]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
Merge clang 3.5.0 release from ^/vendor/clang/dist, resolve conflicts,
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / CallEvent.cpp
1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/Analysis/ProgramPoint.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/raw_ostream.h"
23
24 using namespace clang;
25 using namespace ento;
26
27 QualType CallEvent::getResultType() const {
28   const Expr *E = getOriginExpr();
29   assert(E && "Calls without origin expressions do not have results");
30   QualType ResultTy = E->getType();
31
32   ASTContext &Ctx = getState()->getStateManager().getContext();
33
34   // A function that returns a reference to 'int' will have a result type
35   // of simply 'int'. Check the origin expr's value kind to recover the
36   // proper type.
37   switch (E->getValueKind()) {
38   case VK_LValue:
39     ResultTy = Ctx.getLValueReferenceType(ResultTy);
40     break;
41   case VK_XValue:
42     ResultTy = Ctx.getRValueReferenceType(ResultTy);
43     break;
44   case VK_RValue:
45     // No adjustment is necessary.
46     break;
47   }
48
49   return ResultTy;
50 }
51
52 static bool isCallbackArg(SVal V, QualType T) {
53   // If the parameter is 0, it's harmless.
54   if (V.isZeroConstant())
55     return false;
56
57   // If a parameter is a block or a callback, assume it can modify pointer.
58   if (T->isBlockPointerType() ||
59       T->isFunctionPointerType() ||
60       T->isObjCSelType())
61     return true;
62
63   // Check if a callback is passed inside a struct (for both, struct passed by
64   // reference and by value). Dig just one level into the struct for now.
65
66   if (T->isAnyPointerType() || T->isReferenceType())
67     T = T->getPointeeType();
68
69   if (const RecordType *RT = T->getAsStructureType()) {
70     const RecordDecl *RD = RT->getDecl();
71     for (const auto *I : RD->fields()) {
72       QualType FieldT = I->getType();
73       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
74         return true;
75     }
76   }
77
78   return false;
79 }
80
81 bool CallEvent::hasNonZeroCallbackArg() const {
82   unsigned NumOfArgs = getNumArgs();
83
84   // If calling using a function pointer, assume the function does not
85   // have a callback. TODO: We could check the types of the arguments here.
86   if (!getDecl())
87     return false;
88
89   unsigned Idx = 0;
90   for (CallEvent::param_type_iterator I = param_type_begin(),
91                                        E = param_type_end();
92        I != E && Idx < NumOfArgs; ++I, ++Idx) {
93     if (NumOfArgs <= Idx)
94       break;
95
96     if (isCallbackArg(getArgSVal(Idx), *I))
97       return true;
98   }
99   
100   return false;
101 }
102
103 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
104   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
105   if (!FD)
106     return false;
107
108   return CheckerContext::isCLibraryFunction(FD, FunctionName);
109 }
110
111 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
112 /// with no further indirection.
113 static bool isPointerToConst(QualType Ty) {
114   QualType PointeeTy = Ty->getPointeeType();
115   if (PointeeTy == QualType())
116     return false;
117   if (!PointeeTy.isConstQualified())
118     return false;
119   if (PointeeTy->isAnyPointerType())
120     return false;
121   return true;
122 }
123
124 // Try to retrieve the function declaration and find the function parameter
125 // types which are pointers/references to a non-pointer const.
126 // We will not invalidate the corresponding argument regions.
127 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
128                                  const CallEvent &Call) {
129   unsigned Idx = 0;
130   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
131                                       E = Call.param_type_end();
132        I != E; ++I, ++Idx) {
133     if (isPointerToConst(*I))
134       PreserveArgs.insert(Idx);
135   }
136 }
137
138 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
139                                              ProgramStateRef Orig) const {
140   ProgramStateRef Result = (Orig ? Orig : getState());
141
142   // Don't invalidate anything if the callee is marked pure/const.
143   if (const Decl *callee = getDecl())
144     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
145       return Result;
146
147   SmallVector<SVal, 8> ValuesToInvalidate;
148   RegionAndSymbolInvalidationTraits ETraits;
149
150   getExtraInvalidatedValues(ValuesToInvalidate);
151
152   // Indexes of arguments whose values will be preserved by the call.
153   llvm::SmallSet<unsigned, 4> PreserveArgs;
154   if (!argumentsMayEscape())
155     findPtrToConstParams(PreserveArgs, *this);
156
157   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
158     // Mark this region for invalidation.  We batch invalidate regions
159     // below for efficiency.
160     if (PreserveArgs.count(Idx))
161       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
162         ETraits.setTrait(MR->StripCasts(), 
163                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
164         // TODO: Factor this out + handle the lower level const pointers.
165
166     ValuesToInvalidate.push_back(getArgSVal(Idx));
167   }
168
169   // Invalidate designated regions using the batch invalidation API.
170   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
171   //  global variables.
172   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
173                                    BlockCount, getLocationContext(),
174                                    /*CausedByPointerEscape*/ true,
175                                    /*Symbols=*/nullptr, this, &ETraits);
176 }
177
178 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
179                                         const ProgramPointTag *Tag) const {
180   if (const Expr *E = getOriginExpr()) {
181     if (IsPreVisit)
182       return PreStmt(E, getLocationContext(), Tag);
183     return PostStmt(E, getLocationContext(), Tag);
184   }
185
186   const Decl *D = getDecl();
187   assert(D && "Cannot get a program point without a statement or decl");  
188
189   SourceLocation Loc = getSourceRange().getBegin();
190   if (IsPreVisit)
191     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
192   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
193 }
194
195 SVal CallEvent::getArgSVal(unsigned Index) const {
196   const Expr *ArgE = getArgExpr(Index);
197   if (!ArgE)
198     return UnknownVal();
199   return getSVal(ArgE);
200 }
201
202 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
203   const Expr *ArgE = getArgExpr(Index);
204   if (!ArgE)
205     return SourceRange();
206   return ArgE->getSourceRange();
207 }
208
209 SVal CallEvent::getReturnValue() const {
210   const Expr *E = getOriginExpr();
211   if (!E)
212     return UndefinedVal();
213   return getSVal(E);
214 }
215
216 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
217
218 void CallEvent::dump(raw_ostream &Out) const {
219   ASTContext &Ctx = getState()->getStateManager().getContext();
220   if (const Expr *E = getOriginExpr()) {
221     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
222     Out << "\n";
223     return;
224   }
225
226   if (const Decl *D = getDecl()) {
227     Out << "Call to ";
228     D->print(Out, Ctx.getPrintingPolicy());
229     return;
230   }
231
232   // FIXME: a string representation of the kind would be nice.
233   Out << "Unknown call (type " << getKind() << ")";
234 }
235
236
237 bool CallEvent::isCallStmt(const Stmt *S) {
238   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
239                           || isa<CXXConstructExpr>(S)
240                           || isa<CXXNewExpr>(S);
241 }
242
243 QualType CallEvent::getDeclaredResultType(const Decl *D) {
244   assert(D);
245   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
246     return FD->getReturnType();
247   if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
248     return MD->getReturnType();
249   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
250     // Blocks are difficult because the return type may not be stored in the
251     // BlockDecl itself. The AST should probably be enhanced, but for now we
252     // just do what we can.
253     // If the block is declared without an explicit argument list, the
254     // signature-as-written just includes the return type, not the entire
255     // function type.
256     // FIXME: All blocks should have signatures-as-written, even if the return
257     // type is inferred. (That's signified with a dependent result type.)
258     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
259       QualType Ty = TSI->getType();
260       if (const FunctionType *FT = Ty->getAs<FunctionType>())
261         Ty = FT->getReturnType();
262       if (!Ty->isDependentType())
263         return Ty;
264     }
265
266     return QualType();
267   }
268   
269   llvm_unreachable("unknown callable kind");
270 }
271
272 bool CallEvent::isVariadic(const Decl *D) {
273   assert(D);
274
275   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
276     return FD->isVariadic();
277   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
278     return MD->isVariadic();
279   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
280     return BD->isVariadic();
281
282   llvm_unreachable("unknown callable kind");
283 }
284
285 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
286                                          CallEvent::BindingsTy &Bindings,
287                                          SValBuilder &SVB,
288                                          const CallEvent &Call,
289                                          ArrayRef<ParmVarDecl*> parameters) {
290   MemRegionManager &MRMgr = SVB.getRegionManager();
291
292   // If the function has fewer parameters than the call has arguments, we simply
293   // do not bind any values to them.
294   unsigned NumArgs = Call.getNumArgs();
295   unsigned Idx = 0;
296   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
297   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
298     const ParmVarDecl *ParamDecl = *I;
299     assert(ParamDecl && "Formal parameter has no decl?");
300
301     SVal ArgVal = Call.getArgSVal(Idx);
302     if (!ArgVal.isUnknown()) {
303       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
304       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
305     }
306   }
307
308   // FIXME: Variadic arguments are not handled at all right now.
309 }
310
311 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
312   const FunctionDecl *D = getDecl();
313   if (!D)
314     return None;
315   return D->parameters();
316 }
317
318 void AnyFunctionCall::getInitialStackFrameContents(
319                                         const StackFrameContext *CalleeCtx,
320                                         BindingsTy &Bindings) const {
321   const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
322   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
323   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
324                                D->parameters());
325 }
326
327 bool AnyFunctionCall::argumentsMayEscape() const {
328   if (hasNonZeroCallbackArg())
329     return true;
330
331   const FunctionDecl *D = getDecl();
332   if (!D)
333     return true;
334
335   const IdentifierInfo *II = D->getIdentifier();
336   if (!II)
337     return false;
338
339   // This set of "escaping" APIs is 
340
341   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
342   //   value into thread local storage. The value can later be retrieved with
343   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
344   //   parameter is 'const void *', the region escapes through the call.
345   if (II->isStr("pthread_setspecific"))
346     return true;
347
348   // - xpc_connection_set_context stores a value which can be retrieved later
349   //   with xpc_connection_get_context.
350   if (II->isStr("xpc_connection_set_context"))
351     return true;
352
353   // - funopen - sets a buffer for future IO calls.
354   if (II->isStr("funopen"))
355     return true;
356
357   StringRef FName = II->getName();
358
359   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
360   //   buffer even if it is const.
361   if (FName.endswith("NoCopy"))
362     return true;
363
364   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
365   //   be deallocated by NSMapRemove.
366   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
367     return true;
368
369   // - Many CF containers allow objects to escape through custom
370   //   allocators/deallocators upon container construction. (PR12101)
371   if (FName.startswith("CF") || FName.startswith("CG")) {
372     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
373            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
374            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
375            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
376            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
377            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
378   }
379
380   return false;
381 }
382
383
384 const FunctionDecl *SimpleFunctionCall::getDecl() const {
385   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
386   if (D)
387     return D;
388
389   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
390 }
391
392
393 const FunctionDecl *CXXInstanceCall::getDecl() const {
394   const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
395   if (!CE)
396     return AnyFunctionCall::getDecl();
397
398   const FunctionDecl *D = CE->getDirectCallee();
399   if (D)
400     return D;
401
402   return getSVal(CE->getCallee()).getAsFunctionDecl();
403 }
404
405 void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values) const {
406   Values.push_back(getCXXThisVal());
407 }
408
409 SVal CXXInstanceCall::getCXXThisVal() const {
410   const Expr *Base = getCXXThisExpr();
411   // FIXME: This doesn't handle an overloaded ->* operator.
412   if (!Base)
413     return UnknownVal();
414
415   SVal ThisVal = getSVal(Base);
416   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
417   return ThisVal;
418 }
419
420
421 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
422   // Do we have a decl at all?
423   const Decl *D = getDecl();
424   if (!D)
425     return RuntimeDefinition();
426
427   // If the method is non-virtual, we know we can inline it.
428   const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
429   if (!MD->isVirtual())
430     return AnyFunctionCall::getRuntimeDefinition();
431
432   // Do we know the implicit 'this' object being called?
433   const MemRegion *R = getCXXThisVal().getAsRegion();
434   if (!R)
435     return RuntimeDefinition();
436
437   // Do we know anything about the type of 'this'?
438   DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
439   if (!DynType.isValid())
440     return RuntimeDefinition();
441
442   // Is the type a C++ class? (This is mostly a defensive check.)
443   QualType RegionType = DynType.getType()->getPointeeType();
444   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
445
446   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
447   if (!RD || !RD->hasDefinition())
448     return RuntimeDefinition();
449
450   // Find the decl for this method in that class.
451   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
452   if (!Result) {
453     // We might not even get the original statically-resolved method due to
454     // some particularly nasty casting (e.g. casts to sister classes).
455     // However, we should at least be able to search up and down our own class
456     // hierarchy, and some real bugs have been caught by checking this.
457     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
458     
459     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
460     // the static type. However, because we currently don't update
461     // DynamicTypeInfo when an object is cast, we can't actually be sure the
462     // DynamicTypeInfo is up to date. This assert should be re-enabled once
463     // this is fixed. <rdar://problem/12287087>
464     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
465
466     return RuntimeDefinition();
467   }
468
469   // Does the decl that we found have an implementation?
470   const FunctionDecl *Definition;
471   if (!Result->hasBody(Definition))
472     return RuntimeDefinition();
473
474   // We found a definition. If we're not sure that this devirtualization is
475   // actually what will happen at runtime, make sure to provide the region so
476   // that ExprEngine can decide what to do with it.
477   if (DynType.canBeASubClass())
478     return RuntimeDefinition(Definition, R->StripCasts());
479   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
480 }
481
482 void CXXInstanceCall::getInitialStackFrameContents(
483                                             const StackFrameContext *CalleeCtx,
484                                             BindingsTy &Bindings) const {
485   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
486
487   // Handle the binding of 'this' in the new stack frame.
488   SVal ThisVal = getCXXThisVal();
489   if (!ThisVal.isUnknown()) {
490     ProgramStateManager &StateMgr = getState()->getStateManager();
491     SValBuilder &SVB = StateMgr.getSValBuilder();
492
493     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
494     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
495
496     // If we devirtualized to a different member function, we need to make sure
497     // we have the proper layering of CXXBaseObjectRegions.
498     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
499       ASTContext &Ctx = SVB.getContext();
500       const CXXRecordDecl *Class = MD->getParent();
501       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
502
503       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
504       bool Failed;
505       ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
506       assert(!Failed && "Calling an incorrectly devirtualized method");
507     }
508
509     if (!ThisVal.isUnknown())
510       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
511   }
512 }
513
514
515
516 const Expr *CXXMemberCall::getCXXThisExpr() const {
517   return getOriginExpr()->getImplicitObjectArgument();
518 }
519
520 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
521   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
522   // id-expression in the class member access expression is a qualified-id,
523   // that function is called. Otherwise, its final overrider in the dynamic type
524   // of the object expression is called.
525   if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
526     if (ME->hasQualifier())
527       return AnyFunctionCall::getRuntimeDefinition();
528   
529   return CXXInstanceCall::getRuntimeDefinition();
530 }
531
532
533 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
534   return getOriginExpr()->getArg(0);
535 }
536
537
538 const BlockDataRegion *BlockCall::getBlockRegion() const {
539   const Expr *Callee = getOriginExpr()->getCallee();
540   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
541
542   return dyn_cast_or_null<BlockDataRegion>(DataReg);
543 }
544
545 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
546   const BlockDecl *D = getDecl();
547   if (!D)
548     return nullptr;
549   return D->parameters();
550 }
551
552 void BlockCall::getExtraInvalidatedValues(ValueList &Values) const {
553   // FIXME: This also needs to invalidate captured globals.
554   if (const MemRegion *R = getBlockRegion())
555     Values.push_back(loc::MemRegionVal(R));
556 }
557
558 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
559                                              BindingsTy &Bindings) const {
560   const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
561   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
562   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
563                                D->parameters());
564 }
565
566
567 SVal CXXConstructorCall::getCXXThisVal() const {
568   if (Data)
569     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
570   return UnknownVal();
571 }
572
573 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values) const {
574   if (Data)
575     Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
576 }
577
578 void CXXConstructorCall::getInitialStackFrameContents(
579                                              const StackFrameContext *CalleeCtx,
580                                              BindingsTy &Bindings) const {
581   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
582
583   SVal ThisVal = getCXXThisVal();
584   if (!ThisVal.isUnknown()) {
585     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
586     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
587     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
588     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
589   }
590 }
591
592 SVal CXXDestructorCall::getCXXThisVal() const {
593   if (Data)
594     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
595   return UnknownVal();
596 }
597
598 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
599   // Base destructors are always called non-virtually.
600   // Skip CXXInstanceCall's devirtualization logic in this case.
601   if (isBaseDestructor())
602     return AnyFunctionCall::getRuntimeDefinition();
603
604   return CXXInstanceCall::getRuntimeDefinition();
605 }
606
607 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
608   const ObjCMethodDecl *D = getDecl();
609   if (!D)
610     return ArrayRef<ParmVarDecl*>();
611   return D->parameters();
612 }
613
614 void
615 ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values) const {
616   Values.push_back(getReceiverSVal());
617 }
618
619 SVal ObjCMethodCall::getSelfSVal() const {
620   const LocationContext *LCtx = getLocationContext();
621   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
622   if (!SelfDecl)
623     return SVal();
624   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
625 }
626
627 SVal ObjCMethodCall::getReceiverSVal() const {
628   // FIXME: Is this the best way to handle class receivers?
629   if (!isInstanceMessage())
630     return UnknownVal();
631     
632   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
633     return getSVal(RecE);
634
635   // An instance message with no expression means we are sending to super.
636   // In this case the object reference is the same as 'self'.
637   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
638   SVal SelfVal = getSelfSVal();
639   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
640   return SelfVal;
641 }
642
643 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
644   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
645       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
646       return true;
647
648   if (!isInstanceMessage())
649     return false;
650
651   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
652
653   return (RecVal == getSelfSVal());
654 }
655
656 SourceRange ObjCMethodCall::getSourceRange() const {
657   switch (getMessageKind()) {
658   case OCM_Message:
659     return getOriginExpr()->getSourceRange();
660   case OCM_PropertyAccess:
661   case OCM_Subscript:
662     return getContainingPseudoObjectExpr()->getSourceRange();
663   }
664   llvm_unreachable("unknown message kind");
665 }
666
667 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
668
669 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
670   assert(Data && "Lazy lookup not yet performed.");
671   assert(getMessageKind() != OCM_Message && "Explicit message send.");
672   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
673 }
674
675 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
676   if (!Data) {
677
678     // Find the parent, ignoring implicit casts.
679     ParentMap &PM = getLocationContext()->getParentMap();
680     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
681
682     // Check if parent is a PseudoObjectExpr.
683     if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
684       const Expr *Syntactic = POE->getSyntacticForm();
685
686       // This handles the funny case of assigning to the result of a getter.
687       // This can happen if the getter returns a non-const reference.
688       if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
689         Syntactic = BO->getLHS();
690
691       ObjCMessageKind K;
692       switch (Syntactic->getStmtClass()) {
693       case Stmt::ObjCPropertyRefExprClass:
694         K = OCM_PropertyAccess;
695         break;
696       case Stmt::ObjCSubscriptRefExprClass:
697         K = OCM_Subscript;
698         break;
699       default:
700         // FIXME: Can this ever happen?
701         K = OCM_Message;
702         break;
703       }
704
705       if (K != OCM_Message) {
706         const_cast<ObjCMethodCall *>(this)->Data
707           = ObjCMessageDataTy(POE, K).getOpaqueValue();
708         assert(getMessageKind() == K);
709         return K;
710       }
711     }
712     
713     const_cast<ObjCMethodCall *>(this)->Data
714       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
715     assert(getMessageKind() == OCM_Message);
716     return OCM_Message;
717   }
718
719   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
720   if (!Info.getPointer())
721     return OCM_Message;
722   return static_cast<ObjCMessageKind>(Info.getInt());
723 }
724
725
726 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
727                                              Selector Sel) const {
728   assert(IDecl);
729   const SourceManager &SM =
730     getState()->getStateManager().getContext().getSourceManager();
731
732   // If the class interface is declared inside the main file, assume it is not
733   // subcassed. 
734   // TODO: It could actually be subclassed if the subclass is private as well.
735   // This is probably very rare.
736   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
737   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
738     return false;
739
740   // Assume that property accessors are not overridden.
741   if (getMessageKind() == OCM_PropertyAccess)
742     return false;
743
744   // We assume that if the method is public (declared outside of main file) or
745   // has a parent which publicly declares the method, the method could be
746   // overridden in a subclass.
747
748   // Find the first declaration in the class hierarchy that declares
749   // the selector.
750   ObjCMethodDecl *D = nullptr;
751   while (true) {
752     D = IDecl->lookupMethod(Sel, true);
753
754     // Cannot find a public definition.
755     if (!D)
756       return false;
757
758     // If outside the main file,
759     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
760       return true;
761
762     if (D->isOverriding()) {
763       // Search in the superclass on the next iteration.
764       IDecl = D->getClassInterface();
765       if (!IDecl)
766         return false;
767
768       IDecl = IDecl->getSuperClass();
769       if (!IDecl)
770         return false;
771
772       continue;
773     }
774
775     return false;
776   };
777
778   llvm_unreachable("The while loop should always terminate.");
779 }
780
781 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
782   const ObjCMessageExpr *E = getOriginExpr();
783   assert(E);
784   Selector Sel = E->getSelector();
785
786   if (E->isInstanceMessage()) {
787
788     // Find the the receiver type.
789     const ObjCObjectPointerType *ReceiverT = nullptr;
790     bool CanBeSubClassed = false;
791     QualType SupersType = E->getSuperType();
792     const MemRegion *Receiver = nullptr;
793
794     if (!SupersType.isNull()) {
795       // Super always means the type of immediate predecessor to the method
796       // where the call occurs.
797       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
798     } else {
799       Receiver = getReceiverSVal().getAsRegion();
800       if (!Receiver)
801         return RuntimeDefinition();
802
803       DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
804       QualType DynType = DTI.getType();
805       CanBeSubClassed = DTI.canBeASubClass();
806       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
807
808       if (ReceiverT && CanBeSubClassed)
809         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
810           if (!canBeOverridenInSubclass(IDecl, Sel))
811             CanBeSubClassed = false;
812     }
813
814     // Lookup the method implementation.
815     if (ReceiverT)
816       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
817         // Repeatedly calling lookupPrivateMethod() is expensive, especially
818         // when in many cases it returns null.  We cache the results so
819         // that repeated queries on the same ObjCIntefaceDecl and Selector
820         // don't incur the same cost.  On some test cases, we can see the
821         // same query being issued thousands of times.
822         //
823         // NOTE: This cache is essentially a "global" variable, but it
824         // only gets lazily created when we get here.  The value of the
825         // cache probably comes from it being global across ExprEngines,
826         // where the same queries may get issued.  If we are worried about
827         // concurrency, or possibly loading/unloading ASTs, etc., we may
828         // need to revisit this someday.  In terms of memory, this table
829         // stays around until clang quits, which also may be bad if we
830         // need to release memory.
831         typedef std::pair<const ObjCInterfaceDecl*, Selector>
832                 PrivateMethodKey;
833         typedef llvm::DenseMap<PrivateMethodKey,
834                                Optional<const ObjCMethodDecl *> >
835                 PrivateMethodCache;
836
837         static PrivateMethodCache PMC;
838         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
839
840         // Query lookupPrivateMethod() if the cache does not hit.
841         if (!Val.hasValue()) {
842           Val = IDecl->lookupPrivateMethod(Sel);
843
844           // If the method is a property accessor, we should try to "inline" it
845           // even if we don't actually have an implementation.
846           if (!*Val)
847             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
848               if (CompileTimeMD->isPropertyAccessor())
849                 Val = IDecl->lookupInstanceMethod(Sel);
850         }
851
852         const ObjCMethodDecl *MD = Val.getValue();
853         if (CanBeSubClassed)
854           return RuntimeDefinition(MD, Receiver);
855         else
856           return RuntimeDefinition(MD, nullptr);
857       }
858
859   } else {
860     // This is a class method.
861     // If we have type info for the receiver class, we are calling via
862     // class name.
863     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
864       // Find/Return the method implementation.
865       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
866     }
867   }
868
869   return RuntimeDefinition();
870 }
871
872 bool ObjCMethodCall::argumentsMayEscape() const {
873   if (isInSystemHeader() && !isInstanceMessage()) {
874     Selector Sel = getSelector();
875     if (Sel.getNumArgs() == 1 &&
876         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
877       return true;
878   }
879
880   return CallEvent::argumentsMayEscape();
881 }
882
883 void ObjCMethodCall::getInitialStackFrameContents(
884                                              const StackFrameContext *CalleeCtx,
885                                              BindingsTy &Bindings) const {
886   const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
887   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
888   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
889                                D->parameters());
890
891   SVal SelfVal = getReceiverSVal();
892   if (!SelfVal.isUnknown()) {
893     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
894     MemRegionManager &MRMgr = SVB.getRegionManager();
895     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
896     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
897   }
898 }
899
900 CallEventRef<>
901 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
902                                 const LocationContext *LCtx) {
903   if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
904     return create<CXXMemberCall>(MCE, State, LCtx);
905
906   if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
907     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
908     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
909       if (MD->isInstance())
910         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
911
912   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
913     return create<BlockCall>(CE, State, LCtx);
914   }
915
916   // Otherwise, it's a normal function call, static member function call, or
917   // something we can't reason about.
918   return create<SimpleFunctionCall>(CE, State, LCtx);
919 }
920
921
922 CallEventRef<>
923 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
924                             ProgramStateRef State) {
925   const LocationContext *ParentCtx = CalleeCtx->getParent();
926   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
927   assert(CallerCtx && "This should not be used for top-level stack frames");
928
929   const Stmt *CallSite = CalleeCtx->getCallSite();
930
931   if (CallSite) {
932     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
933       return getSimpleCall(CE, State, CallerCtx);
934
935     switch (CallSite->getStmtClass()) {
936     case Stmt::CXXConstructExprClass:
937     case Stmt::CXXTemporaryObjectExprClass: {
938       SValBuilder &SVB = State->getStateManager().getSValBuilder();
939       const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
940       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
941       SVal ThisVal = State->getSVal(ThisPtr);
942
943       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
944                                    ThisVal.getAsRegion(), State, CallerCtx);
945     }
946     case Stmt::CXXNewExprClass:
947       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
948     case Stmt::ObjCMessageExprClass:
949       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
950                                State, CallerCtx);
951     default:
952       llvm_unreachable("This is not an inlineable statement.");
953     }
954   }
955
956   // Fall back to the CFG. The only thing we haven't handled yet is
957   // destructors, though this could change in the future.
958   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
959   CFGElement E = (*B)[CalleeCtx->getIndex()];
960   assert(E.getAs<CFGImplicitDtor>() &&
961          "All other CFG elements should have exprs");
962   assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
963
964   SValBuilder &SVB = State->getStateManager().getSValBuilder();
965   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
966   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
967   SVal ThisVal = State->getSVal(ThisPtr);
968
969   const Stmt *Trigger;
970   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
971     Trigger = AutoDtor->getTriggerStmt();
972   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
973     Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
974   else
975     Trigger = Dtor->getBody();
976
977   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
978                               E.getAs<CFGBaseDtor>().hasValue(), State,
979                               CallerCtx);
980 }