]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
Merge ACPICA 20141107 and 20150204.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / BugReporter.cpp
1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Analysis/CFG.h"
24 #include "clang/Analysis/ProgramPoint.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/IntrusiveRefCntPtr.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <memory>
36 #include <queue>
37
38 using namespace clang;
39 using namespace ento;
40
41 #define DEBUG_TYPE "BugReporter"
42
43 STATISTIC(MaxBugClassSize,
44           "The maximum number of bug reports in the same equivalence class");
45 STATISTIC(MaxValidBugClassSize,
46           "The maximum number of bug reports in the same equivalence class "
47           "where at least one report is valid (not suppressed)");
48
49 BugReporterVisitor::~BugReporterVisitor() {}
50
51 void BugReporterContext::anchor() {}
52
53 //===----------------------------------------------------------------------===//
54 // Helper routines for walking the ExplodedGraph and fetching statements.
55 //===----------------------------------------------------------------------===//
56
57 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
58   for (N = N->getFirstPred(); N; N = N->getFirstPred())
59     if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
60       return S;
61
62   return nullptr;
63 }
64
65 static inline const Stmt*
66 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
67   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
68     return S;
69
70   return GetPreviousStmt(N);
71 }
72
73 //===----------------------------------------------------------------------===//
74 // Diagnostic cleanup.
75 //===----------------------------------------------------------------------===//
76
77 static PathDiagnosticEventPiece *
78 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
79                             PathDiagnosticEventPiece *Y) {
80   // Prefer diagnostics that come from ConditionBRVisitor over
81   // those that came from TrackConstraintBRVisitor.
82   const void *tagPreferred = ConditionBRVisitor::getTag();
83   const void *tagLesser = TrackConstraintBRVisitor::getTag();
84   
85   if (X->getLocation() != Y->getLocation())
86     return nullptr;
87
88   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
89     return X;
90   
91   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
92     return Y;
93
94   return nullptr;
95 }
96
97 /// An optimization pass over PathPieces that removes redundant diagnostics
98 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
99 /// BugReporterVisitors use different methods to generate diagnostics, with
100 /// one capable of emitting diagnostics in some cases but not in others.  This
101 /// can lead to redundant diagnostic pieces at the same point in a path.
102 static void removeRedundantMsgs(PathPieces &path) {
103   unsigned N = path.size();
104   if (N < 2)
105     return;
106   // NOTE: this loop intentionally is not using an iterator.  Instead, we
107   // are streaming the path and modifying it in place.  This is done by
108   // grabbing the front, processing it, and if we decide to keep it append
109   // it to the end of the path.  The entire path is processed in this way.
110   for (unsigned i = 0; i < N; ++i) {
111     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
112     path.pop_front();
113     
114     switch (piece->getKind()) {
115       case clang::ento::PathDiagnosticPiece::Call:
116         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
117         break;
118       case clang::ento::PathDiagnosticPiece::Macro:
119         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
120         break;
121       case clang::ento::PathDiagnosticPiece::ControlFlow:
122         break;
123       case clang::ento::PathDiagnosticPiece::Event: {
124         if (i == N-1)
125           break;
126         
127         if (PathDiagnosticEventPiece *nextEvent =
128             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
129           PathDiagnosticEventPiece *event =
130             cast<PathDiagnosticEventPiece>(piece);
131           // Check to see if we should keep one of the two pieces.  If we
132           // come up with a preference, record which piece to keep, and consume
133           // another piece from the path.
134           if (PathDiagnosticEventPiece *pieceToKeep =
135               eventsDescribeSameCondition(event, nextEvent)) {
136             piece = pieceToKeep;
137             path.pop_front();
138             ++i;
139           }
140         }
141         break;
142       }
143     }
144     path.push_back(piece);
145   }
146 }
147
148 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
149 /// function call it represents.
150 typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
151         LocationContextMap;
152
153 /// Recursively scan through a path and prune out calls and macros pieces
154 /// that aren't needed.  Return true if afterwards the path contains
155 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
156 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
157                                 LocationContextMap &LCM) {
158   bool containsSomethingInteresting = false;
159   const unsigned N = pieces.size();
160   
161   for (unsigned i = 0 ; i < N ; ++i) {
162     // Remove the front piece from the path.  If it is still something we
163     // want to keep once we are done, we will push it back on the end.
164     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
165     pieces.pop_front();
166     
167     switch (piece->getKind()) {
168       case PathDiagnosticPiece::Call: {
169         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
170         // Check if the location context is interesting.
171         assert(LCM.count(&call->path));
172         if (R->isInteresting(LCM[&call->path])) {
173           containsSomethingInteresting = true;
174           break;
175         }
176
177         if (!removeUnneededCalls(call->path, R, LCM))
178           continue;
179         
180         containsSomethingInteresting = true;
181         break;
182       }
183       case PathDiagnosticPiece::Macro: {
184         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
185         if (!removeUnneededCalls(macro->subPieces, R, LCM))
186           continue;
187         containsSomethingInteresting = true;
188         break;
189       }
190       case PathDiagnosticPiece::Event: {
191         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
192         
193         // We never throw away an event, but we do throw it away wholesale
194         // as part of a path if we throw the entire path away.
195         containsSomethingInteresting |= !event->isPrunable();
196         break;
197       }
198       case PathDiagnosticPiece::ControlFlow:
199         break;
200     }
201     
202     pieces.push_back(piece);
203   }
204   
205   return containsSomethingInteresting;
206 }
207
208 /// Returns true if the given decl has been implicitly given a body, either by
209 /// the analyzer or by the compiler proper.
210 static bool hasImplicitBody(const Decl *D) {
211   assert(D);
212   return D->isImplicit() || !D->hasBody();
213 }
214
215 /// Recursively scan through a path and make sure that all call pieces have
216 /// valid locations. 
217 static void
218 adjustCallLocations(PathPieces &Pieces,
219                     PathDiagnosticLocation *LastCallLocation = nullptr) {
220   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
221     PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
222
223     if (!Call) {
224       assert((*I)->getLocation().asLocation().isValid());
225       continue;
226     }
227
228     if (LastCallLocation) {
229       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
230       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
231         Call->callEnter = *LastCallLocation;
232       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
233         Call->callReturn = *LastCallLocation;
234     }
235
236     // Recursively clean out the subclass.  Keep this call around if
237     // it contains any informative diagnostics.
238     PathDiagnosticLocation *ThisCallLocation;
239     if (Call->callEnterWithin.asLocation().isValid() &&
240         !hasImplicitBody(Call->getCallee()))
241       ThisCallLocation = &Call->callEnterWithin;
242     else
243       ThisCallLocation = &Call->callEnter;
244
245     assert(ThisCallLocation && "Outermost call has an invalid location");
246     adjustCallLocations(Call->path, ThisCallLocation);
247   }
248 }
249
250 /// Remove edges in and out of C++ default initializer expressions. These are
251 /// for fields that have in-class initializers, as opposed to being initialized
252 /// explicitly in a constructor or braced list.
253 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
254   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
255     if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
256       removeEdgesToDefaultInitializers(C->path);
257
258     if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
259       removeEdgesToDefaultInitializers(M->subPieces);
260
261     if (PathDiagnosticControlFlowPiece *CF =
262           dyn_cast<PathDiagnosticControlFlowPiece>(*I)) {
263       const Stmt *Start = CF->getStartLocation().asStmt();
264       const Stmt *End = CF->getEndLocation().asStmt();
265       if (Start && isa<CXXDefaultInitExpr>(Start)) {
266         I = Pieces.erase(I);
267         continue;
268       } else if (End && isa<CXXDefaultInitExpr>(End)) {
269         PathPieces::iterator Next = std::next(I);
270         if (Next != E) {
271           if (PathDiagnosticControlFlowPiece *NextCF =
272                 dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) {
273             NextCF->setStartLocation(CF->getStartLocation());
274           }
275         }
276         I = Pieces.erase(I);
277         continue;
278       }
279     }
280
281     I++;
282   }
283 }
284
285 /// Remove all pieces with invalid locations as these cannot be serialized.
286 /// We might have pieces with invalid locations as a result of inlining Body
287 /// Farm generated functions.
288 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
289   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
290     if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
291       removePiecesWithInvalidLocations(C->path);
292
293     if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
294       removePiecesWithInvalidLocations(M->subPieces);
295
296     if (!(*I)->getLocation().isValid() ||
297         !(*I)->getLocation().asLocation().isValid()) {
298       I = Pieces.erase(I);
299       continue;
300     }
301     I++;
302   }
303 }
304
305 //===----------------------------------------------------------------------===//
306 // PathDiagnosticBuilder and its associated routines and helper objects.
307 //===----------------------------------------------------------------------===//
308
309 namespace {
310 class NodeMapClosure : public BugReport::NodeResolver {
311   InterExplodedGraphMap &M;
312 public:
313   NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
314
315   const ExplodedNode *getOriginalNode(const ExplodedNode *N) override {
316     return M.lookup(N);
317   }
318 };
319
320 class PathDiagnosticBuilder : public BugReporterContext {
321   BugReport *R;
322   PathDiagnosticConsumer *PDC;
323   NodeMapClosure NMC;
324 public:
325   const LocationContext *LC;
326   
327   PathDiagnosticBuilder(GRBugReporter &br,
328                         BugReport *r, InterExplodedGraphMap &Backmap,
329                         PathDiagnosticConsumer *pdc)
330     : BugReporterContext(br),
331       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
332   {}
333
334   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
335
336   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
337                                             const ExplodedNode *N);
338
339   BugReport *getBugReport() { return R; }
340
341   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
342   
343   ParentMap& getParentMap() { return LC->getParentMap(); }
344
345   const Stmt *getParent(const Stmt *S) {
346     return getParentMap().getParent(S);
347   }
348
349   NodeMapClosure& getNodeResolver() override { return NMC; }
350
351   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
352
353   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
354     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
355   }
356
357   bool supportsLogicalOpControlFlow() const {
358     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
359   }
360 };
361 } // end anonymous namespace
362
363 PathDiagnosticLocation
364 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
365   if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
366     return PathDiagnosticLocation(S, getSourceManager(), LC);
367
368   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
369                                                getSourceManager());
370 }
371
372 PathDiagnosticLocation
373 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
374                                           const ExplodedNode *N) {
375
376   // Slow, but probably doesn't matter.
377   if (os.str().empty())
378     os << ' ';
379
380   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
381
382   if (Loc.asStmt())
383     os << "Execution continues on line "
384        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
385        << '.';
386   else {
387     os << "Execution jumps to the end of the ";
388     const Decl *D = N->getLocationContext()->getDecl();
389     if (isa<ObjCMethodDecl>(D))
390       os << "method";
391     else if (isa<FunctionDecl>(D))
392       os << "function";
393     else {
394       assert(isa<BlockDecl>(D));
395       os << "anonymous block";
396     }
397     os << '.';
398   }
399
400   return Loc;
401 }
402
403 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
404   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
405     return PM.getParentIgnoreParens(S);
406
407   const Stmt *Parent = PM.getParentIgnoreParens(S);
408   if (!Parent)
409     return nullptr;
410
411   switch (Parent->getStmtClass()) {
412   case Stmt::ForStmtClass:
413   case Stmt::DoStmtClass:
414   case Stmt::WhileStmtClass:
415   case Stmt::ObjCForCollectionStmtClass:
416   case Stmt::CXXForRangeStmtClass:
417     return Parent;
418   default:
419     break;
420   }
421
422   return nullptr;
423 }
424
425 static PathDiagnosticLocation
426 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
427                          const LocationContext *LC, bool allowNestedContexts) {
428   if (!S)
429     return PathDiagnosticLocation();
430
431   while (const Stmt *Parent = getEnclosingParent(S, P)) {
432     switch (Parent->getStmtClass()) {
433       case Stmt::BinaryOperatorClass: {
434         const BinaryOperator *B = cast<BinaryOperator>(Parent);
435         if (B->isLogicalOp())
436           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
437         break;
438       }
439       case Stmt::CompoundStmtClass:
440       case Stmt::StmtExprClass:
441         return PathDiagnosticLocation(S, SMgr, LC);
442       case Stmt::ChooseExprClass:
443         // Similar to '?' if we are referring to condition, just have the edge
444         // point to the entire choose expression.
445         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
446           return PathDiagnosticLocation(Parent, SMgr, LC);
447         else
448           return PathDiagnosticLocation(S, SMgr, LC);
449       case Stmt::BinaryConditionalOperatorClass:
450       case Stmt::ConditionalOperatorClass:
451         // For '?', if we are referring to condition, just have the edge point
452         // to the entire '?' expression.
453         if (allowNestedContexts ||
454             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
455           return PathDiagnosticLocation(Parent, SMgr, LC);
456         else
457           return PathDiagnosticLocation(S, SMgr, LC);
458       case Stmt::CXXForRangeStmtClass:
459         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
460           return PathDiagnosticLocation(S, SMgr, LC);
461         break;
462       case Stmt::DoStmtClass:
463           return PathDiagnosticLocation(S, SMgr, LC);
464       case Stmt::ForStmtClass:
465         if (cast<ForStmt>(Parent)->getBody() == S)
466           return PathDiagnosticLocation(S, SMgr, LC);
467         break;
468       case Stmt::IfStmtClass:
469         if (cast<IfStmt>(Parent)->getCond() != S)
470           return PathDiagnosticLocation(S, SMgr, LC);
471         break;
472       case Stmt::ObjCForCollectionStmtClass:
473         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
474           return PathDiagnosticLocation(S, SMgr, LC);
475         break;
476       case Stmt::WhileStmtClass:
477         if (cast<WhileStmt>(Parent)->getCond() != S)
478           return PathDiagnosticLocation(S, SMgr, LC);
479         break;
480       default:
481         break;
482     }
483
484     S = Parent;
485   }
486
487   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
488
489   return PathDiagnosticLocation(S, SMgr, LC);
490 }
491
492 PathDiagnosticLocation
493 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
494   assert(S && "Null Stmt passed to getEnclosingStmtLocation");
495   return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
496                                     /*allowNestedContexts=*/false);
497 }
498
499 //===----------------------------------------------------------------------===//
500 // "Visitors only" path diagnostic generation algorithm.
501 //===----------------------------------------------------------------------===//
502 static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
503                                                PathDiagnosticBuilder &PDB,
504                                                const ExplodedNode *N,
505                                       ArrayRef<BugReporterVisitor *> visitors) {
506   // All path generation skips the very first node (the error node).
507   // This is because there is special handling for the end-of-path note.
508   N = N->getFirstPred();
509   if (!N)
510     return true;
511
512   BugReport *R = PDB.getBugReport();
513   while (const ExplodedNode *Pred = N->getFirstPred()) {
514     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
515                                                   E = visitors.end();
516          I != E; ++I) {
517       // Visit all the node pairs, but throw the path pieces away.
518       PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
519       delete Piece;
520     }
521
522     N = Pred;
523   }
524
525   return R->isValid();
526 }
527
528 //===----------------------------------------------------------------------===//
529 // "Minimal" path diagnostic generation algorithm.
530 //===----------------------------------------------------------------------===//
531 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
532 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
533
534 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
535                                          StackDiagVector &CallStack) {
536   // If the piece contains a special message, add it to all the call
537   // pieces on the active stack.
538   if (PathDiagnosticEventPiece *ep =
539         dyn_cast<PathDiagnosticEventPiece>(P)) {
540
541     if (ep->hasCallStackHint())
542       for (StackDiagVector::iterator I = CallStack.begin(),
543                                      E = CallStack.end(); I != E; ++I) {
544         PathDiagnosticCallPiece *CP = I->first;
545         const ExplodedNode *N = I->second;
546         std::string stackMsg = ep->getCallStackMessage(N);
547
548         // The last message on the path to final bug is the most important
549         // one. Since we traverse the path backwards, do not add the message
550         // if one has been previously added.
551         if  (!CP->hasCallStackMessage())
552           CP->setCallStackMessage(stackMsg);
553       }
554   }
555 }
556
557 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
558
559 static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
560                                           PathDiagnosticBuilder &PDB,
561                                           const ExplodedNode *N,
562                                           LocationContextMap &LCM,
563                                       ArrayRef<BugReporterVisitor *> visitors) {
564
565   SourceManager& SMgr = PDB.getSourceManager();
566   const LocationContext *LC = PDB.LC;
567   const ExplodedNode *NextNode = N->pred_empty()
568                                         ? nullptr : *(N->pred_begin());
569
570   StackDiagVector CallStack;
571
572   while (NextNode) {
573     N = NextNode;
574     PDB.LC = N->getLocationContext();
575     NextNode = N->getFirstPred();
576
577     ProgramPoint P = N->getLocation();
578
579     do {
580       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
581         PathDiagnosticCallPiece *C =
582             PathDiagnosticCallPiece::construct(N, *CE, SMgr);
583         // Record the mapping from call piece to LocationContext.
584         LCM[&C->path] = CE->getCalleeContext();
585         PD.getActivePath().push_front(C);
586         PD.pushActivePath(&C->path);
587         CallStack.push_back(StackDiagPair(C, N));
588         break;
589       }
590
591       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
592         // Flush all locations, and pop the active path.
593         bool VisitedEntireCall = PD.isWithinCall();
594         PD.popActivePath();
595
596         // Either we just added a bunch of stuff to the top-level path, or
597         // we have a previous CallExitEnd.  If the former, it means that the
598         // path terminated within a function call.  We must then take the
599         // current contents of the active path and place it within
600         // a new PathDiagnosticCallPiece.
601         PathDiagnosticCallPiece *C;
602         if (VisitedEntireCall) {
603           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
604         } else {
605           const Decl *Caller = CE->getLocationContext()->getDecl();
606           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
607           // Record the mapping from call piece to LocationContext.
608           LCM[&C->path] = CE->getCalleeContext();
609         }
610
611         C->setCallee(*CE, SMgr);
612         if (!CallStack.empty()) {
613           assert(CallStack.back().first == C);
614           CallStack.pop_back();
615         }
616         break;
617       }
618
619       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
620         const CFGBlock *Src = BE->getSrc();
621         const CFGBlock *Dst = BE->getDst();
622         const Stmt *T = Src->getTerminator();
623
624         if (!T)
625           break;
626
627         PathDiagnosticLocation Start =
628             PathDiagnosticLocation::createBegin(T, SMgr,
629                 N->getLocationContext());
630
631         switch (T->getStmtClass()) {
632         default:
633           break;
634
635         case Stmt::GotoStmtClass:
636         case Stmt::IndirectGotoStmtClass: {
637           const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
638
639           if (!S)
640             break;
641
642           std::string sbuf;
643           llvm::raw_string_ostream os(sbuf);
644           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
645
646           os << "Control jumps to line "
647               << End.asLocation().getExpansionLineNumber();
648           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
649               Start, End, os.str()));
650           break;
651         }
652
653         case Stmt::SwitchStmtClass: {
654           // Figure out what case arm we took.
655           std::string sbuf;
656           llvm::raw_string_ostream os(sbuf);
657
658           if (const Stmt *S = Dst->getLabel()) {
659             PathDiagnosticLocation End(S, SMgr, LC);
660
661             switch (S->getStmtClass()) {
662             default:
663               os << "No cases match in the switch statement. "
664               "Control jumps to line "
665               << End.asLocation().getExpansionLineNumber();
666               break;
667             case Stmt::DefaultStmtClass:
668               os << "Control jumps to the 'default' case at line "
669               << End.asLocation().getExpansionLineNumber();
670               break;
671
672             case Stmt::CaseStmtClass: {
673               os << "Control jumps to 'case ";
674               const CaseStmt *Case = cast<CaseStmt>(S);
675               const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
676
677               // Determine if it is an enum.
678               bool GetRawInt = true;
679
680               if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
681                 // FIXME: Maybe this should be an assertion.  Are there cases
682                 // were it is not an EnumConstantDecl?
683                 const EnumConstantDecl *D =
684                     dyn_cast<EnumConstantDecl>(DR->getDecl());
685
686                 if (D) {
687                   GetRawInt = false;
688                   os << *D;
689                 }
690               }
691
692               if (GetRawInt)
693                 os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
694
695               os << ":'  at line "
696                   << End.asLocation().getExpansionLineNumber();
697               break;
698             }
699             }
700             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
701                 Start, End, os.str()));
702           }
703           else {
704             os << "'Default' branch taken. ";
705             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
706             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
707                 Start, End, os.str()));
708           }
709
710           break;
711         }
712
713         case Stmt::BreakStmtClass:
714         case Stmt::ContinueStmtClass: {
715           std::string sbuf;
716           llvm::raw_string_ostream os(sbuf);
717           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
718           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
719               Start, End, os.str()));
720           break;
721         }
722
723         // Determine control-flow for ternary '?'.
724         case Stmt::BinaryConditionalOperatorClass:
725         case Stmt::ConditionalOperatorClass: {
726           std::string sbuf;
727           llvm::raw_string_ostream os(sbuf);
728           os << "'?' condition is ";
729
730           if (*(Src->succ_begin()+1) == Dst)
731             os << "false";
732           else
733             os << "true";
734
735           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
736
737           if (const Stmt *S = End.asStmt())
738             End = PDB.getEnclosingStmtLocation(S);
739
740           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
741               Start, End, os.str()));
742           break;
743         }
744
745         // Determine control-flow for short-circuited '&&' and '||'.
746         case Stmt::BinaryOperatorClass: {
747           if (!PDB.supportsLogicalOpControlFlow())
748             break;
749
750           const BinaryOperator *B = cast<BinaryOperator>(T);
751           std::string sbuf;
752           llvm::raw_string_ostream os(sbuf);
753           os << "Left side of '";
754
755           if (B->getOpcode() == BO_LAnd) {
756             os << "&&" << "' is ";
757
758             if (*(Src->succ_begin()+1) == Dst) {
759               os << "false";
760               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
761               PathDiagnosticLocation Start =
762                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
763               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
764                   Start, End, os.str()));
765             }
766             else {
767               os << "true";
768               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
769               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
770               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
771                   Start, End, os.str()));
772             }
773           }
774           else {
775             assert(B->getOpcode() == BO_LOr);
776             os << "||" << "' is ";
777
778             if (*(Src->succ_begin()+1) == Dst) {
779               os << "false";
780               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
781               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
782               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
783                   Start, End, os.str()));
784             }
785             else {
786               os << "true";
787               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
788               PathDiagnosticLocation Start =
789                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
790               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
791                   Start, End, os.str()));
792             }
793           }
794
795           break;
796         }
797
798         case Stmt::DoStmtClass:  {
799           if (*(Src->succ_begin()) == Dst) {
800             std::string sbuf;
801             llvm::raw_string_ostream os(sbuf);
802
803             os << "Loop condition is true. ";
804             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
805
806             if (const Stmt *S = End.asStmt())
807               End = PDB.getEnclosingStmtLocation(S);
808
809             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
810                 Start, End, os.str()));
811           }
812           else {
813             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
814
815             if (const Stmt *S = End.asStmt())
816               End = PDB.getEnclosingStmtLocation(S);
817
818             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
819                 Start, End, "Loop condition is false.  Exiting loop"));
820           }
821
822           break;
823         }
824
825         case Stmt::WhileStmtClass:
826         case Stmt::ForStmtClass: {
827           if (*(Src->succ_begin()+1) == Dst) {
828             std::string sbuf;
829             llvm::raw_string_ostream os(sbuf);
830
831             os << "Loop condition is false. ";
832             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
833             if (const Stmt *S = End.asStmt())
834               End = PDB.getEnclosingStmtLocation(S);
835
836             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
837                 Start, End, os.str()));
838           }
839           else {
840             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
841             if (const Stmt *S = End.asStmt())
842               End = PDB.getEnclosingStmtLocation(S);
843
844             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
845                 Start, End, "Loop condition is true.  Entering loop body"));
846           }
847
848           break;
849         }
850
851         case Stmt::IfStmtClass: {
852           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
853
854           if (const Stmt *S = End.asStmt())
855             End = PDB.getEnclosingStmtLocation(S);
856
857           if (*(Src->succ_begin()+1) == Dst)
858             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
859                 Start, End, "Taking false branch"));
860           else
861             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
862                 Start, End, "Taking true branch"));
863
864           break;
865         }
866         }
867       }
868     } while(0);
869
870     if (NextNode) {
871       // Add diagnostic pieces from custom visitors.
872       BugReport *R = PDB.getBugReport();
873       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
874                                                     E = visitors.end();
875            I != E; ++I) {
876         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
877           PD.getActivePath().push_front(p);
878           updateStackPiecesWithMessage(p, CallStack);
879         }
880       }
881     }
882   }
883
884   if (!PDB.getBugReport()->isValid())
885     return false;
886
887   // After constructing the full PathDiagnostic, do a pass over it to compact
888   // PathDiagnosticPieces that occur within a macro.
889   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
890   return true;
891 }
892
893 //===----------------------------------------------------------------------===//
894 // "Extensive" PathDiagnostic generation.
895 //===----------------------------------------------------------------------===//
896
897 static bool IsControlFlowExpr(const Stmt *S) {
898   const Expr *E = dyn_cast<Expr>(S);
899
900   if (!E)
901     return false;
902
903   E = E->IgnoreParenCasts();
904
905   if (isa<AbstractConditionalOperator>(E))
906     return true;
907
908   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
909     if (B->isLogicalOp())
910       return true;
911
912   return false;
913 }
914
915 namespace {
916 class ContextLocation : public PathDiagnosticLocation {
917   bool IsDead;
918 public:
919   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
920     : PathDiagnosticLocation(L), IsDead(isdead) {}
921
922   void markDead() { IsDead = true; }
923   bool isDead() const { return IsDead; }
924 };
925
926 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
927                                               const LocationContext *LC,
928                                               bool firstCharOnly = false) {
929   if (const Stmt *S = L.asStmt()) {
930     const Stmt *Original = S;
931     while (1) {
932       // Adjust the location for some expressions that are best referenced
933       // by one of their subexpressions.
934       switch (S->getStmtClass()) {
935         default:
936           break;
937         case Stmt::ParenExprClass:
938         case Stmt::GenericSelectionExprClass:
939           S = cast<Expr>(S)->IgnoreParens();
940           firstCharOnly = true;
941           continue;
942         case Stmt::BinaryConditionalOperatorClass:
943         case Stmt::ConditionalOperatorClass:
944           S = cast<AbstractConditionalOperator>(S)->getCond();
945           firstCharOnly = true;
946           continue;
947         case Stmt::ChooseExprClass:
948           S = cast<ChooseExpr>(S)->getCond();
949           firstCharOnly = true;
950           continue;
951         case Stmt::BinaryOperatorClass:
952           S = cast<BinaryOperator>(S)->getLHS();
953           firstCharOnly = true;
954           continue;
955       }
956
957       break;
958     }
959
960     if (S != Original)
961       L = PathDiagnosticLocation(S, L.getManager(), LC);
962   }
963
964   if (firstCharOnly)
965     L  = PathDiagnosticLocation::createSingleLocation(L);
966   
967   return L;
968 }
969
970 class EdgeBuilder {
971   std::vector<ContextLocation> CLocs;
972   typedef std::vector<ContextLocation>::iterator iterator;
973   PathDiagnostic &PD;
974   PathDiagnosticBuilder &PDB;
975   PathDiagnosticLocation PrevLoc;
976
977   bool IsConsumedExpr(const PathDiagnosticLocation &L);
978
979   bool containsLocation(const PathDiagnosticLocation &Container,
980                         const PathDiagnosticLocation &Containee);
981
982   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
983
984
985
986   void popLocation() {
987     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
988       // For contexts, we only one the first character as the range.
989       rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
990     }
991     CLocs.pop_back();
992   }
993
994 public:
995   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
996     : PD(pd), PDB(pdb) {
997
998       // If the PathDiagnostic already has pieces, add the enclosing statement
999       // of the first piece as a context as well.
1000       if (!PD.path.empty()) {
1001         PrevLoc = (*PD.path.begin())->getLocation();
1002
1003         if (const Stmt *S = PrevLoc.asStmt())
1004           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1005       }
1006   }
1007
1008   ~EdgeBuilder() {
1009     while (!CLocs.empty()) popLocation();
1010     
1011     // Finally, add an initial edge from the start location of the first
1012     // statement (if it doesn't already exist).
1013     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
1014                                                        PDB.LC,
1015                                                        PDB.getSourceManager());
1016     if (L.isValid())
1017       rawAddEdge(L);
1018   }
1019
1020   void flushLocations() {
1021     while (!CLocs.empty())
1022       popLocation();
1023     PrevLoc = PathDiagnosticLocation();
1024   }
1025   
1026   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
1027                bool IsPostJump = false);
1028
1029   void rawAddEdge(PathDiagnosticLocation NewLoc);
1030
1031   void addContext(const Stmt *S);
1032   void addContext(const PathDiagnosticLocation &L);
1033   void addExtendedContext(const Stmt *S);
1034 };
1035 } // end anonymous namespace
1036
1037
1038 PathDiagnosticLocation
1039 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1040   if (const Stmt *S = L.asStmt()) {
1041     if (IsControlFlowExpr(S))
1042       return L;
1043
1044     return PDB.getEnclosingStmtLocation(S);
1045   }
1046
1047   return L;
1048 }
1049
1050 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1051                                    const PathDiagnosticLocation &Containee) {
1052
1053   if (Container == Containee)
1054     return true;
1055
1056   if (Container.asDecl())
1057     return true;
1058
1059   if (const Stmt *S = Containee.asStmt())
1060     if (const Stmt *ContainerS = Container.asStmt()) {
1061       while (S) {
1062         if (S == ContainerS)
1063           return true;
1064         S = PDB.getParent(S);
1065       }
1066       return false;
1067     }
1068
1069   // Less accurate: compare using source ranges.
1070   SourceRange ContainerR = Container.asRange();
1071   SourceRange ContaineeR = Containee.asRange();
1072
1073   SourceManager &SM = PDB.getSourceManager();
1074   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1075   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1076   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1077   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1078
1079   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1080   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1081   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1082   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1083
1084   assert(ContainerBegLine <= ContainerEndLine);
1085   assert(ContaineeBegLine <= ContaineeEndLine);
1086
1087   return (ContainerBegLine <= ContaineeBegLine &&
1088           ContainerEndLine >= ContaineeEndLine &&
1089           (ContainerBegLine != ContaineeBegLine ||
1090            SM.getExpansionColumnNumber(ContainerRBeg) <=
1091            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1092           (ContainerEndLine != ContaineeEndLine ||
1093            SM.getExpansionColumnNumber(ContainerREnd) >=
1094            SM.getExpansionColumnNumber(ContaineeREnd)));
1095 }
1096
1097 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1098   if (!PrevLoc.isValid()) {
1099     PrevLoc = NewLoc;
1100     return;
1101   }
1102
1103   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1104   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1105
1106   if (PrevLocClean.asLocation().isInvalid()) {
1107     PrevLoc = NewLoc;
1108     return;
1109   }
1110   
1111   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1112     return;
1113
1114   // FIXME: Ignore intra-macro edges for now.
1115   if (NewLocClean.asLocation().getExpansionLoc() ==
1116       PrevLocClean.asLocation().getExpansionLoc())
1117     return;
1118
1119   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1120   PrevLoc = NewLoc;
1121 }
1122
1123 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1124                           bool IsPostJump) {
1125
1126   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1127     return;
1128
1129   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1130
1131   while (!CLocs.empty()) {
1132     ContextLocation &TopContextLoc = CLocs.back();
1133
1134     // Is the top location context the same as the one for the new location?
1135     if (TopContextLoc == CLoc) {
1136       if (alwaysAdd) {
1137         if (IsConsumedExpr(TopContextLoc))
1138           TopContextLoc.markDead();
1139
1140         rawAddEdge(NewLoc);
1141       }
1142
1143       if (IsPostJump)
1144         TopContextLoc.markDead();
1145       return;
1146     }
1147
1148     if (containsLocation(TopContextLoc, CLoc)) {
1149       if (alwaysAdd) {
1150         rawAddEdge(NewLoc);
1151
1152         if (IsConsumedExpr(CLoc)) {
1153           CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1154           return;
1155         }
1156       }
1157
1158       CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1159       return;
1160     }
1161
1162     // Context does not contain the location.  Flush it.
1163     popLocation();
1164   }
1165
1166   // If we reach here, there is no enclosing context.  Just add the edge.
1167   rawAddEdge(NewLoc);
1168 }
1169
1170 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1171   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1172     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1173
1174   return false;
1175 }
1176
1177 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1178   if (!S)
1179     return;
1180
1181   const Stmt *Parent = PDB.getParent(S);
1182   while (Parent) {
1183     if (isa<CompoundStmt>(Parent))
1184       Parent = PDB.getParent(Parent);
1185     else
1186       break;
1187   }
1188
1189   if (Parent) {
1190     switch (Parent->getStmtClass()) {
1191       case Stmt::DoStmtClass:
1192       case Stmt::ObjCAtSynchronizedStmtClass:
1193         addContext(Parent);
1194       default:
1195         break;
1196     }
1197   }
1198
1199   addContext(S);
1200 }
1201
1202 void EdgeBuilder::addContext(const Stmt *S) {
1203   if (!S)
1204     return;
1205
1206   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1207   addContext(L);
1208 }
1209
1210 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1211   while (!CLocs.empty()) {
1212     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1213
1214     // Is the top location context the same as the one for the new location?
1215     if (TopContextLoc == L)
1216       return;
1217
1218     if (containsLocation(TopContextLoc, L)) {
1219       CLocs.push_back(L);
1220       return;
1221     }
1222
1223     // Context does not contain the location.  Flush it.
1224     popLocation();
1225   }
1226
1227   CLocs.push_back(L);
1228 }
1229
1230 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1231 // and values by tracing interesting calculations backwards through evaluated
1232 // expressions along a path.  This is probably overly complicated, but the idea
1233 // is that if an expression computed an "interesting" value, the child
1234 // expressions are are also likely to be "interesting" as well (which then
1235 // propagates to the values they in turn compute).  This reverse propagation
1236 // is needed to track interesting correlations across function call boundaries,
1237 // where formal arguments bind to actual arguments, etc.  This is also needed
1238 // because the constraint solver sometimes simplifies certain symbolic values
1239 // into constants when appropriate, and this complicates reasoning about
1240 // interesting values.
1241 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1242
1243 static void reversePropagateIntererstingSymbols(BugReport &R,
1244                                                 InterestingExprs &IE,
1245                                                 const ProgramState *State,
1246                                                 const Expr *Ex,
1247                                                 const LocationContext *LCtx) {
1248   SVal V = State->getSVal(Ex, LCtx);
1249   if (!(R.isInteresting(V) || IE.count(Ex)))
1250     return;
1251   
1252   switch (Ex->getStmtClass()) {
1253     default:
1254       if (!isa<CastExpr>(Ex))
1255         break;
1256       // Fall through.
1257     case Stmt::BinaryOperatorClass:
1258     case Stmt::UnaryOperatorClass: {
1259       for (Stmt::const_child_iterator CI = Ex->child_begin(),
1260             CE = Ex->child_end();
1261             CI != CE; ++CI) {
1262         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1263           IE.insert(child);
1264           SVal ChildV = State->getSVal(child, LCtx);
1265           R.markInteresting(ChildV);
1266         }
1267       }
1268       break;
1269     }
1270   }
1271   
1272   R.markInteresting(V);
1273 }
1274
1275 static void reversePropagateInterestingSymbols(BugReport &R,
1276                                                InterestingExprs &IE,
1277                                                const ProgramState *State,
1278                                                const LocationContext *CalleeCtx,
1279                                                const LocationContext *CallerCtx)
1280 {
1281   // FIXME: Handle non-CallExpr-based CallEvents.
1282   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1283   const Stmt *CallSite = Callee->getCallSite();
1284   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1285     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1286       FunctionDecl::param_const_iterator PI = FD->param_begin(), 
1287                                          PE = FD->param_end();
1288       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1289       for (; AI != AE && PI != PE; ++AI, ++PI) {
1290         if (const Expr *ArgE = *AI) {
1291           if (const ParmVarDecl *PD = *PI) {
1292             Loc LV = State->getLValue(PD, CalleeCtx);
1293             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1294               IE.insert(ArgE);
1295           }
1296         }
1297       }
1298     }
1299   }
1300 }
1301
1302 //===----------------------------------------------------------------------===//
1303 // Functions for determining if a loop was executed 0 times.
1304 //===----------------------------------------------------------------------===//
1305
1306 static bool isLoop(const Stmt *Term) {
1307   switch (Term->getStmtClass()) {
1308     case Stmt::ForStmtClass:
1309     case Stmt::WhileStmtClass:
1310     case Stmt::ObjCForCollectionStmtClass:
1311     case Stmt::CXXForRangeStmtClass:
1312       return true;
1313     default:
1314       // Note that we intentionally do not include do..while here.
1315       return false;
1316   }
1317 }
1318
1319 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1320   const CFGBlock *Src = BE->getSrc();
1321   assert(Src->succ_size() == 2);
1322   return (*(Src->succ_begin()+1) == BE->getDst());
1323 }
1324
1325 /// Return true if the terminator is a loop and the destination is the
1326 /// false branch.
1327 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1328   if (!isLoop(Term))
1329     return false;
1330
1331   // Did we take the false branch?
1332   return isJumpToFalseBranch(BE);
1333 }
1334
1335 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1336   while (SubS) {
1337     if (SubS == S)
1338       return true;
1339     SubS = PM.getParent(SubS);
1340   }
1341   return false;
1342 }
1343
1344 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1345                                      const ExplodedNode *N) {
1346   while (N) {
1347     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1348     if (SP) {
1349       const Stmt *S = SP->getStmt();
1350       if (!isContainedByStmt(PM, Term, S))
1351         return S;
1352     }
1353     N = N->getFirstPred();
1354   }
1355   return nullptr;
1356 }
1357
1358 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1359   const Stmt *LoopBody = nullptr;
1360   switch (Term->getStmtClass()) {
1361     case Stmt::CXXForRangeStmtClass: {
1362       const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
1363       if (isContainedByStmt(PM, FR->getInc(), S))
1364         return true;
1365       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1366         return true;
1367       LoopBody = FR->getBody();
1368       break;
1369     }
1370     case Stmt::ForStmtClass: {
1371       const ForStmt *FS = cast<ForStmt>(Term);
1372       if (isContainedByStmt(PM, FS->getInc(), S))
1373         return true;
1374       LoopBody = FS->getBody();
1375       break;
1376     }
1377     case Stmt::ObjCForCollectionStmtClass: {
1378       const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1379       LoopBody = FC->getBody();
1380       break;
1381     }
1382     case Stmt::WhileStmtClass:
1383       LoopBody = cast<WhileStmt>(Term)->getBody();
1384       break;
1385     default:
1386       return false;
1387   }
1388   return isContainedByStmt(PM, LoopBody, S);
1389 }
1390
1391 //===----------------------------------------------------------------------===//
1392 // Top-level logic for generating extensive path diagnostics.
1393 //===----------------------------------------------------------------------===//
1394
1395 static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1396                                             PathDiagnosticBuilder &PDB,
1397                                             const ExplodedNode *N,
1398                                             LocationContextMap &LCM,
1399                                       ArrayRef<BugReporterVisitor *> visitors) {
1400   EdgeBuilder EB(PD, PDB);
1401   const SourceManager& SM = PDB.getSourceManager();
1402   StackDiagVector CallStack;
1403   InterestingExprs IE;
1404
1405   const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin());
1406   while (NextNode) {
1407     N = NextNode;
1408     NextNode = N->getFirstPred();
1409     ProgramPoint P = N->getLocation();
1410
1411     do {
1412       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1413         if (const Expr *Ex = PS->getStmtAs<Expr>())
1414           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1415                                               N->getState().get(), Ex,
1416                                               N->getLocationContext());
1417       }
1418       
1419       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1420         const Stmt *S = CE->getCalleeContext()->getCallSite();
1421         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1422             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1423                                                 N->getState().get(), Ex,
1424                                                 N->getLocationContext());
1425         }
1426         
1427         PathDiagnosticCallPiece *C =
1428           PathDiagnosticCallPiece::construct(N, *CE, SM);
1429         LCM[&C->path] = CE->getCalleeContext();
1430
1431         EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1432         EB.flushLocations();
1433
1434         PD.getActivePath().push_front(C);
1435         PD.pushActivePath(&C->path);
1436         CallStack.push_back(StackDiagPair(C, N));
1437         break;
1438       }
1439       
1440       // Pop the call hierarchy if we are done walking the contents
1441       // of a function call.
1442       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1443         // Add an edge to the start of the function.
1444         const Decl *D = CE->getCalleeContext()->getDecl();
1445         PathDiagnosticLocation pos =
1446           PathDiagnosticLocation::createBegin(D, SM);
1447         EB.addEdge(pos);
1448         
1449         // Flush all locations, and pop the active path.
1450         bool VisitedEntireCall = PD.isWithinCall();
1451         EB.flushLocations();
1452         PD.popActivePath();
1453         PDB.LC = N->getLocationContext();
1454
1455         // Either we just added a bunch of stuff to the top-level path, or
1456         // we have a previous CallExitEnd.  If the former, it means that the
1457         // path terminated within a function call.  We must then take the
1458         // current contents of the active path and place it within
1459         // a new PathDiagnosticCallPiece.
1460         PathDiagnosticCallPiece *C;
1461         if (VisitedEntireCall) {
1462           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1463         } else {
1464           const Decl *Caller = CE->getLocationContext()->getDecl();
1465           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1466           LCM[&C->path] = CE->getCalleeContext();
1467         }
1468
1469         C->setCallee(*CE, SM);
1470         EB.addContext(C->getLocation());
1471
1472         if (!CallStack.empty()) {
1473           assert(CallStack.back().first == C);
1474           CallStack.pop_back();
1475         }
1476         break;
1477       }
1478       
1479       // Note that is important that we update the LocationContext
1480       // after looking at CallExits.  CallExit basically adds an
1481       // edge in the *caller*, so we don't want to update the LocationContext
1482       // too soon.
1483       PDB.LC = N->getLocationContext();
1484
1485       // Block edges.
1486       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1487         // Does this represent entering a call?  If so, look at propagating
1488         // interesting symbols across call boundaries.
1489         if (NextNode) {
1490           const LocationContext *CallerCtx = NextNode->getLocationContext();
1491           const LocationContext *CalleeCtx = PDB.LC;
1492           if (CallerCtx != CalleeCtx) {
1493             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1494                                                N->getState().get(),
1495                                                CalleeCtx, CallerCtx);
1496           }
1497         }
1498        
1499         // Are we jumping to the head of a loop?  Add a special diagnostic.
1500         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1501           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1502           const CompoundStmt *CS = nullptr;
1503
1504           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1505             CS = dyn_cast<CompoundStmt>(FS->getBody());
1506           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1507             CS = dyn_cast<CompoundStmt>(WS->getBody());
1508
1509           PathDiagnosticEventPiece *p =
1510             new PathDiagnosticEventPiece(L,
1511                                         "Looping back to the head of the loop");
1512           p->setPrunable(true);
1513
1514           EB.addEdge(p->getLocation(), true);
1515           PD.getActivePath().push_front(p);
1516
1517           if (CS) {
1518             PathDiagnosticLocation BL =
1519               PathDiagnosticLocation::createEndBrace(CS, SM);
1520             EB.addEdge(BL);
1521           }
1522         }
1523
1524         const CFGBlock *BSrc = BE->getSrc();
1525         ParentMap &PM = PDB.getParentMap();
1526
1527         if (const Stmt *Term = BSrc->getTerminator()) {
1528           // Are we jumping past the loop body without ever executing the
1529           // loop (because the condition was false)?
1530           if (isLoopJumpPastBody(Term, &*BE) &&
1531               !isInLoopBody(PM,
1532                             getStmtBeforeCond(PM,
1533                                               BSrc->getTerminatorCondition(),
1534                                               N),
1535                             Term)) {
1536             PathDiagnosticLocation L(Term, SM, PDB.LC);
1537             PathDiagnosticEventPiece *PE =
1538                 new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
1539             PE->setPrunable(true);
1540
1541             EB.addEdge(PE->getLocation(), true);
1542             PD.getActivePath().push_front(PE);
1543           }
1544
1545           // In any case, add the terminator as the current statement
1546           // context for control edges.
1547           EB.addContext(Term);
1548         }
1549
1550         break;
1551       }
1552
1553       if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1554         Optional<CFGElement> First = BE->getFirstElement();
1555         if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1556           const Stmt *stmt = S->getStmt();
1557           if (IsControlFlowExpr(stmt)) {
1558             // Add the proper context for '&&', '||', and '?'.
1559             EB.addContext(stmt);
1560           }
1561           else
1562             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1563         }
1564         
1565         break;
1566       }
1567       
1568       
1569     } while (0);
1570
1571     if (!NextNode)
1572       continue;
1573
1574     // Add pieces from custom visitors.
1575     BugReport *R = PDB.getBugReport();
1576     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1577                                                   E = visitors.end();
1578          I != E; ++I) {
1579       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1580         const PathDiagnosticLocation &Loc = p->getLocation();
1581         EB.addEdge(Loc, true);
1582         PD.getActivePath().push_front(p);
1583         updateStackPiecesWithMessage(p, CallStack);
1584
1585         if (const Stmt *S = Loc.asStmt())
1586           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1587       }
1588     }
1589   }
1590
1591   return PDB.getBugReport()->isValid();
1592 }
1593
1594 /// \brief Adds a sanitized control-flow diagnostic edge to a path.
1595 static void addEdgeToPath(PathPieces &path,
1596                           PathDiagnosticLocation &PrevLoc,
1597                           PathDiagnosticLocation NewLoc,
1598                           const LocationContext *LC) {
1599   if (!NewLoc.isValid())
1600     return;
1601
1602   SourceLocation NewLocL = NewLoc.asLocation();
1603   if (NewLocL.isInvalid())
1604     return;
1605
1606   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1607     PrevLoc = NewLoc;
1608     return;
1609   }
1610
1611   // Ignore self-edges, which occur when there are multiple nodes at the same
1612   // statement.
1613   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1614     return;
1615
1616   path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
1617                                                      PrevLoc));
1618   PrevLoc = NewLoc;
1619 }
1620
1621 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1622 /// which returns the element for ObjCForCollectionStmts.
1623 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1624   const Stmt *S = B->getTerminatorCondition();
1625   if (const ObjCForCollectionStmt *FS =
1626       dyn_cast_or_null<ObjCForCollectionStmt>(S))
1627     return FS->getElement();
1628   return S;
1629 }
1630
1631 static const char StrEnteringLoop[] = "Entering loop body";
1632 static const char StrLoopBodyZero[] = "Loop body executed 0 times";
1633 static const char StrLoopRangeEmpty[] =
1634   "Loop body skipped when range is empty";
1635 static const char StrLoopCollectionEmpty[] =
1636   "Loop body skipped when collection is empty";
1637
1638 static bool
1639 GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
1640                                          PathDiagnosticBuilder &PDB,
1641                                          const ExplodedNode *N,
1642                                          LocationContextMap &LCM,
1643                                       ArrayRef<BugReporterVisitor *> visitors) {
1644
1645   BugReport *report = PDB.getBugReport();
1646   const SourceManager& SM = PDB.getSourceManager();
1647   StackDiagVector CallStack;
1648   InterestingExprs IE;
1649
1650   PathDiagnosticLocation PrevLoc = PD.getLocation();
1651
1652   const ExplodedNode *NextNode = N->getFirstPred();
1653   while (NextNode) {
1654     N = NextNode;
1655     NextNode = N->getFirstPred();
1656     ProgramPoint P = N->getLocation();
1657
1658     do {
1659       // Have we encountered an entrance to a call?  It may be
1660       // the case that we have not encountered a matching
1661       // call exit before this point.  This means that the path
1662       // terminated within the call itself.
1663       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1664         // Add an edge to the start of the function.
1665         const StackFrameContext *CalleeLC = CE->getCalleeContext();
1666         const Decl *D = CalleeLC->getDecl();
1667         addEdgeToPath(PD.getActivePath(), PrevLoc,
1668                       PathDiagnosticLocation::createBegin(D, SM),
1669                       CalleeLC);
1670
1671         // Did we visit an entire call?
1672         bool VisitedEntireCall = PD.isWithinCall();
1673         PD.popActivePath();
1674
1675         PathDiagnosticCallPiece *C;
1676         if (VisitedEntireCall) {
1677           PathDiagnosticPiece *P = PD.getActivePath().front().get();
1678           C = cast<PathDiagnosticCallPiece>(P);
1679         } else {
1680           const Decl *Caller = CE->getLocationContext()->getDecl();
1681           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1682
1683           // Since we just transferred the path over to the call piece,
1684           // reset the mapping from active to location context.
1685           assert(PD.getActivePath().size() == 1 &&
1686                  PD.getActivePath().front() == C);
1687           LCM[&PD.getActivePath()] = nullptr;
1688
1689           // Record the location context mapping for the path within
1690           // the call.
1691           assert(LCM[&C->path] == nullptr ||
1692                  LCM[&C->path] == CE->getCalleeContext());
1693           LCM[&C->path] = CE->getCalleeContext();
1694
1695           // If this is the first item in the active path, record
1696           // the new mapping from active path to location context.
1697           const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1698           if (!NewLC)
1699             NewLC = N->getLocationContext();
1700
1701           PDB.LC = NewLC;
1702         }
1703         C->setCallee(*CE, SM);
1704
1705         // Update the previous location in the active path.
1706         PrevLoc = C->getLocation();
1707
1708         if (!CallStack.empty()) {
1709           assert(CallStack.back().first == C);
1710           CallStack.pop_back();
1711         }
1712         break;
1713       }
1714
1715       // Query the location context here and the previous location
1716       // as processing CallEnter may change the active path.
1717       PDB.LC = N->getLocationContext();
1718
1719       // Record the mapping from the active path to the location
1720       // context.
1721       assert(!LCM[&PD.getActivePath()] ||
1722              LCM[&PD.getActivePath()] == PDB.LC);
1723       LCM[&PD.getActivePath()] = PDB.LC;
1724
1725       // Have we encountered an exit from a function call?
1726       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1727         const Stmt *S = CE->getCalleeContext()->getCallSite();
1728         // Propagate the interesting symbols accordingly.
1729         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1730           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1731                                               N->getState().get(), Ex,
1732                                               N->getLocationContext());
1733         }
1734
1735         // We are descending into a call (backwards).  Construct
1736         // a new call piece to contain the path pieces for that call.
1737         PathDiagnosticCallPiece *C =
1738           PathDiagnosticCallPiece::construct(N, *CE, SM);
1739
1740         // Record the location context for this call piece.
1741         LCM[&C->path] = CE->getCalleeContext();
1742
1743         // Add the edge to the return site.
1744         addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1745         PD.getActivePath().push_front(C);
1746         PrevLoc.invalidate();
1747
1748         // Make the contents of the call the active path for now.
1749         PD.pushActivePath(&C->path);
1750         CallStack.push_back(StackDiagPair(C, N));
1751         break;
1752       }
1753
1754       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1755         // For expressions, make sure we propagate the
1756         // interesting symbols correctly.
1757         if (const Expr *Ex = PS->getStmtAs<Expr>())
1758           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1759                                               N->getState().get(), Ex,
1760                                               N->getLocationContext());
1761
1762         // Add an edge.  If this is an ObjCForCollectionStmt do
1763         // not add an edge here as it appears in the CFG both
1764         // as a terminator and as a terminator condition.
1765         if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1766           PathDiagnosticLocation L =
1767             PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1768           addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1769         }
1770         break;
1771       }
1772
1773       // Block edges.
1774       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1775         // Does this represent entering a call?  If so, look at propagating
1776         // interesting symbols across call boundaries.
1777         if (NextNode) {
1778           const LocationContext *CallerCtx = NextNode->getLocationContext();
1779           const LocationContext *CalleeCtx = PDB.LC;
1780           if (CallerCtx != CalleeCtx) {
1781             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1782                                                N->getState().get(),
1783                                                CalleeCtx, CallerCtx);
1784           }
1785         }
1786
1787         // Are we jumping to the head of a loop?  Add a special diagnostic.
1788         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1789           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1790           const Stmt *Body = nullptr;
1791
1792           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1793             Body = FS->getBody();
1794           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1795             Body = WS->getBody();
1796           else if (const ObjCForCollectionStmt *OFS =
1797                      dyn_cast<ObjCForCollectionStmt>(Loop)) {
1798             Body = OFS->getBody();
1799           } else if (const CXXForRangeStmt *FRS =
1800                        dyn_cast<CXXForRangeStmt>(Loop)) {
1801             Body = FRS->getBody();
1802           }
1803           // do-while statements are explicitly excluded here
1804
1805           PathDiagnosticEventPiece *p =
1806             new PathDiagnosticEventPiece(L, "Looping back to the head "
1807                                             "of the loop");
1808           p->setPrunable(true);
1809
1810           addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1811           PD.getActivePath().push_front(p);
1812
1813           if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1814             addEdgeToPath(PD.getActivePath(), PrevLoc,
1815                           PathDiagnosticLocation::createEndBrace(CS, SM),
1816                           PDB.LC);
1817           }
1818         }
1819
1820         const CFGBlock *BSrc = BE->getSrc();
1821         ParentMap &PM = PDB.getParentMap();
1822
1823         if (const Stmt *Term = BSrc->getTerminator()) {
1824           // Are we jumping past the loop body without ever executing the
1825           // loop (because the condition was false)?
1826           if (isLoop(Term)) {
1827             const Stmt *TermCond = getTerminatorCondition(BSrc);
1828             bool IsInLoopBody =
1829               isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1830
1831             const char *str = nullptr;
1832
1833             if (isJumpToFalseBranch(&*BE)) {
1834               if (!IsInLoopBody) {
1835                 if (isa<ObjCForCollectionStmt>(Term)) {
1836                   str = StrLoopCollectionEmpty;
1837                 } else if (isa<CXXForRangeStmt>(Term)) {
1838                   str = StrLoopRangeEmpty;
1839                 } else {
1840                   str = StrLoopBodyZero;
1841                 }
1842               }
1843             } else {
1844               str = StrEnteringLoop;
1845             }
1846
1847             if (str) {
1848               PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
1849               PathDiagnosticEventPiece *PE =
1850                 new PathDiagnosticEventPiece(L, str);
1851               PE->setPrunable(true);
1852               addEdgeToPath(PD.getActivePath(), PrevLoc,
1853                             PE->getLocation(), PDB.LC);
1854               PD.getActivePath().push_front(PE);
1855             }
1856           } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1857                      isa<GotoStmt>(Term)) {
1858             PathDiagnosticLocation L(Term, SM, PDB.LC);
1859             addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1860           }
1861         }
1862         break;
1863       }
1864     } while (0);
1865
1866     if (!NextNode)
1867       continue;
1868
1869     // Add pieces from custom visitors.
1870     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1871          E = visitors.end();
1872          I != E; ++I) {
1873       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) {
1874         addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1875         PD.getActivePath().push_front(p);
1876         updateStackPiecesWithMessage(p, CallStack);
1877       }
1878     }
1879   }
1880
1881   // Add an edge to the start of the function.
1882   // We'll prune it out later, but it helps make diagnostics more uniform.
1883   const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
1884   const Decl *D = CalleeLC->getDecl();
1885   addEdgeToPath(PD.getActivePath(), PrevLoc,
1886                 PathDiagnosticLocation::createBegin(D, SM),
1887                 CalleeLC);
1888
1889   return report->isValid();
1890 }
1891
1892 static const Stmt *getLocStmt(PathDiagnosticLocation L) {
1893   if (!L.isValid())
1894     return nullptr;
1895   return L.asStmt();
1896 }
1897
1898 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1899   if (!S)
1900     return nullptr;
1901
1902   while (true) {
1903     S = PM.getParentIgnoreParens(S);
1904
1905     if (!S)
1906       break;
1907
1908     if (isa<ExprWithCleanups>(S) ||
1909         isa<CXXBindTemporaryExpr>(S) ||
1910         isa<SubstNonTypeTemplateParmExpr>(S))
1911       continue;
1912
1913     break;
1914   }
1915
1916   return S;
1917 }
1918
1919 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1920   switch (S->getStmtClass()) {
1921     case Stmt::BinaryOperatorClass: {
1922       const BinaryOperator *BO = cast<BinaryOperator>(S);
1923       if (!BO->isLogicalOp())
1924         return false;
1925       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1926     }
1927     case Stmt::IfStmtClass:
1928       return cast<IfStmt>(S)->getCond() == Cond;
1929     case Stmt::ForStmtClass:
1930       return cast<ForStmt>(S)->getCond() == Cond;
1931     case Stmt::WhileStmtClass:
1932       return cast<WhileStmt>(S)->getCond() == Cond;
1933     case Stmt::DoStmtClass:
1934       return cast<DoStmt>(S)->getCond() == Cond;
1935     case Stmt::ChooseExprClass:
1936       return cast<ChooseExpr>(S)->getCond() == Cond;
1937     case Stmt::IndirectGotoStmtClass:
1938       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1939     case Stmt::SwitchStmtClass:
1940       return cast<SwitchStmt>(S)->getCond() == Cond;
1941     case Stmt::BinaryConditionalOperatorClass:
1942       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1943     case Stmt::ConditionalOperatorClass: {
1944       const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1945       return CO->getCond() == Cond ||
1946              CO->getLHS() == Cond ||
1947              CO->getRHS() == Cond;
1948     }
1949     case Stmt::ObjCForCollectionStmtClass:
1950       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1951     case Stmt::CXXForRangeStmtClass: {
1952       const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
1953       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1954     }
1955     default:
1956       return false;
1957   }
1958 }
1959
1960 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1961   if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
1962     return FS->getInc() == S || FS->getInit() == S;
1963   if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
1964     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1965            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1966   return false;
1967 }
1968
1969 typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
1970         OptimizedCallsSet;
1971
1972 /// Adds synthetic edges from top-level statements to their subexpressions.
1973 ///
1974 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1975 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1976 /// we'd like to see an edge from A to B, then another one from B to B.1.
1977 static void addContextEdges(PathPieces &pieces, SourceManager &SM,
1978                             const ParentMap &PM, const LocationContext *LCtx) {
1979   PathPieces::iterator Prev = pieces.end();
1980   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1981        Prev = I, ++I) {
1982     PathDiagnosticControlFlowPiece *Piece =
1983       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
1984
1985     if (!Piece)
1986       continue;
1987
1988     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1989     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1990
1991     PathDiagnosticLocation NextSrcContext = SrcLoc;
1992     const Stmt *InnerStmt = nullptr;
1993     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1994       SrcContexts.push_back(NextSrcContext);
1995       InnerStmt = NextSrcContext.asStmt();
1996       NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
1997                                                 /*allowNested=*/true);
1998     }
1999
2000     // Repeatedly split the edge as necessary.
2001     // This is important for nested logical expressions (||, &&, ?:) where we
2002     // want to show all the levels of context.
2003     while (true) {
2004       const Stmt *Dst = getLocStmt(Piece->getEndLocation());
2005
2006       // We are looking at an edge. Is the destination within a larger
2007       // expression?
2008       PathDiagnosticLocation DstContext =
2009         getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
2010       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
2011         break;
2012
2013       // If the source is in the same context, we're already good.
2014       if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
2015           SrcContexts.end())
2016         break;
2017
2018       // Update the subexpression node to point to the context edge.
2019       Piece->setStartLocation(DstContext);
2020
2021       // Try to extend the previous edge if it's at the same level as the source
2022       // context.
2023       if (Prev != E) {
2024         PathDiagnosticControlFlowPiece *PrevPiece =
2025           dyn_cast<PathDiagnosticControlFlowPiece>(*Prev);
2026
2027         if (PrevPiece) {
2028           if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
2029             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
2030             if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
2031               PrevPiece->setEndLocation(DstContext);
2032               break;
2033             }
2034           }
2035         }
2036       }
2037
2038       // Otherwise, split the current edge into a context edge and a
2039       // subexpression edge. Note that the context statement may itself have
2040       // context.
2041       Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext);
2042       I = pieces.insert(I, Piece);
2043     }
2044   }
2045 }
2046
2047 /// \brief Move edges from a branch condition to a branch target
2048 ///        when the condition is simple.
2049 ///
2050 /// This restructures some of the work of addContextEdges.  That function
2051 /// creates edges this may destroy, but they work together to create a more
2052 /// aesthetically set of edges around branches.  After the call to
2053 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
2054 /// the branch to the branch condition, and (3) an edge from the branch
2055 /// condition to the branch target.  We keep (1), but may wish to remove (2)
2056 /// and move the source of (3) to the branch if the branch condition is simple.
2057 ///
2058 static void simplifySimpleBranches(PathPieces &pieces) {
2059   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
2060
2061     PathDiagnosticControlFlowPiece *PieceI =
2062       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2063
2064     if (!PieceI)
2065       continue;
2066
2067     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2068     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2069
2070     if (!s1Start || !s1End)
2071       continue;
2072
2073     PathPieces::iterator NextI = I; ++NextI;
2074     if (NextI == E)
2075       break;
2076
2077     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
2078
2079     while (true) {
2080       if (NextI == E)
2081         break;
2082
2083       PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI);
2084       if (EV) {
2085         StringRef S = EV->getString();
2086         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
2087             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
2088           ++NextI;
2089           continue;
2090         }
2091         break;
2092       }
2093
2094       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2095       break;
2096     }
2097
2098     if (!PieceNextI)
2099       continue;
2100
2101     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2102     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2103
2104     if (!s2Start || !s2End || s1End != s2Start)
2105       continue;
2106
2107     // We only perform this transformation for specific branch kinds.
2108     // We don't want to do this for do..while, for example.
2109     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
2110           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
2111           isa<CXXForRangeStmt>(s1Start)))
2112       continue;
2113
2114     // Is s1End the branch condition?
2115     if (!isConditionForTerminator(s1Start, s1End))
2116       continue;
2117
2118     // Perform the hoisting by eliminating (2) and changing the start
2119     // location of (3).
2120     PieceNextI->setStartLocation(PieceI->getStartLocation());
2121     I = pieces.erase(I);
2122   }
2123 }
2124
2125 /// Returns the number of bytes in the given (character-based) SourceRange.
2126 ///
2127 /// If the locations in the range are not on the same line, returns None.
2128 ///
2129 /// Note that this does not do a precise user-visible character or column count.
2130 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2131                                               SourceRange Range) {
2132   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
2133                              SM.getExpansionRange(Range.getEnd()).second);
2134
2135   FileID FID = SM.getFileID(ExpansionRange.getBegin());
2136   if (FID != SM.getFileID(ExpansionRange.getEnd()))
2137     return None;
2138
2139   bool Invalid;
2140   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
2141   if (Invalid)
2142     return None;
2143
2144   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
2145   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
2146   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
2147
2148   // We're searching the raw bytes of the buffer here, which might include
2149   // escaped newlines and such. That's okay; we're trying to decide whether the
2150   // SourceRange is covering a large or small amount of space in the user's
2151   // editor.
2152   if (Snippet.find_first_of("\r\n") != StringRef::npos)
2153     return None;
2154
2155   // This isn't Unicode-aware, but it doesn't need to be.
2156   return Snippet.size();
2157 }
2158
2159 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
2160 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2161                                               const Stmt *S) {
2162   return getLengthOnSingleLine(SM, S->getSourceRange());
2163 }
2164
2165 /// Eliminate two-edge cycles created by addContextEdges().
2166 ///
2167 /// Once all the context edges are in place, there are plenty of cases where
2168 /// there's a single edge from a top-level statement to a subexpression,
2169 /// followed by a single path note, and then a reverse edge to get back out to
2170 /// the top level. If the statement is simple enough, the subexpression edges
2171 /// just add noise and make it harder to understand what's going on.
2172 ///
2173 /// This function only removes edges in pairs, because removing only one edge
2174 /// might leave other edges dangling.
2175 ///
2176 /// This will not remove edges in more complicated situations:
2177 /// - if there is more than one "hop" leading to or from a subexpression.
2178 /// - if there is an inlined call between the edges instead of a single event.
2179 /// - if the whole statement is large enough that having subexpression arrows
2180 ///   might be helpful.
2181 static void removeContextCycles(PathPieces &Path, SourceManager &SM,
2182                                 ParentMap &PM) {
2183   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
2184     // Pattern match the current piece and its successor.
2185     PathDiagnosticControlFlowPiece *PieceI =
2186       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2187
2188     if (!PieceI) {
2189       ++I;
2190       continue;
2191     }
2192
2193     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2194     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2195
2196     PathPieces::iterator NextI = I; ++NextI;
2197     if (NextI == E)
2198       break;
2199
2200     PathDiagnosticControlFlowPiece *PieceNextI =
2201       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2202
2203     if (!PieceNextI) {
2204       if (isa<PathDiagnosticEventPiece>(*NextI)) {
2205         ++NextI;
2206         if (NextI == E)
2207           break;
2208         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2209       }
2210
2211       if (!PieceNextI) {
2212         ++I;
2213         continue;
2214       }
2215     }
2216
2217     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2218     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2219
2220     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
2221       const size_t MAX_SHORT_LINE_LENGTH = 80;
2222       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
2223       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
2224         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
2225         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
2226           Path.erase(I);
2227           I = Path.erase(NextI);
2228           continue;
2229         }
2230       }
2231     }
2232
2233     ++I;
2234   }
2235 }
2236
2237 /// \brief Return true if X is contained by Y.
2238 static bool lexicalContains(ParentMap &PM,
2239                             const Stmt *X,
2240                             const Stmt *Y) {
2241   while (X) {
2242     if (X == Y)
2243       return true;
2244     X = PM.getParent(X);
2245   }
2246   return false;
2247 }
2248
2249 // Remove short edges on the same line less than 3 columns in difference.
2250 static void removePunyEdges(PathPieces &path,
2251                             SourceManager &SM,
2252                             ParentMap &PM) {
2253
2254   bool erased = false;
2255
2256   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
2257        erased ? I : ++I) {
2258
2259     erased = false;
2260
2261     PathDiagnosticControlFlowPiece *PieceI =
2262       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2263
2264     if (!PieceI)
2265       continue;
2266
2267     const Stmt *start = getLocStmt(PieceI->getStartLocation());
2268     const Stmt *end   = getLocStmt(PieceI->getEndLocation());
2269
2270     if (!start || !end)
2271       continue;
2272
2273     const Stmt *endParent = PM.getParent(end);
2274     if (!endParent)
2275       continue;
2276
2277     if (isConditionForTerminator(end, endParent))
2278       continue;
2279
2280     SourceLocation FirstLoc = start->getLocStart();
2281     SourceLocation SecondLoc = end->getLocStart();
2282
2283     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
2284       continue;
2285     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
2286       std::swap(SecondLoc, FirstLoc);
2287
2288     SourceRange EdgeRange(FirstLoc, SecondLoc);
2289     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
2290
2291     // If the statements are on different lines, continue.
2292     if (!ByteWidth)
2293       continue;
2294
2295     const size_t MAX_PUNY_EDGE_LENGTH = 2;
2296     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
2297       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
2298       // there might not be enough /columns/. A proper user-visible column count
2299       // is probably too expensive, though.
2300       I = path.erase(I);
2301       erased = true;
2302       continue;
2303     }
2304   }
2305 }
2306
2307 static void removeIdenticalEvents(PathPieces &path) {
2308   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
2309     PathDiagnosticEventPiece *PieceI =
2310       dyn_cast<PathDiagnosticEventPiece>(*I);
2311
2312     if (!PieceI)
2313       continue;
2314
2315     PathPieces::iterator NextI = I; ++NextI;
2316     if (NextI == E)
2317       return;
2318
2319     PathDiagnosticEventPiece *PieceNextI =
2320       dyn_cast<PathDiagnosticEventPiece>(*NextI);
2321
2322     if (!PieceNextI)
2323       continue;
2324
2325     // Erase the second piece if it has the same exact message text.
2326     if (PieceI->getString() == PieceNextI->getString()) {
2327       path.erase(NextI);
2328     }
2329   }
2330 }
2331
2332 static bool optimizeEdges(PathPieces &path, SourceManager &SM,
2333                           OptimizedCallsSet &OCS,
2334                           LocationContextMap &LCM) {
2335   bool hasChanges = false;
2336   const LocationContext *LC = LCM[&path];
2337   assert(LC);
2338   ParentMap &PM = LC->getParentMap();
2339
2340   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
2341     // Optimize subpaths.
2342     if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
2343       // Record the fact that a call has been optimized so we only do the
2344       // effort once.
2345       if (!OCS.count(CallI)) {
2346         while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
2347         OCS.insert(CallI);
2348       }
2349       ++I;
2350       continue;
2351     }
2352
2353     // Pattern match the current piece and its successor.
2354     PathDiagnosticControlFlowPiece *PieceI =
2355       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2356
2357     if (!PieceI) {
2358       ++I;
2359       continue;
2360     }
2361
2362     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2363     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2364     const Stmt *level1 = getStmtParent(s1Start, PM);
2365     const Stmt *level2 = getStmtParent(s1End, PM);
2366
2367     PathPieces::iterator NextI = I; ++NextI;
2368     if (NextI == E)
2369       break;
2370
2371     PathDiagnosticControlFlowPiece *PieceNextI =
2372       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2373
2374     if (!PieceNextI) {
2375       ++I;
2376       continue;
2377     }
2378
2379     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2380     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2381     const Stmt *level3 = getStmtParent(s2Start, PM);
2382     const Stmt *level4 = getStmtParent(s2End, PM);
2383
2384     // Rule I.
2385     //
2386     // If we have two consecutive control edges whose end/begin locations
2387     // are at the same level (e.g. statements or top-level expressions within
2388     // a compound statement, or siblings share a single ancestor expression),
2389     // then merge them if they have no interesting intermediate event.
2390     //
2391     // For example:
2392     //
2393     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
2394     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
2395     //
2396     // NOTE: this will be limited later in cases where we add barriers
2397     // to prevent this optimization.
2398     //
2399     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
2400       PieceI->setEndLocation(PieceNextI->getEndLocation());
2401       path.erase(NextI);
2402       hasChanges = true;
2403       continue;
2404     }
2405
2406     // Rule II.
2407     //
2408     // Eliminate edges between subexpressions and parent expressions
2409     // when the subexpression is consumed.
2410     //
2411     // NOTE: this will be limited later in cases where we add barriers
2412     // to prevent this optimization.
2413     //
2414     if (s1End && s1End == s2Start && level2) {
2415       bool removeEdge = false;
2416       // Remove edges into the increment or initialization of a
2417       // loop that have no interleaving event.  This means that
2418       // they aren't interesting.
2419       if (isIncrementOrInitInForLoop(s1End, level2))
2420         removeEdge = true;
2421       // Next only consider edges that are not anchored on
2422       // the condition of a terminator.  This are intermediate edges
2423       // that we might want to trim.
2424       else if (!isConditionForTerminator(level2, s1End)) {
2425         // Trim edges on expressions that are consumed by
2426         // the parent expression.
2427         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
2428           removeEdge = true;          
2429         }
2430         // Trim edges where a lexical containment doesn't exist.
2431         // For example:
2432         //
2433         //  X -> Y -> Z
2434         //
2435         // If 'Z' lexically contains Y (it is an ancestor) and
2436         // 'X' does not lexically contain Y (it is a descendant OR
2437         // it has no lexical relationship at all) then trim.
2438         //
2439         // This can eliminate edges where we dive into a subexpression
2440         // and then pop back out, etc.
2441         else if (s1Start && s2End &&
2442                  lexicalContains(PM, s2Start, s2End) &&
2443                  !lexicalContains(PM, s1End, s1Start)) {
2444           removeEdge = true;
2445         }
2446         // Trim edges from a subexpression back to the top level if the
2447         // subexpression is on a different line.
2448         //
2449         // A.1 -> A -> B
2450         // becomes
2451         // A.1 -> B
2452         //
2453         // These edges just look ugly and don't usually add anything.
2454         else if (s1Start && s2End &&
2455                  lexicalContains(PM, s1Start, s1End)) {
2456           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
2457                                 PieceI->getStartLocation().asLocation());
2458           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
2459             removeEdge = true;
2460         }
2461       }
2462
2463       if (removeEdge) {
2464         PieceI->setEndLocation(PieceNextI->getEndLocation());
2465         path.erase(NextI);
2466         hasChanges = true;
2467         continue;
2468       }
2469     }
2470
2471     // Optimize edges for ObjC fast-enumeration loops.
2472     //
2473     // (X -> collection) -> (collection -> element)
2474     //
2475     // becomes:
2476     //
2477     // (X -> element)
2478     if (s1End == s2Start) {
2479       const ObjCForCollectionStmt *FS =
2480         dyn_cast_or_null<ObjCForCollectionStmt>(level3);
2481       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
2482           s2End == FS->getElement()) {
2483         PieceI->setEndLocation(PieceNextI->getEndLocation());
2484         path.erase(NextI);
2485         hasChanges = true;
2486         continue;
2487       }
2488     }
2489
2490     // No changes at this index?  Move to the next one.
2491     ++I;
2492   }
2493
2494   if (!hasChanges) {
2495     // Adjust edges into subexpressions to make them more uniform
2496     // and aesthetically pleasing.
2497     addContextEdges(path, SM, PM, LC);
2498     // Remove "cyclical" edges that include one or more context edges.
2499     removeContextCycles(path, SM, PM);
2500     // Hoist edges originating from branch conditions to branches
2501     // for simple branches.
2502     simplifySimpleBranches(path);
2503     // Remove any puny edges left over after primary optimization pass.
2504     removePunyEdges(path, SM, PM);
2505     // Remove identical events.
2506     removeIdenticalEvents(path);
2507   }
2508
2509   return hasChanges;
2510 }
2511
2512 /// Drop the very first edge in a path, which should be a function entry edge.
2513 ///
2514 /// If the first edge is not a function entry edge (say, because the first
2515 /// statement had an invalid source location), this function does nothing.
2516 // FIXME: We should just generate invalid edges anyway and have the optimizer
2517 // deal with them.
2518 static void dropFunctionEntryEdge(PathPieces &Path,
2519                                   LocationContextMap &LCM,
2520                                   SourceManager &SM) {
2521   const PathDiagnosticControlFlowPiece *FirstEdge =
2522     dyn_cast<PathDiagnosticControlFlowPiece>(Path.front());
2523   if (!FirstEdge)
2524     return;
2525
2526   const Decl *D = LCM[&Path]->getDecl();
2527   PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
2528   if (FirstEdge->getStartLocation() != EntryLoc)
2529     return;
2530
2531   Path.pop_front();
2532 }
2533
2534
2535 //===----------------------------------------------------------------------===//
2536 // Methods for BugType and subclasses.
2537 //===----------------------------------------------------------------------===//
2538 void BugType::anchor() { }
2539
2540 void BugType::FlushReports(BugReporter &BR) {}
2541
2542 void BuiltinBug::anchor() {}
2543
2544 //===----------------------------------------------------------------------===//
2545 // Methods for BugReport and subclasses.
2546 //===----------------------------------------------------------------------===//
2547
2548 void BugReport::NodeResolver::anchor() {}
2549
2550 void BugReport::addVisitor(BugReporterVisitor* visitor) {
2551   if (!visitor)
2552     return;
2553
2554   llvm::FoldingSetNodeID ID;
2555   visitor->Profile(ID);
2556   void *InsertPos;
2557
2558   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2559     delete visitor;
2560     return;
2561   }
2562
2563   CallbacksSet.InsertNode(visitor, InsertPos);
2564   Callbacks.push_back(visitor);
2565   ++ConfigurationChangeToken;
2566 }
2567
2568 BugReport::~BugReport() {
2569   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
2570     delete *I;
2571   }
2572   while (!interestingSymbols.empty()) {
2573     popInterestingSymbolsAndRegions();
2574   }
2575 }
2576
2577 const Decl *BugReport::getDeclWithIssue() const {
2578   if (DeclWithIssue)
2579     return DeclWithIssue;
2580   
2581   const ExplodedNode *N = getErrorNode();
2582   if (!N)
2583     return nullptr;
2584
2585   const LocationContext *LC = N->getLocationContext();
2586   return LC->getCurrentStackFrame()->getDecl();
2587 }
2588
2589 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2590   hash.AddPointer(&BT);
2591   hash.AddString(Description);
2592   PathDiagnosticLocation UL = getUniqueingLocation();
2593   if (UL.isValid()) {
2594     UL.Profile(hash);
2595   } else if (Location.isValid()) {
2596     Location.Profile(hash);
2597   } else {
2598     assert(ErrorNode);
2599     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2600   }
2601
2602   for (SmallVectorImpl<SourceRange>::const_iterator I =
2603       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
2604     const SourceRange range = *I;
2605     if (!range.isValid())
2606       continue;
2607     hash.AddInteger(range.getBegin().getRawEncoding());
2608     hash.AddInteger(range.getEnd().getRawEncoding());
2609   }
2610 }
2611
2612 void BugReport::markInteresting(SymbolRef sym) {
2613   if (!sym)
2614     return;
2615
2616   // If the symbol wasn't already in our set, note a configuration change.
2617   if (getInterestingSymbols().insert(sym).second)
2618     ++ConfigurationChangeToken;
2619
2620   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2621     getInterestingRegions().insert(meta->getRegion());
2622 }
2623
2624 void BugReport::markInteresting(const MemRegion *R) {
2625   if (!R)
2626     return;
2627
2628   // If the base region wasn't already in our set, note a configuration change.
2629   R = R->getBaseRegion();
2630   if (getInterestingRegions().insert(R).second)
2631     ++ConfigurationChangeToken;
2632
2633   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2634     getInterestingSymbols().insert(SR->getSymbol());
2635 }
2636
2637 void BugReport::markInteresting(SVal V) {
2638   markInteresting(V.getAsRegion());
2639   markInteresting(V.getAsSymbol());
2640 }
2641
2642 void BugReport::markInteresting(const LocationContext *LC) {
2643   if (!LC)
2644     return;
2645   InterestingLocationContexts.insert(LC);
2646 }
2647
2648 bool BugReport::isInteresting(SVal V) {
2649   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2650 }
2651
2652 bool BugReport::isInteresting(SymbolRef sym) {
2653   if (!sym)
2654     return false;
2655   // We don't currently consider metadata symbols to be interesting
2656   // even if we know their region is interesting. Is that correct behavior?
2657   return getInterestingSymbols().count(sym);
2658 }
2659
2660 bool BugReport::isInteresting(const MemRegion *R) {
2661   if (!R)
2662     return false;
2663   R = R->getBaseRegion();
2664   bool b = getInterestingRegions().count(R);
2665   if (b)
2666     return true;
2667   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2668     return getInterestingSymbols().count(SR->getSymbol());
2669   return false;
2670 }
2671
2672 bool BugReport::isInteresting(const LocationContext *LC) {
2673   if (!LC)
2674     return false;
2675   return InterestingLocationContexts.count(LC);
2676 }
2677
2678 void BugReport::lazyInitializeInterestingSets() {
2679   if (interestingSymbols.empty()) {
2680     interestingSymbols.push_back(new Symbols());
2681     interestingRegions.push_back(new Regions());
2682   }
2683 }
2684
2685 BugReport::Symbols &BugReport::getInterestingSymbols() {
2686   lazyInitializeInterestingSets();
2687   return *interestingSymbols.back();
2688 }
2689
2690 BugReport::Regions &BugReport::getInterestingRegions() {
2691   lazyInitializeInterestingSets();
2692   return *interestingRegions.back();
2693 }
2694
2695 void BugReport::pushInterestingSymbolsAndRegions() {
2696   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2697   interestingRegions.push_back(new Regions(getInterestingRegions()));
2698 }
2699
2700 void BugReport::popInterestingSymbolsAndRegions() {
2701   delete interestingSymbols.pop_back_val();
2702   delete interestingRegions.pop_back_val();
2703 }
2704
2705 const Stmt *BugReport::getStmt() const {
2706   if (!ErrorNode)
2707     return nullptr;
2708
2709   ProgramPoint ProgP = ErrorNode->getLocation();
2710   const Stmt *S = nullptr;
2711
2712   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2713     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2714     if (BE->getBlock() == &Exit)
2715       S = GetPreviousStmt(ErrorNode);
2716   }
2717   if (!S)
2718     S = PathDiagnosticLocation::getStmt(ErrorNode);
2719
2720   return S;
2721 }
2722
2723 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
2724 BugReport::getRanges() {
2725     // If no custom ranges, add the range of the statement corresponding to
2726     // the error node.
2727     if (Ranges.empty()) {
2728       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2729         addRange(E->getSourceRange());
2730       else
2731         return std::make_pair(ranges_iterator(), ranges_iterator());
2732     }
2733
2734     // User-specified absence of range info.
2735     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2736       return std::make_pair(ranges_iterator(), ranges_iterator());
2737
2738     return std::make_pair(Ranges.begin(), Ranges.end());
2739 }
2740
2741 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2742   if (ErrorNode) {
2743     assert(!Location.isValid() &&
2744      "Either Location or ErrorNode should be specified but not both.");
2745     return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2746   }
2747
2748   assert(Location.isValid());
2749   return Location;
2750 }
2751
2752 //===----------------------------------------------------------------------===//
2753 // Methods for BugReporter and subclasses.
2754 //===----------------------------------------------------------------------===//
2755
2756 BugReportEquivClass::~BugReportEquivClass() { }
2757 GRBugReporter::~GRBugReporter() { }
2758 BugReporterData::~BugReporterData() {}
2759
2760 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2761
2762 ProgramStateManager&
2763 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2764
2765 BugReporter::~BugReporter() {
2766   FlushReports();
2767
2768   // Free the bug reports we are tracking.
2769   typedef std::vector<BugReportEquivClass *> ContTy;
2770   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2771        I != E; ++I) {
2772     delete *I;
2773   }
2774 }
2775
2776 void BugReporter::FlushReports() {
2777   if (BugTypes.isEmpty())
2778     return;
2779
2780   // First flush the warnings for each BugType.  This may end up creating new
2781   // warnings and new BugTypes.
2782   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2783   // Turn NSErrorChecker into a proper checker and remove this.
2784   SmallVector<const BugType*, 16> bugTypes;
2785   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
2786     bugTypes.push_back(*I);
2787   for (SmallVectorImpl<const BugType *>::iterator
2788          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2789     const_cast<BugType*>(*I)->FlushReports(*this);
2790
2791   // We need to flush reports in deterministic order to ensure the order
2792   // of the reports is consistent between runs.
2793   typedef std::vector<BugReportEquivClass *> ContVecTy;
2794   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2795        EI != EE; ++EI){
2796     BugReportEquivClass& EQ = **EI;
2797     FlushReport(EQ);
2798   }
2799
2800   // BugReporter owns and deletes only BugTypes created implicitly through
2801   // EmitBasicReport.
2802   // FIXME: There are leaks from checkers that assume that the BugTypes they
2803   // create will be destroyed by the BugReporter.
2804   llvm::DeleteContainerSeconds(StrBugTypes);
2805
2806   // Remove all references to the BugType objects.
2807   BugTypes = F.getEmptySet();
2808 }
2809
2810 //===----------------------------------------------------------------------===//
2811 // PathDiagnostics generation.
2812 //===----------------------------------------------------------------------===//
2813
2814 namespace {
2815 /// A wrapper around a report graph, which contains only a single path, and its
2816 /// node maps.
2817 class ReportGraph {
2818 public:
2819   InterExplodedGraphMap BackMap;
2820   std::unique_ptr<ExplodedGraph> Graph;
2821   const ExplodedNode *ErrorNode;
2822   size_t Index;
2823 };
2824
2825 /// A wrapper around a trimmed graph and its node maps.
2826 class TrimmedGraph {
2827   InterExplodedGraphMap InverseMap;
2828
2829   typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2830   PriorityMapTy PriorityMap;
2831
2832   typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2833   SmallVector<NodeIndexPair, 32> ReportNodes;
2834
2835   std::unique_ptr<ExplodedGraph> G;
2836
2837   /// A helper class for sorting ExplodedNodes by priority.
2838   template <bool Descending>
2839   class PriorityCompare {
2840     const PriorityMapTy &PriorityMap;
2841
2842   public:
2843     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2844
2845     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2846       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2847       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2848       PriorityMapTy::const_iterator E = PriorityMap.end();
2849
2850       if (LI == E)
2851         return Descending;
2852       if (RI == E)
2853         return !Descending;
2854
2855       return Descending ? LI->second > RI->second
2856                         : LI->second < RI->second;
2857     }
2858
2859     bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2860       return (*this)(LHS.first, RHS.first);
2861     }
2862   };
2863
2864 public:
2865   TrimmedGraph(const ExplodedGraph *OriginalGraph,
2866                ArrayRef<const ExplodedNode *> Nodes);
2867
2868   bool popNextReportGraph(ReportGraph &GraphWrapper);
2869 };
2870 }
2871
2872 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2873                            ArrayRef<const ExplodedNode *> Nodes) {
2874   // The trimmed graph is created in the body of the constructor to ensure
2875   // that the DenseMaps have been initialized already.
2876   InterExplodedGraphMap ForwardMap;
2877   G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
2878
2879   // Find the (first) error node in the trimmed graph.  We just need to consult
2880   // the node map which maps from nodes in the original graph to nodes
2881   // in the new graph.
2882   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2883
2884   for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2885     if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2886       ReportNodes.push_back(std::make_pair(NewNode, i));
2887       RemainingNodes.insert(NewNode);
2888     }
2889   }
2890
2891   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2892
2893   // Perform a forward BFS to find all the shortest paths.
2894   std::queue<const ExplodedNode *> WS;
2895
2896   assert(G->num_roots() == 1);
2897   WS.push(*G->roots_begin());
2898   unsigned Priority = 0;
2899
2900   while (!WS.empty()) {
2901     const ExplodedNode *Node = WS.front();
2902     WS.pop();
2903
2904     PriorityMapTy::iterator PriorityEntry;
2905     bool IsNew;
2906     std::tie(PriorityEntry, IsNew) =
2907       PriorityMap.insert(std::make_pair(Node, Priority));
2908     ++Priority;
2909
2910     if (!IsNew) {
2911       assert(PriorityEntry->second <= Priority);
2912       continue;
2913     }
2914
2915     if (RemainingNodes.erase(Node))
2916       if (RemainingNodes.empty())
2917         break;
2918
2919     for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2920                                            E = Node->succ_end();
2921          I != E; ++I)
2922       WS.push(*I);
2923   }
2924
2925   // Sort the error paths from longest to shortest.
2926   std::sort(ReportNodes.begin(), ReportNodes.end(),
2927             PriorityCompare<true>(PriorityMap));
2928 }
2929
2930 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2931   if (ReportNodes.empty())
2932     return false;
2933
2934   const ExplodedNode *OrigN;
2935   std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2936   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2937          "error node not accessible from root");
2938
2939   // Create a new graph with a single path.  This is the graph
2940   // that will be returned to the caller.
2941   ExplodedGraph *GNew = new ExplodedGraph();
2942   GraphWrapper.Graph.reset(GNew);
2943   GraphWrapper.BackMap.clear();
2944
2945   // Now walk from the error node up the BFS path, always taking the
2946   // predeccessor with the lowest number.
2947   ExplodedNode *Succ = nullptr;
2948   while (true) {
2949     // Create the equivalent node in the new graph with the same state
2950     // and location.
2951     ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
2952                                        OrigN->isSink());
2953
2954     // Store the mapping to the original node.
2955     InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2956     assert(IMitr != InverseMap.end() && "No mapping to original node.");
2957     GraphWrapper.BackMap[NewN] = IMitr->second;
2958
2959     // Link up the new node with the previous node.
2960     if (Succ)
2961       Succ->addPredecessor(NewN, *GNew);
2962     else
2963       GraphWrapper.ErrorNode = NewN;
2964
2965     Succ = NewN;
2966
2967     // Are we at the final node?
2968     if (OrigN->pred_empty()) {
2969       GNew->addRoot(NewN);
2970       break;
2971     }
2972
2973     // Find the next predeccessor node.  We choose the node that is marked
2974     // with the lowest BFS number.
2975     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2976                           PriorityCompare<false>(PriorityMap));
2977   }
2978
2979   return true;
2980 }
2981
2982
2983 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2984 ///  and collapses PathDiagosticPieces that are expanded by macros.
2985 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2986   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
2987                                 SourceLocation> > MacroStackTy;
2988
2989   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
2990           PiecesTy;
2991
2992   MacroStackTy MacroStack;
2993   PiecesTy Pieces;
2994
2995   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2996        I!=E; ++I) {
2997     
2998     PathDiagnosticPiece *piece = I->get();
2999
3000     // Recursively compact calls.
3001     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
3002       CompactPathDiagnostic(call->path, SM);
3003     }
3004     
3005     // Get the location of the PathDiagnosticPiece.
3006     const FullSourceLoc Loc = piece->getLocation().asLocation();
3007
3008     // Determine the instantiation location, which is the location we group
3009     // related PathDiagnosticPieces.
3010     SourceLocation InstantiationLoc = Loc.isMacroID() ?
3011                                       SM.getExpansionLoc(Loc) :
3012                                       SourceLocation();
3013
3014     if (Loc.isFileID()) {
3015       MacroStack.clear();
3016       Pieces.push_back(piece);
3017       continue;
3018     }
3019
3020     assert(Loc.isMacroID());
3021
3022     // Is the PathDiagnosticPiece within the same macro group?
3023     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
3024       MacroStack.back().first->subPieces.push_back(piece);
3025       continue;
3026     }
3027
3028     // We aren't in the same group.  Are we descending into a new macro
3029     // or are part of an old one?
3030     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
3031
3032     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
3033                                           SM.getExpansionLoc(Loc) :
3034                                           SourceLocation();
3035
3036     // Walk the entire macro stack.
3037     while (!MacroStack.empty()) {
3038       if (InstantiationLoc == MacroStack.back().second) {
3039         MacroGroup = MacroStack.back().first;
3040         break;
3041       }
3042
3043       if (ParentInstantiationLoc == MacroStack.back().second) {
3044         MacroGroup = MacroStack.back().first;
3045         break;
3046       }
3047
3048       MacroStack.pop_back();
3049     }
3050
3051     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
3052       // Create a new macro group and add it to the stack.
3053       PathDiagnosticMacroPiece *NewGroup =
3054         new PathDiagnosticMacroPiece(
3055           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
3056
3057       if (MacroGroup)
3058         MacroGroup->subPieces.push_back(NewGroup);
3059       else {
3060         assert(InstantiationLoc.isFileID());
3061         Pieces.push_back(NewGroup);
3062       }
3063
3064       MacroGroup = NewGroup;
3065       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
3066     }
3067
3068     // Finally, add the PathDiagnosticPiece to the group.
3069     MacroGroup->subPieces.push_back(piece);
3070   }
3071
3072   // Now take the pieces and construct a new PathDiagnostic.
3073   path.clear();
3074
3075   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
3076     path.push_back(*I);
3077 }
3078
3079 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
3080                                            PathDiagnosticConsumer &PC,
3081                                            ArrayRef<BugReport *> &bugReports) {
3082   assert(!bugReports.empty());
3083
3084   bool HasValid = false;
3085   bool HasInvalid = false;
3086   SmallVector<const ExplodedNode *, 32> errorNodes;
3087   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
3088                                       E = bugReports.end(); I != E; ++I) {
3089     if ((*I)->isValid()) {
3090       HasValid = true;
3091       errorNodes.push_back((*I)->getErrorNode());
3092     } else {
3093       // Keep the errorNodes list in sync with the bugReports list.
3094       HasInvalid = true;
3095       errorNodes.push_back(nullptr);
3096     }
3097   }
3098
3099   // If all the reports have been marked invalid by a previous path generation,
3100   // we're done.
3101   if (!HasValid)
3102     return false;
3103
3104   typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
3105   PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
3106
3107   if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
3108     AnalyzerOptions &options = getAnalyzerOptions();
3109     if (options.getBooleanOption("path-diagnostics-alternate", true)) {
3110       ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
3111     }
3112   }
3113
3114   TrimmedGraph TrimG(&getGraph(), errorNodes);
3115   ReportGraph ErrorGraph;
3116
3117   while (TrimG.popNextReportGraph(ErrorGraph)) {
3118     // Find the BugReport with the original location.
3119     assert(ErrorGraph.Index < bugReports.size());
3120     BugReport *R = bugReports[ErrorGraph.Index];
3121     assert(R && "No original report found for sliced graph.");
3122     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
3123
3124     // Start building the path diagnostic...
3125     PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
3126     const ExplodedNode *N = ErrorGraph.ErrorNode;
3127
3128     // Register additional node visitors.
3129     R->addVisitor(new NilReceiverBRVisitor());
3130     R->addVisitor(new ConditionBRVisitor());
3131     R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
3132
3133     BugReport::VisitorList visitors;
3134     unsigned origReportConfigToken, finalReportConfigToken;
3135     LocationContextMap LCM;
3136
3137     // While generating diagnostics, it's possible the visitors will decide
3138     // new symbols and regions are interesting, or add other visitors based on
3139     // the information they find. If they do, we need to regenerate the path
3140     // based on our new report configuration.
3141     do {
3142       // Get a clean copy of all the visitors.
3143       for (BugReport::visitor_iterator I = R->visitor_begin(),
3144                                        E = R->visitor_end(); I != E; ++I)
3145         visitors.push_back((*I)->clone());
3146
3147       // Clear out the active path from any previous work.
3148       PD.resetPath();
3149       origReportConfigToken = R->getConfigurationChangeToken();
3150
3151       // Generate the very last diagnostic piece - the piece is visible before 
3152       // the trace is expanded.
3153       std::unique_ptr<PathDiagnosticPiece> LastPiece;
3154       for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
3155           I != E; ++I) {
3156         if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
3157           assert (!LastPiece &&
3158               "There can only be one final piece in a diagnostic.");
3159           LastPiece.reset(Piece);
3160         }
3161       }
3162
3163       if (ActiveScheme != PathDiagnosticConsumer::None) {
3164         if (!LastPiece)
3165           LastPiece.reset(BugReporterVisitor::getDefaultEndPath(PDB, N, *R));
3166         assert(LastPiece);
3167         PD.setEndOfPath(LastPiece.release());
3168       }
3169
3170       // Make sure we get a clean location context map so we don't
3171       // hold onto old mappings.
3172       LCM.clear();
3173
3174       switch (ActiveScheme) {
3175       case PathDiagnosticConsumer::AlternateExtensive:
3176         GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3177         break;
3178       case PathDiagnosticConsumer::Extensive:
3179         GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3180         break;
3181       case PathDiagnosticConsumer::Minimal:
3182         GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
3183         break;
3184       case PathDiagnosticConsumer::None:
3185         GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
3186         break;
3187       }
3188
3189       // Clean up the visitors we used.
3190       llvm::DeleteContainerPointers(visitors);
3191
3192       // Did anything change while generating this path?
3193       finalReportConfigToken = R->getConfigurationChangeToken();
3194     } while (finalReportConfigToken != origReportConfigToken);
3195
3196     if (!R->isValid())
3197       continue;
3198
3199     // Finally, prune the diagnostic path of uninteresting stuff.
3200     if (!PD.path.empty()) {
3201       if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
3202         bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
3203         assert(stillHasNotes);
3204         (void)stillHasNotes;
3205       }
3206
3207       // Redirect all call pieces to have valid locations.
3208       adjustCallLocations(PD.getMutablePieces());
3209       removePiecesWithInvalidLocations(PD.getMutablePieces());
3210
3211       if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
3212         SourceManager &SM = getSourceManager();
3213
3214         // Reduce the number of edges from a very conservative set
3215         // to an aesthetically pleasing subset that conveys the
3216         // necessary information.
3217         OptimizedCallsSet OCS;
3218         while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
3219
3220         // Drop the very first function-entry edge. It's not really necessary
3221         // for top-level functions.
3222         dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
3223       }
3224
3225       // Remove messages that are basically the same, and edges that may not
3226       // make sense.
3227       // We have to do this after edge optimization in the Extensive mode.
3228       removeRedundantMsgs(PD.getMutablePieces());
3229       removeEdgesToDefaultInitializers(PD.getMutablePieces());
3230     }
3231
3232     // We found a report and didn't suppress it.
3233     return true;
3234   }
3235
3236   // We suppressed all the reports in this equivalence class.
3237   assert(!HasInvalid && "Inconsistent suppression");
3238   (void)HasInvalid;
3239   return false;
3240 }
3241
3242 void BugReporter::Register(BugType *BT) {
3243   BugTypes = F.add(BugTypes, BT);
3244 }
3245
3246 void BugReporter::emitReport(BugReport* R) {
3247   // To guarantee memory release.
3248   std::unique_ptr<BugReport> UniqueR(R);
3249
3250   // Defensive checking: throw the bug away if it comes from a BodyFarm-
3251   // generated body. We do this very early because report processing relies
3252   // on the report's location being valid.
3253   // FIXME: Valid bugs can occur in BodyFarm-generated bodies, so really we
3254   // need to just find a reasonable location like we do later on with the path
3255   // pieces.
3256   if (const ExplodedNode *E = R->getErrorNode()) {
3257     const LocationContext *LCtx = E->getLocationContext();
3258     if (LCtx->getAnalysisDeclContext()->isBodyAutosynthesized())
3259       return;
3260   }
3261   
3262   bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
3263   assert(ValidSourceLoc);
3264   // If we mess up in a release build, we'd still prefer to just drop the bug
3265   // instead of trying to go on.
3266   if (!ValidSourceLoc)
3267     return;
3268
3269   // Compute the bug report's hash to determine its equivalence class.
3270   llvm::FoldingSetNodeID ID;
3271   R->Profile(ID);
3272
3273   // Lookup the equivance class.  If there isn't one, create it.
3274   BugType& BT = R->getBugType();
3275   Register(&BT);
3276   void *InsertPos;
3277   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
3278
3279   if (!EQ) {
3280     EQ = new BugReportEquivClass(UniqueR.release());
3281     EQClasses.InsertNode(EQ, InsertPos);
3282     EQClassesVector.push_back(EQ);
3283   }
3284   else
3285     EQ->AddReport(UniqueR.release());
3286 }
3287
3288
3289 //===----------------------------------------------------------------------===//
3290 // Emitting reports in equivalence classes.
3291 //===----------------------------------------------------------------------===//
3292
3293 namespace {
3294 struct FRIEC_WLItem {
3295   const ExplodedNode *N;
3296   ExplodedNode::const_succ_iterator I, E;
3297   
3298   FRIEC_WLItem(const ExplodedNode *n)
3299   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
3300 };  
3301 }
3302
3303 static BugReport *
3304 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
3305                              SmallVectorImpl<BugReport*> &bugReports) {
3306
3307   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
3308   assert(I != E);
3309   BugType& BT = I->getBugType();
3310
3311   // If we don't need to suppress any of the nodes because they are
3312   // post-dominated by a sink, simply add all the nodes in the equivalence class
3313   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
3314   if (!BT.isSuppressOnSink()) {
3315     BugReport *R = I;
3316     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
3317       const ExplodedNode *N = I->getErrorNode();
3318       if (N) {
3319         R = I;
3320         bugReports.push_back(R);
3321       }
3322     }
3323     return R;
3324   }
3325
3326   // For bug reports that should be suppressed when all paths are post-dominated
3327   // by a sink node, iterate through the reports in the equivalence class
3328   // until we find one that isn't post-dominated (if one exists).  We use a
3329   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
3330   // this as a recursive function, but we don't want to risk blowing out the
3331   // stack for very long paths.
3332   BugReport *exampleReport = nullptr;
3333
3334   for (; I != E; ++I) {
3335     const ExplodedNode *errorNode = I->getErrorNode();
3336
3337     if (!errorNode)
3338       continue;
3339     if (errorNode->isSink()) {
3340       llvm_unreachable(
3341            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3342     }
3343     // No successors?  By definition this nodes isn't post-dominated by a sink.
3344     if (errorNode->succ_empty()) {
3345       bugReports.push_back(I);
3346       if (!exampleReport)
3347         exampleReport = I;
3348       continue;
3349     }
3350
3351     // At this point we know that 'N' is not a sink and it has at least one
3352     // successor.  Use a DFS worklist to find a non-sink end-of-path node.    
3353     typedef FRIEC_WLItem WLItem;
3354     typedef SmallVector<WLItem, 10> DFSWorkList;
3355     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3356     
3357     DFSWorkList WL;
3358     WL.push_back(errorNode);
3359     Visited[errorNode] = 1;
3360     
3361     while (!WL.empty()) {
3362       WLItem &WI = WL.back();
3363       assert(!WI.N->succ_empty());
3364             
3365       for (; WI.I != WI.E; ++WI.I) {
3366         const ExplodedNode *Succ = *WI.I;        
3367         // End-of-path node?
3368         if (Succ->succ_empty()) {
3369           // If we found an end-of-path node that is not a sink.
3370           if (!Succ->isSink()) {
3371             bugReports.push_back(I);
3372             if (!exampleReport)
3373               exampleReport = I;
3374             WL.clear();
3375             break;
3376           }
3377           // Found a sink?  Continue on to the next successor.
3378           continue;
3379         }
3380         // Mark the successor as visited.  If it hasn't been explored,
3381         // enqueue it to the DFS worklist.
3382         unsigned &mark = Visited[Succ];
3383         if (!mark) {
3384           mark = 1;
3385           WL.push_back(Succ);
3386           break;
3387         }
3388       }
3389
3390       // The worklist may have been cleared at this point.  First
3391       // check if it is empty before checking the last item.
3392       if (!WL.empty() && &WL.back() == &WI)
3393         WL.pop_back();
3394     }
3395   }
3396
3397   // ExampleReport will be NULL if all the nodes in the equivalence class
3398   // were post-dominated by sinks.
3399   return exampleReport;
3400 }
3401
3402 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3403   SmallVector<BugReport*, 10> bugReports;
3404   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
3405   if (exampleReport) {
3406     for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) {
3407       FlushReport(exampleReport, *PDC, bugReports);
3408     }
3409   }
3410 }
3411
3412 void BugReporter::FlushReport(BugReport *exampleReport,
3413                               PathDiagnosticConsumer &PD,
3414                               ArrayRef<BugReport*> bugReports) {
3415
3416   // FIXME: Make sure we use the 'R' for the path that was actually used.
3417   // Probably doesn't make a difference in practice.
3418   BugType& BT = exampleReport->getBugType();
3419
3420   std::unique_ptr<PathDiagnostic> D(new PathDiagnostic(
3421       exampleReport->getBugType().getCheckName(),
3422       exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(),
3423       exampleReport->getDescription(),
3424       exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(),
3425       exampleReport->getUniqueingLocation(),
3426       exampleReport->getUniqueingDecl()));
3427
3428   MaxBugClassSize = std::max(bugReports.size(),
3429                              static_cast<size_t>(MaxBugClassSize));
3430
3431   // Generate the full path diagnostic, using the generation scheme
3432   // specified by the PathDiagnosticConsumer. Note that we have to generate
3433   // path diagnostics even for consumers which do not support paths, because
3434   // the BugReporterVisitors may mark this bug as a false positive.
3435   if (!bugReports.empty())
3436     if (!generatePathDiagnostic(*D.get(), PD, bugReports))
3437       return;
3438
3439   MaxValidBugClassSize = std::max(bugReports.size(),
3440                                   static_cast<size_t>(MaxValidBugClassSize));
3441
3442   // Examine the report and see if the last piece is in a header. Reset the
3443   // report location to the last piece in the main source file.
3444   AnalyzerOptions& Opts = getAnalyzerOptions();
3445   if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
3446     D->resetDiagnosticLocationToMainFile();
3447
3448   // If the path is empty, generate a single step path with the location
3449   // of the issue.
3450   if (D->path.empty()) {
3451     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
3452     PathDiagnosticPiece *piece =
3453       new PathDiagnosticEventPiece(L, exampleReport->getDescription());
3454     BugReport::ranges_iterator Beg, End;
3455     std::tie(Beg, End) = exampleReport->getRanges();
3456     for ( ; Beg != End; ++Beg)
3457       piece->addRange(*Beg);
3458     D->setEndOfPath(piece);
3459   }
3460
3461   // Get the meta data.
3462   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
3463   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
3464                                                 e = Meta.end(); i != e; ++i) {
3465     D->addMeta(*i);
3466   }
3467
3468   PD.HandlePathDiagnostic(D.release());
3469 }
3470
3471 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3472                                   const CheckerBase *Checker,
3473                                   StringRef Name, StringRef Category,
3474                                   StringRef Str, PathDiagnosticLocation Loc,
3475                                   ArrayRef<SourceRange> Ranges) {
3476   EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str,
3477                   Loc, Ranges);
3478 }
3479 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3480                                   CheckName CheckName,
3481                                   StringRef name, StringRef category,
3482                                   StringRef str, PathDiagnosticLocation Loc,
3483                                   ArrayRef<SourceRange> Ranges) {
3484
3485   // 'BT' is owned by BugReporter.
3486   BugType *BT = getBugTypeForName(CheckName, name, category);
3487   BugReport *R = new BugReport(*BT, str, Loc);
3488   R->setDeclWithIssue(DeclWithIssue);
3489   for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
3490        I != E; ++I)
3491     R->addRange(*I);
3492   emitReport(R);
3493 }
3494
3495 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name,
3496                                         StringRef category) {
3497   SmallString<136> fullDesc;
3498   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3499                                       << ":" << category;
3500   llvm::StringMapEntry<BugType *> &
3501       entry = StrBugTypes.GetOrCreateValue(fullDesc);
3502   BugType *BT = entry.getValue();
3503   if (!BT) {
3504     BT = new BugType(CheckName, name, category);
3505     entry.setValue(BT);
3506   }
3507   return BT;
3508 }
3509
3510 LLVM_DUMP_METHOD void PathPieces::dump() const {
3511   unsigned index = 0;
3512   for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
3513     llvm::errs() << "[" << index++ << "]  ";
3514     (*I)->dump();
3515     llvm::errs() << "\n";
3516   }
3517 }
3518
3519 void PathDiagnosticCallPiece::dump() const {
3520   llvm::errs() << "CALL\n--------------\n";
3521
3522   if (const Stmt *SLoc = getLocStmt(getLocation()))
3523     SLoc->dump();
3524   else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
3525     llvm::errs() << *ND << "\n";
3526   else
3527     getLocation().dump();
3528 }
3529
3530 void PathDiagnosticEventPiece::dump() const {
3531   llvm::errs() << "EVENT\n--------------\n";
3532   llvm::errs() << getString() << "\n";
3533   llvm::errs() << " ---- at ----\n";
3534   getLocation().dump();
3535 }
3536
3537 void PathDiagnosticControlFlowPiece::dump() const {
3538   llvm::errs() << "CONTROL\n--------------\n";
3539   getStartLocation().dump();
3540   llvm::errs() << " ---- to ----\n";
3541   getEndLocation().dump();
3542 }
3543
3544 void PathDiagnosticMacroPiece::dump() const {
3545   llvm::errs() << "MACRO\n--------------\n";
3546   // FIXME: Print which macro is being invoked.
3547 }
3548
3549 void PathDiagnosticLocation::dump() const {
3550   if (!isValid()) {
3551     llvm::errs() << "<INVALID>\n";
3552     return;
3553   }
3554
3555   switch (K) {
3556   case RangeK:
3557     // FIXME: actually print the range.
3558     llvm::errs() << "<range>\n";
3559     break;
3560   case SingleLocK:
3561     asLocation().dump();
3562     llvm::errs() << "\n";
3563     break;
3564   case StmtK:
3565     if (S)
3566       S->dump();
3567     else
3568       llvm::errs() << "<NULL STMT>\n";
3569     break;
3570   case DeclK:
3571     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
3572       llvm::errs() << *ND << "\n";
3573     else if (isa<BlockDecl>(D))
3574       // FIXME: Make this nicer.
3575       llvm::errs() << "<block>\n";
3576     else if (D)
3577       llvm::errs() << "<unknown decl>\n";
3578     else
3579       llvm::errs() << "<NULL DECL>\n";
3580     break;
3581   }
3582 }