]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/RegionStore.cpp
Merge ACPICA 20161222.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / StaticAnalyzer / Core / RegionStore.cpp
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
29 #include "llvm/ADT/ImmutableList.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <utility>
34
35 using namespace clang;
36 using namespace ento;
37
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43 class BindingKey {
44 public:
45   enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47   enum { Symbolic = 0x2 };
48
49   llvm::PointerIntPair<const MemRegion *, 2> P;
50   uint64_t Data;
51
52   /// Create a key for a binding to region \p r, which has a symbolic offset
53   /// from region \p Base.
54   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56     assert(r && Base && "Must have known regions.");
57     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58   }
59
60   /// Create a key for a binding at \p offset from base region \p r.
61   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62     : P(r, k), Data(offset) {
63     assert(r && "Must have known regions.");
64     assert(getOffset() == offset && "Failed to store offset");
65     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
66   }
67 public:
68
69   bool isDirect() const { return P.getInt() & Direct; }
70   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
71
72   const MemRegion *getRegion() const { return P.getPointer(); }
73   uint64_t getOffset() const {
74     assert(!hasSymbolicOffset());
75     return Data;
76   }
77
78   const SubRegion *getConcreteOffsetRegion() const {
79     assert(hasSymbolicOffset());
80     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
81   }
82
83   const MemRegion *getBaseRegion() const {
84     if (hasSymbolicOffset())
85       return getConcreteOffsetRegion()->getBaseRegion();
86     return getRegion()->getBaseRegion();
87   }
88
89   void Profile(llvm::FoldingSetNodeID& ID) const {
90     ID.AddPointer(P.getOpaqueValue());
91     ID.AddInteger(Data);
92   }
93
94   static BindingKey Make(const MemRegion *R, Kind k);
95
96   bool operator<(const BindingKey &X) const {
97     if (P.getOpaqueValue() < X.P.getOpaqueValue())
98       return true;
99     if (P.getOpaqueValue() > X.P.getOpaqueValue())
100       return false;
101     return Data < X.Data;
102   }
103
104   bool operator==(const BindingKey &X) const {
105     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
106            Data == X.Data;
107   }
108
109   void dump() const;
110 };
111 } // end anonymous namespace
112
113 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
114   const RegionOffset &RO = R->getAsOffset();
115   if (RO.hasSymbolicOffset())
116     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
117
118   return BindingKey(RO.getRegion(), RO.getOffset(), k);
119 }
120
121 namespace llvm {
122   static inline
123   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
124     os << '(' << K.getRegion();
125     if (!K.hasSymbolicOffset())
126       os << ',' << K.getOffset();
127     os << ',' << (K.isDirect() ? "direct" : "default")
128        << ')';
129     return os;
130   }
131
132   template <typename T> struct isPodLike;
133   template <> struct isPodLike<BindingKey> {
134     static const bool value = true;
135   };
136 } // end llvm namespace
137
138 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
139
140 //===----------------------------------------------------------------------===//
141 // Actual Store type.
142 //===----------------------------------------------------------------------===//
143
144 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
145 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
146 typedef std::pair<BindingKey, SVal> BindingPair;
147
148 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
149         RegionBindings;
150
151 namespace {
152 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
153                                  ClusterBindings> {
154   ClusterBindings::Factory *CBFactory;
155
156 public:
157   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
158           ParentTy;
159
160   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
161                     const RegionBindings::TreeTy *T,
162                     RegionBindings::TreeTy::Factory *F)
163       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
164         CBFactory(&CBFactory) {}
165
166   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
167       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
168         CBFactory(&CBFactory) {}
169
170   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
171     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
172                              *CBFactory);
173   }
174
175   RegionBindingsRef remove(key_type_ref K) const {
176     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
177                              *CBFactory);
178   }
179
180   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
181
182   RegionBindingsRef addBinding(const MemRegion *R,
183                                BindingKey::Kind k, SVal V) const;
184
185   const SVal *lookup(BindingKey K) const;
186   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
187   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
188
189   RegionBindingsRef removeBinding(BindingKey K);
190
191   RegionBindingsRef removeBinding(const MemRegion *R,
192                                   BindingKey::Kind k);
193
194   RegionBindingsRef removeBinding(const MemRegion *R) {
195     return removeBinding(R, BindingKey::Direct).
196            removeBinding(R, BindingKey::Default);
197   }
198
199   Optional<SVal> getDirectBinding(const MemRegion *R) const;
200
201   /// getDefaultBinding - Returns an SVal* representing an optional default
202   ///  binding associated with a region and its subregions.
203   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
204
205   /// Return the internal tree as a Store.
206   Store asStore() const {
207     return asImmutableMap().getRootWithoutRetain();
208   }
209
210   void dump(raw_ostream &OS, const char *nl) const {
211    for (iterator I = begin(), E = end(); I != E; ++I) {
212      const ClusterBindings &Cluster = I.getData();
213      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
214           CI != CE; ++CI) {
215        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
216      }
217      OS << nl;
218    }
219   }
220
221   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
222 };
223 } // end anonymous namespace
224
225 typedef const RegionBindingsRef& RegionBindingsConstRef;
226
227 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
228   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
229 }
230
231 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
232   if (R->isBoundable())
233     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
234       if (TR->getValueType()->isUnionType())
235         return UnknownVal();
236
237   return Optional<SVal>::create(lookup(R, BindingKey::Default));
238 }
239
240 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
241   const MemRegion *Base = K.getBaseRegion();
242
243   const ClusterBindings *ExistingCluster = lookup(Base);
244   ClusterBindings Cluster =
245       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
246
247   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
248   return add(Base, NewCluster);
249 }
250
251
252 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
253                                                 BindingKey::Kind k,
254                                                 SVal V) const {
255   return addBinding(BindingKey::Make(R, k), V);
256 }
257
258 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
259   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
260   if (!Cluster)
261     return nullptr;
262   return Cluster->lookup(K);
263 }
264
265 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
266                                       BindingKey::Kind k) const {
267   return lookup(BindingKey::Make(R, k));
268 }
269
270 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
271   const MemRegion *Base = K.getBaseRegion();
272   const ClusterBindings *Cluster = lookup(Base);
273   if (!Cluster)
274     return *this;
275
276   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
277   if (NewCluster.isEmpty())
278     return remove(Base);
279   return add(Base, NewCluster);
280 }
281
282 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
283                                                 BindingKey::Kind k){
284   return removeBinding(BindingKey::Make(R, k));
285 }
286
287 //===----------------------------------------------------------------------===//
288 // Fine-grained control of RegionStoreManager.
289 //===----------------------------------------------------------------------===//
290
291 namespace {
292 struct minimal_features_tag {};
293 struct maximal_features_tag {};
294
295 class RegionStoreFeatures {
296   bool SupportsFields;
297 public:
298   RegionStoreFeatures(minimal_features_tag) :
299     SupportsFields(false) {}
300
301   RegionStoreFeatures(maximal_features_tag) :
302     SupportsFields(true) {}
303
304   void enableFields(bool t) { SupportsFields = t; }
305
306   bool supportsFields() const { return SupportsFields; }
307 };
308 }
309
310 //===----------------------------------------------------------------------===//
311 // Main RegionStore logic.
312 //===----------------------------------------------------------------------===//
313
314 namespace {
315 class invalidateRegionsWorker;
316
317 class RegionStoreManager : public StoreManager {
318 public:
319   const RegionStoreFeatures Features;
320
321   RegionBindings::Factory RBFactory;
322   mutable ClusterBindings::Factory CBFactory;
323
324   typedef std::vector<SVal> SValListTy;
325 private:
326   typedef llvm::DenseMap<const LazyCompoundValData *,
327                          SValListTy> LazyBindingsMapTy;
328   LazyBindingsMapTy LazyBindingsMap;
329
330   /// The largest number of fields a struct can have and still be
331   /// considered "small".
332   ///
333   /// This is currently used to decide whether or not it is worth "forcing" a
334   /// LazyCompoundVal on bind.
335   ///
336   /// This is controlled by 'region-store-small-struct-limit' option.
337   /// To disable all small-struct-dependent behavior, set the option to "0".
338   unsigned SmallStructLimit;
339
340   /// \brief A helper used to populate the work list with the given set of
341   /// regions.
342   void populateWorkList(invalidateRegionsWorker &W,
343                         ArrayRef<SVal> Values,
344                         InvalidatedRegions *TopLevelRegions);
345
346 public:
347   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
348     : StoreManager(mgr), Features(f),
349       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
350       SmallStructLimit(0) {
351     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
352       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
353       SmallStructLimit =
354         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
355     }
356   }
357
358
359   /// setImplicitDefaultValue - Set the default binding for the provided
360   ///  MemRegion to the value implicitly defined for compound literals when
361   ///  the value is not specified.
362   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
363                                             const MemRegion *R, QualType T);
364
365   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
366   ///  type.  'Array' represents the lvalue of the array being decayed
367   ///  to a pointer, and the returned SVal represents the decayed
368   ///  version of that lvalue (i.e., a pointer to the first element of
369   ///  the array).  This is called by ExprEngine when evaluating
370   ///  casts from arrays to pointers.
371   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
372
373   StoreRef getInitialStore(const LocationContext *InitLoc) override {
374     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
375   }
376
377   //===-------------------------------------------------------------------===//
378   // Binding values to regions.
379   //===-------------------------------------------------------------------===//
380   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
381                                            const Expr *Ex,
382                                            unsigned Count,
383                                            const LocationContext *LCtx,
384                                            RegionBindingsRef B,
385                                            InvalidatedRegions *Invalidated);
386
387   StoreRef invalidateRegions(Store store,
388                              ArrayRef<SVal> Values,
389                              const Expr *E, unsigned Count,
390                              const LocationContext *LCtx,
391                              const CallEvent *Call,
392                              InvalidatedSymbols &IS,
393                              RegionAndSymbolInvalidationTraits &ITraits,
394                              InvalidatedRegions *Invalidated,
395                              InvalidatedRegions *InvalidatedTopLevel) override;
396
397   bool scanReachableSymbols(Store S, const MemRegion *R,
398                             ScanReachableSymbols &Callbacks) override;
399
400   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
401                                             const SubRegion *R);
402
403 public: // Part of public interface to class.
404
405   StoreRef Bind(Store store, Loc LV, SVal V) override {
406     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
407   }
408
409   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
410
411   // BindDefault is only used to initialize a region with a default value.
412   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
413     RegionBindingsRef B = getRegionBindings(store);
414     assert(!B.lookup(R, BindingKey::Direct));
415
416     BindingKey Key = BindingKey::Make(R, BindingKey::Default);
417     if (B.lookup(Key)) {
418       const SubRegion *SR = cast<SubRegion>(R);
419       assert(SR->getAsOffset().getOffset() ==
420              SR->getSuperRegion()->getAsOffset().getOffset() &&
421              "A default value must come from a super-region");
422       B = removeSubRegionBindings(B, SR);
423     } else {
424       B = B.addBinding(Key, V);
425     }
426
427     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
428   }
429
430   /// Attempt to extract the fields of \p LCV and bind them to the struct region
431   /// \p R.
432   ///
433   /// This path is used when it seems advantageous to "force" loading the values
434   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
435   /// than using a Default binding at the base of the entire region. This is a
436   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
437   ///
438   /// \returns The updated store bindings, or \c None if binding non-lazily
439   ///          would be too expensive.
440   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
441                                                  const TypedValueRegion *R,
442                                                  const RecordDecl *RD,
443                                                  nonloc::LazyCompoundVal LCV);
444
445   /// BindStruct - Bind a compound value to a structure.
446   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
447                                const TypedValueRegion* R, SVal V);
448
449   /// BindVector - Bind a compound value to a vector.
450   RegionBindingsRef bindVector(RegionBindingsConstRef B,
451                                const TypedValueRegion* R, SVal V);
452
453   RegionBindingsRef bindArray(RegionBindingsConstRef B,
454                               const TypedValueRegion* R,
455                               SVal V);
456
457   /// Clears out all bindings in the given region and assigns a new value
458   /// as a Default binding.
459   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
460                                   const TypedRegion *R,
461                                   SVal DefaultVal);
462
463   /// \brief Create a new store with the specified binding removed.
464   /// \param ST the original store, that is the basis for the new store.
465   /// \param L the location whose binding should be removed.
466   StoreRef killBinding(Store ST, Loc L) override;
467
468   void incrementReferenceCount(Store store) override {
469     getRegionBindings(store).manualRetain();
470   }
471
472   /// If the StoreManager supports it, decrement the reference count of
473   /// the specified Store object.  If the reference count hits 0, the memory
474   /// associated with the object is recycled.
475   void decrementReferenceCount(Store store) override {
476     getRegionBindings(store).manualRelease();
477   }
478
479   bool includedInBindings(Store store, const MemRegion *region) const override;
480
481   /// \brief Return the value bound to specified location in a given state.
482   ///
483   /// The high level logic for this method is this:
484   /// getBinding (L)
485   ///   if L has binding
486   ///     return L's binding
487   ///   else if L is in killset
488   ///     return unknown
489   ///   else
490   ///     if L is on stack or heap
491   ///       return undefined
492   ///     else
493   ///       return symbolic
494   SVal getBinding(Store S, Loc L, QualType T) override {
495     return getBinding(getRegionBindings(S), L, T);
496   }
497
498   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
499
500   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
501
502   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
503
504   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
505
506   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
507
508   SVal getBindingForLazySymbol(const TypedValueRegion *R);
509
510   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
511                                          const TypedValueRegion *R,
512                                          QualType Ty);
513
514   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
515                       RegionBindingsRef LazyBinding);
516
517   /// Get bindings for the values in a struct and return a CompoundVal, used
518   /// when doing struct copy:
519   /// struct s x, y;
520   /// x = y;
521   /// y's value is retrieved by this method.
522   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
523   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
524   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
525
526   /// Used to lazily generate derived symbols for bindings that are defined
527   /// implicitly by default bindings in a super region.
528   ///
529   /// Note that callers may need to specially handle LazyCompoundVals, which
530   /// are returned as is in case the caller needs to treat them differently.
531   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
532                                                   const MemRegion *superR,
533                                                   const TypedValueRegion *R,
534                                                   QualType Ty);
535
536   /// Get the state and region whose binding this region \p R corresponds to.
537   ///
538   /// If there is no lazy binding for \p R, the returned value will have a null
539   /// \c second. Note that a null pointer can represents a valid Store.
540   std::pair<Store, const SubRegion *>
541   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
542                   const SubRegion *originalRegion);
543
544   /// Returns the cached set of interesting SVals contained within a lazy
545   /// binding.
546   ///
547   /// The precise value of "interesting" is determined for the purposes of
548   /// RegionStore's internal analysis. It must always contain all regions and
549   /// symbols, but may omit constants and other kinds of SVal.
550   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
551
552   //===------------------------------------------------------------------===//
553   // State pruning.
554   //===------------------------------------------------------------------===//
555
556   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
557   ///  It returns a new Store with these values removed.
558   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
559                               SymbolReaper& SymReaper) override;
560
561   //===------------------------------------------------------------------===//
562   // Region "extents".
563   //===------------------------------------------------------------------===//
564
565   // FIXME: This method will soon be eliminated; see the note in Store.h.
566   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
567                                          const MemRegion* R,
568                                          QualType EleTy) override;
569
570   //===------------------------------------------------------------------===//
571   // Utility methods.
572   //===------------------------------------------------------------------===//
573
574   RegionBindingsRef getRegionBindings(Store store) const {
575     return RegionBindingsRef(CBFactory,
576                              static_cast<const RegionBindings::TreeTy*>(store),
577                              RBFactory.getTreeFactory());
578   }
579
580   void print(Store store, raw_ostream &Out, const char* nl,
581              const char *sep) override;
582
583   void iterBindings(Store store, BindingsHandler& f) override {
584     RegionBindingsRef B = getRegionBindings(store);
585     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
586       const ClusterBindings &Cluster = I.getData();
587       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
588            CI != CE; ++CI) {
589         const BindingKey &K = CI.getKey();
590         if (!K.isDirect())
591           continue;
592         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
593           // FIXME: Possibly incorporate the offset?
594           if (!f.HandleBinding(*this, store, R, CI.getData()))
595             return;
596         }
597       }
598     }
599   }
600 };
601
602 } // end anonymous namespace
603
604 //===----------------------------------------------------------------------===//
605 // RegionStore creation.
606 //===----------------------------------------------------------------------===//
607
608 std::unique_ptr<StoreManager>
609 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
610   RegionStoreFeatures F = maximal_features_tag();
611   return llvm::make_unique<RegionStoreManager>(StMgr, F);
612 }
613
614 std::unique_ptr<StoreManager>
615 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
616   RegionStoreFeatures F = minimal_features_tag();
617   F.enableFields(true);
618   return llvm::make_unique<RegionStoreManager>(StMgr, F);
619 }
620
621
622 //===----------------------------------------------------------------------===//
623 // Region Cluster analysis.
624 //===----------------------------------------------------------------------===//
625
626 namespace {
627 /// Used to determine which global regions are automatically included in the
628 /// initial worklist of a ClusterAnalysis.
629 enum GlobalsFilterKind {
630   /// Don't include any global regions.
631   GFK_None,
632   /// Only include system globals.
633   GFK_SystemOnly,
634   /// Include all global regions.
635   GFK_All
636 };
637
638 template <typename DERIVED>
639 class ClusterAnalysis  {
640 protected:
641   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
642   typedef const MemRegion * WorkListElement;
643   typedef SmallVector<WorkListElement, 10> WorkList;
644
645   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
646
647   WorkList WL;
648
649   RegionStoreManager &RM;
650   ASTContext &Ctx;
651   SValBuilder &svalBuilder;
652
653   RegionBindingsRef B;
654
655
656 protected:
657   const ClusterBindings *getCluster(const MemRegion *R) {
658     return B.lookup(R);
659   }
660
661   /// Returns true if all clusters in the given memspace should be initially
662   /// included in the cluster analysis. Subclasses may provide their
663   /// own implementation.
664   bool includeEntireMemorySpace(const MemRegion *Base) {
665     return false;
666   }
667
668 public:
669   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
670                   RegionBindingsRef b)
671       : RM(rm), Ctx(StateMgr.getContext()),
672         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
673
674   RegionBindingsRef getRegionBindings() const { return B; }
675
676   bool isVisited(const MemRegion *R) {
677     return Visited.count(getCluster(R));
678   }
679
680   void GenerateClusters() {
681     // Scan the entire set of bindings and record the region clusters.
682     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
683          RI != RE; ++RI){
684       const MemRegion *Base = RI.getKey();
685
686       const ClusterBindings &Cluster = RI.getData();
687       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
688       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
689
690       // If the base's memspace should be entirely invalidated, add the cluster
691       // to the workspace up front.
692       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
693         AddToWorkList(WorkListElement(Base), &Cluster);
694     }
695   }
696
697   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
698     if (C && !Visited.insert(C).second)
699       return false;
700     WL.push_back(E);
701     return true;
702   }
703
704   bool AddToWorkList(const MemRegion *R) {
705     return static_cast<DERIVED*>(this)->AddToWorkList(R);
706   }
707
708   void RunWorkList() {
709     while (!WL.empty()) {
710       WorkListElement E = WL.pop_back_val();
711       const MemRegion *BaseR = E;
712
713       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
714     }
715   }
716
717   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
718   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
719
720   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
721                     bool Flag) {
722     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
723   }
724 };
725 }
726
727 //===----------------------------------------------------------------------===//
728 // Binding invalidation.
729 //===----------------------------------------------------------------------===//
730
731 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
732                                               ScanReachableSymbols &Callbacks) {
733   assert(R == R->getBaseRegion() && "Should only be called for base regions");
734   RegionBindingsRef B = getRegionBindings(S);
735   const ClusterBindings *Cluster = B.lookup(R);
736
737   if (!Cluster)
738     return true;
739
740   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
741        RI != RE; ++RI) {
742     if (!Callbacks.scan(RI.getData()))
743       return false;
744   }
745
746   return true;
747 }
748
749 static inline bool isUnionField(const FieldRegion *FR) {
750   return FR->getDecl()->getParent()->isUnion();
751 }
752
753 typedef SmallVector<const FieldDecl *, 8> FieldVector;
754
755 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
756   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
757
758   const MemRegion *Base = K.getConcreteOffsetRegion();
759   const MemRegion *R = K.getRegion();
760
761   while (R != Base) {
762     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
763       if (!isUnionField(FR))
764         Fields.push_back(FR->getDecl());
765
766     R = cast<SubRegion>(R)->getSuperRegion();
767   }
768 }
769
770 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
771   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
772
773   if (Fields.empty())
774     return true;
775
776   FieldVector FieldsInBindingKey;
777   getSymbolicOffsetFields(K, FieldsInBindingKey);
778
779   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
780   if (Delta >= 0)
781     return std::equal(FieldsInBindingKey.begin() + Delta,
782                       FieldsInBindingKey.end(),
783                       Fields.begin());
784   else
785     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
786                       Fields.begin() - Delta);
787 }
788
789 /// Collects all bindings in \p Cluster that may refer to bindings within
790 /// \p Top.
791 ///
792 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
793 /// \c second is the value (an SVal).
794 ///
795 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
796 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
797 /// an aggregate within a larger aggregate with a default binding.
798 static void
799 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
800                          SValBuilder &SVB, const ClusterBindings &Cluster,
801                          const SubRegion *Top, BindingKey TopKey,
802                          bool IncludeAllDefaultBindings) {
803   FieldVector FieldsInSymbolicSubregions;
804   if (TopKey.hasSymbolicOffset()) {
805     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
806     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
807     TopKey = BindingKey::Make(Top, BindingKey::Default);
808   }
809
810   // Find the length (in bits) of the region being invalidated.
811   uint64_t Length = UINT64_MAX;
812   SVal Extent = Top->getExtent(SVB);
813   if (Optional<nonloc::ConcreteInt> ExtentCI =
814           Extent.getAs<nonloc::ConcreteInt>()) {
815     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
816     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
817     // Extents are in bytes but region offsets are in bits. Be careful!
818     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
819   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
820     if (FR->getDecl()->isBitField())
821       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
822   }
823
824   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
825        I != E; ++I) {
826     BindingKey NextKey = I.getKey();
827     if (NextKey.getRegion() == TopKey.getRegion()) {
828       // FIXME: This doesn't catch the case where we're really invalidating a
829       // region with a symbolic offset. Example:
830       //      R: points[i].y
831       //   Next: points[0].x
832
833       if (NextKey.getOffset() > TopKey.getOffset() &&
834           NextKey.getOffset() - TopKey.getOffset() < Length) {
835         // Case 1: The next binding is inside the region we're invalidating.
836         // Include it.
837         Bindings.push_back(*I);
838
839       } else if (NextKey.getOffset() == TopKey.getOffset()) {
840         // Case 2: The next binding is at the same offset as the region we're
841         // invalidating. In this case, we need to leave default bindings alone,
842         // since they may be providing a default value for a regions beyond what
843         // we're invalidating.
844         // FIXME: This is probably incorrect; consider invalidating an outer
845         // struct whose first field is bound to a LazyCompoundVal.
846         if (IncludeAllDefaultBindings || NextKey.isDirect())
847           Bindings.push_back(*I);
848       }
849
850     } else if (NextKey.hasSymbolicOffset()) {
851       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
852       if (Top->isSubRegionOf(Base)) {
853         // Case 3: The next key is symbolic and we just changed something within
854         // its concrete region. We don't know if the binding is still valid, so
855         // we'll be conservative and include it.
856         if (IncludeAllDefaultBindings || NextKey.isDirect())
857           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
858             Bindings.push_back(*I);
859       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
860         // Case 4: The next key is symbolic, but we changed a known
861         // super-region. In this case the binding is certainly included.
862         if (Top == Base || BaseSR->isSubRegionOf(Top))
863           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
864             Bindings.push_back(*I);
865       }
866     }
867   }
868 }
869
870 static void
871 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
872                          SValBuilder &SVB, const ClusterBindings &Cluster,
873                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
874   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
875                            BindingKey::Make(Top, BindingKey::Default),
876                            IncludeAllDefaultBindings);
877 }
878
879 RegionBindingsRef
880 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
881                                             const SubRegion *Top) {
882   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
883   const MemRegion *ClusterHead = TopKey.getBaseRegion();
884
885   if (Top == ClusterHead) {
886     // We can remove an entire cluster's bindings all in one go.
887     return B.remove(Top);
888   }
889
890   const ClusterBindings *Cluster = B.lookup(ClusterHead);
891   if (!Cluster) {
892     // If we're invalidating a region with a symbolic offset, we need to make
893     // sure we don't treat the base region as uninitialized anymore.
894     if (TopKey.hasSymbolicOffset()) {
895       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
896       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
897     }
898     return B;
899   }
900
901   SmallVector<BindingPair, 32> Bindings;
902   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
903                            /*IncludeAllDefaultBindings=*/false);
904
905   ClusterBindingsRef Result(*Cluster, CBFactory);
906   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
907                                                     E = Bindings.end();
908        I != E; ++I)
909     Result = Result.remove(I->first);
910
911   // If we're invalidating a region with a symbolic offset, we need to make sure
912   // we don't treat the base region as uninitialized anymore.
913   // FIXME: This isn't very precise; see the example in
914   // collectSubRegionBindings.
915   if (TopKey.hasSymbolicOffset()) {
916     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
917     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
918                         UnknownVal());
919   }
920
921   if (Result.isEmpty())
922     return B.remove(ClusterHead);
923   return B.add(ClusterHead, Result.asImmutableMap());
924 }
925
926 namespace {
927 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
928 {
929   const Expr *Ex;
930   unsigned Count;
931   const LocationContext *LCtx;
932   InvalidatedSymbols &IS;
933   RegionAndSymbolInvalidationTraits &ITraits;
934   StoreManager::InvalidatedRegions *Regions;
935   GlobalsFilterKind GlobalsFilter;
936 public:
937   invalidateRegionsWorker(RegionStoreManager &rm,
938                           ProgramStateManager &stateMgr,
939                           RegionBindingsRef b,
940                           const Expr *ex, unsigned count,
941                           const LocationContext *lctx,
942                           InvalidatedSymbols &is,
943                           RegionAndSymbolInvalidationTraits &ITraitsIn,
944                           StoreManager::InvalidatedRegions *r,
945                           GlobalsFilterKind GFK)
946      : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b),
947        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
948        GlobalsFilter(GFK) {}
949
950   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
951   void VisitBinding(SVal V);
952
953   using ClusterAnalysis::AddToWorkList;
954
955   bool AddToWorkList(const MemRegion *R);
956
957   /// Returns true if all clusters in the memory space for \p Base should be
958   /// be invalidated.
959   bool includeEntireMemorySpace(const MemRegion *Base);
960
961   /// Returns true if the memory space of the given region is one of the global
962   /// regions specially included at the start of invalidation.
963   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
964 };
965 }
966
967 bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
968   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
969       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
970   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
971   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
972 }
973
974 void invalidateRegionsWorker::VisitBinding(SVal V) {
975   // A symbol?  Mark it touched by the invalidation.
976   if (SymbolRef Sym = V.getAsSymbol())
977     IS.insert(Sym);
978
979   if (const MemRegion *R = V.getAsRegion()) {
980     AddToWorkList(R);
981     return;
982   }
983
984   // Is it a LazyCompoundVal?  All references get invalidated as well.
985   if (Optional<nonloc::LazyCompoundVal> LCS =
986           V.getAs<nonloc::LazyCompoundVal>()) {
987
988     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
989
990     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
991                                                         E = Vals.end();
992          I != E; ++I)
993       VisitBinding(*I);
994
995     return;
996   }
997 }
998
999 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1000                                            const ClusterBindings *C) {
1001
1002   bool PreserveRegionsContents =
1003       ITraits.hasTrait(baseR,
1004                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1005
1006   if (C) {
1007     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1008       VisitBinding(I.getData());
1009
1010     // Invalidate regions contents.
1011     if (!PreserveRegionsContents)
1012       B = B.remove(baseR);
1013   }
1014
1015   // BlockDataRegion?  If so, invalidate captured variables that are passed
1016   // by reference.
1017   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1018     for (BlockDataRegion::referenced_vars_iterator
1019          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1020          BI != BE; ++BI) {
1021       const VarRegion *VR = BI.getCapturedRegion();
1022       const VarDecl *VD = VR->getDecl();
1023       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1024         AddToWorkList(VR);
1025       }
1026       else if (Loc::isLocType(VR->getValueType())) {
1027         // Map the current bindings to a Store to retrieve the value
1028         // of the binding.  If that binding itself is a region, we should
1029         // invalidate that region.  This is because a block may capture
1030         // a pointer value, but the thing pointed by that pointer may
1031         // get invalidated.
1032         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1033         if (Optional<Loc> L = V.getAs<Loc>()) {
1034           if (const MemRegion *LR = L->getAsRegion())
1035             AddToWorkList(LR);
1036         }
1037       }
1038     }
1039     return;
1040   }
1041
1042   // Symbolic region?
1043   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1044     IS.insert(SR->getSymbol());
1045
1046   // Nothing else should be done in the case when we preserve regions context.
1047   if (PreserveRegionsContents)
1048     return;
1049
1050   // Otherwise, we have a normal data region. Record that we touched the region.
1051   if (Regions)
1052     Regions->push_back(baseR);
1053
1054   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1055     // Invalidate the region by setting its default value to
1056     // conjured symbol. The type of the symbol is irrelevant.
1057     DefinedOrUnknownSVal V =
1058       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1059     B = B.addBinding(baseR, BindingKey::Default, V);
1060     return;
1061   }
1062
1063   if (!baseR->isBoundable())
1064     return;
1065
1066   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1067   QualType T = TR->getValueType();
1068
1069   if (isInitiallyIncludedGlobalRegion(baseR)) {
1070     // If the region is a global and we are invalidating all globals,
1071     // erasing the entry is good enough.  This causes all globals to be lazily
1072     // symbolicated from the same base symbol.
1073     return;
1074   }
1075
1076   if (T->isStructureOrClassType()) {
1077     // Invalidate the region by setting its default value to
1078     // conjured symbol. The type of the symbol is irrelevant.
1079     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1080                                                           Ctx.IntTy, Count);
1081     B = B.addBinding(baseR, BindingKey::Default, V);
1082     return;
1083   }
1084
1085   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1086     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1087         baseR,
1088         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1089
1090     if (doNotInvalidateSuperRegion) {
1091       // We are not doing blank invalidation of the whole array region so we
1092       // have to manually invalidate each elements.
1093       Optional<uint64_t> NumElements;
1094
1095       // Compute lower and upper offsets for region within array.
1096       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1097         NumElements = CAT->getSize().getZExtValue();
1098       if (!NumElements) // We are not dealing with a constant size array
1099         goto conjure_default;
1100       QualType ElementTy = AT->getElementType();
1101       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1102       const RegionOffset &RO = baseR->getAsOffset();
1103       const MemRegion *SuperR = baseR->getBaseRegion();
1104       if (RO.hasSymbolicOffset()) {
1105         // If base region has a symbolic offset,
1106         // we revert to invalidating the super region.
1107         if (SuperR)
1108           AddToWorkList(SuperR);
1109         goto conjure_default;
1110       }
1111
1112       uint64_t LowerOffset = RO.getOffset();
1113       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1114       bool UpperOverflow = UpperOffset < LowerOffset;
1115
1116       // Invalidate regions which are within array boundaries,
1117       // or have a symbolic offset.
1118       if (!SuperR)
1119         goto conjure_default;
1120
1121       const ClusterBindings *C = B.lookup(SuperR);
1122       if (!C)
1123         goto conjure_default;
1124
1125       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1126            ++I) {
1127         const BindingKey &BK = I.getKey();
1128         Optional<uint64_t> ROffset =
1129             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1130
1131         // Check offset is not symbolic and within array's boundaries.
1132         // Handles arrays of 0 elements and of 0-sized elements as well.
1133         if (!ROffset ||
1134             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1135              (UpperOverflow &&
1136               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1137              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1138           B = B.removeBinding(I.getKey());
1139           // Bound symbolic regions need to be invalidated for dead symbol
1140           // detection.
1141           SVal V = I.getData();
1142           const MemRegion *R = V.getAsRegion();
1143           if (R && isa<SymbolicRegion>(R))
1144             VisitBinding(V);
1145         }
1146       }
1147     }
1148   conjure_default:
1149       // Set the default value of the array to conjured symbol.
1150     DefinedOrUnknownSVal V =
1151     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1152                                      AT->getElementType(), Count);
1153     B = B.addBinding(baseR, BindingKey::Default, V);
1154     return;
1155   }
1156
1157   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1158                                                         T,Count);
1159   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1160   B = B.addBinding(baseR, BindingKey::Direct, V);
1161 }
1162
1163 bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1164     const MemRegion *R) {
1165   switch (GlobalsFilter) {
1166   case GFK_None:
1167     return false;
1168   case GFK_SystemOnly:
1169     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1170   case GFK_All:
1171     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1172   }
1173
1174   llvm_unreachable("unknown globals filter");
1175 }
1176
1177 bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1178   if (isInitiallyIncludedGlobalRegion(Base))
1179     return true;
1180
1181   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1182   return ITraits.hasTrait(MemSpace,
1183                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1184 }
1185
1186 RegionBindingsRef
1187 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1188                                            const Expr *Ex,
1189                                            unsigned Count,
1190                                            const LocationContext *LCtx,
1191                                            RegionBindingsRef B,
1192                                            InvalidatedRegions *Invalidated) {
1193   // Bind the globals memory space to a new symbol that we will use to derive
1194   // the bindings for all globals.
1195   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1196   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1197                                         /* type does not matter */ Ctx.IntTy,
1198                                         Count);
1199
1200   B = B.removeBinding(GS)
1201        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1202
1203   // Even if there are no bindings in the global scope, we still need to
1204   // record that we touched it.
1205   if (Invalidated)
1206     Invalidated->push_back(GS);
1207
1208   return B;
1209 }
1210
1211 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1212                                           ArrayRef<SVal> Values,
1213                                           InvalidatedRegions *TopLevelRegions) {
1214   for (ArrayRef<SVal>::iterator I = Values.begin(),
1215                                 E = Values.end(); I != E; ++I) {
1216     SVal V = *I;
1217     if (Optional<nonloc::LazyCompoundVal> LCS =
1218         V.getAs<nonloc::LazyCompoundVal>()) {
1219
1220       const SValListTy &Vals = getInterestingValues(*LCS);
1221
1222       for (SValListTy::const_iterator I = Vals.begin(),
1223                                       E = Vals.end(); I != E; ++I) {
1224         // Note: the last argument is false here because these are
1225         // non-top-level regions.
1226         if (const MemRegion *R = (*I).getAsRegion())
1227           W.AddToWorkList(R);
1228       }
1229       continue;
1230     }
1231
1232     if (const MemRegion *R = V.getAsRegion()) {
1233       if (TopLevelRegions)
1234         TopLevelRegions->push_back(R);
1235       W.AddToWorkList(R);
1236       continue;
1237     }
1238   }
1239 }
1240
1241 StoreRef
1242 RegionStoreManager::invalidateRegions(Store store,
1243                                      ArrayRef<SVal> Values,
1244                                      const Expr *Ex, unsigned Count,
1245                                      const LocationContext *LCtx,
1246                                      const CallEvent *Call,
1247                                      InvalidatedSymbols &IS,
1248                                      RegionAndSymbolInvalidationTraits &ITraits,
1249                                      InvalidatedRegions *TopLevelRegions,
1250                                      InvalidatedRegions *Invalidated) {
1251   GlobalsFilterKind GlobalsFilter;
1252   if (Call) {
1253     if (Call->isInSystemHeader())
1254       GlobalsFilter = GFK_SystemOnly;
1255     else
1256       GlobalsFilter = GFK_All;
1257   } else {
1258     GlobalsFilter = GFK_None;
1259   }
1260
1261   RegionBindingsRef B = getRegionBindings(store);
1262   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1263                             Invalidated, GlobalsFilter);
1264
1265   // Scan the bindings and generate the clusters.
1266   W.GenerateClusters();
1267
1268   // Add the regions to the worklist.
1269   populateWorkList(W, Values, TopLevelRegions);
1270
1271   W.RunWorkList();
1272
1273   // Return the new bindings.
1274   B = W.getRegionBindings();
1275
1276   // For calls, determine which global regions should be invalidated and
1277   // invalidate them. (Note that function-static and immutable globals are never
1278   // invalidated by this.)
1279   // TODO: This could possibly be more precise with modules.
1280   switch (GlobalsFilter) {
1281   case GFK_All:
1282     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1283                                Ex, Count, LCtx, B, Invalidated);
1284     // FALLTHROUGH
1285   case GFK_SystemOnly:
1286     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1287                                Ex, Count, LCtx, B, Invalidated);
1288     // FALLTHROUGH
1289   case GFK_None:
1290     break;
1291   }
1292
1293   return StoreRef(B.asStore(), *this);
1294 }
1295
1296 //===----------------------------------------------------------------------===//
1297 // Extents for regions.
1298 //===----------------------------------------------------------------------===//
1299
1300 DefinedOrUnknownSVal
1301 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1302                                       const MemRegion *R,
1303                                       QualType EleTy) {
1304   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1305   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1306   if (!SizeInt)
1307     return UnknownVal();
1308
1309   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1310
1311   if (Ctx.getAsVariableArrayType(EleTy)) {
1312     // FIXME: We need to track extra state to properly record the size
1313     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1314     // we don't have a divide-by-zero below.
1315     return UnknownVal();
1316   }
1317
1318   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1319
1320   // If a variable is reinterpreted as a type that doesn't fit into a larger
1321   // type evenly, round it down.
1322   // This is a signed value, since it's used in arithmetic with signed indices.
1323   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1324 }
1325
1326 //===----------------------------------------------------------------------===//
1327 // Location and region casting.
1328 //===----------------------------------------------------------------------===//
1329
1330 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1331 ///  type.  'Array' represents the lvalue of the array being decayed
1332 ///  to a pointer, and the returned SVal represents the decayed
1333 ///  version of that lvalue (i.e., a pointer to the first element of
1334 ///  the array).  This is called by ExprEngine when evaluating casts
1335 ///  from arrays to pointers.
1336 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1337   if (!Array.getAs<loc::MemRegionVal>())
1338     return UnknownVal();
1339
1340   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1341   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1342   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1343 }
1344
1345 //===----------------------------------------------------------------------===//
1346 // Loading values from regions.
1347 //===----------------------------------------------------------------------===//
1348
1349 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1350   assert(!L.getAs<UnknownVal>() && "location unknown");
1351   assert(!L.getAs<UndefinedVal>() && "location undefined");
1352
1353   // For access to concrete addresses, return UnknownVal.  Checks
1354   // for null dereferences (and similar errors) are done by checkers, not
1355   // the Store.
1356   // FIXME: We can consider lazily symbolicating such memory, but we really
1357   // should defer this when we can reason easily about symbolicating arrays
1358   // of bytes.
1359   if (L.getAs<loc::ConcreteInt>()) {
1360     return UnknownVal();
1361   }
1362   if (!L.getAs<loc::MemRegionVal>()) {
1363     return UnknownVal();
1364   }
1365
1366   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1367
1368   if (isa<BlockDataRegion>(MR)) {
1369     return UnknownVal();
1370   }
1371
1372   if (isa<AllocaRegion>(MR) ||
1373       isa<SymbolicRegion>(MR) ||
1374       isa<CodeTextRegion>(MR)) {
1375     if (T.isNull()) {
1376       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1377         T = TR->getLocationType();
1378       else {
1379         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1380         T = SR->getSymbol()->getType();
1381       }
1382     }
1383     MR = GetElementZeroRegion(MR, T);
1384   }
1385
1386   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1387   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1388   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1389   QualType RTy = R->getValueType();
1390
1391   // FIXME: we do not yet model the parts of a complex type, so treat the
1392   // whole thing as "unknown".
1393   if (RTy->isAnyComplexType())
1394     return UnknownVal();
1395
1396   // FIXME: We should eventually handle funny addressing.  e.g.:
1397   //
1398   //   int x = ...;
1399   //   int *p = &x;
1400   //   char *q = (char*) p;
1401   //   char c = *q;  // returns the first byte of 'x'.
1402   //
1403   // Such funny addressing will occur due to layering of regions.
1404   if (RTy->isStructureOrClassType())
1405     return getBindingForStruct(B, R);
1406
1407   // FIXME: Handle unions.
1408   if (RTy->isUnionType())
1409     return createLazyBinding(B, R);
1410
1411   if (RTy->isArrayType()) {
1412     if (RTy->isConstantArrayType())
1413       return getBindingForArray(B, R);
1414     else
1415       return UnknownVal();
1416   }
1417
1418   // FIXME: handle Vector types.
1419   if (RTy->isVectorType())
1420     return UnknownVal();
1421
1422   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1423     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1424
1425   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1426     // FIXME: Here we actually perform an implicit conversion from the loaded
1427     // value to the element type.  Eventually we want to compose these values
1428     // more intelligently.  For example, an 'element' can encompass multiple
1429     // bound regions (e.g., several bound bytes), or could be a subset of
1430     // a larger value.
1431     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1432   }
1433
1434   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1435     // FIXME: Here we actually perform an implicit conversion from the loaded
1436     // value to the ivar type.  What we should model is stores to ivars
1437     // that blow past the extent of the ivar.  If the address of the ivar is
1438     // reinterpretted, it is possible we stored a different value that could
1439     // fit within the ivar.  Either we need to cast these when storing them
1440     // or reinterpret them lazily (as we do here).
1441     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1442   }
1443
1444   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1445     // FIXME: Here we actually perform an implicit conversion from the loaded
1446     // value to the variable type.  What we should model is stores to variables
1447     // that blow past the extent of the variable.  If the address of the
1448     // variable is reinterpretted, it is possible we stored a different value
1449     // that could fit within the variable.  Either we need to cast these when
1450     // storing them or reinterpret them lazily (as we do here).
1451     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1452   }
1453
1454   const SVal *V = B.lookup(R, BindingKey::Direct);
1455
1456   // Check if the region has a binding.
1457   if (V)
1458     return *V;
1459
1460   // The location does not have a bound value.  This means that it has
1461   // the value it had upon its creation and/or entry to the analyzed
1462   // function/method.  These are either symbolic values or 'undefined'.
1463   if (R->hasStackNonParametersStorage()) {
1464     // All stack variables are considered to have undefined values
1465     // upon creation.  All heap allocated blocks are considered to
1466     // have undefined values as well unless they are explicitly bound
1467     // to specific values.
1468     return UndefinedVal();
1469   }
1470
1471   // All other values are symbolic.
1472   return svalBuilder.getRegionValueSymbolVal(R);
1473 }
1474
1475 static QualType getUnderlyingType(const SubRegion *R) {
1476   QualType RegionTy;
1477   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1478     RegionTy = TVR->getValueType();
1479
1480   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1481     RegionTy = SR->getSymbol()->getType();
1482
1483   return RegionTy;
1484 }
1485
1486 /// Checks to see if store \p B has a lazy binding for region \p R.
1487 ///
1488 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1489 /// if there are additional bindings within \p R.
1490 ///
1491 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1492 /// for lazy bindings for super-regions of \p R.
1493 static Optional<nonloc::LazyCompoundVal>
1494 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1495                        const SubRegion *R, bool AllowSubregionBindings) {
1496   Optional<SVal> V = B.getDefaultBinding(R);
1497   if (!V)
1498     return None;
1499
1500   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1501   if (!LCV)
1502     return None;
1503
1504   // If the LCV is for a subregion, the types might not match, and we shouldn't
1505   // reuse the binding.
1506   QualType RegionTy = getUnderlyingType(R);
1507   if (!RegionTy.isNull() &&
1508       !RegionTy->isVoidPointerType()) {
1509     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1510     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1511       return None;
1512   }
1513
1514   if (!AllowSubregionBindings) {
1515     // If there are any other bindings within this region, we shouldn't reuse
1516     // the top-level binding.
1517     SmallVector<BindingPair, 16> Bindings;
1518     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1519                              /*IncludeAllDefaultBindings=*/true);
1520     if (Bindings.size() > 1)
1521       return None;
1522   }
1523
1524   return *LCV;
1525 }
1526
1527
1528 std::pair<Store, const SubRegion *>
1529 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1530                                    const SubRegion *R,
1531                                    const SubRegion *originalRegion) {
1532   if (originalRegion != R) {
1533     if (Optional<nonloc::LazyCompoundVal> V =
1534           getExistingLazyBinding(svalBuilder, B, R, true))
1535       return std::make_pair(V->getStore(), V->getRegion());
1536   }
1537
1538   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1539   StoreRegionPair Result = StoreRegionPair();
1540
1541   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1542     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1543                              originalRegion);
1544
1545     if (Result.second)
1546       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1547
1548   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1549     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1550                                        originalRegion);
1551
1552     if (Result.second)
1553       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1554
1555   } else if (const CXXBaseObjectRegion *BaseReg =
1556                dyn_cast<CXXBaseObjectRegion>(R)) {
1557     // C++ base object region is another kind of region that we should blast
1558     // through to look for lazy compound value. It is like a field region.
1559     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1560                              originalRegion);
1561
1562     if (Result.second)
1563       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1564                                                             Result.second);
1565   }
1566
1567   return Result;
1568 }
1569
1570 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1571                                               const ElementRegion* R) {
1572   // We do not currently model bindings of the CompoundLiteralregion.
1573   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1574     return UnknownVal();
1575
1576   // Check if the region has a binding.
1577   if (const Optional<SVal> &V = B.getDirectBinding(R))
1578     return *V;
1579
1580   const MemRegion* superR = R->getSuperRegion();
1581
1582   // Check if the region is an element region of a string literal.
1583   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1584     // FIXME: Handle loads from strings where the literal is treated as
1585     // an integer, e.g., *((unsigned int*)"hello")
1586     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1587     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1588       return UnknownVal();
1589
1590     const StringLiteral *Str = StrR->getStringLiteral();
1591     SVal Idx = R->getIndex();
1592     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1593       int64_t i = CI->getValue().getSExtValue();
1594       // Abort on string underrun.  This can be possible by arbitrary
1595       // clients of getBindingForElement().
1596       if (i < 0)
1597         return UndefinedVal();
1598       int64_t length = Str->getLength();
1599       // Technically, only i == length is guaranteed to be null.
1600       // However, such overflows should be caught before reaching this point;
1601       // the only time such an access would be made is if a string literal was
1602       // used to initialize a larger array.
1603       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1604       return svalBuilder.makeIntVal(c, T);
1605     }
1606   }
1607
1608   // Check for loads from a code text region.  For such loads, just give up.
1609   if (isa<CodeTextRegion>(superR))
1610     return UnknownVal();
1611
1612   // Handle the case where we are indexing into a larger scalar object.
1613   // For example, this handles:
1614   //   int x = ...
1615   //   char *y = &x;
1616   //   return *y;
1617   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1618   const RegionRawOffset &O = R->getAsArrayOffset();
1619
1620   // If we cannot reason about the offset, return an unknown value.
1621   if (!O.getRegion())
1622     return UnknownVal();
1623
1624   if (const TypedValueRegion *baseR =
1625         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1626     QualType baseT = baseR->getValueType();
1627     if (baseT->isScalarType()) {
1628       QualType elemT = R->getElementType();
1629       if (elemT->isScalarType()) {
1630         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1631           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1632             if (SymbolRef parentSym = V->getAsSymbol())
1633               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1634
1635             if (V->isUnknownOrUndef())
1636               return *V;
1637             // Other cases: give up.  We are indexing into a larger object
1638             // that has some value, but we don't know how to handle that yet.
1639             return UnknownVal();
1640           }
1641         }
1642       }
1643     }
1644   }
1645   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1646 }
1647
1648 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1649                                             const FieldRegion* R) {
1650
1651   // Check if the region has a binding.
1652   if (const Optional<SVal> &V = B.getDirectBinding(R))
1653     return *V;
1654
1655   QualType Ty = R->getValueType();
1656   return getBindingForFieldOrElementCommon(B, R, Ty);
1657 }
1658
1659 Optional<SVal>
1660 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1661                                                      const MemRegion *superR,
1662                                                      const TypedValueRegion *R,
1663                                                      QualType Ty) {
1664
1665   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1666     const SVal &val = D.getValue();
1667     if (SymbolRef parentSym = val.getAsSymbol())
1668       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1669
1670     if (val.isZeroConstant())
1671       return svalBuilder.makeZeroVal(Ty);
1672
1673     if (val.isUnknownOrUndef())
1674       return val;
1675
1676     // Lazy bindings are usually handled through getExistingLazyBinding().
1677     // We should unify these two code paths at some point.
1678     if (val.getAs<nonloc::LazyCompoundVal>())
1679       return val;
1680
1681     llvm_unreachable("Unknown default value");
1682   }
1683
1684   return None;
1685 }
1686
1687 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1688                                         RegionBindingsRef LazyBinding) {
1689   SVal Result;
1690   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1691     Result = getBindingForElement(LazyBinding, ER);
1692   else
1693     Result = getBindingForField(LazyBinding,
1694                                 cast<FieldRegion>(LazyBindingRegion));
1695
1696   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1697   // default value for /part/ of an aggregate from a default value for the
1698   // /entire/ aggregate. The most common case of this is when struct Outer
1699   // has as its first member a struct Inner, which is copied in from a stack
1700   // variable. In this case, even if the Outer's default value is symbolic, 0,
1701   // or unknown, it gets overridden by the Inner's default value of undefined.
1702   //
1703   // This is a general problem -- if the Inner is zero-initialized, the Outer
1704   // will now look zero-initialized. The proper way to solve this is with a
1705   // new version of RegionStore that tracks the extent of a binding as well
1706   // as the offset.
1707   //
1708   // This hack only takes care of the undefined case because that can very
1709   // quickly result in a warning.
1710   if (Result.isUndef())
1711     Result = UnknownVal();
1712
1713   return Result;
1714 }
1715
1716 SVal
1717 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1718                                                       const TypedValueRegion *R,
1719                                                       QualType Ty) {
1720
1721   // At this point we have already checked in either getBindingForElement or
1722   // getBindingForField if 'R' has a direct binding.
1723
1724   // Lazy binding?
1725   Store lazyBindingStore = nullptr;
1726   const SubRegion *lazyBindingRegion = nullptr;
1727   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1728   if (lazyBindingRegion)
1729     return getLazyBinding(lazyBindingRegion,
1730                           getRegionBindings(lazyBindingStore));
1731
1732   // Record whether or not we see a symbolic index.  That can completely
1733   // be out of scope of our lookup.
1734   bool hasSymbolicIndex = false;
1735
1736   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1737   // default value for /part/ of an aggregate from a default value for the
1738   // /entire/ aggregate. The most common case of this is when struct Outer
1739   // has as its first member a struct Inner, which is copied in from a stack
1740   // variable. In this case, even if the Outer's default value is symbolic, 0,
1741   // or unknown, it gets overridden by the Inner's default value of undefined.
1742   //
1743   // This is a general problem -- if the Inner is zero-initialized, the Outer
1744   // will now look zero-initialized. The proper way to solve this is with a
1745   // new version of RegionStore that tracks the extent of a binding as well
1746   // as the offset.
1747   //
1748   // This hack only takes care of the undefined case because that can very
1749   // quickly result in a warning.
1750   bool hasPartialLazyBinding = false;
1751
1752   const SubRegion *SR = dyn_cast<SubRegion>(R);
1753   while (SR) {
1754     const MemRegion *Base = SR->getSuperRegion();
1755     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1756       if (D->getAs<nonloc::LazyCompoundVal>()) {
1757         hasPartialLazyBinding = true;
1758         break;
1759       }
1760
1761       return *D;
1762     }
1763
1764     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1765       NonLoc index = ER->getIndex();
1766       if (!index.isConstant())
1767         hasSymbolicIndex = true;
1768     }
1769
1770     // If our super region is a field or element itself, walk up the region
1771     // hierarchy to see if there is a default value installed in an ancestor.
1772     SR = dyn_cast<SubRegion>(Base);
1773   }
1774
1775   if (R->hasStackNonParametersStorage()) {
1776     if (isa<ElementRegion>(R)) {
1777       // Currently we don't reason specially about Clang-style vectors.  Check
1778       // if superR is a vector and if so return Unknown.
1779       if (const TypedValueRegion *typedSuperR =
1780             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1781         if (typedSuperR->getValueType()->isVectorType())
1782           return UnknownVal();
1783       }
1784     }
1785
1786     // FIXME: We also need to take ElementRegions with symbolic indexes into
1787     // account.  This case handles both directly accessing an ElementRegion
1788     // with a symbolic offset, but also fields within an element with
1789     // a symbolic offset.
1790     if (hasSymbolicIndex)
1791       return UnknownVal();
1792
1793     if (!hasPartialLazyBinding)
1794       return UndefinedVal();
1795   }
1796
1797   // All other values are symbolic.
1798   return svalBuilder.getRegionValueSymbolVal(R);
1799 }
1800
1801 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1802                                                const ObjCIvarRegion* R) {
1803   // Check if the region has a binding.
1804   if (const Optional<SVal> &V = B.getDirectBinding(R))
1805     return *V;
1806
1807   const MemRegion *superR = R->getSuperRegion();
1808
1809   // Check if the super region has a default binding.
1810   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1811     if (SymbolRef parentSym = V->getAsSymbol())
1812       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1813
1814     // Other cases: give up.
1815     return UnknownVal();
1816   }
1817
1818   return getBindingForLazySymbol(R);
1819 }
1820
1821 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1822                                           const VarRegion *R) {
1823
1824   // Check if the region has a binding.
1825   if (const Optional<SVal> &V = B.getDirectBinding(R))
1826     return *V;
1827
1828   // Lazily derive a value for the VarRegion.
1829   const VarDecl *VD = R->getDecl();
1830   const MemSpaceRegion *MS = R->getMemorySpace();
1831
1832   // Arguments are always symbolic.
1833   if (isa<StackArgumentsSpaceRegion>(MS))
1834     return svalBuilder.getRegionValueSymbolVal(R);
1835
1836   // Is 'VD' declared constant?  If so, retrieve the constant value.
1837   if (VD->getType().isConstQualified())
1838     if (const Expr *Init = VD->getInit())
1839       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1840         return *V;
1841
1842   // This must come after the check for constants because closure-captured
1843   // constant variables may appear in UnknownSpaceRegion.
1844   if (isa<UnknownSpaceRegion>(MS))
1845     return svalBuilder.getRegionValueSymbolVal(R);
1846
1847   if (isa<GlobalsSpaceRegion>(MS)) {
1848     QualType T = VD->getType();
1849
1850     // Function-scoped static variables are default-initialized to 0; if they
1851     // have an initializer, it would have been processed by now.
1852     if (isa<StaticGlobalSpaceRegion>(MS))
1853       return svalBuilder.makeZeroVal(T);
1854
1855     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1856       assert(!V->getAs<nonloc::LazyCompoundVal>());
1857       return V.getValue();
1858     }
1859
1860     return svalBuilder.getRegionValueSymbolVal(R);
1861   }
1862
1863   return UndefinedVal();
1864 }
1865
1866 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1867   // All other values are symbolic.
1868   return svalBuilder.getRegionValueSymbolVal(R);
1869 }
1870
1871 const RegionStoreManager::SValListTy &
1872 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1873   // First, check the cache.
1874   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1875   if (I != LazyBindingsMap.end())
1876     return I->second;
1877
1878   // If we don't have a list of values cached, start constructing it.
1879   SValListTy List;
1880
1881   const SubRegion *LazyR = LCV.getRegion();
1882   RegionBindingsRef B = getRegionBindings(LCV.getStore());
1883
1884   // If this region had /no/ bindings at the time, there are no interesting
1885   // values to return.
1886   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1887   if (!Cluster)
1888     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1889
1890   SmallVector<BindingPair, 32> Bindings;
1891   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1892                            /*IncludeAllDefaultBindings=*/true);
1893   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1894                                                     E = Bindings.end();
1895        I != E; ++I) {
1896     SVal V = I->second;
1897     if (V.isUnknownOrUndef() || V.isConstant())
1898       continue;
1899
1900     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1901             V.getAs<nonloc::LazyCompoundVal>()) {
1902       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1903       List.insert(List.end(), InnerList.begin(), InnerList.end());
1904       continue;
1905     }
1906
1907     List.push_back(V);
1908   }
1909
1910   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1911 }
1912
1913 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1914                                              const TypedValueRegion *R) {
1915   if (Optional<nonloc::LazyCompoundVal> V =
1916         getExistingLazyBinding(svalBuilder, B, R, false))
1917     return *V;
1918
1919   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1920 }
1921
1922 static bool isRecordEmpty(const RecordDecl *RD) {
1923   if (!RD->field_empty())
1924     return false;
1925   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
1926     return CRD->getNumBases() == 0;
1927   return true;
1928 }
1929
1930 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1931                                              const TypedValueRegion *R) {
1932   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1933   if (!RD->getDefinition() || isRecordEmpty(RD))
1934     return UnknownVal();
1935
1936   return createLazyBinding(B, R);
1937 }
1938
1939 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1940                                             const TypedValueRegion *R) {
1941   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1942          "Only constant array types can have compound bindings.");
1943
1944   return createLazyBinding(B, R);
1945 }
1946
1947 bool RegionStoreManager::includedInBindings(Store store,
1948                                             const MemRegion *region) const {
1949   RegionBindingsRef B = getRegionBindings(store);
1950   region = region->getBaseRegion();
1951
1952   // Quick path: if the base is the head of a cluster, the region is live.
1953   if (B.lookup(region))
1954     return true;
1955
1956   // Slow path: if the region is the VALUE of any binding, it is live.
1957   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1958     const ClusterBindings &Cluster = RI.getData();
1959     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1960          CI != CE; ++CI) {
1961       const SVal &D = CI.getData();
1962       if (const MemRegion *R = D.getAsRegion())
1963         if (R->getBaseRegion() == region)
1964           return true;
1965     }
1966   }
1967
1968   return false;
1969 }
1970
1971 //===----------------------------------------------------------------------===//
1972 // Binding values to regions.
1973 //===----------------------------------------------------------------------===//
1974
1975 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1976   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1977     if (const MemRegion* R = LV->getRegion())
1978       return StoreRef(getRegionBindings(ST).removeBinding(R)
1979                                            .asImmutableMap()
1980                                            .getRootWithoutRetain(),
1981                       *this);
1982
1983   return StoreRef(ST, *this);
1984 }
1985
1986 RegionBindingsRef
1987 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1988   if (L.getAs<loc::ConcreteInt>())
1989     return B;
1990
1991   // If we get here, the location should be a region.
1992   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1993
1994   // Check if the region is a struct region.
1995   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1996     QualType Ty = TR->getValueType();
1997     if (Ty->isArrayType())
1998       return bindArray(B, TR, V);
1999     if (Ty->isStructureOrClassType())
2000       return bindStruct(B, TR, V);
2001     if (Ty->isVectorType())
2002       return bindVector(B, TR, V);
2003     if (Ty->isUnionType())
2004       return bindAggregate(B, TR, V);
2005   }
2006
2007   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2008     // Binding directly to a symbolic region should be treated as binding
2009     // to element 0.
2010     QualType T = SR->getSymbol()->getType();
2011     if (T->isAnyPointerType() || T->isReferenceType())
2012       T = T->getPointeeType();
2013
2014     R = GetElementZeroRegion(SR, T);
2015   }
2016
2017   // Clear out bindings that may overlap with this binding.
2018   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2019   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2020 }
2021
2022 RegionBindingsRef
2023 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2024                                             const MemRegion *R,
2025                                             QualType T) {
2026   SVal V;
2027
2028   if (Loc::isLocType(T))
2029     V = svalBuilder.makeNull();
2030   else if (T->isIntegralOrEnumerationType())
2031     V = svalBuilder.makeZeroVal(T);
2032   else if (T->isStructureOrClassType() || T->isArrayType()) {
2033     // Set the default value to a zero constant when it is a structure
2034     // or array.  The type doesn't really matter.
2035     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2036   }
2037   else {
2038     // We can't represent values of this type, but we still need to set a value
2039     // to record that the region has been initialized.
2040     // If this assertion ever fires, a new case should be added above -- we
2041     // should know how to default-initialize any value we can symbolicate.
2042     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2043     V = UnknownVal();
2044   }
2045
2046   return B.addBinding(R, BindingKey::Default, V);
2047 }
2048
2049 RegionBindingsRef
2050 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2051                               const TypedValueRegion* R,
2052                               SVal Init) {
2053
2054   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2055   QualType ElementTy = AT->getElementType();
2056   Optional<uint64_t> Size;
2057
2058   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2059     Size = CAT->getSize().getZExtValue();
2060
2061   // Check if the init expr is a string literal.
2062   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2063     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
2064
2065     // Treat the string as a lazy compound value.
2066     StoreRef store(B.asStore(), *this);
2067     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
2068         .castAs<nonloc::LazyCompoundVal>();
2069     return bindAggregate(B, R, LCV);
2070   }
2071
2072   // Handle lazy compound values.
2073   if (Init.getAs<nonloc::LazyCompoundVal>())
2074     return bindAggregate(B, R, Init);
2075
2076   // Remaining case: explicit compound values.
2077
2078   if (Init.isUnknown())
2079     return setImplicitDefaultValue(B, R, ElementTy);
2080
2081   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2082   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2083   uint64_t i = 0;
2084
2085   RegionBindingsRef NewB(B);
2086
2087   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2088     // The init list might be shorter than the array length.
2089     if (VI == VE)
2090       break;
2091
2092     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2093     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2094
2095     if (ElementTy->isStructureOrClassType())
2096       NewB = bindStruct(NewB, ER, *VI);
2097     else if (ElementTy->isArrayType())
2098       NewB = bindArray(NewB, ER, *VI);
2099     else
2100       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2101   }
2102
2103   // If the init list is shorter than the array length, set the
2104   // array default value.
2105   if (Size.hasValue() && i < Size.getValue())
2106     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2107
2108   return NewB;
2109 }
2110
2111 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2112                                                  const TypedValueRegion* R,
2113                                                  SVal V) {
2114   QualType T = R->getValueType();
2115   assert(T->isVectorType());
2116   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2117
2118   // Handle lazy compound values and symbolic values.
2119   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2120     return bindAggregate(B, R, V);
2121
2122   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2123   // that we are binding symbolic struct value. Kill the field values, and if
2124   // the value is symbolic go and bind it as a "default" binding.
2125   if (!V.getAs<nonloc::CompoundVal>()) {
2126     return bindAggregate(B, R, UnknownVal());
2127   }
2128
2129   QualType ElemType = VT->getElementType();
2130   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2131   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2132   unsigned index = 0, numElements = VT->getNumElements();
2133   RegionBindingsRef NewB(B);
2134
2135   for ( ; index != numElements ; ++index) {
2136     if (VI == VE)
2137       break;
2138
2139     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2140     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2141
2142     if (ElemType->isArrayType())
2143       NewB = bindArray(NewB, ER, *VI);
2144     else if (ElemType->isStructureOrClassType())
2145       NewB = bindStruct(NewB, ER, *VI);
2146     else
2147       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2148   }
2149   return NewB;
2150 }
2151
2152 Optional<RegionBindingsRef>
2153 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2154                                        const TypedValueRegion *R,
2155                                        const RecordDecl *RD,
2156                                        nonloc::LazyCompoundVal LCV) {
2157   FieldVector Fields;
2158
2159   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2160     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2161       return None;
2162
2163   for (const auto *FD : RD->fields()) {
2164     if (FD->isUnnamedBitfield())
2165       continue;
2166
2167     // If there are too many fields, or if any of the fields are aggregates,
2168     // just use the LCV as a default binding.
2169     if (Fields.size() == SmallStructLimit)
2170       return None;
2171
2172     QualType Ty = FD->getType();
2173     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2174       return None;
2175
2176     Fields.push_back(FD);
2177   }
2178
2179   RegionBindingsRef NewB = B;
2180
2181   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2182     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2183     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2184
2185     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2186     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2187   }
2188
2189   return NewB;
2190 }
2191
2192 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2193                                                  const TypedValueRegion* R,
2194                                                  SVal V) {
2195   if (!Features.supportsFields())
2196     return B;
2197
2198   QualType T = R->getValueType();
2199   assert(T->isStructureOrClassType());
2200
2201   const RecordType* RT = T->getAs<RecordType>();
2202   const RecordDecl *RD = RT->getDecl();
2203
2204   if (!RD->isCompleteDefinition())
2205     return B;
2206
2207   // Handle lazy compound values and symbolic values.
2208   if (Optional<nonloc::LazyCompoundVal> LCV =
2209         V.getAs<nonloc::LazyCompoundVal>()) {
2210     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2211       return *NewB;
2212     return bindAggregate(B, R, V);
2213   }
2214   if (V.getAs<nonloc::SymbolVal>())
2215     return bindAggregate(B, R, V);
2216
2217   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2218   // that we are binding symbolic struct value. Kill the field values, and if
2219   // the value is symbolic go and bind it as a "default" binding.
2220   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2221     return bindAggregate(B, R, UnknownVal());
2222
2223   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2224   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2225
2226   RecordDecl::field_iterator FI, FE;
2227   RegionBindingsRef NewB(B);
2228
2229   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2230
2231     if (VI == VE)
2232       break;
2233
2234     // Skip any unnamed bitfields to stay in sync with the initializers.
2235     if (FI->isUnnamedBitfield())
2236       continue;
2237
2238     QualType FTy = FI->getType();
2239     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2240
2241     if (FTy->isArrayType())
2242       NewB = bindArray(NewB, FR, *VI);
2243     else if (FTy->isStructureOrClassType())
2244       NewB = bindStruct(NewB, FR, *VI);
2245     else
2246       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2247     ++VI;
2248   }
2249
2250   // There may be fewer values in the initialize list than the fields of struct.
2251   if (FI != FE) {
2252     NewB = NewB.addBinding(R, BindingKey::Default,
2253                            svalBuilder.makeIntVal(0, false));
2254   }
2255
2256   return NewB;
2257 }
2258
2259 RegionBindingsRef
2260 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2261                                   const TypedRegion *R,
2262                                   SVal Val) {
2263   // Remove the old bindings, using 'R' as the root of all regions
2264   // we will invalidate. Then add the new binding.
2265   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2266 }
2267
2268 //===----------------------------------------------------------------------===//
2269 // State pruning.
2270 //===----------------------------------------------------------------------===//
2271
2272 namespace {
2273 class removeDeadBindingsWorker :
2274   public ClusterAnalysis<removeDeadBindingsWorker> {
2275   SmallVector<const SymbolicRegion*, 12> Postponed;
2276   SymbolReaper &SymReaper;
2277   const StackFrameContext *CurrentLCtx;
2278
2279 public:
2280   removeDeadBindingsWorker(RegionStoreManager &rm,
2281                            ProgramStateManager &stateMgr,
2282                            RegionBindingsRef b, SymbolReaper &symReaper,
2283                            const StackFrameContext *LCtx)
2284     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b),
2285       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2286
2287   // Called by ClusterAnalysis.
2288   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2289   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2290   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2291
2292   using ClusterAnalysis::AddToWorkList;
2293
2294   bool AddToWorkList(const MemRegion *R);
2295
2296   bool UpdatePostponed();
2297   void VisitBinding(SVal V);
2298 };
2299 }
2300
2301 bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2302   const MemRegion *BaseR = R->getBaseRegion();
2303   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2304 }
2305
2306 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2307                                                    const ClusterBindings &C) {
2308
2309   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2310     if (SymReaper.isLive(VR))
2311       AddToWorkList(baseR, &C);
2312
2313     return;
2314   }
2315
2316   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2317     if (SymReaper.isLive(SR->getSymbol()))
2318       AddToWorkList(SR, &C);
2319     else
2320       Postponed.push_back(SR);
2321
2322     return;
2323   }
2324
2325   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2326     AddToWorkList(baseR, &C);
2327     return;
2328   }
2329
2330   // CXXThisRegion in the current or parent location context is live.
2331   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2332     const StackArgumentsSpaceRegion *StackReg =
2333       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2334     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2335     if (CurrentLCtx &&
2336         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2337       AddToWorkList(TR, &C);
2338   }
2339 }
2340
2341 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2342                                             const ClusterBindings *C) {
2343   if (!C)
2344     return;
2345
2346   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2347   // This means we should continue to track that symbol.
2348   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2349     SymReaper.markLive(SymR->getSymbol());
2350
2351   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2352     // Element index of a binding key is live.
2353     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2354
2355     VisitBinding(I.getData());
2356   }
2357 }
2358
2359 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2360   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2361   if (Optional<nonloc::LazyCompoundVal> LCS =
2362           V.getAs<nonloc::LazyCompoundVal>()) {
2363
2364     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2365
2366     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2367                                                         E = Vals.end();
2368          I != E; ++I)
2369       VisitBinding(*I);
2370
2371     return;
2372   }
2373
2374   // If V is a region, then add it to the worklist.
2375   if (const MemRegion *R = V.getAsRegion()) {
2376     AddToWorkList(R);
2377     SymReaper.markLive(R);
2378
2379     // All regions captured by a block are also live.
2380     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2381       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2382                                                 E = BR->referenced_vars_end();
2383       for ( ; I != E; ++I)
2384         AddToWorkList(I.getCapturedRegion());
2385     }
2386   }
2387
2388
2389   // Update the set of live symbols.
2390   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2391        SI!=SE; ++SI)
2392     SymReaper.markLive(*SI);
2393 }
2394
2395 bool removeDeadBindingsWorker::UpdatePostponed() {
2396   // See if any postponed SymbolicRegions are actually live now, after
2397   // having done a scan.
2398   bool changed = false;
2399
2400   for (SmallVectorImpl<const SymbolicRegion*>::iterator
2401         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2402     if (const SymbolicRegion *SR = *I) {
2403       if (SymReaper.isLive(SR->getSymbol())) {
2404         changed |= AddToWorkList(SR);
2405         *I = nullptr;
2406       }
2407     }
2408   }
2409
2410   return changed;
2411 }
2412
2413 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2414                                                 const StackFrameContext *LCtx,
2415                                                 SymbolReaper& SymReaper) {
2416   RegionBindingsRef B = getRegionBindings(store);
2417   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2418   W.GenerateClusters();
2419
2420   // Enqueue the region roots onto the worklist.
2421   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2422        E = SymReaper.region_end(); I != E; ++I) {
2423     W.AddToWorkList(*I);
2424   }
2425
2426   do W.RunWorkList(); while (W.UpdatePostponed());
2427
2428   // We have now scanned the store, marking reachable regions and symbols
2429   // as live.  We now remove all the regions that are dead from the store
2430   // as well as update DSymbols with the set symbols that are now dead.
2431   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2432     const MemRegion *Base = I.getKey();
2433
2434     // If the cluster has been visited, we know the region has been marked.
2435     if (W.isVisited(Base))
2436       continue;
2437
2438     // Remove the dead entry.
2439     B = B.remove(Base);
2440
2441     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2442       SymReaper.maybeDead(SymR->getSymbol());
2443
2444     // Mark all non-live symbols that this binding references as dead.
2445     const ClusterBindings &Cluster = I.getData();
2446     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2447          CI != CE; ++CI) {
2448       SVal X = CI.getData();
2449       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2450       for (; SI != SE; ++SI)
2451         SymReaper.maybeDead(*SI);
2452     }
2453   }
2454
2455   return StoreRef(B.asStore(), *this);
2456 }
2457
2458 //===----------------------------------------------------------------------===//
2459 // Utility methods.
2460 //===----------------------------------------------------------------------===//
2461
2462 void RegionStoreManager::print(Store store, raw_ostream &OS,
2463                                const char* nl, const char *sep) {
2464   RegionBindingsRef B = getRegionBindings(store);
2465   OS << "Store (direct and default bindings), "
2466      << B.asStore()
2467      << " :" << nl;
2468   B.dump(OS, nl);
2469 }