]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp
Update clang to trunk r256633.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / CoreEngine.cpp
1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtCXX.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/Casting.h"
24
25 using namespace clang;
26 using namespace ento;
27
28 #define DEBUG_TYPE "CoreEngine"
29
30 STATISTIC(NumSteps,
31             "The # of steps executed.");
32 STATISTIC(NumReachedMaxSteps,
33             "The # of times we reached the max number of steps.");
34 STATISTIC(NumPathsExplored,
35             "The # of paths explored by the analyzer.");
36
37 //===----------------------------------------------------------------------===//
38 // Worklist classes for exploration of reachable states.
39 //===----------------------------------------------------------------------===//
40
41 WorkList::Visitor::~Visitor() {}
42
43 namespace {
44 class DFS : public WorkList {
45   SmallVector<WorkListUnit,20> Stack;
46 public:
47   bool hasWork() const override {
48     return !Stack.empty();
49   }
50
51   void enqueue(const WorkListUnit& U) override {
52     Stack.push_back(U);
53   }
54
55   WorkListUnit dequeue() override {
56     assert (!Stack.empty());
57     const WorkListUnit& U = Stack.back();
58     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
59     return U;
60   }
61
62   bool visitItemsInWorkList(Visitor &V) override {
63     for (SmallVectorImpl<WorkListUnit>::iterator
64          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
65       if (V.visit(*I))
66         return true;
67     }
68     return false;
69   }
70 };
71
72 class BFS : public WorkList {
73   std::deque<WorkListUnit> Queue;
74 public:
75   bool hasWork() const override {
76     return !Queue.empty();
77   }
78
79   void enqueue(const WorkListUnit& U) override {
80     Queue.push_back(U);
81   }
82
83   WorkListUnit dequeue() override {
84     WorkListUnit U = Queue.front();
85     Queue.pop_front();
86     return U;
87   }
88
89   bool visitItemsInWorkList(Visitor &V) override {
90     for (std::deque<WorkListUnit>::iterator
91          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
92       if (V.visit(*I))
93         return true;
94     }
95     return false;
96   }
97 };
98
99 } // end anonymous namespace
100
101 // Place the dstor for WorkList here because it contains virtual member
102 // functions, and we the code for the dstor generated in one compilation unit.
103 WorkList::~WorkList() {}
104
105 WorkList *WorkList::makeDFS() { return new DFS(); }
106 WorkList *WorkList::makeBFS() { return new BFS(); }
107
108 namespace {
109   class BFSBlockDFSContents : public WorkList {
110     std::deque<WorkListUnit> Queue;
111     SmallVector<WorkListUnit,20> Stack;
112   public:
113     bool hasWork() const override {
114       return !Queue.empty() || !Stack.empty();
115     }
116
117     void enqueue(const WorkListUnit& U) override {
118       if (U.getNode()->getLocation().getAs<BlockEntrance>())
119         Queue.push_front(U);
120       else
121         Stack.push_back(U);
122     }
123
124     WorkListUnit dequeue() override {
125       // Process all basic blocks to completion.
126       if (!Stack.empty()) {
127         const WorkListUnit& U = Stack.back();
128         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
129         return U;
130       }
131
132       assert(!Queue.empty());
133       // Don't use const reference.  The subsequent pop_back() might make it
134       // unsafe.
135       WorkListUnit U = Queue.front();
136       Queue.pop_front();
137       return U;
138     }
139     bool visitItemsInWorkList(Visitor &V) override {
140       for (SmallVectorImpl<WorkListUnit>::iterator
141            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
142         if (V.visit(*I))
143           return true;
144       }
145       for (std::deque<WorkListUnit>::iterator
146            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
147         if (V.visit(*I))
148           return true;
149       }
150       return false;
151     }
152
153   };
154 } // end anonymous namespace
155
156 WorkList* WorkList::makeBFSBlockDFSContents() {
157   return new BFSBlockDFSContents();
158 }
159
160 //===----------------------------------------------------------------------===//
161 // Core analysis engine.
162 //===----------------------------------------------------------------------===//
163
164 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
165 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
166                                    ProgramStateRef InitState) {
167
168   if (G.num_roots() == 0) { // Initialize the analysis by constructing
169     // the root if none exists.
170
171     const CFGBlock *Entry = &(L->getCFG()->getEntry());
172
173     assert (Entry->empty() &&
174             "Entry block must be empty.");
175
176     assert (Entry->succ_size() == 1 &&
177             "Entry block must have 1 successor.");
178
179     // Mark the entry block as visited.
180     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
181                                              L->getDecl(),
182                                              L->getCFG()->getNumBlockIDs());
183
184     // Get the solitary successor.
185     const CFGBlock *Succ = *(Entry->succ_begin());
186
187     // Construct an edge representing the
188     // starting location in the function.
189     BlockEdge StartLoc(Entry, Succ, L);
190
191     // Set the current block counter to being empty.
192     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
193
194     if (!InitState)
195       // Generate the root.
196       generateNode(StartLoc, SubEng.getInitialState(L), nullptr);
197     else
198       generateNode(StartLoc, InitState, nullptr);
199   }
200
201   // Check if we have a steps limit
202   bool UnlimitedSteps = Steps == 0;
203
204   while (WList->hasWork()) {
205     if (!UnlimitedSteps) {
206       if (Steps == 0) {
207         NumReachedMaxSteps++;
208         break;
209       }
210       --Steps;
211     }
212
213     NumSteps++;
214
215     const WorkListUnit& WU = WList->dequeue();
216
217     // Set the current block counter.
218     WList->setBlockCounter(WU.getBlockCounter());
219
220     // Retrieve the node.
221     ExplodedNode *Node = WU.getNode();
222
223     dispatchWorkItem(Node, Node->getLocation(), WU);
224   }
225   SubEng.processEndWorklist(hasWorkRemaining());
226   return WList->hasWork();
227 }
228
229 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
230                                   const WorkListUnit& WU) {
231   // Dispatch on the location type.
232   switch (Loc.getKind()) {
233     case ProgramPoint::BlockEdgeKind:
234       HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
235       break;
236
237     case ProgramPoint::BlockEntranceKind:
238       HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
239       break;
240
241     case ProgramPoint::BlockExitKind:
242       assert (false && "BlockExit location never occur in forward analysis.");
243       break;
244
245     case ProgramPoint::CallEnterKind: {
246       CallEnter CEnter = Loc.castAs<CallEnter>();
247       SubEng.processCallEnter(CEnter, Pred);
248       break;
249     }
250
251     case ProgramPoint::CallExitBeginKind:
252       SubEng.processCallExit(Pred);
253       break;
254
255     case ProgramPoint::EpsilonKind: {
256       assert(Pred->hasSinglePred() &&
257              "Assume epsilon has exactly one predecessor by construction");
258       ExplodedNode *PNode = Pred->getFirstPred();
259       dispatchWorkItem(Pred, PNode->getLocation(), WU);
260       break;
261     }
262     default:
263       assert(Loc.getAs<PostStmt>() ||
264              Loc.getAs<PostInitializer>() ||
265              Loc.getAs<PostImplicitCall>() ||
266              Loc.getAs<CallExitEnd>());
267       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
268       break;
269   }
270 }
271
272 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
273                                                  unsigned Steps,
274                                                  ProgramStateRef InitState,
275                                                  ExplodedNodeSet &Dst) {
276   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
277   for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E;
278        ++I) {
279     Dst.Add(*I);
280   }
281   return DidNotFinish;
282 }
283
284 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
285
286   const CFGBlock *Blk = L.getDst();
287   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
288
289   // Mark this block as visited.
290   const LocationContext *LC = Pred->getLocationContext();
291   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
292                                            LC->getDecl(),
293                                            LC->getCFG()->getNumBlockIDs());
294
295   // Check if we are entering the EXIT block.
296   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
297
298     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
299             && "EXIT block cannot contain Stmts.");
300
301     // Process the final state transition.
302     SubEng.processEndOfFunction(BuilderCtx, Pred);
303
304     // This path is done. Don't enqueue any more nodes.
305     return;
306   }
307
308   // Call into the SubEngine to process entering the CFGBlock.
309   ExplodedNodeSet dstNodes;
310   BlockEntrance BE(Blk, Pred->getLocationContext());
311   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
312   SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
313
314   // Auto-generate a node.
315   if (!nodeBuilder.hasGeneratedNodes()) {
316     nodeBuilder.generateNode(Pred->State, Pred);
317   }
318
319   // Enqueue nodes onto the worklist.
320   enqueue(dstNodes);
321 }
322
323 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
324                                        ExplodedNode *Pred) {
325
326   // Increment the block counter.
327   const LocationContext *LC = Pred->getLocationContext();
328   unsigned BlockId = L.getBlock()->getBlockID();
329   BlockCounter Counter = WList->getBlockCounter();
330   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
331                                            BlockId);
332   WList->setBlockCounter(Counter);
333
334   // Process the entrance of the block.
335   if (Optional<CFGElement> E = L.getFirstElement()) {
336     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
337     SubEng.processCFGElement(*E, Pred, 0, &Ctx);
338   }
339   else
340     HandleBlockExit(L.getBlock(), Pred);
341 }
342
343 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
344
345   if (const Stmt *Term = B->getTerminator()) {
346     switch (Term->getStmtClass()) {
347       default:
348         llvm_unreachable("Analysis for this terminator not implemented.");
349
350       case Stmt::CXXBindTemporaryExprClass:
351         HandleCleanupTemporaryBranch(
352             cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred);
353         return;
354
355       // Model static initializers.
356       case Stmt::DeclStmtClass:
357         HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
358         return;
359
360       case Stmt::BinaryOperatorClass: // '&&' and '||'
361         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
362         return;
363
364       case Stmt::BinaryConditionalOperatorClass:
365       case Stmt::ConditionalOperatorClass:
366         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
367                      Term, B, Pred);
368         return;
369
370         // FIXME: Use constant-folding in CFG construction to simplify this
371         // case.
372
373       case Stmt::ChooseExprClass:
374         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
375         return;
376
377       case Stmt::CXXTryStmtClass: {
378         // Generate a node for each of the successors.
379         // Our logic for EH analysis can certainly be improved.
380         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
381              et = B->succ_end(); it != et; ++it) {
382           if (const CFGBlock *succ = *it) {
383             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
384                          Pred->State, Pred);
385           }
386         }
387         return;
388       }
389
390       case Stmt::DoStmtClass:
391         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
392         return;
393
394       case Stmt::CXXForRangeStmtClass:
395         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
396         return;
397
398       case Stmt::ForStmtClass:
399         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
400         return;
401
402       case Stmt::ContinueStmtClass:
403       case Stmt::BreakStmtClass:
404       case Stmt::GotoStmtClass:
405         break;
406
407       case Stmt::IfStmtClass:
408         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
409         return;
410
411       case Stmt::IndirectGotoStmtClass: {
412         // Only 1 successor: the indirect goto dispatch block.
413         assert (B->succ_size() == 1);
414
415         IndirectGotoNodeBuilder
416            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
417                    *(B->succ_begin()), this);
418
419         SubEng.processIndirectGoto(builder);
420         return;
421       }
422
423       case Stmt::ObjCForCollectionStmtClass: {
424         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
425         //
426         //  (1) inside a basic block, which represents the binding of the
427         //      'element' variable to a value.
428         //  (2) in a terminator, which represents the branch.
429         //
430         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
431         // whether or not collection contains any more elements.  We cannot
432         // just test to see if the element is nil because a container can
433         // contain nil elements.
434         HandleBranch(Term, Term, B, Pred);
435         return;
436       }
437
438       case Stmt::SwitchStmtClass: {
439         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
440                                     this);
441
442         SubEng.processSwitch(builder);
443         return;
444       }
445
446       case Stmt::WhileStmtClass:
447         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
448         return;
449     }
450   }
451
452   assert (B->succ_size() == 1 &&
453           "Blocks with no terminator should have at most 1 successor.");
454
455   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
456                Pred->State, Pred);
457 }
458
459 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
460                                 const CFGBlock * B, ExplodedNode *Pred) {
461   assert(B->succ_size() == 2);
462   NodeBuilderContext Ctx(*this, B, Pred);
463   ExplodedNodeSet Dst;
464   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
465                        *(B->succ_begin()), *(B->succ_begin()+1));
466   // Enqueue the new frontier onto the worklist.
467   enqueue(Dst);
468 }
469
470 void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
471                                               const CFGBlock *B,
472                                               ExplodedNode *Pred) {
473   assert(B->succ_size() == 2);
474   NodeBuilderContext Ctx(*this, B, Pred);
475   ExplodedNodeSet Dst;
476   SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()),
477                                        *(B->succ_begin() + 1));
478   // Enqueue the new frontier onto the worklist.
479   enqueue(Dst);
480 }
481
482 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
483                                   ExplodedNode *Pred) {
484   assert(B->succ_size() == 2);
485   NodeBuilderContext Ctx(*this, B, Pred);
486   ExplodedNodeSet Dst;
487   SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
488                                   *(B->succ_begin()), *(B->succ_begin()+1));
489   // Enqueue the new frontier onto the worklist.
490   enqueue(Dst);
491 }
492
493
494 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
495                                   ExplodedNode *Pred) {
496   assert(B);
497   assert(!B->empty());
498
499   if (StmtIdx == B->size())
500     HandleBlockExit(B, Pred);
501   else {
502     NodeBuilderContext Ctx(*this, B, Pred);
503     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
504   }
505 }
506
507 /// generateNode - Utility method to generate nodes, hook up successors,
508 ///  and add nodes to the worklist.
509 void CoreEngine::generateNode(const ProgramPoint &Loc,
510                               ProgramStateRef State,
511                               ExplodedNode *Pred) {
512
513   bool IsNew;
514   ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew);
515
516   if (Pred)
517     Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor.
518   else {
519     assert (IsNew);
520     G.addRoot(Node); // 'Node' has no predecessor.  Make it a root.
521   }
522
523   // Only add 'Node' to the worklist if it was freshly generated.
524   if (IsNew) WList->enqueue(Node);
525 }
526
527 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
528                                  const CFGBlock *Block, unsigned Idx) {
529   assert(Block);
530   assert (!N->isSink());
531
532   // Check if this node entered a callee.
533   if (N->getLocation().getAs<CallEnter>()) {
534     // Still use the index of the CallExpr. It's needed to create the callee
535     // StackFrameContext.
536     WList->enqueue(N, Block, Idx);
537     return;
538   }
539
540   // Do not create extra nodes. Move to the next CFG element.
541   if (N->getLocation().getAs<PostInitializer>() ||
542       N->getLocation().getAs<PostImplicitCall>()) {
543     WList->enqueue(N, Block, Idx+1);
544     return;
545   }
546
547   if (N->getLocation().getAs<EpsilonPoint>()) {
548     WList->enqueue(N, Block, Idx);
549     return;
550   }
551
552   if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) {
553     WList->enqueue(N, Block, Idx+1);
554     return;
555   }
556
557   // At this point, we know we're processing a normal statement.
558   CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
559   PostStmt Loc(CS.getStmt(), N->getLocationContext());
560
561   if (Loc == N->getLocation().withTag(nullptr)) {
562     // Note: 'N' should be a fresh node because otherwise it shouldn't be
563     // a member of Deferred.
564     WList->enqueue(N, Block, Idx+1);
565     return;
566   }
567
568   bool IsNew;
569   ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew);
570   Succ->addPredecessor(N, G);
571
572   if (IsNew)
573     WList->enqueue(Succ, Block, Idx+1);
574 }
575
576 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
577   // Create a CallExitBegin node and enqueue it.
578   const StackFrameContext *LocCtx
579                          = cast<StackFrameContext>(N->getLocationContext());
580
581   // Use the callee location context.
582   CallExitBegin Loc(LocCtx);
583
584   bool isNew;
585   ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew);
586   Node->addPredecessor(N, G);
587   return isNew ? Node : nullptr;
588 }
589
590
591 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
592   for (ExplodedNodeSet::iterator I = Set.begin(),
593                                  E = Set.end(); I != E; ++I) {
594     WList->enqueue(*I);
595   }
596 }
597
598 void CoreEngine::enqueue(ExplodedNodeSet &Set,
599                          const CFGBlock *Block, unsigned Idx) {
600   for (ExplodedNodeSet::iterator I = Set.begin(),
601                                  E = Set.end(); I != E; ++I) {
602     enqueueStmtNode(*I, Block, Idx);
603   }
604 }
605
606 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
607   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
608     ExplodedNode *N = *I;
609     // If we are in an inlined call, generate CallExitBegin node.
610     if (N->getLocationContext()->getParent()) {
611       N = generateCallExitBeginNode(N);
612       if (N)
613         WList->enqueue(N);
614     } else {
615       // TODO: We should run remove dead bindings here.
616       G.addEndOfPath(N);
617       NumPathsExplored++;
618     }
619   }
620 }
621
622
623 void NodeBuilder::anchor() { }
624
625 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
626                                             ProgramStateRef State,
627                                             ExplodedNode *FromN,
628                                             bool MarkAsSink) {
629   HasGeneratedNodes = true;
630   bool IsNew;
631   ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew);
632   N->addPredecessor(FromN, C.Eng.G);
633   Frontier.erase(FromN);
634
635   if (!IsNew)
636     return nullptr;
637
638   if (!MarkAsSink)
639     Frontier.Add(N);
640
641   return N;
642 }
643
644 void NodeBuilderWithSinks::anchor() { }
645
646 StmtNodeBuilder::~StmtNodeBuilder() {
647   if (EnclosingBldr)
648     for (ExplodedNodeSet::iterator I = Frontier.begin(),
649                                    E = Frontier.end(); I != E; ++I )
650       EnclosingBldr->addNodes(*I);
651 }
652
653 void BranchNodeBuilder::anchor() { }
654
655 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
656                                               bool branch,
657                                               ExplodedNode *NodePred) {
658   // If the branch has been marked infeasible we should not generate a node.
659   if (!isFeasible(branch))
660     return nullptr;
661
662   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
663                                NodePred->getLocationContext());
664   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
665   return Succ;
666 }
667
668 ExplodedNode*
669 IndirectGotoNodeBuilder::generateNode(const iterator &I,
670                                       ProgramStateRef St,
671                                       bool IsSink) {
672   bool IsNew;
673   ExplodedNode *Succ =
674       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
675                     St, IsSink, &IsNew);
676   Succ->addPredecessor(Pred, Eng.G);
677
678   if (!IsNew)
679     return nullptr;
680
681   if (!IsSink)
682     Eng.WList->enqueue(Succ);
683
684   return Succ;
685 }
686
687
688 ExplodedNode*
689 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
690                                         ProgramStateRef St) {
691
692   bool IsNew;
693   ExplodedNode *Succ =
694       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
695                     St, false, &IsNew);
696   Succ->addPredecessor(Pred, Eng.G);
697   if (!IsNew)
698     return nullptr;
699
700   Eng.WList->enqueue(Succ);
701   return Succ;
702 }
703
704
705 ExplodedNode*
706 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
707                                            bool IsSink) {
708   // Get the block for the default case.
709   assert(Src->succ_rbegin() != Src->succ_rend());
710   CFGBlock *DefaultBlock = *Src->succ_rbegin();
711
712   // Sanity check for default blocks that are unreachable and not caught
713   // by earlier stages.
714   if (!DefaultBlock)
715     return nullptr;
716
717   bool IsNew;
718   ExplodedNode *Succ =
719       Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()),
720                     St, IsSink, &IsNew);
721   Succ->addPredecessor(Pred, Eng.G);
722
723   if (!IsNew)
724     return nullptr;
725
726   if (!IsSink)
727     Eng.WList->enqueue(Succ);
728
729   return Succ;
730 }