]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
Merge ^/head r306303 through 306411.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / CallEvent.cpp
1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/Analysis/ProgramPoint.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24
25 using namespace clang;
26 using namespace ento;
27
28 QualType CallEvent::getResultType() const {
29   const Expr *E = getOriginExpr();
30   assert(E && "Calls without origin expressions do not have results");
31   QualType ResultTy = E->getType();
32
33   ASTContext &Ctx = getState()->getStateManager().getContext();
34
35   // A function that returns a reference to 'int' will have a result type
36   // of simply 'int'. Check the origin expr's value kind to recover the
37   // proper type.
38   switch (E->getValueKind()) {
39   case VK_LValue:
40     ResultTy = Ctx.getLValueReferenceType(ResultTy);
41     break;
42   case VK_XValue:
43     ResultTy = Ctx.getRValueReferenceType(ResultTy);
44     break;
45   case VK_RValue:
46     // No adjustment is necessary.
47     break;
48   }
49
50   return ResultTy;
51 }
52
53 static bool isCallback(QualType T) {
54   // If a parameter is a block or a callback, assume it can modify pointer.
55   if (T->isBlockPointerType() ||
56       T->isFunctionPointerType() ||
57       T->isObjCSelType())
58     return true;
59
60   // Check if a callback is passed inside a struct (for both, struct passed by
61   // reference and by value). Dig just one level into the struct for now.
62
63   if (T->isAnyPointerType() || T->isReferenceType())
64     T = T->getPointeeType();
65
66   if (const RecordType *RT = T->getAsStructureType()) {
67     const RecordDecl *RD = RT->getDecl();
68     for (const auto *I : RD->fields()) {
69       QualType FieldT = I->getType();
70       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
71         return true;
72     }
73   }
74   return false;
75 }
76
77 static bool isVoidPointerToNonConst(QualType T) {
78   if (const PointerType *PT = T->getAs<PointerType>()) {
79     QualType PointeeTy = PT->getPointeeType();
80     if (PointeeTy.isConstQualified())
81       return false;
82     return PointeeTy->isVoidType();
83   } else
84     return false;
85 }
86
87 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
88   unsigned NumOfArgs = getNumArgs();
89
90   // If calling using a function pointer, assume the function does not
91   // satisfy the callback.
92   // TODO: We could check the types of the arguments here.
93   if (!getDecl())
94     return false;
95
96   unsigned Idx = 0;
97   for (CallEvent::param_type_iterator I = param_type_begin(),
98                                       E = param_type_end();
99        I != E && Idx < NumOfArgs; ++I, ++Idx) {
100     if (NumOfArgs <= Idx)
101       break;
102
103     // If the parameter is 0, it's harmless.
104     if (getArgSVal(Idx).isZeroConstant())
105       continue;
106
107     if (Condition(*I))
108       return true;
109   }
110   return false;
111 }
112
113 bool CallEvent::hasNonZeroCallbackArg() const {
114   return hasNonNullArgumentsWithType(isCallback);
115 }
116
117 bool CallEvent::hasVoidPointerToNonConstArg() const {
118   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
119 }
120
121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
122   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
123   if (!FD)
124     return false;
125
126   return CheckerContext::isCLibraryFunction(FD, FunctionName);
127 }
128
129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
130 /// with no further indirection.
131 static bool isPointerToConst(QualType Ty) {
132   QualType PointeeTy = Ty->getPointeeType();
133   if (PointeeTy == QualType())
134     return false;
135   if (!PointeeTy.isConstQualified())
136     return false;
137   if (PointeeTy->isAnyPointerType())
138     return false;
139   return true;
140 }
141
142 // Try to retrieve the function declaration and find the function parameter
143 // types which are pointers/references to a non-pointer const.
144 // We will not invalidate the corresponding argument regions.
145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
146                                  const CallEvent &Call) {
147   unsigned Idx = 0;
148   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
149                                       E = Call.param_type_end();
150        I != E; ++I, ++Idx) {
151     if (isPointerToConst(*I))
152       PreserveArgs.insert(Idx);
153   }
154 }
155
156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
157                                              ProgramStateRef Orig) const {
158   ProgramStateRef Result = (Orig ? Orig : getState());
159
160   // Don't invalidate anything if the callee is marked pure/const.
161   if (const Decl *callee = getDecl())
162     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
163       return Result;
164
165   SmallVector<SVal, 8> ValuesToInvalidate;
166   RegionAndSymbolInvalidationTraits ETraits;
167
168   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
169
170   // Indexes of arguments whose values will be preserved by the call.
171   llvm::SmallSet<unsigned, 4> PreserveArgs;
172   if (!argumentsMayEscape())
173     findPtrToConstParams(PreserveArgs, *this);
174
175   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
176     // Mark this region for invalidation.  We batch invalidate regions
177     // below for efficiency.
178     if (PreserveArgs.count(Idx))
179       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
180         ETraits.setTrait(MR->getBaseRegion(),
181                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
182         // TODO: Factor this out + handle the lower level const pointers.
183
184     ValuesToInvalidate.push_back(getArgSVal(Idx));
185   }
186
187   // Invalidate designated regions using the batch invalidation API.
188   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
189   //  global variables.
190   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
191                                    BlockCount, getLocationContext(),
192                                    /*CausedByPointerEscape*/ true,
193                                    /*Symbols=*/nullptr, this, &ETraits);
194 }
195
196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
197                                         const ProgramPointTag *Tag) const {
198   if (const Expr *E = getOriginExpr()) {
199     if (IsPreVisit)
200       return PreStmt(E, getLocationContext(), Tag);
201     return PostStmt(E, getLocationContext(), Tag);
202   }
203
204   const Decl *D = getDecl();
205   assert(D && "Cannot get a program point without a statement or decl");
206
207   SourceLocation Loc = getSourceRange().getBegin();
208   if (IsPreVisit)
209     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
210   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
211 }
212
213 bool CallEvent::isCalled(const CallDescription &CD) const {
214   assert(getKind() != CE_ObjCMessage && "Obj-C methods are not supported");
215   if (!CD.II)
216     CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName);
217   if (getCalleeIdentifier() != CD.II)
218     return false;
219   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
220           CD.RequiredArgs == getNumArgs());
221 }
222
223 SVal CallEvent::getArgSVal(unsigned Index) const {
224   const Expr *ArgE = getArgExpr(Index);
225   if (!ArgE)
226     return UnknownVal();
227   return getSVal(ArgE);
228 }
229
230 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
231   const Expr *ArgE = getArgExpr(Index);
232   if (!ArgE)
233     return SourceRange();
234   return ArgE->getSourceRange();
235 }
236
237 SVal CallEvent::getReturnValue() const {
238   const Expr *E = getOriginExpr();
239   if (!E)
240     return UndefinedVal();
241   return getSVal(E);
242 }
243
244 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
245
246 void CallEvent::dump(raw_ostream &Out) const {
247   ASTContext &Ctx = getState()->getStateManager().getContext();
248   if (const Expr *E = getOriginExpr()) {
249     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
250     Out << "\n";
251     return;
252   }
253
254   if (const Decl *D = getDecl()) {
255     Out << "Call to ";
256     D->print(Out, Ctx.getPrintingPolicy());
257     return;
258   }
259
260   // FIXME: a string representation of the kind would be nice.
261   Out << "Unknown call (type " << getKind() << ")";
262 }
263
264
265 bool CallEvent::isCallStmt(const Stmt *S) {
266   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
267                           || isa<CXXConstructExpr>(S)
268                           || isa<CXXNewExpr>(S);
269 }
270
271 QualType CallEvent::getDeclaredResultType(const Decl *D) {
272   assert(D);
273   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
274     return FD->getReturnType();
275   if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
276     return MD->getReturnType();
277   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
278     // Blocks are difficult because the return type may not be stored in the
279     // BlockDecl itself. The AST should probably be enhanced, but for now we
280     // just do what we can.
281     // If the block is declared without an explicit argument list, the
282     // signature-as-written just includes the return type, not the entire
283     // function type.
284     // FIXME: All blocks should have signatures-as-written, even if the return
285     // type is inferred. (That's signified with a dependent result type.)
286     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
287       QualType Ty = TSI->getType();
288       if (const FunctionType *FT = Ty->getAs<FunctionType>())
289         Ty = FT->getReturnType();
290       if (!Ty->isDependentType())
291         return Ty;
292     }
293
294     return QualType();
295   }
296
297   llvm_unreachable("unknown callable kind");
298 }
299
300 bool CallEvent::isVariadic(const Decl *D) {
301   assert(D);
302
303   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
304     return FD->isVariadic();
305   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
306     return MD->isVariadic();
307   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
308     return BD->isVariadic();
309
310   llvm_unreachable("unknown callable kind");
311 }
312
313 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
314                                          CallEvent::BindingsTy &Bindings,
315                                          SValBuilder &SVB,
316                                          const CallEvent &Call,
317                                          ArrayRef<ParmVarDecl*> parameters) {
318   MemRegionManager &MRMgr = SVB.getRegionManager();
319
320   // If the function has fewer parameters than the call has arguments, we simply
321   // do not bind any values to them.
322   unsigned NumArgs = Call.getNumArgs();
323   unsigned Idx = 0;
324   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
325   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
326     const ParmVarDecl *ParamDecl = *I;
327     assert(ParamDecl && "Formal parameter has no decl?");
328
329     SVal ArgVal = Call.getArgSVal(Idx);
330     if (!ArgVal.isUnknown()) {
331       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
332       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
333     }
334   }
335
336   // FIXME: Variadic arguments are not handled at all right now.
337 }
338
339 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
340   const FunctionDecl *D = getDecl();
341   if (!D)
342     return None;
343   return D->parameters();
344 }
345
346 void AnyFunctionCall::getInitialStackFrameContents(
347                                         const StackFrameContext *CalleeCtx,
348                                         BindingsTy &Bindings) const {
349   const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
350   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
351   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
352                                D->parameters());
353 }
354
355 bool AnyFunctionCall::argumentsMayEscape() const {
356   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
357     return true;
358
359   const FunctionDecl *D = getDecl();
360   if (!D)
361     return true;
362
363   const IdentifierInfo *II = D->getIdentifier();
364   if (!II)
365     return false;
366
367   // This set of "escaping" APIs is
368
369   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
370   //   value into thread local storage. The value can later be retrieved with
371   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
372   //   parameter is 'const void *', the region escapes through the call.
373   if (II->isStr("pthread_setspecific"))
374     return true;
375
376   // - xpc_connection_set_context stores a value which can be retrieved later
377   //   with xpc_connection_get_context.
378   if (II->isStr("xpc_connection_set_context"))
379     return true;
380
381   // - funopen - sets a buffer for future IO calls.
382   if (II->isStr("funopen"))
383     return true;
384
385   StringRef FName = II->getName();
386
387   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
388   //   buffer even if it is const.
389   if (FName.endswith("NoCopy"))
390     return true;
391
392   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
393   //   be deallocated by NSMapRemove.
394   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
395     return true;
396
397   // - Many CF containers allow objects to escape through custom
398   //   allocators/deallocators upon container construction. (PR12101)
399   if (FName.startswith("CF") || FName.startswith("CG")) {
400     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
401            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
402            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
403            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
404            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
405            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
406   }
407
408   return false;
409 }
410
411
412 const FunctionDecl *SimpleFunctionCall::getDecl() const {
413   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
414   if (D)
415     return D;
416
417   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
418 }
419
420
421 const FunctionDecl *CXXInstanceCall::getDecl() const {
422   const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
423   if (!CE)
424     return AnyFunctionCall::getDecl();
425
426   const FunctionDecl *D = CE->getDirectCallee();
427   if (D)
428     return D;
429
430   return getSVal(CE->getCallee()).getAsFunctionDecl();
431 }
432
433 void CXXInstanceCall::getExtraInvalidatedValues(
434     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
435   SVal ThisVal = getCXXThisVal();
436   Values.push_back(ThisVal);
437
438   // Don't invalidate if the method is const and there are no mutable fields.
439   if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) {
440     if (!D->isConst())
441       return;
442     // Get the record decl for the class of 'This'. D->getParent() may return a
443     // base class decl, rather than the class of the instance which needs to be
444     // checked for mutable fields.
445     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
446     const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
447     if (!ParentRecord || ParentRecord->hasMutableFields())
448       return;
449     // Preserve CXXThis.
450     const MemRegion *ThisRegion = ThisVal.getAsRegion();
451     if (!ThisRegion)
452       return;
453
454     ETraits->setTrait(ThisRegion->getBaseRegion(),
455                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
456   }
457 }
458
459 SVal CXXInstanceCall::getCXXThisVal() const {
460   const Expr *Base = getCXXThisExpr();
461   // FIXME: This doesn't handle an overloaded ->* operator.
462   if (!Base)
463     return UnknownVal();
464
465   SVal ThisVal = getSVal(Base);
466   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
467   return ThisVal;
468 }
469
470
471 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
472   // Do we have a decl at all?
473   const Decl *D = getDecl();
474   if (!D)
475     return RuntimeDefinition();
476
477   // If the method is non-virtual, we know we can inline it.
478   const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
479   if (!MD->isVirtual())
480     return AnyFunctionCall::getRuntimeDefinition();
481
482   // Do we know the implicit 'this' object being called?
483   const MemRegion *R = getCXXThisVal().getAsRegion();
484   if (!R)
485     return RuntimeDefinition();
486
487   // Do we know anything about the type of 'this'?
488   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
489   if (!DynType.isValid())
490     return RuntimeDefinition();
491
492   // Is the type a C++ class? (This is mostly a defensive check.)
493   QualType RegionType = DynType.getType()->getPointeeType();
494   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
495
496   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
497   if (!RD || !RD->hasDefinition())
498     return RuntimeDefinition();
499
500   // Find the decl for this method in that class.
501   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
502   if (!Result) {
503     // We might not even get the original statically-resolved method due to
504     // some particularly nasty casting (e.g. casts to sister classes).
505     // However, we should at least be able to search up and down our own class
506     // hierarchy, and some real bugs have been caught by checking this.
507     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
508
509     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
510     // the static type. However, because we currently don't update
511     // DynamicTypeInfo when an object is cast, we can't actually be sure the
512     // DynamicTypeInfo is up to date. This assert should be re-enabled once
513     // this is fixed. <rdar://problem/12287087>
514     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
515
516     return RuntimeDefinition();
517   }
518
519   // Does the decl that we found have an implementation?
520   const FunctionDecl *Definition;
521   if (!Result->hasBody(Definition))
522     return RuntimeDefinition();
523
524   // We found a definition. If we're not sure that this devirtualization is
525   // actually what will happen at runtime, make sure to provide the region so
526   // that ExprEngine can decide what to do with it.
527   if (DynType.canBeASubClass())
528     return RuntimeDefinition(Definition, R->StripCasts());
529   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
530 }
531
532 void CXXInstanceCall::getInitialStackFrameContents(
533                                             const StackFrameContext *CalleeCtx,
534                                             BindingsTy &Bindings) const {
535   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
536
537   // Handle the binding of 'this' in the new stack frame.
538   SVal ThisVal = getCXXThisVal();
539   if (!ThisVal.isUnknown()) {
540     ProgramStateManager &StateMgr = getState()->getStateManager();
541     SValBuilder &SVB = StateMgr.getSValBuilder();
542
543     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
544     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
545
546     // If we devirtualized to a different member function, we need to make sure
547     // we have the proper layering of CXXBaseObjectRegions.
548     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
549       ASTContext &Ctx = SVB.getContext();
550       const CXXRecordDecl *Class = MD->getParent();
551       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
552
553       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
554       bool Failed;
555       ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
556       assert(!Failed && "Calling an incorrectly devirtualized method");
557     }
558
559     if (!ThisVal.isUnknown())
560       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
561   }
562 }
563
564
565
566 const Expr *CXXMemberCall::getCXXThisExpr() const {
567   return getOriginExpr()->getImplicitObjectArgument();
568 }
569
570 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
571   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
572   // id-expression in the class member access expression is a qualified-id,
573   // that function is called. Otherwise, its final overrider in the dynamic type
574   // of the object expression is called.
575   if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
576     if (ME->hasQualifier())
577       return AnyFunctionCall::getRuntimeDefinition();
578
579   return CXXInstanceCall::getRuntimeDefinition();
580 }
581
582
583 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
584   return getOriginExpr()->getArg(0);
585 }
586
587
588 const BlockDataRegion *BlockCall::getBlockRegion() const {
589   const Expr *Callee = getOriginExpr()->getCallee();
590   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
591
592   return dyn_cast_or_null<BlockDataRegion>(DataReg);
593 }
594
595 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
596   const BlockDecl *D = getDecl();
597   if (!D)
598     return nullptr;
599   return D->parameters();
600 }
601
602 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
603                   RegionAndSymbolInvalidationTraits *ETraits) const {
604   // FIXME: This also needs to invalidate captured globals.
605   if (const MemRegion *R = getBlockRegion())
606     Values.push_back(loc::MemRegionVal(R));
607 }
608
609 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
610                                              BindingsTy &Bindings) const {
611   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
612   ArrayRef<ParmVarDecl*> Params;
613   if (isConversionFromLambda()) {
614     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
615     Params = LambdaOperatorDecl->parameters();
616
617     // For blocks converted from a C++ lambda, the callee declaration is the
618     // operator() method on the lambda so we bind "this" to
619     // the lambda captured by the block.
620     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
621     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
622     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
623     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
624   } else {
625     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
626   }
627
628   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
629                                Params);
630 }
631
632
633 SVal CXXConstructorCall::getCXXThisVal() const {
634   if (Data)
635     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
636   return UnknownVal();
637 }
638
639 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
640                            RegionAndSymbolInvalidationTraits *ETraits) const {
641   if (Data)
642     Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
643 }
644
645 void CXXConstructorCall::getInitialStackFrameContents(
646                                              const StackFrameContext *CalleeCtx,
647                                              BindingsTy &Bindings) const {
648   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
649
650   SVal ThisVal = getCXXThisVal();
651   if (!ThisVal.isUnknown()) {
652     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
653     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
654     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
655     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
656   }
657 }
658
659 SVal CXXDestructorCall::getCXXThisVal() const {
660   if (Data)
661     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
662   return UnknownVal();
663 }
664
665 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
666   // Base destructors are always called non-virtually.
667   // Skip CXXInstanceCall's devirtualization logic in this case.
668   if (isBaseDestructor())
669     return AnyFunctionCall::getRuntimeDefinition();
670
671   return CXXInstanceCall::getRuntimeDefinition();
672 }
673
674 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
675   const ObjCMethodDecl *D = getDecl();
676   if (!D)
677     return None;
678   return D->parameters();
679 }
680
681 void ObjCMethodCall::getExtraInvalidatedValues(
682     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
683
684   // If the method call is a setter for property known to be backed by
685   // an instance variable, don't invalidate the entire receiver, just
686   // the storage for that instance variable.
687   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
688     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
689       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
690       const MemRegion *IvarRegion = IvarLVal.getAsRegion();
691       ETraits->setTrait(
692           IvarRegion,
693           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
694       ETraits->setTrait(IvarRegion,
695                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
696       Values.push_back(IvarLVal);
697       return;
698     }
699   }
700
701   Values.push_back(getReceiverSVal());
702 }
703
704 SVal ObjCMethodCall::getSelfSVal() const {
705   const LocationContext *LCtx = getLocationContext();
706   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
707   if (!SelfDecl)
708     return SVal();
709   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
710 }
711
712 SVal ObjCMethodCall::getReceiverSVal() const {
713   // FIXME: Is this the best way to handle class receivers?
714   if (!isInstanceMessage())
715     return UnknownVal();
716
717   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
718     return getSVal(RecE);
719
720   // An instance message with no expression means we are sending to super.
721   // In this case the object reference is the same as 'self'.
722   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
723   SVal SelfVal = getSelfSVal();
724   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
725   return SelfVal;
726 }
727
728 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
729   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
730       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
731       return true;
732
733   if (!isInstanceMessage())
734     return false;
735
736   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
737
738   return (RecVal == getSelfSVal());
739 }
740
741 SourceRange ObjCMethodCall::getSourceRange() const {
742   switch (getMessageKind()) {
743   case OCM_Message:
744     return getOriginExpr()->getSourceRange();
745   case OCM_PropertyAccess:
746   case OCM_Subscript:
747     return getContainingPseudoObjectExpr()->getSourceRange();
748   }
749   llvm_unreachable("unknown message kind");
750 }
751
752 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
753
754 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
755   assert(Data && "Lazy lookup not yet performed.");
756   assert(getMessageKind() != OCM_Message && "Explicit message send.");
757   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
758 }
759
760 static const Expr *
761 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
762   const Expr *Syntactic = POE->getSyntacticForm();
763
764   // This handles the funny case of assigning to the result of a getter.
765   // This can happen if the getter returns a non-const reference.
766   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
767     Syntactic = BO->getLHS();
768
769   return Syntactic;
770 }
771
772 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
773   if (!Data) {
774
775     // Find the parent, ignoring implicit casts.
776     ParentMap &PM = getLocationContext()->getParentMap();
777     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
778
779     // Check if parent is a PseudoObjectExpr.
780     if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
781       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
782
783       ObjCMessageKind K;
784       switch (Syntactic->getStmtClass()) {
785       case Stmt::ObjCPropertyRefExprClass:
786         K = OCM_PropertyAccess;
787         break;
788       case Stmt::ObjCSubscriptRefExprClass:
789         K = OCM_Subscript;
790         break;
791       default:
792         // FIXME: Can this ever happen?
793         K = OCM_Message;
794         break;
795       }
796
797       if (K != OCM_Message) {
798         const_cast<ObjCMethodCall *>(this)->Data
799           = ObjCMessageDataTy(POE, K).getOpaqueValue();
800         assert(getMessageKind() == K);
801         return K;
802       }
803     }
804
805     const_cast<ObjCMethodCall *>(this)->Data
806       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
807     assert(getMessageKind() == OCM_Message);
808     return OCM_Message;
809   }
810
811   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
812   if (!Info.getPointer())
813     return OCM_Message;
814   return static_cast<ObjCMessageKind>(Info.getInt());
815 }
816
817 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
818   // Look for properties accessed with property syntax (foo.bar = ...)
819   if ( getMessageKind() == OCM_PropertyAccess) {
820     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
821     assert(POE && "Property access without PseudoObjectExpr?");
822
823     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
824     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
825
826     if (RefExpr->isExplicitProperty())
827       return RefExpr->getExplicitProperty();
828   }
829
830   // Look for properties accessed with method syntax ([foo setBar:...]).
831   const ObjCMethodDecl *MD = getDecl();
832   if (!MD || !MD->isPropertyAccessor())
833     return nullptr;
834
835   // Note: This is potentially quite slow.
836   return MD->findPropertyDecl();
837 }
838
839 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
840                                              Selector Sel) const {
841   assert(IDecl);
842   const SourceManager &SM =
843     getState()->getStateManager().getContext().getSourceManager();
844
845   // If the class interface is declared inside the main file, assume it is not
846   // subcassed.
847   // TODO: It could actually be subclassed if the subclass is private as well.
848   // This is probably very rare.
849   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
850   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
851     return false;
852
853   // Assume that property accessors are not overridden.
854   if (getMessageKind() == OCM_PropertyAccess)
855     return false;
856
857   // We assume that if the method is public (declared outside of main file) or
858   // has a parent which publicly declares the method, the method could be
859   // overridden in a subclass.
860
861   // Find the first declaration in the class hierarchy that declares
862   // the selector.
863   ObjCMethodDecl *D = nullptr;
864   while (true) {
865     D = IDecl->lookupMethod(Sel, true);
866
867     // Cannot find a public definition.
868     if (!D)
869       return false;
870
871     // If outside the main file,
872     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
873       return true;
874
875     if (D->isOverriding()) {
876       // Search in the superclass on the next iteration.
877       IDecl = D->getClassInterface();
878       if (!IDecl)
879         return false;
880
881       IDecl = IDecl->getSuperClass();
882       if (!IDecl)
883         return false;
884
885       continue;
886     }
887
888     return false;
889   };
890
891   llvm_unreachable("The while loop should always terminate.");
892 }
893
894 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
895   const ObjCMessageExpr *E = getOriginExpr();
896   assert(E);
897   Selector Sel = E->getSelector();
898
899   if (E->isInstanceMessage()) {
900
901     // Find the receiver type.
902     const ObjCObjectPointerType *ReceiverT = nullptr;
903     bool CanBeSubClassed = false;
904     QualType SupersType = E->getSuperType();
905     const MemRegion *Receiver = nullptr;
906
907     if (!SupersType.isNull()) {
908       // Super always means the type of immediate predecessor to the method
909       // where the call occurs.
910       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
911     } else {
912       Receiver = getReceiverSVal().getAsRegion();
913       if (!Receiver)
914         return RuntimeDefinition();
915
916       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
917       QualType DynType = DTI.getType();
918       CanBeSubClassed = DTI.canBeASubClass();
919       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
920
921       if (ReceiverT && CanBeSubClassed)
922         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
923           if (!canBeOverridenInSubclass(IDecl, Sel))
924             CanBeSubClassed = false;
925     }
926
927     // Lookup the method implementation.
928     if (ReceiverT)
929       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
930         // Repeatedly calling lookupPrivateMethod() is expensive, especially
931         // when in many cases it returns null.  We cache the results so
932         // that repeated queries on the same ObjCIntefaceDecl and Selector
933         // don't incur the same cost.  On some test cases, we can see the
934         // same query being issued thousands of times.
935         //
936         // NOTE: This cache is essentially a "global" variable, but it
937         // only gets lazily created when we get here.  The value of the
938         // cache probably comes from it being global across ExprEngines,
939         // where the same queries may get issued.  If we are worried about
940         // concurrency, or possibly loading/unloading ASTs, etc., we may
941         // need to revisit this someday.  In terms of memory, this table
942         // stays around until clang quits, which also may be bad if we
943         // need to release memory.
944         typedef std::pair<const ObjCInterfaceDecl*, Selector>
945                 PrivateMethodKey;
946         typedef llvm::DenseMap<PrivateMethodKey,
947                                Optional<const ObjCMethodDecl *> >
948                 PrivateMethodCache;
949
950         static PrivateMethodCache PMC;
951         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
952
953         // Query lookupPrivateMethod() if the cache does not hit.
954         if (!Val.hasValue()) {
955           Val = IDecl->lookupPrivateMethod(Sel);
956
957           // If the method is a property accessor, we should try to "inline" it
958           // even if we don't actually have an implementation.
959           if (!*Val)
960             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
961               if (CompileTimeMD->isPropertyAccessor()) {
962                 if (!CompileTimeMD->getSelfDecl() &&
963                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
964                   // If the method is an accessor in a category, and it doesn't
965                   // have a self declaration, first
966                   // try to find the method in a class extension. This
967                   // works around a bug in Sema where multiple accessors
968                   // are synthesized for properties in class
969                   // extensions that are redeclared in a category and the
970                   // the implicit parameters are not filled in for
971                   // the method on the category.
972                   // This ensures we find the accessor in the extension, which
973                   // has the implicit parameters filled in.
974                   auto *ID = CompileTimeMD->getClassInterface();
975                   for (auto *CatDecl : ID->visible_extensions()) {
976                     Val = CatDecl->getMethod(Sel,
977                                              CompileTimeMD->isInstanceMethod());
978                     if (*Val)
979                       break;
980                   }
981                 }
982                 if (!*Val)
983                   Val = IDecl->lookupInstanceMethod(Sel);
984               }
985         }
986
987         const ObjCMethodDecl *MD = Val.getValue();
988         if (CanBeSubClassed)
989           return RuntimeDefinition(MD, Receiver);
990         else
991           return RuntimeDefinition(MD, nullptr);
992       }
993
994   } else {
995     // This is a class method.
996     // If we have type info for the receiver class, we are calling via
997     // class name.
998     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
999       // Find/Return the method implementation.
1000       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1001     }
1002   }
1003
1004   return RuntimeDefinition();
1005 }
1006
1007 bool ObjCMethodCall::argumentsMayEscape() const {
1008   if (isInSystemHeader() && !isInstanceMessage()) {
1009     Selector Sel = getSelector();
1010     if (Sel.getNumArgs() == 1 &&
1011         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1012       return true;
1013   }
1014
1015   return CallEvent::argumentsMayEscape();
1016 }
1017
1018 void ObjCMethodCall::getInitialStackFrameContents(
1019                                              const StackFrameContext *CalleeCtx,
1020                                              BindingsTy &Bindings) const {
1021   const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1022   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1023   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1024                                D->parameters());
1025
1026   SVal SelfVal = getReceiverSVal();
1027   if (!SelfVal.isUnknown()) {
1028     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1029     MemRegionManager &MRMgr = SVB.getRegionManager();
1030     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1031     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1032   }
1033 }
1034
1035 CallEventRef<>
1036 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1037                                 const LocationContext *LCtx) {
1038   if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1039     return create<CXXMemberCall>(MCE, State, LCtx);
1040
1041   if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1042     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1043     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1044       if (MD->isInstance())
1045         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1046
1047   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1048     return create<BlockCall>(CE, State, LCtx);
1049   }
1050
1051   // Otherwise, it's a normal function call, static member function call, or
1052   // something we can't reason about.
1053   return create<SimpleFunctionCall>(CE, State, LCtx);
1054 }
1055
1056
1057 CallEventRef<>
1058 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1059                             ProgramStateRef State) {
1060   const LocationContext *ParentCtx = CalleeCtx->getParent();
1061   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
1062   assert(CallerCtx && "This should not be used for top-level stack frames");
1063
1064   const Stmt *CallSite = CalleeCtx->getCallSite();
1065
1066   if (CallSite) {
1067     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
1068       return getSimpleCall(CE, State, CallerCtx);
1069
1070     switch (CallSite->getStmtClass()) {
1071     case Stmt::CXXConstructExprClass:
1072     case Stmt::CXXTemporaryObjectExprClass: {
1073       SValBuilder &SVB = State->getStateManager().getSValBuilder();
1074       const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1075       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1076       SVal ThisVal = State->getSVal(ThisPtr);
1077
1078       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1079                                    ThisVal.getAsRegion(), State, CallerCtx);
1080     }
1081     case Stmt::CXXNewExprClass:
1082       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1083     case Stmt::ObjCMessageExprClass:
1084       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1085                                State, CallerCtx);
1086     default:
1087       llvm_unreachable("This is not an inlineable statement.");
1088     }
1089   }
1090
1091   // Fall back to the CFG. The only thing we haven't handled yet is
1092   // destructors, though this could change in the future.
1093   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1094   CFGElement E = (*B)[CalleeCtx->getIndex()];
1095   assert(E.getAs<CFGImplicitDtor>() &&
1096          "All other CFG elements should have exprs");
1097   assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
1098
1099   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1100   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1101   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1102   SVal ThisVal = State->getSVal(ThisPtr);
1103
1104   const Stmt *Trigger;
1105   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1106     Trigger = AutoDtor->getTriggerStmt();
1107   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1108     Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
1109   else
1110     Trigger = Dtor->getBody();
1111
1112   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1113                               E.getAs<CFGBaseDtor>().hasValue(), State,
1114                               CallerCtx);
1115 }