]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
Merge ^/head r283596 through r283770.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / BugReporter.cpp
1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Analysis/CFG.h"
24 #include "clang/Analysis/ProgramPoint.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/IntrusiveRefCntPtr.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <memory>
36 #include <queue>
37
38 using namespace clang;
39 using namespace ento;
40
41 #define DEBUG_TYPE "BugReporter"
42
43 STATISTIC(MaxBugClassSize,
44           "The maximum number of bug reports in the same equivalence class");
45 STATISTIC(MaxValidBugClassSize,
46           "The maximum number of bug reports in the same equivalence class "
47           "where at least one report is valid (not suppressed)");
48
49 BugReporterVisitor::~BugReporterVisitor() {}
50
51 void BugReporterContext::anchor() {}
52
53 //===----------------------------------------------------------------------===//
54 // Helper routines for walking the ExplodedGraph and fetching statements.
55 //===----------------------------------------------------------------------===//
56
57 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
58   for (N = N->getFirstPred(); N; N = N->getFirstPred())
59     if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
60       return S;
61
62   return nullptr;
63 }
64
65 static inline const Stmt*
66 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
67   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
68     return S;
69
70   return GetPreviousStmt(N);
71 }
72
73 //===----------------------------------------------------------------------===//
74 // Diagnostic cleanup.
75 //===----------------------------------------------------------------------===//
76
77 static PathDiagnosticEventPiece *
78 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
79                             PathDiagnosticEventPiece *Y) {
80   // Prefer diagnostics that come from ConditionBRVisitor over
81   // those that came from TrackConstraintBRVisitor.
82   const void *tagPreferred = ConditionBRVisitor::getTag();
83   const void *tagLesser = TrackConstraintBRVisitor::getTag();
84   
85   if (X->getLocation() != Y->getLocation())
86     return nullptr;
87
88   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
89     return X;
90   
91   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
92     return Y;
93
94   return nullptr;
95 }
96
97 /// An optimization pass over PathPieces that removes redundant diagnostics
98 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
99 /// BugReporterVisitors use different methods to generate diagnostics, with
100 /// one capable of emitting diagnostics in some cases but not in others.  This
101 /// can lead to redundant diagnostic pieces at the same point in a path.
102 static void removeRedundantMsgs(PathPieces &path) {
103   unsigned N = path.size();
104   if (N < 2)
105     return;
106   // NOTE: this loop intentionally is not using an iterator.  Instead, we
107   // are streaming the path and modifying it in place.  This is done by
108   // grabbing the front, processing it, and if we decide to keep it append
109   // it to the end of the path.  The entire path is processed in this way.
110   for (unsigned i = 0; i < N; ++i) {
111     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
112     path.pop_front();
113     
114     switch (piece->getKind()) {
115       case clang::ento::PathDiagnosticPiece::Call:
116         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
117         break;
118       case clang::ento::PathDiagnosticPiece::Macro:
119         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
120         break;
121       case clang::ento::PathDiagnosticPiece::ControlFlow:
122         break;
123       case clang::ento::PathDiagnosticPiece::Event: {
124         if (i == N-1)
125           break;
126         
127         if (PathDiagnosticEventPiece *nextEvent =
128             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
129           PathDiagnosticEventPiece *event =
130             cast<PathDiagnosticEventPiece>(piece);
131           // Check to see if we should keep one of the two pieces.  If we
132           // come up with a preference, record which piece to keep, and consume
133           // another piece from the path.
134           if (PathDiagnosticEventPiece *pieceToKeep =
135               eventsDescribeSameCondition(event, nextEvent)) {
136             piece = pieceToKeep;
137             path.pop_front();
138             ++i;
139           }
140         }
141         break;
142       }
143     }
144     path.push_back(piece);
145   }
146 }
147
148 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
149 /// function call it represents.
150 typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
151         LocationContextMap;
152
153 /// Recursively scan through a path and prune out calls and macros pieces
154 /// that aren't needed.  Return true if afterwards the path contains
155 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
156 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
157                                 LocationContextMap &LCM) {
158   bool containsSomethingInteresting = false;
159   const unsigned N = pieces.size();
160   
161   for (unsigned i = 0 ; i < N ; ++i) {
162     // Remove the front piece from the path.  If it is still something we
163     // want to keep once we are done, we will push it back on the end.
164     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
165     pieces.pop_front();
166     
167     switch (piece->getKind()) {
168       case PathDiagnosticPiece::Call: {
169         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
170         // Check if the location context is interesting.
171         assert(LCM.count(&call->path));
172         if (R->isInteresting(LCM[&call->path])) {
173           containsSomethingInteresting = true;
174           break;
175         }
176
177         if (!removeUnneededCalls(call->path, R, LCM))
178           continue;
179         
180         containsSomethingInteresting = true;
181         break;
182       }
183       case PathDiagnosticPiece::Macro: {
184         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
185         if (!removeUnneededCalls(macro->subPieces, R, LCM))
186           continue;
187         containsSomethingInteresting = true;
188         break;
189       }
190       case PathDiagnosticPiece::Event: {
191         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
192         
193         // We never throw away an event, but we do throw it away wholesale
194         // as part of a path if we throw the entire path away.
195         containsSomethingInteresting |= !event->isPrunable();
196         break;
197       }
198       case PathDiagnosticPiece::ControlFlow:
199         break;
200     }
201     
202     pieces.push_back(piece);
203   }
204   
205   return containsSomethingInteresting;
206 }
207
208 /// Returns true if the given decl has been implicitly given a body, either by
209 /// the analyzer or by the compiler proper.
210 static bool hasImplicitBody(const Decl *D) {
211   assert(D);
212   return D->isImplicit() || !D->hasBody();
213 }
214
215 /// Recursively scan through a path and make sure that all call pieces have
216 /// valid locations. 
217 static void
218 adjustCallLocations(PathPieces &Pieces,
219                     PathDiagnosticLocation *LastCallLocation = nullptr) {
220   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
221     PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
222
223     if (!Call) {
224       assert((*I)->getLocation().asLocation().isValid());
225       continue;
226     }
227
228     if (LastCallLocation) {
229       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
230       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
231         Call->callEnter = *LastCallLocation;
232       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
233         Call->callReturn = *LastCallLocation;
234     }
235
236     // Recursively clean out the subclass.  Keep this call around if
237     // it contains any informative diagnostics.
238     PathDiagnosticLocation *ThisCallLocation;
239     if (Call->callEnterWithin.asLocation().isValid() &&
240         !hasImplicitBody(Call->getCallee()))
241       ThisCallLocation = &Call->callEnterWithin;
242     else
243       ThisCallLocation = &Call->callEnter;
244
245     assert(ThisCallLocation && "Outermost call has an invalid location");
246     adjustCallLocations(Call->path, ThisCallLocation);
247   }
248 }
249
250 /// Remove edges in and out of C++ default initializer expressions. These are
251 /// for fields that have in-class initializers, as opposed to being initialized
252 /// explicitly in a constructor or braced list.
253 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
254   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
255     if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
256       removeEdgesToDefaultInitializers(C->path);
257
258     if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
259       removeEdgesToDefaultInitializers(M->subPieces);
260
261     if (PathDiagnosticControlFlowPiece *CF =
262           dyn_cast<PathDiagnosticControlFlowPiece>(*I)) {
263       const Stmt *Start = CF->getStartLocation().asStmt();
264       const Stmt *End = CF->getEndLocation().asStmt();
265       if (Start && isa<CXXDefaultInitExpr>(Start)) {
266         I = Pieces.erase(I);
267         continue;
268       } else if (End && isa<CXXDefaultInitExpr>(End)) {
269         PathPieces::iterator Next = std::next(I);
270         if (Next != E) {
271           if (PathDiagnosticControlFlowPiece *NextCF =
272                 dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) {
273             NextCF->setStartLocation(CF->getStartLocation());
274           }
275         }
276         I = Pieces.erase(I);
277         continue;
278       }
279     }
280
281     I++;
282   }
283 }
284
285 /// Remove all pieces with invalid locations as these cannot be serialized.
286 /// We might have pieces with invalid locations as a result of inlining Body
287 /// Farm generated functions.
288 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
289   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
290     if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
291       removePiecesWithInvalidLocations(C->path);
292
293     if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
294       removePiecesWithInvalidLocations(M->subPieces);
295
296     if (!(*I)->getLocation().isValid() ||
297         !(*I)->getLocation().asLocation().isValid()) {
298       I = Pieces.erase(I);
299       continue;
300     }
301     I++;
302   }
303 }
304
305 //===----------------------------------------------------------------------===//
306 // PathDiagnosticBuilder and its associated routines and helper objects.
307 //===----------------------------------------------------------------------===//
308
309 namespace {
310 class NodeMapClosure : public BugReport::NodeResolver {
311   InterExplodedGraphMap &M;
312 public:
313   NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
314
315   const ExplodedNode *getOriginalNode(const ExplodedNode *N) override {
316     return M.lookup(N);
317   }
318 };
319
320 class PathDiagnosticBuilder : public BugReporterContext {
321   BugReport *R;
322   PathDiagnosticConsumer *PDC;
323   NodeMapClosure NMC;
324 public:
325   const LocationContext *LC;
326   
327   PathDiagnosticBuilder(GRBugReporter &br,
328                         BugReport *r, InterExplodedGraphMap &Backmap,
329                         PathDiagnosticConsumer *pdc)
330     : BugReporterContext(br),
331       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
332   {}
333
334   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
335
336   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
337                                             const ExplodedNode *N);
338
339   BugReport *getBugReport() { return R; }
340
341   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
342   
343   ParentMap& getParentMap() { return LC->getParentMap(); }
344
345   const Stmt *getParent(const Stmt *S) {
346     return getParentMap().getParent(S);
347   }
348
349   NodeMapClosure& getNodeResolver() override { return NMC; }
350
351   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
352
353   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
354     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
355   }
356
357   bool supportsLogicalOpControlFlow() const {
358     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
359   }
360 };
361 } // end anonymous namespace
362
363 PathDiagnosticLocation
364 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
365   if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
366     return PathDiagnosticLocation(S, getSourceManager(), LC);
367
368   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
369                                                getSourceManager());
370 }
371
372 PathDiagnosticLocation
373 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
374                                           const ExplodedNode *N) {
375
376   // Slow, but probably doesn't matter.
377   if (os.str().empty())
378     os << ' ';
379
380   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
381
382   if (Loc.asStmt())
383     os << "Execution continues on line "
384        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
385        << '.';
386   else {
387     os << "Execution jumps to the end of the ";
388     const Decl *D = N->getLocationContext()->getDecl();
389     if (isa<ObjCMethodDecl>(D))
390       os << "method";
391     else if (isa<FunctionDecl>(D))
392       os << "function";
393     else {
394       assert(isa<BlockDecl>(D));
395       os << "anonymous block";
396     }
397     os << '.';
398   }
399
400   return Loc;
401 }
402
403 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
404   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
405     return PM.getParentIgnoreParens(S);
406
407   const Stmt *Parent = PM.getParentIgnoreParens(S);
408   if (!Parent)
409     return nullptr;
410
411   switch (Parent->getStmtClass()) {
412   case Stmt::ForStmtClass:
413   case Stmt::DoStmtClass:
414   case Stmt::WhileStmtClass:
415   case Stmt::ObjCForCollectionStmtClass:
416   case Stmt::CXXForRangeStmtClass:
417     return Parent;
418   default:
419     break;
420   }
421
422   return nullptr;
423 }
424
425 static PathDiagnosticLocation
426 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
427                          const LocationContext *LC, bool allowNestedContexts) {
428   if (!S)
429     return PathDiagnosticLocation();
430
431   while (const Stmt *Parent = getEnclosingParent(S, P)) {
432     switch (Parent->getStmtClass()) {
433       case Stmt::BinaryOperatorClass: {
434         const BinaryOperator *B = cast<BinaryOperator>(Parent);
435         if (B->isLogicalOp())
436           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
437         break;
438       }
439       case Stmt::CompoundStmtClass:
440       case Stmt::StmtExprClass:
441         return PathDiagnosticLocation(S, SMgr, LC);
442       case Stmt::ChooseExprClass:
443         // Similar to '?' if we are referring to condition, just have the edge
444         // point to the entire choose expression.
445         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
446           return PathDiagnosticLocation(Parent, SMgr, LC);
447         else
448           return PathDiagnosticLocation(S, SMgr, LC);
449       case Stmt::BinaryConditionalOperatorClass:
450       case Stmt::ConditionalOperatorClass:
451         // For '?', if we are referring to condition, just have the edge point
452         // to the entire '?' expression.
453         if (allowNestedContexts ||
454             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
455           return PathDiagnosticLocation(Parent, SMgr, LC);
456         else
457           return PathDiagnosticLocation(S, SMgr, LC);
458       case Stmt::CXXForRangeStmtClass:
459         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
460           return PathDiagnosticLocation(S, SMgr, LC);
461         break;
462       case Stmt::DoStmtClass:
463           return PathDiagnosticLocation(S, SMgr, LC);
464       case Stmt::ForStmtClass:
465         if (cast<ForStmt>(Parent)->getBody() == S)
466           return PathDiagnosticLocation(S, SMgr, LC);
467         break;
468       case Stmt::IfStmtClass:
469         if (cast<IfStmt>(Parent)->getCond() != S)
470           return PathDiagnosticLocation(S, SMgr, LC);
471         break;
472       case Stmt::ObjCForCollectionStmtClass:
473         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
474           return PathDiagnosticLocation(S, SMgr, LC);
475         break;
476       case Stmt::WhileStmtClass:
477         if (cast<WhileStmt>(Parent)->getCond() != S)
478           return PathDiagnosticLocation(S, SMgr, LC);
479         break;
480       default:
481         break;
482     }
483
484     S = Parent;
485   }
486
487   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
488
489   return PathDiagnosticLocation(S, SMgr, LC);
490 }
491
492 PathDiagnosticLocation
493 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
494   assert(S && "Null Stmt passed to getEnclosingStmtLocation");
495   return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
496                                     /*allowNestedContexts=*/false);
497 }
498
499 //===----------------------------------------------------------------------===//
500 // "Visitors only" path diagnostic generation algorithm.
501 //===----------------------------------------------------------------------===//
502 static bool GenerateVisitorsOnlyPathDiagnostic(
503     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
504     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
505   // All path generation skips the very first node (the error node).
506   // This is because there is special handling for the end-of-path note.
507   N = N->getFirstPred();
508   if (!N)
509     return true;
510
511   BugReport *R = PDB.getBugReport();
512   while (const ExplodedNode *Pred = N->getFirstPred()) {
513     for (auto &V : visitors) {
514       // Visit all the node pairs, but throw the path pieces away.
515       PathDiagnosticPiece *Piece = V->VisitNode(N, Pred, PDB, *R);
516       delete Piece;
517     }
518
519     N = Pred;
520   }
521
522   return R->isValid();
523 }
524
525 //===----------------------------------------------------------------------===//
526 // "Minimal" path diagnostic generation algorithm.
527 //===----------------------------------------------------------------------===//
528 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
529 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
530
531 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
532                                          StackDiagVector &CallStack) {
533   // If the piece contains a special message, add it to all the call
534   // pieces on the active stack.
535   if (PathDiagnosticEventPiece *ep =
536         dyn_cast<PathDiagnosticEventPiece>(P)) {
537
538     if (ep->hasCallStackHint())
539       for (StackDiagVector::iterator I = CallStack.begin(),
540                                      E = CallStack.end(); I != E; ++I) {
541         PathDiagnosticCallPiece *CP = I->first;
542         const ExplodedNode *N = I->second;
543         std::string stackMsg = ep->getCallStackMessage(N);
544
545         // The last message on the path to final bug is the most important
546         // one. Since we traverse the path backwards, do not add the message
547         // if one has been previously added.
548         if  (!CP->hasCallStackMessage())
549           CP->setCallStackMessage(stackMsg);
550       }
551   }
552 }
553
554 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
555
556 static bool GenerateMinimalPathDiagnostic(
557     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
558     LocationContextMap &LCM,
559     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
560
561   SourceManager& SMgr = PDB.getSourceManager();
562   const LocationContext *LC = PDB.LC;
563   const ExplodedNode *NextNode = N->pred_empty()
564                                         ? nullptr : *(N->pred_begin());
565
566   StackDiagVector CallStack;
567
568   while (NextNode) {
569     N = NextNode;
570     PDB.LC = N->getLocationContext();
571     NextNode = N->getFirstPred();
572
573     ProgramPoint P = N->getLocation();
574
575     do {
576       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
577         PathDiagnosticCallPiece *C =
578             PathDiagnosticCallPiece::construct(N, *CE, SMgr);
579         // Record the mapping from call piece to LocationContext.
580         LCM[&C->path] = CE->getCalleeContext();
581         PD.getActivePath().push_front(C);
582         PD.pushActivePath(&C->path);
583         CallStack.push_back(StackDiagPair(C, N));
584         break;
585       }
586
587       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
588         // Flush all locations, and pop the active path.
589         bool VisitedEntireCall = PD.isWithinCall();
590         PD.popActivePath();
591
592         // Either we just added a bunch of stuff to the top-level path, or
593         // we have a previous CallExitEnd.  If the former, it means that the
594         // path terminated within a function call.  We must then take the
595         // current contents of the active path and place it within
596         // a new PathDiagnosticCallPiece.
597         PathDiagnosticCallPiece *C;
598         if (VisitedEntireCall) {
599           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
600         } else {
601           const Decl *Caller = CE->getLocationContext()->getDecl();
602           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
603           // Record the mapping from call piece to LocationContext.
604           LCM[&C->path] = CE->getCalleeContext();
605         }
606
607         C->setCallee(*CE, SMgr);
608         if (!CallStack.empty()) {
609           assert(CallStack.back().first == C);
610           CallStack.pop_back();
611         }
612         break;
613       }
614
615       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
616         const CFGBlock *Src = BE->getSrc();
617         const CFGBlock *Dst = BE->getDst();
618         const Stmt *T = Src->getTerminator();
619
620         if (!T)
621           break;
622
623         PathDiagnosticLocation Start =
624             PathDiagnosticLocation::createBegin(T, SMgr,
625                 N->getLocationContext());
626
627         switch (T->getStmtClass()) {
628         default:
629           break;
630
631         case Stmt::GotoStmtClass:
632         case Stmt::IndirectGotoStmtClass: {
633           const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
634
635           if (!S)
636             break;
637
638           std::string sbuf;
639           llvm::raw_string_ostream os(sbuf);
640           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
641
642           os << "Control jumps to line "
643               << End.asLocation().getExpansionLineNumber();
644           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
645               Start, End, os.str()));
646           break;
647         }
648
649         case Stmt::SwitchStmtClass: {
650           // Figure out what case arm we took.
651           std::string sbuf;
652           llvm::raw_string_ostream os(sbuf);
653
654           if (const Stmt *S = Dst->getLabel()) {
655             PathDiagnosticLocation End(S, SMgr, LC);
656
657             switch (S->getStmtClass()) {
658             default:
659               os << "No cases match in the switch statement. "
660               "Control jumps to line "
661               << End.asLocation().getExpansionLineNumber();
662               break;
663             case Stmt::DefaultStmtClass:
664               os << "Control jumps to the 'default' case at line "
665               << End.asLocation().getExpansionLineNumber();
666               break;
667
668             case Stmt::CaseStmtClass: {
669               os << "Control jumps to 'case ";
670               const CaseStmt *Case = cast<CaseStmt>(S);
671               const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
672
673               // Determine if it is an enum.
674               bool GetRawInt = true;
675
676               if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
677                 // FIXME: Maybe this should be an assertion.  Are there cases
678                 // were it is not an EnumConstantDecl?
679                 const EnumConstantDecl *D =
680                     dyn_cast<EnumConstantDecl>(DR->getDecl());
681
682                 if (D) {
683                   GetRawInt = false;
684                   os << *D;
685                 }
686               }
687
688               if (GetRawInt)
689                 os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
690
691               os << ":'  at line "
692                   << End.asLocation().getExpansionLineNumber();
693               break;
694             }
695             }
696             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
697                 Start, End, os.str()));
698           }
699           else {
700             os << "'Default' branch taken. ";
701             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
702             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
703                 Start, End, os.str()));
704           }
705
706           break;
707         }
708
709         case Stmt::BreakStmtClass:
710         case Stmt::ContinueStmtClass: {
711           std::string sbuf;
712           llvm::raw_string_ostream os(sbuf);
713           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
714           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
715               Start, End, os.str()));
716           break;
717         }
718
719         // Determine control-flow for ternary '?'.
720         case Stmt::BinaryConditionalOperatorClass:
721         case Stmt::ConditionalOperatorClass: {
722           std::string sbuf;
723           llvm::raw_string_ostream os(sbuf);
724           os << "'?' condition is ";
725
726           if (*(Src->succ_begin()+1) == Dst)
727             os << "false";
728           else
729             os << "true";
730
731           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
732
733           if (const Stmt *S = End.asStmt())
734             End = PDB.getEnclosingStmtLocation(S);
735
736           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
737               Start, End, os.str()));
738           break;
739         }
740
741         // Determine control-flow for short-circuited '&&' and '||'.
742         case Stmt::BinaryOperatorClass: {
743           if (!PDB.supportsLogicalOpControlFlow())
744             break;
745
746           const BinaryOperator *B = cast<BinaryOperator>(T);
747           std::string sbuf;
748           llvm::raw_string_ostream os(sbuf);
749           os << "Left side of '";
750
751           if (B->getOpcode() == BO_LAnd) {
752             os << "&&" << "' is ";
753
754             if (*(Src->succ_begin()+1) == Dst) {
755               os << "false";
756               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
757               PathDiagnosticLocation Start =
758                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
759               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
760                   Start, End, os.str()));
761             }
762             else {
763               os << "true";
764               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
765               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
766               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
767                   Start, End, os.str()));
768             }
769           }
770           else {
771             assert(B->getOpcode() == BO_LOr);
772             os << "||" << "' is ";
773
774             if (*(Src->succ_begin()+1) == Dst) {
775               os << "false";
776               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
777               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
778               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
779                   Start, End, os.str()));
780             }
781             else {
782               os << "true";
783               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
784               PathDiagnosticLocation Start =
785                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
786               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
787                   Start, End, os.str()));
788             }
789           }
790
791           break;
792         }
793
794         case Stmt::DoStmtClass:  {
795           if (*(Src->succ_begin()) == Dst) {
796             std::string sbuf;
797             llvm::raw_string_ostream os(sbuf);
798
799             os << "Loop condition is true. ";
800             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
801
802             if (const Stmt *S = End.asStmt())
803               End = PDB.getEnclosingStmtLocation(S);
804
805             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
806                 Start, End, os.str()));
807           }
808           else {
809             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
810
811             if (const Stmt *S = End.asStmt())
812               End = PDB.getEnclosingStmtLocation(S);
813
814             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
815                 Start, End, "Loop condition is false.  Exiting loop"));
816           }
817
818           break;
819         }
820
821         case Stmt::WhileStmtClass:
822         case Stmt::ForStmtClass: {
823           if (*(Src->succ_begin()+1) == Dst) {
824             std::string sbuf;
825             llvm::raw_string_ostream os(sbuf);
826
827             os << "Loop condition is false. ";
828             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
829             if (const Stmt *S = End.asStmt())
830               End = PDB.getEnclosingStmtLocation(S);
831
832             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
833                 Start, End, os.str()));
834           }
835           else {
836             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
837             if (const Stmt *S = End.asStmt())
838               End = PDB.getEnclosingStmtLocation(S);
839
840             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
841                 Start, End, "Loop condition is true.  Entering loop body"));
842           }
843
844           break;
845         }
846
847         case Stmt::IfStmtClass: {
848           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
849
850           if (const Stmt *S = End.asStmt())
851             End = PDB.getEnclosingStmtLocation(S);
852
853           if (*(Src->succ_begin()+1) == Dst)
854             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
855                 Start, End, "Taking false branch"));
856           else
857             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
858                 Start, End, "Taking true branch"));
859
860           break;
861         }
862         }
863       }
864     } while(0);
865
866     if (NextNode) {
867       // Add diagnostic pieces from custom visitors.
868       BugReport *R = PDB.getBugReport();
869       for (auto &V : visitors) {
870         if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) {
871           PD.getActivePath().push_front(p);
872           updateStackPiecesWithMessage(p, CallStack);
873         }
874       }
875     }
876   }
877
878   if (!PDB.getBugReport()->isValid())
879     return false;
880
881   // After constructing the full PathDiagnostic, do a pass over it to compact
882   // PathDiagnosticPieces that occur within a macro.
883   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
884   return true;
885 }
886
887 //===----------------------------------------------------------------------===//
888 // "Extensive" PathDiagnostic generation.
889 //===----------------------------------------------------------------------===//
890
891 static bool IsControlFlowExpr(const Stmt *S) {
892   const Expr *E = dyn_cast<Expr>(S);
893
894   if (!E)
895     return false;
896
897   E = E->IgnoreParenCasts();
898
899   if (isa<AbstractConditionalOperator>(E))
900     return true;
901
902   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
903     if (B->isLogicalOp())
904       return true;
905
906   return false;
907 }
908
909 namespace {
910 class ContextLocation : public PathDiagnosticLocation {
911   bool IsDead;
912 public:
913   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
914     : PathDiagnosticLocation(L), IsDead(isdead) {}
915
916   void markDead() { IsDead = true; }
917   bool isDead() const { return IsDead; }
918 };
919
920 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
921                                               const LocationContext *LC,
922                                               bool firstCharOnly = false) {
923   if (const Stmt *S = L.asStmt()) {
924     const Stmt *Original = S;
925     while (1) {
926       // Adjust the location for some expressions that are best referenced
927       // by one of their subexpressions.
928       switch (S->getStmtClass()) {
929         default:
930           break;
931         case Stmt::ParenExprClass:
932         case Stmt::GenericSelectionExprClass:
933           S = cast<Expr>(S)->IgnoreParens();
934           firstCharOnly = true;
935           continue;
936         case Stmt::BinaryConditionalOperatorClass:
937         case Stmt::ConditionalOperatorClass:
938           S = cast<AbstractConditionalOperator>(S)->getCond();
939           firstCharOnly = true;
940           continue;
941         case Stmt::ChooseExprClass:
942           S = cast<ChooseExpr>(S)->getCond();
943           firstCharOnly = true;
944           continue;
945         case Stmt::BinaryOperatorClass:
946           S = cast<BinaryOperator>(S)->getLHS();
947           firstCharOnly = true;
948           continue;
949       }
950
951       break;
952     }
953
954     if (S != Original)
955       L = PathDiagnosticLocation(S, L.getManager(), LC);
956   }
957
958   if (firstCharOnly)
959     L  = PathDiagnosticLocation::createSingleLocation(L);
960   
961   return L;
962 }
963
964 class EdgeBuilder {
965   std::vector<ContextLocation> CLocs;
966   typedef std::vector<ContextLocation>::iterator iterator;
967   PathDiagnostic &PD;
968   PathDiagnosticBuilder &PDB;
969   PathDiagnosticLocation PrevLoc;
970
971   bool IsConsumedExpr(const PathDiagnosticLocation &L);
972
973   bool containsLocation(const PathDiagnosticLocation &Container,
974                         const PathDiagnosticLocation &Containee);
975
976   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
977
978
979
980   void popLocation() {
981     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
982       // For contexts, we only one the first character as the range.
983       rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
984     }
985     CLocs.pop_back();
986   }
987
988 public:
989   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
990     : PD(pd), PDB(pdb) {
991
992       // If the PathDiagnostic already has pieces, add the enclosing statement
993       // of the first piece as a context as well.
994       if (!PD.path.empty()) {
995         PrevLoc = (*PD.path.begin())->getLocation();
996
997         if (const Stmt *S = PrevLoc.asStmt())
998           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
999       }
1000   }
1001
1002   ~EdgeBuilder() {
1003     while (!CLocs.empty()) popLocation();
1004     
1005     // Finally, add an initial edge from the start location of the first
1006     // statement (if it doesn't already exist).
1007     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
1008                                                        PDB.LC,
1009                                                        PDB.getSourceManager());
1010     if (L.isValid())
1011       rawAddEdge(L);
1012   }
1013
1014   void flushLocations() {
1015     while (!CLocs.empty())
1016       popLocation();
1017     PrevLoc = PathDiagnosticLocation();
1018   }
1019   
1020   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
1021                bool IsPostJump = false);
1022
1023   void rawAddEdge(PathDiagnosticLocation NewLoc);
1024
1025   void addContext(const Stmt *S);
1026   void addContext(const PathDiagnosticLocation &L);
1027   void addExtendedContext(const Stmt *S);
1028 };
1029 } // end anonymous namespace
1030
1031
1032 PathDiagnosticLocation
1033 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1034   if (const Stmt *S = L.asStmt()) {
1035     if (IsControlFlowExpr(S))
1036       return L;
1037
1038     return PDB.getEnclosingStmtLocation(S);
1039   }
1040
1041   return L;
1042 }
1043
1044 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1045                                    const PathDiagnosticLocation &Containee) {
1046
1047   if (Container == Containee)
1048     return true;
1049
1050   if (Container.asDecl())
1051     return true;
1052
1053   if (const Stmt *S = Containee.asStmt())
1054     if (const Stmt *ContainerS = Container.asStmt()) {
1055       while (S) {
1056         if (S == ContainerS)
1057           return true;
1058         S = PDB.getParent(S);
1059       }
1060       return false;
1061     }
1062
1063   // Less accurate: compare using source ranges.
1064   SourceRange ContainerR = Container.asRange();
1065   SourceRange ContaineeR = Containee.asRange();
1066
1067   SourceManager &SM = PDB.getSourceManager();
1068   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1069   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1070   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1071   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1072
1073   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1074   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1075   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1076   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1077
1078   assert(ContainerBegLine <= ContainerEndLine);
1079   assert(ContaineeBegLine <= ContaineeEndLine);
1080
1081   return (ContainerBegLine <= ContaineeBegLine &&
1082           ContainerEndLine >= ContaineeEndLine &&
1083           (ContainerBegLine != ContaineeBegLine ||
1084            SM.getExpansionColumnNumber(ContainerRBeg) <=
1085            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1086           (ContainerEndLine != ContaineeEndLine ||
1087            SM.getExpansionColumnNumber(ContainerREnd) >=
1088            SM.getExpansionColumnNumber(ContaineeREnd)));
1089 }
1090
1091 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1092   if (!PrevLoc.isValid()) {
1093     PrevLoc = NewLoc;
1094     return;
1095   }
1096
1097   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1098   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1099
1100   if (PrevLocClean.asLocation().isInvalid()) {
1101     PrevLoc = NewLoc;
1102     return;
1103   }
1104   
1105   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1106     return;
1107
1108   // FIXME: Ignore intra-macro edges for now.
1109   if (NewLocClean.asLocation().getExpansionLoc() ==
1110       PrevLocClean.asLocation().getExpansionLoc())
1111     return;
1112
1113   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1114   PrevLoc = NewLoc;
1115 }
1116
1117 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1118                           bool IsPostJump) {
1119
1120   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1121     return;
1122
1123   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1124
1125   while (!CLocs.empty()) {
1126     ContextLocation &TopContextLoc = CLocs.back();
1127
1128     // Is the top location context the same as the one for the new location?
1129     if (TopContextLoc == CLoc) {
1130       if (alwaysAdd) {
1131         if (IsConsumedExpr(TopContextLoc))
1132           TopContextLoc.markDead();
1133
1134         rawAddEdge(NewLoc);
1135       }
1136
1137       if (IsPostJump)
1138         TopContextLoc.markDead();
1139       return;
1140     }
1141
1142     if (containsLocation(TopContextLoc, CLoc)) {
1143       if (alwaysAdd) {
1144         rawAddEdge(NewLoc);
1145
1146         if (IsConsumedExpr(CLoc)) {
1147           CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1148           return;
1149         }
1150       }
1151
1152       CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1153       return;
1154     }
1155
1156     // Context does not contain the location.  Flush it.
1157     popLocation();
1158   }
1159
1160   // If we reach here, there is no enclosing context.  Just add the edge.
1161   rawAddEdge(NewLoc);
1162 }
1163
1164 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1165   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1166     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1167
1168   return false;
1169 }
1170
1171 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1172   if (!S)
1173     return;
1174
1175   const Stmt *Parent = PDB.getParent(S);
1176   while (Parent) {
1177     if (isa<CompoundStmt>(Parent))
1178       Parent = PDB.getParent(Parent);
1179     else
1180       break;
1181   }
1182
1183   if (Parent) {
1184     switch (Parent->getStmtClass()) {
1185       case Stmt::DoStmtClass:
1186       case Stmt::ObjCAtSynchronizedStmtClass:
1187         addContext(Parent);
1188       default:
1189         break;
1190     }
1191   }
1192
1193   addContext(S);
1194 }
1195
1196 void EdgeBuilder::addContext(const Stmt *S) {
1197   if (!S)
1198     return;
1199
1200   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1201   addContext(L);
1202 }
1203
1204 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1205   while (!CLocs.empty()) {
1206     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1207
1208     // Is the top location context the same as the one for the new location?
1209     if (TopContextLoc == L)
1210       return;
1211
1212     if (containsLocation(TopContextLoc, L)) {
1213       CLocs.push_back(L);
1214       return;
1215     }
1216
1217     // Context does not contain the location.  Flush it.
1218     popLocation();
1219   }
1220
1221   CLocs.push_back(L);
1222 }
1223
1224 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1225 // and values by tracing interesting calculations backwards through evaluated
1226 // expressions along a path.  This is probably overly complicated, but the idea
1227 // is that if an expression computed an "interesting" value, the child
1228 // expressions are are also likely to be "interesting" as well (which then
1229 // propagates to the values they in turn compute).  This reverse propagation
1230 // is needed to track interesting correlations across function call boundaries,
1231 // where formal arguments bind to actual arguments, etc.  This is also needed
1232 // because the constraint solver sometimes simplifies certain symbolic values
1233 // into constants when appropriate, and this complicates reasoning about
1234 // interesting values.
1235 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1236
1237 static void reversePropagateIntererstingSymbols(BugReport &R,
1238                                                 InterestingExprs &IE,
1239                                                 const ProgramState *State,
1240                                                 const Expr *Ex,
1241                                                 const LocationContext *LCtx) {
1242   SVal V = State->getSVal(Ex, LCtx);
1243   if (!(R.isInteresting(V) || IE.count(Ex)))
1244     return;
1245   
1246   switch (Ex->getStmtClass()) {
1247     default:
1248       if (!isa<CastExpr>(Ex))
1249         break;
1250       // Fall through.
1251     case Stmt::BinaryOperatorClass:
1252     case Stmt::UnaryOperatorClass: {
1253       for (Stmt::const_child_iterator CI = Ex->child_begin(),
1254             CE = Ex->child_end();
1255             CI != CE; ++CI) {
1256         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1257           IE.insert(child);
1258           SVal ChildV = State->getSVal(child, LCtx);
1259           R.markInteresting(ChildV);
1260         }
1261       }
1262       break;
1263     }
1264   }
1265   
1266   R.markInteresting(V);
1267 }
1268
1269 static void reversePropagateInterestingSymbols(BugReport &R,
1270                                                InterestingExprs &IE,
1271                                                const ProgramState *State,
1272                                                const LocationContext *CalleeCtx,
1273                                                const LocationContext *CallerCtx)
1274 {
1275   // FIXME: Handle non-CallExpr-based CallEvents.
1276   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1277   const Stmt *CallSite = Callee->getCallSite();
1278   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1279     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1280       FunctionDecl::param_const_iterator PI = FD->param_begin(), 
1281                                          PE = FD->param_end();
1282       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1283       for (; AI != AE && PI != PE; ++AI, ++PI) {
1284         if (const Expr *ArgE = *AI) {
1285           if (const ParmVarDecl *PD = *PI) {
1286             Loc LV = State->getLValue(PD, CalleeCtx);
1287             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1288               IE.insert(ArgE);
1289           }
1290         }
1291       }
1292     }
1293   }
1294 }
1295
1296 //===----------------------------------------------------------------------===//
1297 // Functions for determining if a loop was executed 0 times.
1298 //===----------------------------------------------------------------------===//
1299
1300 static bool isLoop(const Stmt *Term) {
1301   switch (Term->getStmtClass()) {
1302     case Stmt::ForStmtClass:
1303     case Stmt::WhileStmtClass:
1304     case Stmt::ObjCForCollectionStmtClass:
1305     case Stmt::CXXForRangeStmtClass:
1306       return true;
1307     default:
1308       // Note that we intentionally do not include do..while here.
1309       return false;
1310   }
1311 }
1312
1313 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1314   const CFGBlock *Src = BE->getSrc();
1315   assert(Src->succ_size() == 2);
1316   return (*(Src->succ_begin()+1) == BE->getDst());
1317 }
1318
1319 /// Return true if the terminator is a loop and the destination is the
1320 /// false branch.
1321 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1322   if (!isLoop(Term))
1323     return false;
1324
1325   // Did we take the false branch?
1326   return isJumpToFalseBranch(BE);
1327 }
1328
1329 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1330   while (SubS) {
1331     if (SubS == S)
1332       return true;
1333     SubS = PM.getParent(SubS);
1334   }
1335   return false;
1336 }
1337
1338 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1339                                      const ExplodedNode *N) {
1340   while (N) {
1341     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1342     if (SP) {
1343       const Stmt *S = SP->getStmt();
1344       if (!isContainedByStmt(PM, Term, S))
1345         return S;
1346     }
1347     N = N->getFirstPred();
1348   }
1349   return nullptr;
1350 }
1351
1352 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1353   const Stmt *LoopBody = nullptr;
1354   switch (Term->getStmtClass()) {
1355     case Stmt::CXXForRangeStmtClass: {
1356       const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
1357       if (isContainedByStmt(PM, FR->getInc(), S))
1358         return true;
1359       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1360         return true;
1361       LoopBody = FR->getBody();
1362       break;
1363     }
1364     case Stmt::ForStmtClass: {
1365       const ForStmt *FS = cast<ForStmt>(Term);
1366       if (isContainedByStmt(PM, FS->getInc(), S))
1367         return true;
1368       LoopBody = FS->getBody();
1369       break;
1370     }
1371     case Stmt::ObjCForCollectionStmtClass: {
1372       const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1373       LoopBody = FC->getBody();
1374       break;
1375     }
1376     case Stmt::WhileStmtClass:
1377       LoopBody = cast<WhileStmt>(Term)->getBody();
1378       break;
1379     default:
1380       return false;
1381   }
1382   return isContainedByStmt(PM, LoopBody, S);
1383 }
1384
1385 //===----------------------------------------------------------------------===//
1386 // Top-level logic for generating extensive path diagnostics.
1387 //===----------------------------------------------------------------------===//
1388
1389 static bool GenerateExtensivePathDiagnostic(
1390     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
1391     LocationContextMap &LCM,
1392     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
1393   EdgeBuilder EB(PD, PDB);
1394   const SourceManager& SM = PDB.getSourceManager();
1395   StackDiagVector CallStack;
1396   InterestingExprs IE;
1397
1398   const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin());
1399   while (NextNode) {
1400     N = NextNode;
1401     NextNode = N->getFirstPred();
1402     ProgramPoint P = N->getLocation();
1403
1404     do {
1405       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1406         if (const Expr *Ex = PS->getStmtAs<Expr>())
1407           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1408                                               N->getState().get(), Ex,
1409                                               N->getLocationContext());
1410       }
1411       
1412       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1413         const Stmt *S = CE->getCalleeContext()->getCallSite();
1414         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1415             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1416                                                 N->getState().get(), Ex,
1417                                                 N->getLocationContext());
1418         }
1419         
1420         PathDiagnosticCallPiece *C =
1421           PathDiagnosticCallPiece::construct(N, *CE, SM);
1422         LCM[&C->path] = CE->getCalleeContext();
1423
1424         EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1425         EB.flushLocations();
1426
1427         PD.getActivePath().push_front(C);
1428         PD.pushActivePath(&C->path);
1429         CallStack.push_back(StackDiagPair(C, N));
1430         break;
1431       }
1432       
1433       // Pop the call hierarchy if we are done walking the contents
1434       // of a function call.
1435       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1436         // Add an edge to the start of the function.
1437         const Decl *D = CE->getCalleeContext()->getDecl();
1438         PathDiagnosticLocation pos =
1439           PathDiagnosticLocation::createBegin(D, SM);
1440         EB.addEdge(pos);
1441         
1442         // Flush all locations, and pop the active path.
1443         bool VisitedEntireCall = PD.isWithinCall();
1444         EB.flushLocations();
1445         PD.popActivePath();
1446         PDB.LC = N->getLocationContext();
1447
1448         // Either we just added a bunch of stuff to the top-level path, or
1449         // we have a previous CallExitEnd.  If the former, it means that the
1450         // path terminated within a function call.  We must then take the
1451         // current contents of the active path and place it within
1452         // a new PathDiagnosticCallPiece.
1453         PathDiagnosticCallPiece *C;
1454         if (VisitedEntireCall) {
1455           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1456         } else {
1457           const Decl *Caller = CE->getLocationContext()->getDecl();
1458           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1459           LCM[&C->path] = CE->getCalleeContext();
1460         }
1461
1462         C->setCallee(*CE, SM);
1463         EB.addContext(C->getLocation());
1464
1465         if (!CallStack.empty()) {
1466           assert(CallStack.back().first == C);
1467           CallStack.pop_back();
1468         }
1469         break;
1470       }
1471       
1472       // Note that is important that we update the LocationContext
1473       // after looking at CallExits.  CallExit basically adds an
1474       // edge in the *caller*, so we don't want to update the LocationContext
1475       // too soon.
1476       PDB.LC = N->getLocationContext();
1477
1478       // Block edges.
1479       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1480         // Does this represent entering a call?  If so, look at propagating
1481         // interesting symbols across call boundaries.
1482         if (NextNode) {
1483           const LocationContext *CallerCtx = NextNode->getLocationContext();
1484           const LocationContext *CalleeCtx = PDB.LC;
1485           if (CallerCtx != CalleeCtx) {
1486             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1487                                                N->getState().get(),
1488                                                CalleeCtx, CallerCtx);
1489           }
1490         }
1491        
1492         // Are we jumping to the head of a loop?  Add a special diagnostic.
1493         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1494           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1495           const CompoundStmt *CS = nullptr;
1496
1497           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1498             CS = dyn_cast<CompoundStmt>(FS->getBody());
1499           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1500             CS = dyn_cast<CompoundStmt>(WS->getBody());
1501
1502           PathDiagnosticEventPiece *p =
1503             new PathDiagnosticEventPiece(L,
1504                                         "Looping back to the head of the loop");
1505           p->setPrunable(true);
1506
1507           EB.addEdge(p->getLocation(), true);
1508           PD.getActivePath().push_front(p);
1509
1510           if (CS) {
1511             PathDiagnosticLocation BL =
1512               PathDiagnosticLocation::createEndBrace(CS, SM);
1513             EB.addEdge(BL);
1514           }
1515         }
1516
1517         const CFGBlock *BSrc = BE->getSrc();
1518         ParentMap &PM = PDB.getParentMap();
1519
1520         if (const Stmt *Term = BSrc->getTerminator()) {
1521           // Are we jumping past the loop body without ever executing the
1522           // loop (because the condition was false)?
1523           if (isLoopJumpPastBody(Term, &*BE) &&
1524               !isInLoopBody(PM,
1525                             getStmtBeforeCond(PM,
1526                                               BSrc->getTerminatorCondition(),
1527                                               N),
1528                             Term)) {
1529             PathDiagnosticLocation L(Term, SM, PDB.LC);
1530             PathDiagnosticEventPiece *PE =
1531                 new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
1532             PE->setPrunable(true);
1533
1534             EB.addEdge(PE->getLocation(), true);
1535             PD.getActivePath().push_front(PE);
1536           }
1537
1538           // In any case, add the terminator as the current statement
1539           // context for control edges.
1540           EB.addContext(Term);
1541         }
1542
1543         break;
1544       }
1545
1546       if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1547         Optional<CFGElement> First = BE->getFirstElement();
1548         if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1549           const Stmt *stmt = S->getStmt();
1550           if (IsControlFlowExpr(stmt)) {
1551             // Add the proper context for '&&', '||', and '?'.
1552             EB.addContext(stmt);
1553           }
1554           else
1555             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1556         }
1557         
1558         break;
1559       }
1560       
1561       
1562     } while (0);
1563
1564     if (!NextNode)
1565       continue;
1566
1567     // Add pieces from custom visitors.
1568     BugReport *R = PDB.getBugReport();
1569     for (auto &V : visitors) {
1570       if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) {
1571         const PathDiagnosticLocation &Loc = p->getLocation();
1572         EB.addEdge(Loc, true);
1573         PD.getActivePath().push_front(p);
1574         updateStackPiecesWithMessage(p, CallStack);
1575
1576         if (const Stmt *S = Loc.asStmt())
1577           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1578       }
1579     }
1580   }
1581
1582   return PDB.getBugReport()->isValid();
1583 }
1584
1585 /// \brief Adds a sanitized control-flow diagnostic edge to a path.
1586 static void addEdgeToPath(PathPieces &path,
1587                           PathDiagnosticLocation &PrevLoc,
1588                           PathDiagnosticLocation NewLoc,
1589                           const LocationContext *LC) {
1590   if (!NewLoc.isValid())
1591     return;
1592
1593   SourceLocation NewLocL = NewLoc.asLocation();
1594   if (NewLocL.isInvalid())
1595     return;
1596
1597   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1598     PrevLoc = NewLoc;
1599     return;
1600   }
1601
1602   // Ignore self-edges, which occur when there are multiple nodes at the same
1603   // statement.
1604   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1605     return;
1606
1607   path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
1608                                                      PrevLoc));
1609   PrevLoc = NewLoc;
1610 }
1611
1612 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1613 /// which returns the element for ObjCForCollectionStmts.
1614 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1615   const Stmt *S = B->getTerminatorCondition();
1616   if (const ObjCForCollectionStmt *FS =
1617       dyn_cast_or_null<ObjCForCollectionStmt>(S))
1618     return FS->getElement();
1619   return S;
1620 }
1621
1622 static const char StrEnteringLoop[] = "Entering loop body";
1623 static const char StrLoopBodyZero[] = "Loop body executed 0 times";
1624 static const char StrLoopRangeEmpty[] =
1625   "Loop body skipped when range is empty";
1626 static const char StrLoopCollectionEmpty[] =
1627   "Loop body skipped when collection is empty";
1628
1629 static bool GenerateAlternateExtensivePathDiagnostic(
1630     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
1631     LocationContextMap &LCM,
1632     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
1633
1634   BugReport *report = PDB.getBugReport();
1635   const SourceManager& SM = PDB.getSourceManager();
1636   StackDiagVector CallStack;
1637   InterestingExprs IE;
1638
1639   PathDiagnosticLocation PrevLoc = PD.getLocation();
1640
1641   const ExplodedNode *NextNode = N->getFirstPred();
1642   while (NextNode) {
1643     N = NextNode;
1644     NextNode = N->getFirstPred();
1645     ProgramPoint P = N->getLocation();
1646
1647     do {
1648       // Have we encountered an entrance to a call?  It may be
1649       // the case that we have not encountered a matching
1650       // call exit before this point.  This means that the path
1651       // terminated within the call itself.
1652       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1653         // Add an edge to the start of the function.
1654         const StackFrameContext *CalleeLC = CE->getCalleeContext();
1655         const Decl *D = CalleeLC->getDecl();
1656         addEdgeToPath(PD.getActivePath(), PrevLoc,
1657                       PathDiagnosticLocation::createBegin(D, SM),
1658                       CalleeLC);
1659
1660         // Did we visit an entire call?
1661         bool VisitedEntireCall = PD.isWithinCall();
1662         PD.popActivePath();
1663
1664         PathDiagnosticCallPiece *C;
1665         if (VisitedEntireCall) {
1666           PathDiagnosticPiece *P = PD.getActivePath().front().get();
1667           C = cast<PathDiagnosticCallPiece>(P);
1668         } else {
1669           const Decl *Caller = CE->getLocationContext()->getDecl();
1670           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1671
1672           // Since we just transferred the path over to the call piece,
1673           // reset the mapping from active to location context.
1674           assert(PD.getActivePath().size() == 1 &&
1675                  PD.getActivePath().front() == C);
1676           LCM[&PD.getActivePath()] = nullptr;
1677
1678           // Record the location context mapping for the path within
1679           // the call.
1680           assert(LCM[&C->path] == nullptr ||
1681                  LCM[&C->path] == CE->getCalleeContext());
1682           LCM[&C->path] = CE->getCalleeContext();
1683
1684           // If this is the first item in the active path, record
1685           // the new mapping from active path to location context.
1686           const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1687           if (!NewLC)
1688             NewLC = N->getLocationContext();
1689
1690           PDB.LC = NewLC;
1691         }
1692         C->setCallee(*CE, SM);
1693
1694         // Update the previous location in the active path.
1695         PrevLoc = C->getLocation();
1696
1697         if (!CallStack.empty()) {
1698           assert(CallStack.back().first == C);
1699           CallStack.pop_back();
1700         }
1701         break;
1702       }
1703
1704       // Query the location context here and the previous location
1705       // as processing CallEnter may change the active path.
1706       PDB.LC = N->getLocationContext();
1707
1708       // Record the mapping from the active path to the location
1709       // context.
1710       assert(!LCM[&PD.getActivePath()] ||
1711              LCM[&PD.getActivePath()] == PDB.LC);
1712       LCM[&PD.getActivePath()] = PDB.LC;
1713
1714       // Have we encountered an exit from a function call?
1715       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1716         const Stmt *S = CE->getCalleeContext()->getCallSite();
1717         // Propagate the interesting symbols accordingly.
1718         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1719           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1720                                               N->getState().get(), Ex,
1721                                               N->getLocationContext());
1722         }
1723
1724         // We are descending into a call (backwards).  Construct
1725         // a new call piece to contain the path pieces for that call.
1726         PathDiagnosticCallPiece *C =
1727           PathDiagnosticCallPiece::construct(N, *CE, SM);
1728
1729         // Record the location context for this call piece.
1730         LCM[&C->path] = CE->getCalleeContext();
1731
1732         // Add the edge to the return site.
1733         addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1734         PD.getActivePath().push_front(C);
1735         PrevLoc.invalidate();
1736
1737         // Make the contents of the call the active path for now.
1738         PD.pushActivePath(&C->path);
1739         CallStack.push_back(StackDiagPair(C, N));
1740         break;
1741       }
1742
1743       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1744         // For expressions, make sure we propagate the
1745         // interesting symbols correctly.
1746         if (const Expr *Ex = PS->getStmtAs<Expr>())
1747           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1748                                               N->getState().get(), Ex,
1749                                               N->getLocationContext());
1750
1751         // Add an edge.  If this is an ObjCForCollectionStmt do
1752         // not add an edge here as it appears in the CFG both
1753         // as a terminator and as a terminator condition.
1754         if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1755           PathDiagnosticLocation L =
1756             PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1757           addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1758         }
1759         break;
1760       }
1761
1762       // Block edges.
1763       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1764         // Does this represent entering a call?  If so, look at propagating
1765         // interesting symbols across call boundaries.
1766         if (NextNode) {
1767           const LocationContext *CallerCtx = NextNode->getLocationContext();
1768           const LocationContext *CalleeCtx = PDB.LC;
1769           if (CallerCtx != CalleeCtx) {
1770             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1771                                                N->getState().get(),
1772                                                CalleeCtx, CallerCtx);
1773           }
1774         }
1775
1776         // Are we jumping to the head of a loop?  Add a special diagnostic.
1777         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1778           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1779           const Stmt *Body = nullptr;
1780
1781           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1782             Body = FS->getBody();
1783           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1784             Body = WS->getBody();
1785           else if (const ObjCForCollectionStmt *OFS =
1786                      dyn_cast<ObjCForCollectionStmt>(Loop)) {
1787             Body = OFS->getBody();
1788           } else if (const CXXForRangeStmt *FRS =
1789                        dyn_cast<CXXForRangeStmt>(Loop)) {
1790             Body = FRS->getBody();
1791           }
1792           // do-while statements are explicitly excluded here
1793
1794           PathDiagnosticEventPiece *p =
1795             new PathDiagnosticEventPiece(L, "Looping back to the head "
1796                                             "of the loop");
1797           p->setPrunable(true);
1798
1799           addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1800           PD.getActivePath().push_front(p);
1801
1802           if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1803             addEdgeToPath(PD.getActivePath(), PrevLoc,
1804                           PathDiagnosticLocation::createEndBrace(CS, SM),
1805                           PDB.LC);
1806           }
1807         }
1808
1809         const CFGBlock *BSrc = BE->getSrc();
1810         ParentMap &PM = PDB.getParentMap();
1811
1812         if (const Stmt *Term = BSrc->getTerminator()) {
1813           // Are we jumping past the loop body without ever executing the
1814           // loop (because the condition was false)?
1815           if (isLoop(Term)) {
1816             const Stmt *TermCond = getTerminatorCondition(BSrc);
1817             bool IsInLoopBody =
1818               isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1819
1820             const char *str = nullptr;
1821
1822             if (isJumpToFalseBranch(&*BE)) {
1823               if (!IsInLoopBody) {
1824                 if (isa<ObjCForCollectionStmt>(Term)) {
1825                   str = StrLoopCollectionEmpty;
1826                 } else if (isa<CXXForRangeStmt>(Term)) {
1827                   str = StrLoopRangeEmpty;
1828                 } else {
1829                   str = StrLoopBodyZero;
1830                 }
1831               }
1832             } else {
1833               str = StrEnteringLoop;
1834             }
1835
1836             if (str) {
1837               PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
1838               PathDiagnosticEventPiece *PE =
1839                 new PathDiagnosticEventPiece(L, str);
1840               PE->setPrunable(true);
1841               addEdgeToPath(PD.getActivePath(), PrevLoc,
1842                             PE->getLocation(), PDB.LC);
1843               PD.getActivePath().push_front(PE);
1844             }
1845           } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1846                      isa<GotoStmt>(Term)) {
1847             PathDiagnosticLocation L(Term, SM, PDB.LC);
1848             addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1849           }
1850         }
1851         break;
1852       }
1853     } while (0);
1854
1855     if (!NextNode)
1856       continue;
1857
1858     // Add pieces from custom visitors.
1859     for (auto &V : visitors) {
1860       if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *report)) {
1861         addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1862         PD.getActivePath().push_front(p);
1863         updateStackPiecesWithMessage(p, CallStack);
1864       }
1865     }
1866   }
1867
1868   // Add an edge to the start of the function.
1869   // We'll prune it out later, but it helps make diagnostics more uniform.
1870   const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
1871   const Decl *D = CalleeLC->getDecl();
1872   addEdgeToPath(PD.getActivePath(), PrevLoc,
1873                 PathDiagnosticLocation::createBegin(D, SM),
1874                 CalleeLC);
1875
1876   return report->isValid();
1877 }
1878
1879 static const Stmt *getLocStmt(PathDiagnosticLocation L) {
1880   if (!L.isValid())
1881     return nullptr;
1882   return L.asStmt();
1883 }
1884
1885 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1886   if (!S)
1887     return nullptr;
1888
1889   while (true) {
1890     S = PM.getParentIgnoreParens(S);
1891
1892     if (!S)
1893       break;
1894
1895     if (isa<ExprWithCleanups>(S) ||
1896         isa<CXXBindTemporaryExpr>(S) ||
1897         isa<SubstNonTypeTemplateParmExpr>(S))
1898       continue;
1899
1900     break;
1901   }
1902
1903   return S;
1904 }
1905
1906 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1907   switch (S->getStmtClass()) {
1908     case Stmt::BinaryOperatorClass: {
1909       const BinaryOperator *BO = cast<BinaryOperator>(S);
1910       if (!BO->isLogicalOp())
1911         return false;
1912       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1913     }
1914     case Stmt::IfStmtClass:
1915       return cast<IfStmt>(S)->getCond() == Cond;
1916     case Stmt::ForStmtClass:
1917       return cast<ForStmt>(S)->getCond() == Cond;
1918     case Stmt::WhileStmtClass:
1919       return cast<WhileStmt>(S)->getCond() == Cond;
1920     case Stmt::DoStmtClass:
1921       return cast<DoStmt>(S)->getCond() == Cond;
1922     case Stmt::ChooseExprClass:
1923       return cast<ChooseExpr>(S)->getCond() == Cond;
1924     case Stmt::IndirectGotoStmtClass:
1925       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1926     case Stmt::SwitchStmtClass:
1927       return cast<SwitchStmt>(S)->getCond() == Cond;
1928     case Stmt::BinaryConditionalOperatorClass:
1929       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1930     case Stmt::ConditionalOperatorClass: {
1931       const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1932       return CO->getCond() == Cond ||
1933              CO->getLHS() == Cond ||
1934              CO->getRHS() == Cond;
1935     }
1936     case Stmt::ObjCForCollectionStmtClass:
1937       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1938     case Stmt::CXXForRangeStmtClass: {
1939       const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
1940       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1941     }
1942     default:
1943       return false;
1944   }
1945 }
1946
1947 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1948   if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
1949     return FS->getInc() == S || FS->getInit() == S;
1950   if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
1951     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1952            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1953   return false;
1954 }
1955
1956 typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
1957         OptimizedCallsSet;
1958
1959 /// Adds synthetic edges from top-level statements to their subexpressions.
1960 ///
1961 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1962 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1963 /// we'd like to see an edge from A to B, then another one from B to B.1.
1964 static void addContextEdges(PathPieces &pieces, SourceManager &SM,
1965                             const ParentMap &PM, const LocationContext *LCtx) {
1966   PathPieces::iterator Prev = pieces.end();
1967   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1968        Prev = I, ++I) {
1969     PathDiagnosticControlFlowPiece *Piece =
1970       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
1971
1972     if (!Piece)
1973       continue;
1974
1975     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1976     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1977
1978     PathDiagnosticLocation NextSrcContext = SrcLoc;
1979     const Stmt *InnerStmt = nullptr;
1980     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1981       SrcContexts.push_back(NextSrcContext);
1982       InnerStmt = NextSrcContext.asStmt();
1983       NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
1984                                                 /*allowNested=*/true);
1985     }
1986
1987     // Repeatedly split the edge as necessary.
1988     // This is important for nested logical expressions (||, &&, ?:) where we
1989     // want to show all the levels of context.
1990     while (true) {
1991       const Stmt *Dst = getLocStmt(Piece->getEndLocation());
1992
1993       // We are looking at an edge. Is the destination within a larger
1994       // expression?
1995       PathDiagnosticLocation DstContext =
1996         getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
1997       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1998         break;
1999
2000       // If the source is in the same context, we're already good.
2001       if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
2002           SrcContexts.end())
2003         break;
2004
2005       // Update the subexpression node to point to the context edge.
2006       Piece->setStartLocation(DstContext);
2007
2008       // Try to extend the previous edge if it's at the same level as the source
2009       // context.
2010       if (Prev != E) {
2011         PathDiagnosticControlFlowPiece *PrevPiece =
2012           dyn_cast<PathDiagnosticControlFlowPiece>(*Prev);
2013
2014         if (PrevPiece) {
2015           if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
2016             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
2017             if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
2018               PrevPiece->setEndLocation(DstContext);
2019               break;
2020             }
2021           }
2022         }
2023       }
2024
2025       // Otherwise, split the current edge into a context edge and a
2026       // subexpression edge. Note that the context statement may itself have
2027       // context.
2028       Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext);
2029       I = pieces.insert(I, Piece);
2030     }
2031   }
2032 }
2033
2034 /// \brief Move edges from a branch condition to a branch target
2035 ///        when the condition is simple.
2036 ///
2037 /// This restructures some of the work of addContextEdges.  That function
2038 /// creates edges this may destroy, but they work together to create a more
2039 /// aesthetically set of edges around branches.  After the call to
2040 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
2041 /// the branch to the branch condition, and (3) an edge from the branch
2042 /// condition to the branch target.  We keep (1), but may wish to remove (2)
2043 /// and move the source of (3) to the branch if the branch condition is simple.
2044 ///
2045 static void simplifySimpleBranches(PathPieces &pieces) {
2046   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
2047
2048     PathDiagnosticControlFlowPiece *PieceI =
2049       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2050
2051     if (!PieceI)
2052       continue;
2053
2054     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2055     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2056
2057     if (!s1Start || !s1End)
2058       continue;
2059
2060     PathPieces::iterator NextI = I; ++NextI;
2061     if (NextI == E)
2062       break;
2063
2064     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
2065
2066     while (true) {
2067       if (NextI == E)
2068         break;
2069
2070       PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI);
2071       if (EV) {
2072         StringRef S = EV->getString();
2073         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
2074             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
2075           ++NextI;
2076           continue;
2077         }
2078         break;
2079       }
2080
2081       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2082       break;
2083     }
2084
2085     if (!PieceNextI)
2086       continue;
2087
2088     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2089     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2090
2091     if (!s2Start || !s2End || s1End != s2Start)
2092       continue;
2093
2094     // We only perform this transformation for specific branch kinds.
2095     // We don't want to do this for do..while, for example.
2096     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
2097           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
2098           isa<CXXForRangeStmt>(s1Start)))
2099       continue;
2100
2101     // Is s1End the branch condition?
2102     if (!isConditionForTerminator(s1Start, s1End))
2103       continue;
2104
2105     // Perform the hoisting by eliminating (2) and changing the start
2106     // location of (3).
2107     PieceNextI->setStartLocation(PieceI->getStartLocation());
2108     I = pieces.erase(I);
2109   }
2110 }
2111
2112 /// Returns the number of bytes in the given (character-based) SourceRange.
2113 ///
2114 /// If the locations in the range are not on the same line, returns None.
2115 ///
2116 /// Note that this does not do a precise user-visible character or column count.
2117 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2118                                               SourceRange Range) {
2119   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
2120                              SM.getExpansionRange(Range.getEnd()).second);
2121
2122   FileID FID = SM.getFileID(ExpansionRange.getBegin());
2123   if (FID != SM.getFileID(ExpansionRange.getEnd()))
2124     return None;
2125
2126   bool Invalid;
2127   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
2128   if (Invalid)
2129     return None;
2130
2131   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
2132   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
2133   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
2134
2135   // We're searching the raw bytes of the buffer here, which might include
2136   // escaped newlines and such. That's okay; we're trying to decide whether the
2137   // SourceRange is covering a large or small amount of space in the user's
2138   // editor.
2139   if (Snippet.find_first_of("\r\n") != StringRef::npos)
2140     return None;
2141
2142   // This isn't Unicode-aware, but it doesn't need to be.
2143   return Snippet.size();
2144 }
2145
2146 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
2147 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2148                                               const Stmt *S) {
2149   return getLengthOnSingleLine(SM, S->getSourceRange());
2150 }
2151
2152 /// Eliminate two-edge cycles created by addContextEdges().
2153 ///
2154 /// Once all the context edges are in place, there are plenty of cases where
2155 /// there's a single edge from a top-level statement to a subexpression,
2156 /// followed by a single path note, and then a reverse edge to get back out to
2157 /// the top level. If the statement is simple enough, the subexpression edges
2158 /// just add noise and make it harder to understand what's going on.
2159 ///
2160 /// This function only removes edges in pairs, because removing only one edge
2161 /// might leave other edges dangling.
2162 ///
2163 /// This will not remove edges in more complicated situations:
2164 /// - if there is more than one "hop" leading to or from a subexpression.
2165 /// - if there is an inlined call between the edges instead of a single event.
2166 /// - if the whole statement is large enough that having subexpression arrows
2167 ///   might be helpful.
2168 static void removeContextCycles(PathPieces &Path, SourceManager &SM,
2169                                 ParentMap &PM) {
2170   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
2171     // Pattern match the current piece and its successor.
2172     PathDiagnosticControlFlowPiece *PieceI =
2173       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2174
2175     if (!PieceI) {
2176       ++I;
2177       continue;
2178     }
2179
2180     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2181     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2182
2183     PathPieces::iterator NextI = I; ++NextI;
2184     if (NextI == E)
2185       break;
2186
2187     PathDiagnosticControlFlowPiece *PieceNextI =
2188       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2189
2190     if (!PieceNextI) {
2191       if (isa<PathDiagnosticEventPiece>(*NextI)) {
2192         ++NextI;
2193         if (NextI == E)
2194           break;
2195         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2196       }
2197
2198       if (!PieceNextI) {
2199         ++I;
2200         continue;
2201       }
2202     }
2203
2204     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2205     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2206
2207     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
2208       const size_t MAX_SHORT_LINE_LENGTH = 80;
2209       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
2210       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
2211         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
2212         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
2213           Path.erase(I);
2214           I = Path.erase(NextI);
2215           continue;
2216         }
2217       }
2218     }
2219
2220     ++I;
2221   }
2222 }
2223
2224 /// \brief Return true if X is contained by Y.
2225 static bool lexicalContains(ParentMap &PM,
2226                             const Stmt *X,
2227                             const Stmt *Y) {
2228   while (X) {
2229     if (X == Y)
2230       return true;
2231     X = PM.getParent(X);
2232   }
2233   return false;
2234 }
2235
2236 // Remove short edges on the same line less than 3 columns in difference.
2237 static void removePunyEdges(PathPieces &path,
2238                             SourceManager &SM,
2239                             ParentMap &PM) {
2240
2241   bool erased = false;
2242
2243   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
2244        erased ? I : ++I) {
2245
2246     erased = false;
2247
2248     PathDiagnosticControlFlowPiece *PieceI =
2249       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2250
2251     if (!PieceI)
2252       continue;
2253
2254     const Stmt *start = getLocStmt(PieceI->getStartLocation());
2255     const Stmt *end   = getLocStmt(PieceI->getEndLocation());
2256
2257     if (!start || !end)
2258       continue;
2259
2260     const Stmt *endParent = PM.getParent(end);
2261     if (!endParent)
2262       continue;
2263
2264     if (isConditionForTerminator(end, endParent))
2265       continue;
2266
2267     SourceLocation FirstLoc = start->getLocStart();
2268     SourceLocation SecondLoc = end->getLocStart();
2269
2270     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
2271       continue;
2272     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
2273       std::swap(SecondLoc, FirstLoc);
2274
2275     SourceRange EdgeRange(FirstLoc, SecondLoc);
2276     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
2277
2278     // If the statements are on different lines, continue.
2279     if (!ByteWidth)
2280       continue;
2281
2282     const size_t MAX_PUNY_EDGE_LENGTH = 2;
2283     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
2284       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
2285       // there might not be enough /columns/. A proper user-visible column count
2286       // is probably too expensive, though.
2287       I = path.erase(I);
2288       erased = true;
2289       continue;
2290     }
2291   }
2292 }
2293
2294 static void removeIdenticalEvents(PathPieces &path) {
2295   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
2296     PathDiagnosticEventPiece *PieceI =
2297       dyn_cast<PathDiagnosticEventPiece>(*I);
2298
2299     if (!PieceI)
2300       continue;
2301
2302     PathPieces::iterator NextI = I; ++NextI;
2303     if (NextI == E)
2304       return;
2305
2306     PathDiagnosticEventPiece *PieceNextI =
2307       dyn_cast<PathDiagnosticEventPiece>(*NextI);
2308
2309     if (!PieceNextI)
2310       continue;
2311
2312     // Erase the second piece if it has the same exact message text.
2313     if (PieceI->getString() == PieceNextI->getString()) {
2314       path.erase(NextI);
2315     }
2316   }
2317 }
2318
2319 static bool optimizeEdges(PathPieces &path, SourceManager &SM,
2320                           OptimizedCallsSet &OCS,
2321                           LocationContextMap &LCM) {
2322   bool hasChanges = false;
2323   const LocationContext *LC = LCM[&path];
2324   assert(LC);
2325   ParentMap &PM = LC->getParentMap();
2326
2327   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
2328     // Optimize subpaths.
2329     if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
2330       // Record the fact that a call has been optimized so we only do the
2331       // effort once.
2332       if (!OCS.count(CallI)) {
2333         while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
2334         OCS.insert(CallI);
2335       }
2336       ++I;
2337       continue;
2338     }
2339
2340     // Pattern match the current piece and its successor.
2341     PathDiagnosticControlFlowPiece *PieceI =
2342       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2343
2344     if (!PieceI) {
2345       ++I;
2346       continue;
2347     }
2348
2349     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2350     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2351     const Stmt *level1 = getStmtParent(s1Start, PM);
2352     const Stmt *level2 = getStmtParent(s1End, PM);
2353
2354     PathPieces::iterator NextI = I; ++NextI;
2355     if (NextI == E)
2356       break;
2357
2358     PathDiagnosticControlFlowPiece *PieceNextI =
2359       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2360
2361     if (!PieceNextI) {
2362       ++I;
2363       continue;
2364     }
2365
2366     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2367     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2368     const Stmt *level3 = getStmtParent(s2Start, PM);
2369     const Stmt *level4 = getStmtParent(s2End, PM);
2370
2371     // Rule I.
2372     //
2373     // If we have two consecutive control edges whose end/begin locations
2374     // are at the same level (e.g. statements or top-level expressions within
2375     // a compound statement, or siblings share a single ancestor expression),
2376     // then merge them if they have no interesting intermediate event.
2377     //
2378     // For example:
2379     //
2380     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
2381     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
2382     //
2383     // NOTE: this will be limited later in cases where we add barriers
2384     // to prevent this optimization.
2385     //
2386     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
2387       PieceI->setEndLocation(PieceNextI->getEndLocation());
2388       path.erase(NextI);
2389       hasChanges = true;
2390       continue;
2391     }
2392
2393     // Rule II.
2394     //
2395     // Eliminate edges between subexpressions and parent expressions
2396     // when the subexpression is consumed.
2397     //
2398     // NOTE: this will be limited later in cases where we add barriers
2399     // to prevent this optimization.
2400     //
2401     if (s1End && s1End == s2Start && level2) {
2402       bool removeEdge = false;
2403       // Remove edges into the increment or initialization of a
2404       // loop that have no interleaving event.  This means that
2405       // they aren't interesting.
2406       if (isIncrementOrInitInForLoop(s1End, level2))
2407         removeEdge = true;
2408       // Next only consider edges that are not anchored on
2409       // the condition of a terminator.  This are intermediate edges
2410       // that we might want to trim.
2411       else if (!isConditionForTerminator(level2, s1End)) {
2412         // Trim edges on expressions that are consumed by
2413         // the parent expression.
2414         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
2415           removeEdge = true;          
2416         }
2417         // Trim edges where a lexical containment doesn't exist.
2418         // For example:
2419         //
2420         //  X -> Y -> Z
2421         //
2422         // If 'Z' lexically contains Y (it is an ancestor) and
2423         // 'X' does not lexically contain Y (it is a descendant OR
2424         // it has no lexical relationship at all) then trim.
2425         //
2426         // This can eliminate edges where we dive into a subexpression
2427         // and then pop back out, etc.
2428         else if (s1Start && s2End &&
2429                  lexicalContains(PM, s2Start, s2End) &&
2430                  !lexicalContains(PM, s1End, s1Start)) {
2431           removeEdge = true;
2432         }
2433         // Trim edges from a subexpression back to the top level if the
2434         // subexpression is on a different line.
2435         //
2436         // A.1 -> A -> B
2437         // becomes
2438         // A.1 -> B
2439         //
2440         // These edges just look ugly and don't usually add anything.
2441         else if (s1Start && s2End &&
2442                  lexicalContains(PM, s1Start, s1End)) {
2443           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
2444                                 PieceI->getStartLocation().asLocation());
2445           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
2446             removeEdge = true;
2447         }
2448       }
2449
2450       if (removeEdge) {
2451         PieceI->setEndLocation(PieceNextI->getEndLocation());
2452         path.erase(NextI);
2453         hasChanges = true;
2454         continue;
2455       }
2456     }
2457
2458     // Optimize edges for ObjC fast-enumeration loops.
2459     //
2460     // (X -> collection) -> (collection -> element)
2461     //
2462     // becomes:
2463     //
2464     // (X -> element)
2465     if (s1End == s2Start) {
2466       const ObjCForCollectionStmt *FS =
2467         dyn_cast_or_null<ObjCForCollectionStmt>(level3);
2468       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
2469           s2End == FS->getElement()) {
2470         PieceI->setEndLocation(PieceNextI->getEndLocation());
2471         path.erase(NextI);
2472         hasChanges = true;
2473         continue;
2474       }
2475     }
2476
2477     // No changes at this index?  Move to the next one.
2478     ++I;
2479   }
2480
2481   if (!hasChanges) {
2482     // Adjust edges into subexpressions to make them more uniform
2483     // and aesthetically pleasing.
2484     addContextEdges(path, SM, PM, LC);
2485     // Remove "cyclical" edges that include one or more context edges.
2486     removeContextCycles(path, SM, PM);
2487     // Hoist edges originating from branch conditions to branches
2488     // for simple branches.
2489     simplifySimpleBranches(path);
2490     // Remove any puny edges left over after primary optimization pass.
2491     removePunyEdges(path, SM, PM);
2492     // Remove identical events.
2493     removeIdenticalEvents(path);
2494   }
2495
2496   return hasChanges;
2497 }
2498
2499 /// Drop the very first edge in a path, which should be a function entry edge.
2500 ///
2501 /// If the first edge is not a function entry edge (say, because the first
2502 /// statement had an invalid source location), this function does nothing.
2503 // FIXME: We should just generate invalid edges anyway and have the optimizer
2504 // deal with them.
2505 static void dropFunctionEntryEdge(PathPieces &Path,
2506                                   LocationContextMap &LCM,
2507                                   SourceManager &SM) {
2508   const PathDiagnosticControlFlowPiece *FirstEdge =
2509     dyn_cast<PathDiagnosticControlFlowPiece>(Path.front());
2510   if (!FirstEdge)
2511     return;
2512
2513   const Decl *D = LCM[&Path]->getDecl();
2514   PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
2515   if (FirstEdge->getStartLocation() != EntryLoc)
2516     return;
2517
2518   Path.pop_front();
2519 }
2520
2521
2522 //===----------------------------------------------------------------------===//
2523 // Methods for BugType and subclasses.
2524 //===----------------------------------------------------------------------===//
2525 void BugType::anchor() { }
2526
2527 void BugType::FlushReports(BugReporter &BR) {}
2528
2529 void BuiltinBug::anchor() {}
2530
2531 //===----------------------------------------------------------------------===//
2532 // Methods for BugReport and subclasses.
2533 //===----------------------------------------------------------------------===//
2534
2535 void BugReport::NodeResolver::anchor() {}
2536
2537 void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) {
2538   if (!visitor)
2539     return;
2540
2541   llvm::FoldingSetNodeID ID;
2542   visitor->Profile(ID);
2543   void *InsertPos;
2544
2545   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos))
2546     return;
2547
2548   CallbacksSet.InsertNode(visitor.get(), InsertPos);
2549   Callbacks.push_back(std::move(visitor));
2550   ++ConfigurationChangeToken;
2551 }
2552
2553 BugReport::~BugReport() {
2554   while (!interestingSymbols.empty()) {
2555     popInterestingSymbolsAndRegions();
2556   }
2557 }
2558
2559 const Decl *BugReport::getDeclWithIssue() const {
2560   if (DeclWithIssue)
2561     return DeclWithIssue;
2562   
2563   const ExplodedNode *N = getErrorNode();
2564   if (!N)
2565     return nullptr;
2566
2567   const LocationContext *LC = N->getLocationContext();
2568   return LC->getCurrentStackFrame()->getDecl();
2569 }
2570
2571 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2572   hash.AddPointer(&BT);
2573   hash.AddString(Description);
2574   PathDiagnosticLocation UL = getUniqueingLocation();
2575   if (UL.isValid()) {
2576     UL.Profile(hash);
2577   } else if (Location.isValid()) {
2578     Location.Profile(hash);
2579   } else {
2580     assert(ErrorNode);
2581     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2582   }
2583
2584   for (SmallVectorImpl<SourceRange>::const_iterator I =
2585       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
2586     const SourceRange range = *I;
2587     if (!range.isValid())
2588       continue;
2589     hash.AddInteger(range.getBegin().getRawEncoding());
2590     hash.AddInteger(range.getEnd().getRawEncoding());
2591   }
2592 }
2593
2594 void BugReport::markInteresting(SymbolRef sym) {
2595   if (!sym)
2596     return;
2597
2598   // If the symbol wasn't already in our set, note a configuration change.
2599   if (getInterestingSymbols().insert(sym).second)
2600     ++ConfigurationChangeToken;
2601
2602   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2603     getInterestingRegions().insert(meta->getRegion());
2604 }
2605
2606 void BugReport::markInteresting(const MemRegion *R) {
2607   if (!R)
2608     return;
2609
2610   // If the base region wasn't already in our set, note a configuration change.
2611   R = R->getBaseRegion();
2612   if (getInterestingRegions().insert(R).second)
2613     ++ConfigurationChangeToken;
2614
2615   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2616     getInterestingSymbols().insert(SR->getSymbol());
2617 }
2618
2619 void BugReport::markInteresting(SVal V) {
2620   markInteresting(V.getAsRegion());
2621   markInteresting(V.getAsSymbol());
2622 }
2623
2624 void BugReport::markInteresting(const LocationContext *LC) {
2625   if (!LC)
2626     return;
2627   InterestingLocationContexts.insert(LC);
2628 }
2629
2630 bool BugReport::isInteresting(SVal V) {
2631   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2632 }
2633
2634 bool BugReport::isInteresting(SymbolRef sym) {
2635   if (!sym)
2636     return false;
2637   // We don't currently consider metadata symbols to be interesting
2638   // even if we know their region is interesting. Is that correct behavior?
2639   return getInterestingSymbols().count(sym);
2640 }
2641
2642 bool BugReport::isInteresting(const MemRegion *R) {
2643   if (!R)
2644     return false;
2645   R = R->getBaseRegion();
2646   bool b = getInterestingRegions().count(R);
2647   if (b)
2648     return true;
2649   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2650     return getInterestingSymbols().count(SR->getSymbol());
2651   return false;
2652 }
2653
2654 bool BugReport::isInteresting(const LocationContext *LC) {
2655   if (!LC)
2656     return false;
2657   return InterestingLocationContexts.count(LC);
2658 }
2659
2660 void BugReport::lazyInitializeInterestingSets() {
2661   if (interestingSymbols.empty()) {
2662     interestingSymbols.push_back(new Symbols());
2663     interestingRegions.push_back(new Regions());
2664   }
2665 }
2666
2667 BugReport::Symbols &BugReport::getInterestingSymbols() {
2668   lazyInitializeInterestingSets();
2669   return *interestingSymbols.back();
2670 }
2671
2672 BugReport::Regions &BugReport::getInterestingRegions() {
2673   lazyInitializeInterestingSets();
2674   return *interestingRegions.back();
2675 }
2676
2677 void BugReport::pushInterestingSymbolsAndRegions() {
2678   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2679   interestingRegions.push_back(new Regions(getInterestingRegions()));
2680 }
2681
2682 void BugReport::popInterestingSymbolsAndRegions() {
2683   delete interestingSymbols.pop_back_val();
2684   delete interestingRegions.pop_back_val();
2685 }
2686
2687 const Stmt *BugReport::getStmt() const {
2688   if (!ErrorNode)
2689     return nullptr;
2690
2691   ProgramPoint ProgP = ErrorNode->getLocation();
2692   const Stmt *S = nullptr;
2693
2694   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2695     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2696     if (BE->getBlock() == &Exit)
2697       S = GetPreviousStmt(ErrorNode);
2698   }
2699   if (!S)
2700     S = PathDiagnosticLocation::getStmt(ErrorNode);
2701
2702   return S;
2703 }
2704
2705 llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() {
2706   // If no custom ranges, add the range of the statement corresponding to
2707   // the error node.
2708   if (Ranges.empty()) {
2709     if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2710       addRange(E->getSourceRange());
2711     else
2712       return llvm::make_range(ranges_iterator(), ranges_iterator());
2713   }
2714
2715   // User-specified absence of range info.
2716   if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2717     return llvm::make_range(ranges_iterator(), ranges_iterator());
2718
2719   return llvm::iterator_range<BugReport::ranges_iterator>(Ranges.begin(),
2720                                                           Ranges.end());
2721 }
2722
2723 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2724   if (ErrorNode) {
2725     assert(!Location.isValid() &&
2726      "Either Location or ErrorNode should be specified but not both.");
2727     return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2728   }
2729
2730   assert(Location.isValid());
2731   return Location;
2732 }
2733
2734 //===----------------------------------------------------------------------===//
2735 // Methods for BugReporter and subclasses.
2736 //===----------------------------------------------------------------------===//
2737
2738 BugReportEquivClass::~BugReportEquivClass() { }
2739 GRBugReporter::~GRBugReporter() { }
2740 BugReporterData::~BugReporterData() {}
2741
2742 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2743
2744 ProgramStateManager&
2745 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2746
2747 BugReporter::~BugReporter() {
2748   FlushReports();
2749
2750   // Free the bug reports we are tracking.
2751   typedef std::vector<BugReportEquivClass *> ContTy;
2752   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2753        I != E; ++I) {
2754     delete *I;
2755   }
2756 }
2757
2758 void BugReporter::FlushReports() {
2759   if (BugTypes.isEmpty())
2760     return;
2761
2762   // First flush the warnings for each BugType.  This may end up creating new
2763   // warnings and new BugTypes.
2764   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2765   // Turn NSErrorChecker into a proper checker and remove this.
2766   SmallVector<const BugType *, 16> bugTypes(BugTypes.begin(), BugTypes.end());
2767   for (SmallVectorImpl<const BugType *>::iterator
2768          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2769     const_cast<BugType*>(*I)->FlushReports(*this);
2770
2771   // We need to flush reports in deterministic order to ensure the order
2772   // of the reports is consistent between runs.
2773   typedef std::vector<BugReportEquivClass *> ContVecTy;
2774   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2775        EI != EE; ++EI){
2776     BugReportEquivClass& EQ = **EI;
2777     FlushReport(EQ);
2778   }
2779
2780   // BugReporter owns and deletes only BugTypes created implicitly through
2781   // EmitBasicReport.
2782   // FIXME: There are leaks from checkers that assume that the BugTypes they
2783   // create will be destroyed by the BugReporter.
2784   llvm::DeleteContainerSeconds(StrBugTypes);
2785
2786   // Remove all references to the BugType objects.
2787   BugTypes = F.getEmptySet();
2788 }
2789
2790 //===----------------------------------------------------------------------===//
2791 // PathDiagnostics generation.
2792 //===----------------------------------------------------------------------===//
2793
2794 namespace {
2795 /// A wrapper around a report graph, which contains only a single path, and its
2796 /// node maps.
2797 class ReportGraph {
2798 public:
2799   InterExplodedGraphMap BackMap;
2800   std::unique_ptr<ExplodedGraph> Graph;
2801   const ExplodedNode *ErrorNode;
2802   size_t Index;
2803 };
2804
2805 /// A wrapper around a trimmed graph and its node maps.
2806 class TrimmedGraph {
2807   InterExplodedGraphMap InverseMap;
2808
2809   typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2810   PriorityMapTy PriorityMap;
2811
2812   typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2813   SmallVector<NodeIndexPair, 32> ReportNodes;
2814
2815   std::unique_ptr<ExplodedGraph> G;
2816
2817   /// A helper class for sorting ExplodedNodes by priority.
2818   template <bool Descending>
2819   class PriorityCompare {
2820     const PriorityMapTy &PriorityMap;
2821
2822   public:
2823     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2824
2825     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2826       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2827       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2828       PriorityMapTy::const_iterator E = PriorityMap.end();
2829
2830       if (LI == E)
2831         return Descending;
2832       if (RI == E)
2833         return !Descending;
2834
2835       return Descending ? LI->second > RI->second
2836                         : LI->second < RI->second;
2837     }
2838
2839     bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2840       return (*this)(LHS.first, RHS.first);
2841     }
2842   };
2843
2844 public:
2845   TrimmedGraph(const ExplodedGraph *OriginalGraph,
2846                ArrayRef<const ExplodedNode *> Nodes);
2847
2848   bool popNextReportGraph(ReportGraph &GraphWrapper);
2849 };
2850 }
2851
2852 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2853                            ArrayRef<const ExplodedNode *> Nodes) {
2854   // The trimmed graph is created in the body of the constructor to ensure
2855   // that the DenseMaps have been initialized already.
2856   InterExplodedGraphMap ForwardMap;
2857   G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap);
2858
2859   // Find the (first) error node in the trimmed graph.  We just need to consult
2860   // the node map which maps from nodes in the original graph to nodes
2861   // in the new graph.
2862   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2863
2864   for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2865     if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2866       ReportNodes.push_back(std::make_pair(NewNode, i));
2867       RemainingNodes.insert(NewNode);
2868     }
2869   }
2870
2871   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2872
2873   // Perform a forward BFS to find all the shortest paths.
2874   std::queue<const ExplodedNode *> WS;
2875
2876   assert(G->num_roots() == 1);
2877   WS.push(*G->roots_begin());
2878   unsigned Priority = 0;
2879
2880   while (!WS.empty()) {
2881     const ExplodedNode *Node = WS.front();
2882     WS.pop();
2883
2884     PriorityMapTy::iterator PriorityEntry;
2885     bool IsNew;
2886     std::tie(PriorityEntry, IsNew) =
2887       PriorityMap.insert(std::make_pair(Node, Priority));
2888     ++Priority;
2889
2890     if (!IsNew) {
2891       assert(PriorityEntry->second <= Priority);
2892       continue;
2893     }
2894
2895     if (RemainingNodes.erase(Node))
2896       if (RemainingNodes.empty())
2897         break;
2898
2899     for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2900                                            E = Node->succ_end();
2901          I != E; ++I)
2902       WS.push(*I);
2903   }
2904
2905   // Sort the error paths from longest to shortest.
2906   std::sort(ReportNodes.begin(), ReportNodes.end(),
2907             PriorityCompare<true>(PriorityMap));
2908 }
2909
2910 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2911   if (ReportNodes.empty())
2912     return false;
2913
2914   const ExplodedNode *OrigN;
2915   std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2916   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2917          "error node not accessible from root");
2918
2919   // Create a new graph with a single path.  This is the graph
2920   // that will be returned to the caller.
2921   auto GNew = llvm::make_unique<ExplodedGraph>();
2922   GraphWrapper.BackMap.clear();
2923
2924   // Now walk from the error node up the BFS path, always taking the
2925   // predeccessor with the lowest number.
2926   ExplodedNode *Succ = nullptr;
2927   while (true) {
2928     // Create the equivalent node in the new graph with the same state
2929     // and location.
2930     ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
2931                                        OrigN->isSink());
2932
2933     // Store the mapping to the original node.
2934     InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2935     assert(IMitr != InverseMap.end() && "No mapping to original node.");
2936     GraphWrapper.BackMap[NewN] = IMitr->second;
2937
2938     // Link up the new node with the previous node.
2939     if (Succ)
2940       Succ->addPredecessor(NewN, *GNew);
2941     else
2942       GraphWrapper.ErrorNode = NewN;
2943
2944     Succ = NewN;
2945
2946     // Are we at the final node?
2947     if (OrigN->pred_empty()) {
2948       GNew->addRoot(NewN);
2949       break;
2950     }
2951
2952     // Find the next predeccessor node.  We choose the node that is marked
2953     // with the lowest BFS number.
2954     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2955                           PriorityCompare<false>(PriorityMap));
2956   }
2957
2958   GraphWrapper.Graph = std::move(GNew);
2959
2960   return true;
2961 }
2962
2963
2964 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2965 ///  and collapses PathDiagosticPieces that are expanded by macros.
2966 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2967   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
2968                                 SourceLocation> > MacroStackTy;
2969
2970   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
2971           PiecesTy;
2972
2973   MacroStackTy MacroStack;
2974   PiecesTy Pieces;
2975
2976   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2977        I!=E; ++I) {
2978     
2979     PathDiagnosticPiece *piece = I->get();
2980
2981     // Recursively compact calls.
2982     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
2983       CompactPathDiagnostic(call->path, SM);
2984     }
2985     
2986     // Get the location of the PathDiagnosticPiece.
2987     const FullSourceLoc Loc = piece->getLocation().asLocation();
2988
2989     // Determine the instantiation location, which is the location we group
2990     // related PathDiagnosticPieces.
2991     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2992                                       SM.getExpansionLoc(Loc) :
2993                                       SourceLocation();
2994
2995     if (Loc.isFileID()) {
2996       MacroStack.clear();
2997       Pieces.push_back(piece);
2998       continue;
2999     }
3000
3001     assert(Loc.isMacroID());
3002
3003     // Is the PathDiagnosticPiece within the same macro group?
3004     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
3005       MacroStack.back().first->subPieces.push_back(piece);
3006       continue;
3007     }
3008
3009     // We aren't in the same group.  Are we descending into a new macro
3010     // or are part of an old one?
3011     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
3012
3013     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
3014                                           SM.getExpansionLoc(Loc) :
3015                                           SourceLocation();
3016
3017     // Walk the entire macro stack.
3018     while (!MacroStack.empty()) {
3019       if (InstantiationLoc == MacroStack.back().second) {
3020         MacroGroup = MacroStack.back().first;
3021         break;
3022       }
3023
3024       if (ParentInstantiationLoc == MacroStack.back().second) {
3025         MacroGroup = MacroStack.back().first;
3026         break;
3027       }
3028
3029       MacroStack.pop_back();
3030     }
3031
3032     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
3033       // Create a new macro group and add it to the stack.
3034       PathDiagnosticMacroPiece *NewGroup =
3035         new PathDiagnosticMacroPiece(
3036           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
3037
3038       if (MacroGroup)
3039         MacroGroup->subPieces.push_back(NewGroup);
3040       else {
3041         assert(InstantiationLoc.isFileID());
3042         Pieces.push_back(NewGroup);
3043       }
3044
3045       MacroGroup = NewGroup;
3046       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
3047     }
3048
3049     // Finally, add the PathDiagnosticPiece to the group.
3050     MacroGroup->subPieces.push_back(piece);
3051   }
3052
3053   // Now take the pieces and construct a new PathDiagnostic.
3054   path.clear();
3055
3056   path.insert(path.end(), Pieces.begin(), Pieces.end());
3057 }
3058
3059 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
3060                                            PathDiagnosticConsumer &PC,
3061                                            ArrayRef<BugReport *> &bugReports) {
3062   assert(!bugReports.empty());
3063
3064   bool HasValid = false;
3065   bool HasInvalid = false;
3066   SmallVector<const ExplodedNode *, 32> errorNodes;
3067   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
3068                                       E = bugReports.end(); I != E; ++I) {
3069     if ((*I)->isValid()) {
3070       HasValid = true;
3071       errorNodes.push_back((*I)->getErrorNode());
3072     } else {
3073       // Keep the errorNodes list in sync with the bugReports list.
3074       HasInvalid = true;
3075       errorNodes.push_back(nullptr);
3076     }
3077   }
3078
3079   // If all the reports have been marked invalid by a previous path generation,
3080   // we're done.
3081   if (!HasValid)
3082     return false;
3083
3084   typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
3085   PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
3086
3087   if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
3088     AnalyzerOptions &options = getAnalyzerOptions();
3089     if (options.getBooleanOption("path-diagnostics-alternate", true)) {
3090       ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
3091     }
3092   }
3093
3094   TrimmedGraph TrimG(&getGraph(), errorNodes);
3095   ReportGraph ErrorGraph;
3096
3097   while (TrimG.popNextReportGraph(ErrorGraph)) {
3098     // Find the BugReport with the original location.
3099     assert(ErrorGraph.Index < bugReports.size());
3100     BugReport *R = bugReports[ErrorGraph.Index];
3101     assert(R && "No original report found for sliced graph.");
3102     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
3103
3104     // Start building the path diagnostic...
3105     PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
3106     const ExplodedNode *N = ErrorGraph.ErrorNode;
3107
3108     // Register additional node visitors.
3109     R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>());
3110     R->addVisitor(llvm::make_unique<ConditionBRVisitor>());
3111     R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
3112
3113     BugReport::VisitorList visitors;
3114     unsigned origReportConfigToken, finalReportConfigToken;
3115     LocationContextMap LCM;
3116
3117     // While generating diagnostics, it's possible the visitors will decide
3118     // new symbols and regions are interesting, or add other visitors based on
3119     // the information they find. If they do, we need to regenerate the path
3120     // based on our new report configuration.
3121     do {
3122       // Get a clean copy of all the visitors.
3123       for (BugReport::visitor_iterator I = R->visitor_begin(),
3124                                        E = R->visitor_end(); I != E; ++I)
3125         visitors.push_back((*I)->clone());
3126
3127       // Clear out the active path from any previous work.
3128       PD.resetPath();
3129       origReportConfigToken = R->getConfigurationChangeToken();
3130
3131       // Generate the very last diagnostic piece - the piece is visible before 
3132       // the trace is expanded.
3133       std::unique_ptr<PathDiagnosticPiece> LastPiece;
3134       for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
3135           I != E; ++I) {
3136         if (std::unique_ptr<PathDiagnosticPiece> Piece =
3137                 (*I)->getEndPath(PDB, N, *R)) {
3138           assert (!LastPiece &&
3139               "There can only be one final piece in a diagnostic.");
3140           LastPiece = std::move(Piece);
3141         }
3142       }
3143
3144       if (ActiveScheme != PathDiagnosticConsumer::None) {
3145         if (!LastPiece)
3146           LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
3147         assert(LastPiece);
3148         PD.setEndOfPath(std::move(LastPiece));
3149       }
3150
3151       // Make sure we get a clean location context map so we don't
3152       // hold onto old mappings.
3153       LCM.clear();
3154
3155       switch (ActiveScheme) {
3156       case PathDiagnosticConsumer::AlternateExtensive:
3157         GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3158         break;
3159       case PathDiagnosticConsumer::Extensive:
3160         GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3161         break;
3162       case PathDiagnosticConsumer::Minimal:
3163         GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
3164         break;
3165       case PathDiagnosticConsumer::None:
3166         GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
3167         break;
3168       }
3169
3170       // Clean up the visitors we used.
3171       visitors.clear();
3172
3173       // Did anything change while generating this path?
3174       finalReportConfigToken = R->getConfigurationChangeToken();
3175     } while (finalReportConfigToken != origReportConfigToken);
3176
3177     if (!R->isValid())
3178       continue;
3179
3180     // Finally, prune the diagnostic path of uninteresting stuff.
3181     if (!PD.path.empty()) {
3182       if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
3183         bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
3184         assert(stillHasNotes);
3185         (void)stillHasNotes;
3186       }
3187
3188       // Redirect all call pieces to have valid locations.
3189       adjustCallLocations(PD.getMutablePieces());
3190       removePiecesWithInvalidLocations(PD.getMutablePieces());
3191
3192       if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
3193         SourceManager &SM = getSourceManager();
3194
3195         // Reduce the number of edges from a very conservative set
3196         // to an aesthetically pleasing subset that conveys the
3197         // necessary information.
3198         OptimizedCallsSet OCS;
3199         while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
3200
3201         // Drop the very first function-entry edge. It's not really necessary
3202         // for top-level functions.
3203         dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
3204       }
3205
3206       // Remove messages that are basically the same, and edges that may not
3207       // make sense.
3208       // We have to do this after edge optimization in the Extensive mode.
3209       removeRedundantMsgs(PD.getMutablePieces());
3210       removeEdgesToDefaultInitializers(PD.getMutablePieces());
3211     }
3212
3213     // We found a report and didn't suppress it.
3214     return true;
3215   }
3216
3217   // We suppressed all the reports in this equivalence class.
3218   assert(!HasInvalid && "Inconsistent suppression");
3219   (void)HasInvalid;
3220   return false;
3221 }
3222
3223 void BugReporter::Register(BugType *BT) {
3224   BugTypes = F.add(BugTypes, BT);
3225 }
3226
3227 void BugReporter::emitReport(BugReport* R) {
3228   // To guarantee memory release.
3229   std::unique_ptr<BugReport> UniqueR(R);
3230
3231   if (const ExplodedNode *E = R->getErrorNode()) {
3232     const AnalysisDeclContext *DeclCtx =
3233         E->getLocationContext()->getAnalysisDeclContext();
3234     // The source of autosynthesized body can be handcrafted AST or a model
3235     // file. The locations from handcrafted ASTs have no valid source locations
3236     // and have to be discarded. Locations from model files should be preserved
3237     // for processing and reporting.
3238     if (DeclCtx->isBodyAutosynthesized() &&
3239         !DeclCtx->isBodyAutosynthesizedFromModelFile())
3240       return;
3241   }
3242   
3243   bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
3244   assert(ValidSourceLoc);
3245   // If we mess up in a release build, we'd still prefer to just drop the bug
3246   // instead of trying to go on.
3247   if (!ValidSourceLoc)
3248     return;
3249
3250   // Compute the bug report's hash to determine its equivalence class.
3251   llvm::FoldingSetNodeID ID;
3252   R->Profile(ID);
3253
3254   // Lookup the equivance class.  If there isn't one, create it.
3255   BugType& BT = R->getBugType();
3256   Register(&BT);
3257   void *InsertPos;
3258   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
3259
3260   if (!EQ) {
3261     EQ = new BugReportEquivClass(std::move(UniqueR));
3262     EQClasses.InsertNode(EQ, InsertPos);
3263     EQClassesVector.push_back(EQ);
3264   } else
3265     EQ->AddReport(std::move(UniqueR));
3266 }
3267
3268
3269 //===----------------------------------------------------------------------===//
3270 // Emitting reports in equivalence classes.
3271 //===----------------------------------------------------------------------===//
3272
3273 namespace {
3274 struct FRIEC_WLItem {
3275   const ExplodedNode *N;
3276   ExplodedNode::const_succ_iterator I, E;
3277   
3278   FRIEC_WLItem(const ExplodedNode *n)
3279   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
3280 };  
3281 }
3282
3283 static BugReport *
3284 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
3285                              SmallVectorImpl<BugReport*> &bugReports) {
3286
3287   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
3288   assert(I != E);
3289   BugType& BT = I->getBugType();
3290
3291   // If we don't need to suppress any of the nodes because they are
3292   // post-dominated by a sink, simply add all the nodes in the equivalence class
3293   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
3294   if (!BT.isSuppressOnSink()) {
3295     BugReport *R = I;
3296     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
3297       const ExplodedNode *N = I->getErrorNode();
3298       if (N) {
3299         R = I;
3300         bugReports.push_back(R);
3301       }
3302     }
3303     return R;
3304   }
3305
3306   // For bug reports that should be suppressed when all paths are post-dominated
3307   // by a sink node, iterate through the reports in the equivalence class
3308   // until we find one that isn't post-dominated (if one exists).  We use a
3309   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
3310   // this as a recursive function, but we don't want to risk blowing out the
3311   // stack for very long paths.
3312   BugReport *exampleReport = nullptr;
3313
3314   for (; I != E; ++I) {
3315     const ExplodedNode *errorNode = I->getErrorNode();
3316
3317     if (!errorNode)
3318       continue;
3319     if (errorNode->isSink()) {
3320       llvm_unreachable(
3321            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3322     }
3323     // No successors?  By definition this nodes isn't post-dominated by a sink.
3324     if (errorNode->succ_empty()) {
3325       bugReports.push_back(I);
3326       if (!exampleReport)
3327         exampleReport = I;
3328       continue;
3329     }
3330
3331     // At this point we know that 'N' is not a sink and it has at least one
3332     // successor.  Use a DFS worklist to find a non-sink end-of-path node.    
3333     typedef FRIEC_WLItem WLItem;
3334     typedef SmallVector<WLItem, 10> DFSWorkList;
3335     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3336     
3337     DFSWorkList WL;
3338     WL.push_back(errorNode);
3339     Visited[errorNode] = 1;
3340     
3341     while (!WL.empty()) {
3342       WLItem &WI = WL.back();
3343       assert(!WI.N->succ_empty());
3344             
3345       for (; WI.I != WI.E; ++WI.I) {
3346         const ExplodedNode *Succ = *WI.I;        
3347         // End-of-path node?
3348         if (Succ->succ_empty()) {
3349           // If we found an end-of-path node that is not a sink.
3350           if (!Succ->isSink()) {
3351             bugReports.push_back(I);
3352             if (!exampleReport)
3353               exampleReport = I;
3354             WL.clear();
3355             break;
3356           }
3357           // Found a sink?  Continue on to the next successor.
3358           continue;
3359         }
3360         // Mark the successor as visited.  If it hasn't been explored,
3361         // enqueue it to the DFS worklist.
3362         unsigned &mark = Visited[Succ];
3363         if (!mark) {
3364           mark = 1;
3365           WL.push_back(Succ);
3366           break;
3367         }
3368       }
3369
3370       // The worklist may have been cleared at this point.  First
3371       // check if it is empty before checking the last item.
3372       if (!WL.empty() && &WL.back() == &WI)
3373         WL.pop_back();
3374     }
3375   }
3376
3377   // ExampleReport will be NULL if all the nodes in the equivalence class
3378   // were post-dominated by sinks.
3379   return exampleReport;
3380 }
3381
3382 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3383   SmallVector<BugReport*, 10> bugReports;
3384   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
3385   if (exampleReport) {
3386     for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) {
3387       FlushReport(exampleReport, *PDC, bugReports);
3388     }
3389   }
3390 }
3391
3392 void BugReporter::FlushReport(BugReport *exampleReport,
3393                               PathDiagnosticConsumer &PD,
3394                               ArrayRef<BugReport*> bugReports) {
3395
3396   // FIXME: Make sure we use the 'R' for the path that was actually used.
3397   // Probably doesn't make a difference in practice.
3398   BugType& BT = exampleReport->getBugType();
3399
3400   std::unique_ptr<PathDiagnostic> D(new PathDiagnostic(
3401       exampleReport->getBugType().getCheckName(),
3402       exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(),
3403       exampleReport->getDescription(),
3404       exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(),
3405       exampleReport->getUniqueingLocation(),
3406       exampleReport->getUniqueingDecl()));
3407
3408   MaxBugClassSize = std::max(bugReports.size(),
3409                              static_cast<size_t>(MaxBugClassSize));
3410
3411   // Generate the full path diagnostic, using the generation scheme
3412   // specified by the PathDiagnosticConsumer. Note that we have to generate
3413   // path diagnostics even for consumers which do not support paths, because
3414   // the BugReporterVisitors may mark this bug as a false positive.
3415   if (!bugReports.empty())
3416     if (!generatePathDiagnostic(*D.get(), PD, bugReports))
3417       return;
3418
3419   MaxValidBugClassSize = std::max(bugReports.size(),
3420                                   static_cast<size_t>(MaxValidBugClassSize));
3421
3422   // Examine the report and see if the last piece is in a header. Reset the
3423   // report location to the last piece in the main source file.
3424   AnalyzerOptions& Opts = getAnalyzerOptions();
3425   if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
3426     D->resetDiagnosticLocationToMainFile();
3427
3428   // If the path is empty, generate a single step path with the location
3429   // of the issue.
3430   if (D->path.empty()) {
3431     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
3432     auto piece = llvm::make_unique<PathDiagnosticEventPiece>(
3433         L, exampleReport->getDescription());
3434     for (const SourceRange &Range : exampleReport->getRanges())
3435       piece->addRange(Range);
3436     D->setEndOfPath(std::move(piece));
3437   }
3438
3439   // Get the meta data.
3440   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
3441   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
3442                                                 e = Meta.end(); i != e; ++i) {
3443     D->addMeta(*i);
3444   }
3445
3446   PD.HandlePathDiagnostic(std::move(D));
3447 }
3448
3449 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3450                                   const CheckerBase *Checker,
3451                                   StringRef Name, StringRef Category,
3452                                   StringRef Str, PathDiagnosticLocation Loc,
3453                                   ArrayRef<SourceRange> Ranges) {
3454   EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str,
3455                   Loc, Ranges);
3456 }
3457 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3458                                   CheckName CheckName,
3459                                   StringRef name, StringRef category,
3460                                   StringRef str, PathDiagnosticLocation Loc,
3461                                   ArrayRef<SourceRange> Ranges) {
3462
3463   // 'BT' is owned by BugReporter.
3464   BugType *BT = getBugTypeForName(CheckName, name, category);
3465   BugReport *R = new BugReport(*BT, str, Loc);
3466   R->setDeclWithIssue(DeclWithIssue);
3467   for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
3468        I != E; ++I)
3469     R->addRange(*I);
3470   emitReport(R);
3471 }
3472
3473 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name,
3474                                         StringRef category) {
3475   SmallString<136> fullDesc;
3476   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3477                                       << ":" << category;
3478   BugType *&BT = StrBugTypes[fullDesc];
3479   if (!BT)
3480     BT = new BugType(CheckName, name, category);
3481   return BT;
3482 }
3483
3484 LLVM_DUMP_METHOD void PathPieces::dump() const {
3485   unsigned index = 0;
3486   for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
3487     llvm::errs() << "[" << index++ << "]  ";
3488     (*I)->dump();
3489     llvm::errs() << "\n";
3490   }
3491 }
3492
3493 void PathDiagnosticCallPiece::dump() const {
3494   llvm::errs() << "CALL\n--------------\n";
3495
3496   if (const Stmt *SLoc = getLocStmt(getLocation()))
3497     SLoc->dump();
3498   else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
3499     llvm::errs() << *ND << "\n";
3500   else
3501     getLocation().dump();
3502 }
3503
3504 void PathDiagnosticEventPiece::dump() const {
3505   llvm::errs() << "EVENT\n--------------\n";
3506   llvm::errs() << getString() << "\n";
3507   llvm::errs() << " ---- at ----\n";
3508   getLocation().dump();
3509 }
3510
3511 void PathDiagnosticControlFlowPiece::dump() const {
3512   llvm::errs() << "CONTROL\n--------------\n";
3513   getStartLocation().dump();
3514   llvm::errs() << " ---- to ----\n";
3515   getEndLocation().dump();
3516 }
3517
3518 void PathDiagnosticMacroPiece::dump() const {
3519   llvm::errs() << "MACRO\n--------------\n";
3520   // FIXME: Print which macro is being invoked.
3521 }
3522
3523 void PathDiagnosticLocation::dump() const {
3524   if (!isValid()) {
3525     llvm::errs() << "<INVALID>\n";
3526     return;
3527   }
3528
3529   switch (K) {
3530   case RangeK:
3531     // FIXME: actually print the range.
3532     llvm::errs() << "<range>\n";
3533     break;
3534   case SingleLocK:
3535     asLocation().dump();
3536     llvm::errs() << "\n";
3537     break;
3538   case StmtK:
3539     if (S)
3540       S->dump();
3541     else
3542       llvm::errs() << "<NULL STMT>\n";
3543     break;
3544   case DeclK:
3545     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
3546       llvm::errs() << *ND << "\n";
3547     else if (isa<BlockDecl>(D))
3548       // FIXME: Make this nicer.
3549       llvm::errs() << "<block>\n";
3550     else if (D)
3551       llvm::errs() << "<unknown decl>\n";
3552     else
3553       llvm::errs() << "<NULL DECL>\n";
3554     break;
3555   }
3556 }