]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
MFV r330102: ntp 4.2.8p11
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / RangeConstraintManager.cpp
1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines RangeConstraintManager, a class that tracks simple
11 //  equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "RangedConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/ImmutableSet.h"
21 #include "llvm/Support/raw_ostream.h"
22
23 using namespace clang;
24 using namespace ento;
25
26 /// A Range represents the closed range [from, to].  The caller must
27 /// guarantee that from <= to.  Note that Range is immutable, so as not
28 /// to subvert RangeSet's immutability.
29 namespace {
30 class Range : public std::pair<const llvm::APSInt *, const llvm::APSInt *> {
31 public:
32   Range(const llvm::APSInt &from, const llvm::APSInt &to)
33       : std::pair<const llvm::APSInt *, const llvm::APSInt *>(&from, &to) {
34     assert(from <= to);
35   }
36   bool Includes(const llvm::APSInt &v) const {
37     return *first <= v && v <= *second;
38   }
39   const llvm::APSInt &From() const { return *first; }
40   const llvm::APSInt &To() const { return *second; }
41   const llvm::APSInt *getConcreteValue() const {
42     return &From() == &To() ? &From() : nullptr;
43   }
44
45   void Profile(llvm::FoldingSetNodeID &ID) const {
46     ID.AddPointer(&From());
47     ID.AddPointer(&To());
48   }
49 };
50
51 class RangeTrait : public llvm::ImutContainerInfo<Range> {
52 public:
53   // When comparing if one Range is less than another, we should compare
54   // the actual APSInt values instead of their pointers.  This keeps the order
55   // consistent (instead of comparing by pointer values) and can potentially
56   // be used to speed up some of the operations in RangeSet.
57   static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
58     return *lhs.first < *rhs.first ||
59            (!(*rhs.first < *lhs.first) && *lhs.second < *rhs.second);
60   }
61 };
62
63 /// RangeSet contains a set of ranges. If the set is empty, then
64 ///  there the value of a symbol is overly constrained and there are no
65 ///  possible values for that symbol.
66 class RangeSet {
67   typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
68   PrimRangeSet ranges; // no need to make const, since it is an
69                        // ImmutableSet - this allows default operator=
70                        // to work.
71 public:
72   typedef PrimRangeSet::Factory Factory;
73   typedef PrimRangeSet::iterator iterator;
74
75   RangeSet(PrimRangeSet RS) : ranges(RS) {}
76
77   /// Create a new set with all ranges of this set and RS.
78   /// Possible intersections are not checked here.
79   RangeSet addRange(Factory &F, const RangeSet &RS) {
80     PrimRangeSet Ranges(RS.ranges);
81     for (const auto &range : ranges)
82       Ranges = F.add(Ranges, range);
83     return RangeSet(Ranges);
84   }
85
86   iterator begin() const { return ranges.begin(); }
87   iterator end() const { return ranges.end(); }
88
89   bool isEmpty() const { return ranges.isEmpty(); }
90
91   /// Construct a new RangeSet representing '{ [from, to] }'.
92   RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
93       : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
94
95   /// Profile - Generates a hash profile of this RangeSet for use
96   ///  by FoldingSet.
97   void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
98
99   /// getConcreteValue - If a symbol is contrained to equal a specific integer
100   ///  constant then this method returns that value.  Otherwise, it returns
101   ///  NULL.
102   const llvm::APSInt *getConcreteValue() const {
103     return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
104   }
105
106 private:
107   void IntersectInRange(BasicValueFactory &BV, Factory &F,
108                         const llvm::APSInt &Lower, const llvm::APSInt &Upper,
109                         PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
110                         PrimRangeSet::iterator &e) const {
111     // There are six cases for each range R in the set:
112     //   1. R is entirely before the intersection range.
113     //   2. R is entirely after the intersection range.
114     //   3. R contains the entire intersection range.
115     //   4. R starts before the intersection range and ends in the middle.
116     //   5. R starts in the middle of the intersection range and ends after it.
117     //   6. R is entirely contained in the intersection range.
118     // These correspond to each of the conditions below.
119     for (/* i = begin(), e = end() */; i != e; ++i) {
120       if (i->To() < Lower) {
121         continue;
122       }
123       if (i->From() > Upper) {
124         break;
125       }
126
127       if (i->Includes(Lower)) {
128         if (i->Includes(Upper)) {
129           newRanges =
130               F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
131           break;
132         } else
133           newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
134       } else {
135         if (i->Includes(Upper)) {
136           newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
137           break;
138         } else
139           newRanges = F.add(newRanges, *i);
140       }
141     }
142   }
143
144   const llvm::APSInt &getMinValue() const {
145     assert(!isEmpty());
146     return ranges.begin()->From();
147   }
148
149   bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
150     // This function has nine cases, the cartesian product of range-testing
151     // both the upper and lower bounds against the symbol's type.
152     // Each case requires a different pinning operation.
153     // The function returns false if the described range is entirely outside
154     // the range of values for the associated symbol.
155     APSIntType Type(getMinValue());
156     APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
157     APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
158
159     switch (LowerTest) {
160     case APSIntType::RTR_Below:
161       switch (UpperTest) {
162       case APSIntType::RTR_Below:
163         // The entire range is outside the symbol's set of possible values.
164         // If this is a conventionally-ordered range, the state is infeasible.
165         if (Lower <= Upper)
166           return false;
167
168         // However, if the range wraps around, it spans all possible values.
169         Lower = Type.getMinValue();
170         Upper = Type.getMaxValue();
171         break;
172       case APSIntType::RTR_Within:
173         // The range starts below what's possible but ends within it. Pin.
174         Lower = Type.getMinValue();
175         Type.apply(Upper);
176         break;
177       case APSIntType::RTR_Above:
178         // The range spans all possible values for the symbol. Pin.
179         Lower = Type.getMinValue();
180         Upper = Type.getMaxValue();
181         break;
182       }
183       break;
184     case APSIntType::RTR_Within:
185       switch (UpperTest) {
186       case APSIntType::RTR_Below:
187         // The range wraps around, but all lower values are not possible.
188         Type.apply(Lower);
189         Upper = Type.getMaxValue();
190         break;
191       case APSIntType::RTR_Within:
192         // The range may or may not wrap around, but both limits are valid.
193         Type.apply(Lower);
194         Type.apply(Upper);
195         break;
196       case APSIntType::RTR_Above:
197         // The range starts within what's possible but ends above it. Pin.
198         Type.apply(Lower);
199         Upper = Type.getMaxValue();
200         break;
201       }
202       break;
203     case APSIntType::RTR_Above:
204       switch (UpperTest) {
205       case APSIntType::RTR_Below:
206         // The range wraps but is outside the symbol's set of possible values.
207         return false;
208       case APSIntType::RTR_Within:
209         // The range starts above what's possible but ends within it (wrap).
210         Lower = Type.getMinValue();
211         Type.apply(Upper);
212         break;
213       case APSIntType::RTR_Above:
214         // The entire range is outside the symbol's set of possible values.
215         // If this is a conventionally-ordered range, the state is infeasible.
216         if (Lower <= Upper)
217           return false;
218
219         // However, if the range wraps around, it spans all possible values.
220         Lower = Type.getMinValue();
221         Upper = Type.getMaxValue();
222         break;
223       }
224       break;
225     }
226
227     return true;
228   }
229
230 public:
231   // Returns a set containing the values in the receiving set, intersected with
232   // the closed range [Lower, Upper]. Unlike the Range type, this range uses
233   // modular arithmetic, corresponding to the common treatment of C integer
234   // overflow. Thus, if the Lower bound is greater than the Upper bound, the
235   // range is taken to wrap around. This is equivalent to taking the
236   // intersection with the two ranges [Min, Upper] and [Lower, Max],
237   // or, alternatively, /removing/ all integers between Upper and Lower.
238   RangeSet Intersect(BasicValueFactory &BV, Factory &F, llvm::APSInt Lower,
239                      llvm::APSInt Upper) const {
240     if (!pin(Lower, Upper))
241       return F.getEmptySet();
242
243     PrimRangeSet newRanges = F.getEmptySet();
244
245     PrimRangeSet::iterator i = begin(), e = end();
246     if (Lower <= Upper)
247       IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
248     else {
249       // The order of the next two statements is important!
250       // IntersectInRange() does not reset the iteration state for i and e.
251       // Therefore, the lower range most be handled first.
252       IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
253       IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
254     }
255
256     return newRanges;
257   }
258
259   void print(raw_ostream &os) const {
260     bool isFirst = true;
261     os << "{ ";
262     for (iterator i = begin(), e = end(); i != e; ++i) {
263       if (isFirst)
264         isFirst = false;
265       else
266         os << ", ";
267
268       os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
269          << ']';
270     }
271     os << " }";
272   }
273
274   bool operator==(const RangeSet &other) const {
275     return ranges == other.ranges;
276   }
277 };
278 } // end anonymous namespace
279
280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
281                                  CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
282                                                              RangeSet))
283
284 namespace {
285 class RangeConstraintManager : public RangedConstraintManager {
286 public:
287   RangeConstraintManager(SubEngine *SE, SValBuilder &SVB)
288       : RangedConstraintManager(SE, SVB) {}
289
290   //===------------------------------------------------------------------===//
291   // Implementation for interface from ConstraintManager.
292   //===------------------------------------------------------------------===//
293
294   bool canReasonAbout(SVal X) const override;
295
296   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
297
298   const llvm::APSInt *getSymVal(ProgramStateRef State,
299                                 SymbolRef Sym) const override;
300
301   ProgramStateRef removeDeadBindings(ProgramStateRef State,
302                                      SymbolReaper &SymReaper) override;
303
304   void print(ProgramStateRef State, raw_ostream &Out, const char *nl,
305              const char *sep) override;
306
307   //===------------------------------------------------------------------===//
308   // Implementation for interface from RangedConstraintManager.
309   //===------------------------------------------------------------------===//
310
311   ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
312                               const llvm::APSInt &V,
313                               const llvm::APSInt &Adjustment) override;
314
315   ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
316                               const llvm::APSInt &V,
317                               const llvm::APSInt &Adjustment) override;
318
319   ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
320                               const llvm::APSInt &V,
321                               const llvm::APSInt &Adjustment) override;
322
323   ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
324                               const llvm::APSInt &V,
325                               const llvm::APSInt &Adjustment) override;
326
327   ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
328                               const llvm::APSInt &V,
329                               const llvm::APSInt &Adjustment) override;
330
331   ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
332                               const llvm::APSInt &V,
333                               const llvm::APSInt &Adjustment) override;
334
335   ProgramStateRef assumeSymWithinInclusiveRange(
336       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
337       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
338
339   ProgramStateRef assumeSymOutsideInclusiveRange(
340       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
341       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
342
343 private:
344   RangeSet::Factory F;
345
346   RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
347
348   RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
349                          const llvm::APSInt &Int,
350                          const llvm::APSInt &Adjustment);
351   RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
352                          const llvm::APSInt &Int,
353                          const llvm::APSInt &Adjustment);
354   RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
355                          const llvm::APSInt &Int,
356                          const llvm::APSInt &Adjustment);
357   RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
358                          const llvm::APSInt &Int,
359                          const llvm::APSInt &Adjustment);
360   RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
361                          const llvm::APSInt &Int,
362                          const llvm::APSInt &Adjustment);
363 };
364
365 } // end anonymous namespace
366
367 std::unique_ptr<ConstraintManager>
368 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
369   return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
370 }
371
372 bool RangeConstraintManager::canReasonAbout(SVal X) const {
373   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
374   if (SymVal && SymVal->isExpression()) {
375     const SymExpr *SE = SymVal->getSymbol();
376
377     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
378       switch (SIE->getOpcode()) {
379       // We don't reason yet about bitwise-constraints on symbolic values.
380       case BO_And:
381       case BO_Or:
382       case BO_Xor:
383         return false;
384       // We don't reason yet about these arithmetic constraints on
385       // symbolic values.
386       case BO_Mul:
387       case BO_Div:
388       case BO_Rem:
389       case BO_Shl:
390       case BO_Shr:
391         return false;
392       // All other cases.
393       default:
394         return true;
395       }
396     }
397
398     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
399       // FIXME: Handle <=> here.
400       if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
401           BinaryOperator::isRelationalOp(SSE->getOpcode())) {
402         // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
403         if (Loc::isLocType(SSE->getLHS()->getType())) {
404           assert(Loc::isLocType(SSE->getRHS()->getType()));
405           return true;
406         }
407       }
408     }
409
410     return false;
411   }
412
413   return true;
414 }
415
416 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
417                                                     SymbolRef Sym) {
418   const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
419
420   // If we don't have any information about this symbol, it's underconstrained.
421   if (!Ranges)
422     return ConditionTruthVal();
423
424   // If we have a concrete value, see if it's zero.
425   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
426     return *Value == 0;
427
428   BasicValueFactory &BV = getBasicVals();
429   APSIntType IntType = BV.getAPSIntType(Sym->getType());
430   llvm::APSInt Zero = IntType.getZeroValue();
431
432   // Check if zero is in the set of possible values.
433   if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
434     return false;
435
436   // Zero is a possible value, but it is not the /only/ possible value.
437   return ConditionTruthVal();
438 }
439
440 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
441                                                       SymbolRef Sym) const {
442   const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
443   return T ? T->getConcreteValue() : nullptr;
444 }
445
446 /// Scan all symbols referenced by the constraints. If the symbol is not alive
447 /// as marked in LSymbols, mark it as dead in DSymbols.
448 ProgramStateRef
449 RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
450                                            SymbolReaper &SymReaper) {
451   bool Changed = false;
452   ConstraintRangeTy CR = State->get<ConstraintRange>();
453   ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();
454
455   for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
456     SymbolRef Sym = I.getKey();
457     if (SymReaper.maybeDead(Sym)) {
458       Changed = true;
459       CR = CRFactory.remove(CR, Sym);
460     }
461   }
462
463   return Changed ? State->set<ConstraintRange>(CR) : State;
464 }
465
466 /// Return a range set subtracting zero from \p Domain.
467 static RangeSet assumeNonZero(
468     BasicValueFactory &BV,
469     RangeSet::Factory &F,
470     SymbolRef Sym,
471     RangeSet Domain) {
472   APSIntType IntType = BV.getAPSIntType(Sym->getType());
473   return Domain.Intersect(BV, F, ++IntType.getZeroValue(),
474       --IntType.getZeroValue());
475 }
476
477 /// \brief Apply implicit constraints for bitwise OR- and AND-.
478 /// For unsigned types, bitwise OR with a constant always returns
479 /// a value greater-or-equal than the constant, and bitwise AND
480 /// returns a value less-or-equal then the constant.
481 ///
482 /// Pattern matches the expression \p Sym against those rule,
483 /// and applies the required constraints.
484 /// \p Input Previously established expression range set
485 static RangeSet applyBitwiseConstraints(
486     BasicValueFactory &BV,
487     RangeSet::Factory &F,
488     RangeSet Input,
489     const SymIntExpr* SIE) {
490   QualType T = SIE->getType();
491   bool IsUnsigned = T->isUnsignedIntegerType();
492   const llvm::APSInt &RHS = SIE->getRHS();
493   const llvm::APSInt &Zero = BV.getAPSIntType(T).getZeroValue();
494   BinaryOperator::Opcode Operator = SIE->getOpcode();
495
496   // For unsigned types, the output of bitwise-or is bigger-or-equal than RHS.
497   if (Operator == BO_Or && IsUnsigned)
498     return Input.Intersect(BV, F, RHS, BV.getMaxValue(T));
499
500   // Bitwise-or with a non-zero constant is always non-zero.
501   if (Operator == BO_Or && RHS != Zero)
502     return assumeNonZero(BV, F, SIE, Input);
503
504   // For unsigned types, or positive RHS,
505   // bitwise-and output is always smaller-or-equal than RHS (assuming two's
506   // complement representation of signed types).
507   if (Operator == BO_And && (IsUnsigned || RHS >= Zero))
508     return Input.Intersect(BV, F, BV.getMinValue(T), RHS);
509
510   return Input;
511 }
512
513 RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
514                                           SymbolRef Sym) {
515   if (ConstraintRangeTy::data_type *V = State->get<ConstraintRange>(Sym))
516     return *V;
517
518   // Lazily generate a new RangeSet representing all possible values for the
519   // given symbol type.
520   BasicValueFactory &BV = getBasicVals();
521   QualType T = Sym->getType();
522
523   RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
524
525   // References are known to be non-zero.
526   if (T->isReferenceType())
527     return assumeNonZero(BV, F, Sym, Result);
528
529   // Known constraints on ranges of bitwise expressions.
530   if (const SymIntExpr* SIE = dyn_cast<SymIntExpr>(Sym))
531     return applyBitwiseConstraints(BV, F, Result, SIE);
532
533   return Result;
534 }
535
536 //===------------------------------------------------------------------------===
537 // assumeSymX methods: protected interface for RangeConstraintManager.
538 //===------------------------------------------------------------------------===/
539
540 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
541 // and (x, y) for open ranges. These ranges are modular, corresponding with
542 // a common treatment of C integer overflow. This means that these methods
543 // do not have to worry about overflow; RangeSet::Intersect can handle such a
544 // "wraparound" range.
545 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
546 // UINT_MAX, 0, 1, and 2.
547
548 ProgramStateRef
549 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
550                                     const llvm::APSInt &Int,
551                                     const llvm::APSInt &Adjustment) {
552   // Before we do any real work, see if the value can even show up.
553   APSIntType AdjustmentType(Adjustment);
554   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
555     return St;
556
557   llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
558   llvm::APSInt Upper = Lower;
559   --Lower;
560   ++Upper;
561
562   // [Int-Adjustment+1, Int-Adjustment-1]
563   // Notice that the lower bound is greater than the upper bound.
564   RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
565   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
566 }
567
568 ProgramStateRef
569 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
570                                     const llvm::APSInt &Int,
571                                     const llvm::APSInt &Adjustment) {
572   // Before we do any real work, see if the value can even show up.
573   APSIntType AdjustmentType(Adjustment);
574   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
575     return nullptr;
576
577   // [Int-Adjustment, Int-Adjustment]
578   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
579   RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
580   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
581 }
582
583 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
584                                                SymbolRef Sym,
585                                                const llvm::APSInt &Int,
586                                                const llvm::APSInt &Adjustment) {
587   // Before we do any real work, see if the value can even show up.
588   APSIntType AdjustmentType(Adjustment);
589   switch (AdjustmentType.testInRange(Int, true)) {
590   case APSIntType::RTR_Below:
591     return F.getEmptySet();
592   case APSIntType::RTR_Within:
593     break;
594   case APSIntType::RTR_Above:
595     return getRange(St, Sym);
596   }
597
598   // Special case for Int == Min. This is always false.
599   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
600   llvm::APSInt Min = AdjustmentType.getMinValue();
601   if (ComparisonVal == Min)
602     return F.getEmptySet();
603
604   llvm::APSInt Lower = Min - Adjustment;
605   llvm::APSInt Upper = ComparisonVal - Adjustment;
606   --Upper;
607
608   return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
609 }
610
611 ProgramStateRef
612 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
613                                     const llvm::APSInt &Int,
614                                     const llvm::APSInt &Adjustment) {
615   RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
616   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
617 }
618
619 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
620                                                SymbolRef Sym,
621                                                const llvm::APSInt &Int,
622                                                const llvm::APSInt &Adjustment) {
623   // Before we do any real work, see if the value can even show up.
624   APSIntType AdjustmentType(Adjustment);
625   switch (AdjustmentType.testInRange(Int, true)) {
626   case APSIntType::RTR_Below:
627     return getRange(St, Sym);
628   case APSIntType::RTR_Within:
629     break;
630   case APSIntType::RTR_Above:
631     return F.getEmptySet();
632   }
633
634   // Special case for Int == Max. This is always false.
635   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
636   llvm::APSInt Max = AdjustmentType.getMaxValue();
637   if (ComparisonVal == Max)
638     return F.getEmptySet();
639
640   llvm::APSInt Lower = ComparisonVal - Adjustment;
641   llvm::APSInt Upper = Max - Adjustment;
642   ++Lower;
643
644   return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
645 }
646
647 ProgramStateRef
648 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
649                                     const llvm::APSInt &Int,
650                                     const llvm::APSInt &Adjustment) {
651   RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
652   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
653 }
654
655 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
656                                                SymbolRef Sym,
657                                                const llvm::APSInt &Int,
658                                                const llvm::APSInt &Adjustment) {
659   // Before we do any real work, see if the value can even show up.
660   APSIntType AdjustmentType(Adjustment);
661   switch (AdjustmentType.testInRange(Int, true)) {
662   case APSIntType::RTR_Below:
663     return getRange(St, Sym);
664   case APSIntType::RTR_Within:
665     break;
666   case APSIntType::RTR_Above:
667     return F.getEmptySet();
668   }
669
670   // Special case for Int == Min. This is always feasible.
671   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
672   llvm::APSInt Min = AdjustmentType.getMinValue();
673   if (ComparisonVal == Min)
674     return getRange(St, Sym);
675
676   llvm::APSInt Max = AdjustmentType.getMaxValue();
677   llvm::APSInt Lower = ComparisonVal - Adjustment;
678   llvm::APSInt Upper = Max - Adjustment;
679
680   return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
681 }
682
683 ProgramStateRef
684 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
685                                     const llvm::APSInt &Int,
686                                     const llvm::APSInt &Adjustment) {
687   RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
688   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
689 }
690
691 RangeSet RangeConstraintManager::getSymLERange(
692       llvm::function_ref<RangeSet()> RS,
693       const llvm::APSInt &Int,
694       const llvm::APSInt &Adjustment) {
695   // Before we do any real work, see if the value can even show up.
696   APSIntType AdjustmentType(Adjustment);
697   switch (AdjustmentType.testInRange(Int, true)) {
698   case APSIntType::RTR_Below:
699     return F.getEmptySet();
700   case APSIntType::RTR_Within:
701     break;
702   case APSIntType::RTR_Above:
703     return RS();
704   }
705
706   // Special case for Int == Max. This is always feasible.
707   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
708   llvm::APSInt Max = AdjustmentType.getMaxValue();
709   if (ComparisonVal == Max)
710     return RS();
711
712   llvm::APSInt Min = AdjustmentType.getMinValue();
713   llvm::APSInt Lower = Min - Adjustment;
714   llvm::APSInt Upper = ComparisonVal - Adjustment;
715
716   return RS().Intersect(getBasicVals(), F, Lower, Upper);
717 }
718
719 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
720                                                SymbolRef Sym,
721                                                const llvm::APSInt &Int,
722                                                const llvm::APSInt &Adjustment) {
723   return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
724 }
725
726 ProgramStateRef
727 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
728                                     const llvm::APSInt &Int,
729                                     const llvm::APSInt &Adjustment) {
730   RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
731   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
732 }
733
734 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
735     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
736     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
737   RangeSet New = getSymGERange(State, Sym, From, Adjustment);
738   if (New.isEmpty())
739     return nullptr;
740   RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
741   return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out);
742 }
743
744 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
745     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
746     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
747   RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
748   RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
749   RangeSet New(RangeLT.addRange(F, RangeGT));
750   return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
751 }
752
753 //===------------------------------------------------------------------------===
754 // Pretty-printing.
755 //===------------------------------------------------------------------------===/
756
757 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
758                                    const char *nl, const char *sep) {
759
760   ConstraintRangeTy Ranges = St->get<ConstraintRange>();
761
762   if (Ranges.isEmpty()) {
763     Out << nl << sep << "Ranges are empty." << nl;
764     return;
765   }
766
767   Out << nl << sep << "Ranges of symbol values:";
768   for (ConstraintRangeTy::iterator I = Ranges.begin(), E = Ranges.end(); I != E;
769        ++I) {
770     Out << nl << ' ' << I.getKey() << " : ";
771     I.getData().print(Out);
772   }
773   Out << nl;
774 }