]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/utils/TableGen/NeonEmitter.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / utils / TableGen / NeonEmitter.cpp
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cctype>
42 #include <cstddef>
43 #include <cstdint>
44 #include <deque>
45 #include <map>
46 #include <set>
47 #include <sstream>
48 #include <string>
49 #include <utility>
50 #include <vector>
51
52 using namespace llvm;
53
54 namespace {
55
56 // While globals are generally bad, this one allows us to perform assertions
57 // liberally and somehow still trace them back to the def they indirectly
58 // came from.
59 static Record *CurrentRecord = nullptr;
60 static void assert_with_loc(bool Assertion, const std::string &Str) {
61   if (!Assertion) {
62     if (CurrentRecord)
63       PrintFatalError(CurrentRecord->getLoc(), Str);
64     else
65       PrintFatalError(Str);
66   }
67 }
68
69 enum ClassKind {
70   ClassNone,
71   ClassI,     // generic integer instruction, e.g., "i8" suffix
72   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
73   ClassW,     // width-specific instruction, e.g., "8" suffix
74   ClassB,     // bitcast arguments with enum argument to specify type
75   ClassL,     // Logical instructions which are op instructions
76               // but we need to not emit any suffix for in our
77               // tests.
78   ClassNoTest // Instructions which we do not test since they are
79               // not TRUE instructions.
80 };
81
82 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
83 /// builtins.  These must be kept in sync with the flags in
84 /// include/clang/Basic/TargetBuiltins.h.
85 namespace NeonTypeFlags {
86
87 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
88
89 enum EltType {
90   Int8,
91   Int16,
92   Int32,
93   Int64,
94   Poly8,
95   Poly16,
96   Poly64,
97   Poly128,
98   Float16,
99   Float32,
100   Float64
101 };
102
103 } // end namespace NeonTypeFlags
104
105 class NeonEmitter;
106
107 //===----------------------------------------------------------------------===//
108 // TypeSpec
109 //===----------------------------------------------------------------------===//
110
111 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
112 /// for strong typing purposes.
113 ///
114 /// A TypeSpec can be used to create a type.
115 class TypeSpec : public std::string {
116 public:
117   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
118     std::vector<TypeSpec> Ret;
119     TypeSpec Acc;
120     for (char I : Str.str()) {
121       if (islower(I)) {
122         Acc.push_back(I);
123         Ret.push_back(TypeSpec(Acc));
124         Acc.clear();
125       } else {
126         Acc.push_back(I);
127       }
128     }
129     return Ret;
130   }
131 };
132
133 //===----------------------------------------------------------------------===//
134 // Type
135 //===----------------------------------------------------------------------===//
136
137 /// A Type. Not much more to say here.
138 class Type {
139 private:
140   TypeSpec TS;
141
142   bool Float, Signed, Immediate, Void, Poly, Constant, Pointer;
143   // ScalarForMangling and NoManglingQ are really not suited to live here as
144   // they are not related to the type. But they live in the TypeSpec (not the
145   // prototype), so this is really the only place to store them.
146   bool ScalarForMangling, NoManglingQ;
147   unsigned Bitwidth, ElementBitwidth, NumVectors;
148
149 public:
150   Type()
151       : Float(false), Signed(false), Immediate(false), Void(true), Poly(false),
152         Constant(false), Pointer(false), ScalarForMangling(false),
153         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
154
155   Type(TypeSpec TS, char CharMod)
156       : TS(std::move(TS)), Float(false), Signed(false), Immediate(false),
157         Void(false), Poly(false), Constant(false), Pointer(false),
158         ScalarForMangling(false), NoManglingQ(false), Bitwidth(0),
159         ElementBitwidth(0), NumVectors(0) {
160     applyModifier(CharMod);
161   }
162
163   /// Returns a type representing "void".
164   static Type getVoid() { return Type(); }
165
166   bool operator==(const Type &Other) const { return str() == Other.str(); }
167   bool operator!=(const Type &Other) const { return !operator==(Other); }
168
169   //
170   // Query functions
171   //
172   bool isScalarForMangling() const { return ScalarForMangling; }
173   bool noManglingQ() const { return NoManglingQ; }
174
175   bool isPointer() const { return Pointer; }
176   bool isFloating() const { return Float; }
177   bool isInteger() const { return !Float && !Poly; }
178   bool isSigned() const { return Signed; }
179   bool isImmediate() const { return Immediate; }
180   bool isScalar() const { return NumVectors == 0; }
181   bool isVector() const { return NumVectors > 0; }
182   bool isFloat() const { return Float && ElementBitwidth == 32; }
183   bool isDouble() const { return Float && ElementBitwidth == 64; }
184   bool isHalf() const { return Float && ElementBitwidth == 16; }
185   bool isPoly() const { return Poly; }
186   bool isChar() const { return ElementBitwidth == 8; }
187   bool isShort() const { return !Float && ElementBitwidth == 16; }
188   bool isInt() const { return !Float && ElementBitwidth == 32; }
189   bool isLong() const { return !Float && ElementBitwidth == 64; }
190   bool isVoid() const { return Void; }
191   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
192   unsigned getSizeInBits() const { return Bitwidth; }
193   unsigned getElementSizeInBits() const { return ElementBitwidth; }
194   unsigned getNumVectors() const { return NumVectors; }
195
196   //
197   // Mutator functions
198   //
199   void makeUnsigned() { Signed = false; }
200   void makeSigned() { Signed = true; }
201
202   void makeInteger(unsigned ElemWidth, bool Sign) {
203     Float = false;
204     Poly = false;
205     Signed = Sign;
206     Immediate = false;
207     ElementBitwidth = ElemWidth;
208   }
209
210   void makeImmediate(unsigned ElemWidth) {
211     Float = false;
212     Poly = false;
213     Signed = true;
214     Immediate = true;
215     ElementBitwidth = ElemWidth;
216   }
217
218   void makeScalar() {
219     Bitwidth = ElementBitwidth;
220     NumVectors = 0;
221   }
222
223   void makeOneVector() {
224     assert(isVector());
225     NumVectors = 1;
226   }
227
228   void doubleLanes() {
229     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
230     Bitwidth = 128;
231   }
232
233   void halveLanes() {
234     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
235     Bitwidth = 64;
236   }
237
238   /// Return the C string representation of a type, which is the typename
239   /// defined in stdint.h or arm_neon.h.
240   std::string str() const;
241
242   /// Return the string representation of a type, which is an encoded
243   /// string for passing to the BUILTIN() macro in Builtins.def.
244   std::string builtin_str() const;
245
246   /// Return the value in NeonTypeFlags for this type.
247   unsigned getNeonEnum() const;
248
249   /// Parse a type from a stdint.h or arm_neon.h typedef name,
250   /// for example uint32x2_t or int64_t.
251   static Type fromTypedefName(StringRef Name);
252
253 private:
254   /// Creates the type based on the typespec string in TS.
255   /// Sets "Quad" to true if the "Q" or "H" modifiers were
256   /// seen. This is needed by applyModifier as some modifiers
257   /// only take effect if the type size was changed by "Q" or "H".
258   void applyTypespec(bool &Quad);
259   /// Applies a prototype modifier to the type.
260   void applyModifier(char Mod);
261 };
262
263 //===----------------------------------------------------------------------===//
264 // Variable
265 //===----------------------------------------------------------------------===//
266
267 /// A variable is a simple class that just has a type and a name.
268 class Variable {
269   Type T;
270   std::string N;
271
272 public:
273   Variable() : T(Type::getVoid()), N("") {}
274   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
275
276   Type getType() const { return T; }
277   std::string getName() const { return "__" + N; }
278 };
279
280 //===----------------------------------------------------------------------===//
281 // Intrinsic
282 //===----------------------------------------------------------------------===//
283
284 /// The main grunt class. This represents an instantiation of an intrinsic with
285 /// a particular typespec and prototype.
286 class Intrinsic {
287   friend class DagEmitter;
288
289   /// The Record this intrinsic was created from.
290   Record *R;
291   /// The unmangled name and prototype.
292   std::string Name, Proto;
293   /// The input and output typespecs. InTS == OutTS except when
294   /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
295   TypeSpec OutTS, InTS;
296   /// The base class kind. Most intrinsics use ClassS, which has full type
297   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
298   /// signedness (i32), while some (ClassB) have no type at all, only a width
299   /// (32).
300   ClassKind CK;
301   /// The list of DAGs for the body. May be empty, in which case we should
302   /// emit a builtin call.
303   ListInit *Body;
304   /// The architectural #ifdef guard.
305   std::string Guard;
306   /// Set if the Unavailable bit is 1. This means we don't generate a body,
307   /// just an "unavailable" attribute on a declaration.
308   bool IsUnavailable;
309   /// Is this intrinsic safe for big-endian? or does it need its arguments
310   /// reversing?
311   bool BigEndianSafe;
312
313   /// The types of return value [0] and parameters [1..].
314   std::vector<Type> Types;
315   /// The local variables defined.
316   std::map<std::string, Variable> Variables;
317   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
318   bool NeededEarly;
319   /// UseMacro - set if we should implement using a macro or unset for a
320   ///            function.
321   bool UseMacro;
322   /// The set of intrinsics that this intrinsic uses/requires.
323   std::set<Intrinsic *> Dependencies;
324   /// The "base type", which is Type('d', OutTS). InBaseType is only
325   /// different if CartesianProductOfTypes = 1 (for vreinterpret).
326   Type BaseType, InBaseType;
327   /// The return variable.
328   Variable RetVar;
329   /// A postfix to apply to every variable. Defaults to "".
330   std::string VariablePostfix;
331
332   NeonEmitter &Emitter;
333   std::stringstream OS;
334
335 public:
336   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
337             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
338             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
339       : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
340         CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
341         BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
342         BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
343     // If this builtin takes an immediate argument, we need to #define it rather
344     // than use a standard declaration, so that SemaChecking can range check
345     // the immediate passed by the user.
346     if (Proto.find('i') != std::string::npos)
347       UseMacro = true;
348
349     // Pointer arguments need to use macros to avoid hiding aligned attributes
350     // from the pointer type.
351     if (Proto.find('p') != std::string::npos ||
352         Proto.find('c') != std::string::npos)
353       UseMacro = true;
354
355     // It is not permitted to pass or return an __fp16 by value, so intrinsics
356     // taking a scalar float16_t must be implemented as macros.
357     if (OutTS.find('h') != std::string::npos &&
358         Proto.find('s') != std::string::npos)
359       UseMacro = true;
360
361     // Modify the TypeSpec per-argument to get a concrete Type, and create
362     // known variables for each.
363     // Types[0] is the return value.
364     Types.emplace_back(OutTS, Proto[0]);
365     for (unsigned I = 1; I < Proto.size(); ++I)
366       Types.emplace_back(InTS, Proto[I]);
367   }
368
369   /// Get the Record that this intrinsic is based off.
370   Record *getRecord() const { return R; }
371   /// Get the set of Intrinsics that this intrinsic calls.
372   /// this is the set of immediate dependencies, NOT the
373   /// transitive closure.
374   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
375   /// Get the architectural guard string (#ifdef).
376   std::string getGuard() const { return Guard; }
377   /// Get the non-mangled name.
378   std::string getName() const { return Name; }
379
380   /// Return true if the intrinsic takes an immediate operand.
381   bool hasImmediate() const {
382     return Proto.find('i') != std::string::npos;
383   }
384
385   /// Return the parameter index of the immediate operand.
386   unsigned getImmediateIdx() const {
387     assert(hasImmediate());
388     unsigned Idx = Proto.find('i');
389     assert(Idx > 0 && "Can't return an immediate!");
390     return Idx - 1;
391   }
392
393   /// Return true if the intrinsic takes an splat operand.
394   bool hasSplat() const { return Proto.find('a') != std::string::npos; }
395
396   /// Return the parameter index of the splat operand.
397   unsigned getSplatIdx() const {
398     assert(hasSplat());
399     unsigned Idx = Proto.find('a');
400     assert(Idx > 0 && "Can't return a splat!");
401     return Idx - 1;
402   }
403
404   unsigned getNumParams() const { return Proto.size() - 1; }
405   Type getReturnType() const { return Types[0]; }
406   Type getParamType(unsigned I) const { return Types[I + 1]; }
407   Type getBaseType() const { return BaseType; }
408   /// Return the raw prototype string.
409   std::string getProto() const { return Proto; }
410
411   /// Return true if the prototype has a scalar argument.
412   /// This does not return true for the "splat" code ('a').
413   bool protoHasScalar() const;
414
415   /// Return the index that parameter PIndex will sit at
416   /// in a generated function call. This is often just PIndex,
417   /// but may not be as things such as multiple-vector operands
418   /// and sret parameters need to be taken into accont.
419   unsigned getGeneratedParamIdx(unsigned PIndex) {
420     unsigned Idx = 0;
421     if (getReturnType().getNumVectors() > 1)
422       // Multiple vectors are passed as sret.
423       ++Idx;
424
425     for (unsigned I = 0; I < PIndex; ++I)
426       Idx += std::max(1U, getParamType(I).getNumVectors());
427
428     return Idx;
429   }
430
431   bool hasBody() const { return Body && !Body->getValues().empty(); }
432
433   void setNeededEarly() { NeededEarly = true; }
434
435   bool operator<(const Intrinsic &Other) const {
436     // Sort lexicographically on a two-tuple (Guard, Name)
437     if (Guard != Other.Guard)
438       return Guard < Other.Guard;
439     return Name < Other.Name;
440   }
441
442   ClassKind getClassKind(bool UseClassBIfScalar = false) {
443     if (UseClassBIfScalar && !protoHasScalar())
444       return ClassB;
445     return CK;
446   }
447
448   /// Return the name, mangled with type information.
449   /// If ForceClassS is true, use ClassS (u32/s32) instead
450   /// of the intrinsic's own type class.
451   std::string getMangledName(bool ForceClassS = false) const;
452   /// Return the type code for a builtin function call.
453   std::string getInstTypeCode(Type T, ClassKind CK) const;
454   /// Return the type string for a BUILTIN() macro in Builtins.def.
455   std::string getBuiltinTypeStr();
456
457   /// Generate the intrinsic, returning code.
458   std::string generate();
459   /// Perform type checking and populate the dependency graph, but
460   /// don't generate code yet.
461   void indexBody();
462
463 private:
464   std::string mangleName(std::string Name, ClassKind CK) const;
465
466   void initVariables();
467   std::string replaceParamsIn(std::string S);
468
469   void emitBodyAsBuiltinCall();
470
471   void generateImpl(bool ReverseArguments,
472                     StringRef NamePrefix, StringRef CallPrefix);
473   void emitReturn();
474   void emitBody(StringRef CallPrefix);
475   void emitShadowedArgs();
476   void emitArgumentReversal();
477   void emitReturnReversal();
478   void emitReverseVariable(Variable &Dest, Variable &Src);
479   void emitNewLine();
480   void emitClosingBrace();
481   void emitOpeningBrace();
482   void emitPrototype(StringRef NamePrefix);
483
484   class DagEmitter {
485     Intrinsic &Intr;
486     StringRef CallPrefix;
487
488   public:
489     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
490       Intr(Intr), CallPrefix(CallPrefix) {
491     }
492     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
493     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
494     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
495     std::pair<Type, std::string> emitDagDup(DagInit *DI);
496     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
497     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
498     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
499     std::pair<Type, std::string> emitDagCall(DagInit *DI);
500     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
501     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
502     std::pair<Type, std::string> emitDagOp(DagInit *DI);
503     std::pair<Type, std::string> emitDag(DagInit *DI);
504   };
505 };
506
507 //===----------------------------------------------------------------------===//
508 // NeonEmitter
509 //===----------------------------------------------------------------------===//
510
511 class NeonEmitter {
512   RecordKeeper &Records;
513   DenseMap<Record *, ClassKind> ClassMap;
514   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
515   unsigned UniqueNumber;
516
517   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
518   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
519   void genOverloadTypeCheckCode(raw_ostream &OS,
520                                 SmallVectorImpl<Intrinsic *> &Defs);
521   void genIntrinsicRangeCheckCode(raw_ostream &OS,
522                                   SmallVectorImpl<Intrinsic *> &Defs);
523
524 public:
525   /// Called by Intrinsic - this attempts to get an intrinsic that takes
526   /// the given types as arguments.
527   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);
528
529   /// Called by Intrinsic - returns a globally-unique number.
530   unsigned getUniqueNumber() { return UniqueNumber++; }
531
532   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
533     Record *SI = R.getClass("SInst");
534     Record *II = R.getClass("IInst");
535     Record *WI = R.getClass("WInst");
536     Record *SOpI = R.getClass("SOpInst");
537     Record *IOpI = R.getClass("IOpInst");
538     Record *WOpI = R.getClass("WOpInst");
539     Record *LOpI = R.getClass("LOpInst");
540     Record *NoTestOpI = R.getClass("NoTestOpInst");
541
542     ClassMap[SI] = ClassS;
543     ClassMap[II] = ClassI;
544     ClassMap[WI] = ClassW;
545     ClassMap[SOpI] = ClassS;
546     ClassMap[IOpI] = ClassI;
547     ClassMap[WOpI] = ClassW;
548     ClassMap[LOpI] = ClassL;
549     ClassMap[NoTestOpI] = ClassNoTest;
550   }
551
552   // run - Emit arm_neon.h.inc
553   void run(raw_ostream &o);
554
555   // runFP16 - Emit arm_fp16.h.inc
556   void runFP16(raw_ostream &o);
557
558   // runHeader - Emit all the __builtin prototypes used in arm_neon.h
559         // and arm_fp16.h
560   void runHeader(raw_ostream &o);
561
562   // runTests - Emit tests for all the Neon intrinsics.
563   void runTests(raw_ostream &o);
564 };
565
566 } // end anonymous namespace
567
568 //===----------------------------------------------------------------------===//
569 // Type implementation
570 //===----------------------------------------------------------------------===//
571
572 std::string Type::str() const {
573   if (Void)
574     return "void";
575   std::string S;
576
577   if (!Signed && isInteger())
578     S += "u";
579
580   if (Poly)
581     S += "poly";
582   else if (Float)
583     S += "float";
584   else
585     S += "int";
586
587   S += utostr(ElementBitwidth);
588   if (isVector())
589     S += "x" + utostr(getNumElements());
590   if (NumVectors > 1)
591     S += "x" + utostr(NumVectors);
592   S += "_t";
593
594   if (Constant)
595     S += " const";
596   if (Pointer)
597     S += " *";
598
599   return S;
600 }
601
602 std::string Type::builtin_str() const {
603   std::string S;
604   if (isVoid())
605     return "v";
606
607   if (Pointer)
608     // All pointers are void pointers.
609     S += "v";
610   else if (isInteger())
611     switch (ElementBitwidth) {
612     case 8: S += "c"; break;
613     case 16: S += "s"; break;
614     case 32: S += "i"; break;
615     case 64: S += "Wi"; break;
616     case 128: S += "LLLi"; break;
617     default: llvm_unreachable("Unhandled case!");
618     }
619   else
620     switch (ElementBitwidth) {
621     case 16: S += "h"; break;
622     case 32: S += "f"; break;
623     case 64: S += "d"; break;
624     default: llvm_unreachable("Unhandled case!");
625     }
626
627   if (isChar() && !Pointer)
628     // Make chars explicitly signed.
629     S = "S" + S;
630   else if (isInteger() && !Pointer && !Signed)
631     S = "U" + S;
632
633   // Constant indices are "int", but have the "constant expression" modifier.
634   if (isImmediate()) {
635     assert(isInteger() && isSigned());
636     S = "I" + S;
637   }
638
639   if (isScalar()) {
640     if (Constant) S += "C";
641     if (Pointer) S += "*";
642     return S;
643   }
644
645   std::string Ret;
646   for (unsigned I = 0; I < NumVectors; ++I)
647     Ret += "V" + utostr(getNumElements()) + S;
648
649   return Ret;
650 }
651
652 unsigned Type::getNeonEnum() const {
653   unsigned Addend;
654   switch (ElementBitwidth) {
655   case 8: Addend = 0; break;
656   case 16: Addend = 1; break;
657   case 32: Addend = 2; break;
658   case 64: Addend = 3; break;
659   case 128: Addend = 4; break;
660   default: llvm_unreachable("Unhandled element bitwidth!");
661   }
662
663   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
664   if (Poly) {
665     // Adjustment needed because Poly32 doesn't exist.
666     if (Addend >= 2)
667       --Addend;
668     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
669   }
670   if (Float) {
671     assert(Addend != 0 && "Float8 doesn't exist!");
672     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
673   }
674
675   if (Bitwidth == 128)
676     Base |= (unsigned)NeonTypeFlags::QuadFlag;
677   if (isInteger() && !Signed)
678     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
679
680   return Base;
681 }
682
683 Type Type::fromTypedefName(StringRef Name) {
684   Type T;
685   T.Void = false;
686   T.Float = false;
687   T.Poly = false;
688
689   if (Name.front() == 'u') {
690     T.Signed = false;
691     Name = Name.drop_front();
692   } else {
693     T.Signed = true;
694   }
695
696   if (Name.startswith("float")) {
697     T.Float = true;
698     Name = Name.drop_front(5);
699   } else if (Name.startswith("poly")) {
700     T.Poly = true;
701     Name = Name.drop_front(4);
702   } else {
703     assert(Name.startswith("int"));
704     Name = Name.drop_front(3);
705   }
706
707   unsigned I = 0;
708   for (I = 0; I < Name.size(); ++I) {
709     if (!isdigit(Name[I]))
710       break;
711   }
712   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
713   Name = Name.drop_front(I);
714
715   T.Bitwidth = T.ElementBitwidth;
716   T.NumVectors = 1;
717
718   if (Name.front() == 'x') {
719     Name = Name.drop_front();
720     unsigned I = 0;
721     for (I = 0; I < Name.size(); ++I) {
722       if (!isdigit(Name[I]))
723         break;
724     }
725     unsigned NumLanes;
726     Name.substr(0, I).getAsInteger(10, NumLanes);
727     Name = Name.drop_front(I);
728     T.Bitwidth = T.ElementBitwidth * NumLanes;
729   } else {
730     // Was scalar.
731     T.NumVectors = 0;
732   }
733   if (Name.front() == 'x') {
734     Name = Name.drop_front();
735     unsigned I = 0;
736     for (I = 0; I < Name.size(); ++I) {
737       if (!isdigit(Name[I]))
738         break;
739     }
740     Name.substr(0, I).getAsInteger(10, T.NumVectors);
741     Name = Name.drop_front(I);
742   }
743
744   assert(Name.startswith("_t") && "Malformed typedef!");
745   return T;
746 }
747
748 void Type::applyTypespec(bool &Quad) {
749   std::string S = TS;
750   ScalarForMangling = false;
751   Void = false;
752   Poly = Float = false;
753   ElementBitwidth = ~0U;
754   Signed = true;
755   NumVectors = 1;
756
757   for (char I : S) {
758     switch (I) {
759     case 'S':
760       ScalarForMangling = true;
761       break;
762     case 'H':
763       NoManglingQ = true;
764       Quad = true;
765       break;
766     case 'Q':
767       Quad = true;
768       break;
769     case 'P':
770       Poly = true;
771       break;
772     case 'U':
773       Signed = false;
774       break;
775     case 'c':
776       ElementBitwidth = 8;
777       break;
778     case 'h':
779       Float = true;
780       LLVM_FALLTHROUGH;
781     case 's':
782       ElementBitwidth = 16;
783       break;
784     case 'f':
785       Float = true;
786       LLVM_FALLTHROUGH;
787     case 'i':
788       ElementBitwidth = 32;
789       break;
790     case 'd':
791       Float = true;
792       LLVM_FALLTHROUGH;
793     case 'l':
794       ElementBitwidth = 64;
795       break;
796     case 'k':
797       ElementBitwidth = 128;
798       // Poly doesn't have a 128x1 type.
799       if (Poly)
800         NumVectors = 0;
801       break;
802     default:
803       llvm_unreachable("Unhandled type code!");
804     }
805   }
806   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
807
808   Bitwidth = Quad ? 128 : 64;
809 }
810
811 void Type::applyModifier(char Mod) {
812   bool AppliedQuad = false;
813   applyTypespec(AppliedQuad);
814
815   switch (Mod) {
816   case 'v':
817     Void = true;
818     break;
819   case 't':
820     if (Poly) {
821       Poly = false;
822       Signed = false;
823     }
824     break;
825   case 'b':
826     Signed = false;
827     Float = false;
828     Poly = false;
829     NumVectors = 0;
830     Bitwidth = ElementBitwidth;
831     break;
832   case '$':
833     Signed = true;
834     Float = false;
835     Poly = false;
836     NumVectors = 0;
837     Bitwidth = ElementBitwidth;
838     break;
839   case 'u':
840     Signed = false;
841     Poly = false;
842     Float = false;
843     break;
844   case 'x':
845     Signed = true;
846     assert(!Poly && "'u' can't be used with poly types!");
847     Float = false;
848     break;
849   case 'o':
850     Bitwidth = ElementBitwidth = 64;
851     NumVectors = 0;
852     Float = true;
853     break;
854   case 'y':
855     Bitwidth = ElementBitwidth = 32;
856     NumVectors = 0;
857     Float = true;
858     break;
859   case 'Y':
860     Bitwidth = ElementBitwidth = 16;
861     NumVectors = 0;
862     Float = true;
863     break;
864   case 'I':
865     Bitwidth = ElementBitwidth = 32;
866     NumVectors = 0;
867     Float = false;
868     Signed = true;
869     break;
870   case 'L':
871     Bitwidth = ElementBitwidth = 64;
872     NumVectors = 0;
873     Float = false;
874     Signed = true;
875     break;
876   case 'U':
877     Bitwidth = ElementBitwidth = 32;
878     NumVectors = 0;
879     Float = false;
880     Signed = false;
881     break;
882   case 'O':
883     Bitwidth = ElementBitwidth = 64;
884     NumVectors = 0;
885     Float = false;
886     Signed = false;
887     break;
888   case 'f':
889     Float = true;
890     ElementBitwidth = 32;
891     break;
892   case 'F':
893     Float = true;
894     ElementBitwidth = 64;
895     break;
896   case 'H':
897     Float = true;
898     ElementBitwidth = 16;
899     break;
900   case '0':
901     Float = true;
902     if (AppliedQuad)
903       Bitwidth /= 2;
904     ElementBitwidth = 16;
905     break;
906   case '1':
907     Float = true;
908     if (!AppliedQuad)
909       Bitwidth *= 2;
910     ElementBitwidth = 16;
911     break;
912   case 'g':
913     if (AppliedQuad)
914       Bitwidth /= 2;
915     break;
916   case 'j':
917     if (!AppliedQuad)
918       Bitwidth *= 2;
919     break;
920   case 'w':
921     ElementBitwidth *= 2;
922     Bitwidth *= 2;
923     break;
924   case 'n':
925     ElementBitwidth *= 2;
926     break;
927   case 'i':
928     Float = false;
929     Poly = false;
930     ElementBitwidth = Bitwidth = 32;
931     NumVectors = 0;
932     Signed = true;
933     Immediate = true;
934     break;
935   case 'l':
936     Float = false;
937     Poly = false;
938     ElementBitwidth = Bitwidth = 64;
939     NumVectors = 0;
940     Signed = false;
941     Immediate = true;
942     break;
943   case 'z':
944     ElementBitwidth /= 2;
945     Bitwidth = ElementBitwidth;
946     NumVectors = 0;
947     break;
948   case 'r':
949     ElementBitwidth *= 2;
950     Bitwidth = ElementBitwidth;
951     NumVectors = 0;
952     break;
953   case 's':
954   case 'a':
955     Bitwidth = ElementBitwidth;
956     NumVectors = 0;
957     break;
958   case 'k':
959     Bitwidth *= 2;
960     break;
961   case 'c':
962     Constant = true;
963     LLVM_FALLTHROUGH;
964   case 'p':
965     Pointer = true;
966     Bitwidth = ElementBitwidth;
967     NumVectors = 0;
968     break;
969   case 'h':
970     ElementBitwidth /= 2;
971     break;
972   case 'q':
973     ElementBitwidth /= 2;
974     Bitwidth *= 2;
975     break;
976   case 'e':
977     ElementBitwidth /= 2;
978     Signed = false;
979     break;
980   case 'm':
981     ElementBitwidth /= 2;
982     Bitwidth /= 2;
983     break;
984   case 'd':
985     break;
986   case '2':
987     NumVectors = 2;
988     break;
989   case '3':
990     NumVectors = 3;
991     break;
992   case '4':
993     NumVectors = 4;
994     break;
995   case 'B':
996     NumVectors = 2;
997     if (!AppliedQuad)
998       Bitwidth *= 2;
999     break;
1000   case 'C':
1001     NumVectors = 3;
1002     if (!AppliedQuad)
1003       Bitwidth *= 2;
1004     break;
1005   case 'D':
1006     NumVectors = 4;
1007     if (!AppliedQuad)
1008       Bitwidth *= 2;
1009     break;
1010   case '7':
1011     if (AppliedQuad)
1012       Bitwidth /= 2;
1013     ElementBitwidth = 8;
1014     break;
1015   case '8':
1016     ElementBitwidth = 8;
1017     break;
1018   case '9':
1019     if (!AppliedQuad)
1020       Bitwidth *= 2;
1021     ElementBitwidth = 8;
1022     break;
1023   default:
1024     llvm_unreachable("Unhandled character!");
1025   }
1026 }
1027
1028 //===----------------------------------------------------------------------===//
1029 // Intrinsic implementation
1030 //===----------------------------------------------------------------------===//
1031
1032 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
1033   char typeCode = '\0';
1034   bool printNumber = true;
1035
1036   if (CK == ClassB)
1037     return "";
1038
1039   if (T.isPoly())
1040     typeCode = 'p';
1041   else if (T.isInteger())
1042     typeCode = T.isSigned() ? 's' : 'u';
1043   else
1044     typeCode = 'f';
1045
1046   if (CK == ClassI) {
1047     switch (typeCode) {
1048     default:
1049       break;
1050     case 's':
1051     case 'u':
1052     case 'p':
1053       typeCode = 'i';
1054       break;
1055     }
1056   }
1057   if (CK == ClassB) {
1058     typeCode = '\0';
1059   }
1060
1061   std::string S;
1062   if (typeCode != '\0')
1063     S.push_back(typeCode);
1064   if (printNumber)
1065     S += utostr(T.getElementSizeInBits());
1066
1067   return S;
1068 }
1069
1070 static bool isFloatingPointProtoModifier(char Mod) {
1071   return Mod == 'F' || Mod == 'f' || Mod == 'H' || Mod == 'Y' || Mod == 'I';
1072 }
1073
1074 std::string Intrinsic::getBuiltinTypeStr() {
1075   ClassKind LocalCK = getClassKind(true);
1076   std::string S;
1077
1078   Type RetT = getReturnType();
1079   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1080       !RetT.isFloating())
1081     RetT.makeInteger(RetT.getElementSizeInBits(), false);
1082
1083   // Since the return value must be one type, return a vector type of the
1084   // appropriate width which we will bitcast.  An exception is made for
1085   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1086   // fashion, storing them to a pointer arg.
1087   if (RetT.getNumVectors() > 1) {
1088     S += "vv*"; // void result with void* first argument
1089   } else {
1090     if (RetT.isPoly())
1091       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1092     if (!RetT.isScalar() && !RetT.isSigned())
1093       RetT.makeSigned();
1094
1095     bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]);
1096     if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
1097       // Cast to vector of 8-bit elements.
1098       RetT.makeInteger(8, true);
1099
1100     S += RetT.builtin_str();
1101   }
1102
1103   for (unsigned I = 0; I < getNumParams(); ++I) {
1104     Type T = getParamType(I);
1105     if (T.isPoly())
1106       T.makeInteger(T.getElementSizeInBits(), false);
1107
1108     bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]);
1109     if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
1110       T.makeInteger(8, true);
1111     // Halves always get converted to 8-bit elements.
1112     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1113       T.makeInteger(8, true);
1114
1115     if (LocalCK == ClassI)
1116       T.makeSigned();
1117
1118     if (hasImmediate() && getImmediateIdx() == I)
1119       T.makeImmediate(32);
1120
1121     S += T.builtin_str();
1122   }
1123
1124   // Extra constant integer to hold type class enum for this function, e.g. s8
1125   if (LocalCK == ClassB)
1126     S += "i";
1127
1128   return S;
1129 }
1130
1131 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1132   // Check if the prototype has a scalar operand with the type of the vector
1133   // elements.  If not, bitcasting the args will take care of arg checking.
1134   // The actual signedness etc. will be taken care of with special enums.
1135   ClassKind LocalCK = CK;
1136   if (!protoHasScalar())
1137     LocalCK = ClassB;
1138
1139   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1140 }
1141
1142 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1143   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1144   std::string S = Name;
1145
1146   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1147       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
1148     return Name;
1149
1150   if (!typeCode.empty()) {
1151     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1152     if (Name.size() >= 3 && isdigit(Name.back()) &&
1153         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1154       S.insert(S.length() - 3, "_" + typeCode);
1155     else
1156       S += "_" + typeCode;
1157   }
1158
1159   if (BaseType != InBaseType) {
1160     // A reinterpret - out the input base type at the end.
1161     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1162   }
1163
1164   if (LocalCK == ClassB)
1165     S += "_v";
1166
1167   // Insert a 'q' before the first '_' character so that it ends up before
1168   // _lane or _n on vector-scalar operations.
1169   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1170     size_t Pos = S.find('_');
1171     S.insert(Pos, "q");
1172   }
1173
1174   char Suffix = '\0';
1175   if (BaseType.isScalarForMangling()) {
1176     switch (BaseType.getElementSizeInBits()) {
1177     case 8: Suffix = 'b'; break;
1178     case 16: Suffix = 'h'; break;
1179     case 32: Suffix = 's'; break;
1180     case 64: Suffix = 'd'; break;
1181     default: llvm_unreachable("Bad suffix!");
1182     }
1183   }
1184   if (Suffix != '\0') {
1185     size_t Pos = S.find('_');
1186     S.insert(Pos, &Suffix, 1);
1187   }
1188
1189   return S;
1190 }
1191
1192 std::string Intrinsic::replaceParamsIn(std::string S) {
1193   while (S.find('$') != std::string::npos) {
1194     size_t Pos = S.find('$');
1195     size_t End = Pos + 1;
1196     while (isalpha(S[End]))
1197       ++End;
1198
1199     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1200     assert_with_loc(Variables.find(VarName) != Variables.end(),
1201                     "Variable not defined!");
1202     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1203   }
1204
1205   return S;
1206 }
1207
1208 void Intrinsic::initVariables() {
1209   Variables.clear();
1210
1211   // Modify the TypeSpec per-argument to get a concrete Type, and create
1212   // known variables for each.
1213   for (unsigned I = 1; I < Proto.size(); ++I) {
1214     char NameC = '0' + (I - 1);
1215     std::string Name = "p";
1216     Name.push_back(NameC);
1217
1218     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1219   }
1220   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1221 }
1222
1223 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1224   if (UseMacro)
1225     OS << "#define ";
1226   else
1227     OS << "__ai " << Types[0].str() << " ";
1228
1229   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1230
1231   for (unsigned I = 0; I < getNumParams(); ++I) {
1232     if (I != 0)
1233       OS << ", ";
1234
1235     char NameC = '0' + I;
1236     std::string Name = "p";
1237     Name.push_back(NameC);
1238     assert(Variables.find(Name) != Variables.end());
1239     Variable &V = Variables[Name];
1240
1241     if (!UseMacro)
1242       OS << V.getType().str() << " ";
1243     OS << V.getName();
1244   }
1245
1246   OS << ")";
1247 }
1248
1249 void Intrinsic::emitOpeningBrace() {
1250   if (UseMacro)
1251     OS << " __extension__ ({";
1252   else
1253     OS << " {";
1254   emitNewLine();
1255 }
1256
1257 void Intrinsic::emitClosingBrace() {
1258   if (UseMacro)
1259     OS << "})";
1260   else
1261     OS << "}";
1262 }
1263
1264 void Intrinsic::emitNewLine() {
1265   if (UseMacro)
1266     OS << " \\\n";
1267   else
1268     OS << "\n";
1269 }
1270
1271 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1272   if (Dest.getType().getNumVectors() > 1) {
1273     emitNewLine();
1274
1275     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1276       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1277          << "__builtin_shufflevector("
1278          << Src.getName() << ".val[" << K << "], "
1279          << Src.getName() << ".val[" << K << "]";
1280       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1281         OS << ", " << J;
1282       OS << ");";
1283       emitNewLine();
1284     }
1285   } else {
1286     OS << "  " << Dest.getName()
1287        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1288     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1289       OS << ", " << J;
1290     OS << ");";
1291     emitNewLine();
1292   }
1293 }
1294
1295 void Intrinsic::emitArgumentReversal() {
1296   if (BigEndianSafe)
1297     return;
1298
1299   // Reverse all vector arguments.
1300   for (unsigned I = 0; I < getNumParams(); ++I) {
1301     std::string Name = "p" + utostr(I);
1302     std::string NewName = "rev" + utostr(I);
1303
1304     Variable &V = Variables[Name];
1305     Variable NewV(V.getType(), NewName + VariablePostfix);
1306
1307     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1308       continue;
1309
1310     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1311     emitReverseVariable(NewV, V);
1312     V = NewV;
1313   }
1314 }
1315
1316 void Intrinsic::emitReturnReversal() {
1317   if (BigEndianSafe)
1318     return;
1319   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1320       getReturnType().getNumElements() == 1)
1321     return;
1322   emitReverseVariable(RetVar, RetVar);
1323 }
1324
1325 void Intrinsic::emitShadowedArgs() {
1326   // Macro arguments are not type-checked like inline function arguments,
1327   // so assign them to local temporaries to get the right type checking.
1328   if (!UseMacro)
1329     return;
1330
1331   for (unsigned I = 0; I < getNumParams(); ++I) {
1332     // Do not create a temporary for an immediate argument.
1333     // That would defeat the whole point of using a macro!
1334     if (hasImmediate() && Proto[I+1] == 'i')
1335       continue;
1336     // Do not create a temporary for pointer arguments. The input
1337     // pointer may have an alignment hint.
1338     if (getParamType(I).isPointer())
1339       continue;
1340
1341     std::string Name = "p" + utostr(I);
1342
1343     assert(Variables.find(Name) != Variables.end());
1344     Variable &V = Variables[Name];
1345
1346     std::string NewName = "s" + utostr(I);
1347     Variable V2(V.getType(), NewName + VariablePostfix);
1348
1349     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1350        << V.getName() << ";";
1351     emitNewLine();
1352
1353     V = V2;
1354   }
1355 }
1356
1357 // We don't check 'a' in this function, because for builtin function the
1358 // argument matching to 'a' uses a vector type splatted from a scalar type.
1359 bool Intrinsic::protoHasScalar() const {
1360   return (Proto.find('s') != std::string::npos ||
1361           Proto.find('z') != std::string::npos ||
1362           Proto.find('r') != std::string::npos ||
1363           Proto.find('b') != std::string::npos ||
1364           Proto.find('$') != std::string::npos ||
1365           Proto.find('y') != std::string::npos ||
1366           Proto.find('o') != std::string::npos);
1367 }
1368
1369 void Intrinsic::emitBodyAsBuiltinCall() {
1370   std::string S;
1371
1372   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1373   // sret-like argument.
1374   bool SRet = getReturnType().getNumVectors() >= 2;
1375
1376   StringRef N = Name;
1377   if (hasSplat()) {
1378     // Call the non-splat builtin: chop off the "_n" suffix from the name.
1379     assert(N.endswith("_n"));
1380     N = N.drop_back(2);
1381   }
1382
1383   ClassKind LocalCK = CK;
1384   if (!protoHasScalar())
1385     LocalCK = ClassB;
1386
1387   if (!getReturnType().isVoid() && !SRet)
1388     S += "(" + RetVar.getType().str() + ") ";
1389
1390   S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1391
1392   if (SRet)
1393     S += "&" + RetVar.getName() + ", ";
1394
1395   for (unsigned I = 0; I < getNumParams(); ++I) {
1396     Variable &V = Variables["p" + utostr(I)];
1397     Type T = V.getType();
1398
1399     // Handle multiple-vector values specially, emitting each subvector as an
1400     // argument to the builtin.
1401     if (T.getNumVectors() > 1) {
1402       // Check if an explicit cast is needed.
1403       std::string Cast;
1404       if (T.isChar() || T.isPoly() || !T.isSigned()) {
1405         Type T2 = T;
1406         T2.makeOneVector();
1407         T2.makeInteger(8, /*Signed=*/true);
1408         Cast = "(" + T2.str() + ")";
1409       }
1410
1411       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1412         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1413       continue;
1414     }
1415
1416     std::string Arg;
1417     Type CastToType = T;
1418     if (hasSplat() && I == getSplatIdx()) {
1419       Arg = "(" + BaseType.str() + ") {";
1420       for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
1421         if (J != 0)
1422           Arg += ", ";
1423         Arg += V.getName();
1424       }
1425       Arg += "}";
1426
1427       CastToType = BaseType;
1428     } else {
1429       Arg = V.getName();
1430     }
1431
1432     // Check if an explicit cast is needed.
1433     if (CastToType.isVector()) {
1434       CastToType.makeInteger(8, true);
1435       Arg = "(" + CastToType.str() + ")" + Arg;
1436     }
1437
1438     S += Arg + ", ";
1439   }
1440
1441   // Extra constant integer to hold type class enum for this function, e.g. s8
1442   if (getClassKind(true) == ClassB) {
1443     Type ThisTy = getReturnType();
1444     if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0]))
1445       ThisTy = getParamType(0);
1446     if (ThisTy.isPointer())
1447       ThisTy = getParamType(1);
1448
1449     S += utostr(ThisTy.getNeonEnum());
1450   } else {
1451     // Remove extraneous ", ".
1452     S.pop_back();
1453     S.pop_back();
1454   }
1455   S += ");";
1456
1457   std::string RetExpr;
1458   if (!SRet && !RetVar.getType().isVoid())
1459     RetExpr = RetVar.getName() + " = ";
1460
1461   OS << "  " << RetExpr << S;
1462   emitNewLine();
1463 }
1464
1465 void Intrinsic::emitBody(StringRef CallPrefix) {
1466   std::vector<std::string> Lines;
1467
1468   assert(RetVar.getType() == Types[0]);
1469   // Create a return variable, if we're not void.
1470   if (!RetVar.getType().isVoid()) {
1471     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1472     emitNewLine();
1473   }
1474
1475   if (!Body || Body->getValues().empty()) {
1476     // Nothing specific to output - must output a builtin.
1477     emitBodyAsBuiltinCall();
1478     return;
1479   }
1480
1481   // We have a list of "things to output". The last should be returned.
1482   for (auto *I : Body->getValues()) {
1483     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1484       Lines.push_back(replaceParamsIn(SI->getAsString()));
1485     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1486       DagEmitter DE(*this, CallPrefix);
1487       Lines.push_back(DE.emitDag(DI).second + ";");
1488     }
1489   }
1490
1491   assert(!Lines.empty() && "Empty def?");
1492   if (!RetVar.getType().isVoid())
1493     Lines.back().insert(0, RetVar.getName() + " = ");
1494
1495   for (auto &L : Lines) {
1496     OS << "  " << L;
1497     emitNewLine();
1498   }
1499 }
1500
1501 void Intrinsic::emitReturn() {
1502   if (RetVar.getType().isVoid())
1503     return;
1504   if (UseMacro)
1505     OS << "  " << RetVar.getName() << ";";
1506   else
1507     OS << "  return " << RetVar.getName() << ";";
1508   emitNewLine();
1509 }
1510
1511 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1512   // At this point we should only be seeing a def.
1513   DefInit *DefI = cast<DefInit>(DI->getOperator());
1514   std::string Op = DefI->getAsString();
1515
1516   if (Op == "cast" || Op == "bitcast")
1517     return emitDagCast(DI, Op == "bitcast");
1518   if (Op == "shuffle")
1519     return emitDagShuffle(DI);
1520   if (Op == "dup")
1521     return emitDagDup(DI);
1522   if (Op == "dup_typed")
1523     return emitDagDupTyped(DI);
1524   if (Op == "splat")
1525     return emitDagSplat(DI);
1526   if (Op == "save_temp")
1527     return emitDagSaveTemp(DI);
1528   if (Op == "op")
1529     return emitDagOp(DI);
1530   if (Op == "call")
1531     return emitDagCall(DI);
1532   if (Op == "name_replace")
1533     return emitDagNameReplace(DI);
1534   if (Op == "literal")
1535     return emitDagLiteral(DI);
1536   assert_with_loc(false, "Unknown operation!");
1537   return std::make_pair(Type::getVoid(), "");
1538 }
1539
1540 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1541   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1542   if (DI->getNumArgs() == 2) {
1543     // Unary op.
1544     std::pair<Type, std::string> R =
1545         emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1546     return std::make_pair(R.first, Op + R.second);
1547   } else {
1548     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1549     std::pair<Type, std::string> R1 =
1550         emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1551     std::pair<Type, std::string> R2 =
1552         emitDagArg(DI->getArg(2), DI->getArgNameStr(2));
1553     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1554     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1555   }
1556 }
1557
1558 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1559   std::vector<Type> Types;
1560   std::vector<std::string> Values;
1561   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1562     std::pair<Type, std::string> R =
1563         emitDagArg(DI->getArg(I + 1), DI->getArgNameStr(I + 1));
1564     Types.push_back(R.first);
1565     Values.push_back(R.second);
1566   }
1567
1568   // Look up the called intrinsic.
1569   std::string N;
1570   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1571     N = SI->getAsUnquotedString();
1572   else
1573     N = emitDagArg(DI->getArg(0), "").second;
1574   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);
1575
1576   // Make sure the callee is known as an early def.
1577   Callee.setNeededEarly();
1578   Intr.Dependencies.insert(&Callee);
1579
1580   // Now create the call itself.
1581   std::string S = CallPrefix.str() + Callee.getMangledName(true) + "(";
1582   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1583     if (I != 0)
1584       S += ", ";
1585     S += Values[I];
1586   }
1587   S += ")";
1588
1589   return std::make_pair(Callee.getReturnType(), S);
1590 }
1591
1592 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1593                                                                 bool IsBitCast){
1594   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1595   std::pair<Type, std::string> R = emitDagArg(
1596       DI->getArg(DI->getNumArgs() - 1),
1597       DI->getArgNameStr(DI->getNumArgs() - 1));
1598   Type castToType = R.first;
1599   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1600
1601     // MOD can take several forms:
1602     //   1. $X - take the type of parameter / variable X.
1603     //   2. The value "R" - take the type of the return type.
1604     //   3. a type string
1605     //   4. The value "U" or "S" to switch the signedness.
1606     //   5. The value "H" or "D" to half or double the bitwidth.
1607     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1608     if (!DI->getArgNameStr(ArgIdx).empty()) {
1609       assert_with_loc(Intr.Variables.find(DI->getArgNameStr(ArgIdx)) !=
1610                       Intr.Variables.end(),
1611                       "Variable not found");
1612       castToType = Intr.Variables[DI->getArgNameStr(ArgIdx)].getType();
1613     } else {
1614       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1615       assert_with_loc(SI, "Expected string type or $Name for cast type");
1616
1617       if (SI->getAsUnquotedString() == "R") {
1618         castToType = Intr.getReturnType();
1619       } else if (SI->getAsUnquotedString() == "U") {
1620         castToType.makeUnsigned();
1621       } else if (SI->getAsUnquotedString() == "S") {
1622         castToType.makeSigned();
1623       } else if (SI->getAsUnquotedString() == "H") {
1624         castToType.halveLanes();
1625       } else if (SI->getAsUnquotedString() == "D") {
1626         castToType.doubleLanes();
1627       } else if (SI->getAsUnquotedString() == "8") {
1628         castToType.makeInteger(8, true);
1629       } else {
1630         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1631         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1632       }
1633     }
1634   }
1635
1636   std::string S;
1637   if (IsBitCast) {
1638     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1639     // a temporary.
1640     std::string N = "reint";
1641     unsigned I = 0;
1642     while (Intr.Variables.find(N) != Intr.Variables.end())
1643       N = "reint" + utostr(++I);
1644     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1645
1646     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1647             << R.second << ";";
1648     Intr.emitNewLine();
1649
1650     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1651   } else {
1652     // Emit a normal (static) cast.
1653     S = "(" + castToType.str() + ")(" + R.second + ")";
1654   }
1655
1656   return std::make_pair(castToType, S);
1657 }
1658
1659 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1660   // See the documentation in arm_neon.td for a description of these operators.
1661   class LowHalf : public SetTheory::Operator {
1662   public:
1663     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1664                ArrayRef<SMLoc> Loc) override {
1665       SetTheory::RecSet Elts2;
1666       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1667       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1668     }
1669   };
1670
1671   class HighHalf : public SetTheory::Operator {
1672   public:
1673     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1674                ArrayRef<SMLoc> Loc) override {
1675       SetTheory::RecSet Elts2;
1676       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1677       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1678     }
1679   };
1680
1681   class Rev : public SetTheory::Operator {
1682     unsigned ElementSize;
1683
1684   public:
1685     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1686
1687     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1688                ArrayRef<SMLoc> Loc) override {
1689       SetTheory::RecSet Elts2;
1690       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1691
1692       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1693       VectorSize /= ElementSize;
1694
1695       std::vector<Record *> Revved;
1696       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1697         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1698           Revved.push_back(Elts2[VI + LI]);
1699         }
1700       }
1701
1702       Elts.insert(Revved.begin(), Revved.end());
1703     }
1704   };
1705
1706   class MaskExpander : public SetTheory::Expander {
1707     unsigned N;
1708
1709   public:
1710     MaskExpander(unsigned N) : N(N) {}
1711
1712     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1713       unsigned Addend = 0;
1714       if (R->getName() == "mask0")
1715         Addend = 0;
1716       else if (R->getName() == "mask1")
1717         Addend = N;
1718       else
1719         return;
1720       for (unsigned I = 0; I < N; ++I)
1721         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1722     }
1723   };
1724
1725   // (shuffle arg1, arg2, sequence)
1726   std::pair<Type, std::string> Arg1 =
1727       emitDagArg(DI->getArg(0), DI->getArgNameStr(0));
1728   std::pair<Type, std::string> Arg2 =
1729       emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1730   assert_with_loc(Arg1.first == Arg2.first,
1731                   "Different types in arguments to shuffle!");
1732
1733   SetTheory ST;
1734   SetTheory::RecSet Elts;
1735   ST.addOperator("lowhalf", llvm::make_unique<LowHalf>());
1736   ST.addOperator("highhalf", llvm::make_unique<HighHalf>());
1737   ST.addOperator("rev",
1738                  llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1739   ST.addExpander("MaskExpand",
1740                  llvm::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1741   ST.evaluate(DI->getArg(2), Elts, None);
1742
1743   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1744   for (auto &E : Elts) {
1745     StringRef Name = E->getName();
1746     assert_with_loc(Name.startswith("sv"),
1747                     "Incorrect element kind in shuffle mask!");
1748     S += ", " + Name.drop_front(2).str();
1749   }
1750   S += ")";
1751
1752   // Recalculate the return type - the shuffle may have halved or doubled it.
1753   Type T(Arg1.first);
1754   if (Elts.size() > T.getNumElements()) {
1755     assert_with_loc(
1756         Elts.size() == T.getNumElements() * 2,
1757         "Can only double or half the number of elements in a shuffle!");
1758     T.doubleLanes();
1759   } else if (Elts.size() < T.getNumElements()) {
1760     assert_with_loc(
1761         Elts.size() == T.getNumElements() / 2,
1762         "Can only double or half the number of elements in a shuffle!");
1763     T.halveLanes();
1764   }
1765
1766   return std::make_pair(T, S);
1767 }
1768
1769 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1770   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1771   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1772                                               DI->getArgNameStr(0));
1773   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1774
1775   Type T = Intr.getBaseType();
1776   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1777   std::string S = "(" + T.str() + ") {";
1778   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1779     if (I != 0)
1780       S += ", ";
1781     S += A.second;
1782   }
1783   S += "}";
1784
1785   return std::make_pair(T, S);
1786 }
1787
1788 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1789   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1790   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1791                                               DI->getArgNameStr(0));
1792   std::pair<Type, std::string> B = emitDagArg(DI->getArg(1),
1793                                               DI->getArgNameStr(1));
1794   assert_with_loc(B.first.isScalar(),
1795                   "dup_typed() requires a scalar as the second argument");
1796
1797   Type T = A.first;
1798   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1799   std::string S = "(" + T.str() + ") {";
1800   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1801     if (I != 0)
1802       S += ", ";
1803     S += B.second;
1804   }
1805   S += "}";
1806
1807   return std::make_pair(T, S);
1808 }
1809
1810 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1811   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1812   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1813                                               DI->getArgNameStr(0));
1814   std::pair<Type, std::string> B = emitDagArg(DI->getArg(1),
1815                                               DI->getArgNameStr(1));
1816
1817   assert_with_loc(B.first.isScalar(),
1818                   "splat() requires a scalar int as the second argument");
1819
1820   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1821   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1822     S += ", " + B.second;
1823   }
1824   S += ")";
1825
1826   return std::make_pair(Intr.getBaseType(), S);
1827 }
1828
1829 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1830   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1831   std::pair<Type, std::string> A = emitDagArg(DI->getArg(1),
1832                                               DI->getArgNameStr(1));
1833
1834   assert_with_loc(!A.first.isVoid(),
1835                   "Argument to save_temp() must have non-void type!");
1836
1837   std::string N = DI->getArgNameStr(0);
1838   assert_with_loc(!N.empty(),
1839                   "save_temp() expects a name as the first argument");
1840
1841   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1842                   "Variable already defined!");
1843   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1844
1845   std::string S =
1846       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1847
1848   return std::make_pair(Type::getVoid(), S);
1849 }
1850
1851 std::pair<Type, std::string>
1852 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1853   std::string S = Intr.Name;
1854
1855   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1856   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1857   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1858
1859   size_t Idx = S.find(ToReplace);
1860
1861   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1862   S.replace(Idx, ToReplace.size(), ReplaceWith);
1863
1864   return std::make_pair(Type::getVoid(), S);
1865 }
1866
1867 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1868   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1869   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1870   return std::make_pair(Type::fromTypedefName(Ty), Value);
1871 }
1872
1873 std::pair<Type, std::string>
1874 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1875   if (!ArgName.empty()) {
1876     assert_with_loc(!Arg->isComplete(),
1877                     "Arguments must either be DAGs or names, not both!");
1878     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1879                     "Variable not defined!");
1880     Variable &V = Intr.Variables[ArgName];
1881     return std::make_pair(V.getType(), V.getName());
1882   }
1883
1884   assert(Arg && "Neither ArgName nor Arg?!");
1885   DagInit *DI = dyn_cast<DagInit>(Arg);
1886   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1887
1888   return emitDag(DI);
1889 }
1890
1891 std::string Intrinsic::generate() {
1892   // Little endian intrinsics are simple and don't require any argument
1893   // swapping.
1894   OS << "#ifdef __LITTLE_ENDIAN__\n";
1895
1896   generateImpl(false, "", "");
1897
1898   OS << "#else\n";
1899
1900   // Big endian intrinsics are more complex. The user intended these
1901   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1902   // but we load as-if (V)LD1. So we should swap all arguments and
1903   // swap the return value too.
1904   //
1905   // If we call sub-intrinsics, we should call a version that does
1906   // not re-swap the arguments!
1907   generateImpl(true, "", "__noswap_");
1908
1909   // If we're needed early, create a non-swapping variant for
1910   // big-endian.
1911   if (NeededEarly) {
1912     generateImpl(false, "__noswap_", "__noswap_");
1913   }
1914   OS << "#endif\n\n";
1915
1916   return OS.str();
1917 }
1918
1919 void Intrinsic::generateImpl(bool ReverseArguments,
1920                              StringRef NamePrefix, StringRef CallPrefix) {
1921   CurrentRecord = R;
1922
1923   // If we call a macro, our local variables may be corrupted due to
1924   // lack of proper lexical scoping. So, add a globally unique postfix
1925   // to every variable.
1926   //
1927   // indexBody() should have set up the Dependencies set by now.
1928   for (auto *I : Dependencies)
1929     if (I->UseMacro) {
1930       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1931       break;
1932     }
1933
1934   initVariables();
1935
1936   emitPrototype(NamePrefix);
1937
1938   if (IsUnavailable) {
1939     OS << " __attribute__((unavailable));";
1940   } else {
1941     emitOpeningBrace();
1942     emitShadowedArgs();
1943     if (ReverseArguments)
1944       emitArgumentReversal();
1945     emitBody(CallPrefix);
1946     if (ReverseArguments)
1947       emitReturnReversal();
1948     emitReturn();
1949     emitClosingBrace();
1950   }
1951   OS << "\n";
1952
1953   CurrentRecord = nullptr;
1954 }
1955
1956 void Intrinsic::indexBody() {
1957   CurrentRecord = R;
1958
1959   initVariables();
1960   emitBody("");
1961   OS.str("");
1962
1963   CurrentRecord = nullptr;
1964 }
1965
1966 //===----------------------------------------------------------------------===//
1967 // NeonEmitter implementation
1968 //===----------------------------------------------------------------------===//
1969
1970 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1971   // First, look up the name in the intrinsic map.
1972   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1973                   ("Intrinsic '" + Name + "' not found!").str());
1974   auto &V = IntrinsicMap.find(Name.str())->second;
1975   std::vector<Intrinsic *> GoodVec;
1976
1977   // Create a string to print if we end up failing.
1978   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1979   for (unsigned I = 0; I < Types.size(); ++I) {
1980     if (I != 0)
1981       ErrMsg += ", ";
1982     ErrMsg += Types[I].str();
1983   }
1984   ErrMsg += ")'\n";
1985   ErrMsg += "Available overloads:\n";
1986
1987   // Now, look through each intrinsic implementation and see if the types are
1988   // compatible.
1989   for (auto &I : V) {
1990     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1991     ErrMsg += "(";
1992     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1993       if (A != 0)
1994         ErrMsg += ", ";
1995       ErrMsg += I.getParamType(A).str();
1996     }
1997     ErrMsg += ")\n";
1998
1999     if (I.getNumParams() != Types.size())
2000       continue;
2001
2002     bool Good = true;
2003     for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
2004       if (I.getParamType(Arg) != Types[Arg]) {
2005         Good = false;
2006         break;
2007       }
2008     }
2009     if (Good)
2010       GoodVec.push_back(&I);
2011   }
2012
2013   assert_with_loc(!GoodVec.empty(),
2014                   "No compatible intrinsic found - " + ErrMsg);
2015   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
2016
2017   return *GoodVec.front();
2018 }
2019
2020 void NeonEmitter::createIntrinsic(Record *R,
2021                                   SmallVectorImpl<Intrinsic *> &Out) {
2022   std::string Name = R->getValueAsString("Name");
2023   std::string Proto = R->getValueAsString("Prototype");
2024   std::string Types = R->getValueAsString("Types");
2025   Record *OperationRec = R->getValueAsDef("Operation");
2026   bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
2027   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
2028   std::string Guard = R->getValueAsString("ArchGuard");
2029   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
2030
2031   // Set the global current record. This allows assert_with_loc to produce
2032   // decent location information even when highly nested.
2033   CurrentRecord = R;
2034
2035   ListInit *Body = OperationRec->getValueAsListInit("Ops");
2036
2037   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
2038
2039   ClassKind CK = ClassNone;
2040   if (R->getSuperClasses().size() >= 2)
2041     CK = ClassMap[R->getSuperClasses()[1].first];
2042
2043   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
2044   for (auto TS : TypeSpecs) {
2045     if (CartesianProductOfTypes) {
2046       Type DefaultT(TS, 'd');
2047       for (auto SrcTS : TypeSpecs) {
2048         Type DefaultSrcT(SrcTS, 'd');
2049         if (TS == SrcTS ||
2050             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
2051           continue;
2052         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
2053       }
2054     } else {
2055       NewTypeSpecs.push_back(std::make_pair(TS, TS));
2056     }
2057   }
2058
2059   llvm::sort(NewTypeSpecs);
2060   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
2061                      NewTypeSpecs.end());
2062   auto &Entry = IntrinsicMap[Name];
2063
2064   for (auto &I : NewTypeSpecs) {
2065     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
2066                        Guard, IsUnavailable, BigEndianSafe);
2067     Out.push_back(&Entry.back());
2068   }
2069
2070   CurrentRecord = nullptr;
2071 }
2072
2073 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
2074 /// declaration of builtins, checking for unique builtin declarations.
2075 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2076                                  SmallVectorImpl<Intrinsic *> &Defs) {
2077   OS << "#ifdef GET_NEON_BUILTINS\n";
2078
2079   // We only want to emit a builtin once, and we want to emit them in
2080   // alphabetical order, so use a std::set.
2081   std::set<std::string> Builtins;
2082
2083   for (auto *Def : Defs) {
2084     if (Def->hasBody())
2085       continue;
2086     // Functions with 'a' (the splat code) in the type prototype should not get
2087     // their own builtin as they use the non-splat variant.
2088     if (Def->hasSplat())
2089       continue;
2090
2091     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
2092
2093     S += Def->getBuiltinTypeStr();
2094     S += "\", \"n\")";
2095
2096     Builtins.insert(S);
2097   }
2098
2099   for (auto &S : Builtins)
2100     OS << S << "\n";
2101   OS << "#endif\n\n";
2102 }
2103
2104 /// Generate the ARM and AArch64 overloaded type checking code for
2105 /// SemaChecking.cpp, checking for unique builtin declarations.
2106 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2107                                            SmallVectorImpl<Intrinsic *> &Defs) {
2108   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2109
2110   // We record each overload check line before emitting because subsequent Inst
2111   // definitions may extend the number of permitted types (i.e. augment the
2112   // Mask). Use std::map to avoid sorting the table by hash number.
2113   struct OverloadInfo {
2114     uint64_t Mask;
2115     int PtrArgNum;
2116     bool HasConstPtr;
2117     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2118   };
2119   std::map<std::string, OverloadInfo> OverloadMap;
2120
2121   for (auto *Def : Defs) {
2122     // If the def has a body (that is, it has Operation DAGs), it won't call
2123     // __builtin_neon_* so we don't need to generate a definition for it.
2124     if (Def->hasBody())
2125       continue;
2126     // Functions with 'a' (the splat code) in the type prototype should not get
2127     // their own builtin as they use the non-splat variant.
2128     if (Def->hasSplat())
2129       continue;
2130     // Functions which have a scalar argument cannot be overloaded, no need to
2131     // check them if we are emitting the type checking code.
2132     if (Def->protoHasScalar())
2133       continue;
2134
2135     uint64_t Mask = 0ULL;
2136     Type Ty = Def->getReturnType();
2137     if (Def->getProto()[0] == 'v' ||
2138         isFloatingPointProtoModifier(Def->getProto()[0]))
2139       Ty = Def->getParamType(0);
2140     if (Ty.isPointer())
2141       Ty = Def->getParamType(1);
2142
2143     Mask |= 1ULL << Ty.getNeonEnum();
2144
2145     // Check if the function has a pointer or const pointer argument.
2146     std::string Proto = Def->getProto();
2147     int PtrArgNum = -1;
2148     bool HasConstPtr = false;
2149     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2150       char ArgType = Proto[I + 1];
2151       if (ArgType == 'c') {
2152         HasConstPtr = true;
2153         PtrArgNum = I;
2154         break;
2155       }
2156       if (ArgType == 'p') {
2157         PtrArgNum = I;
2158         break;
2159       }
2160     }
2161     // For sret builtins, adjust the pointer argument index.
2162     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2163       PtrArgNum += 1;
2164
2165     std::string Name = Def->getName();
2166     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2167     // and vst1_lane intrinsics.  Using a pointer to the vector element
2168     // type with one of those operations causes codegen to select an aligned
2169     // load/store instruction.  If you want an unaligned operation,
2170     // the pointer argument needs to have less alignment than element type,
2171     // so just accept any pointer type.
2172     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2173       PtrArgNum = -1;
2174       HasConstPtr = false;
2175     }
2176
2177     if (Mask) {
2178       std::string Name = Def->getMangledName();
2179       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2180       OverloadInfo &OI = OverloadMap[Name];
2181       OI.Mask |= Mask;
2182       OI.PtrArgNum |= PtrArgNum;
2183       OI.HasConstPtr = HasConstPtr;
2184     }
2185   }
2186
2187   for (auto &I : OverloadMap) {
2188     OverloadInfo &OI = I.second;
2189
2190     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2191     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2192     if (OI.PtrArgNum >= 0)
2193       OS << "; PtrArgNum = " << OI.PtrArgNum;
2194     if (OI.HasConstPtr)
2195       OS << "; HasConstPtr = true";
2196     OS << "; break;\n";
2197   }
2198   OS << "#endif\n\n";
2199 }
2200
2201 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2202                                         SmallVectorImpl<Intrinsic *> &Defs) {
2203   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2204
2205   std::set<std::string> Emitted;
2206
2207   for (auto *Def : Defs) {
2208     if (Def->hasBody())
2209       continue;
2210     // Functions with 'a' (the splat code) in the type prototype should not get
2211     // their own builtin as they use the non-splat variant.
2212     if (Def->hasSplat())
2213       continue;
2214     // Functions which do not have an immediate do not need to have range
2215     // checking code emitted.
2216     if (!Def->hasImmediate())
2217       continue;
2218     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2219       continue;
2220
2221     std::string LowerBound, UpperBound;
2222
2223     Record *R = Def->getRecord();
2224     if (R->getValueAsBit("isVCVT_N")) {
2225       // VCVT between floating- and fixed-point values takes an immediate
2226       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2227       LowerBound = "1";
2228           if (Def->getBaseType().getElementSizeInBits() == 16 ||
2229                   Def->getName().find('h') != std::string::npos)
2230                 // VCVTh operating on FP16 intrinsics in range [1, 16)
2231                 UpperBound = "15";
2232           else if (Def->getBaseType().getElementSizeInBits() == 32)
2233         UpperBound = "31";
2234           else
2235         UpperBound = "63";
2236     } else if (R->getValueAsBit("isScalarShift")) {
2237       // Right shifts have an 'r' in the name, left shifts do not. Convert
2238       // instructions have the same bounds and right shifts.
2239       if (Def->getName().find('r') != std::string::npos ||
2240           Def->getName().find("cvt") != std::string::npos)
2241         LowerBound = "1";
2242
2243       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2244     } else if (R->getValueAsBit("isShift")) {
2245       // Builtins which are overloaded by type will need to have their upper
2246       // bound computed at Sema time based on the type constant.
2247
2248       // Right shifts have an 'r' in the name, left shifts do not.
2249       if (Def->getName().find('r') != std::string::npos)
2250         LowerBound = "1";
2251       UpperBound = "RFT(TV, true)";
2252     } else if (Def->getClassKind(true) == ClassB) {
2253       // ClassB intrinsics have a type (and hence lane number) that is only
2254       // known at runtime.
2255       if (R->getValueAsBit("isLaneQ"))
2256         UpperBound = "RFT(TV, false, true)";
2257       else
2258         UpperBound = "RFT(TV, false, false)";
2259     } else {
2260       // The immediate generally refers to a lane in the preceding argument.
2261       assert(Def->getImmediateIdx() > 0);
2262       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2263       UpperBound = utostr(T.getNumElements() - 1);
2264     }
2265
2266     // Calculate the index of the immediate that should be range checked.
2267     unsigned Idx = Def->getNumParams();
2268     if (Def->hasImmediate())
2269       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2270
2271     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2272        << "i = " << Idx << ";";
2273     if (!LowerBound.empty())
2274       OS << " l = " << LowerBound << ";";
2275     if (!UpperBound.empty())
2276       OS << " u = " << UpperBound << ";";
2277     OS << " break;\n";
2278
2279     Emitted.insert(Def->getMangledName());
2280   }
2281
2282   OS << "#endif\n\n";
2283 }
2284
2285 /// runHeader - Emit a file with sections defining:
2286 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2287 /// 2. the SemaChecking code for the type overload checking.
2288 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2289 void NeonEmitter::runHeader(raw_ostream &OS) {
2290   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2291
2292   SmallVector<Intrinsic *, 128> Defs;
2293   for (auto *R : RV)
2294     createIntrinsic(R, Defs);
2295
2296   // Generate shared BuiltinsXXX.def
2297   genBuiltinsDef(OS, Defs);
2298
2299   // Generate ARM overloaded type checking code for SemaChecking.cpp
2300   genOverloadTypeCheckCode(OS, Defs);
2301
2302   // Generate ARM range checking code for shift/lane immediates.
2303   genIntrinsicRangeCheckCode(OS, Defs);
2304 }
2305
2306 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2307 /// is comprised of type definitions and function declarations.
2308 void NeonEmitter::run(raw_ostream &OS) {
2309   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2310         "------------------------------"
2311         "---===\n"
2312         " *\n"
2313         " * Permission is hereby granted, free of charge, to any person "
2314         "obtaining "
2315         "a copy\n"
2316         " * of this software and associated documentation files (the "
2317         "\"Software\"),"
2318         " to deal\n"
2319         " * in the Software without restriction, including without limitation "
2320         "the "
2321         "rights\n"
2322         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2323         "and/or sell\n"
2324         " * copies of the Software, and to permit persons to whom the Software "
2325         "is\n"
2326         " * furnished to do so, subject to the following conditions:\n"
2327         " *\n"
2328         " * The above copyright notice and this permission notice shall be "
2329         "included in\n"
2330         " * all copies or substantial portions of the Software.\n"
2331         " *\n"
2332         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2333         "EXPRESS OR\n"
2334         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2335         "MERCHANTABILITY,\n"
2336         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2337         "SHALL THE\n"
2338         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2339         "OTHER\n"
2340         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2341         "ARISING FROM,\n"
2342         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2343         "DEALINGS IN\n"
2344         " * THE SOFTWARE.\n"
2345         " *\n"
2346         " *===-----------------------------------------------------------------"
2347         "---"
2348         "---===\n"
2349         " */\n\n";
2350
2351   OS << "#ifndef __ARM_NEON_H\n";
2352   OS << "#define __ARM_NEON_H\n\n";
2353
2354   OS << "#if !defined(__ARM_NEON)\n";
2355   OS << "#error \"NEON support not enabled\"\n";
2356   OS << "#endif\n\n";
2357
2358   OS << "#include <stdint.h>\n\n";
2359
2360   // Emit NEON-specific scalar typedefs.
2361   OS << "typedef float float32_t;\n";
2362   OS << "typedef __fp16 float16_t;\n";
2363
2364   OS << "#ifdef __aarch64__\n";
2365   OS << "typedef double float64_t;\n";
2366   OS << "#endif\n\n";
2367
2368   // For now, signedness of polynomial types depends on target
2369   OS << "#ifdef __aarch64__\n";
2370   OS << "typedef uint8_t poly8_t;\n";
2371   OS << "typedef uint16_t poly16_t;\n";
2372   OS << "typedef uint64_t poly64_t;\n";
2373   OS << "typedef __uint128_t poly128_t;\n";
2374   OS << "#else\n";
2375   OS << "typedef int8_t poly8_t;\n";
2376   OS << "typedef int16_t poly16_t;\n";
2377   OS << "#endif\n";
2378
2379   // Emit Neon vector typedefs.
2380   std::string TypedefTypes(
2381       "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2382   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2383
2384   // Emit vector typedefs.
2385   bool InIfdef = false;
2386   for (auto &TS : TDTypeVec) {
2387     bool IsA64 = false;
2388     Type T(TS, 'd');
2389     if (T.isDouble() || (T.isPoly() && T.isLong()))
2390       IsA64 = true;
2391
2392     if (InIfdef && !IsA64) {
2393       OS << "#endif\n";
2394       InIfdef = false;
2395     }
2396     if (!InIfdef && IsA64) {
2397       OS << "#ifdef __aarch64__\n";
2398       InIfdef = true;
2399     }
2400
2401     if (T.isPoly())
2402       OS << "typedef __attribute__((neon_polyvector_type(";
2403     else
2404       OS << "typedef __attribute__((neon_vector_type(";
2405
2406     Type T2 = T;
2407     T2.makeScalar();
2408     OS << T.getNumElements() << "))) ";
2409     OS << T2.str();
2410     OS << " " << T.str() << ";\n";
2411   }
2412   if (InIfdef)
2413     OS << "#endif\n";
2414   OS << "\n";
2415
2416   // Emit struct typedefs.
2417   InIfdef = false;
2418   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2419     for (auto &TS : TDTypeVec) {
2420       bool IsA64 = false;
2421       Type T(TS, 'd');
2422       if (T.isDouble() || (T.isPoly() && T.isLong()))
2423         IsA64 = true;
2424
2425       if (InIfdef && !IsA64) {
2426         OS << "#endif\n";
2427         InIfdef = false;
2428       }
2429       if (!InIfdef && IsA64) {
2430         OS << "#ifdef __aarch64__\n";
2431         InIfdef = true;
2432       }
2433
2434       char M = '2' + (NumMembers - 2);
2435       Type VT(TS, M);
2436       OS << "typedef struct " << VT.str() << " {\n";
2437       OS << "  " << T.str() << " val";
2438       OS << "[" << NumMembers << "]";
2439       OS << ";\n} ";
2440       OS << VT.str() << ";\n";
2441       OS << "\n";
2442     }
2443   }
2444   if (InIfdef)
2445     OS << "#endif\n";
2446   OS << "\n";
2447
2448   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2449         "__nodebug__))\n\n";
2450
2451   SmallVector<Intrinsic *, 128> Defs;
2452   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2453   for (auto *R : RV)
2454     createIntrinsic(R, Defs);
2455
2456   for (auto *I : Defs)
2457     I->indexBody();
2458
2459   llvm::stable_sort(Defs, llvm::less_ptr<Intrinsic>());
2460
2461   // Only emit a def when its requirements have been met.
2462   // FIXME: This loop could be made faster, but it's fast enough for now.
2463   bool MadeProgress = true;
2464   std::string InGuard;
2465   while (!Defs.empty() && MadeProgress) {
2466     MadeProgress = false;
2467
2468     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2469          I != Defs.end(); /*No step*/) {
2470       bool DependenciesSatisfied = true;
2471       for (auto *II : (*I)->getDependencies()) {
2472         if (llvm::is_contained(Defs, II))
2473           DependenciesSatisfied = false;
2474       }
2475       if (!DependenciesSatisfied) {
2476         // Try the next one.
2477         ++I;
2478         continue;
2479       }
2480
2481       // Emit #endif/#if pair if needed.
2482       if ((*I)->getGuard() != InGuard) {
2483         if (!InGuard.empty())
2484           OS << "#endif\n";
2485         InGuard = (*I)->getGuard();
2486         if (!InGuard.empty())
2487           OS << "#if " << InGuard << "\n";
2488       }
2489
2490       // Actually generate the intrinsic code.
2491       OS << (*I)->generate();
2492
2493       MadeProgress = true;
2494       I = Defs.erase(I);
2495     }
2496   }
2497   assert(Defs.empty() && "Some requirements were not satisfied!");
2498   if (!InGuard.empty())
2499     OS << "#endif\n";
2500
2501   OS << "\n";
2502   OS << "#undef __ai\n\n";
2503   OS << "#endif /* __ARM_NEON_H */\n";
2504 }
2505
2506 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2507 /// is comprised of type definitions and function declarations.
2508 void NeonEmitter::runFP16(raw_ostream &OS) {
2509   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2510         "------------------------------"
2511         "---===\n"
2512         " *\n"
2513         " * Permission is hereby granted, free of charge, to any person "
2514         "obtaining a copy\n"
2515         " * of this software and associated documentation files (the "
2516                                 "\"Software\"), to deal\n"
2517         " * in the Software without restriction, including without limitation "
2518                                 "the rights\n"
2519         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2520                                 "and/or sell\n"
2521         " * copies of the Software, and to permit persons to whom the Software "
2522                                 "is\n"
2523         " * furnished to do so, subject to the following conditions:\n"
2524         " *\n"
2525         " * The above copyright notice and this permission notice shall be "
2526         "included in\n"
2527         " * all copies or substantial portions of the Software.\n"
2528         " *\n"
2529         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2530         "EXPRESS OR\n"
2531         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2532         "MERCHANTABILITY,\n"
2533         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2534         "SHALL THE\n"
2535         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2536         "OTHER\n"
2537         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2538         "ARISING FROM,\n"
2539         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2540         "DEALINGS IN\n"
2541         " * THE SOFTWARE.\n"
2542         " *\n"
2543         " *===-----------------------------------------------------------------"
2544         "---"
2545         "---===\n"
2546         " */\n\n";
2547
2548   OS << "#ifndef __ARM_FP16_H\n";
2549   OS << "#define __ARM_FP16_H\n\n";
2550
2551   OS << "#include <stdint.h>\n\n";
2552
2553   OS << "typedef __fp16 float16_t;\n";
2554
2555   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2556         "__nodebug__))\n\n";
2557
2558   SmallVector<Intrinsic *, 128> Defs;
2559   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2560   for (auto *R : RV)
2561     createIntrinsic(R, Defs);
2562
2563   for (auto *I : Defs)
2564     I->indexBody();
2565
2566   llvm::stable_sort(Defs, llvm::less_ptr<Intrinsic>());
2567
2568   // Only emit a def when its requirements have been met.
2569   // FIXME: This loop could be made faster, but it's fast enough for now.
2570   bool MadeProgress = true;
2571   std::string InGuard;
2572   while (!Defs.empty() && MadeProgress) {
2573     MadeProgress = false;
2574
2575     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2576          I != Defs.end(); /*No step*/) {
2577       bool DependenciesSatisfied = true;
2578       for (auto *II : (*I)->getDependencies()) {
2579         if (llvm::is_contained(Defs, II))
2580           DependenciesSatisfied = false;
2581       }
2582       if (!DependenciesSatisfied) {
2583         // Try the next one.
2584         ++I;
2585         continue;
2586       }
2587
2588       // Emit #endif/#if pair if needed.
2589       if ((*I)->getGuard() != InGuard) {
2590         if (!InGuard.empty())
2591           OS << "#endif\n";
2592         InGuard = (*I)->getGuard();
2593         if (!InGuard.empty())
2594           OS << "#if " << InGuard << "\n";
2595       }
2596
2597       // Actually generate the intrinsic code.
2598       OS << (*I)->generate();
2599
2600       MadeProgress = true;
2601       I = Defs.erase(I);
2602     }
2603   }
2604   assert(Defs.empty() && "Some requirements were not satisfied!");
2605   if (!InGuard.empty())
2606     OS << "#endif\n";
2607
2608   OS << "\n";
2609   OS << "#undef __ai\n\n";
2610   OS << "#endif /* __ARM_FP16_H */\n";
2611 }
2612
2613 namespace clang {
2614
2615 void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2616   NeonEmitter(Records).run(OS);
2617 }
2618
2619 void EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2620   NeonEmitter(Records).runFP16(OS);
2621 }
2622
2623 void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2624   NeonEmitter(Records).runHeader(OS);
2625 }
2626
2627 void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2628   llvm_unreachable("Neon test generation no longer implemented!");
2629 }
2630
2631 } // end namespace clang