end();
8518   for (iterator Cand = begin(); Cand != end(); ++Cand) {
8519     if (Cand->Viable)
8520       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8521                                                      UserDefinedConversion))
8522         Best = Cand;
8523   }
8524
8525   // If we didn't find any viable functions, abort.
8526   if (Best == end())
8527     return OR_No_Viable_Function;
8528
8529   // Make sure that this function is better than every other viable
8530   // function. If not, we have an ambiguity.
8531   for (iterator Cand = begin(); Cand != end(); ++Cand) {
8532     if (Cand->Viable &&
8533         Cand != Best &&
8534         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8535                                    UserDefinedConversion)) {
8536       Best = end();
8537       return OR_Ambiguous;
8538     }
8539   }
8540
8541   // Best is the best viable function.
8542   if (Best->Function &&
8543       (Best->Function->isDeleted() ||
8544        S.isFunctionConsideredUnavailable(Best->Function)))
8545     return OR_Deleted;
8546
8547   return OR_Success;
8548 }
8549
8550 namespace {
8551
8552 enum OverloadCandidateKind {
8553   oc_function,
8554   oc_method,
8555   oc_constructor,
8556   oc_function_template,
8557   oc_method_template,
8558   oc_constructor_template,
8559   oc_implicit_default_constructor,
8560   oc_implicit_copy_constructor,
8561   oc_implicit_move_constructor,
8562   oc_implicit_copy_assignment,
8563   oc_implicit_move_assignment,
8564   oc_implicit_inherited_constructor
8565 };
8566
8567 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8568                                                 FunctionDecl *Fn,
8569                                                 std::string &Description) {
8570   bool isTemplate = false;
8571
8572   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8573     isTemplate = true;
8574     Description = S.getTemplateArgumentBindingsText(
8575       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8576   }
8577
8578   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8579     if (!Ctor->isImplicit())
8580       return isTemplate ? oc_constructor_template : oc_constructor;
8581
8582     if (Ctor->getInheritedConstructor())
8583       return oc_implicit_inherited_constructor;
8584
8585     if (Ctor->isDefaultConstructor())
8586       return oc_implicit_default_constructor;
8587
8588     if (Ctor->isMoveConstructor())
8589       return oc_implicit_move_constructor;
8590
8591     assert(Ctor->isCopyConstructor() &&
8592            "unexpected sort of implicit constructor");
8593     return oc_implicit_copy_constructor;
8594   }
8595
8596   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8597     // This actually gets spelled 'candidate function' for now, but
8598     // it doesn't hurt to split it out.
8599     if (!Meth->isImplicit())
8600       return isTemplate ? oc_method_template : oc_method;
8601
8602     if (Meth->isMoveAssignmentOperator())
8603       return oc_implicit_move_assignment;
8604
8605     if (Meth->isCopyAssignmentOperator())
8606       return oc_implicit_copy_assignment;
8607
8608     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8609     return oc_method;
8610   }
8611
8612   return isTemplate ? oc_function_template : oc_function;
8613 }
8614
8615 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
8616   const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
8617   if (!Ctor) return;
8618
8619   Ctor = Ctor->getInheritedConstructor();
8620   if (!Ctor) return;
8621
8622   S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
8623 }
8624
8625 } // end anonymous namespace
8626
8627 // Notes the location of an overload candidate.
8628 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
8629   std::string FnDesc;
8630   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
8631   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
8632                              << (unsigned) K << FnDesc;
8633   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
8634   Diag(Fn->getLocation(), PD);
8635   MaybeEmitInheritedConstructorNote(*this, Fn);
8636 }
8637
8638 // Notes the location of all overload candidates designated through
8639 // OverloadedExpr
8640 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
8641   assert(OverloadedExpr->getType() == Context.OverloadTy);
8642
8643   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
8644   OverloadExpr *OvlExpr = Ovl.Expression;
8645
8646   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8647                             IEnd = OvlExpr->decls_end(); 
8648        I != IEnd; ++I) {
8649     if (FunctionTemplateDecl *FunTmpl = 
8650                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
8651       NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
8652     } else if (FunctionDecl *Fun 
8653                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
8654       NoteOverloadCandidate(Fun, DestType);
8655     }
8656   }
8657 }
8658
8659 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
8660 /// "lead" diagnostic; it will be given two arguments, the source and
8661 /// target types of the conversion.
8662 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
8663                                  Sema &S,
8664                                  SourceLocation CaretLoc,
8665                                  const PartialDiagnostic &PDiag) const {
8666   S.Diag(CaretLoc, PDiag)
8667     << Ambiguous.getFromType() << Ambiguous.getToType();
8668   // FIXME: The note limiting machinery is borrowed from
8669   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
8670   // refactoring here.
8671   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8672   unsigned CandsShown = 0;
8673   AmbiguousConversionSequence::const_iterator I, E;
8674   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8675     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8676       break;
8677     ++CandsShown;
8678     S.NoteOverloadCandidate(*I);
8679   }
8680   if (I != E)
8681     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8682 }
8683
8684 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
8685                                   unsigned I) {
8686   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8687   assert(Conv.isBad());
8688   assert(Cand->Function && "for now, candidate must be a function");
8689   FunctionDecl *Fn = Cand->Function;
8690
8691   // There's a conversion slot for the object argument if this is a
8692   // non-constructor method.  Note that 'I' corresponds the
8693   // conversion-slot index.
8694   bool isObjectArgument = false;
8695   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8696     if (I == 0)
8697       isObjectArgument = true;
8698     else
8699       I--;
8700   }
8701
8702   std::string FnDesc;
8703   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8704
8705   Expr *FromExpr = Conv.Bad.FromExpr;
8706   QualType FromTy = Conv.Bad.getFromType();
8707   QualType ToTy = Conv.Bad.getToType();
8708
8709   if (FromTy == S.Context.OverloadTy) {
8710     assert(FromExpr && "overload set argument came from implicit argument?");
8711     Expr *E = FromExpr->IgnoreParens();
8712     if (isa<UnaryOperator>(E))
8713       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8714     DeclarationName Name = cast<OverloadExpr>(E)->getName();
8715
8716     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8717       << (unsigned) FnKind << FnDesc
8718       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8719       << ToTy << Name << I+1;
8720     MaybeEmitInheritedConstructorNote(S, Fn);
8721     return;
8722   }
8723
8724   // Do some hand-waving analysis to see if the non-viability is due
8725   // to a qualifier mismatch.
8726   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8727   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8728   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8729     CToTy = RT->getPointeeType();
8730   else {
8731     // TODO: detect and diagnose the full richness of const mismatches.
8732     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8733       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8734         CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8735   }
8736
8737   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8738       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8739     Qualifiers FromQs = CFromTy.getQualifiers();
8740     Qualifiers ToQs = CToTy.getQualifiers();
8741
8742     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8743       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8744         << (unsigned) FnKind << FnDesc
8745         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8746         << FromTy
8747         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8748         << (unsigned) isObjectArgument << I+1;
8749       MaybeEmitInheritedConstructorNote(S, Fn);
8750       return;
8751     }
8752
8753     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8754       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8755         << (unsigned) FnKind << FnDesc
8756         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8757         << FromTy
8758         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8759         << (unsigned) isObjectArgument << I+1;
8760       MaybeEmitInheritedConstructorNote(S, Fn);
8761       return;
8762     }
8763
8764     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8765       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8766       << (unsigned) FnKind << FnDesc
8767       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8768       << FromTy
8769       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8770       << (unsigned) isObjectArgument << I+1;
8771       MaybeEmitInheritedConstructorNote(S, Fn);
8772       return;
8773     }
8774
8775     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8776     assert(CVR && "unexpected qualifiers mismatch");
8777
8778     if (isObjectArgument) {
8779       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8780         << (unsigned) FnKind << FnDesc
8781         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8782         << FromTy << (CVR - 1);
8783     } else {
8784       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8785         << (unsigned) FnKind << FnDesc
8786         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8787         << FromTy << (CVR - 1) << I+1;
8788     }
8789     MaybeEmitInheritedConstructorNote(S, Fn);
8790     return;
8791   }
8792
8793   // Special diagnostic for failure to convert an initializer list, since
8794   // telling the user that it has type void is not useful.
8795   if (FromExpr && isa<InitListExpr>(FromExpr)) {
8796     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8797       << (unsigned) FnKind << FnDesc
8798       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8799       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8800     MaybeEmitInheritedConstructorNote(S, Fn);
8801     return;
8802   }
8803
8804   // Diagnose references or pointers to incomplete types differently,
8805   // since it's far from impossible that the incompleteness triggered
8806   // the failure.
8807   QualType TempFromTy = FromTy.getNonReferenceType();
8808   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8809     TempFromTy = PTy->getPointeeType();
8810   if (TempFromTy->isIncompleteType()) {
8811     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8812       << (unsigned) FnKind << FnDesc
8813       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8814       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8815     MaybeEmitInheritedConstructorNote(S, Fn);
8816     return;
8817   }
8818
8819   // Diagnose base -> derived pointer conversions.
8820   unsigned BaseToDerivedConversion = 0;
8821   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8822     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8823       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8824                                                FromPtrTy->getPointeeType()) &&
8825           !FromPtrTy->getPointeeType()->isIncompleteType() &&
8826           !ToPtrTy->getPointeeType()->isIncompleteType() &&
8827           S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8828                           FromPtrTy->getPointeeType()))
8829         BaseToDerivedConversion = 1;
8830     }
8831   } else if (const ObjCObjectPointerType *FromPtrTy
8832                                     = FromTy->getAs<ObjCObjectPointerType>()) {
8833     if (const ObjCObjectPointerType *ToPtrTy
8834                                         = ToTy->getAs<ObjCObjectPointerType>())
8835       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8836         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8837           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8838                                                 FromPtrTy->getPointeeType()) &&
8839               FromIface->isSuperClassOf(ToIface))
8840             BaseToDerivedConversion = 2;
8841   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8842     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8843         !FromTy->isIncompleteType() &&
8844         !ToRefTy->getPointeeType()->isIncompleteType() &&
8845         S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8846       BaseToDerivedConversion = 3;
8847     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8848                ToTy.getNonReferenceType().getCanonicalType() ==
8849                FromTy.getNonReferenceType().getCanonicalType()) {
8850       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8851         << (unsigned) FnKind << FnDesc
8852         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8853         << (unsigned) isObjectArgument << I + 1;
8854       MaybeEmitInheritedConstructorNote(S, Fn);
8855       return;
8856     }
8857   }
8858
8859   if (BaseToDerivedConversion) {
8860     S.Diag(Fn->getLocation(),
8861            diag::note_ovl_candidate_bad_base_to_derived_conv)
8862       << (unsigned) FnKind << FnDesc
8863       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8864       << (BaseToDerivedConversion - 1)
8865       << FromTy << ToTy << I+1;
8866     MaybeEmitInheritedConstructorNote(S, Fn);
8867     return;
8868   }
8869
8870   if (isa<ObjCObjectPointerType>(CFromTy) &&
8871       isa<PointerType>(CToTy)) {
8872       Qualifiers FromQs = CFromTy.getQualifiers();
8873       Qualifiers ToQs = CToTy.getQualifiers();
8874       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8875         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8876         << (unsigned) FnKind << FnDesc
8877         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8878         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8879         MaybeEmitInheritedConstructorNote(S, Fn);
8880         return;
8881       }
8882   }
8883   
8884   // Emit the generic diagnostic and, optionally, add the hints to it.
8885   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8886   FDiag << (unsigned) FnKind << FnDesc
8887     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8888     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8889     << (unsigned) (Cand->Fix.Kind);
8890
8891   // If we can fix the conversion, suggest the FixIts.
8892   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8893        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8894     FDiag << *HI;
8895   S.Diag(Fn->getLocation(), FDiag);
8896
8897   MaybeEmitInheritedConstructorNote(S, Fn);
8898 }
8899
8900 /// Additional arity mismatch diagnosis specific to a function overload
8901 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
8902 /// over a candidate in any candidate set.
8903 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
8904                                unsigned NumArgs) {
8905   FunctionDecl *Fn = Cand->Function;
8906   unsigned MinParams = Fn->getMinRequiredArguments();
8907
8908   // With invalid overloaded operators, it's possible that we think we
8909   // have an arity mismatch when in fact it looks like we have the
8910   // right number of arguments, because only overloaded operators have
8911   // the weird behavior of overloading member and non-member functions.
8912   // Just don't report anything.
8913   if (Fn->isInvalidDecl() && 
8914       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8915     return true;
8916
8917   if (NumArgs < MinParams) {
8918     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8919            (Cand->FailureKind == ovl_fail_bad_deduction &&
8920             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8921   } else {
8922     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8923            (Cand->FailureKind == ovl_fail_bad_deduction &&
8924             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8925   }
8926
8927   return false;
8928 }
8929
8930 /// General arity mismatch diagnosis over a candidate in a candidate set.
8931 static void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
8932   assert(isa<FunctionDecl>(D) &&
8933       "The templated declaration should at least be a function"
8934       " when diagnosing bad template argument deduction due to too many"
8935       " or too few arguments");
8936   
8937   FunctionDecl *Fn = cast<FunctionDecl>(D);
8938   
8939   // TODO: treat calls to a missing default constructor as a special case
8940   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8941   unsigned MinParams = Fn->getMinRequiredArguments();
8942
8943   // at least / at most / exactly
8944   unsigned mode, modeCount;
8945   if (NumFormalArgs < MinParams) {
8946     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
8947         FnTy->isTemplateVariadic())
8948       mode = 0; // "at least"
8949     else
8950       mode = 2; // "exactly"
8951     modeCount = MinParams;
8952   } else {
8953     if (MinParams != FnTy->getNumParams())
8954       mode = 1; // "at most"
8955     else
8956       mode = 2; // "exactly"
8957     modeCount = FnTy->getNumParams();
8958   }
8959
8960   std::string Description;
8961   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8962
8963   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8964     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8965       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
8966       << mode << Fn->getParamDecl(0) << NumFormalArgs;
8967   else
8968     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8969       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
8970       << mode << modeCount << NumFormalArgs;
8971   MaybeEmitInheritedConstructorNote(S, Fn);
8972 }
8973
8974 /// Arity mismatch diagnosis specific to a function overload candidate.
8975 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8976                                   unsigned NumFormalArgs) {
8977   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
8978     DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
8979 }
8980
8981 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
8982   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
8983     return FD->getDescribedFunctionTemplate();
8984   else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
8985     return RD->getDescribedClassTemplate();
8986
8987   llvm_unreachable("Unsupported: Getting the described template declaration"
8988                    " for bad deduction diagnosis");
8989 }
8990
8991 /// Diagnose a failed template-argument deduction.
8992 static void DiagnoseBadDeduction(Sema &S, Decl *Templated,
8993                                  DeductionFailureInfo &DeductionFailure,
8994                                  unsigned NumArgs) {
8995   TemplateParameter Param = DeductionFailure.getTemplateParameter();
8996   NamedDecl *ParamD;
8997   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8998   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8999   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
9000   switch (DeductionFailure.Result) {
9001   case Sema::TDK_Success:
9002     llvm_unreachable("TDK_success while diagnosing bad deduction");
9003
9004   case Sema::TDK_Incomplete: {
9005     assert(ParamD && "no parameter found for incomplete deduction result");
9006     S.Diag(Templated->getLocation(),
9007            diag::note_ovl_candidate_incomplete_deduction)
9008         << ParamD->getDeclName();
9009     MaybeEmitInheritedConstructorNote(S, Templated);
9010     return;
9011   }
9012
9013   case Sema::TDK_Underqualified: {
9014     assert(ParamD && "no parameter found for bad qualifiers deduction result");
9015     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
9016
9017     QualType Param = DeductionFailure.getFirstArg()->getAsType();
9018
9019     // Param will have been canonicalized, but it should just be a
9020     // qualified version of ParamD, so move the qualifiers to that.
9021     QualifierCollector Qs;
9022     Qs.strip(Param);
9023     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
9024     assert(S.Context.hasSameType(Param, NonCanonParam));
9025
9026     // Arg has also been canonicalized, but there's nothing we can do
9027     // about that.  It also doesn't matter as much, because it won't
9028     // have any template parameters in it (because deduction isn't
9029     // done on dependent types).
9030     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
9031
9032     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
9033         << ParamD->getDeclName() << Arg << NonCanonParam;
9034     MaybeEmitInheritedConstructorNote(S, Templated);
9035     return;
9036   }
9037
9038   case Sema::TDK_Inconsistent: {
9039     assert(ParamD && "no parameter found for inconsistent deduction result");
9040     int which = 0;
9041     if (isa<TemplateTypeParmDecl>(ParamD))
9042       which = 0;
9043     else if (isa<NonTypeTemplateParmDecl>(ParamD))
9044       which = 1;
9045     else {
9046       which = 2;
9047     }
9048
9049     S.Diag(Templated->getLocation(),
9050            diag::note_ovl_candidate_inconsistent_deduction)
9051         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
9052         << *DeductionFailure.getSecondArg();
9053     MaybeEmitInheritedConstructorNote(S, Templated);
9054     return;
9055   }
9056
9057   case Sema::TDK_InvalidExplicitArguments:
9058     assert(ParamD && "no parameter found for invalid explicit arguments");
9059     if (ParamD->getDeclName())
9060       S.Diag(Templated->getLocation(),
9061              diag::note_ovl_candidate_explicit_arg_mismatch_named)
9062           << ParamD->getDeclName();
9063     else {
9064       int index = 0;
9065       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
9066         index = TTP->getIndex();
9067       else if (NonTypeTemplateParmDecl *NTTP
9068                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
9069         index = NTTP->getIndex();
9070       else
9071         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
9072       S.Diag(Templated->getLocation(),
9073              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
9074           << (index + 1);
9075     }
9076     MaybeEmitInheritedConstructorNote(S, Templated);
9077     return;
9078
9079   case Sema::TDK_TooManyArguments:
9080   case Sema::TDK_TooFewArguments:
9081     DiagnoseArityMismatch(S, Templated, NumArgs);
9082     return;
9083
9084   case Sema::TDK_InstantiationDepth:
9085     S.Diag(Templated->getLocation(),
9086            diag::note_ovl_candidate_instantiation_depth);
9087     MaybeEmitInheritedConstructorNote(S, Templated);
9088     return;
9089
9090   case Sema::TDK_SubstitutionFailure: {
9091     // Format the template argument list into the argument string.
9092     SmallString<128> TemplateArgString;
9093     if (TemplateArgumentList *Args =
9094             DeductionFailure.getTemplateArgumentList()) {
9095       TemplateArgString = " ";
9096       TemplateArgString += S.getTemplateArgumentBindingsText(
9097           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9098     }
9099
9100     // If this candidate was disabled by enable_if, say so.
9101     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
9102     if (PDiag && PDiag->second.getDiagID() ==
9103           diag::err_typename_nested_not_found_enable_if) {
9104       // FIXME: Use the source range of the condition, and the fully-qualified
9105       //        name of the enable_if template. These are both present in PDiag.
9106       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
9107         << "'enable_if'" << TemplateArgString;
9108       return;
9109     }
9110
9111     // Format the SFINAE diagnostic into the argument string.
9112     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
9113     //        formatted message in another diagnostic.
9114     SmallString<128> SFINAEArgString;
9115     SourceRange R;
9116     if (PDiag) {
9117       SFINAEArgString = ": ";
9118       R = SourceRange(PDiag->first, PDiag->first);
9119       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
9120     }
9121
9122     S.Diag(Templated->getLocation(),
9123            diag::note_ovl_candidate_substitution_failure)
9124         << TemplateArgString << SFINAEArgString << R;
9125     MaybeEmitInheritedConstructorNote(S, Templated);
9126     return;
9127   }
9128
9129   case Sema::TDK_FailedOverloadResolution: {
9130     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
9131     S.Diag(Templated->getLocation(),
9132            diag::note_ovl_candidate_failed_overload_resolution)
9133         << R.Expression->getName();
9134     return;
9135   }
9136
9137   case Sema::TDK_NonDeducedMismatch: {
9138     // FIXME: Provide a source location to indicate what we couldn't match.
9139     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
9140     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
9141     if (FirstTA.getKind() == TemplateArgument::Template &&
9142         SecondTA.getKind() == TemplateArgument::Template) {
9143       TemplateName FirstTN = FirstTA.getAsTemplate();
9144       TemplateName SecondTN = SecondTA.getAsTemplate();
9145       if (FirstTN.getKind() == TemplateName::Template &&
9146           SecondTN.getKind() == TemplateName::Template) {
9147         if (FirstTN.getAsTemplateDecl()->getName() ==
9148             SecondTN.getAsTemplateDecl()->getName()) {
9149           // FIXME: This fixes a bad diagnostic where both templates are named
9150           // the same.  This particular case is a bit difficult since:
9151           // 1) It is passed as a string to the diagnostic printer.
9152           // 2) The diagnostic printer only attempts to find a better
9153           //    name for types, not decls.
9154           // Ideally, this should folded into the diagnostic printer.
9155           S.Diag(Templated->getLocation(),
9156                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
9157               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
9158           return;
9159         }
9160       }
9161     }
9162     // FIXME: For generic lambda parameters, check if the function is a lambda
9163     // call operator, and if so, emit a prettier and more informative 
9164     // diagnostic that mentions 'auto' and lambda in addition to 
9165     // (or instead of?) the canonical template type parameters.
9166     S.Diag(Templated->getLocation(),
9167            diag::note_ovl_candidate_non_deduced_mismatch)
9168         << FirstTA << SecondTA;
9169     return;
9170   }
9171   // TODO: diagnose these individually, then kill off
9172   // note_ovl_candidate_bad_deduction, which is uselessly vague.
9173   case Sema::TDK_MiscellaneousDeductionFailure:
9174     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
9175     MaybeEmitInheritedConstructorNote(S, Templated);
9176     return;
9177   }
9178 }
9179
9180 /// Diagnose a failed template-argument deduction, for function calls.
9181 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
9182                                  unsigned NumArgs) {
9183   unsigned TDK = Cand->DeductionFailure.Result;
9184   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
9185     if (CheckArityMismatch(S, Cand, NumArgs))
9186       return;
9187   }
9188   DiagnoseBadDeduction(S, Cand->Function, // pattern
9189                        Cand->DeductionFailure, NumArgs);
9190 }
9191
9192 /// CUDA: diagnose an invalid call across targets.
9193 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
9194   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
9195   FunctionDecl *Callee = Cand->Function;
9196
9197   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
9198                            CalleeTarget = S.IdentifyCUDATarget(Callee);
9199
9200   std::string FnDesc;
9201   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
9202
9203   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
9204       << (unsigned)FnKind << CalleeTarget << CallerTarget;
9205
9206   // This could be an implicit constructor for which we could not infer the
9207   // target due to a collsion. Diagnose that case.
9208   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
9209   if (Meth != nullptr && Meth->isImplicit()) {
9210     CXXRecordDecl *ParentClass = Meth->getParent();
9211     Sema::CXXSpecialMember CSM;
9212
9213     switch (FnKind) {
9214     default:
9215       return;
9216     case oc_implicit_default_constructor:
9217       CSM = Sema::CXXDefaultConstructor;
9218       break;
9219     case oc_implicit_copy_constructor:
9220       CSM = Sema::CXXCopyConstructor;
9221       break;
9222     case oc_implicit_move_constructor:
9223       CSM = Sema::CXXMoveConstructor;
9224       break;
9225     case oc_implicit_copy_assignment:
9226       CSM = Sema::CXXCopyAssignment;
9227       break;
9228     case oc_implicit_move_assignment:
9229       CSM = Sema::CXXMoveAssignment;
9230       break;
9231     };
9232
9233     bool ConstRHS = false;
9234     if (Meth->getNumParams()) {
9235       if (const ReferenceType *RT =
9236               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
9237         ConstRHS = RT->getPointeeType().isConstQualified();
9238       }
9239     }
9240
9241     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
9242                                               /* ConstRHS */ ConstRHS,
9243                                               /* Diagnose */ true);
9244   }
9245 }
9246
9247 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
9248   FunctionDecl *Callee = Cand->Function;
9249   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
9250
9251   S.Diag(Callee->getLocation(),
9252          diag::note_ovl_candidate_disabled_by_enable_if_attr)
9253       << Attr->getCond()->getSourceRange() << Attr->getMessage();
9254 }
9255
9256 /// Generates a 'note' diagnostic for an overload candidate.  We've
9257 /// already generated a primary error at the call site.
9258 ///
9259 /// It really does need to be a single diagnostic with its caret
9260 /// pointed at the candidate declaration.  Yes, this creates some
9261 /// major challenges of technical writing.  Yes, this makes pointing
9262 /// out problems with specific arguments quite awkward.  It's still
9263 /// better than generating twenty screens of text for every failed
9264 /// overload.
9265 ///
9266 /// It would be great to be able to express per-candidate problems
9267 /// more richly for those diagnostic clients that cared, but we'd
9268 /// still have to be just as careful with the default diagnostics.
9269 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
9270                                   unsigned NumArgs) {
9271   FunctionDecl *Fn = Cand->Function;
9272
9273   // Note deleted candidates, but only if they're viable.
9274   if (Cand->Viable && (Fn->isDeleted() ||
9275       S.isFunctionConsideredUnavailable(Fn))) {
9276     std::string FnDesc;
9277     OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
9278
9279     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
9280       << FnKind << FnDesc
9281       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
9282     MaybeEmitInheritedConstructorNote(S, Fn);
9283     return;
9284   }
9285
9286   // We don't really have anything else to say about viable candidates.
9287   if (Cand->Viable) {
9288     S.NoteOverloadCandidate(Fn);
9289     return;
9290   }
9291
9292   switch (Cand->FailureKind) {
9293   case ovl_fail_too_many_arguments:
9294   case ovl_fail_too_few_arguments:
9295     return DiagnoseArityMismatch(S, Cand, NumArgs);
9296
9297   case ovl_fail_bad_deduction:
9298     return DiagnoseBadDeduction(S, Cand, NumArgs);
9299
9300   case ovl_fail_illegal_constructor: {
9301     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
9302       << (Fn->getPrimaryTemplate() ? 1 : 0);
9303     MaybeEmitInheritedConstructorNote(S, Fn);
9304     return;
9305   }
9306
9307   case ovl_fail_trivial_conversion:
9308   case ovl_fail_bad_final_conversion:
9309   case ovl_fail_final_conversion_not_exact:
9310     return S.NoteOverloadCandidate(Fn);
9311
9312   case ovl_fail_bad_conversion: {
9313     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
9314     for (unsigned N = Cand->NumConversions; I != N; ++I)
9315       if (Cand->Conversions[I].isBad())
9316         return DiagnoseBadConversion(S, Cand, I);
9317
9318     // FIXME: this currently happens when we're called from SemaInit
9319     // when user-conversion overload fails.  Figure out how to handle
9320     // those conditions and diagnose them well.
9321     return S.NoteOverloadCandidate(Fn);
9322   }
9323
9324   case ovl_fail_bad_target:
9325     return DiagnoseBadTarget(S, Cand);
9326
9327   case ovl_fail_enable_if:
9328     return DiagnoseFailedEnableIfAttr(S, Cand);
9329   }
9330 }
9331
9332 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
9333   // Desugar the type of the surrogate down to a function type,
9334   // retaining as many typedefs as possible while still showing
9335   // the function type (and, therefore, its parameter types).
9336   QualType FnType = Cand->Surrogate->getConversionType();
9337   bool isLValueReference = false;
9338   bool isRValueReference = false;
9339   bool isPointer = false;
9340   if (const LValueReferenceType *FnTypeRef =
9341         FnType->getAs<LValueReferenceType>()) {
9342     FnType = FnTypeRef->getPointeeType();
9343     isLValueReference = true;
9344   } else if (const RValueReferenceType *FnTypeRef =
9345                FnType->getAs<RValueReferenceType>()) {
9346     FnType = FnTypeRef->getPointeeType();
9347     isRValueReference = true;
9348   }
9349   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
9350     FnType = FnTypePtr->getPointeeType();
9351     isPointer = true;
9352   }
9353   // Desugar down to a function type.
9354   FnType = QualType(FnType->getAs<FunctionType>(), 0);
9355   // Reconstruct the pointer/reference as appropriate.
9356   if (isPointer) FnType = S.Context.getPointerType(FnType);
9357   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
9358   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
9359
9360   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
9361     << FnType;
9362   MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
9363 }
9364
9365 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
9366                                          SourceLocation OpLoc,
9367                                          OverloadCandidate *Cand) {
9368   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
9369   std::string TypeStr("operator");
9370   TypeStr += Opc;
9371   TypeStr += "(";
9372   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
9373   if (Cand->NumConversions == 1) {
9374     TypeStr += ")";
9375     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
9376   } else {
9377     TypeStr += ", ";
9378     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
9379     TypeStr += ")";
9380     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
9381   }
9382 }
9383
9384 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
9385                                          OverloadCandidate *Cand) {
9386   unsigned NoOperands = Cand->NumConversions;
9387   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
9388     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
9389     if (ICS.isBad()) break; // all meaningless after first invalid
9390     if (!ICS.isAmbiguous()) continue;
9391
9392     ICS.DiagnoseAmbiguousConversion(S, OpLoc,
9393                               S.PDiag(diag::note_ambiguous_type_conversion));
9394   }
9395 }
9396
9397 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
9398   if (Cand->Function)
9399     return Cand->Function->getLocation();
9400   if (Cand->IsSurrogate)
9401     return Cand->Surrogate->getLocation();
9402   return SourceLocation();
9403 }
9404
9405 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
9406   switch ((Sema::TemplateDeductionResult)DFI.Result) {
9407   case Sema::TDK_Success:
9408     llvm_unreachable("TDK_success while diagnosing bad deduction");
9409
9410   case Sema::TDK_Invalid:
9411   case Sema::TDK_Incomplete:
9412     return 1;
9413
9414   case Sema::TDK_Underqualified:
9415   case Sema::TDK_Inconsistent:
9416     return 2;
9417
9418   case Sema::TDK_SubstitutionFailure:
9419   case Sema::TDK_NonDeducedMismatch:
9420   case Sema::TDK_MiscellaneousDeductionFailure:
9421     return 3;
9422
9423   case Sema::TDK_InstantiationDepth:
9424   case Sema::TDK_FailedOverloadResolution:
9425     return 4;
9426
9427   case Sema::TDK_InvalidExplicitArguments:
9428     return 5;
9429
9430   case Sema::TDK_TooManyArguments:
9431   case Sema::TDK_TooFewArguments:
9432     return 6;
9433   }
9434   llvm_unreachable("Unhandled deduction result");
9435 }
9436
9437 namespace {
9438 struct CompareOverloadCandidatesForDisplay {
9439   Sema &S;
9440   size_t NumArgs;
9441
9442   CompareOverloadCandidatesForDisplay(Sema &S, size_t nArgs)
9443       : S(S), NumArgs(nArgs) {}
9444
9445   bool operator()(const OverloadCandidate *L,
9446                   const OverloadCandidate *R) {
9447     // Fast-path this check.
9448     if (L == R) return false;
9449
9450     // Order first by viability.
9451     if (L->Viable) {
9452       if (!R->Viable) return true;
9453
9454       // TODO: introduce a tri-valued comparison for overload
9455       // candidates.  Would be more worthwhile if we had a sort
9456       // that could exploit it.
9457       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
9458       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
9459     } else if (R->Viable)
9460       return false;
9461
9462     assert(L->Viable == R->Viable);
9463
9464     // Criteria by which we can sort non-viable candidates:
9465     if (!L->Viable) {
9466       // 1. Arity mismatches come after other candidates.
9467       if (L->FailureKind == ovl_fail_too_many_arguments ||
9468           L->FailureKind == ovl_fail_too_few_arguments) {
9469         if (R->FailureKind == ovl_fail_too_many_arguments ||
9470             R->FailureKind == ovl_fail_too_few_arguments) {
9471           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
9472           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
9473           if (LDist == RDist) {
9474             if (L->FailureKind == R->FailureKind)
9475               // Sort non-surrogates before surrogates.
9476               return !L->IsSurrogate && R->IsSurrogate;
9477             // Sort candidates requiring fewer parameters than there were
9478             // arguments given after candidates requiring more parameters
9479             // than there were arguments given.
9480             return L->FailureKind == ovl_fail_too_many_arguments;
9481           }
9482           return LDist < RDist;
9483         }
9484         return false;
9485       }
9486       if (R->FailureKind == ovl_fail_too_many_arguments ||
9487           R->FailureKind == ovl_fail_too_few_arguments)
9488         return true;
9489
9490       // 2. Bad conversions come first and are ordered by the number
9491       // of bad conversions and quality of good conversions.
9492       if (L->FailureKind == ovl_fail_bad_conversion) {
9493         if (R->FailureKind != ovl_fail_bad_conversion)
9494           return true;
9495
9496         // The conversion that can be fixed with a smaller number of changes,
9497         // comes first.
9498         unsigned numLFixes = L->Fix.NumConversionsFixed;
9499         unsigned numRFixes = R->Fix.NumConversionsFixed;
9500         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
9501         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
9502         if (numLFixes != numRFixes) {
9503           return numLFixes < numRFixes;
9504         }
9505
9506         // If there's any ordering between the defined conversions...
9507         // FIXME: this might not be transitive.
9508         assert(L->NumConversions == R->NumConversions);
9509
9510         int leftBetter = 0;
9511         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
9512         for (unsigned E = L->NumConversions; I != E; ++I) {
9513           switch (CompareImplicitConversionSequences(S,
9514                                                      L->Conversions[I],
9515                                                      R->Conversions[I])) {
9516           case ImplicitConversionSequence::Better:
9517             leftBetter++;
9518             break;
9519
9520           case ImplicitConversionSequence::Worse:
9521             leftBetter--;
9522             break;
9523
9524           case ImplicitConversionSequence::Indistinguishable:
9525             break;
9526           }
9527         }
9528         if (leftBetter > 0) return true;
9529         if (leftBetter < 0) return false;
9530
9531       } else if (R->FailureKind == ovl_fail_bad_conversion)
9532         return false;
9533
9534       if (L->FailureKind == ovl_fail_bad_deduction) {
9535         if (R->FailureKind != ovl_fail_bad_deduction)
9536           return true;
9537
9538         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9539           return RankDeductionFailure(L->DeductionFailure)
9540                < RankDeductionFailure(R->DeductionFailure);
9541       } else if (R->FailureKind == ovl_fail_bad_deduction)
9542         return false;
9543
9544       // TODO: others?
9545     }
9546
9547     // Sort everything else by location.
9548     SourceLocation LLoc = GetLocationForCandidate(L);
9549     SourceLocation RLoc = GetLocationForCandidate(R);
9550
9551     // Put candidates without locations (e.g. builtins) at the end.
9552     if (LLoc.isInvalid()) return false;
9553     if (RLoc.isInvalid()) return true;
9554
9555     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9556   }
9557 };
9558 }
9559
9560 /// CompleteNonViableCandidate - Normally, overload resolution only
9561 /// computes up to the first. Produces the FixIt set if possible.
9562 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
9563                                        ArrayRef<Expr *> Args) {
9564   assert(!Cand->Viable);
9565
9566   // Don't do anything on failures other than bad conversion.
9567   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
9568
9569   // We only want the FixIts if all the arguments can be corrected.
9570   bool Unfixable = false;
9571   // Use a implicit copy initialization to check conversion fixes.
9572   Cand->Fix.setConversionChecker(TryCopyInitialization);
9573
9574   // Skip forward to the first bad conversion.
9575   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
9576   unsigned ConvCount = Cand->NumConversions;
9577   while (true) {
9578     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
9579     ConvIdx++;
9580     if (Cand->Conversions[ConvIdx - 1].isBad()) {
9581       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
9582       break;
9583     }
9584   }
9585
9586   if (ConvIdx == ConvCount)
9587     return;
9588
9589   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
9590          "remaining conversion is initialized?");
9591
9592   // FIXME: this should probably be preserved from the overload
9593   // operation somehow.
9594   bool SuppressUserConversions = false;
9595
9596   const FunctionProtoType* Proto;
9597   unsigned ArgIdx = ConvIdx;
9598
9599   if (Cand->IsSurrogate) {
9600     QualType ConvType
9601       = Cand->Surrogate->getConversionType().getNonReferenceType();
9602     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9603       ConvType = ConvPtrType->getPointeeType();
9604     Proto = ConvType->getAs<FunctionProtoType>();
9605     ArgIdx--;
9606   } else if (Cand->Function) {
9607     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
9608     if (isa<CXXMethodDecl>(Cand->Function) &&
9609         !isa<CXXConstructorDecl>(Cand->Function))
9610       ArgIdx--;
9611   } else {
9612     // Builtin binary operator with a bad first conversion.
9613     assert(ConvCount <= 3);
9614     for (; ConvIdx != ConvCount; ++ConvIdx)
9615       Cand->Conversions[ConvIdx]
9616         = TryCopyInitialization(S, Args[ConvIdx],
9617                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
9618                                 SuppressUserConversions,
9619                                 /*InOverloadResolution*/ true,
9620                                 /*AllowObjCWritebackConversion=*/
9621                                   S.getLangOpts().ObjCAutoRefCount);
9622     return;
9623   }
9624
9625   // Fill in the rest of the conversions.
9626   unsigned NumParams = Proto->getNumParams();
9627   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
9628     if (ArgIdx < NumParams) {
9629       Cand->Conversions[ConvIdx] = TryCopyInitialization(
9630           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
9631           /*InOverloadResolution=*/true,
9632           /*AllowObjCWritebackConversion=*/
9633           S.getLangOpts().ObjCAutoRefCount);
9634       // Store the FixIt in the candidate if it exists.
9635       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
9636         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
9637     }
9638     else
9639       Cand->Conversions[ConvIdx].setEllipsis();
9640   }
9641 }
9642
9643 /// PrintOverloadCandidates - When overload resolution fails, prints
9644 /// diagnostic messages containing the candidates in the candidate
9645 /// set.
9646 void OverloadCandidateSet::NoteCandidates(Sema &S,
9647                                           OverloadCandidateDisplayKind OCD,
9648                                           ArrayRef<Expr *> Args,
9649                                           StringRef Opc,
9650                                           SourceLocation OpLoc) {
9651   // Sort the candidates by viability and position.  Sorting directly would
9652   // be prohibitive, so we make a set of pointers and sort those.
9653   SmallVector<OverloadCandidate*, 32> Cands;
9654   if (OCD == OCD_AllCandidates) Cands.reserve(size());
9655   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9656     if (Cand->Viable)
9657       Cands.push_back(Cand);
9658     else if (OCD == OCD_AllCandidates) {
9659       CompleteNonViableCandidate(S, Cand, Args);
9660       if (Cand->Function || Cand->IsSurrogate)
9661         Cands.push_back(Cand);
9662       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
9663       // want to list every possible builtin candidate.
9664     }
9665   }
9666
9667   std::sort(Cands.begin(), Cands.end(),
9668             CompareOverloadCandidatesForDisplay(S, Args.size()));
9669
9670   bool ReportedAmbiguousConversions = false;
9671
9672   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
9673   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9674   unsigned CandsShown = 0;
9675   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9676     OverloadCandidate *Cand = *I;
9677
9678     // Set an arbitrary limit on the number of candidate functions we'll spam
9679     // the user with.  FIXME: This limit should depend on details of the
9680     // candidate list.
9681     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
9682       break;
9683     }
9684     ++CandsShown;
9685
9686     if (Cand->Function)
9687       NoteFunctionCandidate(S, Cand, Args.size());
9688     else if (Cand->IsSurrogate)
9689       NoteSurrogateCandidate(S, Cand);
9690     else {
9691       assert(Cand->Viable &&
9692              "Non-viable built-in candidates are not added to Cands.");
9693       // Generally we only see ambiguities including viable builtin
9694       // operators if overload resolution got screwed up by an
9695       // ambiguous user-defined conversion.
9696       //
9697       // FIXME: It's quite possible for different conversions to see
9698       // different ambiguities, though.
9699       if (!ReportedAmbiguousConversions) {
9700         NoteAmbiguousUserConversions(S, OpLoc, Cand);
9701         ReportedAmbiguousConversions = true;
9702       }
9703
9704       // If this is a viable builtin, print it.
9705       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
9706     }
9707   }
9708
9709   if (I != E)
9710     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
9711 }
9712
9713 static SourceLocation
9714 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
9715   return Cand->Specialization ? Cand->Specialization->getLocation()
9716                               : SourceLocation();
9717 }
9718
9719 namespace {
9720 struct CompareTemplateSpecCandidatesForDisplay {
9721   Sema &S;
9722   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
9723
9724   bool operator()(const TemplateSpecCandidate *L,
9725                   const TemplateSpecCandidate *R) {
9726     // Fast-path this check.
9727     if (L == R)
9728       return false;
9729
9730     // Assuming that both candidates are not matches...
9731
9732     // Sort by the ranking of deduction failures.
9733     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9734       return RankDeductionFailure(L->DeductionFailure) <
9735              RankDeductionFailure(R->DeductionFailure);
9736
9737     // Sort everything else by location.
9738     SourceLocation LLoc = GetLocationForCandidate(L);
9739     SourceLocation RLoc = GetLocationForCandidate(R);
9740
9741     // Put candidates without locations (e.g. builtins) at the end.
9742     if (LLoc.isInvalid())
9743       return false;
9744     if (RLoc.isInvalid())
9745       return true;
9746
9747     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9748   }
9749 };
9750 }
9751
9752 /// Diagnose a template argument deduction failure.
9753 /// We are treating these failures as overload failures due to bad
9754 /// deductions.
9755 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
9756   DiagnoseBadDeduction(S, Specialization, // pattern
9757                        DeductionFailure, /*NumArgs=*/0);
9758 }
9759
9760 void TemplateSpecCandidateSet::destroyCandidates() {
9761   for (iterator i = begin(), e = end(); i != e; ++i) {
9762     i->DeductionFailure.Destroy();
9763   }
9764 }
9765
9766 void TemplateSpecCandidateSet::clear() {
9767   destroyCandidates();
9768   Candidates.clear();
9769 }
9770
9771 /// NoteCandidates - When no template specialization match is found, prints
9772 /// diagnostic messages containing the non-matching specializations that form
9773 /// the candidate set.
9774 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
9775 /// OCD == OCD_AllCandidates and Cand->Viable == false.
9776 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
9777   // Sort the candidates by position (assuming no candidate is a match).
9778   // Sorting directly would be prohibitive, so we make a set of pointers
9779   // and sort those.
9780   SmallVector<TemplateSpecCandidate *, 32> Cands;
9781   Cands.reserve(size());
9782   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9783     if (Cand->Specialization)
9784       Cands.push_back(Cand);
9785     // Otherwise, this is a non-matching builtin candidate.  We do not,
9786     // in general, want to list every possible builtin candidate.
9787   }
9788
9789   std::sort(Cands.begin(), Cands.end(),
9790             CompareTemplateSpecCandidatesForDisplay(S));
9791
9792   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
9793   // for generalization purposes (?).
9794   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9795
9796   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
9797   unsigned CandsShown = 0;
9798   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9799     TemplateSpecCandidate *Cand = *I;
9800
9801     // Set an arbitrary limit on the number of candidates we'll spam
9802     // the user with.  FIXME: This limit should depend on details of the
9803     // candidate list.
9804     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9805       break;
9806     ++CandsShown;
9807
9808     assert(Cand->Specialization &&
9809            "Non-matching built-in candidates are not added to Cands.");
9810     Cand->NoteDeductionFailure(S);
9811   }
9812
9813   if (I != E)
9814     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
9815 }
9816
9817 // [PossiblyAFunctionType]  -->   [Return]
9818 // NonFunctionType --> NonFunctionType
9819 // R (A) --> R(A)
9820 // R (*)(A) --> R (A)
9821 // R (&)(A) --> R (A)
9822 // R (S::*)(A) --> R (A)
9823 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
9824   QualType Ret = PossiblyAFunctionType;
9825   if (const PointerType *ToTypePtr = 
9826     PossiblyAFunctionType->getAs<PointerType>())
9827     Ret = ToTypePtr->getPointeeType();
9828   else if (const ReferenceType *ToTypeRef = 
9829     PossiblyAFunctionType->getAs<ReferenceType>())
9830     Ret = ToTypeRef->getPointeeType();
9831   else if (const MemberPointerType *MemTypePtr =
9832     PossiblyAFunctionType->getAs<MemberPointerType>()) 
9833     Ret = MemTypePtr->getPointeeType();   
9834   Ret = 
9835     Context.getCanonicalType(Ret).getUnqualifiedType();
9836   return Ret;
9837 }
9838
9839 namespace {
9840 // A helper class to help with address of function resolution
9841 // - allows us to avoid passing around all those ugly parameters
9842 class AddressOfFunctionResolver {
9843   Sema& S;
9844   Expr* SourceExpr;
9845   const QualType& TargetType; 
9846   QualType TargetFunctionType; // Extracted function type from target type 
9847    
9848   bool Complain;
9849   //DeclAccessPair& ResultFunctionAccessPair;
9850   ASTContext& Context;
9851
9852   bool TargetTypeIsNonStaticMemberFunction;
9853   bool FoundNonTemplateFunction;
9854   bool StaticMemberFunctionFromBoundPointer;
9855
9856   OverloadExpr::FindResult OvlExprInfo; 
9857   OverloadExpr *OvlExpr;
9858   TemplateArgumentListInfo OvlExplicitTemplateArgs;
9859   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
9860   TemplateSpecCandidateSet FailedCandidates;
9861
9862 public:
9863   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
9864                             const QualType &TargetType, bool Complain)
9865       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
9866         Complain(Complain), Context(S.getASTContext()),
9867         TargetTypeIsNonStaticMemberFunction(
9868             !!TargetType->getAs<MemberPointerType>()),
9869         FoundNonTemplateFunction(false),
9870         StaticMemberFunctionFromBoundPointer(false),
9871         OvlExprInfo(OverloadExpr::find(SourceExpr)),
9872         OvlExpr(OvlExprInfo.Expression),
9873         FailedCandidates(OvlExpr->getNameLoc()) {
9874     ExtractUnqualifiedFunctionTypeFromTargetType();
9875
9876     if (TargetFunctionType->isFunctionType()) {
9877       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
9878         if (!UME->isImplicitAccess() &&
9879             !S.ResolveSingleFunctionTemplateSpecialization(UME))
9880           StaticMemberFunctionFromBoundPointer = true;
9881     } else if (OvlExpr->hasExplicitTemplateArgs()) {
9882       DeclAccessPair dap;
9883       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
9884               OvlExpr, false, &dap)) {
9885         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
9886           if (!Method->isStatic()) {
9887             // If the target type is a non-function type and the function found
9888             // is a non-static member function, pretend as if that was the
9889             // target, it's the only possible type to end up with.
9890             TargetTypeIsNonStaticMemberFunction = true;
9891
9892             // And skip adding the function if its not in the proper form.
9893             // We'll diagnose this due to an empty set of functions.
9894             if (!OvlExprInfo.HasFormOfMemberPointer)
9895               return;
9896           }
9897
9898         Matches.push_back(std::make_pair(dap, Fn));
9899       }
9900       return;
9901     }
9902     
9903     if (OvlExpr->hasExplicitTemplateArgs())
9904       OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
9905
9906     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
9907       // C++ [over.over]p4:
9908       //   If more than one function is selected, [...]
9909       if (Matches.size() > 1) {
9910         if (FoundNonTemplateFunction)
9911           EliminateAllTemplateMatches();
9912         else
9913           EliminateAllExceptMostSpecializedTemplate();
9914       }
9915     }
9916   }
9917   
9918 private:
9919   bool isTargetTypeAFunction() const {
9920     return TargetFunctionType->isFunctionType();
9921   }
9922
9923   // [ToType]     [Return]
9924
9925   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
9926   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
9927   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
9928   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
9929     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
9930   }
9931
9932   // return true if any matching specializations were found
9933   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 
9934                                    const DeclAccessPair& CurAccessFunPair) {
9935     if (CXXMethodDecl *Method
9936               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
9937       // Skip non-static function templates when converting to pointer, and
9938       // static when converting to member pointer.
9939       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9940         return false;
9941     } 
9942     else if (TargetTypeIsNonStaticMemberFunction)
9943       return false;
9944
9945     // C++ [over.over]p2:
9946     //   If the name is a function template, template argument deduction is
9947     //   done (14.8.2.2), and if the argument deduction succeeds, the
9948     //   resulting template argument list is used to generate a single
9949     //   function template specialization, which is added to the set of
9950     //   overloaded functions considered.
9951     FunctionDecl *Specialization = nullptr;
9952     TemplateDeductionInfo Info(FailedCandidates.getLocation());
9953     if (Sema::TemplateDeductionResult Result
9954           = S.DeduceTemplateArguments(FunctionTemplate, 
9955                                       &OvlExplicitTemplateArgs,
9956                                       TargetFunctionType, Specialization, 
9957                                       Info, /*InOverloadResolution=*/true)) {
9958       // Make a note of the failed deduction for diagnostics.
9959       FailedCandidates.addCandidate()
9960           .set(FunctionTemplate->getTemplatedDecl(),
9961                MakeDeductionFailureInfo(Context, Result, Info));
9962       return false;
9963     } 
9964     
9965     // Template argument deduction ensures that we have an exact match or
9966     // compatible pointer-to-function arguments that would be adjusted by ICS.
9967     // This function template specicalization works.
9968     Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9969     assert(S.isSameOrCompatibleFunctionType(
9970               Context.getCanonicalType(Specialization->getType()),
9971               Context.getCanonicalType(TargetFunctionType)));
9972     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9973     return true;
9974   }
9975   
9976   bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 
9977                                       const DeclAccessPair& CurAccessFunPair) {
9978     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9979       // Skip non-static functions when converting to pointer, and static
9980       // when converting to member pointer.
9981       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9982         return false;
9983     } 
9984     else if (TargetTypeIsNonStaticMemberFunction)
9985       return false;
9986
9987     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9988       if (S.getLangOpts().CUDA)
9989         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9990           if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
9991             return false;
9992
9993       // If any candidate has a placeholder return type, trigger its deduction
9994       // now.
9995       if (S.getLangOpts().CPlusPlus14 &&
9996           FunDecl->getReturnType()->isUndeducedType() &&
9997           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
9998         return false;
9999
10000       QualType ResultTy;
10001       if (Context.hasSameUnqualifiedType(TargetFunctionType, 
10002                                          FunDecl->getType()) ||
10003           S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
10004                                  ResultTy)) {
10005         Matches.push_back(std::make_pair(CurAccessFunPair,
10006           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
10007         FoundNonTemplateFunction = true;
10008         return true;
10009       }
10010     }
10011     
10012     return false;
10013   }
10014   
10015   bool FindAllFunctionsThatMatchTargetTypeExactly() {
10016     bool Ret = false;
10017     
10018     // If the overload expression doesn't have the form of a pointer to
10019     // member, don't try to convert it to a pointer-to-member type.
10020     if (IsInvalidFormOfPointerToMemberFunction())
10021       return false;
10022
10023     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10024                                E = OvlExpr->decls_end(); 
10025          I != E; ++I) {
10026       // Look through any using declarations to find the underlying function.
10027       NamedDecl *Fn = (*I)->getUnderlyingDecl();
10028
10029       // C++ [over.over]p3:
10030       //   Non-member functions and static member functions match
10031       //   targets of type "pointer-to-function" or "reference-to-function."
10032       //   Nonstatic member functions match targets of
10033       //   type "pointer-to-member-function."
10034       // Note that according to DR 247, the containing class does not matter.
10035       if (FunctionTemplateDecl *FunctionTemplate
10036                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
10037         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
10038           Ret = true;
10039       }
10040       // If we have explicit template arguments supplied, skip non-templates.
10041       else if (!OvlExpr->hasExplicitTemplateArgs() &&
10042                AddMatchingNonTemplateFunction(Fn, I.getPair()))
10043         Ret = true;
10044     }
10045     assert(Ret || Matches.empty());
10046     return Ret;
10047   }
10048
10049   void EliminateAllExceptMostSpecializedTemplate() {
10050     //   [...] and any given function template specialization F1 is
10051     //   eliminated if the set contains a second function template
10052     //   specialization whose function template is more specialized
10053     //   than the function template of F1 according to the partial
10054     //   ordering rules of 14.5.5.2.
10055
10056     // The algorithm specified above is quadratic. We instead use a
10057     // two-pass algorithm (similar to the one used to identify the
10058     // best viable function in an overload set) that identifies the
10059     // best function template (if it exists).
10060
10061     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
10062     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
10063       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
10064
10065     // TODO: It looks like FailedCandidates does not serve much purpose
10066     // here, since the no_viable diagnostic has index 0.
10067     UnresolvedSetIterator Result = S.getMostSpecialized(
10068         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
10069         SourceExpr->getLocStart(), S.PDiag(),
10070         S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
10071                                                      .second->getDeclName(),
10072         S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
10073         Complain, TargetFunctionType);
10074
10075     if (Result != MatchesCopy.end()) {
10076       // Make it the first and only element
10077       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
10078       Matches[0].second = cast<FunctionDecl>(*Result);
10079       Matches.resize(1);
10080     }
10081   }
10082
10083   void EliminateAllTemplateMatches() {
10084     //   [...] any function template specializations in the set are
10085     //   eliminated if the set also contains a non-template function, [...]
10086     for (unsigned I = 0, N = Matches.size(); I != N; ) {
10087       if (Matches[I].second->getPrimaryTemplate() == nullptr)
10088         ++I;
10089       else {
10090         Matches[I] = Matches[--N];
10091         Matches.set_size(N);
10092       }
10093     }
10094   }
10095
10096 public:
10097   void ComplainNoMatchesFound() const {
10098     assert(Matches.empty());
10099     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
10100         << OvlExpr->getName() << TargetFunctionType
10101         << OvlExpr->getSourceRange();
10102     if (FailedCandidates.empty())
10103       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
10104     else {
10105       // We have some deduction failure messages. Use them to diagnose
10106       // the function templates, and diagnose the non-template candidates
10107       // normally.
10108       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10109                                  IEnd = OvlExpr->decls_end();
10110            I != IEnd; ++I)
10111         if (FunctionDecl *Fun =
10112                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
10113           S.NoteOverloadCandidate(Fun, TargetFunctionType);
10114       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
10115     }
10116   }
10117
10118   bool IsInvalidFormOfPointerToMemberFunction() const {
10119     return TargetTypeIsNonStaticMemberFunction &&
10120       !OvlExprInfo.HasFormOfMemberPointer;
10121   }
10122
10123   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
10124       // TODO: Should we condition this on whether any functions might
10125       // have matched, or is it more appropriate to do that in callers?
10126       // TODO: a fixit wouldn't hurt.
10127       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
10128         << TargetType << OvlExpr->getSourceRange();
10129   }
10130
10131   bool IsStaticMemberFunctionFromBoundPointer() const {
10132     return StaticMemberFunctionFromBoundPointer;
10133   }
10134
10135   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
10136     S.Diag(OvlExpr->getLocStart(),
10137            diag::err_invalid_form_pointer_member_function)
10138       << OvlExpr->getSourceRange();
10139   }
10140
10141   void ComplainOfInvalidConversion() const {
10142     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
10143       << OvlExpr->getName() << TargetType;
10144   }
10145
10146   void ComplainMultipleMatchesFound() const {
10147     assert(Matches.size() > 1);
10148     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
10149       << OvlExpr->getName()
10150       << OvlExpr->getSourceRange();
10151     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
10152   }
10153
10154   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
10155
10156   int getNumMatches() const { return Matches.size(); }
10157   
10158   FunctionDecl* getMatchingFunctionDecl() const {
10159     if (Matches.size() != 1) return nullptr;
10160     return Matches[0].second;
10161   }
10162   
10163   const DeclAccessPair* getMatchingFunctionAccessPair() const {
10164     if (Matches.size() != 1) return nullptr;
10165     return &Matches[0].first;
10166   }
10167 };
10168 }
10169
10170 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
10171 /// an overloaded function (C++ [over.over]), where @p From is an
10172 /// expression with overloaded function type and @p ToType is the type
10173 /// we're trying to resolve to. For example:
10174 ///
10175 /// @code
10176 /// int f(double);
10177 /// int f(int);
10178 ///
10179 /// int (*pfd)(double) = f; // selects f(double)
10180 /// @endcode
10181 ///
10182 /// This routine returns the resulting FunctionDecl if it could be
10183 /// resolved, and NULL otherwise. When @p Complain is true, this
10184 /// routine will emit diagnostics if there is an error.
10185 FunctionDecl *
10186 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
10187                                          QualType TargetType,
10188                                          bool Complain,
10189                                          DeclAccessPair &FoundResult,
10190                                          bool *pHadMultipleCandidates) {
10191   assert(AddressOfExpr->getType() == Context.OverloadTy);
10192
10193   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
10194                                      Complain);
10195   int NumMatches = Resolver.getNumMatches();
10196   FunctionDecl *Fn = nullptr;
10197   if (NumMatches == 0 && Complain) {
10198     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
10199       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
10200     else
10201       Resolver.ComplainNoMatchesFound();
10202   }
10203   else if (NumMatches > 1 && Complain)
10204     Resolver.ComplainMultipleMatchesFound();
10205   else if (NumMatches == 1) {
10206     Fn = Resolver.getMatchingFunctionDecl();
10207     assert(Fn);
10208     FoundResult = *Resolver.getMatchingFunctionAccessPair();
10209     if (Complain) {
10210       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
10211         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
10212       else
10213         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
10214     }
10215   }
10216
10217   if (pHadMultipleCandidates)
10218     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
10219   return Fn;
10220 }
10221
10222 /// \brief Given an expression that refers to an overloaded function, try to
10223 /// resolve that overloaded function expression down to a single function.
10224 ///
10225 /// This routine can only resolve template-ids that refer to a single function
10226 /// template, where that template-id refers to a single template whose template
10227 /// arguments are either provided by the template-id or have defaults,
10228 /// as described in C++0x [temp.arg.explicit]p3.
10229 ///
10230 /// If no template-ids are found, no diagnostics are emitted and NULL is
10231 /// returned.
10232 FunctionDecl *
10233 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 
10234                                                   bool Complain,
10235                                                   DeclAccessPair *FoundResult) {
10236   // C++ [over.over]p1:
10237   //   [...] [Note: any redundant set of parentheses surrounding the
10238   //   overloaded function name is ignored (5.1). ]
10239   // C++ [over.over]p1:
10240   //   [...] The overloaded function name can be preceded by the &
10241   //   operator.
10242
10243   // If we didn't actually find any template-ids, we're done.
10244   if (!ovl->hasExplicitTemplateArgs())
10245     return nullptr;
10246
10247   TemplateArgumentListInfo ExplicitTemplateArgs;
10248   ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
10249   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
10250
10251   // Look through all of the overloaded functions, searching for one
10252   // whose type matches exactly.
10253   FunctionDecl *Matched = nullptr;
10254   for (UnresolvedSetIterator I = ovl->decls_begin(),
10255          E = ovl->decls_end(); I != E; ++I) {
10256     // C++0x [temp.arg.explicit]p3:
10257     //   [...] In contexts where deduction is done and fails, or in contexts
10258     //   where deduction is not done, if a template argument list is
10259     //   specified and it, along with any default template arguments,
10260     //   identifies a single function template specialization, then the
10261     //   template-id is an lvalue for the function template specialization.
10262     FunctionTemplateDecl *FunctionTemplate
10263       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
10264
10265     // C++ [over.over]p2:
10266     //   If the name is a function template, template argument deduction is
10267     //   done (14.8.2.2), and if the argument deduction succeeds, the
10268     //   resulting template argument list is used to generate a single
10269     //   function template specialization, which is added to the set of
10270     //   overloaded functions considered.
10271     FunctionDecl *Specialization = nullptr;
10272     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10273     if (TemplateDeductionResult Result
10274           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
10275                                     Specialization, Info,
10276                                     /*InOverloadResolution=*/true)) {
10277       // Make a note of the failed deduction for diagnostics.
10278       // TODO: Actually use the failed-deduction info?
10279       FailedCandidates.addCandidate()
10280           .set(FunctionTemplate->getTemplatedDecl(),
10281                MakeDeductionFailureInfo(Context, Result, Info));
10282       continue;
10283     }
10284
10285     assert(Specialization && "no specialization and no error?");
10286
10287     // Multiple matches; we can't resolve to a single declaration.
10288     if (Matched) {
10289       if (Complain) {
10290         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
10291           << ovl->getName();
10292         NoteAllOverloadCandidates(ovl);
10293       }
10294       return nullptr;
10295     }
10296     
10297     Matched = Specialization;
10298     if (FoundResult) *FoundResult = I.getPair();    
10299   }
10300
10301   if (Matched && getLangOpts().CPlusPlus14 &&
10302       Matched->getReturnType()->isUndeducedType() &&
10303       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
10304     return nullptr;
10305
10306   return Matched;
10307 }
10308
10309
10310
10311
10312 // Resolve and fix an overloaded expression that can be resolved
10313 // because it identifies a single function template specialization.
10314 //
10315 // Last three arguments should only be supplied if Complain = true
10316 //
10317 // Return true if it was logically possible to so resolve the
10318 // expression, regardless of whether or not it succeeded.  Always
10319 // returns true if 'complain' is set.
10320 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
10321                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
10322                    bool complain, const SourceRange& OpRangeForComplaining, 
10323                                            QualType DestTypeForComplaining, 
10324                                             unsigned DiagIDForComplaining) {
10325   assert(SrcExpr.get()->getType() == Context.OverloadTy);
10326
10327   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
10328
10329   DeclAccessPair found;
10330   ExprResult SingleFunctionExpression;
10331   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
10332                            ovl.Expression, /*complain*/ false, &found)) {
10333     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
10334       SrcExpr = ExprError();
10335       return true;
10336     }
10337
10338     // It is only correct to resolve to an instance method if we're
10339     // resolving a form that's permitted to be a pointer to member.
10340     // Otherwise we'll end up making a bound member expression, which
10341     // is illegal in all the contexts we resolve like this.
10342     if (!ovl.HasFormOfMemberPointer &&
10343         isa<CXXMethodDecl>(fn) &&
10344         cast<CXXMethodDecl>(fn)->isInstance()) {
10345       if (!complain) return false;
10346
10347       Diag(ovl.Expression->getExprLoc(),
10348            diag::err_bound_member_function)
10349         << 0 << ovl.Expression->getSourceRange();
10350
10351       // TODO: I believe we only end up here if there's a mix of
10352       // static and non-static candidates (otherwise the expression
10353       // would have 'bound member' type, not 'overload' type).
10354       // Ideally we would note which candidate was chosen and why
10355       // the static candidates were rejected.
10356       SrcExpr = ExprError();
10357       return true;
10358     }
10359
10360     // Fix the expression to refer to 'fn'.
10361     SingleFunctionExpression =
10362         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
10363
10364     // If desired, do function-to-pointer decay.
10365     if (doFunctionPointerConverion) {
10366       SingleFunctionExpression =
10367         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
10368       if (SingleFunctionExpression.isInvalid()) {
10369         SrcExpr = ExprError();
10370         return true;
10371       }
10372     }
10373   }
10374
10375   if (!SingleFunctionExpression.isUsable()) {
10376     if (complain) {
10377       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
10378         << ovl.Expression->getName()
10379         << DestTypeForComplaining
10380         << OpRangeForComplaining 
10381         << ovl.Expression->getQualifierLoc().getSourceRange();
10382       NoteAllOverloadCandidates(SrcExpr.get());
10383
10384       SrcExpr = ExprError();
10385       return true;
10386     }
10387
10388     return false;
10389   }
10390
10391   SrcExpr = SingleFunctionExpression;
10392   return true;
10393 }
10394
10395 /// \brief Add a single candidate to the overload set.
10396 static void AddOverloadedCallCandidate(Sema &S,
10397                                        DeclAccessPair FoundDecl,
10398                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
10399                                        ArrayRef<Expr *> Args,
10400                                        OverloadCandidateSet &CandidateSet,
10401                                        bool PartialOverloading,
10402                                        bool KnownValid) {
10403   NamedDecl *Callee = FoundDecl.getDecl();
10404   if (isa<UsingShadowDecl>(Callee))
10405     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
10406
10407   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
10408     if (ExplicitTemplateArgs) {
10409       assert(!KnownValid && "Explicit template arguments?");
10410       return;
10411     }
10412     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
10413                            /*SuppressUsedConversions=*/false,
10414                            PartialOverloading);
10415     return;
10416   }
10417
10418   if (FunctionTemplateDecl *FuncTemplate
10419       = dyn_cast<FunctionTemplateDecl>(Callee)) {
10420     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
10421                                    ExplicitTemplateArgs, Args, CandidateSet,
10422                                    /*SuppressUsedConversions=*/false,
10423                                    PartialOverloading);
10424     return;
10425   }
10426
10427   assert(!KnownValid && "unhandled case in overloaded call candidate");
10428 }
10429
10430 /// \brief Add the overload candidates named by callee and/or found by argument
10431 /// dependent lookup to the given overload set.
10432 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
10433                                        ArrayRef<Expr *> Args,
10434                                        OverloadCandidateSet &CandidateSet,
10435                                        bool PartialOverloading) {
10436
10437 #ifndef NDEBUG
10438   // Verify that ArgumentDependentLookup is consistent with the rules
10439   // in C++0x [basic.lookup.argdep]p3:
10440   //
10441   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
10442   //   and let Y be the lookup set produced by argument dependent
10443   //   lookup (defined as follows). If X contains
10444   //
10445   //     -- a declaration of a class member, or
10446   //
10447   //     -- a block-scope function declaration that is not a
10448   //        using-declaration, or
10449   //
10450   //     -- a declaration that is neither a function or a function
10451   //        template
10452   //
10453   //   then Y is empty.
10454
10455   if (ULE->requiresADL()) {
10456     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
10457            E = ULE->decls_end(); I != E; ++I) {
10458       assert(!(*I)->getDeclContext()->isRecord());
10459       assert(isa<UsingShadowDecl>(*I) ||
10460              !(*I)->getDeclContext()->isFunctionOrMethod());
10461       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
10462     }
10463   }
10464 #endif
10465
10466   // It would be nice to avoid this copy.
10467   TemplateArgumentListInfo TABuffer;
10468   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
10469   if (ULE->hasExplicitTemplateArgs()) {
10470     ULE->copyTemplateArgumentsInto(TABuffer);
10471     ExplicitTemplateArgs = &TABuffer;
10472   }
10473
10474   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
10475          E = ULE->decls_end(); I != E; ++I)
10476     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
10477                                CandidateSet, PartialOverloading,
10478                                /*KnownValid*/ true);
10479
10480   if (ULE->requiresADL())
10481     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
10482                                          Args, ExplicitTemplateArgs,
10483                                          CandidateSet, PartialOverloading);
10484 }
10485
10486 /// Determine whether a declaration with the specified name could be moved into
10487 /// a different namespace.
10488 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
10489   switch (Name.getCXXOverloadedOperator()) {
10490   case OO_New: case OO_Array_New:
10491   case OO_Delete: case OO_Array_Delete:
10492     return false;
10493
10494   default:
10495     return true;
10496   }
10497 }
10498
10499 /// Attempt to recover from an ill-formed use of a non-dependent name in a
10500 /// template, where the non-dependent name was declared after the template
10501 /// was defined. This is common in code written for a compilers which do not
10502 /// correctly implement two-stage name lookup.
10503 ///
10504 /// Returns true if a viable candidate was found and a diagnostic was issued.
10505 static bool
10506 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
10507                        const CXXScopeSpec &SS, LookupResult &R,
10508                        OverloadCandidateSet::CandidateSetKind CSK,
10509                        TemplateArgumentListInfo *ExplicitTemplateArgs,
10510                        ArrayRef<Expr *> Args,
10511                        bool *DoDiagnoseEmptyLookup = nullptr) {
10512   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
10513     return false;
10514
10515   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
10516     if (DC->isTransparentContext())
10517       continue;
10518
10519     SemaRef.LookupQualifiedName(R, DC);
10520
10521     if (!R.empty()) {
10522       R.suppressDiagnostics();
10523
10524       if (isa<CXXRecordDecl>(DC)) {
10525         // Don't diagnose names we find in classes; we get much better
10526         // diagnostics for these from DiagnoseEmptyLookup.
10527         R.clear();
10528         if (DoDiagnoseEmptyLookup)
10529           *DoDiagnoseEmptyLookup = true;
10530         return false;
10531       }
10532
10533       OverloadCandidateSet Candidates(FnLoc, CSK);
10534       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
10535         AddOverloadedCallCandidate(SemaRef, I.getPair(),
10536                                    ExplicitTemplateArgs, Args,
10537                                    Candidates, false, /*KnownValid*/ false);
10538
10539       OverloadCandidateSet::iterator Best;
10540       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
10541         // No viable functions. Don't bother the user with notes for functions
10542         // which don't work and shouldn't be found anyway.
10543         R.clear();
10544         return false;
10545       }
10546
10547       // Find the namespaces where ADL would have looked, and suggest
10548       // declaring the function there instead.
10549       Sema::AssociatedNamespaceSet AssociatedNamespaces;
10550       Sema::AssociatedClassSet AssociatedClasses;
10551       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
10552                                                  AssociatedNamespaces,
10553                                                  AssociatedClasses);
10554       Sema::AssociatedNamespaceSet SuggestedNamespaces;
10555       if (canBeDeclaredInNamespace(R.getLookupName())) {
10556         DeclContext *Std = SemaRef.getStdNamespace();
10557         for (Sema::AssociatedNamespaceSet::iterator
10558                it = AssociatedNamespaces.begin(),
10559                end = AssociatedNamespaces.end(); it != end; ++it) {
10560           // Never suggest declaring a function within namespace 'std'.
10561           if (Std && Std->Encloses(*it))
10562             continue;
10563
10564           // Never suggest declaring a function within a namespace with a
10565           // reserved name, like __gnu_cxx.
10566           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
10567           if (NS &&
10568               NS->getQualifiedNameAsString().find("__") != std::string::npos)
10569             continue;
10570
10571           SuggestedNamespaces.insert(*it);
10572         }
10573       }
10574
10575       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
10576         << R.getLookupName();
10577       if (SuggestedNamespaces.empty()) {
10578         SemaRef.Diag(Best->Function->getLocation(),
10579                      diag::note_not_found_by_two_phase_lookup)
10580           << R.getLookupName() << 0;
10581       } else if (SuggestedNamespaces.size() == 1) {
10582         SemaRef.Diag(Best->Function->getLocation(),
10583                      diag::note_not_found_by_two_phase_lookup)
10584           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
10585       } else {
10586         // FIXME: It would be useful to list the associated namespaces here,
10587         // but the diagnostics infrastructure doesn't provide a way to produce
10588         // a localized representation of a list of items.
10589         SemaRef.Diag(Best->Function->getLocation(),
10590                      diag::note_not_found_by_two_phase_lookup)
10591           << R.getLookupName() << 2;
10592       }
10593
10594       // Try to recover by calling this function.
10595       return true;
10596     }
10597
10598     R.clear();
10599   }
10600
10601   return false;
10602 }
10603
10604 /// Attempt to recover from ill-formed use of a non-dependent operator in a
10605 /// template, where the non-dependent operator was declared after the template
10606 /// was defined.
10607 ///
10608 /// Returns true if a viable candidate was found and a diagnostic was issued.
10609 static bool
10610 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
10611                                SourceLocation OpLoc,
10612                                ArrayRef<Expr *> Args) {
10613   DeclarationName OpName =
10614     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
10615   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
10616   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
10617                                 OverloadCandidateSet::CSK_Operator,
10618                                 /*ExplicitTemplateArgs=*/nullptr, Args);
10619 }
10620
10621 namespace {
10622 class BuildRecoveryCallExprRAII {
10623   Sema &SemaRef;
10624 public:
10625   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
10626     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
10627     SemaRef.IsBuildingRecoveryCallExpr = true;
10628   }
10629
10630   ~BuildRecoveryCallExprRAII() {
10631     SemaRef.IsBuildingRecoveryCallExpr = false;
10632   }
10633 };
10634
10635 }
10636
10637 static std::unique_ptr<CorrectionCandidateCallback>
10638 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
10639               bool HasTemplateArgs, bool AllowTypoCorrection) {
10640   if (!AllowTypoCorrection)
10641     return llvm::make_unique<NoTypoCorrectionCCC>();
10642   return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
10643                                                   HasTemplateArgs, ME);
10644 }
10645
10646 /// Attempts to recover from a call where no functions were found.
10647 ///
10648 /// Returns true if new candidates were found.
10649 static ExprResult
10650 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10651                       UnresolvedLookupExpr *ULE,
10652                       SourceLocation LParenLoc,
10653                       MutableArrayRef<Expr *> Args,
10654                       SourceLocation RParenLoc,
10655                       bool EmptyLookup, bool AllowTypoCorrection) {
10656   // Do not try to recover if it is already building a recovery call.
10657   // This stops infinite loops for template instantiations like
10658   //
10659   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
10660   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
10661   //
10662   if (SemaRef.IsBuildingRecoveryCallExpr)
10663     return ExprError();
10664   BuildRecoveryCallExprRAII RCE(SemaRef);
10665
10666   CXXScopeSpec SS;
10667   SS.Adopt(ULE->getQualifierLoc());
10668   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
10669
10670   TemplateArgumentListInfo TABuffer;
10671   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
10672   if (ULE->hasExplicitTemplateArgs()) {
10673     ULE->copyTemplateArgumentsInto(TABuffer);
10674     ExplicitTemplateArgs = &TABuffer;
10675   }
10676
10677   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
10678                  Sema::LookupOrdinaryName);
10679   bool DoDiagnoseEmptyLookup = EmptyLookup;
10680   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
10681                               OverloadCandidateSet::CSK_Normal,
10682                               ExplicitTemplateArgs, Args,
10683                               &DoDiagnoseEmptyLookup) &&
10684     (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup(
10685         S, SS, R,
10686         MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
10687                       ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
10688         ExplicitTemplateArgs, Args)))
10689     return ExprError();
10690
10691   assert(!R.empty() && "lookup results empty despite recovery");
10692
10693   // Build an implicit member call if appropriate.  Just drop the
10694   // casts and such from the call, we don't really care.
10695   ExprResult NewFn = ExprError();
10696   if ((*R.begin())->isCXXClassMember())
10697     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
10698                                                     R, ExplicitTemplateArgs);
10699   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
10700     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
10701                                         ExplicitTemplateArgs);
10702   else
10703     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
10704
10705   if (NewFn.isInvalid())
10706     return ExprError();
10707
10708   // This shouldn't cause an infinite loop because we're giving it
10709   // an expression with viable lookup results, which should never
10710   // end up here.
10711   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
10712                                MultiExprArg(Args.data(), Args.size()),
10713                                RParenLoc);
10714 }
10715
10716 /// \brief Constructs and populates an OverloadedCandidateSet from
10717 /// the given function.
10718 /// \returns true when an the ExprResult output parameter has been set.
10719 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
10720                                   UnresolvedLookupExpr *ULE,
10721                                   MultiExprArg Args,
10722                                   SourceLocation RParenLoc,
10723                                   OverloadCandidateSet *CandidateSet,
10724                                   ExprResult *Result) {
10725 #ifndef NDEBUG
10726   if (ULE->requiresADL()) {
10727     // To do ADL, we must have found an unqualified name.
10728     assert(!ULE->getQualifier() && "qualified name with ADL");
10729
10730     // We don't perform ADL for implicit declarations of builtins.
10731     // Verify that this was correctly set up.
10732     FunctionDecl *F;
10733     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
10734         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
10735         F->getBuiltinID() && F->isImplicit())
10736       llvm_unreachable("performing ADL for builtin");
10737
10738     // We don't perform ADL in C.
10739     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
10740   }
10741 #endif
10742
10743   UnbridgedCastsSet UnbridgedCasts;
10744   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
10745     *Result = ExprError();
10746     return true;
10747   }
10748
10749   // Add the functions denoted by the callee to the set of candidate
10750   // functions, including those from argument-dependent lookup.
10751   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
10752
10753   if (getLangOpts().MSVCCompat &&
10754       CurContext->isDependentContext() && !isSFINAEContext() &&
10755       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
10756
10757     OverloadCandidateSet::iterator Best;
10758     if (CandidateSet->empty() ||
10759         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) ==
10760             OR_No_Viable_Function) {
10761       // In Microsoft mode, if we are inside a template class member function then
10762       // create a type dependent CallExpr. The goal is to postpone name lookup
10763       // to instantiation time to be able to search into type dependent base
10764       // classes.
10765       CallExpr *CE = new (Context) CallExpr(
10766           Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc);
10767       CE->setTypeDependent(true);
10768       *Result = CE;
10769       return true;
10770     }
10771   }
10772
10773   if (CandidateSet->empty())
10774     return false;
10775
10776   UnbridgedCasts.restore();
10777   return false;
10778 }
10779
10780 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
10781 /// the completed call expression. If overload resolution fails, emits
10782 /// diagnostics and returns ExprError()
10783 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10784                                            UnresolvedLookupExpr *ULE,
10785                                            SourceLocation LParenLoc,
10786                                            MultiExprArg Args,
10787                                            SourceLocation RParenLoc,
10788                                            Expr *ExecConfig,
10789                                            OverloadCandidateSet *CandidateSet,
10790                                            OverloadCandidateSet::iterator *Best,
10791                                            OverloadingResult OverloadResult,
10792                                            bool AllowTypoCorrection) {
10793   if (CandidateSet->empty())
10794     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
10795                                  RParenLoc, /*EmptyLookup=*/true,
10796                                  AllowTypoCorrection);
10797
10798   switch (OverloadResult) {
10799   case OR_Success: {
10800     FunctionDecl *FDecl = (*Best)->Function;
10801     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
10802     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
10803       return ExprError();
10804     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10805     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10806                                          ExecConfig);
10807   }
10808
10809   case OR_No_Viable_Function: {
10810     // Try to recover by looking for viable functions which the user might
10811     // have meant to call.
10812     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
10813                                                 Args, RParenLoc,
10814                                                 /*EmptyLookup=*/false,
10815                                                 AllowTypoCorrection);
10816     if (!Recovery.isInvalid())
10817       return Recovery;
10818
10819     SemaRef.Diag(Fn->getLocStart(),
10820          diag::err_ovl_no_viable_function_in_call)
10821       << ULE->getName() << Fn->getSourceRange();
10822     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10823     break;
10824   }
10825
10826   case OR_Ambiguous:
10827     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
10828       << ULE->getName() << Fn->getSourceRange();
10829     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
10830     break;
10831
10832   case OR_Deleted: {
10833     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
10834       << (*Best)->Function->isDeleted()
10835       << ULE->getName()
10836       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
10837       << Fn->getSourceRange();
10838     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10839
10840     // We emitted an error for the unvailable/deleted function call but keep
10841     // the call in the AST.
10842     FunctionDecl *FDecl = (*Best)->Function;
10843     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10844     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10845                                          ExecConfig);
10846   }
10847   }
10848
10849   // Overload resolution failed.
10850   return ExprError();
10851 }
10852
10853 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
10854 /// (which eventually refers to the declaration Func) and the call
10855 /// arguments Args/NumArgs, attempt to resolve the function call down
10856 /// to a specific function. If overload resolution succeeds, returns
10857 /// the call expression produced by overload resolution.
10858 /// Otherwise, emits diagnostics and returns ExprError.
10859 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
10860                                          UnresolvedLookupExpr *ULE,
10861                                          SourceLocation LParenLoc,
10862                                          MultiExprArg Args,
10863                                          SourceLocation RParenLoc,
10864                                          Expr *ExecConfig,
10865                                          bool AllowTypoCorrection) {
10866   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
10867                                     OverloadCandidateSet::CSK_Normal);
10868   ExprResult result;
10869
10870   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
10871                              &result))
10872     return result;
10873
10874   OverloadCandidateSet::iterator Best;
10875   OverloadingResult OverloadResult =
10876       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
10877
10878   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
10879                                   RParenLoc, ExecConfig, &CandidateSet,
10880                                   &Best, OverloadResult,
10881                                   AllowTypoCorrection);
10882 }
10883
10884 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
10885   return Functions.size() > 1 ||
10886     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
10887 }
10888
10889 /// \brief Create a unary operation that may resolve to an overloaded
10890 /// operator.
10891 ///
10892 /// \param OpLoc The location of the operator itself (e.g., '*').
10893 ///
10894 /// \param OpcIn The UnaryOperator::Opcode that describes this
10895 /// operator.
10896 ///
10897 /// \param Fns The set of non-member functions that will be
10898 /// considered by overload resolution. The caller needs to build this
10899 /// set based on the context using, e.g.,
10900 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10901 /// set should not contain any member functions; those will be added
10902 /// by CreateOverloadedUnaryOp().
10903 ///
10904 /// \param Input The input argument.
10905 ExprResult
10906 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
10907                               const UnresolvedSetImpl &Fns,
10908                               Expr *Input) {
10909   UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
10910
10911   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
10912   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
10913   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10914   // TODO: provide better source location info.
10915   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10916
10917   if (checkPlaceholderForOverload(*this, Input))
10918     return ExprError();
10919
10920   Expr *Args[2] = { Input, nullptr };
10921   unsigned NumArgs = 1;
10922
10923   // For post-increment and post-decrement, add the implicit '0' as
10924   // the second argument, so that we know this is a post-increment or
10925   // post-decrement.
10926   if (Opc == UO_PostInc || Opc == UO_PostDec) {
10927     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
10928     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
10929                                      SourceLocation());
10930     NumArgs = 2;
10931   }
10932
10933   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
10934
10935   if (Input->isTypeDependent()) {
10936     if (Fns.empty())
10937       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
10938                                          VK_RValue, OK_Ordinary, OpLoc);
10939
10940     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
10941     UnresolvedLookupExpr *Fn
10942       = UnresolvedLookupExpr::Create(Context, NamingClass,
10943                                      NestedNameSpecifierLoc(), OpNameInfo,
10944                                      /*ADL*/ true, IsOverloaded(Fns),
10945                                      Fns.begin(), Fns.end());
10946     return new (Context)
10947         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
10948                             VK_RValue, OpLoc, false);
10949   }
10950
10951   // Build an empty overload set.
10952   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
10953
10954   // Add the candidates from the given function set.
10955   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
10956
10957   // Add operator candidates that are member functions.
10958   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10959
10960   // Add candidates from ADL.
10961   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
10962                                        /*ExplicitTemplateArgs*/nullptr,
10963                                        CandidateSet);
10964
10965   // Add builtin operator candidates.
10966   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10967
10968   bool HadMultipleCandidates = (CandidateSet.size() > 1);
10969
10970   // Perform overload resolution.
10971   OverloadCandidateSet::iterator Best;
10972   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10973   case OR_Success: {
10974     // We found a built-in operator or an overloaded operator.
10975     FunctionDecl *FnDecl = Best->Function;
10976
10977     if (FnDecl) {
10978       // We matched an overloaded operator. Build a call to that
10979       // operator.
10980
10981       // Convert the arguments.
10982       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10983         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
10984
10985         ExprResult InputRes =
10986           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
10987                                               Best->FoundDecl, Method);
10988         if (InputRes.isInvalid())
10989           return ExprError();
10990         Input = InputRes.get();
10991       } else {
10992         // Convert the arguments.
10993         ExprResult InputInit
10994           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10995                                                       Context,
10996                                                       FnDecl->getParamDecl(0)),
10997                                       SourceLocation(),
10998                                       Input);
10999         if (InputInit.isInvalid())
11000           return ExprError();
11001         Input = InputInit.get();
11002       }
11003
11004       // Build the actual expression node.
11005       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
11006                                                 HadMultipleCandidates, OpLoc);
11007       if (FnExpr.isInvalid())
11008         return ExprError();
11009
11010       // Determine the result type.
11011       QualType ResultTy = FnDecl->getReturnType();
11012       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11013       ResultTy = ResultTy.getNonLValueExprType(Context);
11014
11015       Args[0] = Input;
11016       CallExpr *TheCall =
11017         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
11018                                           ResultTy, VK, OpLoc, false);
11019
11020       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
11021         return ExprError();
11022
11023       return MaybeBindToTemporary(TheCall);
11024     } else {
11025       // We matched a built-in operator. Convert the arguments, then
11026       // break out so that we will build the appropriate built-in
11027       // operator node.
11028       ExprResult InputRes =
11029         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
11030                                   Best->Conversions[0], AA_Passing);
11031       if (InputRes.isInvalid())
11032         return ExprError();
11033       Input = InputRes.get();
11034       break;
11035     }
11036   }
11037
11038   case OR_No_Viable_Function:
11039     // This is an erroneous use of an operator which can be overloaded by
11040     // a non-member function. Check for non-member operators which were
11041     // defined too late to be candidates.
11042     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
11043       // FIXME: Recover by calling the found function.
11044       return ExprError();
11045
11046     // No viable function; fall through to handling this as a
11047     // built-in operator, which will produce an error message for us.
11048     break;
11049
11050   case OR_Ambiguous:
11051     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11052         << UnaryOperator::getOpcodeStr(Opc)
11053         << Input->getType()
11054         << Input->getSourceRange();
11055     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
11056                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11057     return ExprError();
11058
11059   case OR_Deleted:
11060     Diag(OpLoc, diag::err_ovl_deleted_oper)
11061       << Best->Function->isDeleted()
11062       << UnaryOperator::getOpcodeStr(Opc)
11063       << getDeletedOrUnavailableSuffix(Best->Function)
11064       << Input->getSourceRange();
11065     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
11066                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11067     return ExprError();
11068   }
11069
11070   // Either we found no viable overloaded operator or we matched a
11071   // built-in operator. In either case, fall through to trying to
11072   // build a built-in operation.
11073   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11074 }
11075
11076 /// \brief Create a binary operation that may resolve to an overloaded
11077 /// operator.
11078 ///
11079 /// \param OpLoc The location of the operator itself (e.g., '+').
11080 ///
11081 /// \param OpcIn The BinaryOperator::Opcode that describes this
11082 /// operator.
11083 ///
11084 /// \param Fns The set of non-member functions that will be
11085 /// considered by overload resolution. The caller needs to build this
11086 /// set based on the context using, e.g.,
11087 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11088 /// set should not contain any member functions; those will be added
11089 /// by CreateOverloadedBinOp().
11090 ///
11091 /// \param LHS Left-hand argument.
11092 /// \param RHS Right-hand argument.
11093 ExprResult
11094 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
11095                             unsigned OpcIn,
11096                             const UnresolvedSetImpl &Fns,
11097                             Expr *LHS, Expr *RHS) {
11098   Expr *Args[2] = { LHS, RHS };
11099   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
11100
11101   BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
11102   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
11103   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11104
11105   // If either side is type-dependent, create an appropriate dependent
11106   // expression.
11107   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11108     if (Fns.empty()) {
11109       // If there are no functions to store, just build a dependent
11110       // BinaryOperator or CompoundAssignment.
11111       if (Opc <= BO_Assign || Opc > BO_OrAssign)
11112         return new (Context) BinaryOperator(
11113             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
11114             OpLoc, FPFeatures.fp_contract);
11115
11116       return new (Context) CompoundAssignOperator(
11117           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
11118           Context.DependentTy, Context.DependentTy, OpLoc,
11119           FPFeatures.fp_contract);
11120     }
11121
11122     // FIXME: save results of ADL from here?
11123     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11124     // TODO: provide better source location info in DNLoc component.
11125     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11126     UnresolvedLookupExpr *Fn
11127       = UnresolvedLookupExpr::Create(Context, NamingClass, 
11128                                      NestedNameSpecifierLoc(), OpNameInfo, 
11129                                      /*ADL*/ true, IsOverloaded(Fns),
11130                                      Fns.begin(), Fns.end());
11131     return new (Context)
11132         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
11133                             VK_RValue, OpLoc, FPFeatures.fp_contract);
11134   }
11135
11136   // Always do placeholder-like conversions on the RHS.
11137   if (checkPlaceholderForOverload(*this, Args[1]))
11138     return ExprError();
11139
11140   // Do placeholder-like conversion on the LHS; note that we should
11141   // not get here with a PseudoObject LHS.
11142   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
11143   if (checkPlaceholderForOverload(*this, Args[0]))
11144     return ExprError();
11145
11146   // If this is the assignment operator, we only perform overload resolution
11147   // if the left-hand side is a class or enumeration type. This is actually
11148   // a hack. The standard requires that we do overload resolution between the
11149   // various built-in candidates, but as DR507 points out, this can lead to
11150   // problems. So we do it this way, which pretty much follows what GCC does.
11151   // Note that we go the traditional code path for compound assignment forms.
11152   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
11153     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11154
11155   // If this is the .* operator, which is not overloadable, just
11156   // create a built-in binary operator.
11157   if (Opc == BO_PtrMemD)
11158     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11159
11160   // Build an empty overload set.
11161   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11162
11163   // Add the candidates from the given function set.
11164   AddFunctionCandidates(Fns, Args, CandidateSet);
11165
11166   // Add operator candidates that are member functions.
11167   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11168
11169   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
11170   // performed for an assignment operator (nor for operator[] nor operator->,
11171   // which don't get here).
11172   if (Opc != BO_Assign)
11173     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
11174                                          /*ExplicitTemplateArgs*/ nullptr,
11175                                          CandidateSet);
11176
11177   // Add builtin operator candidates.
11178   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11179
11180   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11181
11182   // Perform overload resolution.
11183   OverloadCandidateSet::iterator Best;
11184   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11185     case OR_Success: {
11186       // We found a built-in operator or an overloaded operator.
11187       FunctionDecl *FnDecl = Best->Function;
11188
11189       if (FnDecl) {
11190         // We matched an overloaded operator. Build a call to that
11191         // operator.
11192
11193         // Convert the arguments.
11194         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11195           // Best->Access is only meaningful for class members.
11196           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
11197
11198           ExprResult Arg1 =
11199             PerformCopyInitialization(
11200               InitializedEntity::InitializeParameter(Context,
11201                                                      FnDecl->getParamDecl(0)),
11202               SourceLocation(), Args[1]);
11203           if (Arg1.isInvalid())
11204             return ExprError();
11205
11206           ExprResult Arg0 =
11207             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11208                                                 Best->FoundDecl, Method);
11209           if (Arg0.isInvalid())
11210             return ExprError();
11211           Args[0] = Arg0.getAs<Expr>();
11212           Args[1] = RHS = Arg1.getAs<Expr>();
11213         } else {
11214           // Convert the arguments.
11215           ExprResult Arg0 = PerformCopyInitialization(
11216             InitializedEntity::InitializeParameter(Context,
11217                                                    FnDecl->getParamDecl(0)),
11218             SourceLocation(), Args[0]);
11219           if (Arg0.isInvalid())
11220             return ExprError();
11221
11222           ExprResult Arg1 =
11223             PerformCopyInitialization(
11224               InitializedEntity::InitializeParameter(Context,
11225                                                      FnDecl->getParamDecl(1)),
11226               SourceLocation(), Args[1]);
11227           if (Arg1.isInvalid())
11228             return ExprError();
11229           Args[0] = LHS = Arg0.getAs<Expr>();
11230           Args[1] = RHS = Arg1.getAs<Expr>();
11231         }
11232
11233         // Build the actual expression node.
11234         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11235                                                   Best->FoundDecl,
11236                                                   HadMultipleCandidates, OpLoc);
11237         if (FnExpr.isInvalid())
11238           return ExprError();
11239
11240         // Determine the result type.
11241         QualType ResultTy = FnDecl->getReturnType();
11242         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11243         ResultTy = ResultTy.getNonLValueExprType(Context);
11244
11245         CXXOperatorCallExpr *TheCall =
11246           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
11247                                             Args, ResultTy, VK, OpLoc,
11248                                             FPFeatures.fp_contract);
11249
11250         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
11251                                 FnDecl))
11252           return ExprError();
11253
11254         ArrayRef<const Expr *> ArgsArray(Args, 2);
11255         // Cut off the implicit 'this'.
11256         if (isa<CXXMethodDecl>(FnDecl))
11257           ArgsArray = ArgsArray.slice(1);
11258
11259         // Check for a self move.
11260         if (Op == OO_Equal)
11261           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
11262
11263         checkCall(FnDecl, nullptr, ArgsArray, isa<CXXMethodDecl>(FnDecl), OpLoc, 
11264                   TheCall->getSourceRange(), VariadicDoesNotApply);
11265
11266         return MaybeBindToTemporary(TheCall);
11267       } else {
11268         // We matched a built-in operator. Convert the arguments, then
11269         // break out so that we will build the appropriate built-in
11270         // operator node.
11271         ExprResult ArgsRes0 =
11272           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11273                                     Best->Conversions[0], AA_Passing);
11274         if (ArgsRes0.isInvalid())
11275           return ExprError();
11276         Args[0] = ArgsRes0.get();
11277
11278         ExprResult ArgsRes1 =
11279           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11280                                     Best->Conversions[1], AA_Passing);
11281         if (ArgsRes1.isInvalid())
11282           return ExprError();
11283         Args[1] = ArgsRes1.get();
11284         break;
11285       }
11286     }
11287
11288     case OR_No_Viable_Function: {
11289       // C++ [over.match.oper]p9:
11290       //   If the operator is the operator , [...] and there are no
11291       //   viable functions, then the operator is assumed to be the
11292       //   built-in operator and interpreted according to clause 5.
11293       if (Opc == BO_Comma)
11294         break;
11295
11296       // For class as left operand for assignment or compound assigment
11297       // operator do not fall through to handling in built-in, but report that
11298       // no overloaded assignment operator found
11299       ExprResult Result = ExprError();
11300       if (Args[0]->getType()->isRecordType() &&
11301           Opc >= BO_Assign && Opc <= BO_OrAssign) {
11302         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
11303              << BinaryOperator::getOpcodeStr(Opc)
11304              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11305         if (Args[0]->getType()->isIncompleteType()) {
11306           Diag(OpLoc, diag::note_assign_lhs_incomplete)
11307             << Args[0]->getType()
11308             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11309         }
11310       } else {
11311         // This is an erroneous use of an operator which can be overloaded by
11312         // a non-member function. Check for non-member operators which were
11313         // defined too late to be candidates.
11314         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
11315           // FIXME: Recover by calling the found function.
11316           return ExprError();
11317
11318         // No viable function; try to create a built-in operation, which will
11319         // produce an error. Then, show the non-viable candidates.
11320         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11321       }
11322       assert(Result.isInvalid() &&
11323              "C++ binary operator overloading is missing candidates!");
11324       if (Result.isInvalid())
11325         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11326                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
11327       return Result;
11328     }
11329
11330     case OR_Ambiguous:
11331       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
11332           << BinaryOperator::getOpcodeStr(Opc)
11333           << Args[0]->getType() << Args[1]->getType()
11334           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11335       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11336                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
11337       return ExprError();
11338
11339     case OR_Deleted:
11340       if (isImplicitlyDeleted(Best->Function)) {
11341         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11342         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
11343           << Context.getRecordType(Method->getParent())
11344           << getSpecialMember(Method);
11345
11346         // The user probably meant to call this special member. Just
11347         // explain why it's deleted.
11348         NoteDeletedFunction(Method);
11349         return ExprError();
11350       } else {
11351         Diag(OpLoc, diag::err_ovl_deleted_oper)
11352           << Best->Function->isDeleted()
11353           << BinaryOperator::getOpcodeStr(Opc)
11354           << getDeletedOrUnavailableSuffix(Best->Function)
11355           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11356       }
11357       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11358                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
11359       return ExprError();
11360   }
11361
11362   // We matched a built-in operator; build it.
11363   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11364 }
11365
11366 ExprResult
11367 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
11368                                          SourceLocation RLoc,
11369                                          Expr *Base, Expr *Idx) {
11370   Expr *Args[2] = { Base, Idx };
11371   DeclarationName OpName =
11372       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
11373
11374   // If either side is type-dependent, create an appropriate dependent
11375   // expression.
11376   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11377
11378     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11379     // CHECKME: no 'operator' keyword?
11380     DeclarationNameInfo OpNameInfo(OpName, LLoc);
11381     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11382     UnresolvedLookupExpr *Fn
11383       = UnresolvedLookupExpr::Create(Context, NamingClass,
11384                                      NestedNameSpecifierLoc(), OpNameInfo,
11385                                      /*ADL*/ true, /*Overloaded*/ false,
11386                                      UnresolvedSetIterator(),
11387                                      UnresolvedSetIterator());
11388     // Can't add any actual overloads yet
11389
11390     return new (Context)
11391         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
11392                             Context.DependentTy, VK_RValue, RLoc, false);
11393   }
11394
11395   // Handle placeholders on both operands.
11396   if (checkPlaceholderForOverload(*this, Args[0]))
11397     return ExprError();
11398   if (checkPlaceholderForOverload(*this, Args[1]))
11399     return ExprError();
11400
11401   // Build an empty overload set.
11402   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
11403
11404   // Subscript can only be overloaded as a member function.
11405
11406   // Add operator candidates that are member functions.
11407   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11408
11409   // Add builtin operator candidates.
11410   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11411
11412   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11413
11414   // Perform overload resolution.
11415   OverloadCandidateSet::iterator Best;
11416   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
11417     case OR_Success: {
11418       // We found a built-in operator or an overloaded operator.
11419       FunctionDecl *FnDecl = Best->Function;
11420
11421       if (FnDecl) {
11422         // We matched an overloaded operator. Build a call to that
11423         // operator.
11424
11425         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
11426
11427         // Convert the arguments.
11428         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
11429         ExprResult Arg0 =
11430           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11431                                               Best->FoundDecl, Method);
11432         if (Arg0.isInvalid())
11433           return ExprError();
11434         Args[0] = Arg0.get();
11435
11436         // Convert the arguments.
11437         ExprResult InputInit
11438           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11439                                                       Context,
11440                                                       FnDecl->getParamDecl(0)),
11441                                       SourceLocation(),
11442                                       Args[1]);
11443         if (InputInit.isInvalid())
11444           return ExprError();
11445
11446         Args[1] = InputInit.getAs<Expr>();
11447
11448         // Build the actual expression node.
11449         DeclarationNameInfo OpLocInfo(OpName, LLoc);
11450         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11451         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11452                                                   Best->FoundDecl,
11453                                                   HadMultipleCandidates,
11454                                                   OpLocInfo.getLoc(),
11455                                                   OpLocInfo.getInfo());
11456         if (FnExpr.isInvalid())
11457           return ExprError();
11458
11459         // Determine the result type
11460         QualType ResultTy = FnDecl->getReturnType();
11461         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11462         ResultTy = ResultTy.getNonLValueExprType(Context);
11463
11464         CXXOperatorCallExpr *TheCall =
11465           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
11466                                             FnExpr.get(), Args,
11467                                             ResultTy, VK, RLoc,
11468                                             false);
11469
11470         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
11471           return ExprError();
11472
11473         return MaybeBindToTemporary(TheCall);
11474       } else {
11475         // We matched a built-in operator. Convert the arguments, then
11476         // break out so that we will build the appropriate built-in
11477         // operator node.
11478         ExprResult ArgsRes0 =
11479           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11480                                     Best->Conversions[0], AA_Passing);
11481         if (ArgsRes0.isInvalid())
11482           return ExprError();
11483         Args[0] = ArgsRes0.get();
11484
11485         ExprResult ArgsRes1 =
11486           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11487                                     Best->Conversions[1], AA_Passing);
11488         if (ArgsRes1.isInvalid())
11489           return ExprError();
11490         Args[1] = ArgsRes1.get();
11491
11492         break;
11493       }
11494     }
11495
11496     case OR_No_Viable_Function: {
11497       if (CandidateSet.empty())
11498         Diag(LLoc, diag::err_ovl_no_oper)
11499           << Args[0]->getType() << /*subscript*/ 0
11500           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11501       else
11502         Diag(LLoc, diag::err_ovl_no_viable_subscript)
11503           << Args[0]->getType()
11504           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11505       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11506                                   "[]", LLoc);
11507       return ExprError();
11508     }
11509
11510     case OR_Ambiguous:
11511       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
11512           << "[]"
11513           << Args[0]->getType() << Args[1]->getType()
11514           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11515       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11516                                   "[]", LLoc);
11517       return ExprError();
11518
11519     case OR_Deleted:
11520       Diag(LLoc, diag::err_ovl_deleted_oper)
11521         << Best->Function->isDeleted() << "[]"
11522         << getDeletedOrUnavailableSuffix(Best->Function)
11523         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11524       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11525                                   "[]", LLoc);
11526       return ExprError();
11527     }
11528
11529   // We matched a built-in operator; build it.
11530   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
11531 }
11532
11533 /// BuildCallToMemberFunction - Build a call to a member
11534 /// function. MemExpr is the expression that refers to the member
11535 /// function (and includes the object parameter), Args/NumArgs are the
11536 /// arguments to the function call (not including the object
11537 /// parameter). The caller needs to validate that the member
11538 /// expression refers to a non-static member function or an overloaded
11539 /// member function.
11540 ExprResult
11541 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
11542                                 SourceLocation LParenLoc,
11543                                 MultiExprArg Args,
11544                                 SourceLocation RParenLoc) {
11545   assert(MemExprE->getType() == Context.BoundMemberTy ||
11546          MemExprE->getType() == Context.OverloadTy);
11547
11548   // Dig out the member expression. This holds both the object
11549   // argument and the member function we're referring to.
11550   Expr *NakedMemExpr = MemExprE->IgnoreParens();
11551
11552   // Determine whether this is a call to a pointer-to-member function.
11553   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
11554     assert(op->getType() == Context.BoundMemberTy);
11555     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
11556
11557     QualType fnType =
11558       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
11559
11560     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
11561     QualType resultType = proto->getCallResultType(Context);
11562     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
11563
11564     // Check that the object type isn't more qualified than the
11565     // member function we're calling.
11566     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
11567
11568     QualType objectType = op->getLHS()->getType();
11569     if (op->getOpcode() == BO_PtrMemI)
11570       objectType = objectType->castAs<PointerType>()->getPointeeType();
11571     Qualifiers objectQuals = objectType.getQualifiers();
11572
11573     Qualifiers difference = objectQuals - funcQuals;
11574     difference.removeObjCGCAttr();
11575     difference.removeAddressSpace();
11576     if (difference) {
11577       std::string qualsString = difference.getAsString();
11578       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
11579         << fnType.getUnqualifiedType()
11580         << qualsString
11581         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
11582     }
11583
11584     if (resultType->isMemberPointerType())
11585       if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11586         RequireCompleteType(LParenLoc, resultType, 0);
11587
11588     CXXMemberCallExpr *call
11589       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11590                                         resultType, valueKind, RParenLoc);
11591
11592     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
11593                             call, nullptr))
11594       return ExprError();
11595
11596     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
11597       return ExprError();
11598
11599     if (CheckOtherCall(call, proto))
11600       return ExprError();
11601
11602     return MaybeBindToTemporary(call);
11603   }
11604
11605   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
11606     return new (Context)
11607         CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
11608
11609   UnbridgedCastsSet UnbridgedCasts;
11610   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11611     return ExprError();
11612
11613   MemberExpr *MemExpr;
11614   CXXMethodDecl *Method = nullptr;
11615   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
11616   NestedNameSpecifier *Qualifier = nullptr;
11617   if (isa<MemberExpr>(NakedMemExpr)) {
11618     MemExpr = cast<MemberExpr>(NakedMemExpr);
11619     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
11620     FoundDecl = MemExpr->getFoundDecl();
11621     Qualifier = MemExpr->getQualifier();
11622     UnbridgedCasts.restore();
11623   } else {
11624     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
11625     Qualifier = UnresExpr->getQualifier();
11626
11627     QualType ObjectType = UnresExpr->getBaseType();
11628     Expr::Classification ObjectClassification
11629       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
11630                             : UnresExpr->getBase()->Classify(Context);
11631
11632     // Add overload candidates
11633     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
11634                                       OverloadCandidateSet::CSK_Normal);
11635
11636     // FIXME: avoid copy.
11637     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
11638     if (UnresExpr->hasExplicitTemplateArgs()) {
11639       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11640       TemplateArgs = &TemplateArgsBuffer;
11641     }
11642
11643     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
11644            E = UnresExpr->decls_end(); I != E; ++I) {
11645
11646       NamedDecl *Func = *I;
11647       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
11648       if (isa<UsingShadowDecl>(Func))
11649         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
11650
11651
11652       // Microsoft supports direct constructor calls.
11653       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
11654         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
11655                              Args, CandidateSet);
11656       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
11657         // If explicit template arguments were provided, we can't call a
11658         // non-template member function.
11659         if (TemplateArgs)
11660           continue;
11661
11662         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
11663                            ObjectClassification, Args, CandidateSet,
11664                            /*SuppressUserConversions=*/false);
11665       } else {
11666         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
11667                                    I.getPair(), ActingDC, TemplateArgs,
11668                                    ObjectType,  ObjectClassification,
11669                                    Args, CandidateSet,
11670                                    /*SuppressUsedConversions=*/false);
11671       }
11672     }
11673
11674     DeclarationName DeclName = UnresExpr->getMemberName();
11675
11676     UnbridgedCasts.restore();
11677
11678     OverloadCandidateSet::iterator Best;
11679     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
11680                                             Best)) {
11681     case OR_Success:
11682       Method = cast<CXXMethodDecl>(Best->Function);
11683       FoundDecl = Best->FoundDecl;
11684       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
11685       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
11686         return ExprError();
11687       // If FoundDecl is different from Method (such as if one is a template
11688       // and the other a specialization), make sure DiagnoseUseOfDecl is 
11689       // called on both.
11690       // FIXME: This would be more comprehensively addressed by modifying
11691       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
11692       // being used.
11693       if (Method != FoundDecl.getDecl() && 
11694                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
11695         return ExprError();
11696       break;
11697
11698     case OR_No_Viable_Function:
11699       Diag(UnresExpr->getMemberLoc(),
11700            diag::err_ovl_no_viable_member_function_in_call)
11701         << DeclName << MemExprE->getSourceRange();
11702       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11703       // FIXME: Leaking incoming expressions!
11704       return ExprError();
11705
11706     case OR_Ambiguous:
11707       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
11708         << DeclName << MemExprE->getSourceRange();
11709       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11710       // FIXME: Leaking incoming expressions!
11711       return ExprError();
11712
11713     case OR_Deleted:
11714       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
11715         << Best->Function->isDeleted()
11716         << DeclName 
11717         << getDeletedOrUnavailableSuffix(Best->Function)
11718         << MemExprE->getSourceRange();
11719       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11720       // FIXME: Leaking incoming expressions!
11721       return ExprError();
11722     }
11723
11724     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
11725
11726     // If overload resolution picked a static member, build a
11727     // non-member call based on that function.
11728     if (Method->isStatic()) {
11729       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
11730                                    RParenLoc);
11731     }
11732
11733     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
11734   }
11735
11736   QualType ResultType = Method->getReturnType();
11737   ExprValueKind VK = Expr::getValueKindForType(ResultType);
11738   ResultType = ResultType.getNonLValueExprType(Context);
11739
11740   assert(Method && "Member call to something that isn't a method?");
11741   CXXMemberCallExpr *TheCall =
11742     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11743                                     ResultType, VK, RParenLoc);
11744
11745   // (CUDA B.1): Check for invalid calls between targets.
11746   if (getLangOpts().CUDA) {
11747     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
11748       if (CheckCUDATarget(Caller, Method)) {
11749         Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
11750             << IdentifyCUDATarget(Method) << Method->getIdentifier()
11751             << IdentifyCUDATarget(Caller);
11752         return ExprError();
11753       }
11754     }
11755   }
11756
11757   // Check for a valid return type.
11758   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
11759                           TheCall, Method))
11760     return ExprError();
11761
11762   // Convert the object argument (for a non-static member function call).
11763   // We only need to do this if there was actually an overload; otherwise
11764   // it was done at lookup.
11765   if (!Method->isStatic()) {
11766     ExprResult ObjectArg =
11767       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
11768                                           FoundDecl, Method);
11769     if (ObjectArg.isInvalid())
11770       return ExprError();
11771     MemExpr->setBase(ObjectArg.get());
11772   }
11773
11774   // Convert the rest of the arguments
11775   const FunctionProtoType *Proto =
11776     Method->getType()->getAs<FunctionProtoType>();
11777   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
11778                               RParenLoc))
11779     return ExprError();
11780
11781   DiagnoseSentinelCalls(Method, LParenLoc, Args);
11782
11783   if (CheckFunctionCall(Method, TheCall, Proto))
11784     return ExprError();
11785
11786   if ((isa<CXXConstructorDecl>(CurContext) || 
11787        isa<CXXDestructorDecl>(CurContext)) && 
11788       TheCall->getMethodDecl()->isPure()) {
11789     const CXXMethodDecl *MD = TheCall->getMethodDecl();
11790
11791     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
11792       Diag(MemExpr->getLocStart(), 
11793            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
11794         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
11795         << MD->getParent()->getDeclName();
11796
11797       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
11798     }
11799   }
11800   return MaybeBindToTemporary(TheCall);
11801 }
11802
11803 /// BuildCallToObjectOfClassType - Build a call to an object of class
11804 /// type (C++ [over.call.object]), which can end up invoking an
11805 /// overloaded function call operator (@c operator()) or performing a
11806 /// user-defined conversion on the object argument.
11807 ExprResult
11808 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
11809                                    SourceLocation LParenLoc,
11810                                    MultiExprArg Args,
11811                                    SourceLocation RParenLoc) {
11812   if (checkPlaceholderForOverload(*this, Obj))
11813     return ExprError();
11814   ExprResult Object = Obj;
11815
11816   UnbridgedCastsSet UnbridgedCasts;
11817   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11818     return ExprError();
11819
11820   assert(Object.get()->getType()->isRecordType() &&
11821          "Requires object type argument");
11822   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
11823
11824   // C++ [over.call.object]p1:
11825   //  If the primary-expression E in the function call syntax
11826   //  evaluates to a class object of type "cv T", then the set of
11827   //  candidate functions includes at least the function call
11828   //  operators of T. The function call operators of T are obtained by
11829   //  ordinary lookup of the name operator() in the context of
11830   //  (E).operator().
11831   OverloadCandidateSet CandidateSet(LParenLoc,
11832                                     OverloadCandidateSet::CSK_Operator);
11833   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
11834
11835   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
11836                           diag::err_incomplete_object_call, Object.get()))
11837     return true;
11838
11839   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
11840   LookupQualifiedName(R, Record->getDecl());
11841   R.suppressDiagnostics();
11842
11843   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11844        Oper != OperEnd; ++Oper) {
11845     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
11846                        Object.get()->Classify(Context),
11847                        Args, CandidateSet,
11848                        /*SuppressUserConversions=*/ false);
11849   }
11850
11851   // C++ [over.call.object]p2:
11852   //   In addition, for each (non-explicit in C++0x) conversion function 
11853   //   declared in T of the form
11854   //
11855   //        operator conversion-type-id () cv-qualifier;
11856   //
11857   //   where cv-qualifier is the same cv-qualification as, or a
11858   //   greater cv-qualification than, cv, and where conversion-type-id
11859   //   denotes the type "pointer to function of (P1,...,Pn) returning
11860   //   R", or the type "reference to pointer to function of
11861   //   (P1,...,Pn) returning R", or the type "reference to function
11862   //   of (P1,...,Pn) returning R", a surrogate call function [...]
11863   //   is also considered as a candidate function. Similarly,
11864   //   surrogate call functions are added to the set of candidate
11865   //   functions for each conversion function declared in an
11866   //   accessible base class provided the function is not hidden
11867   //   within T by another intervening declaration.
11868   const auto &Conversions =
11869       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
11870   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
11871     NamedDecl *D = *I;
11872     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
11873     if (isa<UsingShadowDecl>(D))
11874       D = cast<UsingShadowDecl>(D)->getTargetDecl();
11875
11876     // Skip over templated conversion functions; they aren't
11877     // surrogates.
11878     if (isa<FunctionTemplateDecl>(D))
11879       continue;
11880
11881     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
11882     if (!Conv->isExplicit()) {
11883       // Strip the reference type (if any) and then the pointer type (if
11884       // any) to get down to what might be a function type.
11885       QualType ConvType = Conv->getConversionType().getNonReferenceType();
11886       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11887         ConvType = ConvPtrType->getPointeeType();
11888
11889       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
11890       {
11891         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
11892                               Object.get(), Args, CandidateSet);
11893       }
11894     }
11895   }
11896
11897   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11898
11899   // Perform overload resolution.
11900   OverloadCandidateSet::iterator Best;
11901   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
11902                              Best)) {
11903   case OR_Success:
11904     // Overload resolution succeeded; we'll build the appropriate call
11905     // below.
11906     break;
11907
11908   case OR_No_Viable_Function:
11909     if (CandidateSet.empty())
11910       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
11911         << Object.get()->getType() << /*call*/ 1
11912         << Object.get()->getSourceRange();
11913     else
11914       Diag(Object.get()->getLocStart(),
11915            diag::err_ovl_no_viable_object_call)
11916         << Object.get()->getType() << Object.get()->getSourceRange();
11917     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11918     break;
11919
11920   case OR_Ambiguous:
11921     Diag(Object.get()->getLocStart(),
11922          diag::err_ovl_ambiguous_object_call)
11923       << Object.get()->getType() << Object.get()->getSourceRange();
11924     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11925     break;
11926
11927   case OR_Deleted:
11928     Diag(Object.get()->getLocStart(),
11929          diag::err_ovl_deleted_object_call)
11930       << Best->Function->isDeleted()
11931       << Object.get()->getType() 
11932       << getDeletedOrUnavailableSuffix(Best->Function)
11933       << Object.get()->getSourceRange();
11934     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11935     break;
11936   }
11937
11938   if (Best == CandidateSet.end())
11939     return true;
11940
11941   UnbridgedCasts.restore();
11942
11943   if (Best->Function == nullptr) {
11944     // Since there is no function declaration, this is one of the
11945     // surrogate candidates. Dig out the conversion function.
11946     CXXConversionDecl *Conv
11947       = cast<CXXConversionDecl>(
11948                          Best->Conversions[0].UserDefined.ConversionFunction);
11949
11950     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
11951                               Best->FoundDecl);
11952     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
11953       return ExprError();
11954     assert(Conv == Best->FoundDecl.getDecl() && 
11955              "Found Decl & conversion-to-functionptr should be same, right?!");
11956     // We selected one of the surrogate functions that converts the
11957     // object parameter to a function pointer. Perform the conversion
11958     // on the object argument, then let ActOnCallExpr finish the job.
11959
11960     // Create an implicit member expr to refer to the conversion operator.
11961     // and then call it.
11962     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
11963                                              Conv, HadMultipleCandidates);
11964     if (Call.isInvalid())
11965       return ExprError();
11966     // Record usage of conversion in an implicit cast.
11967     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
11968                                     CK_UserDefinedConversion, Call.get(),
11969                                     nullptr, VK_RValue);
11970
11971     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
11972   }
11973
11974   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
11975
11976   // We found an overloaded operator(). Build a CXXOperatorCallExpr
11977   // that calls this method, using Object for the implicit object
11978   // parameter and passing along the remaining arguments.
11979   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11980
11981   // An error diagnostic has already been printed when parsing the declaration.
11982   if (Method->isInvalidDecl())
11983     return ExprError();
11984
11985   const FunctionProtoType *Proto =
11986     Method->getType()->getAs<FunctionProtoType>();
11987
11988   unsigned NumParams = Proto->getNumParams();
11989
11990   DeclarationNameInfo OpLocInfo(
11991                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11992   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11993   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11994                                            HadMultipleCandidates,
11995                                            OpLocInfo.getLoc(),
11996                                            OpLocInfo.getInfo());
11997   if (NewFn.isInvalid())
11998     return true;
11999
12000   // Build the full argument list for the method call (the implicit object
12001   // parameter is placed at the beginning of the list).
12002   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
12003   MethodArgs[0] = Object.get();
12004   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
12005
12006   // Once we've built TheCall, all of the expressions are properly
12007   // owned.
12008   QualType ResultTy = Method->getReturnType();
12009   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12010   ResultTy = ResultTy.getNonLValueExprType(Context);
12011
12012   CXXOperatorCallExpr *TheCall = new (Context)
12013       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
12014                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
12015                           ResultTy, VK, RParenLoc, false);
12016   MethodArgs.reset();
12017
12018   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
12019     return true;
12020
12021   // We may have default arguments. If so, we need to allocate more
12022   // slots in the call for them.
12023   if (Args.size() < NumParams)
12024     TheCall->setNumArgs(Context, NumParams + 1);
12025
12026   bool IsError = false;
12027
12028   // Initialize the implicit object parameter.
12029   ExprResult ObjRes =
12030     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
12031                                         Best->FoundDecl, Method);
12032   if (ObjRes.isInvalid())
12033     IsError = true;
12034   else
12035     Object = ObjRes;
12036   TheCall->setArg(0, Object.get());
12037
12038   // Check the argument types.
12039   for (unsigned i = 0; i != NumParams; i++) {
12040     Expr *Arg;
12041     if (i < Args.size()) {
12042       Arg = Args[i];
12043
12044       // Pass the argument.
12045
12046       ExprResult InputInit
12047         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12048                                                     Context,
12049                                                     Method->getParamDecl(i)),
12050                                     SourceLocation(), Arg);
12051
12052       IsError |= InputInit.isInvalid();
12053       Arg = InputInit.getAs<Expr>();
12054     } else {
12055       ExprResult DefArg
12056         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
12057       if (DefArg.isInvalid()) {
12058         IsError = true;
12059         break;
12060       }
12061
12062       Arg = DefArg.getAs<Expr>();
12063     }
12064
12065     TheCall->setArg(i + 1, Arg);
12066   }
12067
12068   // If this is a variadic call, handle args passed through "...".
12069   if (Proto->isVariadic()) {
12070     // Promote the arguments (C99 6.5.2.2p7).
12071     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
12072       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
12073                                                         nullptr);
12074       IsError |= Arg.isInvalid();
12075       TheCall->setArg(i + 1, Arg.get());
12076     }
12077   }
12078
12079   if (IsError) return true;
12080
12081   DiagnoseSentinelCalls(Method, LParenLoc, Args);
12082
12083   if (CheckFunctionCall(Method, TheCall, Proto))
12084     return true;
12085
12086   return MaybeBindToTemporary(TheCall);
12087 }
12088
12089 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
12090 ///  (if one exists), where @c Base is an expression of class type and
12091 /// @c Member is the name of the member we're trying to find.
12092 ExprResult
12093 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
12094                                bool *NoArrowOperatorFound) {
12095   assert(Base->getType()->isRecordType() &&
12096          "left-hand side must have class type");
12097
12098   if (checkPlaceholderForOverload(*this, Base))
12099     return ExprError();
12100
12101   SourceLocation Loc = Base->getExprLoc();
12102
12103   // C++ [over.ref]p1:
12104   //
12105   //   [...] An expression x->m is interpreted as (x.operator->())->m
12106   //   for a class object x of type T if T::operator->() exists and if
12107   //   the operator is selected as the best match function by the
12108   //   overload resolution mechanism (13.3).
12109   DeclarationName OpName =
12110     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
12111   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
12112   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
12113
12114   if (RequireCompleteType(Loc, Base->getType(),
12115                           diag::err_typecheck_incomplete_tag, Base))
12116     return ExprError();
12117
12118   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
12119   LookupQualifiedName(R, BaseRecord->getDecl());
12120   R.suppressDiagnostics();
12121
12122   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12123        Oper != OperEnd; ++Oper) {
12124     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
12125                        None, CandidateSet, /*SuppressUserConversions=*/false);
12126   }
12127
12128   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12129
12130   // Perform overload resolution.
12131   OverloadCandidateSet::iterator Best;
12132   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12133   case OR_Success:
12134     // Overload resolution succeeded; we'll build the call below.
12135     break;
12136
12137   case OR_No_Viable_Function:
12138     if (CandidateSet.empty()) {
12139       QualType BaseType = Base->getType();
12140       if (NoArrowOperatorFound) {
12141         // Report this specific error to the caller instead of emitting a
12142         // diagnostic, as requested.
12143         *NoArrowOperatorFound = true;
12144         return ExprError();
12145       }
12146       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
12147         << BaseType << Base->getSourceRange();
12148       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
12149         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
12150           << FixItHint::CreateReplacement(OpLoc, ".");
12151       }
12152     } else
12153       Diag(OpLoc, diag::err_ovl_no_viable_oper)
12154         << "operator->" << Base->getSourceRange();
12155     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12156     return ExprError();
12157
12158   case OR_Ambiguous:
12159     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
12160       << "->" << Base->getType() << Base->getSourceRange();
12161     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
12162     return ExprError();
12163
12164   case OR_Deleted:
12165     Diag(OpLoc,  diag::err_ovl_deleted_oper)
12166       << Best->Function->isDeleted()
12167       << "->" 
12168       << getDeletedOrUnavailableSuffix(Best->Function)
12169       << Base->getSourceRange();
12170     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12171     return ExprError();
12172   }
12173
12174   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
12175
12176   // Convert the object parameter.
12177   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12178   ExprResult BaseResult =
12179     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
12180                                         Best->FoundDecl, Method);
12181   if (BaseResult.isInvalid())
12182     return ExprError();
12183   Base = BaseResult.get();
12184
12185   // Build the operator call.
12186   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12187                                             HadMultipleCandidates, OpLoc);
12188   if (FnExpr.isInvalid())
12189     return ExprError();
12190
12191   QualType ResultTy = Method->getReturnType();
12192   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12193   ResultTy = ResultTy.getNonLValueExprType(Context);
12194   CXXOperatorCallExpr *TheCall =
12195     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
12196                                       Base, ResultTy, VK, OpLoc, false);
12197
12198   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
12199           return ExprError();
12200
12201   return MaybeBindToTemporary(TheCall);
12202 }
12203
12204 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
12205 /// a literal operator described by the provided lookup results.
12206 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
12207                                           DeclarationNameInfo &SuffixInfo,
12208                                           ArrayRef<Expr*> Args,
12209                                           SourceLocation LitEndLoc,
12210                                        TemplateArgumentListInfo *TemplateArgs) {
12211   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
12212
12213   OverloadCandidateSet CandidateSet(UDSuffixLoc,
12214                                     OverloadCandidateSet::CSK_Normal);
12215   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
12216                         /*SuppressUserConversions=*/true);
12217
12218   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12219
12220   // Perform overload resolution. This will usually be trivial, but might need
12221   // to perform substitutions for a literal operator template.
12222   OverloadCandidateSet::iterator Best;
12223   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
12224   case OR_Success:
12225   case OR_Deleted:
12226     break;
12227
12228   case OR_No_Viable_Function:
12229     Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
12230       << R.getLookupName();
12231     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12232     return ExprError();
12233
12234   case OR_Ambiguous:
12235     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
12236     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12237     return ExprError();
12238   }
12239
12240   FunctionDecl *FD = Best->Function;
12241   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
12242                                         HadMultipleCandidates,
12243                                         SuffixInfo.getLoc(),
12244                                         SuffixInfo.getInfo());
12245   if (Fn.isInvalid())
12246     return true;
12247
12248   // Check the argument types. This should almost always be a no-op, except
12249   // that array-to-pointer decay is applied to string literals.
12250   Expr *ConvArgs[2];
12251   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
12252     ExprResult InputInit = PerformCopyInitialization(
12253       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
12254       SourceLocation(), Args[ArgIdx]);
12255     if (InputInit.isInvalid())
12256       return true;
12257     ConvArgs[ArgIdx] = InputInit.get();
12258   }
12259
12260   QualType ResultTy = FD->getReturnType();
12261   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12262   ResultTy = ResultTy.getNonLValueExprType(Context);
12263
12264   UserDefinedLiteral *UDL =
12265     new (Context) UserDefinedLiteral(Context, Fn.get(),
12266                                      llvm::makeArrayRef(ConvArgs, Args.size()),
12267                                      ResultTy, VK, LitEndLoc, UDSuffixLoc);
12268
12269   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
12270     return ExprError();
12271
12272   if (CheckFunctionCall(FD, UDL, nullptr))
12273     return ExprError();
12274
12275   return MaybeBindToTemporary(UDL);
12276 }
12277
12278 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
12279 /// given LookupResult is non-empty, it is assumed to describe a member which
12280 /// will be invoked. Otherwise, the function will be found via argument
12281 /// dependent lookup.
12282 /// CallExpr is set to a valid expression and FRS_Success returned on success,
12283 /// otherwise CallExpr is set to ExprError() and some non-success value
12284 /// is returned.
12285 Sema::ForRangeStatus
12286 Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
12287                                 SourceLocation RangeLoc, VarDecl *Decl,
12288                                 BeginEndFunction BEF,
12289                                 const DeclarationNameInfo &NameInfo,
12290                                 LookupResult &MemberLookup,
12291                                 OverloadCandidateSet *CandidateSet,
12292                                 Expr *Range, ExprResult *CallExpr) {
12293   CandidateSet->clear();
12294   if (!MemberLookup.empty()) {
12295     ExprResult MemberRef =
12296         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
12297                                  /*IsPtr=*/false, CXXScopeSpec(),
12298                                  /*TemplateKWLoc=*/SourceLocation(),
12299                                  /*FirstQualifierInScope=*/nullptr,
12300                                  MemberLookup,
12301                                  /*TemplateArgs=*/nullptr);
12302     if (MemberRef.isInvalid()) {
12303       *CallExpr = ExprError();
12304       Diag(Range->getLocStart(), diag::note_in_for_range)
12305           << RangeLoc << BEF << Range->getType();
12306       return FRS_DiagnosticIssued;
12307     }
12308     *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
12309     if (CallExpr->isInvalid()) {
12310       *CallExpr = ExprError();
12311       Diag(Range->getLocStart(), diag::note_in_for_range)
12312           << RangeLoc << BEF << Range->getType();
12313       return FRS_DiagnosticIssued;
12314     }
12315   } else {
12316     UnresolvedSet<0> FoundNames;
12317     UnresolvedLookupExpr *Fn =
12318       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
12319                                    NestedNameSpecifierLoc(), NameInfo,
12320                                    /*NeedsADL=*/true, /*Overloaded=*/false,
12321                                    FoundNames.begin(), FoundNames.end());
12322
12323     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
12324                                                     CandidateSet, CallExpr);
12325     if (CandidateSet->empty() || CandidateSetError) {
12326       *CallExpr = ExprError();
12327       return FRS_NoViableFunction;
12328     }
12329     OverloadCandidateSet::iterator Best;
12330     OverloadingResult OverloadResult =
12331         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
12332
12333     if (OverloadResult == OR_No_Viable_Function) {
12334       *CallExpr = ExprError();
12335       return FRS_NoViableFunction;
12336     }
12337     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
12338                                          Loc, nullptr, CandidateSet, &Best,
12339                                          OverloadResult,
12340                                          /*AllowTypoCorrection=*/false);
12341     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
12342       *CallExpr = ExprError();
12343       Diag(Range->getLocStart(), diag::note_in_for_range)
12344           << RangeLoc << BEF << Range->getType();
12345       return FRS_DiagnosticIssued;
12346     }
12347   }
12348   return FRS_Success;
12349 }
12350
12351
12352 /// FixOverloadedFunctionReference - E is an expression that refers to
12353 /// a C++ overloaded function (possibly with some parentheses and
12354 /// perhaps a '&' around it). We have resolved the overloaded function
12355 /// to the function declaration Fn, so patch up the expression E to
12356 /// refer (possibly indirectly) to Fn. Returns the new expr.
12357 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
12358                                            FunctionDecl *Fn) {
12359   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
12360     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
12361                                                    Found, Fn);
12362     if (SubExpr == PE->getSubExpr())
12363       return PE;
12364
12365     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
12366   }
12367
12368   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12369     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
12370                                                    Found, Fn);
12371     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
12372                                SubExpr->getType()) &&
12373            "Implicit cast type cannot be determined from overload");
12374     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
12375     if (SubExpr == ICE->getSubExpr())
12376       return ICE;
12377
12378     return ImplicitCastExpr::Create(Context, ICE->getType(),
12379                                     ICE->getCastKind(),
12380                                     SubExpr, nullptr,
12381                                     ICE->getValueKind());
12382   }
12383
12384   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
12385     assert(UnOp->getOpcode() == UO_AddrOf &&
12386            "Can only take the address of an overloaded function");
12387     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12388       if (Method->isStatic()) {
12389         // Do nothing: static member functions aren't any different
12390         // from non-member functions.
12391       } else {
12392         // Fix the subexpression, which really has to be an
12393         // UnresolvedLookupExpr holding an overloaded member function
12394         // or template.
12395         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
12396                                                        Found, Fn);
12397         if (SubExpr == UnOp->getSubExpr())
12398           return UnOp;
12399
12400         assert(isa<DeclRefExpr>(SubExpr)
12401                && "fixed to something other than a decl ref");
12402         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
12403                && "fixed to a member ref with no nested name qualifier");
12404
12405         // We have taken the address of a pointer to member
12406         // function. Perform the computation here so that we get the
12407         // appropriate pointer to member type.
12408         QualType ClassType
12409           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
12410         QualType MemPtrType
12411           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
12412
12413         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
12414                                            VK_RValue, OK_Ordinary,
12415                                            UnOp->getOperatorLoc());
12416       }
12417     }
12418     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
12419                                                    Found, Fn);
12420     if (SubExpr == UnOp->getSubExpr())
12421       return UnOp;
12422
12423     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
12424                                      Context.getPointerType(SubExpr->getType()),
12425                                        VK_RValue, OK_Ordinary,
12426                                        UnOp->getOperatorLoc());
12427   }
12428
12429   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
12430     // FIXME: avoid copy.
12431     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12432     if (ULE->hasExplicitTemplateArgs()) {
12433       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
12434       TemplateArgs = &TemplateArgsBuffer;
12435     }
12436
12437     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
12438                                            ULE->getQualifierLoc(),
12439                                            ULE->getTemplateKeywordLoc(),
12440                                            Fn,
12441                                            /*enclosing*/ false, // FIXME?
12442                                            ULE->getNameLoc(),
12443                                            Fn->getType(),
12444                                            VK_LValue,
12445                                            Found.getDecl(),
12446                                            TemplateArgs);
12447     MarkDeclRefReferenced(DRE);
12448     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
12449     return DRE;
12450   }
12451
12452   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
12453     // FIXME: avoid copy.
12454     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12455     if (MemExpr->hasExplicitTemplateArgs()) {
12456       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
12457       TemplateArgs = &TemplateArgsBuffer;
12458     }
12459
12460     Expr *Base;
12461
12462     // If we're filling in a static method where we used to have an
12463     // implicit member access, rewrite to a simple decl ref.
12464     if (MemExpr->isImplicitAccess()) {
12465       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
12466         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
12467                                                MemExpr->getQualifierLoc(),
12468                                                MemExpr->getTemplateKeywordLoc(),
12469                                                Fn,
12470                                                /*enclosing*/ false,
12471                                                MemExpr->getMemberLoc(),
12472                                                Fn->getType(),
12473                                                VK_LValue,
12474                                                Found.getDecl(),
12475                                                TemplateArgs);
12476         MarkDeclRefReferenced(DRE);
12477         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
12478         return DRE;
12479       } else {
12480         SourceLocation Loc = MemExpr->getMemberLoc();
12481         if (MemExpr->getQualifier())
12482           Loc = MemExpr->getQualifierLoc().getBeginLoc();
12483         CheckCXXThisCapture(Loc);
12484         Base = new (Context) CXXThisExpr(Loc,
12485                                          MemExpr->getBaseType(),
12486                                          /*isImplicit=*/true);
12487       }
12488     } else
12489       Base = MemExpr->getBase();
12490
12491     ExprValueKind valueKind;
12492     QualType type;
12493     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
12494       valueKind = VK_LValue;
12495       type = Fn->getType();
12496     } else {
12497       valueKind = VK_RValue;
12498       type = Context.BoundMemberTy;
12499     }
12500
12501     MemberExpr *ME = MemberExpr::Create(
12502         Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
12503         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
12504         MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
12505         OK_Ordinary);
12506     ME->setHadMultipleCandidates(true);
12507     MarkMemberReferenced(ME);
12508     return ME;
12509   }
12510
12511   llvm_unreachable("Invalid reference to overloaded function");
12512 }
12513
12514 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
12515                                                 DeclAccessPair Found,
12516                                                 FunctionDecl *Fn) {
12517   return FixOverloadedFunctionReference(E.get(), Found, Fn);
12518 }