]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp
Update our device tree files to a Linux 4.10
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / ExprEngineCallAndReturn.cpp
1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for calls and returns.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
15 #include "PrettyStackTraceLocationContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/Analysis/Analyses/LiveVariables.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/SaveAndRestore.h"
25
26 using namespace clang;
27 using namespace ento;
28
29 #define DEBUG_TYPE "ExprEngine"
30
31 STATISTIC(NumOfDynamicDispatchPathSplits,
32   "The # of times we split the path due to imprecise dynamic dispatch info");
33
34 STATISTIC(NumInlinedCalls,
35   "The # of times we inlined a call");
36
37 STATISTIC(NumReachedInlineCountMax,
38   "The # of times we reached inline count maximum");
39
40 void ExprEngine::processCallEnter(NodeBuilderContext& BC, CallEnter CE,
41                                   ExplodedNode *Pred) {
42   // Get the entry block in the CFG of the callee.
43   const StackFrameContext *calleeCtx = CE.getCalleeContext();
44   PrettyStackTraceLocationContext CrashInfo(calleeCtx);
45   const CFGBlock *Entry = CE.getEntry();
46
47   // Validate the CFG.
48   assert(Entry->empty());
49   assert(Entry->succ_size() == 1);
50
51   // Get the solitary successor.
52   const CFGBlock *Succ = *(Entry->succ_begin());
53
54   // Construct an edge representing the starting location in the callee.
55   BlockEdge Loc(Entry, Succ, calleeCtx);
56
57   ProgramStateRef state = Pred->getState();
58
59   // Construct a new node, notify checkers that analysis of the function has
60   // begun, and add the resultant nodes to the worklist.
61   bool isNew;
62   ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
63   Node->addPredecessor(Pred, G);
64   if (isNew) {
65     ExplodedNodeSet DstBegin;
66     processBeginOfFunction(BC, Node, DstBegin, Loc);
67     Engine.enqueue(DstBegin);
68   }
69 }
70
71 // Find the last statement on the path to the exploded node and the
72 // corresponding Block.
73 static std::pair<const Stmt*,
74                  const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
75   const Stmt *S = nullptr;
76   const CFGBlock *Blk = nullptr;
77   const StackFrameContext *SF =
78           Node->getLocation().getLocationContext()->getCurrentStackFrame();
79
80   // Back up through the ExplodedGraph until we reach a statement node in this
81   // stack frame.
82   while (Node) {
83     const ProgramPoint &PP = Node->getLocation();
84
85     if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
86       if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
87         S = SP->getStmt();
88         break;
89       } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
90         S = CEE->getCalleeContext()->getCallSite();
91         if (S)
92           break;
93
94         // If there is no statement, this is an implicitly-generated call.
95         // We'll walk backwards over it and then continue the loop to find
96         // an actual statement.
97         Optional<CallEnter> CE;
98         do {
99           Node = Node->getFirstPred();
100           CE = Node->getLocationAs<CallEnter>();
101         } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
102
103         // Continue searching the graph.
104       } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
105         Blk = BE->getSrc();
106       }
107     } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
108       // If we reached the CallEnter for this function, it has no statements.
109       if (CE->getCalleeContext() == SF)
110         break;
111     }
112
113     if (Node->pred_empty())
114       return std::make_pair(nullptr, nullptr);
115
116     Node = *Node->pred_begin();
117   }
118
119   return std::make_pair(S, Blk);
120 }
121
122 /// Adjusts a return value when the called function's return type does not
123 /// match the caller's expression type. This can happen when a dynamic call
124 /// is devirtualized, and the overridding method has a covariant (more specific)
125 /// return type than the parent's method. For C++ objects, this means we need
126 /// to add base casts.
127 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
128                               StoreManager &StoreMgr) {
129   // For now, the only adjustments we handle apply only to locations.
130   if (!V.getAs<Loc>())
131     return V;
132
133   // If the types already match, don't do any unnecessary work.
134   ExpectedTy = ExpectedTy.getCanonicalType();
135   ActualTy = ActualTy.getCanonicalType();
136   if (ExpectedTy == ActualTy)
137     return V;
138
139   // No adjustment is needed between Objective-C pointer types.
140   if (ExpectedTy->isObjCObjectPointerType() &&
141       ActualTy->isObjCObjectPointerType())
142     return V;
143
144   // C++ object pointers may need "derived-to-base" casts.
145   const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
146   const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
147   if (ExpectedClass && ActualClass) {
148     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
149                        /*DetectVirtual=*/false);
150     if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
151         !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
152       return StoreMgr.evalDerivedToBase(V, Paths.front());
153     }
154   }
155
156   // Unfortunately, Objective-C does not enforce that overridden methods have
157   // covariant return types, so we can't assert that that never happens.
158   // Be safe and return UnknownVal().
159   return UnknownVal();
160 }
161
162 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
163                                            ExplodedNode *Pred,
164                                            ExplodedNodeSet &Dst) {
165   // Find the last statement in the function and the corresponding basic block.
166   const Stmt *LastSt = nullptr;
167   const CFGBlock *Blk = nullptr;
168   std::tie(LastSt, Blk) = getLastStmt(Pred);
169   if (!Blk || !LastSt) {
170     Dst.Add(Pred);
171     return;
172   }
173
174   // Here, we destroy the current location context. We use the current
175   // function's entire body as a diagnostic statement, with which the program
176   // point will be associated. However, we only want to use LastStmt as a
177   // reference for what to clean up if it's a ReturnStmt; otherwise, everything
178   // is dead.
179   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
180   const LocationContext *LCtx = Pred->getLocationContext();
181   removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
182              LCtx->getAnalysisDeclContext()->getBody(),
183              ProgramPoint::PostStmtPurgeDeadSymbolsKind);
184 }
185
186 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
187     const StackFrameContext *calleeCtx) {
188   const Decl *RuntimeCallee = calleeCtx->getDecl();
189   const Decl *StaticDecl = Call->getDecl();
190   assert(RuntimeCallee);
191   if (!StaticDecl)
192     return true;
193   return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
194 }
195
196 /// Returns true if the CXXConstructExpr \p E was intended to construct a
197 /// prvalue for the region in \p V.
198 ///
199 /// Note that we can't just test for rvalue vs. glvalue because
200 /// CXXConstructExprs embedded in DeclStmts and initializers are considered
201 /// rvalues by the AST, and the analyzer would like to treat them as lvalues.
202 static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) {
203   if (E->isGLValue())
204     return false;
205
206   const MemRegion *MR = V.getAsRegion();
207   if (!MR)
208     return false;
209
210   return isa<CXXTempObjectRegion>(MR);
211 }
212
213 /// The call exit is simulated with a sequence of nodes, which occur between
214 /// CallExitBegin and CallExitEnd. The following operations occur between the
215 /// two program points:
216 /// 1. CallExitBegin (triggers the start of call exit sequence)
217 /// 2. Bind the return value
218 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
219 /// 4. CallExitEnd (switch to the caller context)
220 /// 5. PostStmt<CallExpr>
221 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
222   // Step 1 CEBNode was generated before the call.
223   PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
224   const StackFrameContext *calleeCtx =
225       CEBNode->getLocationContext()->getCurrentStackFrame();
226
227   // The parent context might not be a stack frame, so make sure we
228   // look up the first enclosing stack frame.
229   const StackFrameContext *callerCtx =
230     calleeCtx->getParent()->getCurrentStackFrame();
231
232   const Stmt *CE = calleeCtx->getCallSite();
233   ProgramStateRef state = CEBNode->getState();
234   // Find the last statement in the function and the corresponding basic block.
235   const Stmt *LastSt = nullptr;
236   const CFGBlock *Blk = nullptr;
237   std::tie(LastSt, Blk) = getLastStmt(CEBNode);
238
239   // Generate a CallEvent /before/ cleaning the state, so that we can get the
240   // correct value for 'this' (if necessary).
241   CallEventManager &CEMgr = getStateManager().getCallEventManager();
242   CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
243
244   // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
245
246   // If the callee returns an expression, bind its value to CallExpr.
247   if (CE) {
248     if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
249       const LocationContext *LCtx = CEBNode->getLocationContext();
250       SVal V = state->getSVal(RS, LCtx);
251
252       // Ensure that the return type matches the type of the returned Expr.
253       if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
254         QualType ReturnedTy =
255           CallEvent::getDeclaredResultType(calleeCtx->getDecl());
256         if (!ReturnedTy.isNull()) {
257           if (const Expr *Ex = dyn_cast<Expr>(CE)) {
258             V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
259                                   getStoreManager());
260           }
261         }
262       }
263
264       state = state->BindExpr(CE, callerCtx, V);
265     }
266
267     // Bind the constructed object value to CXXConstructExpr.
268     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
269       loc::MemRegionVal This =
270         svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
271       SVal ThisV = state->getSVal(This);
272
273       // If the constructed object is a temporary prvalue, get its bindings.
274       if (isTemporaryPRValue(CCE, ThisV))
275         ThisV = state->getSVal(ThisV.castAs<Loc>());
276
277       state = state->BindExpr(CCE, callerCtx, ThisV);
278     }
279   }
280
281   // Step 3: BindedRetNode -> CleanedNodes
282   // If we can find a statement and a block in the inlined function, run remove
283   // dead bindings before returning from the call. This is important to ensure
284   // that we report the issues such as leaks in the stack contexts in which
285   // they occurred.
286   ExplodedNodeSet CleanedNodes;
287   if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
288     static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
289     PostStmt Loc(LastSt, calleeCtx, &retValBind);
290     bool isNew;
291     ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
292     BindedRetNode->addPredecessor(CEBNode, G);
293     if (!isNew)
294       return;
295
296     NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
297     currBldrCtx = &Ctx;
298     // Here, we call the Symbol Reaper with 0 statement and callee location
299     // context, telling it to clean up everything in the callee's context
300     // (and its children). We use the callee's function body as a diagnostic
301     // statement, with which the program point will be associated.
302     removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
303                calleeCtx->getAnalysisDeclContext()->getBody(),
304                ProgramPoint::PostStmtPurgeDeadSymbolsKind);
305     currBldrCtx = nullptr;
306   } else {
307     CleanedNodes.Add(CEBNode);
308   }
309
310   for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
311                                  E = CleanedNodes.end(); I != E; ++I) {
312
313     // Step 4: Generate the CallExit and leave the callee's context.
314     // CleanedNodes -> CEENode
315     CallExitEnd Loc(calleeCtx, callerCtx);
316     bool isNew;
317     ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
318     ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
319     CEENode->addPredecessor(*I, G);
320     if (!isNew)
321       return;
322
323     // Step 5: Perform the post-condition check of the CallExpr and enqueue the
324     // result onto the work list.
325     // CEENode -> Dst -> WorkList
326     NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
327     SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
328         &Ctx);
329     SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
330
331     CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
332
333     ExplodedNodeSet DstPostCall;
334     getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
335                                                *UpdatedCall, *this,
336                                                /*WasInlined=*/true);
337
338     ExplodedNodeSet Dst;
339     if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
340       getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
341                                                         *this,
342                                                         /*WasInlined=*/true);
343     } else if (CE) {
344       getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
345                                                  *this, /*WasInlined=*/true);
346     } else {
347       Dst.insert(DstPostCall);
348     }
349
350     // Enqueue the next element in the block.
351     for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
352                                    PSI != PSE; ++PSI) {
353       Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
354                                     calleeCtx->getIndex()+1);
355     }
356   }
357 }
358
359 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
360                                bool &IsRecursive, unsigned &StackDepth) {
361   IsRecursive = false;
362   StackDepth = 0;
363
364   while (LCtx) {
365     if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
366       const Decl *DI = SFC->getDecl();
367
368       // Mark recursive (and mutually recursive) functions and always count
369       // them when measuring the stack depth.
370       if (DI == D) {
371         IsRecursive = true;
372         ++StackDepth;
373         LCtx = LCtx->getParent();
374         continue;
375       }
376
377       // Do not count the small functions when determining the stack depth.
378       AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
379       const CFG *CalleeCFG = CalleeADC->getCFG();
380       if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
381         ++StackDepth;
382     }
383     LCtx = LCtx->getParent();
384   }
385 }
386
387 // The GDM component containing the dynamic dispatch bifurcation info. When
388 // the exact type of the receiver is not known, we want to explore both paths -
389 // one on which we do inline it and the other one on which we don't. This is
390 // done to ensure we do not drop coverage.
391 // This is the map from the receiver region to a bool, specifying either we
392 // consider this region's information precise or not along the given path.
393 namespace {
394   enum DynamicDispatchMode {
395     DynamicDispatchModeInlined = 1,
396     DynamicDispatchModeConservative
397   };
398 } // end anonymous namespace
399
400 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
401                                  CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
402                                                              unsigned))
403
404 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
405                             NodeBuilder &Bldr, ExplodedNode *Pred,
406                             ProgramStateRef State) {
407   assert(D);
408
409   const LocationContext *CurLC = Pred->getLocationContext();
410   const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
411   const LocationContext *ParentOfCallee = CallerSFC;
412   if (Call.getKind() == CE_Block &&
413       !cast<BlockCall>(Call).isConversionFromLambda()) {
414     const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
415     assert(BR && "If we have the block definition we should have its region");
416     AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
417     ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
418                                                          cast<BlockDecl>(D),
419                                                          BR);
420   }
421
422   // This may be NULL, but that's fine.
423   const Expr *CallE = Call.getOriginExpr();
424
425   // Construct a new stack frame for the callee.
426   AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
427   const StackFrameContext *CalleeSFC =
428     CalleeADC->getStackFrame(ParentOfCallee, CallE,
429                              currBldrCtx->getBlock(),
430                              currStmtIdx);
431
432   CallEnter Loc(CallE, CalleeSFC, CurLC);
433
434   // Construct a new state which contains the mapping from actual to
435   // formal arguments.
436   State = State->enterStackFrame(Call, CalleeSFC);
437
438   bool isNew;
439   if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
440     N->addPredecessor(Pred, G);
441     if (isNew)
442       Engine.getWorkList()->enqueue(N);
443   }
444
445   // If we decided to inline the call, the successor has been manually
446   // added onto the work list so remove it from the node builder.
447   Bldr.takeNodes(Pred);
448
449   NumInlinedCalls++;
450
451   // Mark the decl as visited.
452   if (VisitedCallees)
453     VisitedCallees->insert(D);
454
455   return true;
456 }
457
458 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
459                                             const Stmt *CallE) {
460   const void *ReplayState = State->get<ReplayWithoutInlining>();
461   if (!ReplayState)
462     return nullptr;
463
464   assert(ReplayState == CallE && "Backtracked to the wrong call.");
465   (void)CallE;
466
467   return State->remove<ReplayWithoutInlining>();
468 }
469
470 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
471                                ExplodedNodeSet &dst) {
472   // Perform the previsit of the CallExpr.
473   ExplodedNodeSet dstPreVisit;
474   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
475
476   // Get the call in its initial state. We use this as a template to perform
477   // all the checks.
478   CallEventManager &CEMgr = getStateManager().getCallEventManager();
479   CallEventRef<> CallTemplate
480     = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
481
482   // Evaluate the function call.  We try each of the checkers
483   // to see if the can evaluate the function call.
484   ExplodedNodeSet dstCallEvaluated;
485   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
486        I != E; ++I) {
487     evalCall(dstCallEvaluated, *I, *CallTemplate);
488   }
489
490   // Finally, perform the post-condition check of the CallExpr and store
491   // the created nodes in 'Dst'.
492   // Note that if the call was inlined, dstCallEvaluated will be empty.
493   // The post-CallExpr check will occur in processCallExit.
494   getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
495                                              *this);
496 }
497
498 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
499                           const CallEvent &Call) {
500   // WARNING: At this time, the state attached to 'Call' may be older than the
501   // state in 'Pred'. This is a minor optimization since CheckerManager will
502   // use an updated CallEvent instance when calling checkers, but if 'Call' is
503   // ever used directly in this function all callers should be updated to pass
504   // the most recent state. (It is probably not worth doing the work here since
505   // for some callers this will not be necessary.)
506
507   // Run any pre-call checks using the generic call interface.
508   ExplodedNodeSet dstPreVisit;
509   getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
510
511   // Actually evaluate the function call.  We try each of the checkers
512   // to see if the can evaluate the function call, and get a callback at
513   // defaultEvalCall if all of them fail.
514   ExplodedNodeSet dstCallEvaluated;
515   getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
516                                              Call, *this);
517
518   // Finally, run any post-call checks.
519   getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
520                                              Call, *this);
521 }
522
523 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
524                                             const LocationContext *LCtx,
525                                             ProgramStateRef State) {
526   const Expr *E = Call.getOriginExpr();
527   if (!E)
528     return State;
529
530   // Some method families have known return values.
531   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
532     switch (Msg->getMethodFamily()) {
533     default:
534       break;
535     case OMF_autorelease:
536     case OMF_retain:
537     case OMF_self: {
538       // These methods return their receivers.
539       return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
540     }
541     }
542   } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
543     SVal ThisV = C->getCXXThisVal();
544
545     // If the constructed object is a temporary prvalue, get its bindings.
546     if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV))
547       ThisV = State->getSVal(ThisV.castAs<Loc>());
548
549     return State->BindExpr(E, LCtx, ThisV);
550   }
551
552   // Conjure a symbol if the return value is unknown.
553   QualType ResultTy = Call.getResultType();
554   SValBuilder &SVB = getSValBuilder();
555   unsigned Count = currBldrCtx->blockCount();
556   SVal R = SVB.conjureSymbolVal(nullptr, E, LCtx, ResultTy, Count);
557   return State->BindExpr(E, LCtx, R);
558 }
559
560 // Conservatively evaluate call by invalidating regions and binding
561 // a conjured return value.
562 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
563                                       ExplodedNode *Pred,
564                                       ProgramStateRef State) {
565   State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
566   State = bindReturnValue(Call, Pred->getLocationContext(), State);
567
568   // And make the result node.
569   Bldr.generateNode(Call.getProgramPoint(), State, Pred);
570 }
571
572 enum CallInlinePolicy {
573   CIP_Allowed,
574   CIP_DisallowedOnce,
575   CIP_DisallowedAlways
576 };
577
578 static CallInlinePolicy mayInlineCallKind(const CallEvent &Call,
579                                           const ExplodedNode *Pred,
580                                           AnalyzerOptions &Opts) {
581   const LocationContext *CurLC = Pred->getLocationContext();
582   const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
583   switch (Call.getKind()) {
584   case CE_Function:
585   case CE_Block:
586     break;
587   case CE_CXXMember:
588   case CE_CXXMemberOperator:
589     if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
590       return CIP_DisallowedAlways;
591     break;
592   case CE_CXXConstructor: {
593     if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
594       return CIP_DisallowedAlways;
595
596     const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
597
598     // FIXME: We don't handle constructors or destructors for arrays properly.
599     // Even once we do, we still need to be careful about implicitly-generated
600     // initializers for array fields in default move/copy constructors.
601     const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
602     if (Target && isa<ElementRegion>(Target))
603       return CIP_DisallowedOnce;
604
605     // FIXME: This is a hack. We don't use the correct region for a new
606     // expression, so if we inline the constructor its result will just be
607     // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
608     // and the longer-term possible fix is discussed in PR12014.
609     const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
610     if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
611       if (isa<CXXNewExpr>(Parent))
612         return CIP_DisallowedOnce;
613
614     // Inlining constructors requires including initializers in the CFG.
615     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
616     assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
617     (void)ADC;
618
619     // If the destructor is trivial, it's always safe to inline the constructor.
620     if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
621       break;
622
623     // For other types, only inline constructors if destructor inlining is
624     // also enabled.
625     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
626       return CIP_DisallowedAlways;
627
628     // FIXME: This is a hack. We don't handle temporary destructors
629     // right now, so we shouldn't inline their constructors.
630     if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
631       if (!Target || !isa<DeclRegion>(Target))
632         return CIP_DisallowedOnce;
633
634     break;
635   }
636   case CE_CXXDestructor: {
637     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
638       return CIP_DisallowedAlways;
639
640     // Inlining destructors requires building the CFG correctly.
641     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
642     assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
643     (void)ADC;
644
645     const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
646
647     // FIXME: We don't handle constructors or destructors for arrays properly.
648     const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
649     if (Target && isa<ElementRegion>(Target))
650       return CIP_DisallowedOnce;
651
652     break;
653   }
654   case CE_CXXAllocator:
655     if (Opts.mayInlineCXXAllocator())
656       break;
657     // Do not inline allocators until we model deallocators.
658     // This is unfortunate, but basically necessary for smart pointers and such.
659     return CIP_DisallowedAlways;
660   case CE_ObjCMessage:
661     if (!Opts.mayInlineObjCMethod())
662       return CIP_DisallowedAlways;
663     if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
664           Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
665       return CIP_DisallowedAlways;
666     break;
667   }
668
669   return CIP_Allowed;
670 }
671
672 /// Returns true if the given C++ class contains a member with the given name.
673 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
674                       StringRef Name) {
675   const IdentifierInfo &II = Ctx.Idents.get(Name);
676   DeclarationName DeclName = Ctx.DeclarationNames.getIdentifier(&II);
677   if (!RD->lookup(DeclName).empty())
678     return true;
679
680   CXXBasePaths Paths(false, false, false);
681   if (RD->lookupInBases(
682           [DeclName](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
683             return CXXRecordDecl::FindOrdinaryMember(Specifier, Path, DeclName);
684           },
685           Paths))
686     return true;
687
688   return false;
689 }
690
691 /// Returns true if the given C++ class is a container or iterator.
692 ///
693 /// Our heuristic for this is whether it contains a method named 'begin()' or a
694 /// nested type named 'iterator' or 'iterator_category'.
695 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
696   return hasMember(Ctx, RD, "begin") ||
697          hasMember(Ctx, RD, "iterator") ||
698          hasMember(Ctx, RD, "iterator_category");
699 }
700
701 /// Returns true if the given function refers to a method of a C++ container
702 /// or iterator.
703 ///
704 /// We generally do a poor job modeling most containers right now, and might
705 /// prefer not to inline their methods.
706 static bool isContainerMethod(const ASTContext &Ctx,
707                               const FunctionDecl *FD) {
708   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
709     return isContainerClass(Ctx, MD->getParent());
710   return false;
711 }
712
713 /// Returns true if the given function is the destructor of a class named
714 /// "shared_ptr".
715 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
716   const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
717   if (!Dtor)
718     return false;
719
720   const CXXRecordDecl *RD = Dtor->getParent();
721   if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
722     if (II->isStr("shared_ptr"))
723         return true;
724
725   return false;
726 }
727
728 /// Returns true if the function in \p CalleeADC may be inlined in general.
729 ///
730 /// This checks static properties of the function, such as its signature and
731 /// CFG, to determine whether the analyzer should ever consider inlining it,
732 /// in any context.
733 static bool mayInlineDecl(AnalysisDeclContext *CalleeADC,
734                           AnalyzerOptions &Opts) {
735   // FIXME: Do not inline variadic calls.
736   if (CallEvent::isVariadic(CalleeADC->getDecl()))
737     return false;
738
739   // Check certain C++-related inlining policies.
740   ASTContext &Ctx = CalleeADC->getASTContext();
741   if (Ctx.getLangOpts().CPlusPlus) {
742     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
743       // Conditionally control the inlining of template functions.
744       if (!Opts.mayInlineTemplateFunctions())
745         if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
746           return false;
747
748       // Conditionally control the inlining of C++ standard library functions.
749       if (!Opts.mayInlineCXXStandardLibrary())
750         if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
751           if (AnalysisDeclContext::isInStdNamespace(FD))
752             return false;
753
754       // Conditionally control the inlining of methods on objects that look
755       // like C++ containers.
756       if (!Opts.mayInlineCXXContainerMethods())
757         if (!Ctx.getSourceManager().isInMainFile(FD->getLocation()))
758           if (isContainerMethod(Ctx, FD))
759             return false;
760
761       // Conditionally control the inlining of the destructor of C++ shared_ptr.
762       // We don't currently do a good job modeling shared_ptr because we can't
763       // see the reference count, so treating as opaque is probably the best
764       // idea.
765       if (!Opts.mayInlineCXXSharedPtrDtor())
766         if (isCXXSharedPtrDtor(FD))
767           return false;
768     }
769   }
770
771   // It is possible that the CFG cannot be constructed.
772   // Be safe, and check if the CalleeCFG is valid.
773   const CFG *CalleeCFG = CalleeADC->getCFG();
774   if (!CalleeCFG)
775     return false;
776
777   // Do not inline large functions.
778   if (CalleeCFG->getNumBlockIDs() > Opts.getMaxInlinableSize())
779     return false;
780
781   // It is possible that the live variables analysis cannot be
782   // run.  If so, bail out.
783   if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
784     return false;
785
786   return true;
787 }
788
789 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
790                                   const ExplodedNode *Pred) {
791   if (!D)
792     return false;
793
794   AnalysisManager &AMgr = getAnalysisManager();
795   AnalyzerOptions &Opts = AMgr.options;
796   AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
797   AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
798
799   // Temporary object destructor processing is currently broken, so we never
800   // inline them.
801   // FIXME: Remove this once temp destructors are working.
802   if (isa<CXXDestructorCall>(Call)) {
803     if ((*currBldrCtx->getBlock())[currStmtIdx].getAs<CFGTemporaryDtor>())
804       return false;
805   }
806
807   // The auto-synthesized bodies are essential to inline as they are
808   // usually small and commonly used. Note: we should do this check early on to
809   // ensure we always inline these calls.
810   if (CalleeADC->isBodyAutosynthesized())
811     return true;
812
813   if (!AMgr.shouldInlineCall())
814     return false;
815
816   // Check if this function has been marked as non-inlinable.
817   Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
818   if (MayInline.hasValue()) {
819     if (!MayInline.getValue())
820       return false;
821
822   } else {
823     // We haven't actually checked the static properties of this function yet.
824     // Do that now, and record our decision in the function summaries.
825     if (mayInlineDecl(CalleeADC, Opts)) {
826       Engine.FunctionSummaries->markMayInline(D);
827     } else {
828       Engine.FunctionSummaries->markShouldNotInline(D);
829       return false;
830     }
831   }
832
833   // Check if we should inline a call based on its kind.
834   // FIXME: this checks both static and dynamic properties of the call, which
835   // means we're redoing a bit of work that could be cached in the function
836   // summary.
837   CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts);
838   if (CIP != CIP_Allowed) {
839     if (CIP == CIP_DisallowedAlways) {
840       assert(!MayInline.hasValue() || MayInline.getValue());
841       Engine.FunctionSummaries->markShouldNotInline(D);
842     }
843     return false;
844   }
845
846   const CFG *CalleeCFG = CalleeADC->getCFG();
847
848   // Do not inline if recursive or we've reached max stack frame count.
849   bool IsRecursive = false;
850   unsigned StackDepth = 0;
851   examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
852   if ((StackDepth >= Opts.InlineMaxStackDepth) &&
853       ((CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize())
854        || IsRecursive))
855     return false;
856
857   // Do not inline large functions too many times.
858   if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
859        Opts.getMaxTimesInlineLarge()) &&
860        CalleeCFG->getNumBlockIDs() >=
861        Opts.getMinCFGSizeTreatFunctionsAsLarge()) {
862     NumReachedInlineCountMax++;
863     return false;
864   }
865
866   if (HowToInline == Inline_Minimal &&
867       (CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize()
868       || IsRecursive))
869     return false;
870
871   Engine.FunctionSummaries->bumpNumTimesInlined(D);
872
873   return true;
874 }
875
876 static bool isTrivialObjectAssignment(const CallEvent &Call) {
877   const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
878   if (!ICall)
879     return false;
880
881   const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
882   if (!MD)
883     return false;
884   if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
885     return false;
886
887   return MD->isTrivial();
888 }
889
890 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
891                                  const CallEvent &CallTemplate) {
892   // Make sure we have the most recent state attached to the call.
893   ProgramStateRef State = Pred->getState();
894   CallEventRef<> Call = CallTemplate.cloneWithState(State);
895
896   // Special-case trivial assignment operators.
897   if (isTrivialObjectAssignment(*Call)) {
898     performTrivialCopy(Bldr, Pred, *Call);
899     return;
900   }
901
902   // Try to inline the call.
903   // The origin expression here is just used as a kind of checksum;
904   // this should still be safe even for CallEvents that don't come from exprs.
905   const Expr *E = Call->getOriginExpr();
906
907   ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
908   if (InlinedFailedState) {
909     // If we already tried once and failed, make sure we don't retry later.
910     State = InlinedFailedState;
911   } else {
912     RuntimeDefinition RD = Call->getRuntimeDefinition();
913     const Decl *D = RD.getDecl();
914     if (shouldInlineCall(*Call, D, Pred)) {
915       if (RD.mayHaveOtherDefinitions()) {
916         AnalyzerOptions &Options = getAnalysisManager().options;
917
918         // Explore with and without inlining the call.
919         if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
920           BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
921           return;
922         }
923
924         // Don't inline if we're not in any dynamic dispatch mode.
925         if (Options.getIPAMode() != IPAK_DynamicDispatch) {
926           conservativeEvalCall(*Call, Bldr, Pred, State);
927           return;
928         }
929       }
930
931       // We are not bifurcating and we do have a Decl, so just inline.
932       if (inlineCall(*Call, D, Bldr, Pred, State))
933         return;
934     }
935   }
936
937   // If we can't inline it, handle the return value and invalidate the regions.
938   conservativeEvalCall(*Call, Bldr, Pred, State);
939 }
940
941 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
942                                const CallEvent &Call, const Decl *D,
943                                NodeBuilder &Bldr, ExplodedNode *Pred) {
944   assert(BifurReg);
945   BifurReg = BifurReg->StripCasts();
946
947   // Check if we've performed the split already - note, we only want
948   // to split the path once per memory region.
949   ProgramStateRef State = Pred->getState();
950   const unsigned *BState =
951                         State->get<DynamicDispatchBifurcationMap>(BifurReg);
952   if (BState) {
953     // If we are on "inline path", keep inlining if possible.
954     if (*BState == DynamicDispatchModeInlined)
955       if (inlineCall(Call, D, Bldr, Pred, State))
956         return;
957     // If inline failed, or we are on the path where we assume we
958     // don't have enough info about the receiver to inline, conjure the
959     // return value and invalidate the regions.
960     conservativeEvalCall(Call, Bldr, Pred, State);
961     return;
962   }
963
964   // If we got here, this is the first time we process a message to this
965   // region, so split the path.
966   ProgramStateRef IState =
967       State->set<DynamicDispatchBifurcationMap>(BifurReg,
968                                                DynamicDispatchModeInlined);
969   inlineCall(Call, D, Bldr, Pred, IState);
970
971   ProgramStateRef NoIState =
972       State->set<DynamicDispatchBifurcationMap>(BifurReg,
973                                                DynamicDispatchModeConservative);
974   conservativeEvalCall(Call, Bldr, Pred, NoIState);
975
976   NumOfDynamicDispatchPathSplits++;
977 }
978
979 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
980                                  ExplodedNodeSet &Dst) {
981   ExplodedNodeSet dstPreVisit;
982   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
983
984   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
985
986   if (RS->getRetValue()) {
987     for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
988                                   ei = dstPreVisit.end(); it != ei; ++it) {
989       B.generateNode(RS, *it, (*it)->getState());
990     }
991   }
992 }