]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaStmtAsm.cpp
Update clang to trunk r256633.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Sema / SemaStmtAsm.cpp
1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for inline asm statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/AST/TypeLoc.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Initialization.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/MC/MCParser/MCAsmParser.h"
27 using namespace clang;
28 using namespace sema;
29
30 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
31 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
32 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
33 /// provide a strong guidance to not use it.
34 ///
35 /// This method checks to see if the argument is an acceptable l-value and
36 /// returns false if it is a case we can handle.
37 static bool CheckAsmLValue(const Expr *E, Sema &S) {
38   // Type dependent expressions will be checked during instantiation.
39   if (E->isTypeDependent())
40     return false;
41
42   if (E->isLValue())
43     return false;  // Cool, this is an lvalue.
44
45   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
46   // are supposed to allow.
47   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
48   if (E != E2 && E2->isLValue()) {
49     if (!S.getLangOpts().HeinousExtensions)
50       S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
51         << E->getSourceRange();
52     else
53       S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
54         << E->getSourceRange();
55     // Accept, even if we emitted an error diagnostic.
56     return false;
57   }
58
59   // None of the above, just randomly invalid non-lvalue.
60   return true;
61 }
62
63 /// isOperandMentioned - Return true if the specified operand # is mentioned
64 /// anywhere in the decomposed asm string.
65 static bool isOperandMentioned(unsigned OpNo,
66                          ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
67   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
68     const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
69     if (!Piece.isOperand()) continue;
70
71     // If this is a reference to the input and if the input was the smaller
72     // one, then we have to reject this asm.
73     if (Piece.getOperandNo() == OpNo)
74       return true;
75   }
76   return false;
77 }
78
79 static bool CheckNakedParmReference(Expr *E, Sema &S) {
80   FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
81   if (!Func)
82     return false;
83   if (!Func->hasAttr<NakedAttr>())
84     return false;
85
86   SmallVector<Expr*, 4> WorkList;
87   WorkList.push_back(E);
88   while (WorkList.size()) {
89     Expr *E = WorkList.pop_back_val();
90     if (isa<CXXThisExpr>(E)) {
91       S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref);
92       S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
93       return true;
94     }
95     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
96       if (isa<ParmVarDecl>(DRE->getDecl())) {
97         S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref);
98         S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
99         return true;
100       }
101     }
102     for (Stmt *Child : E->children()) {
103       if (Expr *E = dyn_cast_or_null<Expr>(Child))
104         WorkList.push_back(E);
105     }
106   }
107   return false;
108 }
109
110 /// \brief Returns true if given expression is not compatible with inline
111 /// assembly's memory constraint; false otherwise.
112 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
113                                             TargetInfo::ConstraintInfo &Info,
114                                             bool is_input_expr) {
115   enum {
116     ExprBitfield = 0,
117     ExprVectorElt,
118     ExprGlobalRegVar,
119     ExprSafeType
120   } EType = ExprSafeType;
121
122   // Bitfields, vector elements and global register variables are not
123   // compatible.
124   if (E->refersToBitField())
125     EType = ExprBitfield;
126   else if (E->refersToVectorElement())
127     EType = ExprVectorElt;
128   else if (E->refersToGlobalRegisterVar())
129     EType = ExprGlobalRegVar;
130
131   if (EType != ExprSafeType) {
132     S.Diag(E->getLocStart(), diag::err_asm_non_addr_value_in_memory_constraint)
133         << EType << is_input_expr << Info.getConstraintStr()
134         << E->getSourceRange();
135     return true;
136   }
137
138   return false;
139 }
140
141 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
142                                  bool IsVolatile, unsigned NumOutputs,
143                                  unsigned NumInputs, IdentifierInfo **Names,
144                                  MultiExprArg constraints, MultiExprArg Exprs,
145                                  Expr *asmString, MultiExprArg clobbers,
146                                  SourceLocation RParenLoc) {
147   unsigned NumClobbers = clobbers.size();
148   StringLiteral **Constraints =
149     reinterpret_cast<StringLiteral**>(constraints.data());
150   StringLiteral *AsmString = cast<StringLiteral>(asmString);
151   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
152
153   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
154
155   // The parser verifies that there is a string literal here.
156   assert(AsmString->isAscii());
157
158   // If we're compiling CUDA file and function attributes indicate that it's not
159   // for this compilation side, skip all the checks.
160   if (!DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) {
161     GCCAsmStmt *NS = new (Context) GCCAsmStmt(
162         Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names,
163         Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, RParenLoc);
164     return NS;
165   }
166
167   for (unsigned i = 0; i != NumOutputs; i++) {
168     StringLiteral *Literal = Constraints[i];
169     assert(Literal->isAscii());
170
171     StringRef OutputName;
172     if (Names[i])
173       OutputName = Names[i]->getName();
174
175     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
176     if (!Context.getTargetInfo().validateOutputConstraint(Info))
177       return StmtError(Diag(Literal->getLocStart(),
178                             diag::err_asm_invalid_output_constraint)
179                        << Info.getConstraintStr());
180
181     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
182     if (ER.isInvalid())
183       return StmtError();
184     Exprs[i] = ER.get();
185
186     // Check that the output exprs are valid lvalues.
187     Expr *OutputExpr = Exprs[i];
188
189     // Referring to parameters is not allowed in naked functions.
190     if (CheckNakedParmReference(OutputExpr, *this))
191       return StmtError();
192
193     // Check that the output expression is compatible with memory constraint.
194     if (Info.allowsMemory() &&
195         checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
196       return StmtError();
197
198     OutputConstraintInfos.push_back(Info);
199
200     // If this is dependent, just continue.
201     if (OutputExpr->isTypeDependent())
202       continue;
203
204     Expr::isModifiableLvalueResult IsLV =
205         OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
206     switch (IsLV) {
207     case Expr::MLV_Valid:
208       // Cool, this is an lvalue.
209       break;
210     case Expr::MLV_ArrayType:
211       // This is OK too.
212       break;
213     case Expr::MLV_LValueCast: {
214       const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
215       if (!getLangOpts().HeinousExtensions) {
216         Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
217             << OutputExpr->getSourceRange();
218       } else {
219         Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
220             << OutputExpr->getSourceRange();
221       }
222       // Accept, even if we emitted an error diagnostic.
223       break;
224     }
225     case Expr::MLV_IncompleteType:
226     case Expr::MLV_IncompleteVoidType:
227       if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
228                               diag::err_dereference_incomplete_type))
229         return StmtError();
230     default:
231       return StmtError(Diag(OutputExpr->getLocStart(),
232                             diag::err_asm_invalid_lvalue_in_output)
233                        << OutputExpr->getSourceRange());
234     }
235
236     unsigned Size = Context.getTypeSize(OutputExpr->getType());
237     if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
238                                                     Size))
239       return StmtError(Diag(OutputExpr->getLocStart(),
240                             diag::err_asm_invalid_output_size)
241                        << Info.getConstraintStr());
242   }
243
244   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
245
246   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
247     StringLiteral *Literal = Constraints[i];
248     assert(Literal->isAscii());
249
250     StringRef InputName;
251     if (Names[i])
252       InputName = Names[i]->getName();
253
254     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
255     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
256                                                          Info)) {
257       return StmtError(Diag(Literal->getLocStart(),
258                             diag::err_asm_invalid_input_constraint)
259                        << Info.getConstraintStr());
260     }
261
262     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
263     if (ER.isInvalid())
264       return StmtError();
265     Exprs[i] = ER.get();
266
267     Expr *InputExpr = Exprs[i];
268
269     // Referring to parameters is not allowed in naked functions.
270     if (CheckNakedParmReference(InputExpr, *this))
271       return StmtError();
272
273     // Check that the input expression is compatible with memory constraint.
274     if (Info.allowsMemory() &&
275         checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
276       return StmtError();
277
278     // Only allow void types for memory constraints.
279     if (Info.allowsMemory() && !Info.allowsRegister()) {
280       if (CheckAsmLValue(InputExpr, *this))
281         return StmtError(Diag(InputExpr->getLocStart(),
282                               diag::err_asm_invalid_lvalue_in_input)
283                          << Info.getConstraintStr()
284                          << InputExpr->getSourceRange());
285     } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
286       if (!InputExpr->isValueDependent()) {
287         llvm::APSInt Result;
288         if (!InputExpr->EvaluateAsInt(Result, Context))
289            return StmtError(
290                Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
291                 << Info.getConstraintStr() << InputExpr->getSourceRange());
292          if (!Info.isValidAsmImmediate(Result))
293            return StmtError(Diag(InputExpr->getLocStart(),
294                                  diag::err_invalid_asm_value_for_constraint)
295                             << Result.toString(10) << Info.getConstraintStr()
296                             << InputExpr->getSourceRange());
297       }
298
299     } else {
300       ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
301       if (Result.isInvalid())
302         return StmtError();
303
304       Exprs[i] = Result.get();
305     }
306
307     if (Info.allowsRegister()) {
308       if (InputExpr->getType()->isVoidType()) {
309         return StmtError(Diag(InputExpr->getLocStart(),
310                               diag::err_asm_invalid_type_in_input)
311           << InputExpr->getType() << Info.getConstraintStr()
312           << InputExpr->getSourceRange());
313       }
314     }
315
316     InputConstraintInfos.push_back(Info);
317
318     const Type *Ty = Exprs[i]->getType().getTypePtr();
319     if (Ty->isDependentType())
320       continue;
321
322     if (!Ty->isVoidType() || !Info.allowsMemory())
323       if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
324                               diag::err_dereference_incomplete_type))
325         return StmtError();
326
327     unsigned Size = Context.getTypeSize(Ty);
328     if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
329                                                    Size))
330       return StmtError(Diag(InputExpr->getLocStart(),
331                             diag::err_asm_invalid_input_size)
332                        << Info.getConstraintStr());
333   }
334
335   // Check that the clobbers are valid.
336   for (unsigned i = 0; i != NumClobbers; i++) {
337     StringLiteral *Literal = Clobbers[i];
338     assert(Literal->isAscii());
339
340     StringRef Clobber = Literal->getString();
341
342     if (!Context.getTargetInfo().isValidClobber(Clobber))
343       return StmtError(Diag(Literal->getLocStart(),
344                   diag::err_asm_unknown_register_name) << Clobber);
345   }
346
347   GCCAsmStmt *NS =
348     new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
349                              NumInputs, Names, Constraints, Exprs.data(),
350                              AsmString, NumClobbers, Clobbers, RParenLoc);
351   // Validate the asm string, ensuring it makes sense given the operands we
352   // have.
353   SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
354   unsigned DiagOffs;
355   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
356     Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
357            << AsmString->getSourceRange();
358     return StmtError();
359   }
360
361   // Validate constraints and modifiers.
362   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
363     GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
364     if (!Piece.isOperand()) continue;
365
366     // Look for the correct constraint index.
367     unsigned ConstraintIdx = Piece.getOperandNo();
368     unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
369
370     // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
371     // modifier '+'.
372     if (ConstraintIdx >= NumOperands) {
373       unsigned I = 0, E = NS->getNumOutputs();
374
375       for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
376         if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
377           ConstraintIdx = I;
378           break;
379         }
380
381       assert(I != E && "Invalid operand number should have been caught in "
382                        " AnalyzeAsmString");
383     }
384
385     // Now that we have the right indexes go ahead and check.
386     StringLiteral *Literal = Constraints[ConstraintIdx];
387     const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
388     if (Ty->isDependentType() || Ty->isIncompleteType())
389       continue;
390
391     unsigned Size = Context.getTypeSize(Ty);
392     std::string SuggestedModifier;
393     if (!Context.getTargetInfo().validateConstraintModifier(
394             Literal->getString(), Piece.getModifier(), Size,
395             SuggestedModifier)) {
396       Diag(Exprs[ConstraintIdx]->getLocStart(),
397            diag::warn_asm_mismatched_size_modifier);
398
399       if (!SuggestedModifier.empty()) {
400         auto B = Diag(Piece.getRange().getBegin(),
401                       diag::note_asm_missing_constraint_modifier)
402                  << SuggestedModifier;
403         SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
404         B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
405                                                     SuggestedModifier));
406       }
407     }
408   }
409
410   // Validate tied input operands for type mismatches.
411   unsigned NumAlternatives = ~0U;
412   for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
413     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
414     StringRef ConstraintStr = Info.getConstraintStr();
415     unsigned AltCount = ConstraintStr.count(',') + 1;
416     if (NumAlternatives == ~0U)
417       NumAlternatives = AltCount;
418     else if (NumAlternatives != AltCount)
419       return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
420                             diag::err_asm_unexpected_constraint_alternatives)
421                        << NumAlternatives << AltCount);
422   }
423   SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
424                                               ~0U);
425   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
426     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
427     StringRef ConstraintStr = Info.getConstraintStr();
428     unsigned AltCount = ConstraintStr.count(',') + 1;
429     if (NumAlternatives == ~0U)
430       NumAlternatives = AltCount;
431     else if (NumAlternatives != AltCount)
432       return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
433                             diag::err_asm_unexpected_constraint_alternatives)
434                        << NumAlternatives << AltCount);
435
436     // If this is a tied constraint, verify that the output and input have
437     // either exactly the same type, or that they are int/ptr operands with the
438     // same size (int/long, int*/long, are ok etc).
439     if (!Info.hasTiedOperand()) continue;
440
441     unsigned TiedTo = Info.getTiedOperand();
442     unsigned InputOpNo = i+NumOutputs;
443     Expr *OutputExpr = Exprs[TiedTo];
444     Expr *InputExpr = Exprs[InputOpNo];
445
446     // Make sure no more than one input constraint matches each output.
447     assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
448     if (InputMatchedToOutput[TiedTo] != ~0U) {
449       Diag(NS->getInputExpr(i)->getLocStart(),
450            diag::err_asm_input_duplicate_match)
451           << TiedTo;
452       Diag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getLocStart(),
453            diag::note_asm_input_duplicate_first)
454           << TiedTo;
455       return StmtError();
456     }
457     InputMatchedToOutput[TiedTo] = i;
458
459     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
460       continue;
461
462     QualType InTy = InputExpr->getType();
463     QualType OutTy = OutputExpr->getType();
464     if (Context.hasSameType(InTy, OutTy))
465       continue;  // All types can be tied to themselves.
466
467     // Decide if the input and output are in the same domain (integer/ptr or
468     // floating point.
469     enum AsmDomain {
470       AD_Int, AD_FP, AD_Other
471     } InputDomain, OutputDomain;
472
473     if (InTy->isIntegerType() || InTy->isPointerType())
474       InputDomain = AD_Int;
475     else if (InTy->isRealFloatingType())
476       InputDomain = AD_FP;
477     else
478       InputDomain = AD_Other;
479
480     if (OutTy->isIntegerType() || OutTy->isPointerType())
481       OutputDomain = AD_Int;
482     else if (OutTy->isRealFloatingType())
483       OutputDomain = AD_FP;
484     else
485       OutputDomain = AD_Other;
486
487     // They are ok if they are the same size and in the same domain.  This
488     // allows tying things like:
489     //   void* to int*
490     //   void* to int            if they are the same size.
491     //   double to long double   if they are the same size.
492     //
493     uint64_t OutSize = Context.getTypeSize(OutTy);
494     uint64_t InSize = Context.getTypeSize(InTy);
495     if (OutSize == InSize && InputDomain == OutputDomain &&
496         InputDomain != AD_Other)
497       continue;
498
499     // If the smaller input/output operand is not mentioned in the asm string,
500     // then we can promote the smaller one to a larger input and the asm string
501     // won't notice.
502     bool SmallerValueMentioned = false;
503
504     // If this is a reference to the input and if the input was the smaller
505     // one, then we have to reject this asm.
506     if (isOperandMentioned(InputOpNo, Pieces)) {
507       // This is a use in the asm string of the smaller operand.  Since we
508       // codegen this by promoting to a wider value, the asm will get printed
509       // "wrong".
510       SmallerValueMentioned |= InSize < OutSize;
511     }
512     if (isOperandMentioned(TiedTo, Pieces)) {
513       // If this is a reference to the output, and if the output is the larger
514       // value, then it's ok because we'll promote the input to the larger type.
515       SmallerValueMentioned |= OutSize < InSize;
516     }
517
518     // If the smaller value wasn't mentioned in the asm string, and if the
519     // output was a register, just extend the shorter one to the size of the
520     // larger one.
521     if (!SmallerValueMentioned && InputDomain != AD_Other &&
522         OutputConstraintInfos[TiedTo].allowsRegister())
523       continue;
524
525     // Either both of the operands were mentioned or the smaller one was
526     // mentioned.  One more special case that we'll allow: if the tied input is
527     // integer, unmentioned, and is a constant, then we'll allow truncating it
528     // down to the size of the destination.
529     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
530         !isOperandMentioned(InputOpNo, Pieces) &&
531         InputExpr->isEvaluatable(Context)) {
532       CastKind castKind =
533         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
534       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
535       Exprs[InputOpNo] = InputExpr;
536       NS->setInputExpr(i, InputExpr);
537       continue;
538     }
539
540     Diag(InputExpr->getLocStart(),
541          diag::err_asm_tying_incompatible_types)
542       << InTy << OutTy << OutputExpr->getSourceRange()
543       << InputExpr->getSourceRange();
544     return StmtError();
545   }
546
547   return NS;
548 }
549
550 static void fillInlineAsmTypeInfo(const ASTContext &Context, QualType T,
551                                   llvm::InlineAsmIdentifierInfo &Info) {
552   // Compute the type size (and array length if applicable?).
553   Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity();
554   if (T->isArrayType()) {
555     const ArrayType *ATy = Context.getAsArrayType(T);
556     Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
557     Info.Length = Info.Size / Info.Type;
558   }
559 }
560
561 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
562                                            SourceLocation TemplateKWLoc,
563                                            UnqualifiedId &Id,
564                                            llvm::InlineAsmIdentifierInfo &Info,
565                                            bool IsUnevaluatedContext) {
566   Info.clear();
567
568   if (IsUnevaluatedContext)
569     PushExpressionEvaluationContext(UnevaluatedAbstract,
570                                     ReuseLambdaContextDecl);
571
572   ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
573                                         /*trailing lparen*/ false,
574                                         /*is & operand*/ false,
575                                         /*CorrectionCandidateCallback=*/nullptr,
576                                         /*IsInlineAsmIdentifier=*/ true);
577
578   if (IsUnevaluatedContext)
579     PopExpressionEvaluationContext();
580
581   if (!Result.isUsable()) return Result;
582
583   Result = CheckPlaceholderExpr(Result.get());
584   if (!Result.isUsable()) return Result;
585
586   // Referring to parameters is not allowed in naked functions.
587   if (CheckNakedParmReference(Result.get(), *this))
588     return ExprError();
589
590   QualType T = Result.get()->getType();
591
592   // For now, reject dependent types.
593   if (T->isDependentType()) {
594     Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T;
595     return ExprError();
596   }
597
598   // Any sort of function type is fine.
599   if (T->isFunctionType()) {
600     return Result;
601   }
602
603   // Otherwise, it needs to be a complete type.
604   if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
605     return ExprError();
606   }
607
608   fillInlineAsmTypeInfo(Context, T, Info);
609
610   // We can work with the expression as long as it's not an r-value.
611   if (!Result.get()->isRValue())
612     Info.IsVarDecl = true;
613
614   return Result;
615 }
616
617 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
618                                 unsigned &Offset, SourceLocation AsmLoc) {
619   Offset = 0;
620   SmallVector<StringRef, 2> Members;
621   Member.split(Members, ".");
622
623   LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
624                           LookupOrdinaryName);
625
626   if (!LookupName(BaseResult, getCurScope()))
627     return true;
628
629   LookupResult CurrBaseResult(BaseResult);
630
631   for (StringRef NextMember : Members) {
632
633     if (!CurrBaseResult.isSingleResult())
634       return true;
635
636     const RecordType *RT = nullptr;
637     NamedDecl *FoundDecl = CurrBaseResult.getFoundDecl();
638     if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
639       RT = VD->getType()->getAs<RecordType>();
640     else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
641       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
642       RT = TD->getUnderlyingType()->getAs<RecordType>();
643     } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
644       RT = TD->getTypeForDecl()->getAs<RecordType>();
645     else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
646       RT = TD->getType()->getAs<RecordType>();
647     if (!RT)
648       return true;
649
650     if (RequireCompleteType(AsmLoc, QualType(RT, 0),
651                             diag::err_asm_incomplete_type))
652       return true;
653
654     LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
655                              SourceLocation(), LookupMemberName);
656
657     if (!LookupQualifiedName(FieldResult, RT->getDecl()))
658       return true;
659
660     // FIXME: Handle IndirectFieldDecl?
661     FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
662     if (!FD)
663       return true;
664
665     CurrBaseResult = FieldResult;
666
667     const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
668     unsigned i = FD->getFieldIndex();
669     CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
670     Offset += (unsigned)Result.getQuantity();
671   }
672
673   return false;
674 }
675
676 ExprResult
677 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, unsigned &Offset,
678                                   llvm::InlineAsmIdentifierInfo &Info,
679                                   SourceLocation AsmLoc) {
680   Info.clear();
681
682   const RecordType *RT = E->getType()->getAs<RecordType>();
683   // FIXME: Diagnose this as field access into a scalar type.
684   if (!RT)
685     return ExprResult();
686
687   LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
688                            LookupMemberName);
689
690   if (!LookupQualifiedName(FieldResult, RT->getDecl()))
691     return ExprResult();
692
693   // Only normal and indirect field results will work.
694   ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
695   if (!FD)
696     FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
697   if (!FD)
698     return ExprResult();
699
700   Offset = (unsigned)Context.toCharUnitsFromBits(Context.getFieldOffset(FD))
701                .getQuantity();
702
703   // Make an Expr to thread through OpDecl.
704   ExprResult Result = BuildMemberReferenceExpr(
705       E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
706       SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
707   if (Result.isInvalid())
708     return Result;
709   Info.OpDecl = Result.get();
710
711   fillInlineAsmTypeInfo(Context, Result.get()->getType(), Info);
712
713   // Fields are "variables" as far as inline assembly is concerned.
714   Info.IsVarDecl = true;
715
716   return Result;
717 }
718
719 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
720                                 ArrayRef<Token> AsmToks,
721                                 StringRef AsmString,
722                                 unsigned NumOutputs, unsigned NumInputs,
723                                 ArrayRef<StringRef> Constraints,
724                                 ArrayRef<StringRef> Clobbers,
725                                 ArrayRef<Expr*> Exprs,
726                                 SourceLocation EndLoc) {
727   bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
728   getCurFunction()->setHasBranchProtectedScope();
729   MSAsmStmt *NS =
730     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
731                             /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
732                             Constraints, Exprs, AsmString,
733                             Clobbers, EndLoc);
734   return NS;
735 }
736
737 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
738                                        SourceLocation Location,
739                                        bool AlwaysCreate) {
740   LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
741                                          Location);
742
743   if (Label->isMSAsmLabel()) {
744     // If we have previously created this label implicitly, mark it as used.
745     Label->markUsed(Context);
746   } else {
747     // Otherwise, insert it, but only resolve it if we have seen the label itself.
748     std::string InternalName;
749     llvm::raw_string_ostream OS(InternalName);
750     // Create an internal name for the label.  The name should not be a valid mangled
751     // name, and should be unique.  We use a dot to make the name an invalid mangled
752     // name.
753     OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__";
754     for (auto it = ExternalLabelName.begin(); it != ExternalLabelName.end();
755          ++it) {
756       OS << *it;
757       if (*it == '$') {
758         // We escape '$' in asm strings by replacing it with "$$"
759         OS << '$';
760       }
761     }
762     Label->setMSAsmLabel(OS.str());
763   }
764   if (AlwaysCreate) {
765     // The label might have been created implicitly from a previously encountered
766     // goto statement.  So, for both newly created and looked up labels, we mark
767     // them as resolved.
768     Label->setMSAsmLabelResolved();
769   }
770   // Adjust their location for being able to generate accurate diagnostics.
771   Label->setLocation(Location);
772
773   return Label;
774 }