]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
Update llvm to release_39 branch r278877.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaOverload.cpp
1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Overload.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/TypeOrdering.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/Basic/DiagnosticOptions.h"
24 #include "clang/Basic/PartialDiagnostic.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include <algorithm>
36 #include <cstdlib>
37
38 using namespace clang;
39 using namespace sema;
40
41 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42   return llvm::any_of(FD->parameters(),
43                       std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
44 }
45
46 /// A convenience routine for creating a decayed reference to a function.
47 static ExprResult
48 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
49                       bool HadMultipleCandidates,
50                       SourceLocation Loc = SourceLocation(), 
51                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
52   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
53     return ExprError(); 
54   // If FoundDecl is different from Fn (such as if one is a template
55   // and the other a specialization), make sure DiagnoseUseOfDecl is 
56   // called on both.
57   // FIXME: This would be more comprehensively addressed by modifying
58   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
59   // being used.
60   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
61     return ExprError();
62   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
63                                                  VK_LValue, Loc, LocInfo);
64   if (HadMultipleCandidates)
65     DRE->setHadMultipleCandidates(true);
66
67   S.MarkDeclRefReferenced(DRE);
68   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
69                              CK_FunctionToPointerDecay);
70 }
71
72 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
73                                  bool InOverloadResolution,
74                                  StandardConversionSequence &SCS,
75                                  bool CStyle,
76                                  bool AllowObjCWritebackConversion);
77
78 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
79                                                  QualType &ToType,
80                                                  bool InOverloadResolution,
81                                                  StandardConversionSequence &SCS,
82                                                  bool CStyle);
83 static OverloadingResult
84 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
85                         UserDefinedConversionSequence& User,
86                         OverloadCandidateSet& Conversions,
87                         bool AllowExplicit,
88                         bool AllowObjCConversionOnExplicit);
89
90
91 static ImplicitConversionSequence::CompareKind
92 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
93                                    const StandardConversionSequence& SCS1,
94                                    const StandardConversionSequence& SCS2);
95
96 static ImplicitConversionSequence::CompareKind
97 CompareQualificationConversions(Sema &S,
98                                 const StandardConversionSequence& SCS1,
99                                 const StandardConversionSequence& SCS2);
100
101 static ImplicitConversionSequence::CompareKind
102 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
103                                 const StandardConversionSequence& SCS1,
104                                 const StandardConversionSequence& SCS2);
105
106 /// GetConversionRank - Retrieve the implicit conversion rank
107 /// corresponding to the given implicit conversion kind.
108 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
109   static const ImplicitConversionRank
110     Rank[(int)ICK_Num_Conversion_Kinds] = {
111     ICR_Exact_Match,
112     ICR_Exact_Match,
113     ICR_Exact_Match,
114     ICR_Exact_Match,
115     ICR_Exact_Match,
116     ICR_Exact_Match,
117     ICR_Promotion,
118     ICR_Promotion,
119     ICR_Promotion,
120     ICR_Conversion,
121     ICR_Conversion,
122     ICR_Conversion,
123     ICR_Conversion,
124     ICR_Conversion,
125     ICR_Conversion,
126     ICR_Conversion,
127     ICR_Conversion,
128     ICR_Conversion,
129     ICR_Conversion,
130     ICR_Conversion,
131     ICR_Complex_Real_Conversion,
132     ICR_Conversion,
133     ICR_Conversion,
134     ICR_Writeback_Conversion,
135     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
136                      // it was omitted by the patch that added
137                      // ICK_Zero_Event_Conversion
138     ICR_C_Conversion
139   };
140   return Rank[(int)Kind];
141 }
142
143 /// GetImplicitConversionName - Return the name of this kind of
144 /// implicit conversion.
145 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
146   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
147     "No conversion",
148     "Lvalue-to-rvalue",
149     "Array-to-pointer",
150     "Function-to-pointer",
151     "Noreturn adjustment",
152     "Qualification",
153     "Integral promotion",
154     "Floating point promotion",
155     "Complex promotion",
156     "Integral conversion",
157     "Floating conversion",
158     "Complex conversion",
159     "Floating-integral conversion",
160     "Pointer conversion",
161     "Pointer-to-member conversion",
162     "Boolean conversion",
163     "Compatible-types conversion",
164     "Derived-to-base conversion",
165     "Vector conversion",
166     "Vector splat",
167     "Complex-real conversion",
168     "Block Pointer conversion",
169     "Transparent Union Conversion",
170     "Writeback conversion",
171     "OpenCL Zero Event Conversion",
172     "C specific type conversion"
173   };
174   return Name[Kind];
175 }
176
177 /// StandardConversionSequence - Set the standard conversion
178 /// sequence to the identity conversion.
179 void StandardConversionSequence::setAsIdentityConversion() {
180   First = ICK_Identity;
181   Second = ICK_Identity;
182   Third = ICK_Identity;
183   DeprecatedStringLiteralToCharPtr = false;
184   QualificationIncludesObjCLifetime = false;
185   ReferenceBinding = false;
186   DirectBinding = false;
187   IsLvalueReference = true;
188   BindsToFunctionLvalue = false;
189   BindsToRvalue = false;
190   BindsImplicitObjectArgumentWithoutRefQualifier = false;
191   ObjCLifetimeConversionBinding = false;
192   CopyConstructor = nullptr;
193 }
194
195 /// getRank - Retrieve the rank of this standard conversion sequence
196 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
197 /// implicit conversions.
198 ImplicitConversionRank StandardConversionSequence::getRank() const {
199   ImplicitConversionRank Rank = ICR_Exact_Match;
200   if  (GetConversionRank(First) > Rank)
201     Rank = GetConversionRank(First);
202   if  (GetConversionRank(Second) > Rank)
203     Rank = GetConversionRank(Second);
204   if  (GetConversionRank(Third) > Rank)
205     Rank = GetConversionRank(Third);
206   return Rank;
207 }
208
209 /// isPointerConversionToBool - Determines whether this conversion is
210 /// a conversion of a pointer or pointer-to-member to bool. This is
211 /// used as part of the ranking of standard conversion sequences
212 /// (C++ 13.3.3.2p4).
213 bool StandardConversionSequence::isPointerConversionToBool() const {
214   // Note that FromType has not necessarily been transformed by the
215   // array-to-pointer or function-to-pointer implicit conversions, so
216   // check for their presence as well as checking whether FromType is
217   // a pointer.
218   if (getToType(1)->isBooleanType() &&
219       (getFromType()->isPointerType() ||
220        getFromType()->isObjCObjectPointerType() ||
221        getFromType()->isBlockPointerType() ||
222        getFromType()->isNullPtrType() ||
223        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
224     return true;
225
226   return false;
227 }
228
229 /// isPointerConversionToVoidPointer - Determines whether this
230 /// conversion is a conversion of a pointer to a void pointer. This is
231 /// used as part of the ranking of standard conversion sequences (C++
232 /// 13.3.3.2p4).
233 bool
234 StandardConversionSequence::
235 isPointerConversionToVoidPointer(ASTContext& Context) const {
236   QualType FromType = getFromType();
237   QualType ToType = getToType(1);
238
239   // Note that FromType has not necessarily been transformed by the
240   // array-to-pointer implicit conversion, so check for its presence
241   // and redo the conversion to get a pointer.
242   if (First == ICK_Array_To_Pointer)
243     FromType = Context.getArrayDecayedType(FromType);
244
245   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
246     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
247       return ToPtrType->getPointeeType()->isVoidType();
248
249   return false;
250 }
251
252 /// Skip any implicit casts which could be either part of a narrowing conversion
253 /// or after one in an implicit conversion.
254 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
255   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
256     switch (ICE->getCastKind()) {
257     case CK_NoOp:
258     case CK_IntegralCast:
259     case CK_IntegralToBoolean:
260     case CK_IntegralToFloating:
261     case CK_BooleanToSignedIntegral:
262     case CK_FloatingToIntegral:
263     case CK_FloatingToBoolean:
264     case CK_FloatingCast:
265       Converted = ICE->getSubExpr();
266       continue;
267
268     default:
269       return Converted;
270     }
271   }
272
273   return Converted;
274 }
275
276 /// Check if this standard conversion sequence represents a narrowing
277 /// conversion, according to C++11 [dcl.init.list]p7.
278 ///
279 /// \param Ctx  The AST context.
280 /// \param Converted  The result of applying this standard conversion sequence.
281 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
282 ///        value of the expression prior to the narrowing conversion.
283 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
284 ///        type of the expression prior to the narrowing conversion.
285 NarrowingKind
286 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
287                                              const Expr *Converted,
288                                              APValue &ConstantValue,
289                                              QualType &ConstantType) const {
290   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
291
292   // C++11 [dcl.init.list]p7:
293   //   A narrowing conversion is an implicit conversion ...
294   QualType FromType = getToType(0);
295   QualType ToType = getToType(1);
296
297   // A conversion to an enumeration type is narrowing if the conversion to
298   // the underlying type is narrowing. This only arises for expressions of
299   // the form 'Enum{init}'.
300   if (auto *ET = ToType->getAs<EnumType>())
301     ToType = ET->getDecl()->getIntegerType();
302
303   switch (Second) {
304   // 'bool' is an integral type; dispatch to the right place to handle it.
305   case ICK_Boolean_Conversion:
306     if (FromType->isRealFloatingType())
307       goto FloatingIntegralConversion;
308     if (FromType->isIntegralOrUnscopedEnumerationType())
309       goto IntegralConversion;
310     // Boolean conversions can be from pointers and pointers to members
311     // [conv.bool], and those aren't considered narrowing conversions.
312     return NK_Not_Narrowing;
313
314   // -- from a floating-point type to an integer type, or
315   //
316   // -- from an integer type or unscoped enumeration type to a floating-point
317   //    type, except where the source is a constant expression and the actual
318   //    value after conversion will fit into the target type and will produce
319   //    the original value when converted back to the original type, or
320   case ICK_Floating_Integral:
321   FloatingIntegralConversion:
322     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
323       return NK_Type_Narrowing;
324     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
325       llvm::APSInt IntConstantValue;
326       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
327       if (Initializer &&
328           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
329         // Convert the integer to the floating type.
330         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
331         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
332                                 llvm::APFloat::rmNearestTiesToEven);
333         // And back.
334         llvm::APSInt ConvertedValue = IntConstantValue;
335         bool ignored;
336         Result.convertToInteger(ConvertedValue,
337                                 llvm::APFloat::rmTowardZero, &ignored);
338         // If the resulting value is different, this was a narrowing conversion.
339         if (IntConstantValue != ConvertedValue) {
340           ConstantValue = APValue(IntConstantValue);
341           ConstantType = Initializer->getType();
342           return NK_Constant_Narrowing;
343         }
344       } else {
345         // Variables are always narrowings.
346         return NK_Variable_Narrowing;
347       }
348     }
349     return NK_Not_Narrowing;
350
351   // -- from long double to double or float, or from double to float, except
352   //    where the source is a constant expression and the actual value after
353   //    conversion is within the range of values that can be represented (even
354   //    if it cannot be represented exactly), or
355   case ICK_Floating_Conversion:
356     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
357         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
358       // FromType is larger than ToType.
359       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
360       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
361         // Constant!
362         assert(ConstantValue.isFloat());
363         llvm::APFloat FloatVal = ConstantValue.getFloat();
364         // Convert the source value into the target type.
365         bool ignored;
366         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
367           Ctx.getFloatTypeSemantics(ToType),
368           llvm::APFloat::rmNearestTiesToEven, &ignored);
369         // If there was no overflow, the source value is within the range of
370         // values that can be represented.
371         if (ConvertStatus & llvm::APFloat::opOverflow) {
372           ConstantType = Initializer->getType();
373           return NK_Constant_Narrowing;
374         }
375       } else {
376         return NK_Variable_Narrowing;
377       }
378     }
379     return NK_Not_Narrowing;
380
381   // -- from an integer type or unscoped enumeration type to an integer type
382   //    that cannot represent all the values of the original type, except where
383   //    the source is a constant expression and the actual value after
384   //    conversion will fit into the target type and will produce the original
385   //    value when converted back to the original type.
386   case ICK_Integral_Conversion:
387   IntegralConversion: {
388     assert(FromType->isIntegralOrUnscopedEnumerationType());
389     assert(ToType->isIntegralOrUnscopedEnumerationType());
390     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
391     const unsigned FromWidth = Ctx.getIntWidth(FromType);
392     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
393     const unsigned ToWidth = Ctx.getIntWidth(ToType);
394
395     if (FromWidth > ToWidth ||
396         (FromWidth == ToWidth && FromSigned != ToSigned) ||
397         (FromSigned && !ToSigned)) {
398       // Not all values of FromType can be represented in ToType.
399       llvm::APSInt InitializerValue;
400       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
401       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
402         // Such conversions on variables are always narrowing.
403         return NK_Variable_Narrowing;
404       }
405       bool Narrowing = false;
406       if (FromWidth < ToWidth) {
407         // Negative -> unsigned is narrowing. Otherwise, more bits is never
408         // narrowing.
409         if (InitializerValue.isSigned() && InitializerValue.isNegative())
410           Narrowing = true;
411       } else {
412         // Add a bit to the InitializerValue so we don't have to worry about
413         // signed vs. unsigned comparisons.
414         InitializerValue = InitializerValue.extend(
415           InitializerValue.getBitWidth() + 1);
416         // Convert the initializer to and from the target width and signed-ness.
417         llvm::APSInt ConvertedValue = InitializerValue;
418         ConvertedValue = ConvertedValue.trunc(ToWidth);
419         ConvertedValue.setIsSigned(ToSigned);
420         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
421         ConvertedValue.setIsSigned(InitializerValue.isSigned());
422         // If the result is different, this was a narrowing conversion.
423         if (ConvertedValue != InitializerValue)
424           Narrowing = true;
425       }
426       if (Narrowing) {
427         ConstantType = Initializer->getType();
428         ConstantValue = APValue(InitializerValue);
429         return NK_Constant_Narrowing;
430       }
431     }
432     return NK_Not_Narrowing;
433   }
434
435   default:
436     // Other kinds of conversions are not narrowings.
437     return NK_Not_Narrowing;
438   }
439 }
440
441 /// dump - Print this standard conversion sequence to standard
442 /// error. Useful for debugging overloading issues.
443 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
444   raw_ostream &OS = llvm::errs();
445   bool PrintedSomething = false;
446   if (First != ICK_Identity) {
447     OS << GetImplicitConversionName(First);
448     PrintedSomething = true;
449   }
450
451   if (Second != ICK_Identity) {
452     if (PrintedSomething) {
453       OS << " -> ";
454     }
455     OS << GetImplicitConversionName(Second);
456
457     if (CopyConstructor) {
458       OS << " (by copy constructor)";
459     } else if (DirectBinding) {
460       OS << " (direct reference binding)";
461     } else if (ReferenceBinding) {
462       OS << " (reference binding)";
463     }
464     PrintedSomething = true;
465   }
466
467   if (Third != ICK_Identity) {
468     if (PrintedSomething) {
469       OS << " -> ";
470     }
471     OS << GetImplicitConversionName(Third);
472     PrintedSomething = true;
473   }
474
475   if (!PrintedSomething) {
476     OS << "No conversions required";
477   }
478 }
479
480 /// dump - Print this user-defined conversion sequence to standard
481 /// error. Useful for debugging overloading issues.
482 void UserDefinedConversionSequence::dump() const {
483   raw_ostream &OS = llvm::errs();
484   if (Before.First || Before.Second || Before.Third) {
485     Before.dump();
486     OS << " -> ";
487   }
488   if (ConversionFunction)
489     OS << '\'' << *ConversionFunction << '\'';
490   else
491     OS << "aggregate initialization";
492   if (After.First || After.Second || After.Third) {
493     OS << " -> ";
494     After.dump();
495   }
496 }
497
498 /// dump - Print this implicit conversion sequence to standard
499 /// error. Useful for debugging overloading issues.
500 void ImplicitConversionSequence::dump() const {
501   raw_ostream &OS = llvm::errs();
502   if (isStdInitializerListElement())
503     OS << "Worst std::initializer_list element conversion: ";
504   switch (ConversionKind) {
505   case StandardConversion:
506     OS << "Standard conversion: ";
507     Standard.dump();
508     break;
509   case UserDefinedConversion:
510     OS << "User-defined conversion: ";
511     UserDefined.dump();
512     break;
513   case EllipsisConversion:
514     OS << "Ellipsis conversion";
515     break;
516   case AmbiguousConversion:
517     OS << "Ambiguous conversion";
518     break;
519   case BadConversion:
520     OS << "Bad conversion";
521     break;
522   }
523
524   OS << "\n";
525 }
526
527 void AmbiguousConversionSequence::construct() {
528   new (&conversions()) ConversionSet();
529 }
530
531 void AmbiguousConversionSequence::destruct() {
532   conversions().~ConversionSet();
533 }
534
535 void
536 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
537   FromTypePtr = O.FromTypePtr;
538   ToTypePtr = O.ToTypePtr;
539   new (&conversions()) ConversionSet(O.conversions());
540 }
541
542 namespace {
543   // Structure used by DeductionFailureInfo to store
544   // template argument information.
545   struct DFIArguments {
546     TemplateArgument FirstArg;
547     TemplateArgument SecondArg;
548   };
549   // Structure used by DeductionFailureInfo to store
550   // template parameter and template argument information.
551   struct DFIParamWithArguments : DFIArguments {
552     TemplateParameter Param;
553   };
554   // Structure used by DeductionFailureInfo to store template argument
555   // information and the index of the problematic call argument.
556   struct DFIDeducedMismatchArgs : DFIArguments {
557     TemplateArgumentList *TemplateArgs;
558     unsigned CallArgIndex;
559   };
560 }
561
562 /// \brief Convert from Sema's representation of template deduction information
563 /// to the form used in overload-candidate information.
564 DeductionFailureInfo
565 clang::MakeDeductionFailureInfo(ASTContext &Context,
566                                 Sema::TemplateDeductionResult TDK,
567                                 TemplateDeductionInfo &Info) {
568   DeductionFailureInfo Result;
569   Result.Result = static_cast<unsigned>(TDK);
570   Result.HasDiagnostic = false;
571   switch (TDK) {
572   case Sema::TDK_Success:
573   case Sema::TDK_Invalid:
574   case Sema::TDK_InstantiationDepth:
575   case Sema::TDK_TooManyArguments:
576   case Sema::TDK_TooFewArguments:
577   case Sema::TDK_MiscellaneousDeductionFailure:
578     Result.Data = nullptr;
579     break;
580
581   case Sema::TDK_Incomplete:
582   case Sema::TDK_InvalidExplicitArguments:
583     Result.Data = Info.Param.getOpaqueValue();
584     break;
585
586   case Sema::TDK_DeducedMismatch: {
587     // FIXME: Should allocate from normal heap so that we can free this later.
588     auto *Saved = new (Context) DFIDeducedMismatchArgs;
589     Saved->FirstArg = Info.FirstArg;
590     Saved->SecondArg = Info.SecondArg;
591     Saved->TemplateArgs = Info.take();
592     Saved->CallArgIndex = Info.CallArgIndex;
593     Result.Data = Saved;
594     break;
595   }
596
597   case Sema::TDK_NonDeducedMismatch: {
598     // FIXME: Should allocate from normal heap so that we can free this later.
599     DFIArguments *Saved = new (Context) DFIArguments;
600     Saved->FirstArg = Info.FirstArg;
601     Saved->SecondArg = Info.SecondArg;
602     Result.Data = Saved;
603     break;
604   }
605
606   case Sema::TDK_Inconsistent:
607   case Sema::TDK_Underqualified: {
608     // FIXME: Should allocate from normal heap so that we can free this later.
609     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
610     Saved->Param = Info.Param;
611     Saved->FirstArg = Info.FirstArg;
612     Saved->SecondArg = Info.SecondArg;
613     Result.Data = Saved;
614     break;
615   }
616
617   case Sema::TDK_SubstitutionFailure:
618     Result.Data = Info.take();
619     if (Info.hasSFINAEDiagnostic()) {
620       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
621           SourceLocation(), PartialDiagnostic::NullDiagnostic());
622       Info.takeSFINAEDiagnostic(*Diag);
623       Result.HasDiagnostic = true;
624     }
625     break;
626
627   case Sema::TDK_FailedOverloadResolution:
628     Result.Data = Info.Expression;
629     break;
630   }
631
632   return Result;
633 }
634
635 void DeductionFailureInfo::Destroy() {
636   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
637   case Sema::TDK_Success:
638   case Sema::TDK_Invalid:
639   case Sema::TDK_InstantiationDepth:
640   case Sema::TDK_Incomplete:
641   case Sema::TDK_TooManyArguments:
642   case Sema::TDK_TooFewArguments:
643   case Sema::TDK_InvalidExplicitArguments:
644   case Sema::TDK_FailedOverloadResolution:
645     break;
646
647   case Sema::TDK_Inconsistent:
648   case Sema::TDK_Underqualified:
649   case Sema::TDK_DeducedMismatch:
650   case Sema::TDK_NonDeducedMismatch:
651     // FIXME: Destroy the data?
652     Data = nullptr;
653     break;
654
655   case Sema::TDK_SubstitutionFailure:
656     // FIXME: Destroy the template argument list?
657     Data = nullptr;
658     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
659       Diag->~PartialDiagnosticAt();
660       HasDiagnostic = false;
661     }
662     break;
663
664   // Unhandled
665   case Sema::TDK_MiscellaneousDeductionFailure:
666     break;
667   }
668 }
669
670 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
671   if (HasDiagnostic)
672     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
673   return nullptr;
674 }
675
676 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
677   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
678   case Sema::TDK_Success:
679   case Sema::TDK_Invalid:
680   case Sema::TDK_InstantiationDepth:
681   case Sema::TDK_TooManyArguments:
682   case Sema::TDK_TooFewArguments:
683   case Sema::TDK_SubstitutionFailure:
684   case Sema::TDK_DeducedMismatch:
685   case Sema::TDK_NonDeducedMismatch:
686   case Sema::TDK_FailedOverloadResolution:
687     return TemplateParameter();
688
689   case Sema::TDK_Incomplete:
690   case Sema::TDK_InvalidExplicitArguments:
691     return TemplateParameter::getFromOpaqueValue(Data);
692
693   case Sema::TDK_Inconsistent:
694   case Sema::TDK_Underqualified:
695     return static_cast<DFIParamWithArguments*>(Data)->Param;
696
697   // Unhandled
698   case Sema::TDK_MiscellaneousDeductionFailure:
699     break;
700   }
701
702   return TemplateParameter();
703 }
704
705 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
706   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
707   case Sema::TDK_Success:
708   case Sema::TDK_Invalid:
709   case Sema::TDK_InstantiationDepth:
710   case Sema::TDK_TooManyArguments:
711   case Sema::TDK_TooFewArguments:
712   case Sema::TDK_Incomplete:
713   case Sema::TDK_InvalidExplicitArguments:
714   case Sema::TDK_Inconsistent:
715   case Sema::TDK_Underqualified:
716   case Sema::TDK_NonDeducedMismatch:
717   case Sema::TDK_FailedOverloadResolution:
718     return nullptr;
719
720   case Sema::TDK_DeducedMismatch:
721     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
722
723   case Sema::TDK_SubstitutionFailure:
724     return static_cast<TemplateArgumentList*>(Data);
725
726   // Unhandled
727   case Sema::TDK_MiscellaneousDeductionFailure:
728     break;
729   }
730
731   return nullptr;
732 }
733
734 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
735   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
736   case Sema::TDK_Success:
737   case Sema::TDK_Invalid:
738   case Sema::TDK_InstantiationDepth:
739   case Sema::TDK_Incomplete:
740   case Sema::TDK_TooManyArguments:
741   case Sema::TDK_TooFewArguments:
742   case Sema::TDK_InvalidExplicitArguments:
743   case Sema::TDK_SubstitutionFailure:
744   case Sema::TDK_FailedOverloadResolution:
745     return nullptr;
746
747   case Sema::TDK_Inconsistent:
748   case Sema::TDK_Underqualified:
749   case Sema::TDK_DeducedMismatch:
750   case Sema::TDK_NonDeducedMismatch:
751     return &static_cast<DFIArguments*>(Data)->FirstArg;
752
753   // Unhandled
754   case Sema::TDK_MiscellaneousDeductionFailure:
755     break;
756   }
757
758   return nullptr;
759 }
760
761 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
762   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
763   case Sema::TDK_Success:
764   case Sema::TDK_Invalid:
765   case Sema::TDK_InstantiationDepth:
766   case Sema::TDK_Incomplete:
767   case Sema::TDK_TooManyArguments:
768   case Sema::TDK_TooFewArguments:
769   case Sema::TDK_InvalidExplicitArguments:
770   case Sema::TDK_SubstitutionFailure:
771   case Sema::TDK_FailedOverloadResolution:
772     return nullptr;
773
774   case Sema::TDK_Inconsistent:
775   case Sema::TDK_Underqualified:
776   case Sema::TDK_DeducedMismatch:
777   case Sema::TDK_NonDeducedMismatch:
778     return &static_cast<DFIArguments*>(Data)->SecondArg;
779
780   // Unhandled
781   case Sema::TDK_MiscellaneousDeductionFailure:
782     break;
783   }
784
785   return nullptr;
786 }
787
788 Expr *DeductionFailureInfo::getExpr() {
789   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
790         Sema::TDK_FailedOverloadResolution)
791     return static_cast<Expr*>(Data);
792
793   return nullptr;
794 }
795
796 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
797   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
798         Sema::TDK_DeducedMismatch)
799     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
800
801   return llvm::None;
802 }
803
804 void OverloadCandidateSet::destroyCandidates() {
805   for (iterator i = begin(), e = end(); i != e; ++i) {
806     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
807       i->Conversions[ii].~ImplicitConversionSequence();
808     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
809       i->DeductionFailure.Destroy();
810   }
811 }
812
813 void OverloadCandidateSet::clear() {
814   destroyCandidates();
815   NumInlineSequences = 0;
816   Candidates.clear();
817   Functions.clear();
818 }
819
820 namespace {
821   class UnbridgedCastsSet {
822     struct Entry {
823       Expr **Addr;
824       Expr *Saved;
825     };
826     SmallVector<Entry, 2> Entries;
827     
828   public:
829     void save(Sema &S, Expr *&E) {
830       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
831       Entry entry = { &E, E };
832       Entries.push_back(entry);
833       E = S.stripARCUnbridgedCast(E);
834     }
835
836     void restore() {
837       for (SmallVectorImpl<Entry>::iterator
838              i = Entries.begin(), e = Entries.end(); i != e; ++i) 
839         *i->Addr = i->Saved;
840     }
841   };
842 }
843
844 /// checkPlaceholderForOverload - Do any interesting placeholder-like
845 /// preprocessing on the given expression.
846 ///
847 /// \param unbridgedCasts a collection to which to add unbridged casts;
848 ///   without this, they will be immediately diagnosed as errors
849 ///
850 /// Return true on unrecoverable error.
851 static bool
852 checkPlaceholderForOverload(Sema &S, Expr *&E,
853                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
854   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
855     // We can't handle overloaded expressions here because overload
856     // resolution might reasonably tweak them.
857     if (placeholder->getKind() == BuiltinType::Overload) return false;
858
859     // If the context potentially accepts unbridged ARC casts, strip
860     // the unbridged cast and add it to the collection for later restoration.
861     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
862         unbridgedCasts) {
863       unbridgedCasts->save(S, E);
864       return false;
865     }
866
867     // Go ahead and check everything else.
868     ExprResult result = S.CheckPlaceholderExpr(E);
869     if (result.isInvalid())
870       return true;
871
872     E = result.get();
873     return false;
874   }
875
876   // Nothing to do.
877   return false;
878 }
879
880 /// checkArgPlaceholdersForOverload - Check a set of call operands for
881 /// placeholders.
882 static bool checkArgPlaceholdersForOverload(Sema &S,
883                                             MultiExprArg Args,
884                                             UnbridgedCastsSet &unbridged) {
885   for (unsigned i = 0, e = Args.size(); i != e; ++i)
886     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
887       return true;
888
889   return false;
890 }
891
892 // IsOverload - Determine whether the given New declaration is an
893 // overload of the declarations in Old. This routine returns false if
894 // New and Old cannot be overloaded, e.g., if New has the same
895 // signature as some function in Old (C++ 1.3.10) or if the Old
896 // declarations aren't functions (or function templates) at all. When
897 // it does return false, MatchedDecl will point to the decl that New
898 // cannot be overloaded with.  This decl may be a UsingShadowDecl on
899 // top of the underlying declaration.
900 //
901 // Example: Given the following input:
902 //
903 //   void f(int, float); // #1
904 //   void f(int, int); // #2
905 //   int f(int, int); // #3
906 //
907 // When we process #1, there is no previous declaration of "f",
908 // so IsOverload will not be used.
909 //
910 // When we process #2, Old contains only the FunctionDecl for #1.  By
911 // comparing the parameter types, we see that #1 and #2 are overloaded
912 // (since they have different signatures), so this routine returns
913 // false; MatchedDecl is unchanged.
914 //
915 // When we process #3, Old is an overload set containing #1 and #2. We
916 // compare the signatures of #3 to #1 (they're overloaded, so we do
917 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
918 // identical (return types of functions are not part of the
919 // signature), IsOverload returns false and MatchedDecl will be set to
920 // point to the FunctionDecl for #2.
921 //
922 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
923 // into a class by a using declaration.  The rules for whether to hide
924 // shadow declarations ignore some properties which otherwise figure
925 // into a function template's signature.
926 Sema::OverloadKind
927 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
928                     NamedDecl *&Match, bool NewIsUsingDecl) {
929   for (LookupResult::iterator I = Old.begin(), E = Old.end();
930          I != E; ++I) {
931     NamedDecl *OldD = *I;
932
933     bool OldIsUsingDecl = false;
934     if (isa<UsingShadowDecl>(OldD)) {
935       OldIsUsingDecl = true;
936
937       // We can always introduce two using declarations into the same
938       // context, even if they have identical signatures.
939       if (NewIsUsingDecl) continue;
940
941       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
942     }
943
944     // A using-declaration does not conflict with another declaration
945     // if one of them is hidden.
946     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
947       continue;
948
949     // If either declaration was introduced by a using declaration,
950     // we'll need to use slightly different rules for matching.
951     // Essentially, these rules are the normal rules, except that
952     // function templates hide function templates with different
953     // return types or template parameter lists.
954     bool UseMemberUsingDeclRules =
955       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
956       !New->getFriendObjectKind();
957
958     if (FunctionDecl *OldF = OldD->getAsFunction()) {
959       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
960         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
961           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
962           continue;
963         }
964
965         if (!isa<FunctionTemplateDecl>(OldD) &&
966             !shouldLinkPossiblyHiddenDecl(*I, New))
967           continue;
968
969         Match = *I;
970         return Ovl_Match;
971       }
972     } else if (isa<UsingDecl>(OldD)) {
973       // We can overload with these, which can show up when doing
974       // redeclaration checks for UsingDecls.
975       assert(Old.getLookupKind() == LookupUsingDeclName);
976     } else if (isa<TagDecl>(OldD)) {
977       // We can always overload with tags by hiding them.
978     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
979       // Optimistically assume that an unresolved using decl will
980       // overload; if it doesn't, we'll have to diagnose during
981       // template instantiation.
982     } else {
983       // (C++ 13p1):
984       //   Only function declarations can be overloaded; object and type
985       //   declarations cannot be overloaded.
986       Match = *I;
987       return Ovl_NonFunction;
988     }
989   }
990
991   return Ovl_Overload;
992 }
993
994 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
995                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
996   // C++ [basic.start.main]p2: This function shall not be overloaded.
997   if (New->isMain())
998     return false;
999
1000   // MSVCRT user defined entry points cannot be overloaded.
1001   if (New->isMSVCRTEntryPoint())
1002     return false;
1003
1004   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1005   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1006
1007   // C++ [temp.fct]p2:
1008   //   A function template can be overloaded with other function templates
1009   //   and with normal (non-template) functions.
1010   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1011     return true;
1012
1013   // Is the function New an overload of the function Old?
1014   QualType OldQType = Context.getCanonicalType(Old->getType());
1015   QualType NewQType = Context.getCanonicalType(New->getType());
1016
1017   // Compare the signatures (C++ 1.3.10) of the two functions to
1018   // determine whether they are overloads. If we find any mismatch
1019   // in the signature, they are overloads.
1020
1021   // If either of these functions is a K&R-style function (no
1022   // prototype), then we consider them to have matching signatures.
1023   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1024       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1025     return false;
1026
1027   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1028   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1029
1030   // The signature of a function includes the types of its
1031   // parameters (C++ 1.3.10), which includes the presence or absence
1032   // of the ellipsis; see C++ DR 357).
1033   if (OldQType != NewQType &&
1034       (OldType->getNumParams() != NewType->getNumParams() ||
1035        OldType->isVariadic() != NewType->isVariadic() ||
1036        !FunctionParamTypesAreEqual(OldType, NewType)))
1037     return true;
1038
1039   // C++ [temp.over.link]p4:
1040   //   The signature of a function template consists of its function
1041   //   signature, its return type and its template parameter list. The names
1042   //   of the template parameters are significant only for establishing the
1043   //   relationship between the template parameters and the rest of the
1044   //   signature.
1045   //
1046   // We check the return type and template parameter lists for function
1047   // templates first; the remaining checks follow.
1048   //
1049   // However, we don't consider either of these when deciding whether
1050   // a member introduced by a shadow declaration is hidden.
1051   if (!UseMemberUsingDeclRules && NewTemplate &&
1052       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1053                                        OldTemplate->getTemplateParameters(),
1054                                        false, TPL_TemplateMatch) ||
1055        OldType->getReturnType() != NewType->getReturnType()))
1056     return true;
1057
1058   // If the function is a class member, its signature includes the
1059   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1060   //
1061   // As part of this, also check whether one of the member functions
1062   // is static, in which case they are not overloads (C++
1063   // 13.1p2). While not part of the definition of the signature,
1064   // this check is important to determine whether these functions
1065   // can be overloaded.
1066   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1067   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1068   if (OldMethod && NewMethod &&
1069       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1070     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1071       if (!UseMemberUsingDeclRules &&
1072           (OldMethod->getRefQualifier() == RQ_None ||
1073            NewMethod->getRefQualifier() == RQ_None)) {
1074         // C++0x [over.load]p2:
1075         //   - Member function declarations with the same name and the same
1076         //     parameter-type-list as well as member function template
1077         //     declarations with the same name, the same parameter-type-list, and
1078         //     the same template parameter lists cannot be overloaded if any of
1079         //     them, but not all, have a ref-qualifier (8.3.5).
1080         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1081           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1082         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1083       }
1084       return true;
1085     }
1086
1087     // We may not have applied the implicit const for a constexpr member
1088     // function yet (because we haven't yet resolved whether this is a static
1089     // or non-static member function). Add it now, on the assumption that this
1090     // is a redeclaration of OldMethod.
1091     unsigned OldQuals = OldMethod->getTypeQualifiers();
1092     unsigned NewQuals = NewMethod->getTypeQualifiers();
1093     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1094         !isa<CXXConstructorDecl>(NewMethod))
1095       NewQuals |= Qualifiers::Const;
1096
1097     // We do not allow overloading based off of '__restrict'.
1098     OldQuals &= ~Qualifiers::Restrict;
1099     NewQuals &= ~Qualifiers::Restrict;
1100     if (OldQuals != NewQuals)
1101       return true;
1102   }
1103
1104   // Though pass_object_size is placed on parameters and takes an argument, we
1105   // consider it to be a function-level modifier for the sake of function
1106   // identity. Either the function has one or more parameters with
1107   // pass_object_size or it doesn't.
1108   if (functionHasPassObjectSizeParams(New) !=
1109       functionHasPassObjectSizeParams(Old))
1110     return true;
1111
1112   // enable_if attributes are an order-sensitive part of the signature.
1113   for (specific_attr_iterator<EnableIfAttr>
1114          NewI = New->specific_attr_begin<EnableIfAttr>(),
1115          NewE = New->specific_attr_end<EnableIfAttr>(),
1116          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1117          OldE = Old->specific_attr_end<EnableIfAttr>();
1118        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1119     if (NewI == NewE || OldI == OldE)
1120       return true;
1121     llvm::FoldingSetNodeID NewID, OldID;
1122     NewI->getCond()->Profile(NewID, Context, true);
1123     OldI->getCond()->Profile(OldID, Context, true);
1124     if (NewID != OldID)
1125       return true;
1126   }
1127
1128   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1129     CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1130                        OldTarget = IdentifyCUDATarget(Old);
1131     if (NewTarget == CFT_InvalidTarget || NewTarget == CFT_Global)
1132       return false;
1133
1134     assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
1135
1136     // Don't allow mixing of HD with other kinds. This guarantees that
1137     // we have only one viable function with this signature on any
1138     // side of CUDA compilation .
1139     // __global__ functions can't be overloaded based on attribute
1140     // difference because, like HD, they also exist on both sides.
1141     if ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
1142         (NewTarget == CFT_Global) || (OldTarget == CFT_Global))
1143       return false;
1144
1145     // Allow overloading of functions with same signature, but
1146     // different CUDA target attributes.
1147     return NewTarget != OldTarget;
1148   }
1149
1150   // The signatures match; this is not an overload.
1151   return false;
1152 }
1153
1154 /// \brief Checks availability of the function depending on the current
1155 /// function context. Inside an unavailable function, unavailability is ignored.
1156 ///
1157 /// \returns true if \arg FD is unavailable and current context is inside
1158 /// an available function, false otherwise.
1159 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1160   if (!FD->isUnavailable())
1161     return false;
1162
1163   // Walk up the context of the caller.
1164   Decl *C = cast<Decl>(CurContext);
1165   do {
1166     if (C->isUnavailable())
1167       return false;
1168   } while ((C = cast_or_null<Decl>(C->getDeclContext())));
1169   return true;
1170 }
1171
1172 /// \brief Tries a user-defined conversion from From to ToType.
1173 ///
1174 /// Produces an implicit conversion sequence for when a standard conversion
1175 /// is not an option. See TryImplicitConversion for more information.
1176 static ImplicitConversionSequence
1177 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1178                          bool SuppressUserConversions,
1179                          bool AllowExplicit,
1180                          bool InOverloadResolution,
1181                          bool CStyle,
1182                          bool AllowObjCWritebackConversion,
1183                          bool AllowObjCConversionOnExplicit) {
1184   ImplicitConversionSequence ICS;
1185
1186   if (SuppressUserConversions) {
1187     // We're not in the case above, so there is no conversion that
1188     // we can perform.
1189     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1190     return ICS;
1191   }
1192
1193   // Attempt user-defined conversion.
1194   OverloadCandidateSet Conversions(From->getExprLoc(),
1195                                    OverloadCandidateSet::CSK_Normal);
1196   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1197                                   Conversions, AllowExplicit,
1198                                   AllowObjCConversionOnExplicit)) {
1199   case OR_Success:
1200   case OR_Deleted:
1201     ICS.setUserDefined();
1202     ICS.UserDefined.Before.setAsIdentityConversion();
1203     // C++ [over.ics.user]p4:
1204     //   A conversion of an expression of class type to the same class
1205     //   type is given Exact Match rank, and a conversion of an
1206     //   expression of class type to a base class of that type is
1207     //   given Conversion rank, in spite of the fact that a copy
1208     //   constructor (i.e., a user-defined conversion function) is
1209     //   called for those cases.
1210     if (CXXConstructorDecl *Constructor
1211           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1212       QualType FromCanon
1213         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1214       QualType ToCanon
1215         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1216       if (Constructor->isCopyConstructor() &&
1217           (FromCanon == ToCanon ||
1218            S.IsDerivedFrom(From->getLocStart(), FromCanon, ToCanon))) {
1219         // Turn this into a "standard" conversion sequence, so that it
1220         // gets ranked with standard conversion sequences.
1221         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1222         ICS.setStandard();
1223         ICS.Standard.setAsIdentityConversion();
1224         ICS.Standard.setFromType(From->getType());
1225         ICS.Standard.setAllToTypes(ToType);
1226         ICS.Standard.CopyConstructor = Constructor;
1227         ICS.Standard.FoundCopyConstructor = Found;
1228         if (ToCanon != FromCanon)
1229           ICS.Standard.Second = ICK_Derived_To_Base;
1230       }
1231     }
1232     break;
1233
1234   case OR_Ambiguous:
1235     ICS.setAmbiguous();
1236     ICS.Ambiguous.setFromType(From->getType());
1237     ICS.Ambiguous.setToType(ToType);
1238     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1239          Cand != Conversions.end(); ++Cand)
1240       if (Cand->Viable)
1241         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1242     break;
1243
1244     // Fall through.
1245   case OR_No_Viable_Function:
1246     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1247     break;
1248   }
1249
1250   return ICS;
1251 }
1252
1253 /// TryImplicitConversion - Attempt to perform an implicit conversion
1254 /// from the given expression (Expr) to the given type (ToType). This
1255 /// function returns an implicit conversion sequence that can be used
1256 /// to perform the initialization. Given
1257 ///
1258 ///   void f(float f);
1259 ///   void g(int i) { f(i); }
1260 ///
1261 /// this routine would produce an implicit conversion sequence to
1262 /// describe the initialization of f from i, which will be a standard
1263 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1264 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1265 //
1266 /// Note that this routine only determines how the conversion can be
1267 /// performed; it does not actually perform the conversion. As such,
1268 /// it will not produce any diagnostics if no conversion is available,
1269 /// but will instead return an implicit conversion sequence of kind
1270 /// "BadConversion".
1271 ///
1272 /// If @p SuppressUserConversions, then user-defined conversions are
1273 /// not permitted.
1274 /// If @p AllowExplicit, then explicit user-defined conversions are
1275 /// permitted.
1276 ///
1277 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1278 /// writeback conversion, which allows __autoreleasing id* parameters to
1279 /// be initialized with __strong id* or __weak id* arguments.
1280 static ImplicitConversionSequence
1281 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1282                       bool SuppressUserConversions,
1283                       bool AllowExplicit,
1284                       bool InOverloadResolution,
1285                       bool CStyle,
1286                       bool AllowObjCWritebackConversion,
1287                       bool AllowObjCConversionOnExplicit) {
1288   ImplicitConversionSequence ICS;
1289   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1290                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1291     ICS.setStandard();
1292     return ICS;
1293   }
1294
1295   if (!S.getLangOpts().CPlusPlus) {
1296     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1297     return ICS;
1298   }
1299
1300   // C++ [over.ics.user]p4:
1301   //   A conversion of an expression of class type to the same class
1302   //   type is given Exact Match rank, and a conversion of an
1303   //   expression of class type to a base class of that type is
1304   //   given Conversion rank, in spite of the fact that a copy/move
1305   //   constructor (i.e., a user-defined conversion function) is
1306   //   called for those cases.
1307   QualType FromType = From->getType();
1308   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1309       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1310        S.IsDerivedFrom(From->getLocStart(), FromType, ToType))) {
1311     ICS.setStandard();
1312     ICS.Standard.setAsIdentityConversion();
1313     ICS.Standard.setFromType(FromType);
1314     ICS.Standard.setAllToTypes(ToType);
1315
1316     // We don't actually check at this point whether there is a valid
1317     // copy/move constructor, since overloading just assumes that it
1318     // exists. When we actually perform initialization, we'll find the
1319     // appropriate constructor to copy the returned object, if needed.
1320     ICS.Standard.CopyConstructor = nullptr;
1321
1322     // Determine whether this is considered a derived-to-base conversion.
1323     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1324       ICS.Standard.Second = ICK_Derived_To_Base;
1325
1326     return ICS;
1327   }
1328
1329   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1330                                   AllowExplicit, InOverloadResolution, CStyle,
1331                                   AllowObjCWritebackConversion,
1332                                   AllowObjCConversionOnExplicit);
1333 }
1334
1335 ImplicitConversionSequence
1336 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1337                             bool SuppressUserConversions,
1338                             bool AllowExplicit,
1339                             bool InOverloadResolution,
1340                             bool CStyle,
1341                             bool AllowObjCWritebackConversion) {
1342   return ::TryImplicitConversion(*this, From, ToType, 
1343                                  SuppressUserConversions, AllowExplicit,
1344                                  InOverloadResolution, CStyle, 
1345                                  AllowObjCWritebackConversion,
1346                                  /*AllowObjCConversionOnExplicit=*/false);
1347 }
1348
1349 /// PerformImplicitConversion - Perform an implicit conversion of the
1350 /// expression From to the type ToType. Returns the
1351 /// converted expression. Flavor is the kind of conversion we're
1352 /// performing, used in the error message. If @p AllowExplicit,
1353 /// explicit user-defined conversions are permitted.
1354 ExprResult
1355 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1356                                 AssignmentAction Action, bool AllowExplicit) {
1357   ImplicitConversionSequence ICS;
1358   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1359 }
1360
1361 ExprResult
1362 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1363                                 AssignmentAction Action, bool AllowExplicit,
1364                                 ImplicitConversionSequence& ICS) {
1365   if (checkPlaceholderForOverload(*this, From))
1366     return ExprError();
1367
1368   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1369   bool AllowObjCWritebackConversion
1370     = getLangOpts().ObjCAutoRefCount && 
1371       (Action == AA_Passing || Action == AA_Sending);
1372   if (getLangOpts().ObjC1)
1373     CheckObjCBridgeRelatedConversions(From->getLocStart(),
1374                                       ToType, From->getType(), From);
1375   ICS = ::TryImplicitConversion(*this, From, ToType,
1376                                 /*SuppressUserConversions=*/false,
1377                                 AllowExplicit,
1378                                 /*InOverloadResolution=*/false,
1379                                 /*CStyle=*/false,
1380                                 AllowObjCWritebackConversion,
1381                                 /*AllowObjCConversionOnExplicit=*/false);
1382   return PerformImplicitConversion(From, ToType, ICS, Action);
1383 }
1384
1385 /// \brief Determine whether the conversion from FromType to ToType is a valid
1386 /// conversion that strips "noreturn" off the nested function type.
1387 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1388                                 QualType &ResultTy) {
1389   if (Context.hasSameUnqualifiedType(FromType, ToType))
1390     return false;
1391
1392   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1393   // where F adds one of the following at most once:
1394   //   - a pointer
1395   //   - a member pointer
1396   //   - a block pointer
1397   CanQualType CanTo = Context.getCanonicalType(ToType);
1398   CanQualType CanFrom = Context.getCanonicalType(FromType);
1399   Type::TypeClass TyClass = CanTo->getTypeClass();
1400   if (TyClass != CanFrom->getTypeClass()) return false;
1401   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1402     if (TyClass == Type::Pointer) {
1403       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1404       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1405     } else if (TyClass == Type::BlockPointer) {
1406       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1407       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1408     } else if (TyClass == Type::MemberPointer) {
1409       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1410       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1411     } else {
1412       return false;
1413     }
1414
1415     TyClass = CanTo->getTypeClass();
1416     if (TyClass != CanFrom->getTypeClass()) return false;
1417     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1418       return false;
1419   }
1420
1421   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1422   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1423   if (!EInfo.getNoReturn()) return false;
1424
1425   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1426   assert(QualType(FromFn, 0).isCanonical());
1427   if (QualType(FromFn, 0) != CanTo) return false;
1428
1429   ResultTy = ToType;
1430   return true;
1431 }
1432
1433 /// \brief Determine whether the conversion from FromType to ToType is a valid
1434 /// vector conversion.
1435 ///
1436 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1437 /// conversion.
1438 static bool IsVectorConversion(Sema &S, QualType FromType,
1439                                QualType ToType, ImplicitConversionKind &ICK) {
1440   // We need at least one of these types to be a vector type to have a vector
1441   // conversion.
1442   if (!ToType->isVectorType() && !FromType->isVectorType())
1443     return false;
1444
1445   // Identical types require no conversions.
1446   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1447     return false;
1448
1449   // There are no conversions between extended vector types, only identity.
1450   if (ToType->isExtVectorType()) {
1451     // There are no conversions between extended vector types other than the
1452     // identity conversion.
1453     if (FromType->isExtVectorType())
1454       return false;
1455
1456     // Vector splat from any arithmetic type to a vector.
1457     if (FromType->isArithmeticType()) {
1458       ICK = ICK_Vector_Splat;
1459       return true;
1460     }
1461   }
1462
1463   // We can perform the conversion between vector types in the following cases:
1464   // 1)vector types are equivalent AltiVec and GCC vector types
1465   // 2)lax vector conversions are permitted and the vector types are of the
1466   //   same size
1467   if (ToType->isVectorType() && FromType->isVectorType()) {
1468     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1469         S.isLaxVectorConversion(FromType, ToType)) {
1470       ICK = ICK_Vector_Conversion;
1471       return true;
1472     }
1473   }
1474
1475   return false;
1476 }
1477
1478 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1479                                 bool InOverloadResolution,
1480                                 StandardConversionSequence &SCS,
1481                                 bool CStyle);
1482
1483 /// IsStandardConversion - Determines whether there is a standard
1484 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1485 /// expression From to the type ToType. Standard conversion sequences
1486 /// only consider non-class types; for conversions that involve class
1487 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1488 /// contain the standard conversion sequence required to perform this
1489 /// conversion and this routine will return true. Otherwise, this
1490 /// routine will return false and the value of SCS is unspecified.
1491 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1492                                  bool InOverloadResolution,
1493                                  StandardConversionSequence &SCS,
1494                                  bool CStyle,
1495                                  bool AllowObjCWritebackConversion) {
1496   QualType FromType = From->getType();
1497
1498   // Standard conversions (C++ [conv])
1499   SCS.setAsIdentityConversion();
1500   SCS.IncompatibleObjC = false;
1501   SCS.setFromType(FromType);
1502   SCS.CopyConstructor = nullptr;
1503
1504   // There are no standard conversions for class types in C++, so
1505   // abort early. When overloading in C, however, we do permit them.
1506   if (S.getLangOpts().CPlusPlus &&
1507       (FromType->isRecordType() || ToType->isRecordType()))
1508     return false;
1509
1510   // The first conversion can be an lvalue-to-rvalue conversion,
1511   // array-to-pointer conversion, or function-to-pointer conversion
1512   // (C++ 4p1).
1513
1514   if (FromType == S.Context.OverloadTy) {
1515     DeclAccessPair AccessPair;
1516     if (FunctionDecl *Fn
1517           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1518                                                  AccessPair)) {
1519       // We were able to resolve the address of the overloaded function,
1520       // so we can convert to the type of that function.
1521       FromType = Fn->getType();
1522       SCS.setFromType(FromType);
1523
1524       // we can sometimes resolve &foo<int> regardless of ToType, so check
1525       // if the type matches (identity) or we are converting to bool
1526       if (!S.Context.hasSameUnqualifiedType(
1527                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1528         QualType resultTy;
1529         // if the function type matches except for [[noreturn]], it's ok
1530         if (!S.IsNoReturnConversion(FromType,
1531               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1532           // otherwise, only a boolean conversion is standard   
1533           if (!ToType->isBooleanType()) 
1534             return false; 
1535       }
1536
1537       // Check if the "from" expression is taking the address of an overloaded
1538       // function and recompute the FromType accordingly. Take advantage of the
1539       // fact that non-static member functions *must* have such an address-of
1540       // expression. 
1541       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1542       if (Method && !Method->isStatic()) {
1543         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1544                "Non-unary operator on non-static member address");
1545         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1546                == UO_AddrOf &&
1547                "Non-address-of operator on non-static member address");
1548         const Type *ClassType
1549           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1550         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1551       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1552         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1553                UO_AddrOf &&
1554                "Non-address-of operator for overloaded function expression");
1555         FromType = S.Context.getPointerType(FromType);
1556       }
1557
1558       // Check that we've computed the proper type after overload resolution.
1559       assert(S.Context.hasSameType(
1560         FromType,
1561         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1562     } else {
1563       return false;
1564     }
1565   }
1566   // Lvalue-to-rvalue conversion (C++11 4.1):
1567   //   A glvalue (3.10) of a non-function, non-array type T can
1568   //   be converted to a prvalue.
1569   bool argIsLValue = From->isGLValue();
1570   if (argIsLValue &&
1571       !FromType->isFunctionType() && !FromType->isArrayType() &&
1572       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1573     SCS.First = ICK_Lvalue_To_Rvalue;
1574
1575     // C11 6.3.2.1p2:
1576     //   ... if the lvalue has atomic type, the value has the non-atomic version 
1577     //   of the type of the lvalue ...
1578     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1579       FromType = Atomic->getValueType();
1580
1581     // If T is a non-class type, the type of the rvalue is the
1582     // cv-unqualified version of T. Otherwise, the type of the rvalue
1583     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1584     // just strip the qualifiers because they don't matter.
1585     FromType = FromType.getUnqualifiedType();
1586   } else if (FromType->isArrayType()) {
1587     // Array-to-pointer conversion (C++ 4.2)
1588     SCS.First = ICK_Array_To_Pointer;
1589
1590     // An lvalue or rvalue of type "array of N T" or "array of unknown
1591     // bound of T" can be converted to an rvalue of type "pointer to
1592     // T" (C++ 4.2p1).
1593     FromType = S.Context.getArrayDecayedType(FromType);
1594
1595     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1596       // This conversion is deprecated in C++03 (D.4)
1597       SCS.DeprecatedStringLiteralToCharPtr = true;
1598
1599       // For the purpose of ranking in overload resolution
1600       // (13.3.3.1.1), this conversion is considered an
1601       // array-to-pointer conversion followed by a qualification
1602       // conversion (4.4). (C++ 4.2p2)
1603       SCS.Second = ICK_Identity;
1604       SCS.Third = ICK_Qualification;
1605       SCS.QualificationIncludesObjCLifetime = false;
1606       SCS.setAllToTypes(FromType);
1607       return true;
1608     }
1609   } else if (FromType->isFunctionType() && argIsLValue) {
1610     // Function-to-pointer conversion (C++ 4.3).
1611     SCS.First = ICK_Function_To_Pointer;
1612
1613     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1614       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1615         if (!S.checkAddressOfFunctionIsAvailable(FD))
1616           return false;
1617
1618     // An lvalue of function type T can be converted to an rvalue of
1619     // type "pointer to T." The result is a pointer to the
1620     // function. (C++ 4.3p1).
1621     FromType = S.Context.getPointerType(FromType);
1622   } else {
1623     // We don't require any conversions for the first step.
1624     SCS.First = ICK_Identity;
1625   }
1626   SCS.setToType(0, FromType);
1627
1628   // The second conversion can be an integral promotion, floating
1629   // point promotion, integral conversion, floating point conversion,
1630   // floating-integral conversion, pointer conversion,
1631   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1632   // For overloading in C, this can also be a "compatible-type"
1633   // conversion.
1634   bool IncompatibleObjC = false;
1635   ImplicitConversionKind SecondICK = ICK_Identity;
1636   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1637     // The unqualified versions of the types are the same: there's no
1638     // conversion to do.
1639     SCS.Second = ICK_Identity;
1640   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1641     // Integral promotion (C++ 4.5).
1642     SCS.Second = ICK_Integral_Promotion;
1643     FromType = ToType.getUnqualifiedType();
1644   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1645     // Floating point promotion (C++ 4.6).
1646     SCS.Second = ICK_Floating_Promotion;
1647     FromType = ToType.getUnqualifiedType();
1648   } else if (S.IsComplexPromotion(FromType, ToType)) {
1649     // Complex promotion (Clang extension)
1650     SCS.Second = ICK_Complex_Promotion;
1651     FromType = ToType.getUnqualifiedType();
1652   } else if (ToType->isBooleanType() &&
1653              (FromType->isArithmeticType() ||
1654               FromType->isAnyPointerType() ||
1655               FromType->isBlockPointerType() ||
1656               FromType->isMemberPointerType() ||
1657               FromType->isNullPtrType())) {
1658     // Boolean conversions (C++ 4.12).
1659     SCS.Second = ICK_Boolean_Conversion;
1660     FromType = S.Context.BoolTy;
1661   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1662              ToType->isIntegralType(S.Context)) {
1663     // Integral conversions (C++ 4.7).
1664     SCS.Second = ICK_Integral_Conversion;
1665     FromType = ToType.getUnqualifiedType();
1666   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1667     // Complex conversions (C99 6.3.1.6)
1668     SCS.Second = ICK_Complex_Conversion;
1669     FromType = ToType.getUnqualifiedType();
1670   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1671              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1672     // Complex-real conversions (C99 6.3.1.7)
1673     SCS.Second = ICK_Complex_Real;
1674     FromType = ToType.getUnqualifiedType();
1675   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1676     // FIXME: disable conversions between long double and __float128 if
1677     // their representation is different until there is back end support
1678     // We of course allow this conversion if long double is really double.
1679     if (&S.Context.getFloatTypeSemantics(FromType) !=
1680         &S.Context.getFloatTypeSemantics(ToType)) {
1681       bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1682                                     ToType == S.Context.LongDoubleTy) ||
1683                                    (FromType == S.Context.LongDoubleTy &&
1684                                     ToType == S.Context.Float128Ty));
1685       if (Float128AndLongDouble &&
1686           (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) !=
1687            &llvm::APFloat::IEEEdouble))
1688         return false;
1689     }
1690     // Floating point conversions (C++ 4.8).
1691     SCS.Second = ICK_Floating_Conversion;
1692     FromType = ToType.getUnqualifiedType();
1693   } else if ((FromType->isRealFloatingType() &&
1694               ToType->isIntegralType(S.Context)) ||
1695              (FromType->isIntegralOrUnscopedEnumerationType() &&
1696               ToType->isRealFloatingType())) {
1697     // Floating-integral conversions (C++ 4.9).
1698     SCS.Second = ICK_Floating_Integral;
1699     FromType = ToType.getUnqualifiedType();
1700   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1701     SCS.Second = ICK_Block_Pointer_Conversion;
1702   } else if (AllowObjCWritebackConversion &&
1703              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1704     SCS.Second = ICK_Writeback_Conversion;
1705   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1706                                    FromType, IncompatibleObjC)) {
1707     // Pointer conversions (C++ 4.10).
1708     SCS.Second = ICK_Pointer_Conversion;
1709     SCS.IncompatibleObjC = IncompatibleObjC;
1710     FromType = FromType.getUnqualifiedType();
1711   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1712                                          InOverloadResolution, FromType)) {
1713     // Pointer to member conversions (4.11).
1714     SCS.Second = ICK_Pointer_Member;
1715   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1716     SCS.Second = SecondICK;
1717     FromType = ToType.getUnqualifiedType();
1718   } else if (!S.getLangOpts().CPlusPlus &&
1719              S.Context.typesAreCompatible(ToType, FromType)) {
1720     // Compatible conversions (Clang extension for C function overloading)
1721     SCS.Second = ICK_Compatible_Conversion;
1722     FromType = ToType.getUnqualifiedType();
1723   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1724     // Treat a conversion that strips "noreturn" as an identity conversion.
1725     SCS.Second = ICK_NoReturn_Adjustment;
1726   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1727                                              InOverloadResolution,
1728                                              SCS, CStyle)) {
1729     SCS.Second = ICK_TransparentUnionConversion;
1730     FromType = ToType;
1731   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1732                                  CStyle)) {
1733     // tryAtomicConversion has updated the standard conversion sequence
1734     // appropriately.
1735     return true;
1736   } else if (ToType->isEventT() &&
1737              From->isIntegerConstantExpr(S.getASTContext()) &&
1738              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1739     SCS.Second = ICK_Zero_Event_Conversion;
1740     FromType = ToType;
1741   } else {
1742     // No second conversion required.
1743     SCS.Second = ICK_Identity;
1744   }
1745   SCS.setToType(1, FromType);
1746
1747   QualType CanonFrom;
1748   QualType CanonTo;
1749   // The third conversion can be a qualification conversion (C++ 4p1).
1750   bool ObjCLifetimeConversion;
1751   if (S.IsQualificationConversion(FromType, ToType, CStyle, 
1752                                   ObjCLifetimeConversion)) {
1753     SCS.Third = ICK_Qualification;
1754     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1755     FromType = ToType;
1756     CanonFrom = S.Context.getCanonicalType(FromType);
1757     CanonTo = S.Context.getCanonicalType(ToType);
1758   } else {
1759     // No conversion required
1760     SCS.Third = ICK_Identity;
1761
1762     // C++ [over.best.ics]p6:
1763     //   [...] Any difference in top-level cv-qualification is
1764     //   subsumed by the initialization itself and does not constitute
1765     //   a conversion. [...]
1766     CanonFrom = S.Context.getCanonicalType(FromType);
1767     CanonTo = S.Context.getCanonicalType(ToType);
1768     if (CanonFrom.getLocalUnqualifiedType()
1769                                        == CanonTo.getLocalUnqualifiedType() &&
1770         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1771       FromType = ToType;
1772       CanonFrom = CanonTo;
1773     }
1774   }
1775   SCS.setToType(2, FromType);
1776
1777   if (CanonFrom == CanonTo)
1778     return true;
1779
1780   // If we have not converted the argument type to the parameter type,
1781   // this is a bad conversion sequence, unless we're resolving an overload in C.
1782   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1783     return false;
1784
1785   ExprResult ER = ExprResult{From};
1786   auto Conv = S.CheckSingleAssignmentConstraints(ToType, ER,
1787                                                  /*Diagnose=*/false,
1788                                                  /*DiagnoseCFAudited=*/false,
1789                                                  /*ConvertRHS=*/false);
1790   if (Conv != Sema::Compatible)
1791     return false;
1792
1793   SCS.setAllToTypes(ToType);
1794   // We need to set all three because we want this conversion to rank terribly,
1795   // and we don't know what conversions it may overlap with.
1796   SCS.First = ICK_C_Only_Conversion;
1797   SCS.Second = ICK_C_Only_Conversion;
1798   SCS.Third = ICK_C_Only_Conversion;
1799   return true;
1800 }
1801   
1802 static bool
1803 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
1804                                      QualType &ToType,
1805                                      bool InOverloadResolution,
1806                                      StandardConversionSequence &SCS,
1807                                      bool CStyle) {
1808     
1809   const RecordType *UT = ToType->getAsUnionType();
1810   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1811     return false;
1812   // The field to initialize within the transparent union.
1813   RecordDecl *UD = UT->getDecl();
1814   // It's compatible if the expression matches any of the fields.
1815   for (const auto *it : UD->fields()) {
1816     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1817                              CStyle, /*ObjCWritebackConversion=*/false)) {
1818       ToType = it->getType();
1819       return true;
1820     }
1821   }
1822   return false;
1823 }
1824
1825 /// IsIntegralPromotion - Determines whether the conversion from the
1826 /// expression From (whose potentially-adjusted type is FromType) to
1827 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1828 /// sets PromotedType to the promoted type.
1829 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1830   const BuiltinType *To = ToType->getAs<BuiltinType>();
1831   // All integers are built-in.
1832   if (!To) {
1833     return false;
1834   }
1835
1836   // An rvalue of type char, signed char, unsigned char, short int, or
1837   // unsigned short int can be converted to an rvalue of type int if
1838   // int can represent all the values of the source type; otherwise,
1839   // the source rvalue can be converted to an rvalue of type unsigned
1840   // int (C++ 4.5p1).
1841   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1842       !FromType->isEnumeralType()) {
1843     if (// We can promote any signed, promotable integer type to an int
1844         (FromType->isSignedIntegerType() ||
1845          // We can promote any unsigned integer type whose size is
1846          // less than int to an int.
1847          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1848       return To->getKind() == BuiltinType::Int;
1849     }
1850
1851     return To->getKind() == BuiltinType::UInt;
1852   }
1853
1854   // C++11 [conv.prom]p3:
1855   //   A prvalue of an unscoped enumeration type whose underlying type is not
1856   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1857   //   following types that can represent all the values of the enumeration
1858   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1859   //   unsigned int, long int, unsigned long int, long long int, or unsigned
1860   //   long long int. If none of the types in that list can represent all the
1861   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1862   //   type can be converted to an rvalue a prvalue of the extended integer type
1863   //   with lowest integer conversion rank (4.13) greater than the rank of long
1864   //   long in which all the values of the enumeration can be represented. If
1865   //   there are two such extended types, the signed one is chosen.
1866   // C++11 [conv.prom]p4:
1867   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1868   //   can be converted to a prvalue of its underlying type. Moreover, if
1869   //   integral promotion can be applied to its underlying type, a prvalue of an
1870   //   unscoped enumeration type whose underlying type is fixed can also be
1871   //   converted to a prvalue of the promoted underlying type.
1872   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1873     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1874     // provided for a scoped enumeration.
1875     if (FromEnumType->getDecl()->isScoped())
1876       return false;
1877
1878     // We can perform an integral promotion to the underlying type of the enum,
1879     // even if that's not the promoted type. Note that the check for promoting
1880     // the underlying type is based on the type alone, and does not consider
1881     // the bitfield-ness of the actual source expression.
1882     if (FromEnumType->getDecl()->isFixed()) {
1883       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1884       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1885              IsIntegralPromotion(nullptr, Underlying, ToType);
1886     }
1887
1888     // We have already pre-calculated the promotion type, so this is trivial.
1889     if (ToType->isIntegerType() &&
1890         isCompleteType(From->getLocStart(), FromType))
1891       return Context.hasSameUnqualifiedType(
1892           ToType, FromEnumType->getDecl()->getPromotionType());
1893   }
1894
1895   // C++0x [conv.prom]p2:
1896   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1897   //   to an rvalue a prvalue of the first of the following types that can
1898   //   represent all the values of its underlying type: int, unsigned int,
1899   //   long int, unsigned long int, long long int, or unsigned long long int.
1900   //   If none of the types in that list can represent all the values of its
1901   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1902   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1903   //   type.
1904   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1905       ToType->isIntegerType()) {
1906     // Determine whether the type we're converting from is signed or
1907     // unsigned.
1908     bool FromIsSigned = FromType->isSignedIntegerType();
1909     uint64_t FromSize = Context.getTypeSize(FromType);
1910
1911     // The types we'll try to promote to, in the appropriate
1912     // order. Try each of these types.
1913     QualType PromoteTypes[6] = {
1914       Context.IntTy, Context.UnsignedIntTy,
1915       Context.LongTy, Context.UnsignedLongTy ,
1916       Context.LongLongTy, Context.UnsignedLongLongTy
1917     };
1918     for (int Idx = 0; Idx < 6; ++Idx) {
1919       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1920       if (FromSize < ToSize ||
1921           (FromSize == ToSize &&
1922            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1923         // We found the type that we can promote to. If this is the
1924         // type we wanted, we have a promotion. Otherwise, no
1925         // promotion.
1926         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1927       }
1928     }
1929   }
1930
1931   // An rvalue for an integral bit-field (9.6) can be converted to an
1932   // rvalue of type int if int can represent all the values of the
1933   // bit-field; otherwise, it can be converted to unsigned int if
1934   // unsigned int can represent all the values of the bit-field. If
1935   // the bit-field is larger yet, no integral promotion applies to
1936   // it. If the bit-field has an enumerated type, it is treated as any
1937   // other value of that type for promotion purposes (C++ 4.5p3).
1938   // FIXME: We should delay checking of bit-fields until we actually perform the
1939   // conversion.
1940   if (From) {
1941     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1942       llvm::APSInt BitWidth;
1943       if (FromType->isIntegralType(Context) &&
1944           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1945         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1946         ToSize = Context.getTypeSize(ToType);
1947
1948         // Are we promoting to an int from a bitfield that fits in an int?
1949         if (BitWidth < ToSize ||
1950             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1951           return To->getKind() == BuiltinType::Int;
1952         }
1953
1954         // Are we promoting to an unsigned int from an unsigned bitfield
1955         // that fits into an unsigned int?
1956         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1957           return To->getKind() == BuiltinType::UInt;
1958         }
1959
1960         return false;
1961       }
1962     }
1963   }
1964
1965   // An rvalue of type bool can be converted to an rvalue of type int,
1966   // with false becoming zero and true becoming one (C++ 4.5p4).
1967   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1968     return true;
1969   }
1970
1971   return false;
1972 }
1973
1974 /// IsFloatingPointPromotion - Determines whether the conversion from
1975 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1976 /// returns true and sets PromotedType to the promoted type.
1977 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1978   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1979     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1980       /// An rvalue of type float can be converted to an rvalue of type
1981       /// double. (C++ 4.6p1).
1982       if (FromBuiltin->getKind() == BuiltinType::Float &&
1983           ToBuiltin->getKind() == BuiltinType::Double)
1984         return true;
1985
1986       // C99 6.3.1.5p1:
1987       //   When a float is promoted to double or long double, or a
1988       //   double is promoted to long double [...].
1989       if (!getLangOpts().CPlusPlus &&
1990           (FromBuiltin->getKind() == BuiltinType::Float ||
1991            FromBuiltin->getKind() == BuiltinType::Double) &&
1992           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
1993            ToBuiltin->getKind() == BuiltinType::Float128))
1994         return true;
1995
1996       // Half can be promoted to float.
1997       if (!getLangOpts().NativeHalfType &&
1998            FromBuiltin->getKind() == BuiltinType::Half &&
1999           ToBuiltin->getKind() == BuiltinType::Float)
2000         return true;
2001     }
2002
2003   return false;
2004 }
2005
2006 /// \brief Determine if a conversion is a complex promotion.
2007 ///
2008 /// A complex promotion is defined as a complex -> complex conversion
2009 /// where the conversion between the underlying real types is a
2010 /// floating-point or integral promotion.
2011 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2012   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2013   if (!FromComplex)
2014     return false;
2015
2016   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2017   if (!ToComplex)
2018     return false;
2019
2020   return IsFloatingPointPromotion(FromComplex->getElementType(),
2021                                   ToComplex->getElementType()) ||
2022     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2023                         ToComplex->getElementType());
2024 }
2025
2026 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2027 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2028 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2029 /// if non-empty, will be a pointer to ToType that may or may not have
2030 /// the right set of qualifiers on its pointee.
2031 ///
2032 static QualType
2033 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2034                                    QualType ToPointee, QualType ToType,
2035                                    ASTContext &Context,
2036                                    bool StripObjCLifetime = false) {
2037   assert((FromPtr->getTypeClass() == Type::Pointer ||
2038           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2039          "Invalid similarly-qualified pointer type");
2040
2041   /// Conversions to 'id' subsume cv-qualifier conversions.
2042   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 
2043     return ToType.getUnqualifiedType();
2044
2045   QualType CanonFromPointee
2046     = Context.getCanonicalType(FromPtr->getPointeeType());
2047   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2048   Qualifiers Quals = CanonFromPointee.getQualifiers();
2049
2050   if (StripObjCLifetime)
2051     Quals.removeObjCLifetime();
2052   
2053   // Exact qualifier match -> return the pointer type we're converting to.
2054   if (CanonToPointee.getLocalQualifiers() == Quals) {
2055     // ToType is exactly what we need. Return it.
2056     if (!ToType.isNull())
2057       return ToType.getUnqualifiedType();
2058
2059     // Build a pointer to ToPointee. It has the right qualifiers
2060     // already.
2061     if (isa<ObjCObjectPointerType>(ToType))
2062       return Context.getObjCObjectPointerType(ToPointee);
2063     return Context.getPointerType(ToPointee);
2064   }
2065
2066   // Just build a canonical type that has the right qualifiers.
2067   QualType QualifiedCanonToPointee
2068     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2069
2070   if (isa<ObjCObjectPointerType>(ToType))
2071     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2072   return Context.getPointerType(QualifiedCanonToPointee);
2073 }
2074
2075 static bool isNullPointerConstantForConversion(Expr *Expr,
2076                                                bool InOverloadResolution,
2077                                                ASTContext &Context) {
2078   // Handle value-dependent integral null pointer constants correctly.
2079   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2080   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2081       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2082     return !InOverloadResolution;
2083
2084   return Expr->isNullPointerConstant(Context,
2085                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2086                                         : Expr::NPC_ValueDependentIsNull);
2087 }
2088
2089 /// IsPointerConversion - Determines whether the conversion of the
2090 /// expression From, which has the (possibly adjusted) type FromType,
2091 /// can be converted to the type ToType via a pointer conversion (C++
2092 /// 4.10). If so, returns true and places the converted type (that
2093 /// might differ from ToType in its cv-qualifiers at some level) into
2094 /// ConvertedType.
2095 ///
2096 /// This routine also supports conversions to and from block pointers
2097 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2098 /// pointers to interfaces. FIXME: Once we've determined the
2099 /// appropriate overloading rules for Objective-C, we may want to
2100 /// split the Objective-C checks into a different routine; however,
2101 /// GCC seems to consider all of these conversions to be pointer
2102 /// conversions, so for now they live here. IncompatibleObjC will be
2103 /// set if the conversion is an allowed Objective-C conversion that
2104 /// should result in a warning.
2105 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2106                                bool InOverloadResolution,
2107                                QualType& ConvertedType,
2108                                bool &IncompatibleObjC) {
2109   IncompatibleObjC = false;
2110   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2111                               IncompatibleObjC))
2112     return true;
2113
2114   // Conversion from a null pointer constant to any Objective-C pointer type.
2115   if (ToType->isObjCObjectPointerType() &&
2116       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2117     ConvertedType = ToType;
2118     return true;
2119   }
2120
2121   // Blocks: Block pointers can be converted to void*.
2122   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2123       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2124     ConvertedType = ToType;
2125     return true;
2126   }
2127   // Blocks: A null pointer constant can be converted to a block
2128   // pointer type.
2129   if (ToType->isBlockPointerType() &&
2130       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2131     ConvertedType = ToType;
2132     return true;
2133   }
2134
2135   // If the left-hand-side is nullptr_t, the right side can be a null
2136   // pointer constant.
2137   if (ToType->isNullPtrType() &&
2138       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2139     ConvertedType = ToType;
2140     return true;
2141   }
2142
2143   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2144   if (!ToTypePtr)
2145     return false;
2146
2147   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2148   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2149     ConvertedType = ToType;
2150     return true;
2151   }
2152
2153   // Beyond this point, both types need to be pointers
2154   // , including objective-c pointers.
2155   QualType ToPointeeType = ToTypePtr->getPointeeType();
2156   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2157       !getLangOpts().ObjCAutoRefCount) {
2158     ConvertedType = BuildSimilarlyQualifiedPointerType(
2159                                       FromType->getAs<ObjCObjectPointerType>(),
2160                                                        ToPointeeType,
2161                                                        ToType, Context);
2162     return true;
2163   }
2164   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2165   if (!FromTypePtr)
2166     return false;
2167
2168   QualType FromPointeeType = FromTypePtr->getPointeeType();
2169
2170   // If the unqualified pointee types are the same, this can't be a
2171   // pointer conversion, so don't do all of the work below.
2172   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2173     return false;
2174
2175   // An rvalue of type "pointer to cv T," where T is an object type,
2176   // can be converted to an rvalue of type "pointer to cv void" (C++
2177   // 4.10p2).
2178   if (FromPointeeType->isIncompleteOrObjectType() &&
2179       ToPointeeType->isVoidType()) {
2180     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2181                                                        ToPointeeType,
2182                                                        ToType, Context,
2183                                                    /*StripObjCLifetime=*/true);
2184     return true;
2185   }
2186
2187   // MSVC allows implicit function to void* type conversion.
2188   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2189       ToPointeeType->isVoidType()) {
2190     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2191                                                        ToPointeeType,
2192                                                        ToType, Context);
2193     return true;
2194   }
2195
2196   // When we're overloading in C, we allow a special kind of pointer
2197   // conversion for compatible-but-not-identical pointee types.
2198   if (!getLangOpts().CPlusPlus &&
2199       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2200     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2201                                                        ToPointeeType,
2202                                                        ToType, Context);
2203     return true;
2204   }
2205
2206   // C++ [conv.ptr]p3:
2207   //
2208   //   An rvalue of type "pointer to cv D," where D is a class type,
2209   //   can be converted to an rvalue of type "pointer to cv B," where
2210   //   B is a base class (clause 10) of D. If B is an inaccessible
2211   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2212   //   necessitates this conversion is ill-formed. The result of the
2213   //   conversion is a pointer to the base class sub-object of the
2214   //   derived class object. The null pointer value is converted to
2215   //   the null pointer value of the destination type.
2216   //
2217   // Note that we do not check for ambiguity or inaccessibility
2218   // here. That is handled by CheckPointerConversion.
2219   if (getLangOpts().CPlusPlus &&
2220       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2221       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2222       IsDerivedFrom(From->getLocStart(), FromPointeeType, ToPointeeType)) {
2223     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2224                                                        ToPointeeType,
2225                                                        ToType, Context);
2226     return true;
2227   }
2228
2229   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2230       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2231     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2232                                                        ToPointeeType,
2233                                                        ToType, Context);
2234     return true;
2235   }
2236   
2237   return false;
2238 }
2239  
2240 /// \brief Adopt the given qualifiers for the given type.
2241 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2242   Qualifiers TQs = T.getQualifiers();
2243   
2244   // Check whether qualifiers already match.
2245   if (TQs == Qs)
2246     return T;
2247   
2248   if (Qs.compatiblyIncludes(TQs))
2249     return Context.getQualifiedType(T, Qs);
2250   
2251   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2252 }
2253
2254 /// isObjCPointerConversion - Determines whether this is an
2255 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2256 /// with the same arguments and return values.
2257 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2258                                    QualType& ConvertedType,
2259                                    bool &IncompatibleObjC) {
2260   if (!getLangOpts().ObjC1)
2261     return false;
2262
2263   // The set of qualifiers on the type we're converting from.
2264   Qualifiers FromQualifiers = FromType.getQualifiers();
2265   
2266   // First, we handle all conversions on ObjC object pointer types.
2267   const ObjCObjectPointerType* ToObjCPtr =
2268     ToType->getAs<ObjCObjectPointerType>();
2269   const ObjCObjectPointerType *FromObjCPtr =
2270     FromType->getAs<ObjCObjectPointerType>();
2271
2272   if (ToObjCPtr && FromObjCPtr) {
2273     // If the pointee types are the same (ignoring qualifications),
2274     // then this is not a pointer conversion.
2275     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2276                                        FromObjCPtr->getPointeeType()))
2277       return false;
2278
2279     // Conversion between Objective-C pointers.
2280     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2281       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2282       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2283       if (getLangOpts().CPlusPlus && LHS && RHS &&
2284           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2285                                                 FromObjCPtr->getPointeeType()))
2286         return false;
2287       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2288                                                    ToObjCPtr->getPointeeType(),
2289                                                          ToType, Context);
2290       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2291       return true;
2292     }
2293
2294     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2295       // Okay: this is some kind of implicit downcast of Objective-C
2296       // interfaces, which is permitted. However, we're going to
2297       // complain about it.
2298       IncompatibleObjC = true;
2299       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2300                                                    ToObjCPtr->getPointeeType(),
2301                                                          ToType, Context);
2302       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2303       return true;
2304     }
2305   }
2306   // Beyond this point, both types need to be C pointers or block pointers.
2307   QualType ToPointeeType;
2308   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2309     ToPointeeType = ToCPtr->getPointeeType();
2310   else if (const BlockPointerType *ToBlockPtr =
2311             ToType->getAs<BlockPointerType>()) {
2312     // Objective C++: We're able to convert from a pointer to any object
2313     // to a block pointer type.
2314     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2315       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2316       return true;
2317     }
2318     ToPointeeType = ToBlockPtr->getPointeeType();
2319   }
2320   else if (FromType->getAs<BlockPointerType>() &&
2321            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2322     // Objective C++: We're able to convert from a block pointer type to a
2323     // pointer to any object.
2324     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2325     return true;
2326   }
2327   else
2328     return false;
2329
2330   QualType FromPointeeType;
2331   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2332     FromPointeeType = FromCPtr->getPointeeType();
2333   else if (const BlockPointerType *FromBlockPtr =
2334            FromType->getAs<BlockPointerType>())
2335     FromPointeeType = FromBlockPtr->getPointeeType();
2336   else
2337     return false;
2338
2339   // If we have pointers to pointers, recursively check whether this
2340   // is an Objective-C conversion.
2341   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2342       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2343                               IncompatibleObjC)) {
2344     // We always complain about this conversion.
2345     IncompatibleObjC = true;
2346     ConvertedType = Context.getPointerType(ConvertedType);
2347     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2348     return true;
2349   }
2350   // Allow conversion of pointee being objective-c pointer to another one;
2351   // as in I* to id.
2352   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2353       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2354       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2355                               IncompatibleObjC)) {
2356         
2357     ConvertedType = Context.getPointerType(ConvertedType);
2358     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2359     return true;
2360   }
2361
2362   // If we have pointers to functions or blocks, check whether the only
2363   // differences in the argument and result types are in Objective-C
2364   // pointer conversions. If so, we permit the conversion (but
2365   // complain about it).
2366   const FunctionProtoType *FromFunctionType
2367     = FromPointeeType->getAs<FunctionProtoType>();
2368   const FunctionProtoType *ToFunctionType
2369     = ToPointeeType->getAs<FunctionProtoType>();
2370   if (FromFunctionType && ToFunctionType) {
2371     // If the function types are exactly the same, this isn't an
2372     // Objective-C pointer conversion.
2373     if (Context.getCanonicalType(FromPointeeType)
2374           == Context.getCanonicalType(ToPointeeType))
2375       return false;
2376
2377     // Perform the quick checks that will tell us whether these
2378     // function types are obviously different.
2379     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2380         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2381         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2382       return false;
2383
2384     bool HasObjCConversion = false;
2385     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2386         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2387       // Okay, the types match exactly. Nothing to do.
2388     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2389                                        ToFunctionType->getReturnType(),
2390                                        ConvertedType, IncompatibleObjC)) {
2391       // Okay, we have an Objective-C pointer conversion.
2392       HasObjCConversion = true;
2393     } else {
2394       // Function types are too different. Abort.
2395       return false;
2396     }
2397
2398     // Check argument types.
2399     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2400          ArgIdx != NumArgs; ++ArgIdx) {
2401       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2402       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2403       if (Context.getCanonicalType(FromArgType)
2404             == Context.getCanonicalType(ToArgType)) {
2405         // Okay, the types match exactly. Nothing to do.
2406       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2407                                          ConvertedType, IncompatibleObjC)) {
2408         // Okay, we have an Objective-C pointer conversion.
2409         HasObjCConversion = true;
2410       } else {
2411         // Argument types are too different. Abort.
2412         return false;
2413       }
2414     }
2415
2416     if (HasObjCConversion) {
2417       // We had an Objective-C conversion. Allow this pointer
2418       // conversion, but complain about it.
2419       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2420       IncompatibleObjC = true;
2421       return true;
2422     }
2423   }
2424
2425   return false;
2426 }
2427
2428 /// \brief Determine whether this is an Objective-C writeback conversion,
2429 /// used for parameter passing when performing automatic reference counting.
2430 ///
2431 /// \param FromType The type we're converting form.
2432 ///
2433 /// \param ToType The type we're converting to.
2434 ///
2435 /// \param ConvertedType The type that will be produced after applying
2436 /// this conversion.
2437 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2438                                      QualType &ConvertedType) {
2439   if (!getLangOpts().ObjCAutoRefCount || 
2440       Context.hasSameUnqualifiedType(FromType, ToType))
2441     return false;
2442   
2443   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2444   QualType ToPointee;
2445   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2446     ToPointee = ToPointer->getPointeeType();
2447   else
2448     return false;
2449   
2450   Qualifiers ToQuals = ToPointee.getQualifiers();
2451   if (!ToPointee->isObjCLifetimeType() || 
2452       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2453       !ToQuals.withoutObjCLifetime().empty())
2454     return false;
2455   
2456   // Argument must be a pointer to __strong to __weak.
2457   QualType FromPointee;
2458   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2459     FromPointee = FromPointer->getPointeeType();
2460   else
2461     return false;
2462   
2463   Qualifiers FromQuals = FromPointee.getQualifiers();
2464   if (!FromPointee->isObjCLifetimeType() ||
2465       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2466        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2467     return false;
2468   
2469   // Make sure that we have compatible qualifiers.
2470   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2471   if (!ToQuals.compatiblyIncludes(FromQuals))
2472     return false;
2473   
2474   // Remove qualifiers from the pointee type we're converting from; they
2475   // aren't used in the compatibility check belong, and we'll be adding back
2476   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2477   FromPointee = FromPointee.getUnqualifiedType();
2478   
2479   // The unqualified form of the pointee types must be compatible.
2480   ToPointee = ToPointee.getUnqualifiedType();
2481   bool IncompatibleObjC;
2482   if (Context.typesAreCompatible(FromPointee, ToPointee))
2483     FromPointee = ToPointee;
2484   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2485                                     IncompatibleObjC))
2486     return false;
2487   
2488   /// \brief Construct the type we're converting to, which is a pointer to
2489   /// __autoreleasing pointee.
2490   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2491   ConvertedType = Context.getPointerType(FromPointee);
2492   return true;
2493 }
2494
2495 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2496                                     QualType& ConvertedType) {
2497   QualType ToPointeeType;
2498   if (const BlockPointerType *ToBlockPtr =
2499         ToType->getAs<BlockPointerType>())
2500     ToPointeeType = ToBlockPtr->getPointeeType();
2501   else
2502     return false;
2503   
2504   QualType FromPointeeType;
2505   if (const BlockPointerType *FromBlockPtr =
2506       FromType->getAs<BlockPointerType>())
2507     FromPointeeType = FromBlockPtr->getPointeeType();
2508   else
2509     return false;
2510   // We have pointer to blocks, check whether the only
2511   // differences in the argument and result types are in Objective-C
2512   // pointer conversions. If so, we permit the conversion.
2513   
2514   const FunctionProtoType *FromFunctionType
2515     = FromPointeeType->getAs<FunctionProtoType>();
2516   const FunctionProtoType *ToFunctionType
2517     = ToPointeeType->getAs<FunctionProtoType>();
2518   
2519   if (!FromFunctionType || !ToFunctionType)
2520     return false;
2521
2522   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2523     return true;
2524     
2525   // Perform the quick checks that will tell us whether these
2526   // function types are obviously different.
2527   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2528       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2529     return false;
2530     
2531   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2532   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2533   if (FromEInfo != ToEInfo)
2534     return false;
2535
2536   bool IncompatibleObjC = false;
2537   if (Context.hasSameType(FromFunctionType->getReturnType(),
2538                           ToFunctionType->getReturnType())) {
2539     // Okay, the types match exactly. Nothing to do.
2540   } else {
2541     QualType RHS = FromFunctionType->getReturnType();
2542     QualType LHS = ToFunctionType->getReturnType();
2543     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2544         !RHS.hasQualifiers() && LHS.hasQualifiers())
2545        LHS = LHS.getUnqualifiedType();
2546
2547      if (Context.hasSameType(RHS,LHS)) {
2548        // OK exact match.
2549      } else if (isObjCPointerConversion(RHS, LHS,
2550                                         ConvertedType, IncompatibleObjC)) {
2551      if (IncompatibleObjC)
2552        return false;
2553      // Okay, we have an Objective-C pointer conversion.
2554      }
2555      else
2556        return false;
2557    }
2558     
2559    // Check argument types.
2560    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2561         ArgIdx != NumArgs; ++ArgIdx) {
2562      IncompatibleObjC = false;
2563      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2564      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2565      if (Context.hasSameType(FromArgType, ToArgType)) {
2566        // Okay, the types match exactly. Nothing to do.
2567      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2568                                         ConvertedType, IncompatibleObjC)) {
2569        if (IncompatibleObjC)
2570          return false;
2571        // Okay, we have an Objective-C pointer conversion.
2572      } else
2573        // Argument types are too different. Abort.
2574        return false;
2575    }
2576    if (!Context.doFunctionTypesMatchOnExtParameterInfos(FromFunctionType,
2577                                                         ToFunctionType))
2578      return false;
2579    
2580    ConvertedType = ToType;
2581    return true;
2582 }
2583
2584 enum {
2585   ft_default,
2586   ft_different_class,
2587   ft_parameter_arity,
2588   ft_parameter_mismatch,
2589   ft_return_type,
2590   ft_qualifer_mismatch
2591 };
2592
2593 /// Attempts to get the FunctionProtoType from a Type. Handles
2594 /// MemberFunctionPointers properly.
2595 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2596   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2597     return FPT;
2598
2599   if (auto *MPT = FromType->getAs<MemberPointerType>())
2600     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2601
2602   return nullptr;
2603 }
2604
2605 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2606 /// function types.  Catches different number of parameter, mismatch in
2607 /// parameter types, and different return types.
2608 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2609                                       QualType FromType, QualType ToType) {
2610   // If either type is not valid, include no extra info.
2611   if (FromType.isNull() || ToType.isNull()) {
2612     PDiag << ft_default;
2613     return;
2614   }
2615
2616   // Get the function type from the pointers.
2617   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2618     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2619                             *ToMember = ToType->getAs<MemberPointerType>();
2620     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2621       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2622             << QualType(FromMember->getClass(), 0);
2623       return;
2624     }
2625     FromType = FromMember->getPointeeType();
2626     ToType = ToMember->getPointeeType();
2627   }
2628
2629   if (FromType->isPointerType())
2630     FromType = FromType->getPointeeType();
2631   if (ToType->isPointerType())
2632     ToType = ToType->getPointeeType();
2633
2634   // Remove references.
2635   FromType = FromType.getNonReferenceType();
2636   ToType = ToType.getNonReferenceType();
2637
2638   // Don't print extra info for non-specialized template functions.
2639   if (FromType->isInstantiationDependentType() &&
2640       !FromType->getAs<TemplateSpecializationType>()) {
2641     PDiag << ft_default;
2642     return;
2643   }
2644
2645   // No extra info for same types.
2646   if (Context.hasSameType(FromType, ToType)) {
2647     PDiag << ft_default;
2648     return;
2649   }
2650
2651   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2652                           *ToFunction = tryGetFunctionProtoType(ToType);
2653
2654   // Both types need to be function types.
2655   if (!FromFunction || !ToFunction) {
2656     PDiag << ft_default;
2657     return;
2658   }
2659
2660   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2661     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2662           << FromFunction->getNumParams();
2663     return;
2664   }
2665
2666   // Handle different parameter types.
2667   unsigned ArgPos;
2668   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2669     PDiag << ft_parameter_mismatch << ArgPos + 1
2670           << ToFunction->getParamType(ArgPos)
2671           << FromFunction->getParamType(ArgPos);
2672     return;
2673   }
2674
2675   // Handle different return type.
2676   if (!Context.hasSameType(FromFunction->getReturnType(),
2677                            ToFunction->getReturnType())) {
2678     PDiag << ft_return_type << ToFunction->getReturnType()
2679           << FromFunction->getReturnType();
2680     return;
2681   }
2682
2683   unsigned FromQuals = FromFunction->getTypeQuals(),
2684            ToQuals = ToFunction->getTypeQuals();
2685   if (FromQuals != ToQuals) {
2686     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2687     return;
2688   }
2689
2690   // Unable to find a difference, so add no extra info.
2691   PDiag << ft_default;
2692 }
2693
2694 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2695 /// for equality of their argument types. Caller has already checked that
2696 /// they have same number of arguments.  If the parameters are different,
2697 /// ArgPos will have the parameter index of the first different parameter.
2698 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2699                                       const FunctionProtoType *NewType,
2700                                       unsigned *ArgPos) {
2701   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2702                                               N = NewType->param_type_begin(),
2703                                               E = OldType->param_type_end();
2704        O && (O != E); ++O, ++N) {
2705     if (!Context.hasSameType(O->getUnqualifiedType(),
2706                              N->getUnqualifiedType())) {
2707       if (ArgPos)
2708         *ArgPos = O - OldType->param_type_begin();
2709       return false;
2710     }
2711   }
2712   return true;
2713 }
2714
2715 /// CheckPointerConversion - Check the pointer conversion from the
2716 /// expression From to the type ToType. This routine checks for
2717 /// ambiguous or inaccessible derived-to-base pointer
2718 /// conversions for which IsPointerConversion has already returned
2719 /// true. It returns true and produces a diagnostic if there was an
2720 /// error, or returns false otherwise.
2721 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2722                                   CastKind &Kind,
2723                                   CXXCastPath& BasePath,
2724                                   bool IgnoreBaseAccess,
2725                                   bool Diagnose) {
2726   QualType FromType = From->getType();
2727   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2728
2729   Kind = CK_BitCast;
2730
2731   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2732       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2733           Expr::NPCK_ZeroExpression) {
2734     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2735       DiagRuntimeBehavior(From->getExprLoc(), From,
2736                           PDiag(diag::warn_impcast_bool_to_null_pointer)
2737                             << ToType << From->getSourceRange());
2738     else if (!isUnevaluatedContext())
2739       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2740         << ToType << From->getSourceRange();
2741   }
2742   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2743     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2744       QualType FromPointeeType = FromPtrType->getPointeeType(),
2745                ToPointeeType   = ToPtrType->getPointeeType();
2746
2747       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2748           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2749         // We must have a derived-to-base conversion. Check an
2750         // ambiguous or inaccessible conversion.
2751         unsigned InaccessibleID = 0;
2752         unsigned AmbigiousID = 0;
2753         if (Diagnose) {
2754           InaccessibleID = diag::err_upcast_to_inaccessible_base;
2755           AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2756         }
2757         if (CheckDerivedToBaseConversion(
2758                 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2759                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2760                 &BasePath, IgnoreBaseAccess))
2761           return true;
2762
2763         // The conversion was successful.
2764         Kind = CK_DerivedToBase;
2765       }
2766
2767       if (Diagnose && !IsCStyleOrFunctionalCast &&
2768           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2769         assert(getLangOpts().MSVCCompat &&
2770                "this should only be possible with MSVCCompat!");
2771         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2772             << From->getSourceRange();
2773       }
2774     }
2775   } else if (const ObjCObjectPointerType *ToPtrType =
2776                ToType->getAs<ObjCObjectPointerType>()) {
2777     if (const ObjCObjectPointerType *FromPtrType =
2778           FromType->getAs<ObjCObjectPointerType>()) {
2779       // Objective-C++ conversions are always okay.
2780       // FIXME: We should have a different class of conversions for the
2781       // Objective-C++ implicit conversions.
2782       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2783         return false;
2784     } else if (FromType->isBlockPointerType()) {
2785       Kind = CK_BlockPointerToObjCPointerCast;
2786     } else {
2787       Kind = CK_CPointerToObjCPointerCast;
2788     }
2789   } else if (ToType->isBlockPointerType()) {
2790     if (!FromType->isBlockPointerType())
2791       Kind = CK_AnyPointerToBlockPointerCast;
2792   }
2793
2794   // We shouldn't fall into this case unless it's valid for other
2795   // reasons.
2796   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2797     Kind = CK_NullToPointer;
2798
2799   return false;
2800 }
2801
2802 /// IsMemberPointerConversion - Determines whether the conversion of the
2803 /// expression From, which has the (possibly adjusted) type FromType, can be
2804 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2805 /// If so, returns true and places the converted type (that might differ from
2806 /// ToType in its cv-qualifiers at some level) into ConvertedType.
2807 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2808                                      QualType ToType,
2809                                      bool InOverloadResolution,
2810                                      QualType &ConvertedType) {
2811   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2812   if (!ToTypePtr)
2813     return false;
2814
2815   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2816   if (From->isNullPointerConstant(Context,
2817                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2818                                         : Expr::NPC_ValueDependentIsNull)) {
2819     ConvertedType = ToType;
2820     return true;
2821   }
2822
2823   // Otherwise, both types have to be member pointers.
2824   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2825   if (!FromTypePtr)
2826     return false;
2827
2828   // A pointer to member of B can be converted to a pointer to member of D,
2829   // where D is derived from B (C++ 4.11p2).
2830   QualType FromClass(FromTypePtr->getClass(), 0);
2831   QualType ToClass(ToTypePtr->getClass(), 0);
2832
2833   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2834       IsDerivedFrom(From->getLocStart(), ToClass, FromClass)) {
2835     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2836                                                  ToClass.getTypePtr());
2837     return true;
2838   }
2839
2840   return false;
2841 }
2842
2843 /// CheckMemberPointerConversion - Check the member pointer conversion from the
2844 /// expression From to the type ToType. This routine checks for ambiguous or
2845 /// virtual or inaccessible base-to-derived member pointer conversions
2846 /// for which IsMemberPointerConversion has already returned true. It returns
2847 /// true and produces a diagnostic if there was an error, or returns false
2848 /// otherwise.
2849 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2850                                         CastKind &Kind,
2851                                         CXXCastPath &BasePath,
2852                                         bool IgnoreBaseAccess) {
2853   QualType FromType = From->getType();
2854   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2855   if (!FromPtrType) {
2856     // This must be a null pointer to member pointer conversion
2857     assert(From->isNullPointerConstant(Context,
2858                                        Expr::NPC_ValueDependentIsNull) &&
2859            "Expr must be null pointer constant!");
2860     Kind = CK_NullToMemberPointer;
2861     return false;
2862   }
2863
2864   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2865   assert(ToPtrType && "No member pointer cast has a target type "
2866                       "that is not a member pointer.");
2867
2868   QualType FromClass = QualType(FromPtrType->getClass(), 0);
2869   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2870
2871   // FIXME: What about dependent types?
2872   assert(FromClass->isRecordType() && "Pointer into non-class.");
2873   assert(ToClass->isRecordType() && "Pointer into non-class.");
2874
2875   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2876                      /*DetectVirtual=*/true);
2877   bool DerivationOkay =
2878       IsDerivedFrom(From->getLocStart(), ToClass, FromClass, Paths);
2879   assert(DerivationOkay &&
2880          "Should not have been called if derivation isn't OK.");
2881   (void)DerivationOkay;
2882
2883   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2884                                   getUnqualifiedType())) {
2885     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2886     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2887       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2888     return true;
2889   }
2890
2891   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2892     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2893       << FromClass << ToClass << QualType(VBase, 0)
2894       << From->getSourceRange();
2895     return true;
2896   }
2897
2898   if (!IgnoreBaseAccess)
2899     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2900                          Paths.front(),
2901                          diag::err_downcast_from_inaccessible_base);
2902
2903   // Must be a base to derived member conversion.
2904   BuildBasePathArray(Paths, BasePath);
2905   Kind = CK_BaseToDerivedMemberPointer;
2906   return false;
2907 }
2908
2909 /// Determine whether the lifetime conversion between the two given
2910 /// qualifiers sets is nontrivial.
2911 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
2912                                                Qualifiers ToQuals) {
2913   // Converting anything to const __unsafe_unretained is trivial.
2914   if (ToQuals.hasConst() && 
2915       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
2916     return false;
2917
2918   return true;
2919 }
2920
2921 /// IsQualificationConversion - Determines whether the conversion from
2922 /// an rvalue of type FromType to ToType is a qualification conversion
2923 /// (C++ 4.4).
2924 ///
2925 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2926 /// when the qualification conversion involves a change in the Objective-C
2927 /// object lifetime.
2928 bool
2929 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2930                                 bool CStyle, bool &ObjCLifetimeConversion) {
2931   FromType = Context.getCanonicalType(FromType);
2932   ToType = Context.getCanonicalType(ToType);
2933   ObjCLifetimeConversion = false;
2934   
2935   // If FromType and ToType are the same type, this is not a
2936   // qualification conversion.
2937   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2938     return false;
2939
2940   // (C++ 4.4p4):
2941   //   A conversion can add cv-qualifiers at levels other than the first
2942   //   in multi-level pointers, subject to the following rules: [...]
2943   bool PreviousToQualsIncludeConst = true;
2944   bool UnwrappedAnyPointer = false;
2945   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2946     // Within each iteration of the loop, we check the qualifiers to
2947     // determine if this still looks like a qualification
2948     // conversion. Then, if all is well, we unwrap one more level of
2949     // pointers or pointers-to-members and do it all again
2950     // until there are no more pointers or pointers-to-members left to
2951     // unwrap.
2952     UnwrappedAnyPointer = true;
2953
2954     Qualifiers FromQuals = FromType.getQualifiers();
2955     Qualifiers ToQuals = ToType.getQualifiers();
2956
2957     // Ignore __unaligned qualifier if this type is void.
2958     if (ToType.getUnqualifiedType()->isVoidType())
2959       FromQuals.removeUnaligned();
2960     
2961     // Objective-C ARC:
2962     //   Check Objective-C lifetime conversions.
2963     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2964         UnwrappedAnyPointer) {
2965       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2966         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
2967           ObjCLifetimeConversion = true;
2968         FromQuals.removeObjCLifetime();
2969         ToQuals.removeObjCLifetime();
2970       } else {
2971         // Qualification conversions cannot cast between different
2972         // Objective-C lifetime qualifiers.
2973         return false;
2974       }
2975     }
2976     
2977     // Allow addition/removal of GC attributes but not changing GC attributes.
2978     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2979         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2980       FromQuals.removeObjCGCAttr();
2981       ToQuals.removeObjCGCAttr();
2982     }
2983     
2984     //   -- for every j > 0, if const is in cv 1,j then const is in cv
2985     //      2,j, and similarly for volatile.
2986     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2987       return false;
2988
2989     //   -- if the cv 1,j and cv 2,j are different, then const is in
2990     //      every cv for 0 < k < j.
2991     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2992         && !PreviousToQualsIncludeConst)
2993       return false;
2994
2995     // Keep track of whether all prior cv-qualifiers in the "to" type
2996     // include const.
2997     PreviousToQualsIncludeConst
2998       = PreviousToQualsIncludeConst && ToQuals.hasConst();
2999   }
3000
3001   // We are left with FromType and ToType being the pointee types
3002   // after unwrapping the original FromType and ToType the same number
3003   // of types. If we unwrapped any pointers, and if FromType and
3004   // ToType have the same unqualified type (since we checked
3005   // qualifiers above), then this is a qualification conversion.
3006   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3007 }
3008
3009 /// \brief - Determine whether this is a conversion from a scalar type to an
3010 /// atomic type.
3011 ///
3012 /// If successful, updates \c SCS's second and third steps in the conversion
3013 /// sequence to finish the conversion.
3014 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3015                                 bool InOverloadResolution,
3016                                 StandardConversionSequence &SCS,
3017                                 bool CStyle) {
3018   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3019   if (!ToAtomic)
3020     return false;
3021   
3022   StandardConversionSequence InnerSCS;
3023   if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 
3024                             InOverloadResolution, InnerSCS,
3025                             CStyle, /*AllowObjCWritebackConversion=*/false))
3026     return false;
3027   
3028   SCS.Second = InnerSCS.Second;
3029   SCS.setToType(1, InnerSCS.getToType(1));
3030   SCS.Third = InnerSCS.Third;
3031   SCS.QualificationIncludesObjCLifetime
3032     = InnerSCS.QualificationIncludesObjCLifetime;
3033   SCS.setToType(2, InnerSCS.getToType(2));
3034   return true;
3035 }
3036
3037 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3038                                               CXXConstructorDecl *Constructor,
3039                                               QualType Type) {
3040   const FunctionProtoType *CtorType =
3041       Constructor->getType()->getAs<FunctionProtoType>();
3042   if (CtorType->getNumParams() > 0) {
3043     QualType FirstArg = CtorType->getParamType(0);
3044     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3045       return true;
3046   }
3047   return false;
3048 }
3049
3050 static OverloadingResult
3051 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3052                                        CXXRecordDecl *To,
3053                                        UserDefinedConversionSequence &User,
3054                                        OverloadCandidateSet &CandidateSet,
3055                                        bool AllowExplicit) {
3056   for (auto *D : S.LookupConstructors(To)) {
3057     auto Info = getConstructorInfo(D);
3058     if (!Info)
3059       continue;
3060
3061     bool Usable = !Info.Constructor->isInvalidDecl() &&
3062                   S.isInitListConstructor(Info.Constructor) &&
3063                   (AllowExplicit || !Info.Constructor->isExplicit());
3064     if (Usable) {
3065       // If the first argument is (a reference to) the target type,
3066       // suppress conversions.
3067       bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3068           S.Context, Info.Constructor, ToType);
3069       if (Info.ConstructorTmpl)
3070         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3071                                        /*ExplicitArgs*/ nullptr, From,
3072                                        CandidateSet, SuppressUserConversions);
3073       else
3074         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3075                                CandidateSet, SuppressUserConversions);
3076     }
3077   }
3078
3079   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3080
3081   OverloadCandidateSet::iterator Best;
3082   switch (auto Result = 
3083             CandidateSet.BestViableFunction(S, From->getLocStart(), 
3084                                             Best, true)) {
3085   case OR_Deleted:
3086   case OR_Success: {
3087     // Record the standard conversion we used and the conversion function.
3088     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3089     QualType ThisType = Constructor->getThisType(S.Context);
3090     // Initializer lists don't have conversions as such.
3091     User.Before.setAsIdentityConversion();
3092     User.HadMultipleCandidates = HadMultipleCandidates;
3093     User.ConversionFunction = Constructor;
3094     User.FoundConversionFunction = Best->FoundDecl;
3095     User.After.setAsIdentityConversion();
3096     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3097     User.After.setAllToTypes(ToType);
3098     return Result;
3099   }
3100
3101   case OR_No_Viable_Function:
3102     return OR_No_Viable_Function;
3103   case OR_Ambiguous:
3104     return OR_Ambiguous;
3105   }
3106
3107   llvm_unreachable("Invalid OverloadResult!");
3108 }
3109
3110 /// Determines whether there is a user-defined conversion sequence
3111 /// (C++ [over.ics.user]) that converts expression From to the type
3112 /// ToType. If such a conversion exists, User will contain the
3113 /// user-defined conversion sequence that performs such a conversion
3114 /// and this routine will return true. Otherwise, this routine returns
3115 /// false and User is unspecified.
3116 ///
3117 /// \param AllowExplicit  true if the conversion should consider C++0x
3118 /// "explicit" conversion functions as well as non-explicit conversion
3119 /// functions (C++0x [class.conv.fct]p2).
3120 ///
3121 /// \param AllowObjCConversionOnExplicit true if the conversion should
3122 /// allow an extra Objective-C pointer conversion on uses of explicit
3123 /// constructors. Requires \c AllowExplicit to also be set.
3124 static OverloadingResult
3125 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3126                         UserDefinedConversionSequence &User,
3127                         OverloadCandidateSet &CandidateSet,
3128                         bool AllowExplicit,
3129                         bool AllowObjCConversionOnExplicit) {
3130   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3131
3132   // Whether we will only visit constructors.
3133   bool ConstructorsOnly = false;
3134
3135   // If the type we are conversion to is a class type, enumerate its
3136   // constructors.
3137   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3138     // C++ [over.match.ctor]p1:
3139     //   When objects of class type are direct-initialized (8.5), or
3140     //   copy-initialized from an expression of the same or a
3141     //   derived class type (8.5), overload resolution selects the
3142     //   constructor. [...] For copy-initialization, the candidate
3143     //   functions are all the converting constructors (12.3.1) of
3144     //   that class. The argument list is the expression-list within
3145     //   the parentheses of the initializer.
3146     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3147         (From->getType()->getAs<RecordType>() &&
3148          S.IsDerivedFrom(From->getLocStart(), From->getType(), ToType)))
3149       ConstructorsOnly = true;
3150
3151     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3152       // We're not going to find any constructors.
3153     } else if (CXXRecordDecl *ToRecordDecl
3154                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3155
3156       Expr **Args = &From;
3157       unsigned NumArgs = 1;
3158       bool ListInitializing = false;
3159       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3160         // But first, see if there is an init-list-constructor that will work.
3161         OverloadingResult Result = IsInitializerListConstructorConversion(
3162             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3163         if (Result != OR_No_Viable_Function)
3164           return Result;
3165         // Never mind.
3166         CandidateSet.clear();
3167
3168         // If we're list-initializing, we pass the individual elements as
3169         // arguments, not the entire list.
3170         Args = InitList->getInits();
3171         NumArgs = InitList->getNumInits();
3172         ListInitializing = true;
3173       }
3174
3175       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3176         auto Info = getConstructorInfo(D);
3177         if (!Info)
3178           continue;
3179
3180         bool Usable = !Info.Constructor->isInvalidDecl();
3181         if (ListInitializing)
3182           Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3183         else
3184           Usable = Usable &&
3185                    Info.Constructor->isConvertingConstructor(AllowExplicit);
3186         if (Usable) {
3187           bool SuppressUserConversions = !ConstructorsOnly;
3188           if (SuppressUserConversions && ListInitializing) {
3189             SuppressUserConversions = false;
3190             if (NumArgs == 1) {
3191               // If the first argument is (a reference to) the target type,
3192               // suppress conversions.
3193               SuppressUserConversions = isFirstArgumentCompatibleWithType(
3194                   S.Context, Info.Constructor, ToType);
3195             }
3196           }
3197           if (Info.ConstructorTmpl)
3198             S.AddTemplateOverloadCandidate(
3199                 Info.ConstructorTmpl, Info.FoundDecl,
3200                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3201                 CandidateSet, SuppressUserConversions);
3202           else
3203             // Allow one user-defined conversion when user specifies a
3204             // From->ToType conversion via an static cast (c-style, etc).
3205             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3206                                    llvm::makeArrayRef(Args, NumArgs),
3207                                    CandidateSet, SuppressUserConversions);
3208         }
3209       }
3210     }
3211   }
3212
3213   // Enumerate conversion functions, if we're allowed to.
3214   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3215   } else if (!S.isCompleteType(From->getLocStart(), From->getType())) {
3216     // No conversion functions from incomplete types.
3217   } else if (const RecordType *FromRecordType
3218                                    = From->getType()->getAs<RecordType>()) {
3219     if (CXXRecordDecl *FromRecordDecl
3220          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3221       // Add all of the conversion functions as candidates.
3222       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3223       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3224         DeclAccessPair FoundDecl = I.getPair();
3225         NamedDecl *D = FoundDecl.getDecl();
3226         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3227         if (isa<UsingShadowDecl>(D))
3228           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3229
3230         CXXConversionDecl *Conv;
3231         FunctionTemplateDecl *ConvTemplate;
3232         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3233           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3234         else
3235           Conv = cast<CXXConversionDecl>(D);
3236
3237         if (AllowExplicit || !Conv->isExplicit()) {
3238           if (ConvTemplate)
3239             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3240                                              ActingContext, From, ToType,
3241                                              CandidateSet,
3242                                              AllowObjCConversionOnExplicit);
3243           else
3244             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3245                                      From, ToType, CandidateSet,
3246                                      AllowObjCConversionOnExplicit);
3247         }
3248       }
3249     }
3250   }
3251
3252   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3253
3254   OverloadCandidateSet::iterator Best;
3255   switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
3256                                                         Best, true)) {
3257   case OR_Success:
3258   case OR_Deleted:
3259     // Record the standard conversion we used and the conversion function.
3260     if (CXXConstructorDecl *Constructor
3261           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3262       // C++ [over.ics.user]p1:
3263       //   If the user-defined conversion is specified by a
3264       //   constructor (12.3.1), the initial standard conversion
3265       //   sequence converts the source type to the type required by
3266       //   the argument of the constructor.
3267       //
3268       QualType ThisType = Constructor->getThisType(S.Context);
3269       if (isa<InitListExpr>(From)) {
3270         // Initializer lists don't have conversions as such.
3271         User.Before.setAsIdentityConversion();
3272       } else {
3273         if (Best->Conversions[0].isEllipsis())
3274           User.EllipsisConversion = true;
3275         else {
3276           User.Before = Best->Conversions[0].Standard;
3277           User.EllipsisConversion = false;
3278         }
3279       }
3280       User.HadMultipleCandidates = HadMultipleCandidates;
3281       User.ConversionFunction = Constructor;
3282       User.FoundConversionFunction = Best->FoundDecl;
3283       User.After.setAsIdentityConversion();
3284       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3285       User.After.setAllToTypes(ToType);
3286       return Result;
3287     }
3288     if (CXXConversionDecl *Conversion
3289                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3290       // C++ [over.ics.user]p1:
3291       //
3292       //   [...] If the user-defined conversion is specified by a
3293       //   conversion function (12.3.2), the initial standard
3294       //   conversion sequence converts the source type to the
3295       //   implicit object parameter of the conversion function.
3296       User.Before = Best->Conversions[0].Standard;
3297       User.HadMultipleCandidates = HadMultipleCandidates;
3298       User.ConversionFunction = Conversion;
3299       User.FoundConversionFunction = Best->FoundDecl;
3300       User.EllipsisConversion = false;
3301
3302       // C++ [over.ics.user]p2:
3303       //   The second standard conversion sequence converts the
3304       //   result of the user-defined conversion to the target type
3305       //   for the sequence. Since an implicit conversion sequence
3306       //   is an initialization, the special rules for
3307       //   initialization by user-defined conversion apply when
3308       //   selecting the best user-defined conversion for a
3309       //   user-defined conversion sequence (see 13.3.3 and
3310       //   13.3.3.1).
3311       User.After = Best->FinalConversion;
3312       return Result;
3313     }
3314     llvm_unreachable("Not a constructor or conversion function?");
3315
3316   case OR_No_Viable_Function:
3317     return OR_No_Viable_Function;
3318
3319   case OR_Ambiguous:
3320     return OR_Ambiguous;
3321   }
3322
3323   llvm_unreachable("Invalid OverloadResult!");
3324 }
3325
3326 bool
3327 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3328   ImplicitConversionSequence ICS;
3329   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3330                                     OverloadCandidateSet::CSK_Normal);
3331   OverloadingResult OvResult =
3332     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3333                             CandidateSet, false, false);
3334   if (OvResult == OR_Ambiguous)
3335     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
3336         << From->getType() << ToType << From->getSourceRange();
3337   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3338     if (!RequireCompleteType(From->getLocStart(), ToType,
3339                              diag::err_typecheck_nonviable_condition_incomplete,
3340                              From->getType(), From->getSourceRange()))
3341       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
3342           << false << From->getType() << From->getSourceRange() << ToType;
3343   } else
3344     return false;
3345   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3346   return true;
3347 }
3348
3349 /// \brief Compare the user-defined conversion functions or constructors
3350 /// of two user-defined conversion sequences to determine whether any ordering
3351 /// is possible.
3352 static ImplicitConversionSequence::CompareKind
3353 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3354                            FunctionDecl *Function2) {
3355   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3356     return ImplicitConversionSequence::Indistinguishable;
3357
3358   // Objective-C++:
3359   //   If both conversion functions are implicitly-declared conversions from
3360   //   a lambda closure type to a function pointer and a block pointer,
3361   //   respectively, always prefer the conversion to a function pointer,
3362   //   because the function pointer is more lightweight and is more likely
3363   //   to keep code working.
3364   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3365   if (!Conv1)
3366     return ImplicitConversionSequence::Indistinguishable;
3367
3368   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3369   if (!Conv2)
3370     return ImplicitConversionSequence::Indistinguishable;
3371
3372   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3373     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3374     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3375     if (Block1 != Block2)
3376       return Block1 ? ImplicitConversionSequence::Worse
3377                     : ImplicitConversionSequence::Better;
3378   }
3379
3380   return ImplicitConversionSequence::Indistinguishable;
3381 }
3382
3383 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3384     const ImplicitConversionSequence &ICS) {
3385   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3386          (ICS.isUserDefined() &&
3387           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3388 }
3389
3390 /// CompareImplicitConversionSequences - Compare two implicit
3391 /// conversion sequences to determine whether one is better than the
3392 /// other or if they are indistinguishable (C++ 13.3.3.2).
3393 static ImplicitConversionSequence::CompareKind
3394 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3395                                    const ImplicitConversionSequence& ICS1,
3396                                    const ImplicitConversionSequence& ICS2)
3397 {
3398   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3399   // conversion sequences (as defined in 13.3.3.1)
3400   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3401   //      conversion sequence than a user-defined conversion sequence or
3402   //      an ellipsis conversion sequence, and
3403   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3404   //      conversion sequence than an ellipsis conversion sequence
3405   //      (13.3.3.1.3).
3406   //
3407   // C++0x [over.best.ics]p10:
3408   //   For the purpose of ranking implicit conversion sequences as
3409   //   described in 13.3.3.2, the ambiguous conversion sequence is
3410   //   treated as a user-defined sequence that is indistinguishable
3411   //   from any other user-defined conversion sequence.
3412
3413   // String literal to 'char *' conversion has been deprecated in C++03. It has
3414   // been removed from C++11. We still accept this conversion, if it happens at
3415   // the best viable function. Otherwise, this conversion is considered worse
3416   // than ellipsis conversion. Consider this as an extension; this is not in the
3417   // standard. For example:
3418   //
3419   // int &f(...);    // #1
3420   // void f(char*);  // #2
3421   // void g() { int &r = f("foo"); }
3422   //
3423   // In C++03, we pick #2 as the best viable function.
3424   // In C++11, we pick #1 as the best viable function, because ellipsis
3425   // conversion is better than string-literal to char* conversion (since there
3426   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3427   // convert arguments, #2 would be the best viable function in C++11.
3428   // If the best viable function has this conversion, a warning will be issued
3429   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3430
3431   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3432       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3433       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3434     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3435                ? ImplicitConversionSequence::Worse
3436                : ImplicitConversionSequence::Better;
3437
3438   if (ICS1.getKindRank() < ICS2.getKindRank())
3439     return ImplicitConversionSequence::Better;
3440   if (ICS2.getKindRank() < ICS1.getKindRank())
3441     return ImplicitConversionSequence::Worse;
3442
3443   // The following checks require both conversion sequences to be of
3444   // the same kind.
3445   if (ICS1.getKind() != ICS2.getKind())
3446     return ImplicitConversionSequence::Indistinguishable;
3447
3448   ImplicitConversionSequence::CompareKind Result =
3449       ImplicitConversionSequence::Indistinguishable;
3450
3451   // Two implicit conversion sequences of the same form are
3452   // indistinguishable conversion sequences unless one of the
3453   // following rules apply: (C++ 13.3.3.2p3):
3454   
3455   // List-initialization sequence L1 is a better conversion sequence than
3456   // list-initialization sequence L2 if:
3457   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3458   //   if not that,
3459   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3460   //   and N1 is smaller than N2.,
3461   // even if one of the other rules in this paragraph would otherwise apply.
3462   if (!ICS1.isBad()) {
3463     if (ICS1.isStdInitializerListElement() &&
3464         !ICS2.isStdInitializerListElement())
3465       return ImplicitConversionSequence::Better;
3466     if (!ICS1.isStdInitializerListElement() &&
3467         ICS2.isStdInitializerListElement())
3468       return ImplicitConversionSequence::Worse;
3469   }
3470
3471   if (ICS1.isStandard())
3472     // Standard conversion sequence S1 is a better conversion sequence than
3473     // standard conversion sequence S2 if [...]
3474     Result = CompareStandardConversionSequences(S, Loc,
3475                                                 ICS1.Standard, ICS2.Standard);
3476   else if (ICS1.isUserDefined()) {
3477     // User-defined conversion sequence U1 is a better conversion
3478     // sequence than another user-defined conversion sequence U2 if
3479     // they contain the same user-defined conversion function or
3480     // constructor and if the second standard conversion sequence of
3481     // U1 is better than the second standard conversion sequence of
3482     // U2 (C++ 13.3.3.2p3).
3483     if (ICS1.UserDefined.ConversionFunction ==
3484           ICS2.UserDefined.ConversionFunction)
3485       Result = CompareStandardConversionSequences(S, Loc,
3486                                                   ICS1.UserDefined.After,
3487                                                   ICS2.UserDefined.After);
3488     else
3489       Result = compareConversionFunctions(S, 
3490                                           ICS1.UserDefined.ConversionFunction,
3491                                           ICS2.UserDefined.ConversionFunction);
3492   }
3493
3494   return Result;
3495 }
3496
3497 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3498   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3499     Qualifiers Quals;
3500     T1 = Context.getUnqualifiedArrayType(T1, Quals);
3501     T2 = Context.getUnqualifiedArrayType(T2, Quals);
3502   }
3503
3504   return Context.hasSameUnqualifiedType(T1, T2);
3505 }
3506
3507 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3508 // determine if one is a proper subset of the other.
3509 static ImplicitConversionSequence::CompareKind
3510 compareStandardConversionSubsets(ASTContext &Context,
3511                                  const StandardConversionSequence& SCS1,
3512                                  const StandardConversionSequence& SCS2) {
3513   ImplicitConversionSequence::CompareKind Result
3514     = ImplicitConversionSequence::Indistinguishable;
3515
3516   // the identity conversion sequence is considered to be a subsequence of
3517   // any non-identity conversion sequence
3518   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3519     return ImplicitConversionSequence::Better;
3520   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3521     return ImplicitConversionSequence::Worse;
3522
3523   if (SCS1.Second != SCS2.Second) {
3524     if (SCS1.Second == ICK_Identity)
3525       Result = ImplicitConversionSequence::Better;
3526     else if (SCS2.Second == ICK_Identity)
3527       Result = ImplicitConversionSequence::Worse;
3528     else
3529       return ImplicitConversionSequence::Indistinguishable;
3530   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3531     return ImplicitConversionSequence::Indistinguishable;
3532
3533   if (SCS1.Third == SCS2.Third) {
3534     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3535                              : ImplicitConversionSequence::Indistinguishable;
3536   }
3537
3538   if (SCS1.Third == ICK_Identity)
3539     return Result == ImplicitConversionSequence::Worse
3540              ? ImplicitConversionSequence::Indistinguishable
3541              : ImplicitConversionSequence::Better;
3542
3543   if (SCS2.Third == ICK_Identity)
3544     return Result == ImplicitConversionSequence::Better
3545              ? ImplicitConversionSequence::Indistinguishable
3546              : ImplicitConversionSequence::Worse;
3547
3548   return ImplicitConversionSequence::Indistinguishable;
3549 }
3550
3551 /// \brief Determine whether one of the given reference bindings is better
3552 /// than the other based on what kind of bindings they are.
3553 static bool
3554 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3555                              const StandardConversionSequence &SCS2) {
3556   // C++0x [over.ics.rank]p3b4:
3557   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3558   //      implicit object parameter of a non-static member function declared
3559   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3560   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3561   //      lvalue reference to a function lvalue and S2 binds an rvalue
3562   //      reference*.
3563   //
3564   // FIXME: Rvalue references. We're going rogue with the above edits,
3565   // because the semantics in the current C++0x working paper (N3225 at the
3566   // time of this writing) break the standard definition of std::forward
3567   // and std::reference_wrapper when dealing with references to functions.
3568   // Proposed wording changes submitted to CWG for consideration.
3569   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3570       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3571     return false;
3572
3573   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3574           SCS2.IsLvalueReference) ||
3575          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3576           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3577 }
3578
3579 /// CompareStandardConversionSequences - Compare two standard
3580 /// conversion sequences to determine whether one is better than the
3581 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3582 static ImplicitConversionSequence::CompareKind
3583 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3584                                    const StandardConversionSequence& SCS1,
3585                                    const StandardConversionSequence& SCS2)
3586 {
3587   // Standard conversion sequence S1 is a better conversion sequence
3588   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3589
3590   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3591   //     sequences in the canonical form defined by 13.3.3.1.1,
3592   //     excluding any Lvalue Transformation; the identity conversion
3593   //     sequence is considered to be a subsequence of any
3594   //     non-identity conversion sequence) or, if not that,
3595   if (ImplicitConversionSequence::CompareKind CK
3596         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3597     return CK;
3598
3599   //  -- the rank of S1 is better than the rank of S2 (by the rules
3600   //     defined below), or, if not that,
3601   ImplicitConversionRank Rank1 = SCS1.getRank();
3602   ImplicitConversionRank Rank2 = SCS2.getRank();
3603   if (Rank1 < Rank2)
3604     return ImplicitConversionSequence::Better;
3605   else if (Rank2 < Rank1)
3606     return ImplicitConversionSequence::Worse;
3607
3608   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3609   // are indistinguishable unless one of the following rules
3610   // applies:
3611
3612   //   A conversion that is not a conversion of a pointer, or
3613   //   pointer to member, to bool is better than another conversion
3614   //   that is such a conversion.
3615   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3616     return SCS2.isPointerConversionToBool()
3617              ? ImplicitConversionSequence::Better
3618              : ImplicitConversionSequence::Worse;
3619
3620   // C++ [over.ics.rank]p4b2:
3621   //
3622   //   If class B is derived directly or indirectly from class A,
3623   //   conversion of B* to A* is better than conversion of B* to
3624   //   void*, and conversion of A* to void* is better than conversion
3625   //   of B* to void*.
3626   bool SCS1ConvertsToVoid
3627     = SCS1.isPointerConversionToVoidPointer(S.Context);
3628   bool SCS2ConvertsToVoid
3629     = SCS2.isPointerConversionToVoidPointer(S.Context);
3630   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3631     // Exactly one of the conversion sequences is a conversion to
3632     // a void pointer; it's the worse conversion.
3633     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3634                               : ImplicitConversionSequence::Worse;
3635   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3636     // Neither conversion sequence converts to a void pointer; compare
3637     // their derived-to-base conversions.
3638     if (ImplicitConversionSequence::CompareKind DerivedCK
3639           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3640       return DerivedCK;
3641   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3642              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3643     // Both conversion sequences are conversions to void
3644     // pointers. Compare the source types to determine if there's an
3645     // inheritance relationship in their sources.
3646     QualType FromType1 = SCS1.getFromType();
3647     QualType FromType2 = SCS2.getFromType();
3648
3649     // Adjust the types we're converting from via the array-to-pointer
3650     // conversion, if we need to.
3651     if (SCS1.First == ICK_Array_To_Pointer)
3652       FromType1 = S.Context.getArrayDecayedType(FromType1);
3653     if (SCS2.First == ICK_Array_To_Pointer)
3654       FromType2 = S.Context.getArrayDecayedType(FromType2);
3655
3656     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3657     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3658
3659     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3660       return ImplicitConversionSequence::Better;
3661     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3662       return ImplicitConversionSequence::Worse;
3663
3664     // Objective-C++: If one interface is more specific than the
3665     // other, it is the better one.
3666     const ObjCObjectPointerType* FromObjCPtr1
3667       = FromType1->getAs<ObjCObjectPointerType>();
3668     const ObjCObjectPointerType* FromObjCPtr2
3669       = FromType2->getAs<ObjCObjectPointerType>();
3670     if (FromObjCPtr1 && FromObjCPtr2) {
3671       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 
3672                                                           FromObjCPtr2);
3673       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 
3674                                                            FromObjCPtr1);
3675       if (AssignLeft != AssignRight) {
3676         return AssignLeft? ImplicitConversionSequence::Better
3677                          : ImplicitConversionSequence::Worse;
3678       }
3679     }
3680   }
3681
3682   // Compare based on qualification conversions (C++ 13.3.3.2p3,
3683   // bullet 3).
3684   if (ImplicitConversionSequence::CompareKind QualCK
3685         = CompareQualificationConversions(S, SCS1, SCS2))
3686     return QualCK;
3687
3688   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3689     // Check for a better reference binding based on the kind of bindings.
3690     if (isBetterReferenceBindingKind(SCS1, SCS2))
3691       return ImplicitConversionSequence::Better;
3692     else if (isBetterReferenceBindingKind(SCS2, SCS1))
3693       return ImplicitConversionSequence::Worse;
3694
3695     // C++ [over.ics.rank]p3b4:
3696     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3697     //      which the references refer are the same type except for
3698     //      top-level cv-qualifiers, and the type to which the reference
3699     //      initialized by S2 refers is more cv-qualified than the type
3700     //      to which the reference initialized by S1 refers.
3701     QualType T1 = SCS1.getToType(2);
3702     QualType T2 = SCS2.getToType(2);
3703     T1 = S.Context.getCanonicalType(T1);
3704     T2 = S.Context.getCanonicalType(T2);
3705     Qualifiers T1Quals, T2Quals;
3706     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3707     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3708     if (UnqualT1 == UnqualT2) {
3709       // Objective-C++ ARC: If the references refer to objects with different
3710       // lifetimes, prefer bindings that don't change lifetime.
3711       if (SCS1.ObjCLifetimeConversionBinding != 
3712                                           SCS2.ObjCLifetimeConversionBinding) {
3713         return SCS1.ObjCLifetimeConversionBinding
3714                                            ? ImplicitConversionSequence::Worse
3715                                            : ImplicitConversionSequence::Better;
3716       }
3717       
3718       // If the type is an array type, promote the element qualifiers to the
3719       // type for comparison.
3720       if (isa<ArrayType>(T1) && T1Quals)
3721         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3722       if (isa<ArrayType>(T2) && T2Quals)
3723         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3724       if (T2.isMoreQualifiedThan(T1))
3725         return ImplicitConversionSequence::Better;
3726       else if (T1.isMoreQualifiedThan(T2))
3727         return ImplicitConversionSequence::Worse;      
3728     }
3729   }
3730
3731   // In Microsoft mode, prefer an integral conversion to a
3732   // floating-to-integral conversion if the integral conversion
3733   // is between types of the same size.
3734   // For example:
3735   // void f(float);
3736   // void f(int);
3737   // int main {
3738   //    long a;
3739   //    f(a);
3740   // }
3741   // Here, MSVC will call f(int) instead of generating a compile error
3742   // as clang will do in standard mode.
3743   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3744       SCS2.Second == ICK_Floating_Integral &&
3745       S.Context.getTypeSize(SCS1.getFromType()) ==
3746           S.Context.getTypeSize(SCS1.getToType(2)))
3747     return ImplicitConversionSequence::Better;
3748
3749   return ImplicitConversionSequence::Indistinguishable;
3750 }
3751
3752 /// CompareQualificationConversions - Compares two standard conversion
3753 /// sequences to determine whether they can be ranked based on their
3754 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3755 static ImplicitConversionSequence::CompareKind
3756 CompareQualificationConversions(Sema &S,
3757                                 const StandardConversionSequence& SCS1,
3758                                 const StandardConversionSequence& SCS2) {
3759   // C++ 13.3.3.2p3:
3760   //  -- S1 and S2 differ only in their qualification conversion and
3761   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3762   //     cv-qualification signature of type T1 is a proper subset of
3763   //     the cv-qualification signature of type T2, and S1 is not the
3764   //     deprecated string literal array-to-pointer conversion (4.2).
3765   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3766       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3767     return ImplicitConversionSequence::Indistinguishable;
3768
3769   // FIXME: the example in the standard doesn't use a qualification
3770   // conversion (!)
3771   QualType T1 = SCS1.getToType(2);
3772   QualType T2 = SCS2.getToType(2);
3773   T1 = S.Context.getCanonicalType(T1);
3774   T2 = S.Context.getCanonicalType(T2);
3775   Qualifiers T1Quals, T2Quals;
3776   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3777   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3778
3779   // If the types are the same, we won't learn anything by unwrapped
3780   // them.
3781   if (UnqualT1 == UnqualT2)
3782     return ImplicitConversionSequence::Indistinguishable;
3783
3784   // If the type is an array type, promote the element qualifiers to the type
3785   // for comparison.
3786   if (isa<ArrayType>(T1) && T1Quals)
3787     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3788   if (isa<ArrayType>(T2) && T2Quals)
3789     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3790
3791   ImplicitConversionSequence::CompareKind Result
3792     = ImplicitConversionSequence::Indistinguishable;
3793   
3794   // Objective-C++ ARC:
3795   //   Prefer qualification conversions not involving a change in lifetime
3796   //   to qualification conversions that do not change lifetime.
3797   if (SCS1.QualificationIncludesObjCLifetime != 
3798                                       SCS2.QualificationIncludesObjCLifetime) {
3799     Result = SCS1.QualificationIncludesObjCLifetime
3800                ? ImplicitConversionSequence::Worse
3801                : ImplicitConversionSequence::Better;
3802   }
3803   
3804   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3805     // Within each iteration of the loop, we check the qualifiers to
3806     // determine if this still looks like a qualification
3807     // conversion. Then, if all is well, we unwrap one more level of
3808     // pointers or pointers-to-members and do it all again
3809     // until there are no more pointers or pointers-to-members left
3810     // to unwrap. This essentially mimics what
3811     // IsQualificationConversion does, but here we're checking for a
3812     // strict subset of qualifiers.
3813     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3814       // The qualifiers are the same, so this doesn't tell us anything
3815       // about how the sequences rank.
3816       ;
3817     else if (T2.isMoreQualifiedThan(T1)) {
3818       // T1 has fewer qualifiers, so it could be the better sequence.
3819       if (Result == ImplicitConversionSequence::Worse)
3820         // Neither has qualifiers that are a subset of the other's
3821         // qualifiers.
3822         return ImplicitConversionSequence::Indistinguishable;
3823
3824       Result = ImplicitConversionSequence::Better;
3825     } else if (T1.isMoreQualifiedThan(T2)) {
3826       // T2 has fewer qualifiers, so it could be the better sequence.
3827       if (Result == ImplicitConversionSequence::Better)
3828         // Neither has qualifiers that are a subset of the other's
3829         // qualifiers.
3830         return ImplicitConversionSequence::Indistinguishable;
3831
3832       Result = ImplicitConversionSequence::Worse;
3833     } else {
3834       // Qualifiers are disjoint.
3835       return ImplicitConversionSequence::Indistinguishable;
3836     }
3837
3838     // If the types after this point are equivalent, we're done.
3839     if (S.Context.hasSameUnqualifiedType(T1, T2))
3840       break;
3841   }
3842
3843   // Check that the winning standard conversion sequence isn't using
3844   // the deprecated string literal array to pointer conversion.
3845   switch (Result) {
3846   case ImplicitConversionSequence::Better:
3847     if (SCS1.DeprecatedStringLiteralToCharPtr)
3848       Result = ImplicitConversionSequence::Indistinguishable;
3849     break;
3850
3851   case ImplicitConversionSequence::Indistinguishable:
3852     break;
3853
3854   case ImplicitConversionSequence::Worse:
3855     if (SCS2.DeprecatedStringLiteralToCharPtr)
3856       Result = ImplicitConversionSequence::Indistinguishable;
3857     break;
3858   }
3859
3860   return Result;
3861 }
3862
3863 /// CompareDerivedToBaseConversions - Compares two standard conversion
3864 /// sequences to determine whether they can be ranked based on their
3865 /// various kinds of derived-to-base conversions (C++
3866 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
3867 /// conversions between Objective-C interface types.
3868 static ImplicitConversionSequence::CompareKind
3869 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
3870                                 const StandardConversionSequence& SCS1,
3871                                 const StandardConversionSequence& SCS2) {
3872   QualType FromType1 = SCS1.getFromType();
3873   QualType ToType1 = SCS1.getToType(1);
3874   QualType FromType2 = SCS2.getFromType();
3875   QualType ToType2 = SCS2.getToType(1);
3876
3877   // Adjust the types we're converting from via the array-to-pointer
3878   // conversion, if we need to.
3879   if (SCS1.First == ICK_Array_To_Pointer)
3880     FromType1 = S.Context.getArrayDecayedType(FromType1);
3881   if (SCS2.First == ICK_Array_To_Pointer)
3882     FromType2 = S.Context.getArrayDecayedType(FromType2);
3883
3884   // Canonicalize all of the types.
3885   FromType1 = S.Context.getCanonicalType(FromType1);
3886   ToType1 = S.Context.getCanonicalType(ToType1);
3887   FromType2 = S.Context.getCanonicalType(FromType2);
3888   ToType2 = S.Context.getCanonicalType(ToType2);
3889
3890   // C++ [over.ics.rank]p4b3:
3891   //
3892   //   If class B is derived directly or indirectly from class A and
3893   //   class C is derived directly or indirectly from B,
3894   //
3895   // Compare based on pointer conversions.
3896   if (SCS1.Second == ICK_Pointer_Conversion &&
3897       SCS2.Second == ICK_Pointer_Conversion &&
3898       /*FIXME: Remove if Objective-C id conversions get their own rank*/
3899       FromType1->isPointerType() && FromType2->isPointerType() &&
3900       ToType1->isPointerType() && ToType2->isPointerType()) {
3901     QualType FromPointee1
3902       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3903     QualType ToPointee1
3904       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3905     QualType FromPointee2
3906       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3907     QualType ToPointee2
3908       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3909
3910     //   -- conversion of C* to B* is better than conversion of C* to A*,
3911     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3912       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
3913         return ImplicitConversionSequence::Better;
3914       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
3915         return ImplicitConversionSequence::Worse;
3916     }
3917
3918     //   -- conversion of B* to A* is better than conversion of C* to A*,
3919     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3920       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3921         return ImplicitConversionSequence::Better;
3922       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3923         return ImplicitConversionSequence::Worse;
3924     }
3925   } else if (SCS1.Second == ICK_Pointer_Conversion &&
3926              SCS2.Second == ICK_Pointer_Conversion) {
3927     const ObjCObjectPointerType *FromPtr1
3928       = FromType1->getAs<ObjCObjectPointerType>();
3929     const ObjCObjectPointerType *FromPtr2
3930       = FromType2->getAs<ObjCObjectPointerType>();
3931     const ObjCObjectPointerType *ToPtr1
3932       = ToType1->getAs<ObjCObjectPointerType>();
3933     const ObjCObjectPointerType *ToPtr2
3934       = ToType2->getAs<ObjCObjectPointerType>();
3935     
3936     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3937       // Apply the same conversion ranking rules for Objective-C pointer types
3938       // that we do for C++ pointers to class types. However, we employ the
3939       // Objective-C pseudo-subtyping relationship used for assignment of
3940       // Objective-C pointer types.
3941       bool FromAssignLeft
3942         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3943       bool FromAssignRight
3944         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3945       bool ToAssignLeft
3946         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3947       bool ToAssignRight
3948         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3949       
3950       // A conversion to an a non-id object pointer type or qualified 'id' 
3951       // type is better than a conversion to 'id'.
3952       if (ToPtr1->isObjCIdType() &&
3953           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3954         return ImplicitConversionSequence::Worse;
3955       if (ToPtr2->isObjCIdType() &&
3956           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3957         return ImplicitConversionSequence::Better;
3958       
3959       // A conversion to a non-id object pointer type is better than a 
3960       // conversion to a qualified 'id' type 
3961       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3962         return ImplicitConversionSequence::Worse;
3963       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3964         return ImplicitConversionSequence::Better;
3965   
3966       // A conversion to an a non-Class object pointer type or qualified 'Class' 
3967       // type is better than a conversion to 'Class'.
3968       if (ToPtr1->isObjCClassType() &&
3969           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3970         return ImplicitConversionSequence::Worse;
3971       if (ToPtr2->isObjCClassType() &&
3972           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3973         return ImplicitConversionSequence::Better;
3974       
3975       // A conversion to a non-Class object pointer type is better than a 
3976       // conversion to a qualified 'Class' type.
3977       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3978         return ImplicitConversionSequence::Worse;
3979       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3980         return ImplicitConversionSequence::Better;
3981
3982       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3983       if (S.Context.hasSameType(FromType1, FromType2) && 
3984           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3985           (ToAssignLeft != ToAssignRight))
3986         return ToAssignLeft? ImplicitConversionSequence::Worse
3987                            : ImplicitConversionSequence::Better;
3988
3989       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3990       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3991           (FromAssignLeft != FromAssignRight))
3992         return FromAssignLeft? ImplicitConversionSequence::Better
3993         : ImplicitConversionSequence::Worse;
3994     }
3995   }
3996   
3997   // Ranking of member-pointer types.
3998   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3999       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4000       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4001     const MemberPointerType * FromMemPointer1 =
4002                                         FromType1->getAs<MemberPointerType>();
4003     const MemberPointerType * ToMemPointer1 =
4004                                           ToType1->getAs<MemberPointerType>();
4005     const MemberPointerType * FromMemPointer2 =
4006                                           FromType2->getAs<MemberPointerType>();
4007     const MemberPointerType * ToMemPointer2 =
4008                                           ToType2->getAs<MemberPointerType>();
4009     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4010     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4011     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4012     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4013     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4014     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4015     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4016     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4017     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4018     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4019       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4020         return ImplicitConversionSequence::Worse;
4021       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4022         return ImplicitConversionSequence::Better;
4023     }
4024     // conversion of B::* to C::* is better than conversion of A::* to C::*
4025     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4026       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4027         return ImplicitConversionSequence::Better;
4028       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4029         return ImplicitConversionSequence::Worse;
4030     }
4031   }
4032
4033   if (SCS1.Second == ICK_Derived_To_Base) {
4034     //   -- conversion of C to B is better than conversion of C to A,
4035     //   -- binding of an expression of type C to a reference of type
4036     //      B& is better than binding an expression of type C to a
4037     //      reference of type A&,
4038     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4039         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4040       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4041         return ImplicitConversionSequence::Better;
4042       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4043         return ImplicitConversionSequence::Worse;
4044     }
4045
4046     //   -- conversion of B to A is better than conversion of C to A.
4047     //   -- binding of an expression of type B to a reference of type
4048     //      A& is better than binding an expression of type C to a
4049     //      reference of type A&,
4050     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4051         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4052       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4053         return ImplicitConversionSequence::Better;
4054       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4055         return ImplicitConversionSequence::Worse;
4056     }
4057   }
4058
4059   return ImplicitConversionSequence::Indistinguishable;
4060 }
4061
4062 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
4063 /// C++ class.
4064 static bool isTypeValid(QualType T) {
4065   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4066     return !Record->isInvalidDecl();
4067
4068   return true;
4069 }
4070
4071 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4072 /// determine whether they are reference-related,
4073 /// reference-compatible, reference-compatible with added
4074 /// qualification, or incompatible, for use in C++ initialization by
4075 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4076 /// type, and the first type (T1) is the pointee type of the reference
4077 /// type being initialized.
4078 Sema::ReferenceCompareResult
4079 Sema::CompareReferenceRelationship(SourceLocation Loc,
4080                                    QualType OrigT1, QualType OrigT2,
4081                                    bool &DerivedToBase,
4082                                    bool &ObjCConversion,
4083                                    bool &ObjCLifetimeConversion) {
4084   assert(!OrigT1->isReferenceType() &&
4085     "T1 must be the pointee type of the reference type");
4086   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4087
4088   QualType T1 = Context.getCanonicalType(OrigT1);
4089   QualType T2 = Context.getCanonicalType(OrigT2);
4090   Qualifiers T1Quals, T2Quals;
4091   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4092   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4093
4094   // C++ [dcl.init.ref]p4:
4095   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4096   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4097   //   T1 is a base class of T2.
4098   DerivedToBase = false;
4099   ObjCConversion = false;
4100   ObjCLifetimeConversion = false;
4101   if (UnqualT1 == UnqualT2) {
4102     // Nothing to do.
4103   } else if (isCompleteType(Loc, OrigT2) &&
4104              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4105              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4106     DerivedToBase = true;
4107   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4108            UnqualT2->isObjCObjectOrInterfaceType() &&
4109            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4110     ObjCConversion = true;
4111   else
4112     return Ref_Incompatible;
4113
4114   // At this point, we know that T1 and T2 are reference-related (at
4115   // least).
4116
4117   // If the type is an array type, promote the element qualifiers to the type
4118   // for comparison.
4119   if (isa<ArrayType>(T1) && T1Quals)
4120     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4121   if (isa<ArrayType>(T2) && T2Quals)
4122     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4123
4124   // C++ [dcl.init.ref]p4:
4125   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4126   //   reference-related to T2 and cv1 is the same cv-qualification
4127   //   as, or greater cv-qualification than, cv2. For purposes of
4128   //   overload resolution, cases for which cv1 is greater
4129   //   cv-qualification than cv2 are identified as
4130   //   reference-compatible with added qualification (see 13.3.3.2).
4131   //
4132   // Note that we also require equivalence of Objective-C GC and address-space
4133   // qualifiers when performing these computations, so that e.g., an int in
4134   // address space 1 is not reference-compatible with an int in address
4135   // space 2.
4136   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4137       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4138     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4139       ObjCLifetimeConversion = true;
4140
4141     T1Quals.removeObjCLifetime();
4142     T2Quals.removeObjCLifetime();    
4143   }
4144     
4145   // MS compiler ignores __unaligned qualifier for references; do the same.
4146   T1Quals.removeUnaligned();
4147   T2Quals.removeUnaligned();
4148
4149   if (T1Quals == T2Quals)
4150     return Ref_Compatible;
4151   else if (T1Quals.compatiblyIncludes(T2Quals))
4152     return Ref_Compatible_With_Added_Qualification;
4153   else
4154     return Ref_Related;
4155 }
4156
4157 /// \brief Look for a user-defined conversion to an value reference-compatible
4158 ///        with DeclType. Return true if something definite is found.
4159 static bool
4160 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4161                          QualType DeclType, SourceLocation DeclLoc,
4162                          Expr *Init, QualType T2, bool AllowRvalues,
4163                          bool AllowExplicit) {
4164   assert(T2->isRecordType() && "Can only find conversions of record types.");
4165   CXXRecordDecl *T2RecordDecl
4166     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4167
4168   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
4169   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4170   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4171     NamedDecl *D = *I;
4172     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4173     if (isa<UsingShadowDecl>(D))
4174       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4175
4176     FunctionTemplateDecl *ConvTemplate
4177       = dyn_cast<FunctionTemplateDecl>(D);
4178     CXXConversionDecl *Conv;
4179     if (ConvTemplate)
4180       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4181     else
4182       Conv = cast<CXXConversionDecl>(D);
4183
4184     // If this is an explicit conversion, and we're not allowed to consider
4185     // explicit conversions, skip it.
4186     if (!AllowExplicit && Conv->isExplicit())
4187       continue;
4188
4189     if (AllowRvalues) {
4190       bool DerivedToBase = false;
4191       bool ObjCConversion = false;
4192       bool ObjCLifetimeConversion = false;
4193       
4194       // If we are initializing an rvalue reference, don't permit conversion
4195       // functions that return lvalues.
4196       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4197         const ReferenceType *RefType
4198           = Conv->getConversionType()->getAs<LValueReferenceType>();
4199         if (RefType && !RefType->getPointeeType()->isFunctionType())
4200           continue;
4201       }
4202       
4203       if (!ConvTemplate &&
4204           S.CompareReferenceRelationship(
4205             DeclLoc,
4206             Conv->getConversionType().getNonReferenceType()
4207               .getUnqualifiedType(),
4208             DeclType.getNonReferenceType().getUnqualifiedType(),
4209             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4210           Sema::Ref_Incompatible)
4211         continue;
4212     } else {
4213       // If the conversion function doesn't return a reference type,
4214       // it can't be considered for this conversion. An rvalue reference
4215       // is only acceptable if its referencee is a function type.
4216
4217       const ReferenceType *RefType =
4218         Conv->getConversionType()->getAs<ReferenceType>();
4219       if (!RefType ||
4220           (!RefType->isLValueReferenceType() &&
4221            !RefType->getPointeeType()->isFunctionType()))
4222         continue;
4223     }
4224
4225     if (ConvTemplate)
4226       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4227                                        Init, DeclType, CandidateSet,
4228                                        /*AllowObjCConversionOnExplicit=*/false);
4229     else
4230       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4231                                DeclType, CandidateSet,
4232                                /*AllowObjCConversionOnExplicit=*/false);
4233   }
4234
4235   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4236
4237   OverloadCandidateSet::iterator Best;
4238   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4239   case OR_Success:
4240     // C++ [over.ics.ref]p1:
4241     //
4242     //   [...] If the parameter binds directly to the result of
4243     //   applying a conversion function to the argument
4244     //   expression, the implicit conversion sequence is a
4245     //   user-defined conversion sequence (13.3.3.1.2), with the
4246     //   second standard conversion sequence either an identity
4247     //   conversion or, if the conversion function returns an
4248     //   entity of a type that is a derived class of the parameter
4249     //   type, a derived-to-base Conversion.
4250     if (!Best->FinalConversion.DirectBinding)
4251       return false;
4252
4253     ICS.setUserDefined();
4254     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4255     ICS.UserDefined.After = Best->FinalConversion;
4256     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4257     ICS.UserDefined.ConversionFunction = Best->Function;
4258     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4259     ICS.UserDefined.EllipsisConversion = false;
4260     assert(ICS.UserDefined.After.ReferenceBinding &&
4261            ICS.UserDefined.After.DirectBinding &&
4262            "Expected a direct reference binding!");
4263     return true;
4264
4265   case OR_Ambiguous:
4266     ICS.setAmbiguous();
4267     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4268          Cand != CandidateSet.end(); ++Cand)
4269       if (Cand->Viable)
4270         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4271     return true;
4272
4273   case OR_No_Viable_Function:
4274   case OR_Deleted:
4275     // There was no suitable conversion, or we found a deleted
4276     // conversion; continue with other checks.
4277     return false;
4278   }
4279
4280   llvm_unreachable("Invalid OverloadResult!");
4281 }
4282
4283 /// \brief Compute an implicit conversion sequence for reference
4284 /// initialization.
4285 static ImplicitConversionSequence
4286 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4287                  SourceLocation DeclLoc,
4288                  bool SuppressUserConversions,
4289                  bool AllowExplicit) {
4290   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4291
4292   // Most paths end in a failed conversion.
4293   ImplicitConversionSequence ICS;
4294   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4295
4296   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4297   QualType T2 = Init->getType();
4298
4299   // If the initializer is the address of an overloaded function, try
4300   // to resolve the overloaded function. If all goes well, T2 is the
4301   // type of the resulting function.
4302   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4303     DeclAccessPair Found;
4304     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4305                                                                 false, Found))
4306       T2 = Fn->getType();
4307   }
4308
4309   // Compute some basic properties of the types and the initializer.
4310   bool isRValRef = DeclType->isRValueReferenceType();
4311   bool DerivedToBase = false;
4312   bool ObjCConversion = false;
4313   bool ObjCLifetimeConversion = false;
4314   Expr::Classification InitCategory = Init->Classify(S.Context);
4315   Sema::ReferenceCompareResult RefRelationship
4316     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4317                                      ObjCConversion, ObjCLifetimeConversion);
4318
4319
4320   // C++0x [dcl.init.ref]p5:
4321   //   A reference to type "cv1 T1" is initialized by an expression
4322   //   of type "cv2 T2" as follows:
4323
4324   //     -- If reference is an lvalue reference and the initializer expression
4325   if (!isRValRef) {
4326     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4327     //        reference-compatible with "cv2 T2," or
4328     //
4329     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4330     if (InitCategory.isLValue() &&
4331         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4332       // C++ [over.ics.ref]p1:
4333       //   When a parameter of reference type binds directly (8.5.3)
4334       //   to an argument expression, the implicit conversion sequence
4335       //   is the identity conversion, unless the argument expression
4336       //   has a type that is a derived class of the parameter type,
4337       //   in which case the implicit conversion sequence is a
4338       //   derived-to-base Conversion (13.3.3.1).
4339       ICS.setStandard();
4340       ICS.Standard.First = ICK_Identity;
4341       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4342                          : ObjCConversion? ICK_Compatible_Conversion
4343                          : ICK_Identity;
4344       ICS.Standard.Third = ICK_Identity;
4345       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4346       ICS.Standard.setToType(0, T2);
4347       ICS.Standard.setToType(1, T1);
4348       ICS.Standard.setToType(2, T1);
4349       ICS.Standard.ReferenceBinding = true;
4350       ICS.Standard.DirectBinding = true;
4351       ICS.Standard.IsLvalueReference = !isRValRef;
4352       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4353       ICS.Standard.BindsToRvalue = false;
4354       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4355       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4356       ICS.Standard.CopyConstructor = nullptr;
4357       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4358
4359       // Nothing more to do: the inaccessibility/ambiguity check for
4360       // derived-to-base conversions is suppressed when we're
4361       // computing the implicit conversion sequence (C++
4362       // [over.best.ics]p2).
4363       return ICS;
4364     }
4365
4366     //       -- has a class type (i.e., T2 is a class type), where T1 is
4367     //          not reference-related to T2, and can be implicitly
4368     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4369     //          is reference-compatible with "cv3 T3" 92) (this
4370     //          conversion is selected by enumerating the applicable
4371     //          conversion functions (13.3.1.6) and choosing the best
4372     //          one through overload resolution (13.3)),
4373     if (!SuppressUserConversions && T2->isRecordType() &&
4374         S.isCompleteType(DeclLoc, T2) &&
4375         RefRelationship == Sema::Ref_Incompatible) {
4376       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4377                                    Init, T2, /*AllowRvalues=*/false,
4378                                    AllowExplicit))
4379         return ICS;
4380     }
4381   }
4382
4383   //     -- Otherwise, the reference shall be an lvalue reference to a
4384   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4385   //        shall be an rvalue reference.
4386   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4387     return ICS;
4388
4389   //       -- If the initializer expression
4390   //
4391   //            -- is an xvalue, class prvalue, array prvalue or function
4392   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4393   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4394       (InitCategory.isXValue() ||
4395       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4396       (InitCategory.isLValue() && T2->isFunctionType()))) {
4397     ICS.setStandard();
4398     ICS.Standard.First = ICK_Identity;
4399     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4400                       : ObjCConversion? ICK_Compatible_Conversion
4401                       : ICK_Identity;
4402     ICS.Standard.Third = ICK_Identity;
4403     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4404     ICS.Standard.setToType(0, T2);
4405     ICS.Standard.setToType(1, T1);
4406     ICS.Standard.setToType(2, T1);
4407     ICS.Standard.ReferenceBinding = true;
4408     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4409     // binding unless we're binding to a class prvalue.
4410     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4411     // allow the use of rvalue references in C++98/03 for the benefit of
4412     // standard library implementors; therefore, we need the xvalue check here.
4413     ICS.Standard.DirectBinding =
4414       S.getLangOpts().CPlusPlus11 ||
4415       !(InitCategory.isPRValue() || T2->isRecordType());
4416     ICS.Standard.IsLvalueReference = !isRValRef;
4417     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4418     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4419     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4420     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4421     ICS.Standard.CopyConstructor = nullptr;
4422     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4423     return ICS;
4424   }
4425
4426   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4427   //               reference-related to T2, and can be implicitly converted to
4428   //               an xvalue, class prvalue, or function lvalue of type
4429   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4430   //               "cv3 T3",
4431   //
4432   //          then the reference is bound to the value of the initializer
4433   //          expression in the first case and to the result of the conversion
4434   //          in the second case (or, in either case, to an appropriate base
4435   //          class subobject).
4436   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4437       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4438       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4439                                Init, T2, /*AllowRvalues=*/true,
4440                                AllowExplicit)) {
4441     // In the second case, if the reference is an rvalue reference
4442     // and the second standard conversion sequence of the
4443     // user-defined conversion sequence includes an lvalue-to-rvalue
4444     // conversion, the program is ill-formed.
4445     if (ICS.isUserDefined() && isRValRef &&
4446         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4447       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4448
4449     return ICS;
4450   }
4451
4452   // A temporary of function type cannot be created; don't even try.
4453   if (T1->isFunctionType())
4454     return ICS;
4455
4456   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4457   //          initialized from the initializer expression using the
4458   //          rules for a non-reference copy initialization (8.5). The
4459   //          reference is then bound to the temporary. If T1 is
4460   //          reference-related to T2, cv1 must be the same
4461   //          cv-qualification as, or greater cv-qualification than,
4462   //          cv2; otherwise, the program is ill-formed.
4463   if (RefRelationship == Sema::Ref_Related) {
4464     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4465     // we would be reference-compatible or reference-compatible with
4466     // added qualification. But that wasn't the case, so the reference
4467     // initialization fails.
4468     //
4469     // Note that we only want to check address spaces and cvr-qualifiers here.
4470     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4471     Qualifiers T1Quals = T1.getQualifiers();
4472     Qualifiers T2Quals = T2.getQualifiers();
4473     T1Quals.removeObjCGCAttr();
4474     T1Quals.removeObjCLifetime();
4475     T2Quals.removeObjCGCAttr();
4476     T2Quals.removeObjCLifetime();
4477     // MS compiler ignores __unaligned qualifier for references; do the same.
4478     T1Quals.removeUnaligned();
4479     T2Quals.removeUnaligned();
4480     if (!T1Quals.compatiblyIncludes(T2Quals))
4481       return ICS;
4482   }
4483
4484   // If at least one of the types is a class type, the types are not
4485   // related, and we aren't allowed any user conversions, the
4486   // reference binding fails. This case is important for breaking
4487   // recursion, since TryImplicitConversion below will attempt to
4488   // create a temporary through the use of a copy constructor.
4489   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4490       (T1->isRecordType() || T2->isRecordType()))
4491     return ICS;
4492
4493   // If T1 is reference-related to T2 and the reference is an rvalue
4494   // reference, the initializer expression shall not be an lvalue.
4495   if (RefRelationship >= Sema::Ref_Related &&
4496       isRValRef && Init->Classify(S.Context).isLValue())
4497     return ICS;
4498
4499   // C++ [over.ics.ref]p2:
4500   //   When a parameter of reference type is not bound directly to
4501   //   an argument expression, the conversion sequence is the one
4502   //   required to convert the argument expression to the
4503   //   underlying type of the reference according to
4504   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4505   //   to copy-initializing a temporary of the underlying type with
4506   //   the argument expression. Any difference in top-level
4507   //   cv-qualification is subsumed by the initialization itself
4508   //   and does not constitute a conversion.
4509   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4510                               /*AllowExplicit=*/false,
4511                               /*InOverloadResolution=*/false,
4512                               /*CStyle=*/false,
4513                               /*AllowObjCWritebackConversion=*/false,
4514                               /*AllowObjCConversionOnExplicit=*/false);
4515
4516   // Of course, that's still a reference binding.
4517   if (ICS.isStandard()) {
4518     ICS.Standard.ReferenceBinding = true;
4519     ICS.Standard.IsLvalueReference = !isRValRef;
4520     ICS.Standard.BindsToFunctionLvalue = false;
4521     ICS.Standard.BindsToRvalue = true;
4522     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4523     ICS.Standard.ObjCLifetimeConversionBinding = false;
4524   } else if (ICS.isUserDefined()) {
4525     const ReferenceType *LValRefType =
4526         ICS.UserDefined.ConversionFunction->getReturnType()
4527             ->getAs<LValueReferenceType>();
4528
4529     // C++ [over.ics.ref]p3:
4530     //   Except for an implicit object parameter, for which see 13.3.1, a
4531     //   standard conversion sequence cannot be formed if it requires [...]
4532     //   binding an rvalue reference to an lvalue other than a function
4533     //   lvalue.
4534     // Note that the function case is not possible here.
4535     if (DeclType->isRValueReferenceType() && LValRefType) {
4536       // FIXME: This is the wrong BadConversionSequence. The problem is binding
4537       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4538       // reference to an rvalue!
4539       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4540       return ICS;
4541     }
4542
4543     ICS.UserDefined.Before.setAsIdentityConversion();
4544     ICS.UserDefined.After.ReferenceBinding = true;
4545     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4546     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4547     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4548     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4549     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4550   }
4551
4552   return ICS;
4553 }
4554
4555 static ImplicitConversionSequence
4556 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4557                       bool SuppressUserConversions,
4558                       bool InOverloadResolution,
4559                       bool AllowObjCWritebackConversion,
4560                       bool AllowExplicit = false);
4561
4562 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4563 /// initializer list From.
4564 static ImplicitConversionSequence
4565 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4566                   bool SuppressUserConversions,
4567                   bool InOverloadResolution,
4568                   bool AllowObjCWritebackConversion) {
4569   // C++11 [over.ics.list]p1:
4570   //   When an argument is an initializer list, it is not an expression and
4571   //   special rules apply for converting it to a parameter type.
4572
4573   ImplicitConversionSequence Result;
4574   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4575
4576   // We need a complete type for what follows. Incomplete types can never be
4577   // initialized from init lists.
4578   if (!S.isCompleteType(From->getLocStart(), ToType))
4579     return Result;
4580
4581   // Per DR1467:
4582   //   If the parameter type is a class X and the initializer list has a single
4583   //   element of type cv U, where U is X or a class derived from X, the
4584   //   implicit conversion sequence is the one required to convert the element
4585   //   to the parameter type.
4586   //
4587   //   Otherwise, if the parameter type is a character array [... ]
4588   //   and the initializer list has a single element that is an
4589   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4590   //   implicit conversion sequence is the identity conversion.
4591   if (From->getNumInits() == 1) {
4592     if (ToType->isRecordType()) {
4593       QualType InitType = From->getInit(0)->getType();
4594       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4595           S.IsDerivedFrom(From->getLocStart(), InitType, ToType))
4596         return TryCopyInitialization(S, From->getInit(0), ToType,
4597                                      SuppressUserConversions,
4598                                      InOverloadResolution,
4599                                      AllowObjCWritebackConversion);
4600     }
4601     // FIXME: Check the other conditions here: array of character type,
4602     // initializer is a string literal.
4603     if (ToType->isArrayType()) {
4604       InitializedEntity Entity =
4605         InitializedEntity::InitializeParameter(S.Context, ToType,
4606                                                /*Consumed=*/false);
4607       if (S.CanPerformCopyInitialization(Entity, From)) {
4608         Result.setStandard();
4609         Result.Standard.setAsIdentityConversion();
4610         Result.Standard.setFromType(ToType);
4611         Result.Standard.setAllToTypes(ToType);
4612         return Result;
4613       }
4614     }
4615   }
4616
4617   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4618   // C++11 [over.ics.list]p2:
4619   //   If the parameter type is std::initializer_list<X> or "array of X" and
4620   //   all the elements can be implicitly converted to X, the implicit
4621   //   conversion sequence is the worst conversion necessary to convert an
4622   //   element of the list to X.
4623   //
4624   // C++14 [over.ics.list]p3:
4625   //   Otherwise, if the parameter type is "array of N X", if the initializer
4626   //   list has exactly N elements or if it has fewer than N elements and X is
4627   //   default-constructible, and if all the elements of the initializer list
4628   //   can be implicitly converted to X, the implicit conversion sequence is
4629   //   the worst conversion necessary to convert an element of the list to X.
4630   //
4631   // FIXME: We're missing a lot of these checks.
4632   bool toStdInitializerList = false;
4633   QualType X;
4634   if (ToType->isArrayType())
4635     X = S.Context.getAsArrayType(ToType)->getElementType();
4636   else
4637     toStdInitializerList = S.isStdInitializerList(ToType, &X);
4638   if (!X.isNull()) {
4639     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4640       Expr *Init = From->getInit(i);
4641       ImplicitConversionSequence ICS =
4642           TryCopyInitialization(S, Init, X, SuppressUserConversions,
4643                                 InOverloadResolution,
4644                                 AllowObjCWritebackConversion);
4645       // If a single element isn't convertible, fail.
4646       if (ICS.isBad()) {
4647         Result = ICS;
4648         break;
4649       }
4650       // Otherwise, look for the worst conversion.
4651       if (Result.isBad() ||
4652           CompareImplicitConversionSequences(S, From->getLocStart(), ICS,
4653                                              Result) ==
4654               ImplicitConversionSequence::Worse)
4655         Result = ICS;
4656     }
4657
4658     // For an empty list, we won't have computed any conversion sequence.
4659     // Introduce the identity conversion sequence.
4660     if (From->getNumInits() == 0) {
4661       Result.setStandard();
4662       Result.Standard.setAsIdentityConversion();
4663       Result.Standard.setFromType(ToType);
4664       Result.Standard.setAllToTypes(ToType);
4665     }
4666
4667     Result.setStdInitializerListElement(toStdInitializerList);
4668     return Result;
4669   }
4670
4671   // C++14 [over.ics.list]p4:
4672   // C++11 [over.ics.list]p3:
4673   //   Otherwise, if the parameter is a non-aggregate class X and overload
4674   //   resolution chooses a single best constructor [...] the implicit
4675   //   conversion sequence is a user-defined conversion sequence. If multiple
4676   //   constructors are viable but none is better than the others, the
4677   //   implicit conversion sequence is a user-defined conversion sequence.
4678   if (ToType->isRecordType() && !ToType->isAggregateType()) {
4679     // This function can deal with initializer lists.
4680     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4681                                     /*AllowExplicit=*/false,
4682                                     InOverloadResolution, /*CStyle=*/false,
4683                                     AllowObjCWritebackConversion,
4684                                     /*AllowObjCConversionOnExplicit=*/false);
4685   }
4686
4687   // C++14 [over.ics.list]p5:
4688   // C++11 [over.ics.list]p4:
4689   //   Otherwise, if the parameter has an aggregate type which can be
4690   //   initialized from the initializer list [...] the implicit conversion
4691   //   sequence is a user-defined conversion sequence.
4692   if (ToType->isAggregateType()) {
4693     // Type is an aggregate, argument is an init list. At this point it comes
4694     // down to checking whether the initialization works.
4695     // FIXME: Find out whether this parameter is consumed or not.
4696     InitializedEntity Entity =
4697         InitializedEntity::InitializeParameter(S.Context, ToType,
4698                                                /*Consumed=*/false);
4699     if (S.CanPerformCopyInitialization(Entity, From)) {
4700       Result.setUserDefined();
4701       Result.UserDefined.Before.setAsIdentityConversion();
4702       // Initializer lists don't have a type.
4703       Result.UserDefined.Before.setFromType(QualType());
4704       Result.UserDefined.Before.setAllToTypes(QualType());
4705
4706       Result.UserDefined.After.setAsIdentityConversion();
4707       Result.UserDefined.After.setFromType(ToType);
4708       Result.UserDefined.After.setAllToTypes(ToType);
4709       Result.UserDefined.ConversionFunction = nullptr;
4710     }
4711     return Result;
4712   }
4713
4714   // C++14 [over.ics.list]p6:
4715   // C++11 [over.ics.list]p5:
4716   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4717   if (ToType->isReferenceType()) {
4718     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4719     // mention initializer lists in any way. So we go by what list-
4720     // initialization would do and try to extrapolate from that.
4721
4722     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4723
4724     // If the initializer list has a single element that is reference-related
4725     // to the parameter type, we initialize the reference from that.
4726     if (From->getNumInits() == 1) {
4727       Expr *Init = From->getInit(0);
4728
4729       QualType T2 = Init->getType();
4730
4731       // If the initializer is the address of an overloaded function, try
4732       // to resolve the overloaded function. If all goes well, T2 is the
4733       // type of the resulting function.
4734       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4735         DeclAccessPair Found;
4736         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4737                                    Init, ToType, false, Found))
4738           T2 = Fn->getType();
4739       }
4740
4741       // Compute some basic properties of the types and the initializer.
4742       bool dummy1 = false;
4743       bool dummy2 = false;
4744       bool dummy3 = false;
4745       Sema::ReferenceCompareResult RefRelationship
4746         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4747                                          dummy2, dummy3);
4748
4749       if (RefRelationship >= Sema::Ref_Related) {
4750         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4751                                 SuppressUserConversions,
4752                                 /*AllowExplicit=*/false);
4753       }
4754     }
4755
4756     // Otherwise, we bind the reference to a temporary created from the
4757     // initializer list.
4758     Result = TryListConversion(S, From, T1, SuppressUserConversions,
4759                                InOverloadResolution,
4760                                AllowObjCWritebackConversion);
4761     if (Result.isFailure())
4762       return Result;
4763     assert(!Result.isEllipsis() &&
4764            "Sub-initialization cannot result in ellipsis conversion.");
4765
4766     // Can we even bind to a temporary?
4767     if (ToType->isRValueReferenceType() ||
4768         (T1.isConstQualified() && !T1.isVolatileQualified())) {
4769       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4770                                             Result.UserDefined.After;
4771       SCS.ReferenceBinding = true;
4772       SCS.IsLvalueReference = ToType->isLValueReferenceType();
4773       SCS.BindsToRvalue = true;
4774       SCS.BindsToFunctionLvalue = false;
4775       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4776       SCS.ObjCLifetimeConversionBinding = false;
4777     } else
4778       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4779                     From, ToType);
4780     return Result;
4781   }
4782
4783   // C++14 [over.ics.list]p7:
4784   // C++11 [over.ics.list]p6:
4785   //   Otherwise, if the parameter type is not a class:
4786   if (!ToType->isRecordType()) {
4787     //    - if the initializer list has one element that is not itself an
4788     //      initializer list, the implicit conversion sequence is the one
4789     //      required to convert the element to the parameter type.
4790     unsigned NumInits = From->getNumInits();
4791     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
4792       Result = TryCopyInitialization(S, From->getInit(0), ToType,
4793                                      SuppressUserConversions,
4794                                      InOverloadResolution,
4795                                      AllowObjCWritebackConversion);
4796     //    - if the initializer list has no elements, the implicit conversion
4797     //      sequence is the identity conversion.
4798     else if (NumInits == 0) {
4799       Result.setStandard();
4800       Result.Standard.setAsIdentityConversion();
4801       Result.Standard.setFromType(ToType);
4802       Result.Standard.setAllToTypes(ToType);
4803     }
4804     return Result;
4805   }
4806
4807   // C++14 [over.ics.list]p8:
4808   // C++11 [over.ics.list]p7:
4809   //   In all cases other than those enumerated above, no conversion is possible
4810   return Result;
4811 }
4812
4813 /// TryCopyInitialization - Try to copy-initialize a value of type
4814 /// ToType from the expression From. Return the implicit conversion
4815 /// sequence required to pass this argument, which may be a bad
4816 /// conversion sequence (meaning that the argument cannot be passed to
4817 /// a parameter of this type). If @p SuppressUserConversions, then we
4818 /// do not permit any user-defined conversion sequences.
4819 static ImplicitConversionSequence
4820 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4821                       bool SuppressUserConversions,
4822                       bool InOverloadResolution,
4823                       bool AllowObjCWritebackConversion,
4824                       bool AllowExplicit) {
4825   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4826     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4827                              InOverloadResolution,AllowObjCWritebackConversion);
4828
4829   if (ToType->isReferenceType())
4830     return TryReferenceInit(S, From, ToType,
4831                             /*FIXME:*/From->getLocStart(),
4832                             SuppressUserConversions,
4833                             AllowExplicit);
4834
4835   return TryImplicitConversion(S, From, ToType,
4836                                SuppressUserConversions,
4837                                /*AllowExplicit=*/false,
4838                                InOverloadResolution,
4839                                /*CStyle=*/false,
4840                                AllowObjCWritebackConversion,
4841                                /*AllowObjCConversionOnExplicit=*/false);
4842 }
4843
4844 static bool TryCopyInitialization(const CanQualType FromQTy,
4845                                   const CanQualType ToQTy,
4846                                   Sema &S,
4847                                   SourceLocation Loc,
4848                                   ExprValueKind FromVK) {
4849   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4850   ImplicitConversionSequence ICS =
4851     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4852
4853   return !ICS.isBad();
4854 }
4855
4856 /// TryObjectArgumentInitialization - Try to initialize the object
4857 /// parameter of the given member function (@c Method) from the
4858 /// expression @p From.
4859 static ImplicitConversionSequence
4860 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
4861                                 Expr::Classification FromClassification,
4862                                 CXXMethodDecl *Method,
4863                                 CXXRecordDecl *ActingContext) {
4864   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4865   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4866   //                 const volatile object.
4867   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4868     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4869   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4870
4871   // Set up the conversion sequence as a "bad" conversion, to allow us
4872   // to exit early.
4873   ImplicitConversionSequence ICS;
4874
4875   // We need to have an object of class type.
4876   if (const PointerType *PT = FromType->getAs<PointerType>()) {
4877     FromType = PT->getPointeeType();
4878
4879     // When we had a pointer, it's implicitly dereferenced, so we
4880     // better have an lvalue.
4881     assert(FromClassification.isLValue());
4882   }
4883
4884   assert(FromType->isRecordType());
4885
4886   // C++0x [over.match.funcs]p4:
4887   //   For non-static member functions, the type of the implicit object
4888   //   parameter is
4889   //
4890   //     - "lvalue reference to cv X" for functions declared without a
4891   //        ref-qualifier or with the & ref-qualifier
4892   //     - "rvalue reference to cv X" for functions declared with the &&
4893   //        ref-qualifier
4894   //
4895   // where X is the class of which the function is a member and cv is the
4896   // cv-qualification on the member function declaration.
4897   //
4898   // However, when finding an implicit conversion sequence for the argument, we
4899   // are not allowed to create temporaries or perform user-defined conversions
4900   // (C++ [over.match.funcs]p5). We perform a simplified version of
4901   // reference binding here, that allows class rvalues to bind to
4902   // non-constant references.
4903
4904   // First check the qualifiers.
4905   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4906   if (ImplicitParamType.getCVRQualifiers()
4907                                     != FromTypeCanon.getLocalCVRQualifiers() &&
4908       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4909     ICS.setBad(BadConversionSequence::bad_qualifiers,
4910                FromType, ImplicitParamType);
4911     return ICS;
4912   }
4913
4914   // Check that we have either the same type or a derived type. It
4915   // affects the conversion rank.
4916   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4917   ImplicitConversionKind SecondKind;
4918   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4919     SecondKind = ICK_Identity;
4920   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
4921     SecondKind = ICK_Derived_To_Base;
4922   else {
4923     ICS.setBad(BadConversionSequence::unrelated_class,
4924                FromType, ImplicitParamType);
4925     return ICS;
4926   }
4927
4928   // Check the ref-qualifier.
4929   switch (Method->getRefQualifier()) {
4930   case RQ_None:
4931     // Do nothing; we don't care about lvalueness or rvalueness.
4932     break;
4933
4934   case RQ_LValue:
4935     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4936       // non-const lvalue reference cannot bind to an rvalue
4937       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4938                  ImplicitParamType);
4939       return ICS;
4940     }
4941     break;
4942
4943   case RQ_RValue:
4944     if (!FromClassification.isRValue()) {
4945       // rvalue reference cannot bind to an lvalue
4946       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4947                  ImplicitParamType);
4948       return ICS;
4949     }
4950     break;
4951   }
4952
4953   // Success. Mark this as a reference binding.
4954   ICS.setStandard();
4955   ICS.Standard.setAsIdentityConversion();
4956   ICS.Standard.Second = SecondKind;
4957   ICS.Standard.setFromType(FromType);
4958   ICS.Standard.setAllToTypes(ImplicitParamType);
4959   ICS.Standard.ReferenceBinding = true;
4960   ICS.Standard.DirectBinding = true;
4961   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4962   ICS.Standard.BindsToFunctionLvalue = false;
4963   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4964   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4965     = (Method->getRefQualifier() == RQ_None);
4966   return ICS;
4967 }
4968
4969 /// PerformObjectArgumentInitialization - Perform initialization of
4970 /// the implicit object parameter for the given Method with the given
4971 /// expression.
4972 ExprResult
4973 Sema::PerformObjectArgumentInitialization(Expr *From,
4974                                           NestedNameSpecifier *Qualifier,
4975                                           NamedDecl *FoundDecl,
4976                                           CXXMethodDecl *Method) {
4977   QualType FromRecordType, DestType;
4978   QualType ImplicitParamRecordType  =
4979     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4980
4981   Expr::Classification FromClassification;
4982   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4983     FromRecordType = PT->getPointeeType();
4984     DestType = Method->getThisType(Context);
4985     FromClassification = Expr::Classification::makeSimpleLValue();
4986   } else {
4987     FromRecordType = From->getType();
4988     DestType = ImplicitParamRecordType;
4989     FromClassification = From->Classify(Context);
4990   }
4991
4992   // Note that we always use the true parent context when performing
4993   // the actual argument initialization.
4994   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
4995       *this, From->getLocStart(), From->getType(), FromClassification, Method,
4996       Method->getParent());
4997   if (ICS.isBad()) {
4998     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4999       Qualifiers FromQs = FromRecordType.getQualifiers();
5000       Qualifiers ToQs = DestType.getQualifiers();
5001       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5002       if (CVR) {
5003         Diag(From->getLocStart(),
5004              diag::err_member_function_call_bad_cvr)
5005           << Method->getDeclName() << FromRecordType << (CVR - 1)
5006           << From->getSourceRange();
5007         Diag(Method->getLocation(), diag::note_previous_decl)
5008           << Method->getDeclName();
5009         return ExprError();
5010       }
5011     }
5012
5013     return Diag(From->getLocStart(),
5014                 diag::err_implicit_object_parameter_init)
5015        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
5016   }
5017
5018   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5019     ExprResult FromRes =
5020       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5021     if (FromRes.isInvalid())
5022       return ExprError();
5023     From = FromRes.get();
5024   }
5025
5026   if (!Context.hasSameType(From->getType(), DestType))
5027     From = ImpCastExprToType(From, DestType, CK_NoOp,
5028                              From->getValueKind()).get();
5029   return From;
5030 }
5031
5032 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5033 /// expression From to bool (C++0x [conv]p3).
5034 static ImplicitConversionSequence
5035 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5036   return TryImplicitConversion(S, From, S.Context.BoolTy,
5037                                /*SuppressUserConversions=*/false,
5038                                /*AllowExplicit=*/true,
5039                                /*InOverloadResolution=*/false,
5040                                /*CStyle=*/false,
5041                                /*AllowObjCWritebackConversion=*/false,
5042                                /*AllowObjCConversionOnExplicit=*/false);
5043 }
5044
5045 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5046 /// of the expression From to bool (C++0x [conv]p3).
5047 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5048   if (checkPlaceholderForOverload(*this, From))
5049     return ExprError();
5050
5051   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5052   if (!ICS.isBad())
5053     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5054
5055   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5056     return Diag(From->getLocStart(),
5057                 diag::err_typecheck_bool_condition)
5058                   << From->getType() << From->getSourceRange();
5059   return ExprError();
5060 }
5061
5062 /// Check that the specified conversion is permitted in a converted constant
5063 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5064 /// is acceptable.
5065 static bool CheckConvertedConstantConversions(Sema &S,
5066                                               StandardConversionSequence &SCS) {
5067   // Since we know that the target type is an integral or unscoped enumeration
5068   // type, most conversion kinds are impossible. All possible First and Third
5069   // conversions are fine.
5070   switch (SCS.Second) {
5071   case ICK_Identity:
5072   case ICK_NoReturn_Adjustment:
5073   case ICK_Integral_Promotion:
5074   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5075     return true;
5076
5077   case ICK_Boolean_Conversion:
5078     // Conversion from an integral or unscoped enumeration type to bool is
5079     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5080     // conversion, so we allow it in a converted constant expression.
5081     //
5082     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5083     // a lot of popular code. We should at least add a warning for this
5084     // (non-conforming) extension.
5085     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5086            SCS.getToType(2)->isBooleanType();
5087
5088   case ICK_Pointer_Conversion:
5089   case ICK_Pointer_Member:
5090     // C++1z: null pointer conversions and null member pointer conversions are
5091     // only permitted if the source type is std::nullptr_t.
5092     return SCS.getFromType()->isNullPtrType();
5093
5094   case ICK_Floating_Promotion:
5095   case ICK_Complex_Promotion:
5096   case ICK_Floating_Conversion:
5097   case ICK_Complex_Conversion:
5098   case ICK_Floating_Integral:
5099   case ICK_Compatible_Conversion:
5100   case ICK_Derived_To_Base:
5101   case ICK_Vector_Conversion:
5102   case ICK_Vector_Splat:
5103   case ICK_Complex_Real:
5104   case ICK_Block_Pointer_Conversion:
5105   case ICK_TransparentUnionConversion:
5106   case ICK_Writeback_Conversion:
5107   case ICK_Zero_Event_Conversion:
5108   case ICK_C_Only_Conversion:
5109     return false;
5110
5111   case ICK_Lvalue_To_Rvalue:
5112   case ICK_Array_To_Pointer:
5113   case ICK_Function_To_Pointer:
5114     llvm_unreachable("found a first conversion kind in Second");
5115
5116   case ICK_Qualification:
5117     llvm_unreachable("found a third conversion kind in Second");
5118
5119   case ICK_Num_Conversion_Kinds:
5120     break;
5121   }
5122
5123   llvm_unreachable("unknown conversion kind");
5124 }
5125
5126 /// CheckConvertedConstantExpression - Check that the expression From is a
5127 /// converted constant expression of type T, perform the conversion and produce
5128 /// the converted expression, per C++11 [expr.const]p3.
5129 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5130                                                    QualType T, APValue &Value,
5131                                                    Sema::CCEKind CCE,
5132                                                    bool RequireInt) {
5133   assert(S.getLangOpts().CPlusPlus11 &&
5134          "converted constant expression outside C++11");
5135
5136   if (checkPlaceholderForOverload(S, From))
5137     return ExprError();
5138
5139   // C++1z [expr.const]p3:
5140   //  A converted constant expression of type T is an expression,
5141   //  implicitly converted to type T, where the converted
5142   //  expression is a constant expression and the implicit conversion
5143   //  sequence contains only [... list of conversions ...].
5144   ImplicitConversionSequence ICS =
5145     TryCopyInitialization(S, From, T,
5146                           /*SuppressUserConversions=*/false,
5147                           /*InOverloadResolution=*/false,
5148                           /*AllowObjcWritebackConversion=*/false,
5149                           /*AllowExplicit=*/false);
5150   StandardConversionSequence *SCS = nullptr;
5151   switch (ICS.getKind()) {
5152   case ImplicitConversionSequence::StandardConversion:
5153     SCS = &ICS.Standard;
5154     break;
5155   case ImplicitConversionSequence::UserDefinedConversion:
5156     // We are converting to a non-class type, so the Before sequence
5157     // must be trivial.
5158     SCS = &ICS.UserDefined.After;
5159     break;
5160   case ImplicitConversionSequence::AmbiguousConversion:
5161   case ImplicitConversionSequence::BadConversion:
5162     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5163       return S.Diag(From->getLocStart(),
5164                     diag::err_typecheck_converted_constant_expression)
5165                 << From->getType() << From->getSourceRange() << T;
5166     return ExprError();
5167
5168   case ImplicitConversionSequence::EllipsisConversion:
5169     llvm_unreachable("ellipsis conversion in converted constant expression");
5170   }
5171
5172   // Check that we would only use permitted conversions.
5173   if (!CheckConvertedConstantConversions(S, *SCS)) {
5174     return S.Diag(From->getLocStart(),
5175                   diag::err_typecheck_converted_constant_expression_disallowed)
5176              << From->getType() << From->getSourceRange() << T;
5177   }
5178   // [...] and where the reference binding (if any) binds directly.
5179   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5180     return S.Diag(From->getLocStart(),
5181                   diag::err_typecheck_converted_constant_expression_indirect)
5182              << From->getType() << From->getSourceRange() << T;
5183   }
5184
5185   ExprResult Result =
5186       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5187   if (Result.isInvalid())
5188     return Result;
5189
5190   // Check for a narrowing implicit conversion.
5191   APValue PreNarrowingValue;
5192   QualType PreNarrowingType;
5193   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5194                                 PreNarrowingType)) {
5195   case NK_Variable_Narrowing:
5196     // Implicit conversion to a narrower type, and the value is not a constant
5197     // expression. We'll diagnose this in a moment.
5198   case NK_Not_Narrowing:
5199     break;
5200
5201   case NK_Constant_Narrowing:
5202     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5203       << CCE << /*Constant*/1
5204       << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5205     break;
5206
5207   case NK_Type_Narrowing:
5208     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5209       << CCE << /*Constant*/0 << From->getType() << T;
5210     break;
5211   }
5212
5213   // Check the expression is a constant expression.
5214   SmallVector<PartialDiagnosticAt, 8> Notes;
5215   Expr::EvalResult Eval;
5216   Eval.Diag = &Notes;
5217
5218   if ((T->isReferenceType()
5219            ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
5220            : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
5221       (RequireInt && !Eval.Val.isInt())) {
5222     // The expression can't be folded, so we can't keep it at this position in
5223     // the AST.
5224     Result = ExprError();
5225   } else {
5226     Value = Eval.Val;
5227
5228     if (Notes.empty()) {
5229       // It's a constant expression.
5230       return Result;
5231     }
5232   }
5233
5234   // It's not a constant expression. Produce an appropriate diagnostic.
5235   if (Notes.size() == 1 &&
5236       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5237     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5238   else {
5239     S.Diag(From->getLocStart(), diag::err_expr_not_cce)
5240       << CCE << From->getSourceRange();
5241     for (unsigned I = 0; I < Notes.size(); ++I)
5242       S.Diag(Notes[I].first, Notes[I].second);
5243   }
5244   return ExprError();
5245 }
5246
5247 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5248                                                   APValue &Value, CCEKind CCE) {
5249   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5250 }
5251
5252 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5253                                                   llvm::APSInt &Value,
5254                                                   CCEKind CCE) {
5255   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5256
5257   APValue V;
5258   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5259   if (!R.isInvalid())
5260     Value = V.getInt();
5261   return R;
5262 }
5263
5264
5265 /// dropPointerConversions - If the given standard conversion sequence
5266 /// involves any pointer conversions, remove them.  This may change
5267 /// the result type of the conversion sequence.
5268 static void dropPointerConversion(StandardConversionSequence &SCS) {
5269   if (SCS.Second == ICK_Pointer_Conversion) {
5270     SCS.Second = ICK_Identity;
5271     SCS.Third = ICK_Identity;
5272     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5273   }
5274 }
5275
5276 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5277 /// convert the expression From to an Objective-C pointer type.
5278 static ImplicitConversionSequence
5279 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5280   // Do an implicit conversion to 'id'.
5281   QualType Ty = S.Context.getObjCIdType();
5282   ImplicitConversionSequence ICS
5283     = TryImplicitConversion(S, From, Ty,
5284                             // FIXME: Are these flags correct?
5285                             /*SuppressUserConversions=*/false,
5286                             /*AllowExplicit=*/true,
5287                             /*InOverloadResolution=*/false,
5288                             /*CStyle=*/false,
5289                             /*AllowObjCWritebackConversion=*/false,
5290                             /*AllowObjCConversionOnExplicit=*/true);
5291
5292   // Strip off any final conversions to 'id'.
5293   switch (ICS.getKind()) {
5294   case ImplicitConversionSequence::BadConversion:
5295   case ImplicitConversionSequence::AmbiguousConversion:
5296   case ImplicitConversionSequence::EllipsisConversion:
5297     break;
5298
5299   case ImplicitConversionSequence::UserDefinedConversion:
5300     dropPointerConversion(ICS.UserDefined.After);
5301     break;
5302
5303   case ImplicitConversionSequence::StandardConversion:
5304     dropPointerConversion(ICS.Standard);
5305     break;
5306   }
5307
5308   return ICS;
5309 }
5310
5311 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5312 /// conversion of the expression From to an Objective-C pointer type.
5313 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5314   if (checkPlaceholderForOverload(*this, From))
5315     return ExprError();
5316
5317   QualType Ty = Context.getObjCIdType();
5318   ImplicitConversionSequence ICS =
5319     TryContextuallyConvertToObjCPointer(*this, From);
5320   if (!ICS.isBad())
5321     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5322   return ExprError();
5323 }
5324
5325 /// Determine whether the provided type is an integral type, or an enumeration
5326 /// type of a permitted flavor.
5327 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5328   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5329                                  : T->isIntegralOrUnscopedEnumerationType();
5330 }
5331
5332 static ExprResult
5333 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5334                             Sema::ContextualImplicitConverter &Converter,
5335                             QualType T, UnresolvedSetImpl &ViableConversions) {
5336
5337   if (Converter.Suppress)
5338     return ExprError();
5339
5340   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5341   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5342     CXXConversionDecl *Conv =
5343         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5344     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5345     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5346   }
5347   return From;
5348 }
5349
5350 static bool
5351 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5352                            Sema::ContextualImplicitConverter &Converter,
5353                            QualType T, bool HadMultipleCandidates,
5354                            UnresolvedSetImpl &ExplicitConversions) {
5355   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5356     DeclAccessPair Found = ExplicitConversions[0];
5357     CXXConversionDecl *Conversion =
5358         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5359
5360     // The user probably meant to invoke the given explicit
5361     // conversion; use it.
5362     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5363     std::string TypeStr;
5364     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5365
5366     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5367         << FixItHint::CreateInsertion(From->getLocStart(),
5368                                       "static_cast<" + TypeStr + ">(")
5369         << FixItHint::CreateInsertion(
5370                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
5371     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5372
5373     // If we aren't in a SFINAE context, build a call to the
5374     // explicit conversion function.
5375     if (SemaRef.isSFINAEContext())
5376       return true;
5377
5378     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5379     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5380                                                        HadMultipleCandidates);
5381     if (Result.isInvalid())
5382       return true;
5383     // Record usage of conversion in an implicit cast.
5384     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5385                                     CK_UserDefinedConversion, Result.get(),
5386                                     nullptr, Result.get()->getValueKind());
5387   }
5388   return false;
5389 }
5390
5391 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5392                              Sema::ContextualImplicitConverter &Converter,
5393                              QualType T, bool HadMultipleCandidates,
5394                              DeclAccessPair &Found) {
5395   CXXConversionDecl *Conversion =
5396       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5397   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5398
5399   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5400   if (!Converter.SuppressConversion) {
5401     if (SemaRef.isSFINAEContext())
5402       return true;
5403
5404     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5405         << From->getSourceRange();
5406   }
5407
5408   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5409                                                      HadMultipleCandidates);
5410   if (Result.isInvalid())
5411     return true;
5412   // Record usage of conversion in an implicit cast.
5413   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5414                                   CK_UserDefinedConversion, Result.get(),
5415                                   nullptr, Result.get()->getValueKind());
5416   return false;
5417 }
5418
5419 static ExprResult finishContextualImplicitConversion(
5420     Sema &SemaRef, SourceLocation Loc, Expr *From,
5421     Sema::ContextualImplicitConverter &Converter) {
5422   if (!Converter.match(From->getType()) && !Converter.Suppress)
5423     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5424         << From->getSourceRange();
5425
5426   return SemaRef.DefaultLvalueConversion(From);
5427 }
5428
5429 static void
5430 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5431                                   UnresolvedSetImpl &ViableConversions,
5432                                   OverloadCandidateSet &CandidateSet) {
5433   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5434     DeclAccessPair FoundDecl = ViableConversions[I];
5435     NamedDecl *D = FoundDecl.getDecl();
5436     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5437     if (isa<UsingShadowDecl>(D))
5438       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5439
5440     CXXConversionDecl *Conv;
5441     FunctionTemplateDecl *ConvTemplate;
5442     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5443       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5444     else
5445       Conv = cast<CXXConversionDecl>(D);
5446
5447     if (ConvTemplate)
5448       SemaRef.AddTemplateConversionCandidate(
5449         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5450         /*AllowObjCConversionOnExplicit=*/false);
5451     else
5452       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5453                                      ToType, CandidateSet,
5454                                      /*AllowObjCConversionOnExplicit=*/false);
5455   }
5456 }
5457
5458 /// \brief Attempt to convert the given expression to a type which is accepted
5459 /// by the given converter.
5460 ///
5461 /// This routine will attempt to convert an expression of class type to a
5462 /// type accepted by the specified converter. In C++11 and before, the class
5463 /// must have a single non-explicit conversion function converting to a matching
5464 /// type. In C++1y, there can be multiple such conversion functions, but only
5465 /// one target type.
5466 ///
5467 /// \param Loc The source location of the construct that requires the
5468 /// conversion.
5469 ///
5470 /// \param From The expression we're converting from.
5471 ///
5472 /// \param Converter Used to control and diagnose the conversion process.
5473 ///
5474 /// \returns The expression, converted to an integral or enumeration type if
5475 /// successful.
5476 ExprResult Sema::PerformContextualImplicitConversion(
5477     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5478   // We can't perform any more checking for type-dependent expressions.
5479   if (From->isTypeDependent())
5480     return From;
5481
5482   // Process placeholders immediately.
5483   if (From->hasPlaceholderType()) {
5484     ExprResult result = CheckPlaceholderExpr(From);
5485     if (result.isInvalid())
5486       return result;
5487     From = result.get();
5488   }
5489
5490   // If the expression already has a matching type, we're golden.
5491   QualType T = From->getType();
5492   if (Converter.match(T))
5493     return DefaultLvalueConversion(From);
5494
5495   // FIXME: Check for missing '()' if T is a function type?
5496
5497   // We can only perform contextual implicit conversions on objects of class
5498   // type.
5499   const RecordType *RecordTy = T->getAs<RecordType>();
5500   if (!RecordTy || !getLangOpts().CPlusPlus) {
5501     if (!Converter.Suppress)
5502       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5503     return From;
5504   }
5505
5506   // We must have a complete class type.
5507   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5508     ContextualImplicitConverter &Converter;
5509     Expr *From;
5510
5511     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5512         : Converter(Converter), From(From) {}
5513
5514     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5515       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5516     }
5517   } IncompleteDiagnoser(Converter, From);
5518
5519   if (Converter.Suppress ? !isCompleteType(Loc, T)
5520                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5521     return From;
5522
5523   // Look for a conversion to an integral or enumeration type.
5524   UnresolvedSet<4>
5525       ViableConversions; // These are *potentially* viable in C++1y.
5526   UnresolvedSet<4> ExplicitConversions;
5527   const auto &Conversions =
5528       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5529
5530   bool HadMultipleCandidates =
5531       (std::distance(Conversions.begin(), Conversions.end()) > 1);
5532
5533   // To check that there is only one target type, in C++1y:
5534   QualType ToType;
5535   bool HasUniqueTargetType = true;
5536
5537   // Collect explicit or viable (potentially in C++1y) conversions.
5538   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5539     NamedDecl *D = (*I)->getUnderlyingDecl();
5540     CXXConversionDecl *Conversion;
5541     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5542     if (ConvTemplate) {
5543       if (getLangOpts().CPlusPlus14)
5544         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5545       else
5546         continue; // C++11 does not consider conversion operator templates(?).
5547     } else
5548       Conversion = cast<CXXConversionDecl>(D);
5549
5550     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5551            "Conversion operator templates are considered potentially "
5552            "viable in C++1y");
5553
5554     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5555     if (Converter.match(CurToType) || ConvTemplate) {
5556
5557       if (Conversion->isExplicit()) {
5558         // FIXME: For C++1y, do we need this restriction?
5559         // cf. diagnoseNoViableConversion()
5560         if (!ConvTemplate)
5561           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5562       } else {
5563         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5564           if (ToType.isNull())
5565             ToType = CurToType.getUnqualifiedType();
5566           else if (HasUniqueTargetType &&
5567                    (CurToType.getUnqualifiedType() != ToType))
5568             HasUniqueTargetType = false;
5569         }
5570         ViableConversions.addDecl(I.getDecl(), I.getAccess());
5571       }
5572     }
5573   }
5574
5575   if (getLangOpts().CPlusPlus14) {
5576     // C++1y [conv]p6:
5577     // ... An expression e of class type E appearing in such a context
5578     // is said to be contextually implicitly converted to a specified
5579     // type T and is well-formed if and only if e can be implicitly
5580     // converted to a type T that is determined as follows: E is searched
5581     // for conversion functions whose return type is cv T or reference to
5582     // cv T such that T is allowed by the context. There shall be
5583     // exactly one such T.
5584
5585     // If no unique T is found:
5586     if (ToType.isNull()) {
5587       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5588                                      HadMultipleCandidates,
5589                                      ExplicitConversions))
5590         return ExprError();
5591       return finishContextualImplicitConversion(*this, Loc, From, Converter);
5592     }
5593
5594     // If more than one unique Ts are found:
5595     if (!HasUniqueTargetType)
5596       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5597                                          ViableConversions);
5598
5599     // If one unique T is found:
5600     // First, build a candidate set from the previously recorded
5601     // potentially viable conversions.
5602     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5603     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5604                                       CandidateSet);
5605
5606     // Then, perform overload resolution over the candidate set.
5607     OverloadCandidateSet::iterator Best;
5608     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5609     case OR_Success: {
5610       // Apply this conversion.
5611       DeclAccessPair Found =
5612           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5613       if (recordConversion(*this, Loc, From, Converter, T,
5614                            HadMultipleCandidates, Found))
5615         return ExprError();
5616       break;
5617     }
5618     case OR_Ambiguous:
5619       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5620                                          ViableConversions);
5621     case OR_No_Viable_Function:
5622       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5623                                      HadMultipleCandidates,
5624                                      ExplicitConversions))
5625         return ExprError();
5626     // fall through 'OR_Deleted' case.
5627     case OR_Deleted:
5628       // We'll complain below about a non-integral condition type.
5629       break;
5630     }
5631   } else {
5632     switch (ViableConversions.size()) {
5633     case 0: {
5634       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5635                                      HadMultipleCandidates,
5636                                      ExplicitConversions))
5637         return ExprError();
5638
5639       // We'll complain below about a non-integral condition type.
5640       break;
5641     }
5642     case 1: {
5643       // Apply this conversion.
5644       DeclAccessPair Found = ViableConversions[0];
5645       if (recordConversion(*this, Loc, From, Converter, T,
5646                            HadMultipleCandidates, Found))
5647         return ExprError();
5648       break;
5649     }
5650     default:
5651       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5652                                          ViableConversions);
5653     }
5654   }
5655
5656   return finishContextualImplicitConversion(*this, Loc, From, Converter);
5657 }
5658
5659 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5660 /// an acceptable non-member overloaded operator for a call whose
5661 /// arguments have types T1 (and, if non-empty, T2). This routine
5662 /// implements the check in C++ [over.match.oper]p3b2 concerning
5663 /// enumeration types.
5664 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5665                                                    FunctionDecl *Fn,
5666                                                    ArrayRef<Expr *> Args) {
5667   QualType T1 = Args[0]->getType();
5668   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5669
5670   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5671     return true;
5672
5673   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5674     return true;
5675
5676   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5677   if (Proto->getNumParams() < 1)
5678     return false;
5679
5680   if (T1->isEnumeralType()) {
5681     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5682     if (Context.hasSameUnqualifiedType(T1, ArgType))
5683       return true;
5684   }
5685
5686   if (Proto->getNumParams() < 2)
5687     return false;
5688
5689   if (!T2.isNull() && T2->isEnumeralType()) {
5690     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5691     if (Context.hasSameUnqualifiedType(T2, ArgType))
5692       return true;
5693   }
5694
5695   return false;
5696 }
5697
5698 /// AddOverloadCandidate - Adds the given function to the set of
5699 /// candidate functions, using the given function call arguments.  If
5700 /// @p SuppressUserConversions, then don't allow user-defined
5701 /// conversions via constructors or conversion operators.
5702 ///
5703 /// \param PartialOverloading true if we are performing "partial" overloading
5704 /// based on an incomplete set of function arguments. This feature is used by
5705 /// code completion.
5706 void
5707 Sema::AddOverloadCandidate(FunctionDecl *Function,
5708                            DeclAccessPair FoundDecl,
5709                            ArrayRef<Expr *> Args,
5710                            OverloadCandidateSet &CandidateSet,
5711                            bool SuppressUserConversions,
5712                            bool PartialOverloading,
5713                            bool AllowExplicit) {
5714   const FunctionProtoType *Proto
5715     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5716   assert(Proto && "Functions without a prototype cannot be overloaded");
5717   assert(!Function->getDescribedFunctionTemplate() &&
5718          "Use AddTemplateOverloadCandidate for function templates");
5719
5720   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5721     if (!isa<CXXConstructorDecl>(Method)) {
5722       // If we get here, it's because we're calling a member function
5723       // that is named without a member access expression (e.g.,
5724       // "this->f") that was either written explicitly or created
5725       // implicitly. This can happen with a qualified call to a member
5726       // function, e.g., X::f(). We use an empty type for the implied
5727       // object argument (C++ [over.call.func]p3), and the acting context
5728       // is irrelevant.
5729       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5730                          QualType(), Expr::Classification::makeSimpleLValue(),
5731                          Args, CandidateSet, SuppressUserConversions,
5732                          PartialOverloading);
5733       return;
5734     }
5735     // We treat a constructor like a non-member function, since its object
5736     // argument doesn't participate in overload resolution.
5737   }
5738
5739   if (!CandidateSet.isNewCandidate(Function))
5740     return;
5741
5742   // C++ [over.match.oper]p3:
5743   //   if no operand has a class type, only those non-member functions in the
5744   //   lookup set that have a first parameter of type T1 or "reference to
5745   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
5746   //   is a right operand) a second parameter of type T2 or "reference to
5747   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
5748   //   candidate functions.
5749   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
5750       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
5751     return;
5752
5753   // C++11 [class.copy]p11: [DR1402]
5754   //   A defaulted move constructor that is defined as deleted is ignored by
5755   //   overload resolution.
5756   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
5757   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
5758       Constructor->isMoveConstructor())
5759     return;
5760
5761   // Overload resolution is always an unevaluated context.
5762   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5763
5764   // Add this candidate
5765   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5766   Candidate.FoundDecl = FoundDecl;
5767   Candidate.Function = Function;
5768   Candidate.Viable = true;
5769   Candidate.IsSurrogate = false;
5770   Candidate.IgnoreObjectArgument = false;
5771   Candidate.ExplicitCallArguments = Args.size();
5772
5773   if (Constructor) {
5774     // C++ [class.copy]p3:
5775     //   A member function template is never instantiated to perform the copy
5776     //   of a class object to an object of its class type.
5777     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5778     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
5779         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5780          IsDerivedFrom(Args[0]->getLocStart(), Args[0]->getType(),
5781                        ClassType))) {
5782       Candidate.Viable = false;
5783       Candidate.FailureKind = ovl_fail_illegal_constructor;
5784       return;
5785     }
5786   }
5787
5788   unsigned NumParams = Proto->getNumParams();
5789
5790   // (C++ 13.3.2p2): A candidate function having fewer than m
5791   // parameters is viable only if it has an ellipsis in its parameter
5792   // list (8.3.5).
5793   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
5794       !Proto->isVariadic()) {
5795     Candidate.Viable = false;
5796     Candidate.FailureKind = ovl_fail_too_many_arguments;
5797     return;
5798   }
5799
5800   // (C++ 13.3.2p2): A candidate function having more than m parameters
5801   // is viable only if the (m+1)st parameter has a default argument
5802   // (8.3.6). For the purposes of overload resolution, the
5803   // parameter list is truncated on the right, so that there are
5804   // exactly m parameters.
5805   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5806   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5807     // Not enough arguments.
5808     Candidate.Viable = false;
5809     Candidate.FailureKind = ovl_fail_too_few_arguments;
5810     return;
5811   }
5812
5813   // (CUDA B.1): Check for invalid calls between targets.
5814   if (getLangOpts().CUDA)
5815     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5816       // Skip the check for callers that are implicit members, because in this
5817       // case we may not yet know what the member's target is; the target is
5818       // inferred for the member automatically, based on the bases and fields of
5819       // the class.
5820       if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
5821         Candidate.Viable = false;
5822         Candidate.FailureKind = ovl_fail_bad_target;
5823         return;
5824       }
5825
5826   // Determine the implicit conversion sequences for each of the
5827   // arguments.
5828   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5829     if (ArgIdx < NumParams) {
5830       // (C++ 13.3.2p3): for F to be a viable function, there shall
5831       // exist for each argument an implicit conversion sequence
5832       // (13.3.3.1) that converts that argument to the corresponding
5833       // parameter of F.
5834       QualType ParamType = Proto->getParamType(ArgIdx);
5835       Candidate.Conversions[ArgIdx]
5836         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5837                                 SuppressUserConversions,
5838                                 /*InOverloadResolution=*/true,
5839                                 /*AllowObjCWritebackConversion=*/
5840                                   getLangOpts().ObjCAutoRefCount,
5841                                 AllowExplicit);
5842       if (Candidate.Conversions[ArgIdx].isBad()) {
5843         Candidate.Viable = false;
5844         Candidate.FailureKind = ovl_fail_bad_conversion;
5845         return;
5846       }
5847     } else {
5848       // (C++ 13.3.2p2): For the purposes of overload resolution, any
5849       // argument for which there is no corresponding parameter is
5850       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5851       Candidate.Conversions[ArgIdx].setEllipsis();
5852     }
5853   }
5854
5855   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
5856     Candidate.Viable = false;
5857     Candidate.FailureKind = ovl_fail_enable_if;
5858     Candidate.DeductionFailure.Data = FailedAttr;
5859     return;
5860   }
5861 }
5862
5863 ObjCMethodDecl *
5864 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
5865                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
5866   if (Methods.size() <= 1)
5867     return nullptr;
5868
5869   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5870     bool Match = true;
5871     ObjCMethodDecl *Method = Methods[b];
5872     unsigned NumNamedArgs = Sel.getNumArgs();
5873     // Method might have more arguments than selector indicates. This is due
5874     // to addition of c-style arguments in method.
5875     if (Method->param_size() > NumNamedArgs)
5876       NumNamedArgs = Method->param_size();
5877     if (Args.size() < NumNamedArgs)
5878       continue;
5879             
5880     for (unsigned i = 0; i < NumNamedArgs; i++) {
5881       // We can't do any type-checking on a type-dependent argument.
5882       if (Args[i]->isTypeDependent()) {
5883         Match = false;
5884         break;
5885       }
5886         
5887       ParmVarDecl *param = Method->parameters()[i];
5888       Expr *argExpr = Args[i];
5889       assert(argExpr && "SelectBestMethod(): missing expression");
5890                 
5891       // Strip the unbridged-cast placeholder expression off unless it's
5892       // a consumed argument.
5893       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
5894           !param->hasAttr<CFConsumedAttr>())
5895         argExpr = stripARCUnbridgedCast(argExpr);
5896                 
5897       // If the parameter is __unknown_anytype, move on to the next method.
5898       if (param->getType() == Context.UnknownAnyTy) {
5899         Match = false;
5900         break;
5901       }
5902
5903       ImplicitConversionSequence ConversionState
5904         = TryCopyInitialization(*this, argExpr, param->getType(),
5905                                 /*SuppressUserConversions*/false,
5906                                 /*InOverloadResolution=*/true,
5907                                 /*AllowObjCWritebackConversion=*/
5908                                 getLangOpts().ObjCAutoRefCount,
5909                                 /*AllowExplicit*/false);
5910         if (ConversionState.isBad()) {
5911           Match = false;
5912           break;
5913         }
5914     }
5915     // Promote additional arguments to variadic methods.
5916     if (Match && Method->isVariadic()) {
5917       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
5918         if (Args[i]->isTypeDependent()) {
5919           Match = false;
5920           break;
5921         }
5922         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
5923                                                           nullptr);
5924         if (Arg.isInvalid()) {
5925           Match = false;
5926           break;
5927         }
5928       }
5929     } else {
5930       // Check for extra arguments to non-variadic methods.
5931       if (Args.size() != NumNamedArgs)
5932         Match = false;
5933       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
5934         // Special case when selectors have no argument. In this case, select
5935         // one with the most general result type of 'id'.
5936         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5937           QualType ReturnT = Methods[b]->getReturnType();
5938           if (ReturnT->isObjCIdType())
5939             return Methods[b];
5940         }
5941       }
5942     }
5943
5944     if (Match)
5945       return Method;
5946   }
5947   return nullptr;
5948 }
5949
5950 // specific_attr_iterator iterates over enable_if attributes in reverse, and
5951 // enable_if is order-sensitive. As a result, we need to reverse things
5952 // sometimes. Size of 4 elements is arbitrary.
5953 static SmallVector<EnableIfAttr *, 4>
5954 getOrderedEnableIfAttrs(const FunctionDecl *Function) {
5955   SmallVector<EnableIfAttr *, 4> Result;
5956   if (!Function->hasAttrs())
5957     return Result;
5958
5959   const auto &FuncAttrs = Function->getAttrs();
5960   for (Attr *Attr : FuncAttrs)
5961     if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr))
5962       Result.push_back(EnableIf);
5963
5964   std::reverse(Result.begin(), Result.end());
5965   return Result;
5966 }
5967
5968 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
5969                                   bool MissingImplicitThis) {
5970   auto EnableIfAttrs = getOrderedEnableIfAttrs(Function);
5971   if (EnableIfAttrs.empty())
5972     return nullptr;
5973
5974   SFINAETrap Trap(*this);
5975   SmallVector<Expr *, 16> ConvertedArgs;
5976   bool InitializationFailed = false;
5977
5978   // Convert the arguments.
5979   for (unsigned I = 0, E = Args.size(); I != E; ++I) {
5980     ExprResult R;
5981     if (I == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
5982         !cast<CXXMethodDecl>(Function)->isStatic() &&
5983         !isa<CXXConstructorDecl>(Function)) {
5984       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
5985       R = PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
5986                                               Method, Method);
5987     } else {
5988       R = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5989                                         Context, Function->getParamDecl(I)),
5990                                     SourceLocation(), Args[I]);
5991     }
5992
5993     if (R.isInvalid()) {
5994       InitializationFailed = true;
5995       break;
5996     }
5997
5998     ConvertedArgs.push_back(R.get());
5999   }
6000
6001   if (InitializationFailed || Trap.hasErrorOccurred())
6002     return EnableIfAttrs[0];
6003
6004   // Push default arguments if needed.
6005   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6006     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6007       ParmVarDecl *P = Function->getParamDecl(i);
6008       ExprResult R = PerformCopyInitialization(
6009           InitializedEntity::InitializeParameter(Context,
6010                                                  Function->getParamDecl(i)),
6011           SourceLocation(),
6012           P->hasUninstantiatedDefaultArg() ? P->getUninstantiatedDefaultArg()
6013                                            : P->getDefaultArg());
6014       if (R.isInvalid()) {
6015         InitializationFailed = true;
6016         break;
6017       }
6018       ConvertedArgs.push_back(R.get());
6019     }
6020
6021     if (InitializationFailed || Trap.hasErrorOccurred())
6022       return EnableIfAttrs[0];
6023   }
6024
6025   for (auto *EIA : EnableIfAttrs) {
6026     APValue Result;
6027     // FIXME: This doesn't consider value-dependent cases, because doing so is
6028     // very difficult. Ideally, we should handle them more gracefully.
6029     if (!EIA->getCond()->EvaluateWithSubstitution(
6030             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6031       return EIA;
6032
6033     if (!Result.isInt() || !Result.getInt().getBoolValue())
6034       return EIA;
6035   }
6036   return nullptr;
6037 }
6038
6039 /// \brief Add all of the function declarations in the given function set to
6040 /// the overload candidate set.
6041 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6042                                  ArrayRef<Expr *> Args,
6043                                  OverloadCandidateSet& CandidateSet,
6044                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6045                                  bool SuppressUserConversions,
6046                                  bool PartialOverloading) {
6047   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6048     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6049     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6050       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
6051         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6052                            cast<CXXMethodDecl>(FD)->getParent(),
6053                            Args[0]->getType(), Args[0]->Classify(Context),
6054                            Args.slice(1), CandidateSet,
6055                            SuppressUserConversions, PartialOverloading);
6056       else
6057         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
6058                              SuppressUserConversions, PartialOverloading);
6059     } else {
6060       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
6061       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
6062           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
6063         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
6064                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6065                                    ExplicitTemplateArgs,
6066                                    Args[0]->getType(),
6067                                    Args[0]->Classify(Context), Args.slice(1),
6068                                    CandidateSet, SuppressUserConversions,
6069                                    PartialOverloading);
6070       else
6071         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6072                                      ExplicitTemplateArgs, Args,
6073                                      CandidateSet, SuppressUserConversions,
6074                                      PartialOverloading);
6075     }
6076   }
6077 }
6078
6079 /// AddMethodCandidate - Adds a named decl (which is some kind of
6080 /// method) as a method candidate to the given overload set.
6081 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6082                               QualType ObjectType,
6083                               Expr::Classification ObjectClassification,
6084                               ArrayRef<Expr *> Args,
6085                               OverloadCandidateSet& CandidateSet,
6086                               bool SuppressUserConversions) {
6087   NamedDecl *Decl = FoundDecl.getDecl();
6088   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6089
6090   if (isa<UsingShadowDecl>(Decl))
6091     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6092
6093   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6094     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6095            "Expected a member function template");
6096     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6097                                /*ExplicitArgs*/ nullptr,
6098                                ObjectType, ObjectClassification,
6099                                Args, CandidateSet,
6100                                SuppressUserConversions);
6101   } else {
6102     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6103                        ObjectType, ObjectClassification,
6104                        Args,
6105                        CandidateSet, SuppressUserConversions);
6106   }
6107 }
6108
6109 /// AddMethodCandidate - Adds the given C++ member function to the set
6110 /// of candidate functions, using the given function call arguments
6111 /// and the object argument (@c Object). For example, in a call
6112 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6113 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6114 /// allow user-defined conversions via constructors or conversion
6115 /// operators.
6116 void
6117 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6118                          CXXRecordDecl *ActingContext, QualType ObjectType,
6119                          Expr::Classification ObjectClassification,
6120                          ArrayRef<Expr *> Args,
6121                          OverloadCandidateSet &CandidateSet,
6122                          bool SuppressUserConversions,
6123                          bool PartialOverloading) {
6124   const FunctionProtoType *Proto
6125     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6126   assert(Proto && "Methods without a prototype cannot be overloaded");
6127   assert(!isa<CXXConstructorDecl>(Method) &&
6128          "Use AddOverloadCandidate for constructors");
6129
6130   if (!CandidateSet.isNewCandidate(Method))
6131     return;
6132
6133   // C++11 [class.copy]p23: [DR1402]
6134   //   A defaulted move assignment operator that is defined as deleted is
6135   //   ignored by overload resolution.
6136   if (Method->isDefaulted() && Method->isDeleted() &&
6137       Method->isMoveAssignmentOperator())
6138     return;
6139
6140   // Overload resolution is always an unevaluated context.
6141   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6142
6143   // Add this candidate
6144   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6145   Candidate.FoundDecl = FoundDecl;
6146   Candidate.Function = Method;
6147   Candidate.IsSurrogate = false;
6148   Candidate.IgnoreObjectArgument = false;
6149   Candidate.ExplicitCallArguments = Args.size();
6150
6151   unsigned NumParams = Proto->getNumParams();
6152
6153   // (C++ 13.3.2p2): A candidate function having fewer than m
6154   // parameters is viable only if it has an ellipsis in its parameter
6155   // list (8.3.5).
6156   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6157       !Proto->isVariadic()) {
6158     Candidate.Viable = false;
6159     Candidate.FailureKind = ovl_fail_too_many_arguments;
6160     return;
6161   }
6162
6163   // (C++ 13.3.2p2): A candidate function having more than m parameters
6164   // is viable only if the (m+1)st parameter has a default argument
6165   // (8.3.6). For the purposes of overload resolution, the
6166   // parameter list is truncated on the right, so that there are
6167   // exactly m parameters.
6168   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6169   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6170     // Not enough arguments.
6171     Candidate.Viable = false;
6172     Candidate.FailureKind = ovl_fail_too_few_arguments;
6173     return;
6174   }
6175
6176   Candidate.Viable = true;
6177
6178   if (Method->isStatic() || ObjectType.isNull())
6179     // The implicit object argument is ignored.
6180     Candidate.IgnoreObjectArgument = true;
6181   else {
6182     // Determine the implicit conversion sequence for the object
6183     // parameter.
6184     Candidate.Conversions[0] = TryObjectArgumentInitialization(
6185         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6186         Method, ActingContext);
6187     if (Candidate.Conversions[0].isBad()) {
6188       Candidate.Viable = false;
6189       Candidate.FailureKind = ovl_fail_bad_conversion;
6190       return;
6191     }
6192   }
6193
6194   // (CUDA B.1): Check for invalid calls between targets.
6195   if (getLangOpts().CUDA)
6196     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6197       if (CheckCUDATarget(Caller, Method)) {
6198         Candidate.Viable = false;
6199         Candidate.FailureKind = ovl_fail_bad_target;
6200         return;
6201       }
6202
6203   // Determine the implicit conversion sequences for each of the
6204   // arguments.
6205   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6206     if (ArgIdx < NumParams) {
6207       // (C++ 13.3.2p3): for F to be a viable function, there shall
6208       // exist for each argument an implicit conversion sequence
6209       // (13.3.3.1) that converts that argument to the corresponding
6210       // parameter of F.
6211       QualType ParamType = Proto->getParamType(ArgIdx);
6212       Candidate.Conversions[ArgIdx + 1]
6213         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6214                                 SuppressUserConversions,
6215                                 /*InOverloadResolution=*/true,
6216                                 /*AllowObjCWritebackConversion=*/
6217                                   getLangOpts().ObjCAutoRefCount);
6218       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6219         Candidate.Viable = false;
6220         Candidate.FailureKind = ovl_fail_bad_conversion;
6221         return;
6222       }
6223     } else {
6224       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6225       // argument for which there is no corresponding parameter is
6226       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6227       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6228     }
6229   }
6230
6231   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6232     Candidate.Viable = false;
6233     Candidate.FailureKind = ovl_fail_enable_if;
6234     Candidate.DeductionFailure.Data = FailedAttr;
6235     return;
6236   }
6237 }
6238
6239 /// \brief Add a C++ member function template as a candidate to the candidate
6240 /// set, using template argument deduction to produce an appropriate member
6241 /// function template specialization.
6242 void
6243 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6244                                  DeclAccessPair FoundDecl,
6245                                  CXXRecordDecl *ActingContext,
6246                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6247                                  QualType ObjectType,
6248                                  Expr::Classification ObjectClassification,
6249                                  ArrayRef<Expr *> Args,
6250                                  OverloadCandidateSet& CandidateSet,
6251                                  bool SuppressUserConversions,
6252                                  bool PartialOverloading) {
6253   if (!CandidateSet.isNewCandidate(MethodTmpl))
6254     return;
6255
6256   // C++ [over.match.funcs]p7:
6257   //   In each case where a candidate is a function template, candidate
6258   //   function template specializations are generated using template argument
6259   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6260   //   candidate functions in the usual way.113) A given name can refer to one
6261   //   or more function templates and also to a set of overloaded non-template
6262   //   functions. In such a case, the candidate functions generated from each
6263   //   function template are combined with the set of non-template candidate
6264   //   functions.
6265   TemplateDeductionInfo Info(CandidateSet.getLocation());
6266   FunctionDecl *Specialization = nullptr;
6267   if (TemplateDeductionResult Result
6268       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
6269                                 Specialization, Info, PartialOverloading)) {
6270     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6271     Candidate.FoundDecl = FoundDecl;
6272     Candidate.Function = MethodTmpl->getTemplatedDecl();
6273     Candidate.Viable = false;
6274     Candidate.FailureKind = ovl_fail_bad_deduction;
6275     Candidate.IsSurrogate = false;
6276     Candidate.IgnoreObjectArgument = false;
6277     Candidate.ExplicitCallArguments = Args.size();
6278     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6279                                                           Info);
6280     return;
6281   }
6282
6283   // Add the function template specialization produced by template argument
6284   // deduction as a candidate.
6285   assert(Specialization && "Missing member function template specialization?");
6286   assert(isa<CXXMethodDecl>(Specialization) &&
6287          "Specialization is not a member function?");
6288   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6289                      ActingContext, ObjectType, ObjectClassification, Args,
6290                      CandidateSet, SuppressUserConversions, PartialOverloading);
6291 }
6292
6293 /// \brief Add a C++ function template specialization as a candidate
6294 /// in the candidate set, using template argument deduction to produce
6295 /// an appropriate function template specialization.
6296 void
6297 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
6298                                    DeclAccessPair FoundDecl,
6299                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6300                                    ArrayRef<Expr *> Args,
6301                                    OverloadCandidateSet& CandidateSet,
6302                                    bool SuppressUserConversions,
6303                                    bool PartialOverloading) {
6304   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6305     return;
6306
6307   // C++ [over.match.funcs]p7:
6308   //   In each case where a candidate is a function template, candidate
6309   //   function template specializations are generated using template argument
6310   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6311   //   candidate functions in the usual way.113) A given name can refer to one
6312   //   or more function templates and also to a set of overloaded non-template
6313   //   functions. In such a case, the candidate functions generated from each
6314   //   function template are combined with the set of non-template candidate
6315   //   functions.
6316   TemplateDeductionInfo Info(CandidateSet.getLocation());
6317   FunctionDecl *Specialization = nullptr;
6318   if (TemplateDeductionResult Result
6319         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
6320                                   Specialization, Info, PartialOverloading)) {
6321     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6322     Candidate.FoundDecl = FoundDecl;
6323     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6324     Candidate.Viable = false;
6325     Candidate.FailureKind = ovl_fail_bad_deduction;
6326     Candidate.IsSurrogate = false;
6327     Candidate.IgnoreObjectArgument = false;
6328     Candidate.ExplicitCallArguments = Args.size();
6329     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6330                                                           Info);
6331     return;
6332   }
6333
6334   // Add the function template specialization produced by template argument
6335   // deduction as a candidate.
6336   assert(Specialization && "Missing function template specialization?");
6337   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
6338                        SuppressUserConversions, PartialOverloading);
6339 }
6340
6341 /// Determine whether this is an allowable conversion from the result
6342 /// of an explicit conversion operator to the expected type, per C++
6343 /// [over.match.conv]p1 and [over.match.ref]p1.
6344 ///
6345 /// \param ConvType The return type of the conversion function.
6346 ///
6347 /// \param ToType The type we are converting to.
6348 ///
6349 /// \param AllowObjCPointerConversion Allow a conversion from one
6350 /// Objective-C pointer to another.
6351 ///
6352 /// \returns true if the conversion is allowable, false otherwise.
6353 static bool isAllowableExplicitConversion(Sema &S,
6354                                           QualType ConvType, QualType ToType,
6355                                           bool AllowObjCPointerConversion) {
6356   QualType ToNonRefType = ToType.getNonReferenceType();
6357
6358   // Easy case: the types are the same.
6359   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6360     return true;
6361
6362   // Allow qualification conversions.
6363   bool ObjCLifetimeConversion;
6364   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6365                                   ObjCLifetimeConversion))
6366     return true;
6367
6368   // If we're not allowed to consider Objective-C pointer conversions,
6369   // we're done.
6370   if (!AllowObjCPointerConversion)
6371     return false;
6372
6373   // Is this an Objective-C pointer conversion?
6374   bool IncompatibleObjC = false;
6375   QualType ConvertedType;
6376   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6377                                    IncompatibleObjC);
6378 }
6379                                           
6380 /// AddConversionCandidate - Add a C++ conversion function as a
6381 /// candidate in the candidate set (C++ [over.match.conv],
6382 /// C++ [over.match.copy]). From is the expression we're converting from,
6383 /// and ToType is the type that we're eventually trying to convert to
6384 /// (which may or may not be the same type as the type that the
6385 /// conversion function produces).
6386 void
6387 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
6388                              DeclAccessPair FoundDecl,
6389                              CXXRecordDecl *ActingContext,
6390                              Expr *From, QualType ToType,
6391                              OverloadCandidateSet& CandidateSet,
6392                              bool AllowObjCConversionOnExplicit) {
6393   assert(!Conversion->getDescribedFunctionTemplate() &&
6394          "Conversion function templates use AddTemplateConversionCandidate");
6395   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6396   if (!CandidateSet.isNewCandidate(Conversion))
6397     return;
6398
6399   // If the conversion function has an undeduced return type, trigger its
6400   // deduction now.
6401   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6402     if (DeduceReturnType(Conversion, From->getExprLoc()))
6403       return;
6404     ConvType = Conversion->getConversionType().getNonReferenceType();
6405   }
6406
6407   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6408   // operator is only a candidate if its return type is the target type or
6409   // can be converted to the target type with a qualification conversion.
6410   if (Conversion->isExplicit() && 
6411       !isAllowableExplicitConversion(*this, ConvType, ToType, 
6412                                      AllowObjCConversionOnExplicit))
6413     return;
6414
6415   // Overload resolution is always an unevaluated context.
6416   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6417
6418   // Add this candidate
6419   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6420   Candidate.FoundDecl = FoundDecl;
6421   Candidate.Function = Conversion;
6422   Candidate.IsSurrogate = false;
6423   Candidate.IgnoreObjectArgument = false;
6424   Candidate.FinalConversion.setAsIdentityConversion();
6425   Candidate.FinalConversion.setFromType(ConvType);
6426   Candidate.FinalConversion.setAllToTypes(ToType);
6427   Candidate.Viable = true;
6428   Candidate.ExplicitCallArguments = 1;
6429
6430   // C++ [over.match.funcs]p4:
6431   //   For conversion functions, the function is considered to be a member of
6432   //   the class of the implicit implied object argument for the purpose of
6433   //   defining the type of the implicit object parameter.
6434   //
6435   // Determine the implicit conversion sequence for the implicit
6436   // object parameter.
6437   QualType ImplicitParamType = From->getType();
6438   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6439     ImplicitParamType = FromPtrType->getPointeeType();
6440   CXXRecordDecl *ConversionContext
6441     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6442
6443   Candidate.Conversions[0] = TryObjectArgumentInitialization(
6444       *this, CandidateSet.getLocation(), From->getType(),
6445       From->Classify(Context), Conversion, ConversionContext);
6446
6447   if (Candidate.Conversions[0].isBad()) {
6448     Candidate.Viable = false;
6449     Candidate.FailureKind = ovl_fail_bad_conversion;
6450     return;
6451   }
6452
6453   // We won't go through a user-defined type conversion function to convert a
6454   // derived to base as such conversions are given Conversion Rank. They only
6455   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
6456   QualType FromCanon
6457     = Context.getCanonicalType(From->getType().getUnqualifiedType());
6458   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
6459   if (FromCanon == ToCanon ||
6460       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
6461     Candidate.Viable = false;
6462     Candidate.FailureKind = ovl_fail_trivial_conversion;
6463     return;
6464   }
6465
6466   // To determine what the conversion from the result of calling the
6467   // conversion function to the type we're eventually trying to
6468   // convert to (ToType), we need to synthesize a call to the
6469   // conversion function and attempt copy initialization from it. This
6470   // makes sure that we get the right semantics with respect to
6471   // lvalues/rvalues and the type. Fortunately, we can allocate this
6472   // call on the stack and we don't need its arguments to be
6473   // well-formed.
6474   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
6475                             VK_LValue, From->getLocStart());
6476   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
6477                                 Context.getPointerType(Conversion->getType()),
6478                                 CK_FunctionToPointerDecay,
6479                                 &ConversionRef, VK_RValue);
6480
6481   QualType ConversionType = Conversion->getConversionType();
6482   if (!isCompleteType(From->getLocStart(), ConversionType)) {
6483     Candidate.Viable = false;
6484     Candidate.FailureKind = ovl_fail_bad_final_conversion;
6485     return;
6486   }
6487
6488   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
6489
6490   // Note that it is safe to allocate CallExpr on the stack here because
6491   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
6492   // allocator).
6493   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
6494   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
6495                 From->getLocStart());
6496   ImplicitConversionSequence ICS =
6497     TryCopyInitialization(*this, &Call, ToType,
6498                           /*SuppressUserConversions=*/true,
6499                           /*InOverloadResolution=*/false,
6500                           /*AllowObjCWritebackConversion=*/false);
6501
6502   switch (ICS.getKind()) {
6503   case ImplicitConversionSequence::StandardConversion:
6504     Candidate.FinalConversion = ICS.Standard;
6505
6506     // C++ [over.ics.user]p3:
6507     //   If the user-defined conversion is specified by a specialization of a
6508     //   conversion function template, the second standard conversion sequence
6509     //   shall have exact match rank.
6510     if (Conversion->getPrimaryTemplate() &&
6511         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
6512       Candidate.Viable = false;
6513       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
6514       return;
6515     }
6516
6517     // C++0x [dcl.init.ref]p5:
6518     //    In the second case, if the reference is an rvalue reference and
6519     //    the second standard conversion sequence of the user-defined
6520     //    conversion sequence includes an lvalue-to-rvalue conversion, the
6521     //    program is ill-formed.
6522     if (ToType->isRValueReferenceType() &&
6523         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6524       Candidate.Viable = false;
6525       Candidate.FailureKind = ovl_fail_bad_final_conversion;
6526       return;
6527     }
6528     break;
6529
6530   case ImplicitConversionSequence::BadConversion:
6531     Candidate.Viable = false;
6532     Candidate.FailureKind = ovl_fail_bad_final_conversion;
6533     return;
6534
6535   default:
6536     llvm_unreachable(
6537            "Can only end up with a standard conversion sequence or failure");
6538   }
6539
6540   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6541     Candidate.Viable = false;
6542     Candidate.FailureKind = ovl_fail_enable_if;
6543     Candidate.DeductionFailure.Data = FailedAttr;
6544     return;
6545   }
6546 }
6547
6548 /// \brief Adds a conversion function template specialization
6549 /// candidate to the overload set, using template argument deduction
6550 /// to deduce the template arguments of the conversion function
6551 /// template from the type that we are converting to (C++
6552 /// [temp.deduct.conv]).
6553 void
6554 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
6555                                      DeclAccessPair FoundDecl,
6556                                      CXXRecordDecl *ActingDC,
6557                                      Expr *From, QualType ToType,
6558                                      OverloadCandidateSet &CandidateSet,
6559                                      bool AllowObjCConversionOnExplicit) {
6560   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
6561          "Only conversion function templates permitted here");
6562
6563   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6564     return;
6565
6566   TemplateDeductionInfo Info(CandidateSet.getLocation());
6567   CXXConversionDecl *Specialization = nullptr;
6568   if (TemplateDeductionResult Result
6569         = DeduceTemplateArguments(FunctionTemplate, ToType,
6570                                   Specialization, Info)) {
6571     OverloadCandidate &Candidate = CandidateSet.addCandidate();
6572     Candidate.FoundDecl = FoundDecl;
6573     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6574     Candidate.Viable = false;
6575     Candidate.FailureKind = ovl_fail_bad_deduction;
6576     Candidate.IsSurrogate = false;
6577     Candidate.IgnoreObjectArgument = false;
6578     Candidate.ExplicitCallArguments = 1;
6579     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6580                                                           Info);
6581     return;
6582   }
6583
6584   // Add the conversion function template specialization produced by
6585   // template argument deduction as a candidate.
6586   assert(Specialization && "Missing function template specialization?");
6587   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6588                          CandidateSet, AllowObjCConversionOnExplicit);
6589 }
6590
6591 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6592 /// converts the given @c Object to a function pointer via the
6593 /// conversion function @c Conversion, and then attempts to call it
6594 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
6595 /// the type of function that we'll eventually be calling.
6596 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6597                                  DeclAccessPair FoundDecl,
6598                                  CXXRecordDecl *ActingContext,
6599                                  const FunctionProtoType *Proto,
6600                                  Expr *Object,
6601                                  ArrayRef<Expr *> Args,
6602                                  OverloadCandidateSet& CandidateSet) {
6603   if (!CandidateSet.isNewCandidate(Conversion))
6604     return;
6605
6606   // Overload resolution is always an unevaluated context.
6607   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6608
6609   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6610   Candidate.FoundDecl = FoundDecl;
6611   Candidate.Function = nullptr;
6612   Candidate.Surrogate = Conversion;
6613   Candidate.Viable = true;
6614   Candidate.IsSurrogate = true;
6615   Candidate.IgnoreObjectArgument = false;
6616   Candidate.ExplicitCallArguments = Args.size();
6617
6618   // Determine the implicit conversion sequence for the implicit
6619   // object parameter.
6620   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
6621       *this, CandidateSet.getLocation(), Object->getType(),
6622       Object->Classify(Context), Conversion, ActingContext);
6623   if (ObjectInit.isBad()) {
6624     Candidate.Viable = false;
6625     Candidate.FailureKind = ovl_fail_bad_conversion;
6626     Candidate.Conversions[0] = ObjectInit;
6627     return;
6628   }
6629
6630   // The first conversion is actually a user-defined conversion whose
6631   // first conversion is ObjectInit's standard conversion (which is
6632   // effectively a reference binding). Record it as such.
6633   Candidate.Conversions[0].setUserDefined();
6634   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6635   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6636   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6637   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6638   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6639   Candidate.Conversions[0].UserDefined.After
6640     = Candidate.Conversions[0].UserDefined.Before;
6641   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6642
6643   // Find the
6644   unsigned NumParams = Proto->getNumParams();
6645
6646   // (C++ 13.3.2p2): A candidate function having fewer than m
6647   // parameters is viable only if it has an ellipsis in its parameter
6648   // list (8.3.5).
6649   if (Args.size() > NumParams && !Proto->isVariadic()) {
6650     Candidate.Viable = false;
6651     Candidate.FailureKind = ovl_fail_too_many_arguments;
6652     return;
6653   }
6654
6655   // Function types don't have any default arguments, so just check if
6656   // we have enough arguments.
6657   if (Args.size() < NumParams) {
6658     // Not enough arguments.
6659     Candidate.Viable = false;
6660     Candidate.FailureKind = ovl_fail_too_few_arguments;
6661     return;
6662   }
6663
6664   // Determine the implicit conversion sequences for each of the
6665   // arguments.
6666   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6667     if (ArgIdx < NumParams) {
6668       // (C++ 13.3.2p3): for F to be a viable function, there shall
6669       // exist for each argument an implicit conversion sequence
6670       // (13.3.3.1) that converts that argument to the corresponding
6671       // parameter of F.
6672       QualType ParamType = Proto->getParamType(ArgIdx);
6673       Candidate.Conversions[ArgIdx + 1]
6674         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6675                                 /*SuppressUserConversions=*/false,
6676                                 /*InOverloadResolution=*/false,
6677                                 /*AllowObjCWritebackConversion=*/
6678                                   getLangOpts().ObjCAutoRefCount);
6679       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6680         Candidate.Viable = false;
6681         Candidate.FailureKind = ovl_fail_bad_conversion;
6682         return;
6683       }
6684     } else {
6685       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6686       // argument for which there is no corresponding parameter is
6687       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6688       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6689     }
6690   }
6691
6692   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6693     Candidate.Viable = false;
6694     Candidate.FailureKind = ovl_fail_enable_if;
6695     Candidate.DeductionFailure.Data = FailedAttr;
6696     return;
6697   }
6698 }
6699
6700 /// \brief Add overload candidates for overloaded operators that are
6701 /// member functions.
6702 ///
6703 /// Add the overloaded operator candidates that are member functions
6704 /// for the operator Op that was used in an operator expression such
6705 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
6706 /// CandidateSet will store the added overload candidates. (C++
6707 /// [over.match.oper]).
6708 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6709                                        SourceLocation OpLoc,
6710                                        ArrayRef<Expr *> Args,
6711                                        OverloadCandidateSet& CandidateSet,
6712                                        SourceRange OpRange) {
6713   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6714
6715   // C++ [over.match.oper]p3:
6716   //   For a unary operator @ with an operand of a type whose
6717   //   cv-unqualified version is T1, and for a binary operator @ with
6718   //   a left operand of a type whose cv-unqualified version is T1 and
6719   //   a right operand of a type whose cv-unqualified version is T2,
6720   //   three sets of candidate functions, designated member
6721   //   candidates, non-member candidates and built-in candidates, are
6722   //   constructed as follows:
6723   QualType T1 = Args[0]->getType();
6724
6725   //     -- If T1 is a complete class type or a class currently being
6726   //        defined, the set of member candidates is the result of the
6727   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6728   //        the set of member candidates is empty.
6729   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6730     // Complete the type if it can be completed.
6731     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
6732       return;
6733     // If the type is neither complete nor being defined, bail out now.
6734     if (!T1Rec->getDecl()->getDefinition())
6735       return;
6736
6737     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6738     LookupQualifiedName(Operators, T1Rec->getDecl());
6739     Operators.suppressDiagnostics();
6740
6741     for (LookupResult::iterator Oper = Operators.begin(),
6742                              OperEnd = Operators.end();
6743          Oper != OperEnd;
6744          ++Oper)
6745       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6746                          Args[0]->Classify(Context), 
6747                          Args.slice(1),
6748                          CandidateSet,
6749                          /* SuppressUserConversions = */ false);
6750   }
6751 }
6752
6753 /// AddBuiltinCandidate - Add a candidate for a built-in
6754 /// operator. ResultTy and ParamTys are the result and parameter types
6755 /// of the built-in candidate, respectively. Args and NumArgs are the
6756 /// arguments being passed to the candidate. IsAssignmentOperator
6757 /// should be true when this built-in candidate is an assignment
6758 /// operator. NumContextualBoolArguments is the number of arguments
6759 /// (at the beginning of the argument list) that will be contextually
6760 /// converted to bool.
6761 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6762                                ArrayRef<Expr *> Args,
6763                                OverloadCandidateSet& CandidateSet,
6764                                bool IsAssignmentOperator,
6765                                unsigned NumContextualBoolArguments) {
6766   // Overload resolution is always an unevaluated context.
6767   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6768
6769   // Add this candidate
6770   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6771   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
6772   Candidate.Function = nullptr;
6773   Candidate.IsSurrogate = false;
6774   Candidate.IgnoreObjectArgument = false;
6775   Candidate.BuiltinTypes.ResultTy = ResultTy;
6776   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6777     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6778
6779   // Determine the implicit conversion sequences for each of the
6780   // arguments.
6781   Candidate.Viable = true;
6782   Candidate.ExplicitCallArguments = Args.size();
6783   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6784     // C++ [over.match.oper]p4:
6785     //   For the built-in assignment operators, conversions of the
6786     //   left operand are restricted as follows:
6787     //     -- no temporaries are introduced to hold the left operand, and
6788     //     -- no user-defined conversions are applied to the left
6789     //        operand to achieve a type match with the left-most
6790     //        parameter of a built-in candidate.
6791     //
6792     // We block these conversions by turning off user-defined
6793     // conversions, since that is the only way that initialization of
6794     // a reference to a non-class type can occur from something that
6795     // is not of the same type.
6796     if (ArgIdx < NumContextualBoolArguments) {
6797       assert(ParamTys[ArgIdx] == Context.BoolTy &&
6798              "Contextual conversion to bool requires bool type");
6799       Candidate.Conversions[ArgIdx]
6800         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6801     } else {
6802       Candidate.Conversions[ArgIdx]
6803         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6804                                 ArgIdx == 0 && IsAssignmentOperator,
6805                                 /*InOverloadResolution=*/false,
6806                                 /*AllowObjCWritebackConversion=*/
6807                                   getLangOpts().ObjCAutoRefCount);
6808     }
6809     if (Candidate.Conversions[ArgIdx].isBad()) {
6810       Candidate.Viable = false;
6811       Candidate.FailureKind = ovl_fail_bad_conversion;
6812       break;
6813     }
6814   }
6815 }
6816
6817 namespace {
6818
6819 /// BuiltinCandidateTypeSet - A set of types that will be used for the
6820 /// candidate operator functions for built-in operators (C++
6821 /// [over.built]). The types are separated into pointer types and
6822 /// enumeration types.
6823 class BuiltinCandidateTypeSet  {
6824   /// TypeSet - A set of types.
6825   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
6826                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
6827
6828   /// PointerTypes - The set of pointer types that will be used in the
6829   /// built-in candidates.
6830   TypeSet PointerTypes;
6831
6832   /// MemberPointerTypes - The set of member pointer types that will be
6833   /// used in the built-in candidates.
6834   TypeSet MemberPointerTypes;
6835
6836   /// EnumerationTypes - The set of enumeration types that will be
6837   /// used in the built-in candidates.
6838   TypeSet EnumerationTypes;
6839
6840   /// \brief The set of vector types that will be used in the built-in
6841   /// candidates.
6842   TypeSet VectorTypes;
6843
6844   /// \brief A flag indicating non-record types are viable candidates
6845   bool HasNonRecordTypes;
6846
6847   /// \brief A flag indicating whether either arithmetic or enumeration types
6848   /// were present in the candidate set.
6849   bool HasArithmeticOrEnumeralTypes;
6850
6851   /// \brief A flag indicating whether the nullptr type was present in the
6852   /// candidate set.
6853   bool HasNullPtrType;
6854   
6855   /// Sema - The semantic analysis instance where we are building the
6856   /// candidate type set.
6857   Sema &SemaRef;
6858
6859   /// Context - The AST context in which we will build the type sets.
6860   ASTContext &Context;
6861
6862   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6863                                                const Qualifiers &VisibleQuals);
6864   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6865
6866 public:
6867   /// iterator - Iterates through the types that are part of the set.
6868   typedef TypeSet::iterator iterator;
6869
6870   BuiltinCandidateTypeSet(Sema &SemaRef)
6871     : HasNonRecordTypes(false),
6872       HasArithmeticOrEnumeralTypes(false),
6873       HasNullPtrType(false),
6874       SemaRef(SemaRef),
6875       Context(SemaRef.Context) { }
6876
6877   void AddTypesConvertedFrom(QualType Ty,
6878                              SourceLocation Loc,
6879                              bool AllowUserConversions,
6880                              bool AllowExplicitConversions,
6881                              const Qualifiers &VisibleTypeConversionsQuals);
6882
6883   /// pointer_begin - First pointer type found;
6884   iterator pointer_begin() { return PointerTypes.begin(); }
6885
6886   /// pointer_end - Past the last pointer type found;
6887   iterator pointer_end() { return PointerTypes.end(); }
6888
6889   /// member_pointer_begin - First member pointer type found;
6890   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6891
6892   /// member_pointer_end - Past the last member pointer type found;
6893   iterator member_pointer_end() { return MemberPointerTypes.end(); }
6894
6895   /// enumeration_begin - First enumeration type found;
6896   iterator enumeration_begin() { return EnumerationTypes.begin(); }
6897
6898   /// enumeration_end - Past the last enumeration type found;
6899   iterator enumeration_end() { return EnumerationTypes.end(); }
6900
6901   iterator vector_begin() { return VectorTypes.begin(); }
6902   iterator vector_end() { return VectorTypes.end(); }
6903
6904   bool hasNonRecordTypes() { return HasNonRecordTypes; }
6905   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6906   bool hasNullPtrType() const { return HasNullPtrType; }
6907 };
6908
6909 } // end anonymous namespace
6910
6911 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6912 /// the set of pointer types along with any more-qualified variants of
6913 /// that type. For example, if @p Ty is "int const *", this routine
6914 /// will add "int const *", "int const volatile *", "int const
6915 /// restrict *", and "int const volatile restrict *" to the set of
6916 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6917 /// false otherwise.
6918 ///
6919 /// FIXME: what to do about extended qualifiers?
6920 bool
6921 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6922                                              const Qualifiers &VisibleQuals) {
6923
6924   // Insert this type.
6925   if (!PointerTypes.insert(Ty))
6926     return false;
6927
6928   QualType PointeeTy;
6929   const PointerType *PointerTy = Ty->getAs<PointerType>();
6930   bool buildObjCPtr = false;
6931   if (!PointerTy) {
6932     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6933     PointeeTy = PTy->getPointeeType();
6934     buildObjCPtr = true;
6935   } else {
6936     PointeeTy = PointerTy->getPointeeType();
6937   }
6938   
6939   // Don't add qualified variants of arrays. For one, they're not allowed
6940   // (the qualifier would sink to the element type), and for another, the
6941   // only overload situation where it matters is subscript or pointer +- int,
6942   // and those shouldn't have qualifier variants anyway.
6943   if (PointeeTy->isArrayType())
6944     return true;
6945   
6946   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6947   bool hasVolatile = VisibleQuals.hasVolatile();
6948   bool hasRestrict = VisibleQuals.hasRestrict();
6949
6950   // Iterate through all strict supersets of BaseCVR.
6951   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6952     if ((CVR | BaseCVR) != CVR) continue;
6953     // Skip over volatile if no volatile found anywhere in the types.
6954     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6955     
6956     // Skip over restrict if no restrict found anywhere in the types, or if
6957     // the type cannot be restrict-qualified.
6958     if ((CVR & Qualifiers::Restrict) &&
6959         (!hasRestrict ||
6960          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6961       continue;
6962   
6963     // Build qualified pointee type.
6964     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6965     
6966     // Build qualified pointer type.
6967     QualType QPointerTy;
6968     if (!buildObjCPtr)
6969       QPointerTy = Context.getPointerType(QPointeeTy);
6970     else
6971       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6972     
6973     // Insert qualified pointer type.
6974     PointerTypes.insert(QPointerTy);
6975   }
6976
6977   return true;
6978 }
6979
6980 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6981 /// to the set of pointer types along with any more-qualified variants of
6982 /// that type. For example, if @p Ty is "int const *", this routine
6983 /// will add "int const *", "int const volatile *", "int const
6984 /// restrict *", and "int const volatile restrict *" to the set of
6985 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6986 /// false otherwise.
6987 ///
6988 /// FIXME: what to do about extended qualifiers?
6989 bool
6990 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6991     QualType Ty) {
6992   // Insert this type.
6993   if (!MemberPointerTypes.insert(Ty))
6994     return false;
6995
6996   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6997   assert(PointerTy && "type was not a member pointer type!");
6998
6999   QualType PointeeTy = PointerTy->getPointeeType();
7000   // Don't add qualified variants of arrays. For one, they're not allowed
7001   // (the qualifier would sink to the element type), and for another, the
7002   // only overload situation where it matters is subscript or pointer +- int,
7003   // and those shouldn't have qualifier variants anyway.
7004   if (PointeeTy->isArrayType())
7005     return true;
7006   const Type *ClassTy = PointerTy->getClass();
7007
7008   // Iterate through all strict supersets of the pointee type's CVR
7009   // qualifiers.
7010   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7011   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7012     if ((CVR | BaseCVR) != CVR) continue;
7013
7014     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7015     MemberPointerTypes.insert(
7016       Context.getMemberPointerType(QPointeeTy, ClassTy));
7017   }
7018
7019   return true;
7020 }
7021
7022 /// AddTypesConvertedFrom - Add each of the types to which the type @p
7023 /// Ty can be implicit converted to the given set of @p Types. We're
7024 /// primarily interested in pointer types and enumeration types. We also
7025 /// take member pointer types, for the conditional operator.
7026 /// AllowUserConversions is true if we should look at the conversion
7027 /// functions of a class type, and AllowExplicitConversions if we
7028 /// should also include the explicit conversion functions of a class
7029 /// type.
7030 void
7031 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7032                                                SourceLocation Loc,
7033                                                bool AllowUserConversions,
7034                                                bool AllowExplicitConversions,
7035                                                const Qualifiers &VisibleQuals) {
7036   // Only deal with canonical types.
7037   Ty = Context.getCanonicalType(Ty);
7038
7039   // Look through reference types; they aren't part of the type of an
7040   // expression for the purposes of conversions.
7041   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7042     Ty = RefTy->getPointeeType();
7043
7044   // If we're dealing with an array type, decay to the pointer.
7045   if (Ty->isArrayType())
7046     Ty = SemaRef.Context.getArrayDecayedType(Ty);
7047
7048   // Otherwise, we don't care about qualifiers on the type.
7049   Ty = Ty.getLocalUnqualifiedType();
7050
7051   // Flag if we ever add a non-record type.
7052   const RecordType *TyRec = Ty->getAs<RecordType>();
7053   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7054
7055   // Flag if we encounter an arithmetic type.
7056   HasArithmeticOrEnumeralTypes =
7057     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7058
7059   if (Ty->isObjCIdType() || Ty->isObjCClassType())
7060     PointerTypes.insert(Ty);
7061   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7062     // Insert our type, and its more-qualified variants, into the set
7063     // of types.
7064     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7065       return;
7066   } else if (Ty->isMemberPointerType()) {
7067     // Member pointers are far easier, since the pointee can't be converted.
7068     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7069       return;
7070   } else if (Ty->isEnumeralType()) {
7071     HasArithmeticOrEnumeralTypes = true;
7072     EnumerationTypes.insert(Ty);
7073   } else if (Ty->isVectorType()) {
7074     // We treat vector types as arithmetic types in many contexts as an
7075     // extension.
7076     HasArithmeticOrEnumeralTypes = true;
7077     VectorTypes.insert(Ty);
7078   } else if (Ty->isNullPtrType()) {
7079     HasNullPtrType = true;
7080   } else if (AllowUserConversions && TyRec) {
7081     // No conversion functions in incomplete types.
7082     if (!SemaRef.isCompleteType(Loc, Ty))
7083       return;
7084
7085     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7086     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7087       if (isa<UsingShadowDecl>(D))
7088         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7089
7090       // Skip conversion function templates; they don't tell us anything
7091       // about which builtin types we can convert to.
7092       if (isa<FunctionTemplateDecl>(D))
7093         continue;
7094
7095       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7096       if (AllowExplicitConversions || !Conv->isExplicit()) {
7097         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7098                               VisibleQuals);
7099       }
7100     }
7101   }
7102 }
7103
7104 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
7105 /// the volatile- and non-volatile-qualified assignment operators for the
7106 /// given type to the candidate set.
7107 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7108                                                    QualType T,
7109                                                    ArrayRef<Expr *> Args,
7110                                     OverloadCandidateSet &CandidateSet) {
7111   QualType ParamTypes[2];
7112
7113   // T& operator=(T&, T)
7114   ParamTypes[0] = S.Context.getLValueReferenceType(T);
7115   ParamTypes[1] = T;
7116   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7117                         /*IsAssignmentOperator=*/true);
7118
7119   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7120     // volatile T& operator=(volatile T&, T)
7121     ParamTypes[0]
7122       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
7123     ParamTypes[1] = T;
7124     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7125                           /*IsAssignmentOperator=*/true);
7126   }
7127 }
7128
7129 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7130 /// if any, found in visible type conversion functions found in ArgExpr's type.
7131 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7132     Qualifiers VRQuals;
7133     const RecordType *TyRec;
7134     if (const MemberPointerType *RHSMPType =
7135         ArgExpr->getType()->getAs<MemberPointerType>())
7136       TyRec = RHSMPType->getClass()->getAs<RecordType>();
7137     else
7138       TyRec = ArgExpr->getType()->getAs<RecordType>();
7139     if (!TyRec) {
7140       // Just to be safe, assume the worst case.
7141       VRQuals.addVolatile();
7142       VRQuals.addRestrict();
7143       return VRQuals;
7144     }
7145
7146     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7147     if (!ClassDecl->hasDefinition())
7148       return VRQuals;
7149
7150     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7151       if (isa<UsingShadowDecl>(D))
7152         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7153       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7154         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7155         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7156           CanTy = ResTypeRef->getPointeeType();
7157         // Need to go down the pointer/mempointer chain and add qualifiers
7158         // as see them.
7159         bool done = false;
7160         while (!done) {
7161           if (CanTy.isRestrictQualified())
7162             VRQuals.addRestrict();
7163           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7164             CanTy = ResTypePtr->getPointeeType();
7165           else if (const MemberPointerType *ResTypeMPtr =
7166                 CanTy->getAs<MemberPointerType>())
7167             CanTy = ResTypeMPtr->getPointeeType();
7168           else
7169             done = true;
7170           if (CanTy.isVolatileQualified())
7171             VRQuals.addVolatile();
7172           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7173             return VRQuals;
7174         }
7175       }
7176     }
7177     return VRQuals;
7178 }
7179
7180 namespace {
7181
7182 /// \brief Helper class to manage the addition of builtin operator overload
7183 /// candidates. It provides shared state and utility methods used throughout
7184 /// the process, as well as a helper method to add each group of builtin
7185 /// operator overloads from the standard to a candidate set.
7186 class BuiltinOperatorOverloadBuilder {
7187   // Common instance state available to all overload candidate addition methods.
7188   Sema &S;
7189   ArrayRef<Expr *> Args;
7190   Qualifiers VisibleTypeConversionsQuals;
7191   bool HasArithmeticOrEnumeralCandidateType;
7192   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7193   OverloadCandidateSet &CandidateSet;
7194
7195   // Define some constants used to index and iterate over the arithemetic types
7196   // provided via the getArithmeticType() method below.
7197   // The "promoted arithmetic types" are the arithmetic
7198   // types are that preserved by promotion (C++ [over.built]p2).
7199   static const unsigned FirstIntegralType = 4;
7200   static const unsigned LastIntegralType = 21;
7201   static const unsigned FirstPromotedIntegralType = 4,
7202                         LastPromotedIntegralType = 12;
7203   static const unsigned FirstPromotedArithmeticType = 0,
7204                         LastPromotedArithmeticType = 12;
7205   static const unsigned NumArithmeticTypes = 21;
7206
7207   /// \brief Get the canonical type for a given arithmetic type index.
7208   CanQualType getArithmeticType(unsigned index) {
7209     assert(index < NumArithmeticTypes);
7210     static CanQualType ASTContext::* const
7211       ArithmeticTypes[NumArithmeticTypes] = {
7212       // Start of promoted types.
7213       &ASTContext::FloatTy,
7214       &ASTContext::DoubleTy,
7215       &ASTContext::LongDoubleTy,
7216       &ASTContext::Float128Ty,
7217
7218       // Start of integral types.
7219       &ASTContext::IntTy,
7220       &ASTContext::LongTy,
7221       &ASTContext::LongLongTy,
7222       &ASTContext::Int128Ty,
7223       &ASTContext::UnsignedIntTy,
7224       &ASTContext::UnsignedLongTy,
7225       &ASTContext::UnsignedLongLongTy,
7226       &ASTContext::UnsignedInt128Ty,
7227       // End of promoted types.
7228
7229       &ASTContext::BoolTy,
7230       &ASTContext::CharTy,
7231       &ASTContext::WCharTy,
7232       &ASTContext::Char16Ty,
7233       &ASTContext::Char32Ty,
7234       &ASTContext::SignedCharTy,
7235       &ASTContext::ShortTy,
7236       &ASTContext::UnsignedCharTy,
7237       &ASTContext::UnsignedShortTy,
7238       // End of integral types.
7239       // FIXME: What about complex? What about half?
7240     };
7241     return S.Context.*ArithmeticTypes[index];
7242   }
7243
7244   /// \brief Gets the canonical type resulting from the usual arithemetic
7245   /// converions for the given arithmetic types.
7246   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
7247     // Accelerator table for performing the usual arithmetic conversions.
7248     // The rules are basically:
7249     //   - if either is floating-point, use the wider floating-point
7250     //   - if same signedness, use the higher rank
7251     //   - if same size, use unsigned of the higher rank
7252     //   - use the larger type
7253     // These rules, together with the axiom that higher ranks are
7254     // never smaller, are sufficient to precompute all of these results
7255     // *except* when dealing with signed types of higher rank.
7256     // (we could precompute SLL x UI for all known platforms, but it's
7257     // better not to make any assumptions).
7258     // We assume that int128 has a higher rank than long long on all platforms.
7259     enum PromotedType : int8_t {
7260             Dep=-1,
7261             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
7262     };
7263     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
7264                                         [LastPromotedArithmeticType] = {
7265 /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
7266 /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
7267 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
7268 /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
7269 /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
7270 /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
7271 /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
7272 /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
7273 /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
7274 /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
7275 /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
7276     };
7277
7278     assert(L < LastPromotedArithmeticType);
7279     assert(R < LastPromotedArithmeticType);
7280     int Idx = ConversionsTable[L][R];
7281
7282     // Fast path: the table gives us a concrete answer.
7283     if (Idx != Dep) return getArithmeticType(Idx);
7284
7285     // Slow path: we need to compare widths.
7286     // An invariant is that the signed type has higher rank.
7287     CanQualType LT = getArithmeticType(L),
7288                 RT = getArithmeticType(R);
7289     unsigned LW = S.Context.getIntWidth(LT),
7290              RW = S.Context.getIntWidth(RT);
7291
7292     // If they're different widths, use the signed type.
7293     if (LW > RW) return LT;
7294     else if (LW < RW) return RT;
7295
7296     // Otherwise, use the unsigned type of the signed type's rank.
7297     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
7298     assert(L == SLL || R == SLL);
7299     return S.Context.UnsignedLongLongTy;
7300   }
7301
7302   /// \brief Helper method to factor out the common pattern of adding overloads
7303   /// for '++' and '--' builtin operators.
7304   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7305                                            bool HasVolatile,
7306                                            bool HasRestrict) {
7307     QualType ParamTypes[2] = {
7308       S.Context.getLValueReferenceType(CandidateTy),
7309       S.Context.IntTy
7310     };
7311
7312     // Non-volatile version.
7313     if (Args.size() == 1)
7314       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7315     else
7316       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7317
7318     // Use a heuristic to reduce number of builtin candidates in the set:
7319     // add volatile version only if there are conversions to a volatile type.
7320     if (HasVolatile) {
7321       ParamTypes[0] =
7322         S.Context.getLValueReferenceType(
7323           S.Context.getVolatileType(CandidateTy));
7324       if (Args.size() == 1)
7325         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7326       else
7327         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7328     }
7329     
7330     // Add restrict version only if there are conversions to a restrict type
7331     // and our candidate type is a non-restrict-qualified pointer.
7332     if (HasRestrict && CandidateTy->isAnyPointerType() &&
7333         !CandidateTy.isRestrictQualified()) {
7334       ParamTypes[0]
7335         = S.Context.getLValueReferenceType(
7336             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7337       if (Args.size() == 1)
7338         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7339       else
7340         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7341       
7342       if (HasVolatile) {
7343         ParamTypes[0]
7344           = S.Context.getLValueReferenceType(
7345               S.Context.getCVRQualifiedType(CandidateTy,
7346                                             (Qualifiers::Volatile |
7347                                              Qualifiers::Restrict)));
7348         if (Args.size() == 1)
7349           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7350         else
7351           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7352       }
7353     }
7354
7355   }
7356
7357 public:
7358   BuiltinOperatorOverloadBuilder(
7359     Sema &S, ArrayRef<Expr *> Args,
7360     Qualifiers VisibleTypeConversionsQuals,
7361     bool HasArithmeticOrEnumeralCandidateType,
7362     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7363     OverloadCandidateSet &CandidateSet)
7364     : S(S), Args(Args),
7365       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7366       HasArithmeticOrEnumeralCandidateType(
7367         HasArithmeticOrEnumeralCandidateType),
7368       CandidateTypes(CandidateTypes),
7369       CandidateSet(CandidateSet) {
7370     // Validate some of our static helper constants in debug builds.
7371     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
7372            "Invalid first promoted integral type");
7373     assert(getArithmeticType(LastPromotedIntegralType - 1)
7374              == S.Context.UnsignedInt128Ty &&
7375            "Invalid last promoted integral type");
7376     assert(getArithmeticType(FirstPromotedArithmeticType)
7377              == S.Context.FloatTy &&
7378            "Invalid first promoted arithmetic type");
7379     assert(getArithmeticType(LastPromotedArithmeticType - 1)
7380              == S.Context.UnsignedInt128Ty &&
7381            "Invalid last promoted arithmetic type");
7382   }
7383
7384   // C++ [over.built]p3:
7385   //
7386   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
7387   //   is either volatile or empty, there exist candidate operator
7388   //   functions of the form
7389   //
7390   //       VQ T&      operator++(VQ T&);
7391   //       T          operator++(VQ T&, int);
7392   //
7393   // C++ [over.built]p4:
7394   //
7395   //   For every pair (T, VQ), where T is an arithmetic type other
7396   //   than bool, and VQ is either volatile or empty, there exist
7397   //   candidate operator functions of the form
7398   //
7399   //       VQ T&      operator--(VQ T&);
7400   //       T          operator--(VQ T&, int);
7401   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7402     if (!HasArithmeticOrEnumeralCandidateType)
7403       return;
7404
7405     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
7406          Arith < NumArithmeticTypes; ++Arith) {
7407       addPlusPlusMinusMinusStyleOverloads(
7408         getArithmeticType(Arith),
7409         VisibleTypeConversionsQuals.hasVolatile(),
7410         VisibleTypeConversionsQuals.hasRestrict());
7411     }
7412   }
7413
7414   // C++ [over.built]p5:
7415   //
7416   //   For every pair (T, VQ), where T is a cv-qualified or
7417   //   cv-unqualified object type, and VQ is either volatile or
7418   //   empty, there exist candidate operator functions of the form
7419   //
7420   //       T*VQ&      operator++(T*VQ&);
7421   //       T*VQ&      operator--(T*VQ&);
7422   //       T*         operator++(T*VQ&, int);
7423   //       T*         operator--(T*VQ&, int);
7424   void addPlusPlusMinusMinusPointerOverloads() {
7425     for (BuiltinCandidateTypeSet::iterator
7426               Ptr = CandidateTypes[0].pointer_begin(),
7427            PtrEnd = CandidateTypes[0].pointer_end();
7428          Ptr != PtrEnd; ++Ptr) {
7429       // Skip pointer types that aren't pointers to object types.
7430       if (!(*Ptr)->getPointeeType()->isObjectType())
7431         continue;
7432
7433       addPlusPlusMinusMinusStyleOverloads(*Ptr,
7434         (!(*Ptr).isVolatileQualified() &&
7435          VisibleTypeConversionsQuals.hasVolatile()),
7436         (!(*Ptr).isRestrictQualified() &&
7437          VisibleTypeConversionsQuals.hasRestrict()));
7438     }
7439   }
7440
7441   // C++ [over.built]p6:
7442   //   For every cv-qualified or cv-unqualified object type T, there
7443   //   exist candidate operator functions of the form
7444   //
7445   //       T&         operator*(T*);
7446   //
7447   // C++ [over.built]p7:
7448   //   For every function type T that does not have cv-qualifiers or a
7449   //   ref-qualifier, there exist candidate operator functions of the form
7450   //       T&         operator*(T*);
7451   void addUnaryStarPointerOverloads() {
7452     for (BuiltinCandidateTypeSet::iterator
7453               Ptr = CandidateTypes[0].pointer_begin(),
7454            PtrEnd = CandidateTypes[0].pointer_end();
7455          Ptr != PtrEnd; ++Ptr) {
7456       QualType ParamTy = *Ptr;
7457       QualType PointeeTy = ParamTy->getPointeeType();
7458       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7459         continue;
7460
7461       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7462         if (Proto->getTypeQuals() || Proto->getRefQualifier())
7463           continue;
7464
7465       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
7466                             &ParamTy, Args, CandidateSet);
7467     }
7468   }
7469
7470   // C++ [over.built]p9:
7471   //  For every promoted arithmetic type T, there exist candidate
7472   //  operator functions of the form
7473   //
7474   //       T         operator+(T);
7475   //       T         operator-(T);
7476   void addUnaryPlusOrMinusArithmeticOverloads() {
7477     if (!HasArithmeticOrEnumeralCandidateType)
7478       return;
7479
7480     for (unsigned Arith = FirstPromotedArithmeticType;
7481          Arith < LastPromotedArithmeticType; ++Arith) {
7482       QualType ArithTy = getArithmeticType(Arith);
7483       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
7484     }
7485
7486     // Extension: We also add these operators for vector types.
7487     for (BuiltinCandidateTypeSet::iterator
7488               Vec = CandidateTypes[0].vector_begin(),
7489            VecEnd = CandidateTypes[0].vector_end();
7490          Vec != VecEnd; ++Vec) {
7491       QualType VecTy = *Vec;
7492       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7493     }
7494   }
7495
7496   // C++ [over.built]p8:
7497   //   For every type T, there exist candidate operator functions of
7498   //   the form
7499   //
7500   //       T*         operator+(T*);
7501   void addUnaryPlusPointerOverloads() {
7502     for (BuiltinCandidateTypeSet::iterator
7503               Ptr = CandidateTypes[0].pointer_begin(),
7504            PtrEnd = CandidateTypes[0].pointer_end();
7505          Ptr != PtrEnd; ++Ptr) {
7506       QualType ParamTy = *Ptr;
7507       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
7508     }
7509   }
7510
7511   // C++ [over.built]p10:
7512   //   For every promoted integral type T, there exist candidate
7513   //   operator functions of the form
7514   //
7515   //        T         operator~(T);
7516   void addUnaryTildePromotedIntegralOverloads() {
7517     if (!HasArithmeticOrEnumeralCandidateType)
7518       return;
7519
7520     for (unsigned Int = FirstPromotedIntegralType;
7521          Int < LastPromotedIntegralType; ++Int) {
7522       QualType IntTy = getArithmeticType(Int);
7523       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
7524     }
7525
7526     // Extension: We also add this operator for vector types.
7527     for (BuiltinCandidateTypeSet::iterator
7528               Vec = CandidateTypes[0].vector_begin(),
7529            VecEnd = CandidateTypes[0].vector_end();
7530          Vec != VecEnd; ++Vec) {
7531       QualType VecTy = *Vec;
7532       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7533     }
7534   }
7535
7536   // C++ [over.match.oper]p16:
7537   //   For every pointer to member type T, there exist candidate operator
7538   //   functions of the form
7539   //
7540   //        bool operator==(T,T);
7541   //        bool operator!=(T,T);
7542   void addEqualEqualOrNotEqualMemberPointerOverloads() {
7543     /// Set of (canonical) types that we've already handled.
7544     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7545
7546     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7547       for (BuiltinCandidateTypeSet::iterator
7548                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7549              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7550            MemPtr != MemPtrEnd;
7551            ++MemPtr) {
7552         // Don't add the same builtin candidate twice.
7553         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7554           continue;
7555
7556         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7557         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7558       }
7559     }
7560   }
7561
7562   // C++ [over.built]p15:
7563   //
7564   //   For every T, where T is an enumeration type, a pointer type, or 
7565   //   std::nullptr_t, there exist candidate operator functions of the form
7566   //
7567   //        bool       operator<(T, T);
7568   //        bool       operator>(T, T);
7569   //        bool       operator<=(T, T);
7570   //        bool       operator>=(T, T);
7571   //        bool       operator==(T, T);
7572   //        bool       operator!=(T, T);
7573   void addRelationalPointerOrEnumeralOverloads() {
7574     // C++ [over.match.oper]p3:
7575     //   [...]the built-in candidates include all of the candidate operator
7576     //   functions defined in 13.6 that, compared to the given operator, [...]
7577     //   do not have the same parameter-type-list as any non-template non-member
7578     //   candidate.
7579     //
7580     // Note that in practice, this only affects enumeration types because there
7581     // aren't any built-in candidates of record type, and a user-defined operator
7582     // must have an operand of record or enumeration type. Also, the only other
7583     // overloaded operator with enumeration arguments, operator=,
7584     // cannot be overloaded for enumeration types, so this is the only place
7585     // where we must suppress candidates like this.
7586     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7587       UserDefinedBinaryOperators;
7588
7589     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7590       if (CandidateTypes[ArgIdx].enumeration_begin() !=
7591           CandidateTypes[ArgIdx].enumeration_end()) {
7592         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7593                                          CEnd = CandidateSet.end();
7594              C != CEnd; ++C) {
7595           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7596             continue;
7597
7598           if (C->Function->isFunctionTemplateSpecialization())
7599             continue;
7600
7601           QualType FirstParamType =
7602             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7603           QualType SecondParamType =
7604             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7605
7606           // Skip if either parameter isn't of enumeral type.
7607           if (!FirstParamType->isEnumeralType() ||
7608               !SecondParamType->isEnumeralType())
7609             continue;
7610
7611           // Add this operator to the set of known user-defined operators.
7612           UserDefinedBinaryOperators.insert(
7613             std::make_pair(S.Context.getCanonicalType(FirstParamType),
7614                            S.Context.getCanonicalType(SecondParamType)));
7615         }
7616       }
7617     }
7618
7619     /// Set of (canonical) types that we've already handled.
7620     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7621
7622     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7623       for (BuiltinCandidateTypeSet::iterator
7624                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7625              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7626            Ptr != PtrEnd; ++Ptr) {
7627         // Don't add the same builtin candidate twice.
7628         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7629           continue;
7630
7631         QualType ParamTypes[2] = { *Ptr, *Ptr };
7632         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7633       }
7634       for (BuiltinCandidateTypeSet::iterator
7635                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7636              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7637            Enum != EnumEnd; ++Enum) {
7638         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7639
7640         // Don't add the same builtin candidate twice, or if a user defined
7641         // candidate exists.
7642         if (!AddedTypes.insert(CanonType).second ||
7643             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7644                                                             CanonType)))
7645           continue;
7646
7647         QualType ParamTypes[2] = { *Enum, *Enum };
7648         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7649       }
7650       
7651       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7652         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7653         if (AddedTypes.insert(NullPtrTy).second &&
7654             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7655                                                              NullPtrTy))) {
7656           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7657           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7658                                 CandidateSet);
7659         }
7660       }
7661     }
7662   }
7663
7664   // C++ [over.built]p13:
7665   //
7666   //   For every cv-qualified or cv-unqualified object type T
7667   //   there exist candidate operator functions of the form
7668   //
7669   //      T*         operator+(T*, ptrdiff_t);
7670   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
7671   //      T*         operator-(T*, ptrdiff_t);
7672   //      T*         operator+(ptrdiff_t, T*);
7673   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
7674   //
7675   // C++ [over.built]p14:
7676   //
7677   //   For every T, where T is a pointer to object type, there
7678   //   exist candidate operator functions of the form
7679   //
7680   //      ptrdiff_t  operator-(T, T);
7681   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7682     /// Set of (canonical) types that we've already handled.
7683     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7684
7685     for (int Arg = 0; Arg < 2; ++Arg) {
7686       QualType AsymmetricParamTypes[2] = {
7687         S.Context.getPointerDiffType(),
7688         S.Context.getPointerDiffType(),
7689       };
7690       for (BuiltinCandidateTypeSet::iterator
7691                 Ptr = CandidateTypes[Arg].pointer_begin(),
7692              PtrEnd = CandidateTypes[Arg].pointer_end();
7693            Ptr != PtrEnd; ++Ptr) {
7694         QualType PointeeTy = (*Ptr)->getPointeeType();
7695         if (!PointeeTy->isObjectType())
7696           continue;
7697
7698         AsymmetricParamTypes[Arg] = *Ptr;
7699         if (Arg == 0 || Op == OO_Plus) {
7700           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7701           // T* operator+(ptrdiff_t, T*);
7702           S.AddBuiltinCandidate(*Ptr, AsymmetricParamTypes, Args, CandidateSet);
7703         }
7704         if (Op == OO_Minus) {
7705           // ptrdiff_t operator-(T, T);
7706           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7707             continue;
7708
7709           QualType ParamTypes[2] = { *Ptr, *Ptr };
7710           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7711                                 Args, CandidateSet);
7712         }
7713       }
7714     }
7715   }
7716
7717   // C++ [over.built]p12:
7718   //
7719   //   For every pair of promoted arithmetic types L and R, there
7720   //   exist candidate operator functions of the form
7721   //
7722   //        LR         operator*(L, R);
7723   //        LR         operator/(L, R);
7724   //        LR         operator+(L, R);
7725   //        LR         operator-(L, R);
7726   //        bool       operator<(L, R);
7727   //        bool       operator>(L, R);
7728   //        bool       operator<=(L, R);
7729   //        bool       operator>=(L, R);
7730   //        bool       operator==(L, R);
7731   //        bool       operator!=(L, R);
7732   //
7733   //   where LR is the result of the usual arithmetic conversions
7734   //   between types L and R.
7735   //
7736   // C++ [over.built]p24:
7737   //
7738   //   For every pair of promoted arithmetic types L and R, there exist
7739   //   candidate operator functions of the form
7740   //
7741   //        LR       operator?(bool, L, R);
7742   //
7743   //   where LR is the result of the usual arithmetic conversions
7744   //   between types L and R.
7745   // Our candidates ignore the first parameter.
7746   void addGenericBinaryArithmeticOverloads(bool isComparison) {
7747     if (!HasArithmeticOrEnumeralCandidateType)
7748       return;
7749
7750     for (unsigned Left = FirstPromotedArithmeticType;
7751          Left < LastPromotedArithmeticType; ++Left) {
7752       for (unsigned Right = FirstPromotedArithmeticType;
7753            Right < LastPromotedArithmeticType; ++Right) {
7754         QualType LandR[2] = { getArithmeticType(Left),
7755                               getArithmeticType(Right) };
7756         QualType Result =
7757           isComparison ? S.Context.BoolTy
7758                        : getUsualArithmeticConversions(Left, Right);
7759         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7760       }
7761     }
7762
7763     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7764     // conditional operator for vector types.
7765     for (BuiltinCandidateTypeSet::iterator
7766               Vec1 = CandidateTypes[0].vector_begin(),
7767            Vec1End = CandidateTypes[0].vector_end();
7768          Vec1 != Vec1End; ++Vec1) {
7769       for (BuiltinCandidateTypeSet::iterator
7770                 Vec2 = CandidateTypes[1].vector_begin(),
7771              Vec2End = CandidateTypes[1].vector_end();
7772            Vec2 != Vec2End; ++Vec2) {
7773         QualType LandR[2] = { *Vec1, *Vec2 };
7774         QualType Result = S.Context.BoolTy;
7775         if (!isComparison) {
7776           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7777             Result = *Vec1;
7778           else
7779             Result = *Vec2;
7780         }
7781
7782         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7783       }
7784     }
7785   }
7786
7787   // C++ [over.built]p17:
7788   //
7789   //   For every pair of promoted integral types L and R, there
7790   //   exist candidate operator functions of the form
7791   //
7792   //      LR         operator%(L, R);
7793   //      LR         operator&(L, R);
7794   //      LR         operator^(L, R);
7795   //      LR         operator|(L, R);
7796   //      L          operator<<(L, R);
7797   //      L          operator>>(L, R);
7798   //
7799   //   where LR is the result of the usual arithmetic conversions
7800   //   between types L and R.
7801   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7802     if (!HasArithmeticOrEnumeralCandidateType)
7803       return;
7804
7805     for (unsigned Left = FirstPromotedIntegralType;
7806          Left < LastPromotedIntegralType; ++Left) {
7807       for (unsigned Right = FirstPromotedIntegralType;
7808            Right < LastPromotedIntegralType; ++Right) {
7809         QualType LandR[2] = { getArithmeticType(Left),
7810                               getArithmeticType(Right) };
7811         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7812             ? LandR[0]
7813             : getUsualArithmeticConversions(Left, Right);
7814         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7815       }
7816     }
7817   }
7818
7819   // C++ [over.built]p20:
7820   //
7821   //   For every pair (T, VQ), where T is an enumeration or
7822   //   pointer to member type and VQ is either volatile or
7823   //   empty, there exist candidate operator functions of the form
7824   //
7825   //        VQ T&      operator=(VQ T&, T);
7826   void addAssignmentMemberPointerOrEnumeralOverloads() {
7827     /// Set of (canonical) types that we've already handled.
7828     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7829
7830     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7831       for (BuiltinCandidateTypeSet::iterator
7832                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7833              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7834            Enum != EnumEnd; ++Enum) {
7835         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
7836           continue;
7837
7838         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7839       }
7840
7841       for (BuiltinCandidateTypeSet::iterator
7842                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7843              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7844            MemPtr != MemPtrEnd; ++MemPtr) {
7845         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7846           continue;
7847
7848         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7849       }
7850     }
7851   }
7852
7853   // C++ [over.built]p19:
7854   //
7855   //   For every pair (T, VQ), where T is any type and VQ is either
7856   //   volatile or empty, there exist candidate operator functions
7857   //   of the form
7858   //
7859   //        T*VQ&      operator=(T*VQ&, T*);
7860   //
7861   // C++ [over.built]p21:
7862   //
7863   //   For every pair (T, VQ), where T is a cv-qualified or
7864   //   cv-unqualified object type and VQ is either volatile or
7865   //   empty, there exist candidate operator functions of the form
7866   //
7867   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7868   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7869   void addAssignmentPointerOverloads(bool isEqualOp) {
7870     /// Set of (canonical) types that we've already handled.
7871     llvm::SmallPtrSet<QualType, 8> AddedTypes;
7872
7873     for (BuiltinCandidateTypeSet::iterator
7874               Ptr = CandidateTypes[0].pointer_begin(),
7875            PtrEnd = CandidateTypes[0].pointer_end();
7876          Ptr != PtrEnd; ++Ptr) {
7877       // If this is operator=, keep track of the builtin candidates we added.
7878       if (isEqualOp)
7879         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7880       else if (!(*Ptr)->getPointeeType()->isObjectType())
7881         continue;
7882
7883       // non-volatile version
7884       QualType ParamTypes[2] = {
7885         S.Context.getLValueReferenceType(*Ptr),
7886         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7887       };
7888       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7889                             /*IsAssigmentOperator=*/ isEqualOp);
7890
7891       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7892                           VisibleTypeConversionsQuals.hasVolatile();
7893       if (NeedVolatile) {
7894         // volatile version
7895         ParamTypes[0] =
7896           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7897         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7898                               /*IsAssigmentOperator=*/isEqualOp);
7899       }
7900       
7901       if (!(*Ptr).isRestrictQualified() &&
7902           VisibleTypeConversionsQuals.hasRestrict()) {
7903         // restrict version
7904         ParamTypes[0]
7905           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7906         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7907                               /*IsAssigmentOperator=*/isEqualOp);
7908         
7909         if (NeedVolatile) {
7910           // volatile restrict version
7911           ParamTypes[0]
7912             = S.Context.getLValueReferenceType(
7913                 S.Context.getCVRQualifiedType(*Ptr,
7914                                               (Qualifiers::Volatile |
7915                                                Qualifiers::Restrict)));
7916           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7917                                 /*IsAssigmentOperator=*/isEqualOp);
7918         }
7919       }
7920     }
7921
7922     if (isEqualOp) {
7923       for (BuiltinCandidateTypeSet::iterator
7924                 Ptr = CandidateTypes[1].pointer_begin(),
7925              PtrEnd = CandidateTypes[1].pointer_end();
7926            Ptr != PtrEnd; ++Ptr) {
7927         // Make sure we don't add the same candidate twice.
7928         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7929           continue;
7930
7931         QualType ParamTypes[2] = {
7932           S.Context.getLValueReferenceType(*Ptr),
7933           *Ptr,
7934         };
7935
7936         // non-volatile version
7937         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7938                               /*IsAssigmentOperator=*/true);
7939
7940         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7941                            VisibleTypeConversionsQuals.hasVolatile();
7942         if (NeedVolatile) {
7943           // volatile version
7944           ParamTypes[0] =
7945             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7946           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7947                                 /*IsAssigmentOperator=*/true);
7948         }
7949       
7950         if (!(*Ptr).isRestrictQualified() &&
7951             VisibleTypeConversionsQuals.hasRestrict()) {
7952           // restrict version
7953           ParamTypes[0]
7954             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7955           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7956                                 /*IsAssigmentOperator=*/true);
7957           
7958           if (NeedVolatile) {
7959             // volatile restrict version
7960             ParamTypes[0]
7961               = S.Context.getLValueReferenceType(
7962                   S.Context.getCVRQualifiedType(*Ptr,
7963                                                 (Qualifiers::Volatile |
7964                                                  Qualifiers::Restrict)));
7965             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7966                                   /*IsAssigmentOperator=*/true);
7967           }
7968         }
7969       }
7970     }
7971   }
7972
7973   // C++ [over.built]p18:
7974   //
7975   //   For every triple (L, VQ, R), where L is an arithmetic type,
7976   //   VQ is either volatile or empty, and R is a promoted
7977   //   arithmetic type, there exist candidate operator functions of
7978   //   the form
7979   //
7980   //        VQ L&      operator=(VQ L&, R);
7981   //        VQ L&      operator*=(VQ L&, R);
7982   //        VQ L&      operator/=(VQ L&, R);
7983   //        VQ L&      operator+=(VQ L&, R);
7984   //        VQ L&      operator-=(VQ L&, R);
7985   void addAssignmentArithmeticOverloads(bool isEqualOp) {
7986     if (!HasArithmeticOrEnumeralCandidateType)
7987       return;
7988
7989     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7990       for (unsigned Right = FirstPromotedArithmeticType;
7991            Right < LastPromotedArithmeticType; ++Right) {
7992         QualType ParamTypes[2];
7993         ParamTypes[1] = getArithmeticType(Right);
7994
7995         // Add this built-in operator as a candidate (VQ is empty).
7996         ParamTypes[0] =
7997           S.Context.getLValueReferenceType(getArithmeticType(Left));
7998         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7999                               /*IsAssigmentOperator=*/isEqualOp);
8000
8001         // Add this built-in operator as a candidate (VQ is 'volatile').
8002         if (VisibleTypeConversionsQuals.hasVolatile()) {
8003           ParamTypes[0] =
8004             S.Context.getVolatileType(getArithmeticType(Left));
8005           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8006           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
8007                                 /*IsAssigmentOperator=*/isEqualOp);
8008         }
8009       }
8010     }
8011
8012     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8013     for (BuiltinCandidateTypeSet::iterator
8014               Vec1 = CandidateTypes[0].vector_begin(),
8015            Vec1End = CandidateTypes[0].vector_end();
8016          Vec1 != Vec1End; ++Vec1) {
8017       for (BuiltinCandidateTypeSet::iterator
8018                 Vec2 = CandidateTypes[1].vector_begin(),
8019              Vec2End = CandidateTypes[1].vector_end();
8020            Vec2 != Vec2End; ++Vec2) {
8021         QualType ParamTypes[2];
8022         ParamTypes[1] = *Vec2;
8023         // Add this built-in operator as a candidate (VQ is empty).
8024         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8025         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
8026                               /*IsAssigmentOperator=*/isEqualOp);
8027
8028         // Add this built-in operator as a candidate (VQ is 'volatile').
8029         if (VisibleTypeConversionsQuals.hasVolatile()) {
8030           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8031           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8032           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
8033                                 /*IsAssigmentOperator=*/isEqualOp);
8034         }
8035       }
8036     }
8037   }
8038
8039   // C++ [over.built]p22:
8040   //
8041   //   For every triple (L, VQ, R), where L is an integral type, VQ
8042   //   is either volatile or empty, and R is a promoted integral
8043   //   type, there exist candidate operator functions of the form
8044   //
8045   //        VQ L&       operator%=(VQ L&, R);
8046   //        VQ L&       operator<<=(VQ L&, R);
8047   //        VQ L&       operator>>=(VQ L&, R);
8048   //        VQ L&       operator&=(VQ L&, R);
8049   //        VQ L&       operator^=(VQ L&, R);
8050   //        VQ L&       operator|=(VQ L&, R);
8051   void addAssignmentIntegralOverloads() {
8052     if (!HasArithmeticOrEnumeralCandidateType)
8053       return;
8054
8055     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8056       for (unsigned Right = FirstPromotedIntegralType;
8057            Right < LastPromotedIntegralType; ++Right) {
8058         QualType ParamTypes[2];
8059         ParamTypes[1] = getArithmeticType(Right);
8060
8061         // Add this built-in operator as a candidate (VQ is empty).
8062         ParamTypes[0] =
8063           S.Context.getLValueReferenceType(getArithmeticType(Left));
8064         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
8065         if (VisibleTypeConversionsQuals.hasVolatile()) {
8066           // Add this built-in operator as a candidate (VQ is 'volatile').
8067           ParamTypes[0] = getArithmeticType(Left);
8068           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8069           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8070           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
8071         }
8072       }
8073     }
8074   }
8075
8076   // C++ [over.operator]p23:
8077   //
8078   //   There also exist candidate operator functions of the form
8079   //
8080   //        bool        operator!(bool);
8081   //        bool        operator&&(bool, bool);
8082   //        bool        operator||(bool, bool);
8083   void addExclaimOverload() {
8084     QualType ParamTy = S.Context.BoolTy;
8085     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
8086                           /*IsAssignmentOperator=*/false,
8087                           /*NumContextualBoolArguments=*/1);
8088   }
8089   void addAmpAmpOrPipePipeOverload() {
8090     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8091     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
8092                           /*IsAssignmentOperator=*/false,
8093                           /*NumContextualBoolArguments=*/2);
8094   }
8095
8096   // C++ [over.built]p13:
8097   //
8098   //   For every cv-qualified or cv-unqualified object type T there
8099   //   exist candidate operator functions of the form
8100   //
8101   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
8102   //        T&         operator[](T*, ptrdiff_t);
8103   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
8104   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
8105   //        T&         operator[](ptrdiff_t, T*);
8106   void addSubscriptOverloads() {
8107     for (BuiltinCandidateTypeSet::iterator
8108               Ptr = CandidateTypes[0].pointer_begin(),
8109            PtrEnd = CandidateTypes[0].pointer_end();
8110          Ptr != PtrEnd; ++Ptr) {
8111       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8112       QualType PointeeType = (*Ptr)->getPointeeType();
8113       if (!PointeeType->isObjectType())
8114         continue;
8115
8116       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
8117
8118       // T& operator[](T*, ptrdiff_t)
8119       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8120     }
8121
8122     for (BuiltinCandidateTypeSet::iterator
8123               Ptr = CandidateTypes[1].pointer_begin(),
8124            PtrEnd = CandidateTypes[1].pointer_end();
8125          Ptr != PtrEnd; ++Ptr) {
8126       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8127       QualType PointeeType = (*Ptr)->getPointeeType();
8128       if (!PointeeType->isObjectType())
8129         continue;
8130
8131       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
8132
8133       // T& operator[](ptrdiff_t, T*)
8134       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8135     }
8136   }
8137
8138   // C++ [over.built]p11:
8139   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8140   //    C1 is the same type as C2 or is a derived class of C2, T is an object
8141   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8142   //    there exist candidate operator functions of the form
8143   //
8144   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8145   //
8146   //    where CV12 is the union of CV1 and CV2.
8147   void addArrowStarOverloads() {
8148     for (BuiltinCandidateTypeSet::iterator
8149              Ptr = CandidateTypes[0].pointer_begin(),
8150            PtrEnd = CandidateTypes[0].pointer_end();
8151          Ptr != PtrEnd; ++Ptr) {
8152       QualType C1Ty = (*Ptr);
8153       QualType C1;
8154       QualifierCollector Q1;
8155       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8156       if (!isa<RecordType>(C1))
8157         continue;
8158       // heuristic to reduce number of builtin candidates in the set.
8159       // Add volatile/restrict version only if there are conversions to a
8160       // volatile/restrict type.
8161       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8162         continue;
8163       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8164         continue;
8165       for (BuiltinCandidateTypeSet::iterator
8166                 MemPtr = CandidateTypes[1].member_pointer_begin(),
8167              MemPtrEnd = CandidateTypes[1].member_pointer_end();
8168            MemPtr != MemPtrEnd; ++MemPtr) {
8169         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8170         QualType C2 = QualType(mptr->getClass(), 0);
8171         C2 = C2.getUnqualifiedType();
8172         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8173           break;
8174         QualType ParamTypes[2] = { *Ptr, *MemPtr };
8175         // build CV12 T&
8176         QualType T = mptr->getPointeeType();
8177         if (!VisibleTypeConversionsQuals.hasVolatile() &&
8178             T.isVolatileQualified())
8179           continue;
8180         if (!VisibleTypeConversionsQuals.hasRestrict() &&
8181             T.isRestrictQualified())
8182           continue;
8183         T = Q1.apply(S.Context, T);
8184         QualType ResultTy = S.Context.getLValueReferenceType(T);
8185         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8186       }
8187     }
8188   }
8189
8190   // Note that we don't consider the first argument, since it has been
8191   // contextually converted to bool long ago. The candidates below are
8192   // therefore added as binary.
8193   //
8194   // C++ [over.built]p25:
8195   //   For every type T, where T is a pointer, pointer-to-member, or scoped
8196   //   enumeration type, there exist candidate operator functions of the form
8197   //
8198   //        T        operator?(bool, T, T);
8199   //
8200   void addConditionalOperatorOverloads() {
8201     /// Set of (canonical) types that we've already handled.
8202     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8203
8204     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8205       for (BuiltinCandidateTypeSet::iterator
8206                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8207              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8208            Ptr != PtrEnd; ++Ptr) {
8209         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8210           continue;
8211
8212         QualType ParamTypes[2] = { *Ptr, *Ptr };
8213         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
8214       }
8215
8216       for (BuiltinCandidateTypeSet::iterator
8217                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8218              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8219            MemPtr != MemPtrEnd; ++MemPtr) {
8220         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8221           continue;
8222
8223         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8224         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
8225       }
8226
8227       if (S.getLangOpts().CPlusPlus11) {
8228         for (BuiltinCandidateTypeSet::iterator
8229                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8230                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8231              Enum != EnumEnd; ++Enum) {
8232           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8233             continue;
8234
8235           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8236             continue;
8237
8238           QualType ParamTypes[2] = { *Enum, *Enum };
8239           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
8240         }
8241       }
8242     }
8243   }
8244 };
8245
8246 } // end anonymous namespace
8247
8248 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8249 /// operator overloads to the candidate set (C++ [over.built]), based
8250 /// on the operator @p Op and the arguments given. For example, if the
8251 /// operator is a binary '+', this routine might add "int
8252 /// operator+(int, int)" to cover integer addition.
8253 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8254                                         SourceLocation OpLoc,
8255                                         ArrayRef<Expr *> Args,
8256                                         OverloadCandidateSet &CandidateSet) {
8257   // Find all of the types that the arguments can convert to, but only
8258   // if the operator we're looking at has built-in operator candidates
8259   // that make use of these types. Also record whether we encounter non-record
8260   // candidate types or either arithmetic or enumeral candidate types.
8261   Qualifiers VisibleTypeConversionsQuals;
8262   VisibleTypeConversionsQuals.addConst();
8263   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8264     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8265
8266   bool HasNonRecordCandidateType = false;
8267   bool HasArithmeticOrEnumeralCandidateType = false;
8268   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8269   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8270     CandidateTypes.emplace_back(*this);
8271     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8272                                                  OpLoc,
8273                                                  true,
8274                                                  (Op == OO_Exclaim ||
8275                                                   Op == OO_AmpAmp ||
8276                                                   Op == OO_PipePipe),
8277                                                  VisibleTypeConversionsQuals);
8278     HasNonRecordCandidateType = HasNonRecordCandidateType ||
8279         CandidateTypes[ArgIdx].hasNonRecordTypes();
8280     HasArithmeticOrEnumeralCandidateType =
8281         HasArithmeticOrEnumeralCandidateType ||
8282         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8283   }
8284
8285   // Exit early when no non-record types have been added to the candidate set
8286   // for any of the arguments to the operator.
8287   //
8288   // We can't exit early for !, ||, or &&, since there we have always have
8289   // 'bool' overloads.
8290   if (!HasNonRecordCandidateType &&
8291       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8292     return;
8293
8294   // Setup an object to manage the common state for building overloads.
8295   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8296                                            VisibleTypeConversionsQuals,
8297                                            HasArithmeticOrEnumeralCandidateType,
8298                                            CandidateTypes, CandidateSet);
8299
8300   // Dispatch over the operation to add in only those overloads which apply.
8301   switch (Op) {
8302   case OO_None:
8303   case NUM_OVERLOADED_OPERATORS:
8304     llvm_unreachable("Expected an overloaded operator");
8305
8306   case OO_New:
8307   case OO_Delete:
8308   case OO_Array_New:
8309   case OO_Array_Delete:
8310   case OO_Call:
8311     llvm_unreachable(
8312                     "Special operators don't use AddBuiltinOperatorCandidates");
8313
8314   case OO_Comma:
8315   case OO_Arrow:
8316   case OO_Coawait:
8317     // C++ [over.match.oper]p3:
8318     //   -- For the operator ',', the unary operator '&', the
8319     //      operator '->', or the operator 'co_await', the
8320     //      built-in candidates set is empty.
8321     break;
8322
8323   case OO_Plus: // '+' is either unary or binary
8324     if (Args.size() == 1)
8325       OpBuilder.addUnaryPlusPointerOverloads();
8326     // Fall through.
8327
8328   case OO_Minus: // '-' is either unary or binary
8329     if (Args.size() == 1) {
8330       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8331     } else {
8332       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8333       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8334     }
8335     break;
8336
8337   case OO_Star: // '*' is either unary or binary
8338     if (Args.size() == 1)
8339       OpBuilder.addUnaryStarPointerOverloads();
8340     else
8341       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8342     break;
8343
8344   case OO_Slash:
8345     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8346     break;
8347
8348   case OO_PlusPlus:
8349   case OO_MinusMinus:
8350     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8351     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8352     break;
8353
8354   case OO_EqualEqual:
8355   case OO_ExclaimEqual:
8356     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
8357     // Fall through.
8358
8359   case OO_Less:
8360   case OO_Greater:
8361   case OO_LessEqual:
8362   case OO_GreaterEqual:
8363     OpBuilder.addRelationalPointerOrEnumeralOverloads();
8364     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
8365     break;
8366
8367   case OO_Percent:
8368   case OO_Caret:
8369   case OO_Pipe:
8370   case OO_LessLess:
8371   case OO_GreaterGreater:
8372     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8373     break;
8374
8375   case OO_Amp: // '&' is either unary or binary
8376     if (Args.size() == 1)
8377       // C++ [over.match.oper]p3:
8378       //   -- For the operator ',', the unary operator '&', or the
8379       //      operator '->', the built-in candidates set is empty.
8380       break;
8381
8382     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8383     break;
8384
8385   case OO_Tilde:
8386     OpBuilder.addUnaryTildePromotedIntegralOverloads();
8387     break;
8388
8389   case OO_Equal:
8390     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8391     // Fall through.
8392
8393   case OO_PlusEqual:
8394   case OO_MinusEqual:
8395     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8396     // Fall through.
8397
8398   case OO_StarEqual:
8399   case OO_SlashEqual:
8400     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8401     break;
8402
8403   case OO_PercentEqual:
8404   case OO_LessLessEqual:
8405   case OO_GreaterGreaterEqual:
8406   case OO_AmpEqual:
8407   case OO_CaretEqual:
8408   case OO_PipeEqual:
8409     OpBuilder.addAssignmentIntegralOverloads();
8410     break;
8411
8412   case OO_Exclaim:
8413     OpBuilder.addExclaimOverload();
8414     break;
8415
8416   case OO_AmpAmp:
8417   case OO_PipePipe:
8418     OpBuilder.addAmpAmpOrPipePipeOverload();
8419     break;
8420
8421   case OO_Subscript:
8422     OpBuilder.addSubscriptOverloads();
8423     break;
8424
8425   case OO_ArrowStar:
8426     OpBuilder.addArrowStarOverloads();
8427     break;
8428
8429   case OO_Conditional:
8430     OpBuilder.addConditionalOperatorOverloads();
8431     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8432     break;
8433   }
8434 }
8435
8436 /// \brief Add function candidates found via argument-dependent lookup
8437 /// to the set of overloading candidates.
8438 ///
8439 /// This routine performs argument-dependent name lookup based on the
8440 /// given function name (which may also be an operator name) and adds
8441 /// all of the overload candidates found by ADL to the overload
8442 /// candidate set (C++ [basic.lookup.argdep]).
8443 void
8444 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8445                                            SourceLocation Loc,
8446                                            ArrayRef<Expr *> Args,
8447                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
8448                                            OverloadCandidateSet& CandidateSet,
8449                                            bool PartialOverloading) {
8450   ADLResult Fns;
8451
8452   // FIXME: This approach for uniquing ADL results (and removing
8453   // redundant candidates from the set) relies on pointer-equality,
8454   // which means we need to key off the canonical decl.  However,
8455   // always going back to the canonical decl might not get us the
8456   // right set of default arguments.  What default arguments are
8457   // we supposed to consider on ADL candidates, anyway?
8458
8459   // FIXME: Pass in the explicit template arguments?
8460   ArgumentDependentLookup(Name, Loc, Args, Fns);
8461
8462   // Erase all of the candidates we already knew about.
8463   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8464                                    CandEnd = CandidateSet.end();
8465        Cand != CandEnd; ++Cand)
8466     if (Cand->Function) {
8467       Fns.erase(Cand->Function);
8468       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8469         Fns.erase(FunTmpl);
8470     }
8471
8472   // For each of the ADL candidates we found, add it to the overload
8473   // set.
8474   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8475     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8476     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
8477       if (ExplicitTemplateArgs)
8478         continue;
8479
8480       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
8481                            PartialOverloading);
8482     } else
8483       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
8484                                    FoundDecl, ExplicitTemplateArgs,
8485                                    Args, CandidateSet, PartialOverloading);
8486   }
8487 }
8488
8489 namespace {
8490 enum class Comparison { Equal, Better, Worse };
8491 }
8492
8493 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
8494 /// overload resolution.
8495 ///
8496 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
8497 /// Cand1's first N enable_if attributes have precisely the same conditions as
8498 /// Cand2's first N enable_if attributes (where N = the number of enable_if
8499 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
8500 ///
8501 /// Note that you can have a pair of candidates such that Cand1's enable_if
8502 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
8503 /// worse than Cand1's.
8504 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
8505                                        const FunctionDecl *Cand2) {
8506   // Common case: One (or both) decls don't have enable_if attrs.
8507   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
8508   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
8509   if (!Cand1Attr || !Cand2Attr) {
8510     if (Cand1Attr == Cand2Attr)
8511       return Comparison::Equal;
8512     return Cand1Attr ? Comparison::Better : Comparison::Worse;
8513   }
8514
8515   // FIXME: The next several lines are just
8516   // specific_attr_iterator<EnableIfAttr> but going in declaration order,
8517   // instead of reverse order which is how they're stored in the AST.
8518   auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1);
8519   auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2);
8520
8521   // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
8522   // has fewer enable_if attributes than Cand2.
8523   if (Cand1Attrs.size() < Cand2Attrs.size())
8524     return Comparison::Worse;
8525
8526   auto Cand1I = Cand1Attrs.begin();
8527   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
8528   for (auto &Cand2A : Cand2Attrs) {
8529     Cand1ID.clear();
8530     Cand2ID.clear();
8531
8532     auto &Cand1A = *Cand1I++;
8533     Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true);
8534     Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true);
8535     if (Cand1ID != Cand2ID)
8536       return Comparison::Worse;
8537   }
8538
8539   return Cand1I == Cand1Attrs.end() ? Comparison::Equal : Comparison::Better;
8540 }
8541
8542 /// isBetterOverloadCandidate - Determines whether the first overload
8543 /// candidate is a better candidate than the second (C++ 13.3.3p1).
8544 bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
8545                                       const OverloadCandidate &Cand2,
8546                                       SourceLocation Loc,
8547                                       bool UserDefinedConversion) {
8548   // Define viable functions to be better candidates than non-viable
8549   // functions.
8550   if (!Cand2.Viable)
8551     return Cand1.Viable;
8552   else if (!Cand1.Viable)
8553     return false;
8554
8555   // C++ [over.match.best]p1:
8556   //
8557   //   -- if F is a static member function, ICS1(F) is defined such
8558   //      that ICS1(F) is neither better nor worse than ICS1(G) for
8559   //      any function G, and, symmetrically, ICS1(G) is neither
8560   //      better nor worse than ICS1(F).
8561   unsigned StartArg = 0;
8562   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
8563     StartArg = 1;
8564
8565   // C++ [over.match.best]p1:
8566   //   A viable function F1 is defined to be a better function than another
8567   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
8568   //   conversion sequence than ICSi(F2), and then...
8569   unsigned NumArgs = Cand1.NumConversions;
8570   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
8571   bool HasBetterConversion = false;
8572   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8573     switch (CompareImplicitConversionSequences(S, Loc,
8574                                                Cand1.Conversions[ArgIdx],
8575                                                Cand2.Conversions[ArgIdx])) {
8576     case ImplicitConversionSequence::Better:
8577       // Cand1 has a better conversion sequence.
8578       HasBetterConversion = true;
8579       break;
8580
8581     case ImplicitConversionSequence::Worse:
8582       // Cand1 can't be better than Cand2.
8583       return false;
8584
8585     case ImplicitConversionSequence::Indistinguishable:
8586       // Do nothing.
8587       break;
8588     }
8589   }
8590
8591   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
8592   //       ICSj(F2), or, if not that,
8593   if (HasBetterConversion)
8594     return true;
8595
8596   //   -- the context is an initialization by user-defined conversion
8597   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
8598   //      from the return type of F1 to the destination type (i.e.,
8599   //      the type of the entity being initialized) is a better
8600   //      conversion sequence than the standard conversion sequence
8601   //      from the return type of F2 to the destination type.
8602   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
8603       isa<CXXConversionDecl>(Cand1.Function) &&
8604       isa<CXXConversionDecl>(Cand2.Function)) {
8605     // First check whether we prefer one of the conversion functions over the
8606     // other. This only distinguishes the results in non-standard, extension
8607     // cases such as the conversion from a lambda closure type to a function
8608     // pointer or block.
8609     ImplicitConversionSequence::CompareKind Result =
8610         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
8611     if (Result == ImplicitConversionSequence::Indistinguishable)
8612       Result = CompareStandardConversionSequences(S, Loc,
8613                                                   Cand1.FinalConversion,
8614                                                   Cand2.FinalConversion);
8615
8616     if (Result != ImplicitConversionSequence::Indistinguishable)
8617       return Result == ImplicitConversionSequence::Better;
8618
8619     // FIXME: Compare kind of reference binding if conversion functions
8620     // convert to a reference type used in direct reference binding, per
8621     // C++14 [over.match.best]p1 section 2 bullet 3.
8622   }
8623
8624   //    -- F1 is a non-template function and F2 is a function template
8625   //       specialization, or, if not that,
8626   bool Cand1IsSpecialization = Cand1.Function &&
8627                                Cand1.Function->getPrimaryTemplate();
8628   bool Cand2IsSpecialization = Cand2.Function &&
8629                                Cand2.Function->getPrimaryTemplate();
8630   if (Cand1IsSpecialization != Cand2IsSpecialization)
8631     return Cand2IsSpecialization;
8632
8633   //   -- F1 and F2 are function template specializations, and the function
8634   //      template for F1 is more specialized than the template for F2
8635   //      according to the partial ordering rules described in 14.5.5.2, or,
8636   //      if not that,
8637   if (Cand1IsSpecialization && Cand2IsSpecialization) {
8638     if (FunctionTemplateDecl *BetterTemplate
8639           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
8640                                          Cand2.Function->getPrimaryTemplate(),
8641                                          Loc,
8642                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
8643                                                              : TPOC_Call,
8644                                          Cand1.ExplicitCallArguments,
8645                                          Cand2.ExplicitCallArguments))
8646       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
8647   }
8648
8649   // FIXME: Work around a defect in the C++17 inheriting constructor wording.
8650   // A derived-class constructor beats an (inherited) base class constructor.
8651   bool Cand1IsInherited =
8652       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
8653   bool Cand2IsInherited =
8654       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
8655   if (Cand1IsInherited != Cand2IsInherited)
8656     return Cand2IsInherited;
8657   else if (Cand1IsInherited) {
8658     assert(Cand2IsInherited);
8659     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
8660     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
8661     if (Cand1Class->isDerivedFrom(Cand2Class))
8662       return true;
8663     if (Cand2Class->isDerivedFrom(Cand1Class))
8664       return false;
8665     // Inherited from sibling base classes: still ambiguous.
8666   }
8667
8668   // Check for enable_if value-based overload resolution.
8669   if (Cand1.Function && Cand2.Function) {
8670     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
8671     if (Cmp != Comparison::Equal)
8672       return Cmp == Comparison::Better;
8673   }
8674
8675   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
8676     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
8677     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
8678            S.IdentifyCUDAPreference(Caller, Cand2.Function);
8679   }
8680
8681   bool HasPS1 = Cand1.Function != nullptr &&
8682                 functionHasPassObjectSizeParams(Cand1.Function);
8683   bool HasPS2 = Cand2.Function != nullptr &&
8684                 functionHasPassObjectSizeParams(Cand2.Function);
8685   return HasPS1 != HasPS2 && HasPS1;
8686 }
8687
8688 /// Determine whether two declarations are "equivalent" for the purposes of
8689 /// name lookup and overload resolution. This applies when the same internal/no
8690 /// linkage entity is defined by two modules (probably by textually including
8691 /// the same header). In such a case, we don't consider the declarations to
8692 /// declare the same entity, but we also don't want lookups with both
8693 /// declarations visible to be ambiguous in some cases (this happens when using
8694 /// a modularized libstdc++).
8695 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
8696                                                   const NamedDecl *B) {
8697   auto *VA = dyn_cast_or_null<ValueDecl>(A);
8698   auto *VB = dyn_cast_or_null<ValueDecl>(B);
8699   if (!VA || !VB)
8700     return false;
8701
8702   // The declarations must be declaring the same name as an internal linkage
8703   // entity in different modules.
8704   if (!VA->getDeclContext()->getRedeclContext()->Equals(
8705           VB->getDeclContext()->getRedeclContext()) ||
8706       getOwningModule(const_cast<ValueDecl *>(VA)) ==
8707           getOwningModule(const_cast<ValueDecl *>(VB)) ||
8708       VA->isExternallyVisible() || VB->isExternallyVisible())
8709     return false;
8710
8711   // Check that the declarations appear to be equivalent.
8712   //
8713   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
8714   // For constants and functions, we should check the initializer or body is
8715   // the same. For non-constant variables, we shouldn't allow it at all.
8716   if (Context.hasSameType(VA->getType(), VB->getType()))
8717     return true;
8718
8719   // Enum constants within unnamed enumerations will have different types, but
8720   // may still be similar enough to be interchangeable for our purposes.
8721   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
8722     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
8723       // Only handle anonymous enums. If the enumerations were named and
8724       // equivalent, they would have been merged to the same type.
8725       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
8726       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
8727       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
8728           !Context.hasSameType(EnumA->getIntegerType(),
8729                                EnumB->getIntegerType()))
8730         return false;
8731       // Allow this only if the value is the same for both enumerators.
8732       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
8733     }
8734   }
8735
8736   // Nothing else is sufficiently similar.
8737   return false;
8738 }
8739
8740 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
8741     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
8742   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
8743
8744   Module *M = getOwningModule(const_cast<NamedDecl*>(D));
8745   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
8746       << !M << (M ? M->getFullModuleName() : "");
8747
8748   for (auto *E : Equiv) {
8749     Module *M = getOwningModule(const_cast<NamedDecl*>(E));
8750     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
8751         << !M << (M ? M->getFullModuleName() : "");
8752   }
8753 }
8754
8755 /// \brief Computes the best viable function (C++ 13.3.3)
8756 /// within an overload candidate set.
8757 ///
8758 /// \param Loc The location of the function name (or operator symbol) for
8759 /// which overload resolution occurs.
8760 ///
8761 /// \param Best If overload resolution was successful or found a deleted
8762 /// function, \p Best points to the candidate function found.
8763 ///
8764 /// \returns The result of overload resolution.
8765 OverloadingResult
8766 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8767                                          iterator &Best,
8768                                          bool UserDefinedConversion) {
8769   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
8770   std::transform(begin(), end(), std::back_inserter(Candidates),
8771                  [](OverloadCandidate &Cand) { return &Cand; });
8772
8773   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA
8774   // but accepted by both clang and NVCC. However during a particular
8775   // compilation mode only one call variant is viable. We need to
8776   // exclude non-viable overload candidates from consideration based
8777   // only on their host/device attributes. Specifically, if one
8778   // candidate call is WrongSide and the other is SameSide, we ignore
8779   // the WrongSide candidate.
8780   if (S.getLangOpts().CUDA) {
8781     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
8782     bool ContainsSameSideCandidate =
8783         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
8784           return Cand->Function &&
8785                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
8786                      Sema::CFP_SameSide;
8787         });
8788     if (ContainsSameSideCandidate) {
8789       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
8790         return Cand->Function &&
8791                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
8792                    Sema::CFP_WrongSide;
8793       };
8794       Candidates.erase(std::remove_if(Candidates.begin(), Candidates.end(),
8795                                       IsWrongSideCandidate),
8796                        Candidates.end());
8797     }
8798   }
8799
8800   // Find the best viable function.
8801   Best = end();
8802   for (auto *Cand : Candidates)
8803     if (Cand->Viable)
8804       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8805                                                      UserDefinedConversion))
8806         Best = Cand;
8807
8808   // If we didn't find any viable functions, abort.
8809   if (Best == end())
8810     return OR_No_Viable_Function;
8811
8812   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
8813
8814   // Make sure that this function is better than every other viable
8815   // function. If not, we have an ambiguity.
8816   for (auto *Cand : Candidates) {
8817     if (Cand->Viable &&
8818         Cand != Best &&
8819         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8820                                    UserDefinedConversion)) {
8821       if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
8822                                                    Cand->Function)) {
8823         EquivalentCands.push_back(Cand->Function);
8824         continue;
8825       }
8826
8827       Best = end();
8828       return OR_Ambiguous;
8829     }
8830   }
8831
8832   // Best is the best viable function.
8833   if (Best->Function &&
8834       (Best->Function->isDeleted() ||
8835        S.isFunctionConsideredUnavailable(Best->Function)))
8836     return OR_Deleted;
8837
8838   if (!EquivalentCands.empty())
8839     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
8840                                                     EquivalentCands);
8841
8842   return OR_Success;
8843 }
8844
8845 namespace {
8846
8847 enum OverloadCandidateKind {
8848   oc_function,
8849   oc_method,
8850   oc_constructor,
8851   oc_function_template,
8852   oc_method_template,
8853   oc_constructor_template,
8854   oc_implicit_default_constructor,
8855   oc_implicit_copy_constructor,
8856   oc_implicit_move_constructor,
8857   oc_implicit_copy_assignment,
8858   oc_implicit_move_assignment,
8859   oc_inherited_constructor,
8860   oc_inherited_constructor_template
8861 };
8862
8863 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8864                                                 NamedDecl *Found,
8865                                                 FunctionDecl *Fn,
8866                                                 std::string &Description) {
8867   bool isTemplate = false;
8868
8869   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8870     isTemplate = true;
8871     Description = S.getTemplateArgumentBindingsText(
8872       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8873   }
8874
8875   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8876     if (!Ctor->isImplicit()) {
8877       if (isa<ConstructorUsingShadowDecl>(Found))
8878         return isTemplate ? oc_inherited_constructor_template
8879                           : oc_inherited_constructor;
8880       else
8881         return isTemplate ? oc_constructor_template : oc_constructor;
8882     }
8883
8884     if (Ctor->isDefaultConstructor())
8885       return oc_implicit_default_constructor;
8886
8887     if (Ctor->isMoveConstructor())
8888       return oc_implicit_move_constructor;
8889
8890     assert(Ctor->isCopyConstructor() &&
8891            "unexpected sort of implicit constructor");
8892     return oc_implicit_copy_constructor;
8893   }
8894
8895   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8896     // This actually gets spelled 'candidate function' for now, but
8897     // it doesn't hurt to split it out.
8898     if (!Meth->isImplicit())
8899       return isTemplate ? oc_method_template : oc_method;
8900
8901     if (Meth->isMoveAssignmentOperator())
8902       return oc_implicit_move_assignment;
8903
8904     if (Meth->isCopyAssignmentOperator())
8905       return oc_implicit_copy_assignment;
8906
8907     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8908     return oc_method;
8909   }
8910
8911   return isTemplate ? oc_function_template : oc_function;
8912 }
8913
8914 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
8915   // FIXME: It'd be nice to only emit a note once per using-decl per overload
8916   // set.
8917   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
8918     S.Diag(FoundDecl->getLocation(),
8919            diag::note_ovl_candidate_inherited_constructor)
8920       << Shadow->getNominatedBaseClass();
8921 }
8922
8923 } // end anonymous namespace
8924
8925 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
8926                                     const FunctionDecl *FD) {
8927   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
8928     bool AlwaysTrue;
8929     if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
8930       return false;
8931     if (!AlwaysTrue)
8932       return false;
8933   }
8934   return true;
8935 }
8936
8937 /// \brief Returns true if we can take the address of the function.
8938 ///
8939 /// \param Complain - If true, we'll emit a diagnostic
8940 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
8941 ///   we in overload resolution?
8942 /// \param Loc - The location of the statement we're complaining about. Ignored
8943 ///   if we're not complaining, or if we're in overload resolution.
8944 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
8945                                               bool Complain,
8946                                               bool InOverloadResolution,
8947                                               SourceLocation Loc) {
8948   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
8949     if (Complain) {
8950       if (InOverloadResolution)
8951         S.Diag(FD->getLocStart(),
8952                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
8953       else
8954         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
8955     }
8956     return false;
8957   }
8958
8959   auto I = llvm::find_if(
8960       FD->parameters(), std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
8961   if (I == FD->param_end())
8962     return true;
8963
8964   if (Complain) {
8965     // Add one to ParamNo because it's user-facing
8966     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
8967     if (InOverloadResolution)
8968       S.Diag(FD->getLocation(),
8969              diag::note_ovl_candidate_has_pass_object_size_params)
8970           << ParamNo;
8971     else
8972       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
8973           << FD << ParamNo;
8974   }
8975   return false;
8976 }
8977
8978 static bool checkAddressOfCandidateIsAvailable(Sema &S,
8979                                                const FunctionDecl *FD) {
8980   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
8981                                            /*InOverloadResolution=*/true,
8982                                            /*Loc=*/SourceLocation());
8983 }
8984
8985 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
8986                                              bool Complain,
8987                                              SourceLocation Loc) {
8988   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
8989                                              /*InOverloadResolution=*/false,
8990                                              Loc);
8991 }
8992
8993 // Notes the location of an overload candidate.
8994 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
8995                                  QualType DestType, bool TakingAddress) {
8996   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
8997     return;
8998
8999   std::string FnDesc;
9000   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9001   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9002                              << (unsigned) K << FnDesc;
9003
9004   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9005   Diag(Fn->getLocation(), PD);
9006   MaybeEmitInheritedConstructorNote(*this, Found);
9007 }
9008
9009 // Notes the location of all overload candidates designated through
9010 // OverloadedExpr
9011 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9012                                      bool TakingAddress) {
9013   assert(OverloadedExpr->getType() == Context.OverloadTy);
9014
9015   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9016   OverloadExpr *OvlExpr = Ovl.Expression;
9017
9018   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9019                             IEnd = OvlExpr->decls_end(); 
9020        I != IEnd; ++I) {
9021     if (FunctionTemplateDecl *FunTmpl = 
9022                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9023       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9024                             TakingAddress);
9025     } else if (FunctionDecl *Fun 
9026                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9027       NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9028     }
9029   }
9030 }
9031
9032 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
9033 /// "lead" diagnostic; it will be given two arguments, the source and
9034 /// target types of the conversion.
9035 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9036                                  Sema &S,
9037                                  SourceLocation CaretLoc,
9038                                  const PartialDiagnostic &PDiag) const {
9039   S.Diag(CaretLoc, PDiag)
9040     << Ambiguous.getFromType() << Ambiguous.getToType();
9041   // FIXME: The note limiting machinery is borrowed from
9042   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9043   // refactoring here.
9044   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9045   unsigned CandsShown = 0;
9046   AmbiguousConversionSequence::const_iterator I, E;
9047   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9048     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9049       break;
9050     ++CandsShown;
9051     S.NoteOverloadCandidate(I->first, I->second);
9052   }
9053   if (I != E)
9054     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9055 }
9056
9057 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9058                                   unsigned I, bool TakingCandidateAddress) {
9059   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9060   assert(Conv.isBad());
9061   assert(Cand->Function && "for now, candidate must be a function");
9062   FunctionDecl *Fn = Cand->Function;
9063
9064   // There's a conversion slot for the object argument if this is a
9065   // non-constructor method.  Note that 'I' corresponds the
9066   // conversion-slot index.
9067   bool isObjectArgument = false;
9068   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9069     if (I == 0)
9070       isObjectArgument = true;
9071     else
9072       I--;
9073   }
9074
9075   std::string FnDesc;
9076   OverloadCandidateKind FnKind =
9077       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9078
9079   Expr *FromExpr = Conv.Bad.FromExpr;
9080   QualType FromTy = Conv.Bad.getFromType();
9081   QualType ToTy = Conv.Bad.getToType();
9082
9083   if (FromTy == S.Context.OverloadTy) {
9084     assert(FromExpr && "overload set argument came from implicit argument?");
9085     Expr *E = FromExpr->IgnoreParens();
9086     if (isa<UnaryOperator>(E))
9087       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9088     DeclarationName Name = cast<OverloadExpr>(E)->getName();
9089
9090     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9091       << (unsigned) FnKind << FnDesc
9092       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9093       << ToTy << Name << I+1;
9094     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9095     return;
9096   }
9097
9098   // Do some hand-waving analysis to see if the non-viability is due
9099   // to a qualifier mismatch.
9100   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9101   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9102   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9103     CToTy = RT->getPointeeType();
9104   else {
9105     // TODO: detect and diagnose the full richness of const mismatches.
9106     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9107       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9108         CFromTy = FromPT->getPointeeType();
9109         CToTy = ToPT->getPointeeType();
9110       }
9111   }
9112
9113   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9114       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9115     Qualifiers FromQs = CFromTy.getQualifiers();
9116     Qualifiers ToQs = CToTy.getQualifiers();
9117
9118     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9119       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9120         << (unsigned) FnKind << FnDesc
9121         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9122         << FromTy
9123         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
9124         << (unsigned) isObjectArgument << I+1;
9125       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9126       return;
9127     }
9128
9129     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9130       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9131         << (unsigned) FnKind << FnDesc
9132         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9133         << FromTy
9134         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9135         << (unsigned) isObjectArgument << I+1;
9136       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9137       return;
9138     }
9139
9140     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9141       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9142       << (unsigned) FnKind << FnDesc
9143       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9144       << FromTy
9145       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9146       << (unsigned) isObjectArgument << I+1;
9147       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9148       return;
9149     }
9150
9151     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9152       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9153         << (unsigned) FnKind << FnDesc
9154         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9155         << FromTy << FromQs.hasUnaligned() << I+1;
9156       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9157       return;
9158     }
9159
9160     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9161     assert(CVR && "unexpected qualifiers mismatch");
9162
9163     if (isObjectArgument) {
9164       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9165         << (unsigned) FnKind << FnDesc
9166         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9167         << FromTy << (CVR - 1);
9168     } else {
9169       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9170         << (unsigned) FnKind << FnDesc
9171         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9172         << FromTy << (CVR - 1) << I+1;
9173     }
9174     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9175     return;
9176   }
9177
9178   // Special diagnostic for failure to convert an initializer list, since
9179   // telling the user that it has type void is not useful.
9180   if (FromExpr && isa<InitListExpr>(FromExpr)) {
9181     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9182       << (unsigned) FnKind << FnDesc
9183       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9184       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9185     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9186     return;
9187   }
9188
9189   // Diagnose references or pointers to incomplete types differently,
9190   // since it's far from impossible that the incompleteness triggered
9191   // the failure.
9192   QualType TempFromTy = FromTy.getNonReferenceType();
9193   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
9194     TempFromTy = PTy->getPointeeType();
9195   if (TempFromTy->isIncompleteType()) {
9196     // Emit the generic diagnostic and, optionally, add the hints to it.
9197     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9198       << (unsigned) FnKind << FnDesc
9199       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9200       << FromTy << ToTy << (unsigned) isObjectArgument << I+1
9201       << (unsigned) (Cand->Fix.Kind);
9202       
9203     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9204     return;
9205   }
9206
9207   // Diagnose base -> derived pointer conversions.
9208   unsigned BaseToDerivedConversion = 0;
9209   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
9210     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9211       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9212                                                FromPtrTy->getPointeeType()) &&
9213           !FromPtrTy->getPointeeType()->isIncompleteType() &&
9214           !ToPtrTy->getPointeeType()->isIncompleteType() &&
9215           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9216                           FromPtrTy->getPointeeType()))
9217         BaseToDerivedConversion = 1;
9218     }
9219   } else if (const ObjCObjectPointerType *FromPtrTy
9220                                     = FromTy->getAs<ObjCObjectPointerType>()) {
9221     if (const ObjCObjectPointerType *ToPtrTy
9222                                         = ToTy->getAs<ObjCObjectPointerType>())
9223       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9224         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9225           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9226                                                 FromPtrTy->getPointeeType()) &&
9227               FromIface->isSuperClassOf(ToIface))
9228             BaseToDerivedConversion = 2;
9229   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
9230     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
9231         !FromTy->isIncompleteType() &&
9232         !ToRefTy->getPointeeType()->isIncompleteType() &&
9233         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9234       BaseToDerivedConversion = 3;
9235     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
9236                ToTy.getNonReferenceType().getCanonicalType() ==
9237                FromTy.getNonReferenceType().getCanonicalType()) {
9238       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9239         << (unsigned) FnKind << FnDesc
9240         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9241         << (unsigned) isObjectArgument << I + 1;
9242       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9243       return;
9244     }
9245   }
9246
9247   if (BaseToDerivedConversion) {
9248     S.Diag(Fn->getLocation(),
9249            diag::note_ovl_candidate_bad_base_to_derived_conv)
9250       << (unsigned) FnKind << FnDesc
9251       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9252       << (BaseToDerivedConversion - 1)
9253       << FromTy << ToTy << I+1;
9254     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9255     return;
9256   }
9257
9258   if (isa<ObjCObjectPointerType>(CFromTy) &&
9259       isa<PointerType>(CToTy)) {
9260       Qualifiers FromQs = CFromTy.getQualifiers();
9261       Qualifiers ToQs = CToTy.getQualifiers();
9262       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9263         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9264         << (unsigned) FnKind << FnDesc
9265         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9266         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9267         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9268         return;
9269       }
9270   }
9271
9272   if (TakingCandidateAddress &&
9273       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9274     return;
9275
9276   // Emit the generic diagnostic and, optionally, add the hints to it.
9277   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9278   FDiag << (unsigned) FnKind << FnDesc
9279     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9280     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
9281     << (unsigned) (Cand->Fix.Kind);
9282
9283   // If we can fix the conversion, suggest the FixIts.
9284   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9285        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9286     FDiag << *HI;
9287   S.Diag(Fn->getLocation(), FDiag);
9288
9289   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9290 }
9291
9292 /// Additional arity mismatch diagnosis specific to a function overload
9293 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
9294 /// over a candidate in any candidate set.
9295 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9296                                unsigned NumArgs) {
9297   FunctionDecl *Fn = Cand->Function;
9298   unsigned MinParams = Fn->getMinRequiredArguments();
9299
9300   // With invalid overloaded operators, it's possible that we think we
9301   // have an arity mismatch when in fact it looks like we have the
9302   // right number of arguments, because only overloaded operators have
9303   // the weird behavior of overloading member and non-member functions.
9304   // Just don't report anything.
9305   if (Fn->isInvalidDecl() && 
9306       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9307     return true;
9308
9309   if (NumArgs < MinParams) {
9310     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
9311            (Cand->FailureKind == ovl_fail_bad_deduction &&
9312             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
9313   } else {
9314     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
9315            (Cand->FailureKind == ovl_fail_bad_deduction &&
9316             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
9317   }
9318
9319   return false;
9320 }
9321
9322 /// General arity mismatch diagnosis over a candidate in a candidate set.
9323 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9324                                   unsigned NumFormalArgs) {
9325   assert(isa<FunctionDecl>(D) &&
9326       "The templated declaration should at least be a function"
9327       " when diagnosing bad template argument deduction due to too many"
9328       " or too few arguments");
9329   
9330   FunctionDecl *Fn = cast<FunctionDecl>(D);
9331   
9332   // TODO: treat calls to a missing default constructor as a special case
9333   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9334   unsigned MinParams = Fn->getMinRequiredArguments();
9335
9336   // at least / at most / exactly
9337   unsigned mode, modeCount;
9338   if (NumFormalArgs < MinParams) {
9339     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9340         FnTy->isTemplateVariadic())
9341       mode = 0; // "at least"
9342     else
9343       mode = 2; // "exactly"
9344     modeCount = MinParams;
9345   } else {
9346     if (MinParams != FnTy->getNumParams())
9347       mode = 1; // "at most"
9348     else
9349       mode = 2; // "exactly"
9350     modeCount = FnTy->getNumParams();
9351   }
9352
9353   std::string Description;
9354   OverloadCandidateKind FnKind =
9355       ClassifyOverloadCandidate(S, Found, Fn, Description);
9356
9357   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
9358     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
9359       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9360       << mode << Fn->getParamDecl(0) << NumFormalArgs;
9361   else
9362     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
9363       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9364       << mode << modeCount << NumFormalArgs;
9365   MaybeEmitInheritedConstructorNote(S, Found);
9366 }
9367
9368 /// Arity mismatch diagnosis specific to a function overload candidate.
9369 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
9370                                   unsigned NumFormalArgs) {
9371   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
9372     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
9373 }
9374
9375 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
9376   if (TemplateDecl *TD = Templated->getDescribedTemplate())
9377     return TD;
9378   llvm_unreachable("Unsupported: Getting the described template declaration"
9379                    " for bad deduction diagnosis");
9380 }
9381
9382 /// Diagnose a failed template-argument deduction.
9383 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
9384                                  DeductionFailureInfo &DeductionFailure,
9385                                  unsigned NumArgs,
9386                                  bool TakingCandidateAddress) {
9387   TemplateParameter Param = DeductionFailure.getTemplateParameter();
9388   NamedDecl *ParamD;
9389   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
9390   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
9391   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
9392   switch (DeductionFailure.Result) {
9393   case Sema::TDK_Success:
9394     llvm_unreachable("TDK_success while diagnosing bad deduction");
9395
9396   case Sema::TDK_Incomplete: {
9397     assert(ParamD && "no parameter found for incomplete deduction result");
9398     S.Diag(Templated->getLocation(),
9399            diag::note_ovl_candidate_incomplete_deduction)
9400         << ParamD->getDeclName();
9401     MaybeEmitInheritedConstructorNote(S, Found);
9402     return;
9403   }
9404
9405   case Sema::TDK_Underqualified: {
9406     assert(ParamD && "no parameter found for bad qualifiers deduction result");
9407     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
9408
9409     QualType Param = DeductionFailure.getFirstArg()->getAsType();
9410
9411     // Param will have been canonicalized, but it should just be a
9412     // qualified version of ParamD, so move the qualifiers to that.
9413     QualifierCollector Qs;
9414     Qs.strip(Param);
9415     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
9416     assert(S.Context.hasSameType(Param, NonCanonParam));
9417
9418     // Arg has also been canonicalized, but there's nothing we can do
9419     // about that.  It also doesn't matter as much, because it won't
9420     // have any template parameters in it (because deduction isn't
9421     // done on dependent types).
9422     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
9423
9424     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
9425         << ParamD->getDeclName() << Arg << NonCanonParam;
9426     MaybeEmitInheritedConstructorNote(S, Found);
9427     return;
9428   }
9429
9430   case Sema::TDK_Inconsistent: {
9431     assert(ParamD && "no parameter found for inconsistent deduction result");
9432     int which = 0;
9433     if (isa<TemplateTypeParmDecl>(ParamD))
9434       which = 0;
9435     else if (isa<NonTypeTemplateParmDecl>(ParamD))
9436       which = 1;
9437     else {
9438       which = 2;
9439     }
9440
9441     S.Diag(Templated->getLocation(),
9442            diag::note_ovl_candidate_inconsistent_deduction)
9443         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
9444         << *DeductionFailure.getSecondArg();
9445     MaybeEmitInheritedConstructorNote(S, Found);
9446     return;
9447   }
9448
9449   case Sema::TDK_InvalidExplicitArguments:
9450     assert(ParamD && "no parameter found for invalid explicit arguments");
9451     if (ParamD->getDeclName())
9452       S.Diag(Templated->getLocation(),
9453              diag::note_ovl_candidate_explicit_arg_mismatch_named)
9454           << ParamD->getDeclName();
9455     else {
9456       int index = 0;
9457       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
9458         index = TTP->getIndex();
9459       else if (NonTypeTemplateParmDecl *NTTP
9460                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
9461         index = NTTP->getIndex();
9462       else
9463         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
9464       S.Diag(Templated->getLocation(),
9465              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
9466           << (index + 1);
9467     }
9468     MaybeEmitInheritedConstructorNote(S, Found);
9469     return;
9470
9471   case Sema::TDK_TooManyArguments:
9472   case Sema::TDK_TooFewArguments:
9473     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
9474     return;
9475
9476   case Sema::TDK_InstantiationDepth:
9477     S.Diag(Templated->getLocation(),
9478            diag::note_ovl_candidate_instantiation_depth);
9479     MaybeEmitInheritedConstructorNote(S, Found);
9480     return;
9481
9482   case Sema::TDK_SubstitutionFailure: {
9483     // Format the template argument list into the argument string.
9484     SmallString<128> TemplateArgString;
9485     if (TemplateArgumentList *Args =
9486             DeductionFailure.getTemplateArgumentList()) {
9487       TemplateArgString = " ";
9488       TemplateArgString += S.getTemplateArgumentBindingsText(
9489           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9490     }
9491
9492     // If this candidate was disabled by enable_if, say so.
9493     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
9494     if (PDiag && PDiag->second.getDiagID() ==
9495           diag::err_typename_nested_not_found_enable_if) {
9496       // FIXME: Use the source range of the condition, and the fully-qualified
9497       //        name of the enable_if template. These are both present in PDiag.
9498       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
9499         << "'enable_if'" << TemplateArgString;
9500       return;
9501     }
9502
9503     // Format the SFINAE diagnostic into the argument string.
9504     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
9505     //        formatted message in another diagnostic.
9506     SmallString<128> SFINAEArgString;
9507     SourceRange R;
9508     if (PDiag) {
9509       SFINAEArgString = ": ";
9510       R = SourceRange(PDiag->first, PDiag->first);
9511       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
9512     }
9513
9514     S.Diag(Templated->getLocation(),
9515            diag::note_ovl_candidate_substitution_failure)
9516         << TemplateArgString << SFINAEArgString << R;
9517     MaybeEmitInheritedConstructorNote(S, Found);
9518     return;
9519   }
9520
9521   case Sema::TDK_FailedOverloadResolution: {
9522     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
9523     S.Diag(Templated->getLocation(),
9524            diag::note_ovl_candidate_failed_overload_resolution)
9525         << R.Expression->getName();
9526     return;
9527   }
9528
9529   case Sema::TDK_DeducedMismatch: {
9530     // Format the template argument list into the argument string.
9531     SmallString<128> TemplateArgString;
9532     if (TemplateArgumentList *Args =
9533             DeductionFailure.getTemplateArgumentList()) {
9534       TemplateArgString = " ";
9535       TemplateArgString += S.getTemplateArgumentBindingsText(
9536           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9537     }
9538
9539     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
9540         << (*DeductionFailure.getCallArgIndex() + 1)
9541         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
9542         << TemplateArgString;
9543     break;
9544   }
9545
9546   case Sema::TDK_NonDeducedMismatch: {
9547     // FIXME: Provide a source location to indicate what we couldn't match.
9548     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
9549     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
9550     if (FirstTA.getKind() == TemplateArgument::Template &&
9551         SecondTA.getKind() == TemplateArgument::Template) {
9552       TemplateName FirstTN = FirstTA.getAsTemplate();
9553       TemplateName SecondTN = SecondTA.getAsTemplate();
9554       if (FirstTN.getKind() == TemplateName::Template &&
9555           SecondTN.getKind() == TemplateName::Template) {
9556         if (FirstTN.getAsTemplateDecl()->getName() ==
9557             SecondTN.getAsTemplateDecl()->getName()) {
9558           // FIXME: This fixes a bad diagnostic where both templates are named
9559           // the same.  This particular case is a bit difficult since:
9560           // 1) It is passed as a string to the diagnostic printer.
9561           // 2) The diagnostic printer only attempts to find a better
9562           //    name for types, not decls.
9563           // Ideally, this should folded into the diagnostic printer.
9564           S.Diag(Templated->getLocation(),
9565                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
9566               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
9567           return;
9568         }
9569       }
9570     }
9571
9572     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
9573         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
9574       return;
9575
9576     // FIXME: For generic lambda parameters, check if the function is a lambda
9577     // call operator, and if so, emit a prettier and more informative 
9578     // diagnostic that mentions 'auto' and lambda in addition to 
9579     // (or instead of?) the canonical template type parameters.
9580     S.Diag(Templated->getLocation(),
9581            diag::note_ovl_candidate_non_deduced_mismatch)
9582         << FirstTA << SecondTA;
9583     return;
9584   }
9585   // TODO: diagnose these individually, then kill off
9586   // note_ovl_candidate_bad_deduction, which is uselessly vague.
9587   case Sema::TDK_MiscellaneousDeductionFailure:
9588     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
9589     MaybeEmitInheritedConstructorNote(S, Found);
9590     return;
9591   }
9592 }
9593
9594 /// Diagnose a failed template-argument deduction, for function calls.
9595 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
9596                                  unsigned NumArgs,
9597                                  bool TakingCandidateAddress) {
9598   unsigned TDK = Cand->DeductionFailure.Result;
9599   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
9600     if (CheckArityMismatch(S, Cand, NumArgs))
9601       return;
9602   }
9603   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
9604                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
9605 }
9606
9607 /// CUDA: diagnose an invalid call across targets.
9608 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
9609   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
9610   FunctionDecl *Callee = Cand->Function;
9611
9612   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
9613                            CalleeTarget = S.IdentifyCUDATarget(Callee);
9614
9615   std::string FnDesc;
9616   OverloadCandidateKind FnKind =
9617       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
9618
9619   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
9620       << (unsigned)FnKind << CalleeTarget << CallerTarget;
9621
9622   // This could be an implicit constructor for which we could not infer the
9623   // target due to a collsion. Diagnose that case.
9624   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
9625   if (Meth != nullptr && Meth->isImplicit()) {
9626     CXXRecordDecl *ParentClass = Meth->getParent();
9627     Sema::CXXSpecialMember CSM;
9628
9629     switch (FnKind) {
9630     default:
9631       return;
9632     case oc_implicit_default_constructor:
9633       CSM = Sema::CXXDefaultConstructor;
9634       break;
9635     case oc_implicit_copy_constructor:
9636       CSM = Sema::CXXCopyConstructor;
9637       break;
9638     case oc_implicit_move_constructor:
9639       CSM = Sema::CXXMoveConstructor;
9640       break;
9641     case oc_implicit_copy_assignment:
9642       CSM = Sema::CXXCopyAssignment;
9643       break;
9644     case oc_implicit_move_assignment:
9645       CSM = Sema::CXXMoveAssignment;
9646       break;
9647     };
9648
9649     bool ConstRHS = false;
9650     if (Meth->getNumParams()) {
9651       if (const ReferenceType *RT =
9652               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
9653         ConstRHS = RT->getPointeeType().isConstQualified();
9654       }
9655     }
9656
9657     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
9658                                               /* ConstRHS */ ConstRHS,
9659                                               /* Diagnose */ true);
9660   }
9661 }
9662
9663 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
9664   FunctionDecl *Callee = Cand->Function;
9665   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
9666
9667   S.Diag(Callee->getLocation(),
9668          diag::note_ovl_candidate_disabled_by_enable_if_attr)
9669       << Attr->getCond()->getSourceRange() << Attr->getMessage();
9670 }
9671
9672 /// Generates a 'note' diagnostic for an overload candidate.  We've
9673 /// already generated a primary error at the call site.
9674 ///
9675 /// It really does need to be a single diagnostic with its caret
9676 /// pointed at the candidate declaration.  Yes, this creates some
9677 /// major challenges of technical writing.  Yes, this makes pointing
9678 /// out problems with specific arguments quite awkward.  It's still
9679 /// better than generating twenty screens of text for every failed
9680 /// overload.
9681 ///
9682 /// It would be great to be able to express per-candidate problems
9683 /// more richly for those diagnostic clients that cared, but we'd
9684 /// still have to be just as careful with the default diagnostics.
9685 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
9686                                   unsigned NumArgs,
9687                                   bool TakingCandidateAddress) {
9688   FunctionDecl *Fn = Cand->Function;
9689
9690   // Note deleted candidates, but only if they're viable.
9691   if (Cand->Viable && (Fn->isDeleted() ||
9692       S.isFunctionConsideredUnavailable(Fn))) {
9693     std::string FnDesc;
9694     OverloadCandidateKind FnKind =
9695         ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9696
9697     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
9698       << FnKind << FnDesc
9699       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
9700     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9701     return;
9702   }
9703
9704   // We don't really have anything else to say about viable candidates.
9705   if (Cand->Viable) {
9706     S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
9707     return;
9708   }
9709
9710   switch (Cand->FailureKind) {
9711   case ovl_fail_too_many_arguments:
9712   case ovl_fail_too_few_arguments:
9713     return DiagnoseArityMismatch(S, Cand, NumArgs);
9714
9715   case ovl_fail_bad_deduction:
9716     return DiagnoseBadDeduction(S, Cand, NumArgs,
9717                                 TakingCandidateAddress);
9718
9719   case ovl_fail_illegal_constructor: {
9720     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
9721       << (Fn->getPrimaryTemplate() ? 1 : 0);
9722     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9723     return;
9724   }
9725
9726   case ovl_fail_trivial_conversion:
9727   case ovl_fail_bad_final_conversion:
9728   case ovl_fail_final_conversion_not_exact:
9729     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
9730
9731   case ovl_fail_bad_conversion: {
9732     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
9733     for (unsigned N = Cand->NumConversions; I != N; ++I)
9734       if (Cand->Conversions[I].isBad())
9735         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
9736
9737     // FIXME: this currently happens when we're called from SemaInit
9738     // when user-conversion overload fails.  Figure out how to handle
9739     // those conditions and diagnose them well.
9740     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
9741   }
9742
9743   case ovl_fail_bad_target:
9744     return DiagnoseBadTarget(S, Cand);
9745
9746   case ovl_fail_enable_if:
9747     return DiagnoseFailedEnableIfAttr(S, Cand);
9748
9749   case ovl_fail_addr_not_available: {
9750     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
9751     (void)Available;
9752     assert(!Available);
9753     break;
9754   }
9755   }
9756 }
9757
9758 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
9759   // Desugar the type of the surrogate down to a function type,
9760   // retaining as many typedefs as possible while still showing
9761   // the function type (and, therefore, its parameter types).
9762   QualType FnType = Cand->Surrogate->getConversionType();
9763   bool isLValueReference = false;
9764   bool isRValueReference = false;
9765   bool isPointer = false;
9766   if (const LValueReferenceType *FnTypeRef =
9767         FnType->getAs<LValueReferenceType>()) {
9768     FnType = FnTypeRef->getPointeeType();
9769     isLValueReference = true;
9770   } else if (const RValueReferenceType *FnTypeRef =
9771                FnType->getAs<RValueReferenceType>()) {
9772     FnType = FnTypeRef->getPointeeType();
9773     isRValueReference = true;
9774   }
9775   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
9776     FnType = FnTypePtr->getPointeeType();
9777     isPointer = true;
9778   }
9779   // Desugar down to a function type.
9780   FnType = QualType(FnType->getAs<FunctionType>(), 0);
9781   // Reconstruct the pointer/reference as appropriate.
9782   if (isPointer) FnType = S.Context.getPointerType(FnType);
9783   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
9784   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
9785
9786   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
9787     << FnType;
9788 }
9789
9790 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
9791                                          SourceLocation OpLoc,
9792                                          OverloadCandidate *Cand) {
9793   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
9794   std::string TypeStr("operator");
9795   TypeStr += Opc;
9796   TypeStr += "(";
9797   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
9798   if (Cand->NumConversions == 1) {
9799     TypeStr += ")";
9800     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
9801   } else {
9802     TypeStr += ", ";
9803     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
9804     TypeStr += ")";
9805     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
9806   }
9807 }
9808
9809 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
9810                                          OverloadCandidate *Cand) {
9811   unsigned NoOperands = Cand->NumConversions;
9812   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
9813     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
9814     if (ICS.isBad()) break; // all meaningless after first invalid
9815     if (!ICS.isAmbiguous()) continue;
9816
9817     ICS.DiagnoseAmbiguousConversion(
9818         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
9819   }
9820 }
9821
9822 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
9823   if (Cand->Function)
9824     return Cand->Function->getLocation();
9825   if (Cand->IsSurrogate)
9826     return Cand->Surrogate->getLocation();
9827   return SourceLocation();
9828 }
9829
9830 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
9831   switch ((Sema::TemplateDeductionResult)DFI.Result) {
9832   case Sema::TDK_Success:
9833     llvm_unreachable("TDK_success while diagnosing bad deduction");
9834
9835   case Sema::TDK_Invalid:
9836   case Sema::TDK_Incomplete:
9837     return 1;
9838
9839   case Sema::TDK_Underqualified:
9840   case Sema::TDK_Inconsistent:
9841     return 2;
9842
9843   case Sema::TDK_SubstitutionFailure:
9844   case Sema::TDK_DeducedMismatch:
9845   case Sema::TDK_NonDeducedMismatch:
9846   case Sema::TDK_MiscellaneousDeductionFailure:
9847     return 3;
9848
9849   case Sema::TDK_InstantiationDepth:
9850   case Sema::TDK_FailedOverloadResolution:
9851     return 4;
9852
9853   case Sema::TDK_InvalidExplicitArguments:
9854     return 5;
9855
9856   case Sema::TDK_TooManyArguments:
9857   case Sema::TDK_TooFewArguments:
9858     return 6;
9859   }
9860   llvm_unreachable("Unhandled deduction result");
9861 }
9862
9863 namespace {
9864 struct CompareOverloadCandidatesForDisplay {
9865   Sema &S;
9866   SourceLocation Loc;
9867   size_t NumArgs;
9868
9869   CompareOverloadCandidatesForDisplay(Sema &S, SourceLocation Loc, size_t nArgs)
9870       : S(S), NumArgs(nArgs) {}
9871
9872   bool operator()(const OverloadCandidate *L,
9873                   const OverloadCandidate *R) {
9874     // Fast-path this check.
9875     if (L == R) return false;
9876
9877     // Order first by viability.
9878     if (L->Viable) {
9879       if (!R->Viable) return true;
9880
9881       // TODO: introduce a tri-valued comparison for overload
9882       // candidates.  Would be more worthwhile if we had a sort
9883       // that could exploit it.
9884       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
9885       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
9886     } else if (R->Viable)
9887       return false;
9888
9889     assert(L->Viable == R->Viable);
9890
9891     // Criteria by which we can sort non-viable candidates:
9892     if (!L->Viable) {
9893       // 1. Arity mismatches come after other candidates.
9894       if (L->FailureKind == ovl_fail_too_many_arguments ||
9895           L->FailureKind == ovl_fail_too_few_arguments) {
9896         if (R->FailureKind == ovl_fail_too_many_arguments ||
9897             R->FailureKind == ovl_fail_too_few_arguments) {
9898           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
9899           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
9900           if (LDist == RDist) {
9901             if (L->FailureKind == R->FailureKind)
9902               // Sort non-surrogates before surrogates.
9903               return !L->IsSurrogate && R->IsSurrogate;
9904             // Sort candidates requiring fewer parameters than there were
9905             // arguments given after candidates requiring more parameters
9906             // than there were arguments given.
9907             return L->FailureKind == ovl_fail_too_many_arguments;
9908           }
9909           return LDist < RDist;
9910         }
9911         return false;
9912       }
9913       if (R->FailureKind == ovl_fail_too_many_arguments ||
9914           R->FailureKind == ovl_fail_too_few_arguments)
9915         return true;
9916
9917       // 2. Bad conversions come first and are ordered by the number
9918       // of bad conversions and quality of good conversions.
9919       if (L->FailureKind == ovl_fail_bad_conversion) {
9920         if (R->FailureKind != ovl_fail_bad_conversion)
9921           return true;
9922
9923         // The conversion that can be fixed with a smaller number of changes,
9924         // comes first.
9925         unsigned numLFixes = L->Fix.NumConversionsFixed;
9926         unsigned numRFixes = R->Fix.NumConversionsFixed;
9927         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
9928         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
9929         if (numLFixes != numRFixes) {
9930           return numLFixes < numRFixes;
9931         }
9932
9933         // If there's any ordering between the defined conversions...
9934         // FIXME: this might not be transitive.
9935         assert(L->NumConversions == R->NumConversions);
9936
9937         int leftBetter = 0;
9938         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
9939         for (unsigned E = L->NumConversions; I != E; ++I) {
9940           switch (CompareImplicitConversionSequences(S, Loc,
9941                                                      L->Conversions[I],
9942                                                      R->Conversions[I])) {
9943           case ImplicitConversionSequence::Better:
9944             leftBetter++;
9945             break;
9946
9947           case ImplicitConversionSequence::Worse:
9948             leftBetter--;
9949             break;
9950
9951           case ImplicitConversionSequence::Indistinguishable:
9952             break;
9953           }
9954         }
9955         if (leftBetter > 0) return true;
9956         if (leftBetter < 0) return false;
9957
9958       } else if (R->FailureKind == ovl_fail_bad_conversion)
9959         return false;
9960
9961       if (L->FailureKind == ovl_fail_bad_deduction) {
9962         if (R->FailureKind != ovl_fail_bad_deduction)
9963           return true;
9964
9965         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9966           return RankDeductionFailure(L->DeductionFailure)
9967                < RankDeductionFailure(R->DeductionFailure);
9968       } else if (R->FailureKind == ovl_fail_bad_deduction)
9969         return false;
9970
9971       // TODO: others?
9972     }
9973
9974     // Sort everything else by location.
9975     SourceLocation LLoc = GetLocationForCandidate(L);
9976     SourceLocation RLoc = GetLocationForCandidate(R);
9977
9978     // Put candidates without locations (e.g. builtins) at the end.
9979     if (LLoc.isInvalid()) return false;
9980     if (RLoc.isInvalid()) return true;
9981
9982     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9983   }
9984 };
9985 }
9986
9987 /// CompleteNonViableCandidate - Normally, overload resolution only
9988 /// computes up to the first. Produces the FixIt set if possible.
9989 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
9990                                        ArrayRef<Expr *> Args) {
9991   assert(!Cand->Viable);
9992
9993   // Don't do anything on failures other than bad conversion.
9994   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
9995
9996   // We only want the FixIts if all the arguments can be corrected.
9997   bool Unfixable = false;
9998   // Use a implicit copy initialization to check conversion fixes.
9999   Cand->Fix.setConversionChecker(TryCopyInitialization);
10000
10001   // Skip forward to the first bad conversion.
10002   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
10003   unsigned ConvCount = Cand->NumConversions;
10004   while (true) {
10005     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
10006     ConvIdx++;
10007     if (Cand->Conversions[ConvIdx - 1].isBad()) {
10008       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
10009       break;
10010     }
10011   }
10012
10013   if (ConvIdx == ConvCount)
10014     return;
10015
10016   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
10017          "remaining conversion is initialized?");
10018
10019   // FIXME: this should probably be preserved from the overload
10020   // operation somehow.
10021   bool SuppressUserConversions = false;
10022
10023   const FunctionProtoType* Proto;
10024   unsigned ArgIdx = ConvIdx;
10025
10026   if (Cand->IsSurrogate) {
10027     QualType ConvType
10028       = Cand->Surrogate->getConversionType().getNonReferenceType();
10029     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10030       ConvType = ConvPtrType->getPointeeType();
10031     Proto = ConvType->getAs<FunctionProtoType>();
10032     ArgIdx--;
10033   } else if (Cand->Function) {
10034     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
10035     if (isa<CXXMethodDecl>(Cand->Function) &&
10036         !isa<CXXConstructorDecl>(Cand->Function))
10037       ArgIdx--;
10038   } else {
10039     // Builtin binary operator with a bad first conversion.
10040     assert(ConvCount <= 3);
10041     for (; ConvIdx != ConvCount; ++ConvIdx)
10042       Cand->Conversions[ConvIdx]
10043         = TryCopyInitialization(S, Args[ConvIdx],
10044                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
10045                                 SuppressUserConversions,
10046                                 /*InOverloadResolution*/ true,
10047                                 /*AllowObjCWritebackConversion=*/
10048                                   S.getLangOpts().ObjCAutoRefCount);
10049     return;
10050   }
10051
10052   // Fill in the rest of the conversions.
10053   unsigned NumParams = Proto->getNumParams();
10054   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10055     if (ArgIdx < NumParams) {
10056       Cand->Conversions[ConvIdx] = TryCopyInitialization(
10057           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
10058           /*InOverloadResolution=*/true,
10059           /*AllowObjCWritebackConversion=*/
10060           S.getLangOpts().ObjCAutoRefCount);
10061       // Store the FixIt in the candidate if it exists.
10062       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10063         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10064     }
10065     else
10066       Cand->Conversions[ConvIdx].setEllipsis();
10067   }
10068 }
10069
10070 /// PrintOverloadCandidates - When overload resolution fails, prints
10071 /// diagnostic messages containing the candidates in the candidate
10072 /// set.
10073 void OverloadCandidateSet::NoteCandidates(Sema &S,
10074                                           OverloadCandidateDisplayKind OCD,
10075                                           ArrayRef<Expr *> Args,
10076                                           StringRef Opc,
10077                                           SourceLocation OpLoc) {
10078   // Sort the candidates by viability and position.  Sorting directly would
10079   // be prohibitive, so we make a set of pointers and sort those.
10080   SmallVector<OverloadCandidate*, 32> Cands;
10081   if (OCD == OCD_AllCandidates) Cands.reserve(size());
10082   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10083     if (Cand->Viable)
10084       Cands.push_back(Cand);
10085     else if (OCD == OCD_AllCandidates) {
10086       CompleteNonViableCandidate(S, Cand, Args);
10087       if (Cand->Function || Cand->IsSurrogate)
10088         Cands.push_back(Cand);
10089       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
10090       // want to list every possible builtin candidate.
10091     }
10092   }
10093
10094   std::sort(Cands.begin(), Cands.end(),
10095             CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size()));
10096
10097   bool ReportedAmbiguousConversions = false;
10098
10099   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
10100   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10101   unsigned CandsShown = 0;
10102   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10103     OverloadCandidate *Cand = *I;
10104
10105     // Set an arbitrary limit on the number of candidate functions we'll spam
10106     // the user with.  FIXME: This limit should depend on details of the
10107     // candidate list.
10108     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10109       break;
10110     }
10111     ++CandsShown;
10112
10113     if (Cand->Function)
10114       NoteFunctionCandidate(S, Cand, Args.size(),
10115                             /*TakingCandidateAddress=*/false);
10116     else if (Cand->IsSurrogate)
10117       NoteSurrogateCandidate(S, Cand);
10118     else {
10119       assert(Cand->Viable &&
10120              "Non-viable built-in candidates are not added to Cands.");
10121       // Generally we only see ambiguities including viable builtin
10122       // operators if overload resolution got screwed up by an
10123       // ambiguous user-defined conversion.
10124       //
10125       // FIXME: It's quite possible for different conversions to see
10126       // different ambiguities, though.
10127       if (!ReportedAmbiguousConversions) {
10128         NoteAmbiguousUserConversions(S, OpLoc, Cand);
10129         ReportedAmbiguousConversions = true;
10130       }
10131
10132       // If this is a viable builtin, print it.
10133       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10134     }
10135   }
10136
10137   if (I != E)
10138     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10139 }
10140
10141 static SourceLocation
10142 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10143   return Cand->Specialization ? Cand->Specialization->getLocation()
10144                               : SourceLocation();
10145 }
10146
10147 namespace {
10148 struct CompareTemplateSpecCandidatesForDisplay {
10149   Sema &S;
10150   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10151
10152   bool operator()(const TemplateSpecCandidate *L,
10153                   const TemplateSpecCandidate *R) {
10154     // Fast-path this check.
10155     if (L == R)
10156       return false;
10157
10158     // Assuming that both candidates are not matches...
10159
10160     // Sort by the ranking of deduction failures.
10161     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10162       return RankDeductionFailure(L->DeductionFailure) <
10163              RankDeductionFailure(R->DeductionFailure);
10164
10165     // Sort everything else by location.
10166     SourceLocation LLoc = GetLocationForCandidate(L);
10167     SourceLocation RLoc = GetLocationForCandidate(R);
10168
10169     // Put candidates without locations (e.g. builtins) at the end.
10170     if (LLoc.isInvalid())
10171       return false;
10172     if (RLoc.isInvalid())
10173       return true;
10174
10175     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10176   }
10177 };
10178 }
10179
10180 /// Diagnose a template argument deduction failure.
10181 /// We are treating these failures as overload failures due to bad
10182 /// deductions.
10183 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10184                                                  bool ForTakingAddress) {
10185   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10186                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10187 }
10188
10189 void TemplateSpecCandidateSet::destroyCandidates() {
10190   for (iterator i = begin(), e = end(); i != e; ++i) {
10191     i->DeductionFailure.Destroy();
10192   }
10193 }
10194
10195 void TemplateSpecCandidateSet::clear() {
10196   destroyCandidates();
10197   Candidates.clear();
10198 }
10199
10200 /// NoteCandidates - When no template specialization match is found, prints
10201 /// diagnostic messages containing the non-matching specializations that form
10202 /// the candidate set.
10203 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10204 /// OCD == OCD_AllCandidates and Cand->Viable == false.
10205 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10206   // Sort the candidates by position (assuming no candidate is a match).
10207   // Sorting directly would be prohibitive, so we make a set of pointers
10208   // and sort those.
10209   SmallVector<TemplateSpecCandidate *, 32> Cands;
10210   Cands.reserve(size());
10211   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10212     if (Cand->Specialization)
10213       Cands.push_back(Cand);
10214     // Otherwise, this is a non-matching builtin candidate.  We do not,
10215     // in general, want to list every possible builtin candidate.
10216   }
10217
10218   std::sort(Cands.begin(), Cands.end(),
10219             CompareTemplateSpecCandidatesForDisplay(S));
10220
10221   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10222   // for generalization purposes (?).
10223   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10224
10225   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10226   unsigned CandsShown = 0;
10227   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10228     TemplateSpecCandidate *Cand = *I;
10229
10230     // Set an arbitrary limit on the number of candidates we'll spam
10231     // the user with.  FIXME: This limit should depend on details of the
10232     // candidate list.
10233     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10234       break;
10235     ++CandsShown;
10236
10237     assert(Cand->Specialization &&
10238            "Non-matching built-in candidates are not added to Cands.");
10239     Cand->NoteDeductionFailure(S, ForTakingAddress);
10240   }
10241
10242   if (I != E)
10243     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
10244 }
10245
10246 // [PossiblyAFunctionType]  -->   [Return]
10247 // NonFunctionType --> NonFunctionType
10248 // R (A) --> R(A)
10249 // R (*)(A) --> R (A)
10250 // R (&)(A) --> R (A)
10251 // R (S::*)(A) --> R (A)
10252 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
10253   QualType Ret = PossiblyAFunctionType;
10254   if (const PointerType *ToTypePtr = 
10255     PossiblyAFunctionType->getAs<PointerType>())
10256     Ret = ToTypePtr->getPointeeType();
10257   else if (const ReferenceType *ToTypeRef = 
10258     PossiblyAFunctionType->getAs<ReferenceType>())
10259     Ret = ToTypeRef->getPointeeType();
10260   else if (const MemberPointerType *MemTypePtr =
10261     PossiblyAFunctionType->getAs<MemberPointerType>()) 
10262     Ret = MemTypePtr->getPointeeType();   
10263   Ret = 
10264     Context.getCanonicalType(Ret).getUnqualifiedType();
10265   return Ret;
10266 }
10267
10268 namespace {
10269 // A helper class to help with address of function resolution
10270 // - allows us to avoid passing around all those ugly parameters
10271 class AddressOfFunctionResolver {
10272   Sema& S;
10273   Expr* SourceExpr;
10274   const QualType& TargetType; 
10275   QualType TargetFunctionType; // Extracted function type from target type 
10276    
10277   bool Complain;
10278   //DeclAccessPair& ResultFunctionAccessPair;
10279   ASTContext& Context;
10280
10281   bool TargetTypeIsNonStaticMemberFunction;
10282   bool FoundNonTemplateFunction;
10283   bool StaticMemberFunctionFromBoundPointer;
10284   bool HasComplained;
10285
10286   OverloadExpr::FindResult OvlExprInfo; 
10287   OverloadExpr *OvlExpr;
10288   TemplateArgumentListInfo OvlExplicitTemplateArgs;
10289   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
10290   TemplateSpecCandidateSet FailedCandidates;
10291
10292 public:
10293   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
10294                             const QualType &TargetType, bool Complain)
10295       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
10296         Complain(Complain), Context(S.getASTContext()),
10297         TargetTypeIsNonStaticMemberFunction(
10298             !!TargetType->getAs<MemberPointerType>()),
10299         FoundNonTemplateFunction(false),
10300         StaticMemberFunctionFromBoundPointer(false),
10301         HasComplained(false),
10302         OvlExprInfo(OverloadExpr::find(SourceExpr)),
10303         OvlExpr(OvlExprInfo.Expression),
10304         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
10305     ExtractUnqualifiedFunctionTypeFromTargetType();
10306
10307     if (TargetFunctionType->isFunctionType()) {
10308       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
10309         if (!UME->isImplicitAccess() &&
10310             !S.ResolveSingleFunctionTemplateSpecialization(UME))
10311           StaticMemberFunctionFromBoundPointer = true;
10312     } else if (OvlExpr->hasExplicitTemplateArgs()) {
10313       DeclAccessPair dap;
10314       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
10315               OvlExpr, false, &dap)) {
10316         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
10317           if (!Method->isStatic()) {
10318             // If the target type is a non-function type and the function found
10319             // is a non-static member function, pretend as if that was the
10320             // target, it's the only possible type to end up with.
10321             TargetTypeIsNonStaticMemberFunction = true;
10322
10323             // And skip adding the function if its not in the proper form.
10324             // We'll diagnose this due to an empty set of functions.
10325             if (!OvlExprInfo.HasFormOfMemberPointer)
10326               return;
10327           }
10328
10329         Matches.push_back(std::make_pair(dap, Fn));
10330       }
10331       return;
10332     }
10333     
10334     if (OvlExpr->hasExplicitTemplateArgs())
10335       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
10336
10337     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
10338       // C++ [over.over]p4:
10339       //   If more than one function is selected, [...]
10340       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
10341         if (FoundNonTemplateFunction)
10342           EliminateAllTemplateMatches();
10343         else
10344           EliminateAllExceptMostSpecializedTemplate();
10345       }
10346     }
10347
10348     if (S.getLangOpts().CUDA && Matches.size() > 1)
10349       EliminateSuboptimalCudaMatches();
10350   }
10351
10352   bool hasComplained() const { return HasComplained; }
10353
10354 private:
10355   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
10356     QualType Discard;
10357     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
10358            S.IsNoReturnConversion(FD->getType(), TargetFunctionType, Discard);
10359   }
10360
10361   /// \return true if A is considered a better overload candidate for the
10362   /// desired type than B.
10363   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
10364     // If A doesn't have exactly the correct type, we don't want to classify it
10365     // as "better" than anything else. This way, the user is required to
10366     // disambiguate for us if there are multiple candidates and no exact match.
10367     return candidateHasExactlyCorrectType(A) &&
10368            (!candidateHasExactlyCorrectType(B) ||
10369             compareEnableIfAttrs(S, A, B) == Comparison::Better);
10370   }
10371
10372   /// \return true if we were able to eliminate all but one overload candidate,
10373   /// false otherwise.
10374   bool eliminiateSuboptimalOverloadCandidates() {
10375     // Same algorithm as overload resolution -- one pass to pick the "best",
10376     // another pass to be sure that nothing is better than the best.
10377     auto Best = Matches.begin();
10378     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
10379       if (isBetterCandidate(I->second, Best->second))
10380         Best = I;
10381
10382     const FunctionDecl *BestFn = Best->second;
10383     auto IsBestOrInferiorToBest = [this, BestFn](
10384         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
10385       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
10386     };
10387
10388     // Note: We explicitly leave Matches unmodified if there isn't a clear best
10389     // option, so we can potentially give the user a better error
10390     if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest))
10391       return false;
10392     Matches[0] = *Best;
10393     Matches.resize(1);
10394     return true;
10395   }
10396
10397   bool isTargetTypeAFunction() const {
10398     return TargetFunctionType->isFunctionType();
10399   }
10400
10401   // [ToType]     [Return]
10402
10403   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
10404   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
10405   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
10406   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
10407     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
10408   }
10409
10410   // return true if any matching specializations were found
10411   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 
10412                                    const DeclAccessPair& CurAccessFunPair) {
10413     if (CXXMethodDecl *Method
10414               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
10415       // Skip non-static function templates when converting to pointer, and
10416       // static when converting to member pointer.
10417       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10418         return false;
10419     } 
10420     else if (TargetTypeIsNonStaticMemberFunction)
10421       return false;
10422
10423     // C++ [over.over]p2:
10424     //   If the name is a function template, template argument deduction is
10425     //   done (14.8.2.2), and if the argument deduction succeeds, the
10426     //   resulting template argument list is used to generate a single
10427     //   function template specialization, which is added to the set of
10428     //   overloaded functions considered.
10429     FunctionDecl *Specialization = nullptr;
10430     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10431     if (Sema::TemplateDeductionResult Result
10432           = S.DeduceTemplateArguments(FunctionTemplate, 
10433                                       &OvlExplicitTemplateArgs,
10434                                       TargetFunctionType, Specialization, 
10435                                       Info, /*InOverloadResolution=*/true)) {
10436       // Make a note of the failed deduction for diagnostics.
10437       FailedCandidates.addCandidate()
10438           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
10439                MakeDeductionFailureInfo(Context, Result, Info));
10440       return false;
10441     } 
10442     
10443     // Template argument deduction ensures that we have an exact match or
10444     // compatible pointer-to-function arguments that would be adjusted by ICS.
10445     // This function template specicalization works.
10446     assert(S.isSameOrCompatibleFunctionType(
10447               Context.getCanonicalType(Specialization->getType()),
10448               Context.getCanonicalType(TargetFunctionType)));
10449
10450     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
10451       return false;
10452
10453     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
10454     return true;
10455   }
10456   
10457   bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 
10458                                       const DeclAccessPair& CurAccessFunPair) {
10459     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
10460       // Skip non-static functions when converting to pointer, and static
10461       // when converting to member pointer.
10462       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10463         return false;
10464     } 
10465     else if (TargetTypeIsNonStaticMemberFunction)
10466       return false;
10467
10468     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
10469       if (S.getLangOpts().CUDA)
10470         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
10471           if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
10472             return false;
10473
10474       // If any candidate has a placeholder return type, trigger its deduction
10475       // now.
10476       if (S.getLangOpts().CPlusPlus14 &&
10477           FunDecl->getReturnType()->isUndeducedType() &&
10478           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain)) {
10479         HasComplained |= Complain;
10480         return false;
10481       }
10482
10483       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
10484         return false;
10485
10486       // If we're in C, we need to support types that aren't exactly identical.
10487       if (!S.getLangOpts().CPlusPlus ||
10488           candidateHasExactlyCorrectType(FunDecl)) {
10489         Matches.push_back(std::make_pair(
10490             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
10491         FoundNonTemplateFunction = true;
10492         return true;
10493       }
10494     }
10495     
10496     return false;
10497   }
10498   
10499   bool FindAllFunctionsThatMatchTargetTypeExactly() {
10500     bool Ret = false;
10501     
10502     // If the overload expression doesn't have the form of a pointer to
10503     // member, don't try to convert it to a pointer-to-member type.
10504     if (IsInvalidFormOfPointerToMemberFunction())
10505       return false;
10506
10507     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10508                                E = OvlExpr->decls_end(); 
10509          I != E; ++I) {
10510       // Look through any using declarations to find the underlying function.
10511       NamedDecl *Fn = (*I)->getUnderlyingDecl();
10512
10513       // C++ [over.over]p3:
10514       //   Non-member functions and static member functions match
10515       //   targets of type "pointer-to-function" or "reference-to-function."
10516       //   Nonstatic member functions match targets of
10517       //   type "pointer-to-member-function."
10518       // Note that according to DR 247, the containing class does not matter.
10519       if (FunctionTemplateDecl *FunctionTemplate
10520                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
10521         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
10522           Ret = true;
10523       }
10524       // If we have explicit template arguments supplied, skip non-templates.
10525       else if (!OvlExpr->hasExplicitTemplateArgs() &&
10526                AddMatchingNonTemplateFunction(Fn, I.getPair()))
10527         Ret = true;
10528     }
10529     assert(Ret || Matches.empty());
10530     return Ret;
10531   }
10532
10533   void EliminateAllExceptMostSpecializedTemplate() {
10534     //   [...] and any given function template specialization F1 is
10535     //   eliminated if the set contains a second function template
10536     //   specialization whose function template is more specialized
10537     //   than the function template of F1 according to the partial
10538     //   ordering rules of 14.5.5.2.
10539
10540     // The algorithm specified above is quadratic. We instead use a
10541     // two-pass algorithm (similar to the one used to identify the
10542     // best viable function in an overload set) that identifies the
10543     // best function template (if it exists).
10544
10545     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
10546     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
10547       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
10548
10549     // TODO: It looks like FailedCandidates does not serve much purpose
10550     // here, since the no_viable diagnostic has index 0.
10551     UnresolvedSetIterator Result = S.getMostSpecialized(
10552         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
10553         SourceExpr->getLocStart(), S.PDiag(),
10554         S.PDiag(diag::err_addr_ovl_ambiguous)
10555           << Matches[0].second->getDeclName(),
10556         S.PDiag(diag::note_ovl_candidate)
10557           << (unsigned)oc_function_template,
10558         Complain, TargetFunctionType);
10559
10560     if (Result != MatchesCopy.end()) {
10561       // Make it the first and only element
10562       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
10563       Matches[0].second = cast<FunctionDecl>(*Result);
10564       Matches.resize(1);
10565     } else
10566       HasComplained |= Complain;
10567   }
10568
10569   void EliminateAllTemplateMatches() {
10570     //   [...] any function template specializations in the set are
10571     //   eliminated if the set also contains a non-template function, [...]
10572     for (unsigned I = 0, N = Matches.size(); I != N; ) {
10573       if (Matches[I].second->getPrimaryTemplate() == nullptr)
10574         ++I;
10575       else {
10576         Matches[I] = Matches[--N];
10577         Matches.resize(N);
10578       }
10579     }
10580   }
10581
10582   void EliminateSuboptimalCudaMatches() {
10583     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
10584   }
10585
10586 public:
10587   void ComplainNoMatchesFound() const {
10588     assert(Matches.empty());
10589     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
10590         << OvlExpr->getName() << TargetFunctionType
10591         << OvlExpr->getSourceRange();
10592     if (FailedCandidates.empty())
10593       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
10594                                   /*TakingAddress=*/true);
10595     else {
10596       // We have some deduction failure messages. Use them to diagnose
10597       // the function templates, and diagnose the non-template candidates
10598       // normally.
10599       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10600                                  IEnd = OvlExpr->decls_end();
10601            I != IEnd; ++I)
10602         if (FunctionDecl *Fun =
10603                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
10604           if (!functionHasPassObjectSizeParams(Fun))
10605             S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
10606                                     /*TakingAddress=*/true);
10607       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
10608     }
10609   }
10610
10611   bool IsInvalidFormOfPointerToMemberFunction() const {
10612     return TargetTypeIsNonStaticMemberFunction &&
10613       !OvlExprInfo.HasFormOfMemberPointer;
10614   }
10615
10616   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
10617       // TODO: Should we condition this on whether any functions might
10618       // have matched, or is it more appropriate to do that in callers?
10619       // TODO: a fixit wouldn't hurt.
10620       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
10621         << TargetType << OvlExpr->getSourceRange();
10622   }
10623
10624   bool IsStaticMemberFunctionFromBoundPointer() const {
10625     return StaticMemberFunctionFromBoundPointer;
10626   }
10627
10628   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
10629     S.Diag(OvlExpr->getLocStart(),
10630            diag::err_invalid_form_pointer_member_function)
10631       << OvlExpr->getSourceRange();
10632   }
10633
10634   void ComplainOfInvalidConversion() const {
10635     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
10636       << OvlExpr->getName() << TargetType;
10637   }
10638
10639   void ComplainMultipleMatchesFound() const {
10640     assert(Matches.size() > 1);
10641     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
10642       << OvlExpr->getName()
10643       << OvlExpr->getSourceRange();
10644     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
10645                                 /*TakingAddress=*/true);
10646   }
10647
10648   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
10649
10650   int getNumMatches() const { return Matches.size(); }
10651   
10652   FunctionDecl* getMatchingFunctionDecl() const {
10653     if (Matches.size() != 1) return nullptr;
10654     return Matches[0].second;
10655   }
10656   
10657   const DeclAccessPair* getMatchingFunctionAccessPair() const {
10658     if (Matches.size() != 1) return nullptr;
10659     return &Matches[0].first;
10660   }
10661 };
10662 }
10663
10664 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
10665 /// an overloaded function (C++ [over.over]), where @p From is an
10666 /// expression with overloaded function type and @p ToType is the type
10667 /// we're trying to resolve to. For example:
10668 ///
10669 /// @code
10670 /// int f(double);
10671 /// int f(int);
10672 ///
10673 /// int (*pfd)(double) = f; // selects f(double)
10674 /// @endcode
10675 ///
10676 /// This routine returns the resulting FunctionDecl if it could be
10677 /// resolved, and NULL otherwise. When @p Complain is true, this
10678 /// routine will emit diagnostics if there is an error.
10679 FunctionDecl *
10680 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
10681                                          QualType TargetType,
10682                                          bool Complain,
10683                                          DeclAccessPair &FoundResult,
10684                                          bool *pHadMultipleCandidates) {
10685   assert(AddressOfExpr->getType() == Context.OverloadTy);
10686
10687   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
10688                                      Complain);
10689   int NumMatches = Resolver.getNumMatches();
10690   FunctionDecl *Fn = nullptr;
10691   bool ShouldComplain = Complain && !Resolver.hasComplained();
10692   if (NumMatches == 0 && ShouldComplain) {
10693     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
10694       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
10695     else
10696       Resolver.ComplainNoMatchesFound();
10697   }
10698   else if (NumMatches > 1 && ShouldComplain)
10699     Resolver.ComplainMultipleMatchesFound();
10700   else if (NumMatches == 1) {
10701     Fn = Resolver.getMatchingFunctionDecl();
10702     assert(Fn);
10703     FoundResult = *Resolver.getMatchingFunctionAccessPair();
10704     if (Complain) {
10705       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
10706         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
10707       else
10708         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
10709     }
10710   }
10711
10712   if (pHadMultipleCandidates)
10713     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
10714   return Fn;
10715 }
10716
10717 /// \brief Given an expression that refers to an overloaded function, try to
10718 /// resolve that function to a single function that can have its address taken.
10719 /// This will modify `Pair` iff it returns non-null.
10720 ///
10721 /// This routine can only realistically succeed if all but one candidates in the
10722 /// overload set for SrcExpr cannot have their addresses taken.
10723 FunctionDecl *
10724 Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
10725                                                   DeclAccessPair &Pair) {
10726   OverloadExpr::FindResult R = OverloadExpr::find(E);
10727   OverloadExpr *Ovl = R.Expression;
10728   FunctionDecl *Result = nullptr;
10729   DeclAccessPair DAP;
10730   // Don't use the AddressOfResolver because we're specifically looking for
10731   // cases where we have one overload candidate that lacks
10732   // enable_if/pass_object_size/...
10733   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
10734     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
10735     if (!FD)
10736       return nullptr;
10737
10738     if (!checkAddressOfFunctionIsAvailable(FD))
10739       continue;
10740
10741     // We have more than one result; quit.
10742     if (Result)
10743       return nullptr;
10744     DAP = I.getPair();
10745     Result = FD;
10746   }
10747
10748   if (Result)
10749     Pair = DAP;
10750   return Result;
10751 }
10752
10753 /// \brief Given an overloaded function, tries to turn it into a non-overloaded
10754 /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
10755 /// will perform access checks, diagnose the use of the resultant decl, and, if
10756 /// necessary, perform a function-to-pointer decay.
10757 ///
10758 /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
10759 /// Otherwise, returns true. This may emit diagnostics and return true.
10760 bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
10761     ExprResult &SrcExpr) {
10762   Expr *E = SrcExpr.get();
10763   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
10764
10765   DeclAccessPair DAP;
10766   FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
10767   if (!Found)
10768     return false;
10769
10770   // Emitting multiple diagnostics for a function that is both inaccessible and
10771   // unavailable is consistent with our behavior elsewhere. So, always check
10772   // for both.
10773   DiagnoseUseOfDecl(Found, E->getExprLoc());
10774   CheckAddressOfMemberAccess(E, DAP);
10775   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
10776   if (Fixed->getType()->isFunctionType())
10777     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
10778   else
10779     SrcExpr = Fixed;
10780   return true;
10781 }
10782
10783 /// \brief Given an expression that refers to an overloaded function, try to
10784 /// resolve that overloaded function expression down to a single function.
10785 ///
10786 /// This routine can only resolve template-ids that refer to a single function
10787 /// template, where that template-id refers to a single template whose template
10788 /// arguments are either provided by the template-id or have defaults,
10789 /// as described in C++0x [temp.arg.explicit]p3.
10790 ///
10791 /// If no template-ids are found, no diagnostics are emitted and NULL is
10792 /// returned.
10793 FunctionDecl *
10794 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 
10795                                                   bool Complain,
10796                                                   DeclAccessPair *FoundResult) {
10797   // C++ [over.over]p1:
10798   //   [...] [Note: any redundant set of parentheses surrounding the
10799   //   overloaded function name is ignored (5.1). ]
10800   // C++ [over.over]p1:
10801   //   [...] The overloaded function name can be preceded by the &
10802   //   operator.
10803
10804   // If we didn't actually find any template-ids, we're done.
10805   if (!ovl->hasExplicitTemplateArgs())
10806     return nullptr;
10807
10808   TemplateArgumentListInfo ExplicitTemplateArgs;
10809   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
10810   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
10811
10812   // Look through all of the overloaded functions, searching for one
10813   // whose type matches exactly.
10814   FunctionDecl *Matched = nullptr;
10815   for (UnresolvedSetIterator I = ovl->decls_begin(),
10816          E = ovl->decls_end(); I != E; ++I) {
10817     // C++0x [temp.arg.explicit]p3:
10818     //   [...] In contexts where deduction is done and fails, or in contexts
10819     //   where deduction is not done, if a template argument list is
10820     //   specified and it, along with any default template arguments,
10821     //   identifies a single function template specialization, then the
10822     //   template-id is an lvalue for the function template specialization.
10823     FunctionTemplateDecl *FunctionTemplate
10824       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
10825
10826     // C++ [over.over]p2:
10827     //   If the name is a function template, template argument deduction is
10828     //   done (14.8.2.2), and if the argument deduction succeeds, the
10829     //   resulting template argument list is used to generate a single
10830     //   function template specialization, which is added to the set of
10831     //   overloaded functions considered.
10832     FunctionDecl *Specialization = nullptr;
10833     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10834     if (TemplateDeductionResult Result
10835           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
10836                                     Specialization, Info,
10837                                     /*InOverloadResolution=*/true)) {
10838       // Make a note of the failed deduction for diagnostics.
10839       // TODO: Actually use the failed-deduction info?
10840       FailedCandidates.addCandidate()
10841           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
10842                MakeDeductionFailureInfo(Context, Result, Info));
10843       continue;
10844     }
10845
10846     assert(Specialization && "no specialization and no error?");
10847
10848     // Multiple matches; we can't resolve to a single declaration.
10849     if (Matched) {
10850       if (Complain) {
10851         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
10852           << ovl->getName();
10853         NoteAllOverloadCandidates(ovl);
10854       }
10855       return nullptr;
10856     }
10857     
10858     Matched = Specialization;
10859     if (FoundResult) *FoundResult = I.getPair();    
10860   }
10861
10862   if (Matched && getLangOpts().CPlusPlus14 &&
10863       Matched->getReturnType()->isUndeducedType() &&
10864       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
10865     return nullptr;
10866
10867   return Matched;
10868 }
10869
10870
10871
10872
10873 // Resolve and fix an overloaded expression that can be resolved
10874 // because it identifies a single function template specialization.
10875 //
10876 // Last three arguments should only be supplied if Complain = true
10877 //
10878 // Return true if it was logically possible to so resolve the
10879 // expression, regardless of whether or not it succeeded.  Always
10880 // returns true if 'complain' is set.
10881 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
10882                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
10883                       bool complain, SourceRange OpRangeForComplaining, 
10884                                            QualType DestTypeForComplaining, 
10885                                             unsigned DiagIDForComplaining) {
10886   assert(SrcExpr.get()->getType() == Context.OverloadTy);
10887
10888   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
10889
10890   DeclAccessPair found;
10891   ExprResult SingleFunctionExpression;
10892   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
10893                            ovl.Expression, /*complain*/ false, &found)) {
10894     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
10895       SrcExpr = ExprError();
10896       return true;
10897     }
10898
10899     // It is only correct to resolve to an instance method if we're
10900     // resolving a form that's permitted to be a pointer to member.
10901     // Otherwise we'll end up making a bound member expression, which
10902     // is illegal in all the contexts we resolve like this.
10903     if (!ovl.HasFormOfMemberPointer &&
10904         isa<CXXMethodDecl>(fn) &&
10905         cast<CXXMethodDecl>(fn)->isInstance()) {
10906       if (!complain) return false;
10907
10908       Diag(ovl.Expression->getExprLoc(),
10909            diag::err_bound_member_function)
10910         << 0 << ovl.Expression->getSourceRange();
10911
10912       // TODO: I believe we only end up here if there's a mix of
10913       // static and non-static candidates (otherwise the expression
10914       // would have 'bound member' type, not 'overload' type).
10915       // Ideally we would note which candidate was chosen and why
10916       // the static candidates were rejected.
10917       SrcExpr = ExprError();
10918       return true;
10919     }
10920
10921     // Fix the expression to refer to 'fn'.
10922     SingleFunctionExpression =
10923         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
10924
10925     // If desired, do function-to-pointer decay.
10926     if (doFunctionPointerConverion) {
10927       SingleFunctionExpression =
10928         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
10929       if (SingleFunctionExpression.isInvalid()) {
10930         SrcExpr = ExprError();
10931         return true;
10932       }
10933     }
10934   }
10935
10936   if (!SingleFunctionExpression.isUsable()) {
10937     if (complain) {
10938       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
10939         << ovl.Expression->getName()
10940         << DestTypeForComplaining
10941         << OpRangeForComplaining 
10942         << ovl.Expression->getQualifierLoc().getSourceRange();
10943       NoteAllOverloadCandidates(SrcExpr.get());
10944
10945       SrcExpr = ExprError();
10946       return true;
10947     }
10948
10949     return false;
10950   }
10951
10952   SrcExpr = SingleFunctionExpression;
10953   return true;
10954 }
10955
10956 /// \brief Add a single candidate to the overload set.
10957 static void AddOverloadedCallCandidate(Sema &S,
10958                                        DeclAccessPair FoundDecl,
10959                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
10960                                        ArrayRef<Expr *> Args,
10961                                        OverloadCandidateSet &CandidateSet,
10962                                        bool PartialOverloading,
10963                                        bool KnownValid) {
10964   NamedDecl *Callee = FoundDecl.getDecl();
10965   if (isa<UsingShadowDecl>(Callee))
10966     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
10967
10968   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
10969     if (ExplicitTemplateArgs) {
10970       assert(!KnownValid && "Explicit template arguments?");
10971       return;
10972     }
10973     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
10974                            /*SuppressUsedConversions=*/false,
10975                            PartialOverloading);
10976     return;
10977   }
10978
10979   if (FunctionTemplateDecl *FuncTemplate
10980       = dyn_cast<FunctionTemplateDecl>(Callee)) {
10981     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
10982                                    ExplicitTemplateArgs, Args, CandidateSet,
10983                                    /*SuppressUsedConversions=*/false,
10984                                    PartialOverloading);
10985     return;
10986   }
10987
10988   assert(!KnownValid && "unhandled case in overloaded call candidate");
10989 }
10990
10991 /// \brief Add the overload candidates named by callee and/or found by argument
10992 /// dependent lookup to the given overload set.
10993 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
10994                                        ArrayRef<Expr *> Args,
10995                                        OverloadCandidateSet &CandidateSet,
10996                                        bool PartialOverloading) {
10997
10998 #ifndef NDEBUG
10999   // Verify that ArgumentDependentLookup is consistent with the rules
11000   // in C++0x [basic.lookup.argdep]p3:
11001   //
11002   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
11003   //   and let Y be the lookup set produced by argument dependent
11004   //   lookup (defined as follows). If X contains
11005   //
11006   //     -- a declaration of a class member, or
11007   //
11008   //     -- a block-scope function declaration that is not a
11009   //        using-declaration, or
11010   //
11011   //     -- a declaration that is neither a function or a function
11012   //        template
11013   //
11014   //   then Y is empty.
11015
11016   if (ULE->requiresADL()) {
11017     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11018            E = ULE->decls_end(); I != E; ++I) {
11019       assert(!(*I)->getDeclContext()->isRecord());
11020       assert(isa<UsingShadowDecl>(*I) ||
11021              !(*I)->getDeclContext()->isFunctionOrMethod());
11022       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
11023     }
11024   }
11025 #endif
11026
11027   // It would be nice to avoid this copy.
11028   TemplateArgumentListInfo TABuffer;
11029   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11030   if (ULE->hasExplicitTemplateArgs()) {
11031     ULE->copyTemplateArgumentsInto(TABuffer);
11032     ExplicitTemplateArgs = &TABuffer;
11033   }
11034
11035   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11036          E = ULE->decls_end(); I != E; ++I)
11037     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11038                                CandidateSet, PartialOverloading,
11039                                /*KnownValid*/ true);
11040
11041   if (ULE->requiresADL())
11042     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11043                                          Args, ExplicitTemplateArgs,
11044                                          CandidateSet, PartialOverloading);
11045 }
11046
11047 /// Determine whether a declaration with the specified name could be moved into
11048 /// a different namespace.
11049 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11050   switch (Name.getCXXOverloadedOperator()) {
11051   case OO_New: case OO_Array_New:
11052   case OO_Delete: case OO_Array_Delete:
11053     return false;
11054
11055   default:
11056     return true;
11057   }
11058 }
11059
11060 /// Attempt to recover from an ill-formed use of a non-dependent name in a
11061 /// template, where the non-dependent name was declared after the template
11062 /// was defined. This is common in code written for a compilers which do not
11063 /// correctly implement two-stage name lookup.
11064 ///
11065 /// Returns true if a viable candidate was found and a diagnostic was issued.
11066 static bool
11067 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11068                        const CXXScopeSpec &SS, LookupResult &R,
11069                        OverloadCandidateSet::CandidateSetKind CSK,
11070                        TemplateArgumentListInfo *ExplicitTemplateArgs,
11071                        ArrayRef<Expr *> Args,
11072                        bool *DoDiagnoseEmptyLookup = nullptr) {
11073   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
11074     return false;
11075
11076   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11077     if (DC->isTransparentContext())
11078       continue;
11079
11080     SemaRef.LookupQualifiedName(R, DC);
11081
11082     if (!R.empty()) {
11083       R.suppressDiagnostics();
11084
11085       if (isa<CXXRecordDecl>(DC)) {
11086         // Don't diagnose names we find in classes; we get much better
11087         // diagnostics for these from DiagnoseEmptyLookup.
11088         R.clear();
11089         if (DoDiagnoseEmptyLookup)
11090           *DoDiagnoseEmptyLookup = true;
11091         return false;
11092       }
11093
11094       OverloadCandidateSet Candidates(FnLoc, CSK);
11095       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11096         AddOverloadedCallCandidate(SemaRef, I.getPair(),
11097                                    ExplicitTemplateArgs, Args,
11098                                    Candidates, false, /*KnownValid*/ false);
11099
11100       OverloadCandidateSet::iterator Best;
11101       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11102         // No viable functions. Don't bother the user with notes for functions
11103         // which don't work and shouldn't be found anyway.
11104         R.clear();
11105         return false;
11106       }
11107
11108       // Find the namespaces where ADL would have looked, and suggest
11109       // declaring the function there instead.
11110       Sema::AssociatedNamespaceSet AssociatedNamespaces;
11111       Sema::AssociatedClassSet AssociatedClasses;
11112       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11113                                                  AssociatedNamespaces,
11114                                                  AssociatedClasses);
11115       Sema::AssociatedNamespaceSet SuggestedNamespaces;
11116       if (canBeDeclaredInNamespace(R.getLookupName())) {
11117         DeclContext *Std = SemaRef.getStdNamespace();
11118         for (Sema::AssociatedNamespaceSet::iterator
11119                it = AssociatedNamespaces.begin(),
11120                end = AssociatedNamespaces.end(); it != end; ++it) {
11121           // Never suggest declaring a function within namespace 'std'.
11122           if (Std && Std->Encloses(*it))
11123             continue;
11124
11125           // Never suggest declaring a function within a namespace with a
11126           // reserved name, like __gnu_cxx.
11127           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11128           if (NS &&
11129               NS->getQualifiedNameAsString().find("__") != std::string::npos)
11130             continue;
11131
11132           SuggestedNamespaces.insert(*it);
11133         }
11134       }
11135
11136       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11137         << R.getLookupName();
11138       if (SuggestedNamespaces.empty()) {
11139         SemaRef.Diag(Best->Function->getLocation(),
11140                      diag::note_not_found_by_two_phase_lookup)
11141           << R.getLookupName() << 0;
11142       } else if (SuggestedNamespaces.size() == 1) {
11143         SemaRef.Diag(Best->Function->getLocation(),
11144                      diag::note_not_found_by_two_phase_lookup)
11145           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11146       } else {
11147         // FIXME: It would be useful to list the associated namespaces here,
11148         // but the diagnostics infrastructure doesn't provide a way to produce
11149         // a localized representation of a list of items.
11150         SemaRef.Diag(Best->Function->getLocation(),
11151                      diag::note_not_found_by_two_phase_lookup)
11152           << R.getLookupName() << 2;
11153       }
11154
11155       // Try to recover by calling this function.
11156       return true;
11157     }
11158
11159     R.clear();
11160   }
11161
11162   return false;
11163 }
11164
11165 /// Attempt to recover from ill-formed use of a non-dependent operator in a
11166 /// template, where the non-dependent operator was declared after the template
11167 /// was defined.
11168 ///
11169 /// Returns true if a viable candidate was found and a diagnostic was issued.
11170 static bool
11171 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11172                                SourceLocation OpLoc,
11173                                ArrayRef<Expr *> Args) {
11174   DeclarationName OpName =
11175     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11176   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11177   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11178                                 OverloadCandidateSet::CSK_Operator,
11179                                 /*ExplicitTemplateArgs=*/nullptr, Args);
11180 }
11181
11182 namespace {
11183 class BuildRecoveryCallExprRAII {
11184   Sema &SemaRef;
11185 public:
11186   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11187     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
11188     SemaRef.IsBuildingRecoveryCallExpr = true;
11189   }
11190
11191   ~BuildRecoveryCallExprRAII() {
11192     SemaRef.IsBuildingRecoveryCallExpr = false;
11193   }
11194 };
11195
11196 }
11197
11198 static std::unique_ptr<CorrectionCandidateCallback>
11199 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
11200               bool HasTemplateArgs, bool AllowTypoCorrection) {
11201   if (!AllowTypoCorrection)
11202     return llvm::make_unique<NoTypoCorrectionCCC>();
11203   return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
11204                                                   HasTemplateArgs, ME);
11205 }
11206
11207 /// Attempts to recover from a call where no functions were found.
11208 ///
11209 /// Returns true if new candidates were found.
11210 static ExprResult
11211 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11212                       UnresolvedLookupExpr *ULE,
11213                       SourceLocation LParenLoc,
11214                       MutableArrayRef<Expr *> Args,
11215                       SourceLocation RParenLoc,
11216                       bool EmptyLookup, bool AllowTypoCorrection) {
11217   // Do not try to recover if it is already building a recovery call.
11218   // This stops infinite loops for template instantiations like
11219   //
11220   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
11221   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
11222   //
11223   if (SemaRef.IsBuildingRecoveryCallExpr)
11224     return ExprError();
11225   BuildRecoveryCallExprRAII RCE(SemaRef);
11226
11227   CXXScopeSpec SS;
11228   SS.Adopt(ULE->getQualifierLoc());
11229   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
11230
11231   TemplateArgumentListInfo TABuffer;
11232   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11233   if (ULE->hasExplicitTemplateArgs()) {
11234     ULE->copyTemplateArgumentsInto(TABuffer);
11235     ExplicitTemplateArgs = &TABuffer;
11236   }
11237
11238   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
11239                  Sema::LookupOrdinaryName);
11240   bool DoDiagnoseEmptyLookup = EmptyLookup;
11241   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
11242                               OverloadCandidateSet::CSK_Normal,
11243                               ExplicitTemplateArgs, Args,
11244                               &DoDiagnoseEmptyLookup) &&
11245     (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup(
11246         S, SS, R,
11247         MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
11248                       ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
11249         ExplicitTemplateArgs, Args)))
11250     return ExprError();
11251
11252   assert(!R.empty() && "lookup results empty despite recovery");
11253
11254   // Build an implicit member call if appropriate.  Just drop the
11255   // casts and such from the call, we don't really care.
11256   ExprResult NewFn = ExprError();
11257   if ((*R.begin())->isCXXClassMember())
11258     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
11259                                                     ExplicitTemplateArgs, S);
11260   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
11261     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
11262                                         ExplicitTemplateArgs);
11263   else
11264     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
11265
11266   if (NewFn.isInvalid())
11267     return ExprError();
11268
11269   // This shouldn't cause an infinite loop because we're giving it
11270   // an expression with viable lookup results, which should never
11271   // end up here.
11272   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
11273                                MultiExprArg(Args.data(), Args.size()),
11274                                RParenLoc);
11275 }
11276
11277 /// \brief Constructs and populates an OverloadedCandidateSet from
11278 /// the given function.
11279 /// \returns true when an the ExprResult output parameter has been set.
11280 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
11281                                   UnresolvedLookupExpr *ULE,
11282                                   MultiExprArg Args,
11283                                   SourceLocation RParenLoc,
11284                                   OverloadCandidateSet *CandidateSet,
11285                                   ExprResult *Result) {
11286 #ifndef NDEBUG
11287   if (ULE->requiresADL()) {
11288     // To do ADL, we must have found an unqualified name.
11289     assert(!ULE->getQualifier() && "qualified name with ADL");
11290
11291     // We don't perform ADL for implicit declarations of builtins.
11292     // Verify that this was correctly set up.
11293     FunctionDecl *F;
11294     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
11295         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
11296         F->getBuiltinID() && F->isImplicit())
11297       llvm_unreachable("performing ADL for builtin");
11298
11299     // We don't perform ADL in C.
11300     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
11301   }
11302 #endif
11303
11304   UnbridgedCastsSet UnbridgedCasts;
11305   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
11306     *Result = ExprError();
11307     return true;
11308   }
11309
11310   // Add the functions denoted by the callee to the set of candidate
11311   // functions, including those from argument-dependent lookup.
11312   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
11313
11314   if (getLangOpts().MSVCCompat &&
11315       CurContext->isDependentContext() && !isSFINAEContext() &&
11316       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
11317
11318     OverloadCandidateSet::iterator Best;
11319     if (CandidateSet->empty() ||
11320         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) ==
11321             OR_No_Viable_Function) {
11322       // In Microsoft mode, if we are inside a template class member function then
11323       // create a type dependent CallExpr. The goal is to postpone name lookup
11324       // to instantiation time to be able to search into type dependent base
11325       // classes.
11326       CallExpr *CE = new (Context) CallExpr(
11327           Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc);
11328       CE->setTypeDependent(true);
11329       CE->setValueDependent(true);
11330       CE->setInstantiationDependent(true);
11331       *Result = CE;
11332       return true;
11333     }
11334   }
11335
11336   if (CandidateSet->empty())
11337     return false;
11338
11339   UnbridgedCasts.restore();
11340   return false;
11341 }
11342
11343 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
11344 /// the completed call expression. If overload resolution fails, emits
11345 /// diagnostics and returns ExprError()
11346 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11347                                            UnresolvedLookupExpr *ULE,
11348                                            SourceLocation LParenLoc,
11349                                            MultiExprArg Args,
11350                                            SourceLocation RParenLoc,
11351                                            Expr *ExecConfig,
11352                                            OverloadCandidateSet *CandidateSet,
11353                                            OverloadCandidateSet::iterator *Best,
11354                                            OverloadingResult OverloadResult,
11355                                            bool AllowTypoCorrection) {
11356   if (CandidateSet->empty())
11357     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
11358                                  RParenLoc, /*EmptyLookup=*/true,
11359                                  AllowTypoCorrection);
11360
11361   switch (OverloadResult) {
11362   case OR_Success: {
11363     FunctionDecl *FDecl = (*Best)->Function;
11364     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
11365     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
11366       return ExprError();
11367     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11368     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11369                                          ExecConfig);
11370   }
11371
11372   case OR_No_Viable_Function: {
11373     // Try to recover by looking for viable functions which the user might
11374     // have meant to call.
11375     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
11376                                                 Args, RParenLoc,
11377                                                 /*EmptyLookup=*/false,
11378                                                 AllowTypoCorrection);
11379     if (!Recovery.isInvalid())
11380       return Recovery;
11381
11382     // If the user passes in a function that we can't take the address of, we
11383     // generally end up emitting really bad error messages. Here, we attempt to
11384     // emit better ones.
11385     for (const Expr *Arg : Args) {
11386       if (!Arg->getType()->isFunctionType())
11387         continue;
11388       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
11389         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
11390         if (FD &&
11391             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
11392                                                        Arg->getExprLoc()))
11393           return ExprError();
11394       }
11395     }
11396
11397     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_no_viable_function_in_call)
11398         << ULE->getName() << Fn->getSourceRange();
11399     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11400     break;
11401   }
11402
11403   case OR_Ambiguous:
11404     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
11405       << ULE->getName() << Fn->getSourceRange();
11406     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
11407     break;
11408
11409   case OR_Deleted: {
11410     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
11411       << (*Best)->Function->isDeleted()
11412       << ULE->getName()
11413       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
11414       << Fn->getSourceRange();
11415     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11416
11417     // We emitted an error for the unvailable/deleted function call but keep
11418     // the call in the AST.
11419     FunctionDecl *FDecl = (*Best)->Function;
11420     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11421     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11422                                          ExecConfig);
11423   }
11424   }
11425
11426   // Overload resolution failed.
11427   return ExprError();
11428 }
11429
11430 static void markUnaddressableCandidatesUnviable(Sema &S,
11431                                                 OverloadCandidateSet &CS) {
11432   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
11433     if (I->Viable &&
11434         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
11435       I->Viable = false;
11436       I->FailureKind = ovl_fail_addr_not_available;
11437     }
11438   }
11439 }
11440
11441 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
11442 /// (which eventually refers to the declaration Func) and the call
11443 /// arguments Args/NumArgs, attempt to resolve the function call down
11444 /// to a specific function. If overload resolution succeeds, returns
11445 /// the call expression produced by overload resolution.
11446 /// Otherwise, emits diagnostics and returns ExprError.
11447 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
11448                                          UnresolvedLookupExpr *ULE,
11449                                          SourceLocation LParenLoc,
11450                                          MultiExprArg Args,
11451                                          SourceLocation RParenLoc,
11452                                          Expr *ExecConfig,
11453                                          bool AllowTypoCorrection,
11454                                          bool CalleesAddressIsTaken) {
11455   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
11456                                     OverloadCandidateSet::CSK_Normal);
11457   ExprResult result;
11458
11459   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
11460                              &result))
11461     return result;
11462
11463   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
11464   // functions that aren't addressible are considered unviable.
11465   if (CalleesAddressIsTaken)
11466     markUnaddressableCandidatesUnviable(*this, CandidateSet);
11467
11468   OverloadCandidateSet::iterator Best;
11469   OverloadingResult OverloadResult =
11470       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
11471
11472   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
11473                                   RParenLoc, ExecConfig, &CandidateSet,
11474                                   &Best, OverloadResult,
11475                                   AllowTypoCorrection);
11476 }
11477
11478 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
11479   return Functions.size() > 1 ||
11480     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
11481 }
11482
11483 /// \brief Create a unary operation that may resolve to an overloaded
11484 /// operator.
11485 ///
11486 /// \param OpLoc The location of the operator itself (e.g., '*').
11487 ///
11488 /// \param Opc The UnaryOperatorKind that describes this operator.
11489 ///
11490 /// \param Fns The set of non-member functions that will be
11491 /// considered by overload resolution. The caller needs to build this
11492 /// set based on the context using, e.g.,
11493 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11494 /// set should not contain any member functions; those will be added
11495 /// by CreateOverloadedUnaryOp().
11496 ///
11497 /// \param Input The input argument.
11498 ExprResult
11499 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
11500                               const UnresolvedSetImpl &Fns,
11501                               Expr *Input) {
11502   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
11503   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
11504   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11505   // TODO: provide better source location info.
11506   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11507
11508   if (checkPlaceholderForOverload(*this, Input))
11509     return ExprError();
11510
11511   Expr *Args[2] = { Input, nullptr };
11512   unsigned NumArgs = 1;
11513
11514   // For post-increment and post-decrement, add the implicit '0' as
11515   // the second argument, so that we know this is a post-increment or
11516   // post-decrement.
11517   if (Opc == UO_PostInc || Opc == UO_PostDec) {
11518     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
11519     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
11520                                      SourceLocation());
11521     NumArgs = 2;
11522   }
11523
11524   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
11525
11526   if (Input->isTypeDependent()) {
11527     if (Fns.empty())
11528       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
11529                                          VK_RValue, OK_Ordinary, OpLoc);
11530
11531     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11532     UnresolvedLookupExpr *Fn
11533       = UnresolvedLookupExpr::Create(Context, NamingClass,
11534                                      NestedNameSpecifierLoc(), OpNameInfo,
11535                                      /*ADL*/ true, IsOverloaded(Fns),
11536                                      Fns.begin(), Fns.end());
11537     return new (Context)
11538         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
11539                             VK_RValue, OpLoc, false);
11540   }
11541
11542   // Build an empty overload set.
11543   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11544
11545   // Add the candidates from the given function set.
11546   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
11547
11548   // Add operator candidates that are member functions.
11549   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
11550
11551   // Add candidates from ADL.
11552   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
11553                                        /*ExplicitTemplateArgs*/nullptr,
11554                                        CandidateSet);
11555
11556   // Add builtin operator candidates.
11557   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
11558
11559   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11560
11561   // Perform overload resolution.
11562   OverloadCandidateSet::iterator Best;
11563   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11564   case OR_Success: {
11565     // We found a built-in operator or an overloaded operator.
11566     FunctionDecl *FnDecl = Best->Function;
11567
11568     if (FnDecl) {
11569       // We matched an overloaded operator. Build a call to that
11570       // operator.
11571
11572       // Convert the arguments.
11573       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11574         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
11575
11576         ExprResult InputRes =
11577           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
11578                                               Best->FoundDecl, Method);
11579         if (InputRes.isInvalid())
11580           return ExprError();
11581         Input = InputRes.get();
11582       } else {
11583         // Convert the arguments.
11584         ExprResult InputInit
11585           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11586                                                       Context,
11587                                                       FnDecl->getParamDecl(0)),
11588                                       SourceLocation(),
11589                                       Input);
11590         if (InputInit.isInvalid())
11591           return ExprError();
11592         Input = InputInit.get();
11593       }
11594
11595       // Build the actual expression node.
11596       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
11597                                                 HadMultipleCandidates, OpLoc);
11598       if (FnExpr.isInvalid())
11599         return ExprError();
11600
11601       // Determine the result type.
11602       QualType ResultTy = FnDecl->getReturnType();
11603       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11604       ResultTy = ResultTy.getNonLValueExprType(Context);
11605
11606       Args[0] = Input;
11607       CallExpr *TheCall =
11608         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
11609                                           ResultTy, VK, OpLoc, false);
11610
11611       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
11612         return ExprError();
11613
11614       return MaybeBindToTemporary(TheCall);
11615     } else {
11616       // We matched a built-in operator. Convert the arguments, then
11617       // break out so that we will build the appropriate built-in
11618       // operator node.
11619       ExprResult InputRes =
11620         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
11621                                   Best->Conversions[0], AA_Passing);
11622       if (InputRes.isInvalid())
11623         return ExprError();
11624       Input = InputRes.get();
11625       break;
11626     }
11627   }
11628
11629   case OR_No_Viable_Function:
11630     // This is an erroneous use of an operator which can be overloaded by
11631     // a non-member function. Check for non-member operators which were
11632     // defined too late to be candidates.
11633     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
11634       // FIXME: Recover by calling the found function.
11635       return ExprError();
11636
11637     // No viable function; fall through to handling this as a
11638     // built-in operator, which will produce an error message for us.
11639     break;
11640
11641   case OR_Ambiguous:
11642     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11643         << UnaryOperator::getOpcodeStr(Opc)
11644         << Input->getType()
11645         << Input->getSourceRange();
11646     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
11647                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11648     return ExprError();
11649
11650   case OR_Deleted:
11651     Diag(OpLoc, diag::err_ovl_deleted_oper)
11652       << Best->Function->isDeleted()
11653       << UnaryOperator::getOpcodeStr(Opc)
11654       << getDeletedOrUnavailableSuffix(Best->Function)
11655       << Input->getSourceRange();
11656     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
11657                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
11658     return ExprError();
11659   }
11660
11661   // Either we found no viable overloaded operator or we matched a
11662   // built-in operator. In either case, fall through to trying to
11663   // build a built-in operation.
11664   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11665 }
11666
11667 /// \brief Create a binary operation that may resolve to an overloaded
11668 /// operator.
11669 ///
11670 /// \param OpLoc The location of the operator itself (e.g., '+').
11671 ///
11672 /// \param Opc The BinaryOperatorKind that describes this operator.
11673 ///
11674 /// \param Fns The set of non-member functions that will be
11675 /// considered by overload resolution. The caller needs to build this
11676 /// set based on the context using, e.g.,
11677 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11678 /// set should not contain any member functions; those will be added
11679 /// by CreateOverloadedBinOp().
11680 ///
11681 /// \param LHS Left-hand argument.
11682 /// \param RHS Right-hand argument.
11683 ExprResult
11684 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
11685                             BinaryOperatorKind Opc,
11686                             const UnresolvedSetImpl &Fns,
11687                             Expr *LHS, Expr *RHS) {
11688   Expr *Args[2] = { LHS, RHS };
11689   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
11690
11691   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
11692   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11693
11694   // If either side is type-dependent, create an appropriate dependent
11695   // expression.
11696   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11697     if (Fns.empty()) {
11698       // If there are no functions to store, just build a dependent
11699       // BinaryOperator or CompoundAssignment.
11700       if (Opc <= BO_Assign || Opc > BO_OrAssign)
11701         return new (Context) BinaryOperator(
11702             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
11703             OpLoc, FPFeatures.fp_contract);
11704
11705       return new (Context) CompoundAssignOperator(
11706           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
11707           Context.DependentTy, Context.DependentTy, OpLoc,
11708           FPFeatures.fp_contract);
11709     }
11710
11711     // FIXME: save results of ADL from here?
11712     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11713     // TODO: provide better source location info in DNLoc component.
11714     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11715     UnresolvedLookupExpr *Fn
11716       = UnresolvedLookupExpr::Create(Context, NamingClass, 
11717                                      NestedNameSpecifierLoc(), OpNameInfo, 
11718                                      /*ADL*/ true, IsOverloaded(Fns),
11719                                      Fns.begin(), Fns.end());
11720     return new (Context)
11721         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
11722                             VK_RValue, OpLoc, FPFeatures.fp_contract);
11723   }
11724
11725   // Always do placeholder-like conversions on the RHS.
11726   if (checkPlaceholderForOverload(*this, Args[1]))
11727     return ExprError();
11728
11729   // Do placeholder-like conversion on the LHS; note that we should
11730   // not get here with a PseudoObject LHS.
11731   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
11732   if (checkPlaceholderForOverload(*this, Args[0]))
11733     return ExprError();
11734
11735   // If this is the assignment operator, we only perform overload resolution
11736   // if the left-hand side is a class or enumeration type. This is actually
11737   // a hack. The standard requires that we do overload resolution between the
11738   // various built-in candidates, but as DR507 points out, this can lead to
11739   // problems. So we do it this way, which pretty much follows what GCC does.
11740   // Note that we go the traditional code path for compound assignment forms.
11741   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
11742     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11743
11744   // If this is the .* operator, which is not overloadable, just
11745   // create a built-in binary operator.
11746   if (Opc == BO_PtrMemD)
11747     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11748
11749   // Build an empty overload set.
11750   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11751
11752   // Add the candidates from the given function set.
11753   AddFunctionCandidates(Fns, Args, CandidateSet);
11754
11755   // Add operator candidates that are member functions.
11756   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11757
11758   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
11759   // performed for an assignment operator (nor for operator[] nor operator->,
11760   // which don't get here).
11761   if (Opc != BO_Assign)
11762     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
11763                                          /*ExplicitTemplateArgs*/ nullptr,
11764                                          CandidateSet);
11765
11766   // Add builtin operator candidates.
11767   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11768
11769   bool HadMultipleCandidates = (CandidateSet.size() > 1);
11770
11771   // Perform overload resolution.
11772   OverloadCandidateSet::iterator Best;
11773   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11774     case OR_Success: {
11775       // We found a built-in operator or an overloaded operator.
11776       FunctionDecl *FnDecl = Best->Function;
11777
11778       if (FnDecl) {
11779         // We matched an overloaded operator. Build a call to that
11780         // operator.
11781
11782         // Convert the arguments.
11783         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11784           // Best->Access is only meaningful for class members.
11785           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
11786
11787           ExprResult Arg1 =
11788             PerformCopyInitialization(
11789               InitializedEntity::InitializeParameter(Context,
11790                                                      FnDecl->getParamDecl(0)),
11791               SourceLocation(), Args[1]);
11792           if (Arg1.isInvalid())
11793             return ExprError();
11794
11795           ExprResult Arg0 =
11796             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11797                                                 Best->FoundDecl, Method);
11798           if (Arg0.isInvalid())
11799             return ExprError();
11800           Args[0] = Arg0.getAs<Expr>();
11801           Args[1] = RHS = Arg1.getAs<Expr>();
11802         } else {
11803           // Convert the arguments.
11804           ExprResult Arg0 = PerformCopyInitialization(
11805             InitializedEntity::InitializeParameter(Context,
11806                                                    FnDecl->getParamDecl(0)),
11807             SourceLocation(), Args[0]);
11808           if (Arg0.isInvalid())
11809             return ExprError();
11810
11811           ExprResult Arg1 =
11812             PerformCopyInitialization(
11813               InitializedEntity::InitializeParameter(Context,
11814                                                      FnDecl->getParamDecl(1)),
11815               SourceLocation(), Args[1]);
11816           if (Arg1.isInvalid())
11817             return ExprError();
11818           Args[0] = LHS = Arg0.getAs<Expr>();
11819           Args[1] = RHS = Arg1.getAs<Expr>();
11820         }
11821
11822         // Build the actual expression node.
11823         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11824                                                   Best->FoundDecl,
11825                                                   HadMultipleCandidates, OpLoc);
11826         if (FnExpr.isInvalid())
11827           return ExprError();
11828
11829         // Determine the result type.
11830         QualType ResultTy = FnDecl->getReturnType();
11831         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11832         ResultTy = ResultTy.getNonLValueExprType(Context);
11833
11834         CXXOperatorCallExpr *TheCall =
11835           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
11836                                             Args, ResultTy, VK, OpLoc,
11837                                             FPFeatures.fp_contract);
11838
11839         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
11840                                 FnDecl))
11841           return ExprError();
11842
11843         ArrayRef<const Expr *> ArgsArray(Args, 2);
11844         // Cut off the implicit 'this'.
11845         if (isa<CXXMethodDecl>(FnDecl))
11846           ArgsArray = ArgsArray.slice(1);
11847
11848         // Check for a self move.
11849         if (Op == OO_Equal)
11850           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
11851
11852         checkCall(FnDecl, nullptr, ArgsArray, isa<CXXMethodDecl>(FnDecl), OpLoc, 
11853                   TheCall->getSourceRange(), VariadicDoesNotApply);
11854
11855         return MaybeBindToTemporary(TheCall);
11856       } else {
11857         // We matched a built-in operator. Convert the arguments, then
11858         // break out so that we will build the appropriate built-in
11859         // operator node.
11860         ExprResult ArgsRes0 =
11861           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11862                                     Best->Conversions[0], AA_Passing);
11863         if (ArgsRes0.isInvalid())
11864           return ExprError();
11865         Args[0] = ArgsRes0.get();
11866
11867         ExprResult ArgsRes1 =
11868           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11869                                     Best->Conversions[1], AA_Passing);
11870         if (ArgsRes1.isInvalid())
11871           return ExprError();
11872         Args[1] = ArgsRes1.get();
11873         break;
11874       }
11875     }
11876
11877     case OR_No_Viable_Function: {
11878       // C++ [over.match.oper]p9:
11879       //   If the operator is the operator , [...] and there are no
11880       //   viable functions, then the operator is assumed to be the
11881       //   built-in operator and interpreted according to clause 5.
11882       if (Opc == BO_Comma)
11883         break;
11884
11885       // For class as left operand for assignment or compound assigment
11886       // operator do not fall through to handling in built-in, but report that
11887       // no overloaded assignment operator found
11888       ExprResult Result = ExprError();
11889       if (Args[0]->getType()->isRecordType() &&
11890           Opc >= BO_Assign && Opc <= BO_OrAssign) {
11891         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
11892              << BinaryOperator::getOpcodeStr(Opc)
11893              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11894         if (Args[0]->getType()->isIncompleteType()) {
11895           Diag(OpLoc, diag::note_assign_lhs_incomplete)
11896             << Args[0]->getType()
11897             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11898         }
11899       } else {
11900         // This is an erroneous use of an operator which can be overloaded by
11901         // a non-member function. Check for non-member operators which were
11902         // defined too late to be candidates.
11903         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
11904           // FIXME: Recover by calling the found function.
11905           return ExprError();
11906
11907         // No viable function; try to create a built-in operation, which will
11908         // produce an error. Then, show the non-viable candidates.
11909         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11910       }
11911       assert(Result.isInvalid() &&
11912              "C++ binary operator overloading is missing candidates!");
11913       if (Result.isInvalid())
11914         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11915                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
11916       return Result;
11917     }
11918
11919     case OR_Ambiguous:
11920       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
11921           << BinaryOperator::getOpcodeStr(Opc)
11922           << Args[0]->getType() << Args[1]->getType()
11923           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11924       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11925                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
11926       return ExprError();
11927
11928     case OR_Deleted:
11929       if (isImplicitlyDeleted(Best->Function)) {
11930         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11931         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
11932           << Context.getRecordType(Method->getParent())
11933           << getSpecialMember(Method);
11934
11935         // The user probably meant to call this special member. Just
11936         // explain why it's deleted.
11937         NoteDeletedFunction(Method);
11938         return ExprError();
11939       } else {
11940         Diag(OpLoc, diag::err_ovl_deleted_oper)
11941           << Best->Function->isDeleted()
11942           << BinaryOperator::getOpcodeStr(Opc)
11943           << getDeletedOrUnavailableSuffix(Best->Function)
11944           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11945       }
11946       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11947                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
11948       return ExprError();
11949   }
11950
11951   // We matched a built-in operator; build it.
11952   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11953 }
11954
11955 ExprResult
11956 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
11957                                          SourceLocation RLoc,
11958                                          Expr *Base, Expr *Idx) {
11959   Expr *Args[2] = { Base, Idx };
11960   DeclarationName OpName =
11961       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
11962
11963   // If either side is type-dependent, create an appropriate dependent
11964   // expression.
11965   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11966
11967     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11968     // CHECKME: no 'operator' keyword?
11969     DeclarationNameInfo OpNameInfo(OpName, LLoc);
11970     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11971     UnresolvedLookupExpr *Fn
11972       = UnresolvedLookupExpr::Create(Context, NamingClass,
11973                                      NestedNameSpecifierLoc(), OpNameInfo,
11974                                      /*ADL*/ true, /*Overloaded*/ false,
11975                                      UnresolvedSetIterator(),
11976                                      UnresolvedSetIterator());
11977     // Can't add any actual overloads yet
11978
11979     return new (Context)
11980         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
11981                             Context.DependentTy, VK_RValue, RLoc, false);
11982   }
11983
11984   // Handle placeholders on both operands.
11985   if (checkPlaceholderForOverload(*this, Args[0]))
11986     return ExprError();
11987   if (checkPlaceholderForOverload(*this, Args[1]))
11988     return ExprError();
11989
11990   // Build an empty overload set.
11991   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
11992
11993   // Subscript can only be overloaded as a member function.
11994
11995   // Add operator candidates that are member functions.
11996   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11997
11998   // Add builtin operator candidates.
11999   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12000
12001   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12002
12003   // Perform overload resolution.
12004   OverloadCandidateSet::iterator Best;
12005   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12006     case OR_Success: {
12007       // We found a built-in operator or an overloaded operator.
12008       FunctionDecl *FnDecl = Best->Function;
12009
12010       if (FnDecl) {
12011         // We matched an overloaded operator. Build a call to that
12012         // operator.
12013
12014         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12015
12016         // Convert the arguments.
12017         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12018         ExprResult Arg0 =
12019           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12020                                               Best->FoundDecl, Method);
12021         if (Arg0.isInvalid())
12022           return ExprError();
12023         Args[0] = Arg0.get();
12024
12025         // Convert the arguments.
12026         ExprResult InputInit
12027           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12028                                                       Context,
12029                                                       FnDecl->getParamDecl(0)),
12030                                       SourceLocation(),
12031                                       Args[1]);
12032         if (InputInit.isInvalid())
12033           return ExprError();
12034
12035         Args[1] = InputInit.getAs<Expr>();
12036
12037         // Build the actual expression node.
12038         DeclarationNameInfo OpLocInfo(OpName, LLoc);
12039         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12040         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12041                                                   Best->FoundDecl,
12042                                                   HadMultipleCandidates,
12043                                                   OpLocInfo.getLoc(),
12044                                                   OpLocInfo.getInfo());
12045         if (FnExpr.isInvalid())
12046           return ExprError();
12047
12048         // Determine the result type
12049         QualType ResultTy = FnDecl->getReturnType();
12050         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12051         ResultTy = ResultTy.getNonLValueExprType(Context);
12052
12053         CXXOperatorCallExpr *TheCall =
12054           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
12055                                             FnExpr.get(), Args,
12056                                             ResultTy, VK, RLoc,
12057                                             false);
12058
12059         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12060           return ExprError();
12061
12062         return MaybeBindToTemporary(TheCall);
12063       } else {
12064         // We matched a built-in operator. Convert the arguments, then
12065         // break out so that we will build the appropriate built-in
12066         // operator node.
12067         ExprResult ArgsRes0 =
12068           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
12069                                     Best->Conversions[0], AA_Passing);
12070         if (ArgsRes0.isInvalid())
12071           return ExprError();
12072         Args[0] = ArgsRes0.get();
12073
12074         ExprResult ArgsRes1 =
12075           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
12076                                     Best->Conversions[1], AA_Passing);
12077         if (ArgsRes1.isInvalid())
12078           return ExprError();
12079         Args[1] = ArgsRes1.get();
12080
12081         break;
12082       }
12083     }
12084
12085     case OR_No_Viable_Function: {
12086       if (CandidateSet.empty())
12087         Diag(LLoc, diag::err_ovl_no_oper)
12088           << Args[0]->getType() << /*subscript*/ 0
12089           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12090       else
12091         Diag(LLoc, diag::err_ovl_no_viable_subscript)
12092           << Args[0]->getType()
12093           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12094       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12095                                   "[]", LLoc);
12096       return ExprError();
12097     }
12098
12099     case OR_Ambiguous:
12100       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
12101           << "[]"
12102           << Args[0]->getType() << Args[1]->getType()
12103           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12104       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
12105                                   "[]", LLoc);
12106       return ExprError();
12107
12108     case OR_Deleted:
12109       Diag(LLoc, diag::err_ovl_deleted_oper)
12110         << Best->Function->isDeleted() << "[]"
12111         << getDeletedOrUnavailableSuffix(Best->Function)
12112         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12113       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12114                                   "[]", LLoc);
12115       return ExprError();
12116     }
12117
12118   // We matched a built-in operator; build it.
12119   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12120 }
12121
12122 /// BuildCallToMemberFunction - Build a call to a member
12123 /// function. MemExpr is the expression that refers to the member
12124 /// function (and includes the object parameter), Args/NumArgs are the
12125 /// arguments to the function call (not including the object
12126 /// parameter). The caller needs to validate that the member
12127 /// expression refers to a non-static member function or an overloaded
12128 /// member function.
12129 ExprResult
12130 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12131                                 SourceLocation LParenLoc,
12132                                 MultiExprArg Args,
12133                                 SourceLocation RParenLoc) {
12134   assert(MemExprE->getType() == Context.BoundMemberTy ||
12135          MemExprE->getType() == Context.OverloadTy);
12136
12137   // Dig out the member expression. This holds both the object
12138   // argument and the member function we're referring to.
12139   Expr *NakedMemExpr = MemExprE->IgnoreParens();
12140
12141   // Determine whether this is a call to a pointer-to-member function.
12142   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12143     assert(op->getType() == Context.BoundMemberTy);
12144     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
12145
12146     QualType fnType =
12147       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12148
12149     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12150     QualType resultType = proto->getCallResultType(Context);
12151     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12152
12153     // Check that the object type isn't more qualified than the
12154     // member function we're calling.
12155     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
12156
12157     QualType objectType = op->getLHS()->getType();
12158     if (op->getOpcode() == BO_PtrMemI)
12159       objectType = objectType->castAs<PointerType>()->getPointeeType();
12160     Qualifiers objectQuals = objectType.getQualifiers();
12161
12162     Qualifiers difference = objectQuals - funcQuals;
12163     difference.removeObjCGCAttr();
12164     difference.removeAddressSpace();
12165     if (difference) {
12166       std::string qualsString = difference.getAsString();
12167       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
12168         << fnType.getUnqualifiedType()
12169         << qualsString
12170         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
12171     }
12172
12173     CXXMemberCallExpr *call
12174       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
12175                                         resultType, valueKind, RParenLoc);
12176
12177     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
12178                             call, nullptr))
12179       return ExprError();
12180
12181     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
12182       return ExprError();
12183
12184     if (CheckOtherCall(call, proto))
12185       return ExprError();
12186
12187     return MaybeBindToTemporary(call);
12188   }
12189
12190   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
12191     return new (Context)
12192         CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
12193
12194   UnbridgedCastsSet UnbridgedCasts;
12195   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12196     return ExprError();
12197
12198   MemberExpr *MemExpr;
12199   CXXMethodDecl *Method = nullptr;
12200   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
12201   NestedNameSpecifier *Qualifier = nullptr;
12202   if (isa<MemberExpr>(NakedMemExpr)) {
12203     MemExpr = cast<MemberExpr>(NakedMemExpr);
12204     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
12205     FoundDecl = MemExpr->getFoundDecl();
12206     Qualifier = MemExpr->getQualifier();
12207     UnbridgedCasts.restore();
12208   } else {
12209     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
12210     Qualifier = UnresExpr->getQualifier();
12211
12212     QualType ObjectType = UnresExpr->getBaseType();
12213     Expr::Classification ObjectClassification
12214       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
12215                             : UnresExpr->getBase()->Classify(Context);
12216
12217     // Add overload candidates
12218     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
12219                                       OverloadCandidateSet::CSK_Normal);
12220
12221     // FIXME: avoid copy.
12222     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12223     if (UnresExpr->hasExplicitTemplateArgs()) {
12224       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
12225       TemplateArgs = &TemplateArgsBuffer;
12226     }
12227
12228     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
12229            E = UnresExpr->decls_end(); I != E; ++I) {
12230
12231       NamedDecl *Func = *I;
12232       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
12233       if (isa<UsingShadowDecl>(Func))
12234         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
12235
12236
12237       // Microsoft supports direct constructor calls.
12238       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
12239         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
12240                              Args, CandidateSet);
12241       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
12242         // If explicit template arguments were provided, we can't call a
12243         // non-template member function.
12244         if (TemplateArgs)
12245           continue;
12246
12247         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
12248                            ObjectClassification, Args, CandidateSet,
12249                            /*SuppressUserConversions=*/false);
12250       } else {
12251         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
12252                                    I.getPair(), ActingDC, TemplateArgs,
12253                                    ObjectType,  ObjectClassification,
12254                                    Args, CandidateSet,
12255                                    /*SuppressUsedConversions=*/false);
12256       }
12257     }
12258
12259     DeclarationName DeclName = UnresExpr->getMemberName();
12260
12261     UnbridgedCasts.restore();
12262
12263     OverloadCandidateSet::iterator Best;
12264     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
12265                                             Best)) {
12266     case OR_Success:
12267       Method = cast<CXXMethodDecl>(Best->Function);
12268       FoundDecl = Best->FoundDecl;
12269       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
12270       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
12271         return ExprError();
12272       // If FoundDecl is different from Method (such as if one is a template
12273       // and the other a specialization), make sure DiagnoseUseOfDecl is 
12274       // called on both.
12275       // FIXME: This would be more comprehensively addressed by modifying
12276       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
12277       // being used.
12278       if (Method != FoundDecl.getDecl() && 
12279                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
12280         return ExprError();
12281       break;
12282
12283     case OR_No_Viable_Function:
12284       Diag(UnresExpr->getMemberLoc(),
12285            diag::err_ovl_no_viable_member_function_in_call)
12286         << DeclName << MemExprE->getSourceRange();
12287       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12288       // FIXME: Leaking incoming expressions!
12289       return ExprError();
12290
12291     case OR_Ambiguous:
12292       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
12293         << DeclName << MemExprE->getSourceRange();
12294       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12295       // FIXME: Leaking incoming expressions!
12296       return ExprError();
12297
12298     case OR_Deleted:
12299       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
12300         << Best->Function->isDeleted()
12301         << DeclName 
12302         << getDeletedOrUnavailableSuffix(Best->Function)
12303         << MemExprE->getSourceRange();
12304       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12305       // FIXME: Leaking incoming expressions!
12306       return ExprError();
12307     }
12308
12309     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
12310
12311     // If overload resolution picked a static member, build a
12312     // non-member call based on that function.
12313     if (Method->isStatic()) {
12314       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
12315                                    RParenLoc);
12316     }
12317
12318     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
12319   }
12320
12321   QualType ResultType = Method->getReturnType();
12322   ExprValueKind VK = Expr::getValueKindForType(ResultType);
12323   ResultType = ResultType.getNonLValueExprType(Context);
12324
12325   assert(Method && "Member call to something that isn't a method?");
12326   CXXMemberCallExpr *TheCall =
12327     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
12328                                     ResultType, VK, RParenLoc);
12329
12330   // (CUDA B.1): Check for invalid calls between targets.
12331   if (getLangOpts().CUDA) {
12332     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
12333       if (CheckCUDATarget(Caller, Method)) {
12334         Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
12335             << IdentifyCUDATarget(Method) << Method->getIdentifier()
12336             << IdentifyCUDATarget(Caller);
12337         return ExprError();
12338       }
12339     }
12340   }
12341
12342   // Check for a valid return type.
12343   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
12344                           TheCall, Method))
12345     return ExprError();
12346
12347   // Convert the object argument (for a non-static member function call).
12348   // We only need to do this if there was actually an overload; otherwise
12349   // it was done at lookup.
12350   if (!Method->isStatic()) {
12351     ExprResult ObjectArg =
12352       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
12353                                           FoundDecl, Method);
12354     if (ObjectArg.isInvalid())
12355       return ExprError();
12356     MemExpr->setBase(ObjectArg.get());
12357   }
12358
12359   // Convert the rest of the arguments
12360   const FunctionProtoType *Proto =
12361     Method->getType()->getAs<FunctionProtoType>();
12362   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
12363                               RParenLoc))
12364     return ExprError();
12365
12366   DiagnoseSentinelCalls(Method, LParenLoc, Args);
12367
12368   if (CheckFunctionCall(Method, TheCall, Proto))
12369     return ExprError();
12370
12371   // In the case the method to call was not selected by the overloading
12372   // resolution process, we still need to handle the enable_if attribute. Do
12373   // that here, so it will not hide previous -- and more relevant -- errors
12374   if (isa<MemberExpr>(NakedMemExpr)) {
12375     if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
12376       Diag(MemExprE->getLocStart(),
12377            diag::err_ovl_no_viable_member_function_in_call)
12378           << Method << Method->getSourceRange();
12379       Diag(Method->getLocation(),
12380            diag::note_ovl_candidate_disabled_by_enable_if_attr)
12381           << Attr->getCond()->getSourceRange() << Attr->getMessage();
12382       return ExprError();
12383     }
12384   }
12385
12386   if ((isa<CXXConstructorDecl>(CurContext) || 
12387        isa<CXXDestructorDecl>(CurContext)) && 
12388       TheCall->getMethodDecl()->isPure()) {
12389     const CXXMethodDecl *MD = TheCall->getMethodDecl();
12390
12391     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
12392         MemExpr->performsVirtualDispatch(getLangOpts())) {
12393       Diag(MemExpr->getLocStart(),
12394            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
12395         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
12396         << MD->getParent()->getDeclName();
12397
12398       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
12399       if (getLangOpts().AppleKext)
12400         Diag(MemExpr->getLocStart(),
12401              diag::note_pure_qualified_call_kext)
12402              << MD->getParent()->getDeclName()
12403              << MD->getDeclName();
12404     }
12405   }
12406
12407   if (CXXDestructorDecl *DD =
12408           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
12409     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
12410     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
12411     CheckVirtualDtorCall(DD, MemExpr->getLocStart(), /*IsDelete=*/false,
12412                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
12413                          MemExpr->getMemberLoc());
12414   }
12415
12416   return MaybeBindToTemporary(TheCall);
12417 }
12418
12419 /// BuildCallToObjectOfClassType - Build a call to an object of class
12420 /// type (C++ [over.call.object]), which can end up invoking an
12421 /// overloaded function call operator (@c operator()) or performing a
12422 /// user-defined conversion on the object argument.
12423 ExprResult
12424 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
12425                                    SourceLocation LParenLoc,
12426                                    MultiExprArg Args,
12427                                    SourceLocation RParenLoc) {
12428   if (checkPlaceholderForOverload(*this, Obj))
12429     return ExprError();
12430   ExprResult Object = Obj;
12431
12432   UnbridgedCastsSet UnbridgedCasts;
12433   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12434     return ExprError();
12435
12436   assert(Object.get()->getType()->isRecordType() &&
12437          "Requires object type argument");
12438   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
12439
12440   // C++ [over.call.object]p1:
12441   //  If the primary-expression E in the function call syntax
12442   //  evaluates to a class object of type "cv T", then the set of
12443   //  candidate functions includes at least the function call
12444   //  operators of T. The function call operators of T are obtained by
12445   //  ordinary lookup of the name operator() in the context of
12446   //  (E).operator().
12447   OverloadCandidateSet CandidateSet(LParenLoc,
12448                                     OverloadCandidateSet::CSK_Operator);
12449   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
12450
12451   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
12452                           diag::err_incomplete_object_call, Object.get()))
12453     return true;
12454
12455   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
12456   LookupQualifiedName(R, Record->getDecl());
12457   R.suppressDiagnostics();
12458
12459   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12460        Oper != OperEnd; ++Oper) {
12461     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
12462                        Object.get()->Classify(Context),
12463                        Args, CandidateSet,
12464                        /*SuppressUserConversions=*/ false);
12465   }
12466
12467   // C++ [over.call.object]p2:
12468   //   In addition, for each (non-explicit in C++0x) conversion function 
12469   //   declared in T of the form
12470   //
12471   //        operator conversion-type-id () cv-qualifier;
12472   //
12473   //   where cv-qualifier is the same cv-qualification as, or a
12474   //   greater cv-qualification than, cv, and where conversion-type-id
12475   //   denotes the type "pointer to function of (P1,...,Pn) returning
12476   //   R", or the type "reference to pointer to function of
12477   //   (P1,...,Pn) returning R", or the type "reference to function
12478   //   of (P1,...,Pn) returning R", a surrogate call function [...]
12479   //   is also considered as a candidate function. Similarly,
12480   //   surrogate call functions are added to the set of candidate
12481   //   functions for each conversion function declared in an
12482   //   accessible base class provided the function is not hidden
12483   //   within T by another intervening declaration.
12484   const auto &Conversions =
12485       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
12486   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
12487     NamedDecl *D = *I;
12488     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
12489     if (isa<UsingShadowDecl>(D))
12490       D = cast<UsingShadowDecl>(D)->getTargetDecl();
12491
12492     // Skip over templated conversion functions; they aren't
12493     // surrogates.
12494     if (isa<FunctionTemplateDecl>(D))
12495       continue;
12496
12497     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
12498     if (!Conv->isExplicit()) {
12499       // Strip the reference type (if any) and then the pointer type (if
12500       // any) to get down to what might be a function type.
12501       QualType ConvType = Conv->getConversionType().getNonReferenceType();
12502       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
12503         ConvType = ConvPtrType->getPointeeType();
12504
12505       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
12506       {
12507         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
12508                               Object.get(), Args, CandidateSet);
12509       }
12510     }
12511   }
12512
12513   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12514
12515   // Perform overload resolution.
12516   OverloadCandidateSet::iterator Best;
12517   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
12518                              Best)) {
12519   case OR_Success:
12520     // Overload resolution succeeded; we'll build the appropriate call
12521     // below.
12522     break;
12523
12524   case OR_No_Viable_Function:
12525     if (CandidateSet.empty())
12526       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
12527         << Object.get()->getType() << /*call*/ 1
12528         << Object.get()->getSourceRange();
12529     else
12530       Diag(Object.get()->getLocStart(),
12531            diag::err_ovl_no_viable_object_call)
12532         << Object.get()->getType() << Object.get()->getSourceRange();
12533     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12534     break;
12535
12536   case OR_Ambiguous:
12537     Diag(Object.get()->getLocStart(),
12538          diag::err_ovl_ambiguous_object_call)
12539       << Object.get()->getType() << Object.get()->getSourceRange();
12540     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12541     break;
12542
12543   case OR_Deleted:
12544     Diag(Object.get()->getLocStart(),
12545          diag::err_ovl_deleted_object_call)
12546       << Best->Function->isDeleted()
12547       << Object.get()->getType() 
12548       << getDeletedOrUnavailableSuffix(Best->Function)
12549       << Object.get()->getSourceRange();
12550     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12551     break;
12552   }
12553
12554   if (Best == CandidateSet.end())
12555     return true;
12556
12557   UnbridgedCasts.restore();
12558
12559   if (Best->Function == nullptr) {
12560     // Since there is no function declaration, this is one of the
12561     // surrogate candidates. Dig out the conversion function.
12562     CXXConversionDecl *Conv
12563       = cast<CXXConversionDecl>(
12564                          Best->Conversions[0].UserDefined.ConversionFunction);
12565
12566     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
12567                               Best->FoundDecl);
12568     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
12569       return ExprError();
12570     assert(Conv == Best->FoundDecl.getDecl() && 
12571              "Found Decl & conversion-to-functionptr should be same, right?!");
12572     // We selected one of the surrogate functions that converts the
12573     // object parameter to a function pointer. Perform the conversion
12574     // on the object argument, then let ActOnCallExpr finish the job.
12575
12576     // Create an implicit member expr to refer to the conversion operator.
12577     // and then call it.
12578     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
12579                                              Conv, HadMultipleCandidates);
12580     if (Call.isInvalid())
12581       return ExprError();
12582     // Record usage of conversion in an implicit cast.
12583     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
12584                                     CK_UserDefinedConversion, Call.get(),
12585                                     nullptr, VK_RValue);
12586
12587     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
12588   }
12589
12590   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
12591
12592   // We found an overloaded operator(). Build a CXXOperatorCallExpr
12593   // that calls this method, using Object for the implicit object
12594   // parameter and passing along the remaining arguments.
12595   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12596
12597   // An error diagnostic has already been printed when parsing the declaration.
12598   if (Method->isInvalidDecl())
12599     return ExprError();
12600
12601   const FunctionProtoType *Proto =
12602     Method->getType()->getAs<FunctionProtoType>();
12603
12604   unsigned NumParams = Proto->getNumParams();
12605
12606   DeclarationNameInfo OpLocInfo(
12607                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
12608   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
12609   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12610                                            HadMultipleCandidates,
12611                                            OpLocInfo.getLoc(),
12612                                            OpLocInfo.getInfo());
12613   if (NewFn.isInvalid())
12614     return true;
12615
12616   // Build the full argument list for the method call (the implicit object
12617   // parameter is placed at the beginning of the list).
12618   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
12619   MethodArgs[0] = Object.get();
12620   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
12621
12622   // Once we've built TheCall, all of the expressions are properly
12623   // owned.
12624   QualType ResultTy = Method->getReturnType();
12625   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12626   ResultTy = ResultTy.getNonLValueExprType(Context);
12627
12628   CXXOperatorCallExpr *TheCall = new (Context)
12629       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
12630                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
12631                           ResultTy, VK, RParenLoc, false);
12632   MethodArgs.reset();
12633
12634   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
12635     return true;
12636
12637   // We may have default arguments. If so, we need to allocate more
12638   // slots in the call for them.
12639   if (Args.size() < NumParams)
12640     TheCall->setNumArgs(Context, NumParams + 1);
12641
12642   bool IsError = false;
12643
12644   // Initialize the implicit object parameter.
12645   ExprResult ObjRes =
12646     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
12647                                         Best->FoundDecl, Method);
12648   if (ObjRes.isInvalid())
12649     IsError = true;
12650   else
12651     Object = ObjRes;
12652   TheCall->setArg(0, Object.get());
12653
12654   // Check the argument types.
12655   for (unsigned i = 0; i != NumParams; i++) {
12656     Expr *Arg;
12657     if (i < Args.size()) {
12658       Arg = Args[i];
12659
12660       // Pass the argument.
12661
12662       ExprResult InputInit
12663         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12664                                                     Context,
12665                                                     Method->getParamDecl(i)),
12666                                     SourceLocation(), Arg);
12667
12668       IsError |= InputInit.isInvalid();
12669       Arg = InputInit.getAs<Expr>();
12670     } else {
12671       ExprResult DefArg
12672         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
12673       if (DefArg.isInvalid()) {
12674         IsError = true;
12675         break;
12676       }
12677
12678       Arg = DefArg.getAs<Expr>();
12679     }
12680
12681     TheCall->setArg(i + 1, Arg);
12682   }
12683
12684   // If this is a variadic call, handle args passed through "...".
12685   if (Proto->isVariadic()) {
12686     // Promote the arguments (C99 6.5.2.2p7).
12687     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
12688       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
12689                                                         nullptr);
12690       IsError |= Arg.isInvalid();
12691       TheCall->setArg(i + 1, Arg.get());
12692     }
12693   }
12694
12695   if (IsError) return true;
12696
12697   DiagnoseSentinelCalls(Method, LParenLoc, Args);
12698
12699   if (CheckFunctionCall(Method, TheCall, Proto))
12700     return true;
12701
12702   return MaybeBindToTemporary(TheCall);
12703 }
12704
12705 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
12706 ///  (if one exists), where @c Base is an expression of class type and
12707 /// @c Member is the name of the member we're trying to find.
12708 ExprResult
12709 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
12710                                bool *NoArrowOperatorFound) {
12711   assert(Base->getType()->isRecordType() &&
12712          "left-hand side must have class type");
12713
12714   if (checkPlaceholderForOverload(*this, Base))
12715     return ExprError();
12716
12717   SourceLocation Loc = Base->getExprLoc();
12718
12719   // C++ [over.ref]p1:
12720   //
12721   //   [...] An expression x->m is interpreted as (x.operator->())->m
12722   //   for a class object x of type T if T::operator->() exists and if
12723   //   the operator is selected as the best match function by the
12724   //   overload resolution mechanism (13.3).
12725   DeclarationName OpName =
12726     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
12727   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
12728   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
12729
12730   if (RequireCompleteType(Loc, Base->getType(),
12731                           diag::err_typecheck_incomplete_tag, Base))
12732     return ExprError();
12733
12734   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
12735   LookupQualifiedName(R, BaseRecord->getDecl());
12736   R.suppressDiagnostics();
12737
12738   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12739        Oper != OperEnd; ++Oper) {
12740     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
12741                        None, CandidateSet, /*SuppressUserConversions=*/false);
12742   }
12743
12744   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12745
12746   // Perform overload resolution.
12747   OverloadCandidateSet::iterator Best;
12748   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12749   case OR_Success:
12750     // Overload resolution succeeded; we'll build the call below.
12751     break;
12752
12753   case OR_No_Viable_Function:
12754     if (CandidateSet.empty()) {
12755       QualType BaseType = Base->getType();
12756       if (NoArrowOperatorFound) {
12757         // Report this specific error to the caller instead of emitting a
12758         // diagnostic, as requested.
12759         *NoArrowOperatorFound = true;
12760         return ExprError();
12761       }
12762       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
12763         << BaseType << Base->getSourceRange();
12764       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
12765         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
12766           << FixItHint::CreateReplacement(OpLoc, ".");
12767       }
12768     } else
12769       Diag(OpLoc, diag::err_ovl_no_viable_oper)
12770         << "operator->" << Base->getSourceRange();
12771     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12772     return ExprError();
12773
12774   case OR_Ambiguous:
12775     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
12776       << "->" << Base->getType() << Base->getSourceRange();
12777     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
12778     return ExprError();
12779
12780   case OR_Deleted:
12781     Diag(OpLoc,  diag::err_ovl_deleted_oper)
12782       << Best->Function->isDeleted()
12783       << "->" 
12784       << getDeletedOrUnavailableSuffix(Best->Function)
12785       << Base->getSourceRange();
12786     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12787     return ExprError();
12788   }
12789
12790   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
12791
12792   // Convert the object parameter.
12793   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12794   ExprResult BaseResult =
12795     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
12796                                         Best->FoundDecl, Method);
12797   if (BaseResult.isInvalid())
12798     return ExprError();
12799   Base = BaseResult.get();
12800
12801   // Build the operator call.
12802   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12803                                             HadMultipleCandidates, OpLoc);
12804   if (FnExpr.isInvalid())
12805     return ExprError();
12806
12807   QualType ResultTy = Method->getReturnType();
12808   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12809   ResultTy = ResultTy.getNonLValueExprType(Context);
12810   CXXOperatorCallExpr *TheCall =
12811     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
12812                                       Base, ResultTy, VK, OpLoc, false);
12813
12814   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
12815           return ExprError();
12816
12817   return MaybeBindToTemporary(TheCall);
12818 }
12819
12820 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
12821 /// a literal operator described by the provided lookup results.
12822 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
12823                                           DeclarationNameInfo &SuffixInfo,
12824                                           ArrayRef<Expr*> Args,
12825                                           SourceLocation LitEndLoc,
12826                                        TemplateArgumentListInfo *TemplateArgs) {
12827   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
12828
12829   OverloadCandidateSet CandidateSet(UDSuffixLoc,
12830                                     OverloadCandidateSet::CSK_Normal);
12831   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
12832                         /*SuppressUserConversions=*/true);
12833
12834   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12835
12836   // Perform overload resolution. This will usually be trivial, but might need
12837   // to perform substitutions for a literal operator template.
12838   OverloadCandidateSet::iterator Best;
12839   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
12840   case OR_Success:
12841   case OR_Deleted:
12842     break;
12843
12844   case OR_No_Viable_Function:
12845     Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
12846       << R.getLookupName();
12847     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12848     return ExprError();
12849
12850   case OR_Ambiguous:
12851     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
12852     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12853     return ExprError();
12854   }
12855
12856   FunctionDecl *FD = Best->Function;
12857   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
12858                                         HadMultipleCandidates,
12859                                         SuffixInfo.getLoc(),
12860                                         SuffixInfo.getInfo());
12861   if (Fn.isInvalid())
12862     return true;
12863
12864   // Check the argument types. This should almost always be a no-op, except
12865   // that array-to-pointer decay is applied to string literals.
12866   Expr *ConvArgs[2];
12867   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
12868     ExprResult InputInit = PerformCopyInitialization(
12869       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
12870       SourceLocation(), Args[ArgIdx]);
12871     if (InputInit.isInvalid())
12872       return true;
12873     ConvArgs[ArgIdx] = InputInit.get();
12874   }
12875
12876   QualType ResultTy = FD->getReturnType();
12877   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12878   ResultTy = ResultTy.getNonLValueExprType(Context);
12879
12880   UserDefinedLiteral *UDL =
12881     new (Context) UserDefinedLiteral(Context, Fn.get(),
12882                                      llvm::makeArrayRef(ConvArgs, Args.size()),
12883                                      ResultTy, VK, LitEndLoc, UDSuffixLoc);
12884
12885   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
12886     return ExprError();
12887
12888   if (CheckFunctionCall(FD, UDL, nullptr))
12889     return ExprError();
12890
12891   return MaybeBindToTemporary(UDL);
12892 }
12893
12894 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
12895 /// given LookupResult is non-empty, it is assumed to describe a member which
12896 /// will be invoked. Otherwise, the function will be found via argument
12897 /// dependent lookup.
12898 /// CallExpr is set to a valid expression and FRS_Success returned on success,
12899 /// otherwise CallExpr is set to ExprError() and some non-success value
12900 /// is returned.
12901 Sema::ForRangeStatus
12902 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
12903                                 SourceLocation RangeLoc,
12904                                 const DeclarationNameInfo &NameInfo,
12905                                 LookupResult &MemberLookup,
12906                                 OverloadCandidateSet *CandidateSet,
12907                                 Expr *Range, ExprResult *CallExpr) {
12908   Scope *S = nullptr;
12909
12910   CandidateSet->clear();
12911   if (!MemberLookup.empty()) {
12912     ExprResult MemberRef =
12913         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
12914                                  /*IsPtr=*/false, CXXScopeSpec(),
12915                                  /*TemplateKWLoc=*/SourceLocation(),
12916                                  /*FirstQualifierInScope=*/nullptr,
12917                                  MemberLookup,
12918                                  /*TemplateArgs=*/nullptr, S);
12919     if (MemberRef.isInvalid()) {
12920       *CallExpr = ExprError();
12921       return FRS_DiagnosticIssued;
12922     }
12923     *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
12924     if (CallExpr->isInvalid()) {
12925       *CallExpr = ExprError();
12926       return FRS_DiagnosticIssued;
12927     }
12928   } else {
12929     UnresolvedSet<0> FoundNames;
12930     UnresolvedLookupExpr *Fn =
12931       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
12932                                    NestedNameSpecifierLoc(), NameInfo,
12933                                    /*NeedsADL=*/true, /*Overloaded=*/false,
12934                                    FoundNames.begin(), FoundNames.end());
12935
12936     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
12937                                                     CandidateSet, CallExpr);
12938     if (CandidateSet->empty() || CandidateSetError) {
12939       *CallExpr = ExprError();
12940       return FRS_NoViableFunction;
12941     }
12942     OverloadCandidateSet::iterator Best;
12943     OverloadingResult OverloadResult =
12944         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
12945
12946     if (OverloadResult == OR_No_Viable_Function) {
12947       *CallExpr = ExprError();
12948       return FRS_NoViableFunction;
12949     }
12950     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
12951                                          Loc, nullptr, CandidateSet, &Best,
12952                                          OverloadResult,
12953                                          /*AllowTypoCorrection=*/false);
12954     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
12955       *CallExpr = ExprError();
12956       return FRS_DiagnosticIssued;
12957     }
12958   }
12959   return FRS_Success;
12960 }
12961
12962
12963 /// FixOverloadedFunctionReference - E is an expression that refers to
12964 /// a C++ overloaded function (possibly with some parentheses and
12965 /// perhaps a '&' around it). We have resolved the overloaded function
12966 /// to the function declaration Fn, so patch up the expression E to
12967 /// refer (possibly indirectly) to Fn. Returns the new expr.
12968 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
12969                                            FunctionDecl *Fn) {
12970   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
12971     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
12972                                                    Found, Fn);
12973     if (SubExpr == PE->getSubExpr())
12974       return PE;
12975
12976     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
12977   }
12978
12979   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12980     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
12981                                                    Found, Fn);
12982     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
12983                                SubExpr->getType()) &&
12984            "Implicit cast type cannot be determined from overload");
12985     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
12986     if (SubExpr == ICE->getSubExpr())
12987       return ICE;
12988
12989     return ImplicitCastExpr::Create(Context, ICE->getType(),
12990                                     ICE->getCastKind(),
12991                                     SubExpr, nullptr,
12992                                     ICE->getValueKind());
12993   }
12994
12995   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
12996     assert(UnOp->getOpcode() == UO_AddrOf &&
12997            "Can only take the address of an overloaded function");
12998     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12999       if (Method->isStatic()) {
13000         // Do nothing: static member functions aren't any different
13001         // from non-member functions.
13002       } else {
13003         // Fix the subexpression, which really has to be an
13004         // UnresolvedLookupExpr holding an overloaded member function
13005         // or template.
13006         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13007                                                        Found, Fn);
13008         if (SubExpr == UnOp->getSubExpr())
13009           return UnOp;
13010
13011         assert(isa<DeclRefExpr>(SubExpr)
13012                && "fixed to something other than a decl ref");
13013         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
13014                && "fixed to a member ref with no nested name qualifier");
13015
13016         // We have taken the address of a pointer to member
13017         // function. Perform the computation here so that we get the
13018         // appropriate pointer to member type.
13019         QualType ClassType
13020           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13021         QualType MemPtrType
13022           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13023         // Under the MS ABI, lock down the inheritance model now.
13024         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13025           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13026
13027         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13028                                            VK_RValue, OK_Ordinary,
13029                                            UnOp->getOperatorLoc());
13030       }
13031     }
13032     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13033                                                    Found, Fn);
13034     if (SubExpr == UnOp->getSubExpr())
13035       return UnOp;
13036
13037     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13038                                      Context.getPointerType(SubExpr->getType()),
13039                                        VK_RValue, OK_Ordinary,
13040                                        UnOp->getOperatorLoc());
13041   }
13042
13043   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13044     // FIXME: avoid copy.
13045     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13046     if (ULE->hasExplicitTemplateArgs()) {
13047       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13048       TemplateArgs = &TemplateArgsBuffer;
13049     }
13050
13051     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13052                                            ULE->getQualifierLoc(),
13053                                            ULE->getTemplateKeywordLoc(),
13054                                            Fn,
13055                                            /*enclosing*/ false, // FIXME?
13056                                            ULE->getNameLoc(),
13057                                            Fn->getType(),
13058                                            VK_LValue,
13059                                            Found.getDecl(),
13060                                            TemplateArgs);
13061     MarkDeclRefReferenced(DRE);
13062     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13063     return DRE;
13064   }
13065
13066   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13067     // FIXME: avoid copy.
13068     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13069     if (MemExpr->hasExplicitTemplateArgs()) {
13070       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13071       TemplateArgs = &TemplateArgsBuffer;
13072     }
13073
13074     Expr *Base;
13075
13076     // If we're filling in a static method where we used to have an
13077     // implicit member access, rewrite to a simple decl ref.
13078     if (MemExpr->isImplicitAccess()) {
13079       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13080         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13081                                                MemExpr->getQualifierLoc(),
13082                                                MemExpr->getTemplateKeywordLoc(),
13083                                                Fn,
13084                                                /*enclosing*/ false,
13085                                                MemExpr->getMemberLoc(),
13086                                                Fn->getType(),
13087                                                VK_LValue,
13088                                                Found.getDecl(),
13089                                                TemplateArgs);
13090         MarkDeclRefReferenced(DRE);
13091         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13092         return DRE;
13093       } else {
13094         SourceLocation Loc = MemExpr->getMemberLoc();
13095         if (MemExpr->getQualifier())
13096           Loc = MemExpr->getQualifierLoc().getBeginLoc();
13097         CheckCXXThisCapture(Loc);
13098         Base = new (Context) CXXThisExpr(Loc,
13099                                          MemExpr->getBaseType(),
13100                                          /*isImplicit=*/true);
13101       }
13102     } else
13103       Base = MemExpr->getBase();
13104
13105     ExprValueKind valueKind;
13106     QualType type;
13107     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13108       valueKind = VK_LValue;
13109       type = Fn->getType();
13110     } else {
13111       valueKind = VK_RValue;
13112       type = Context.BoundMemberTy;
13113     }
13114
13115     MemberExpr *ME = MemberExpr::Create(
13116         Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13117         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13118         MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
13119         OK_Ordinary);
13120     ME->setHadMultipleCandidates(true);
13121     MarkMemberReferenced(ME);
13122     return ME;
13123   }
13124
13125   llvm_unreachable("Invalid reference to overloaded function");
13126 }
13127
13128 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13129                                                 DeclAccessPair Found,
13130                                                 FunctionDecl *Fn) {
13131   return FixOverloadedFunctionReference(E.get(), Found, Fn);
13132 }