]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lld/ELF/Writer.cpp
MFV r349134:
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lld / ELF / Writer.cpp
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "Writer.h"
11 #include "AArch64ErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "Filesystem.h"
15 #include "LinkerScript.h"
16 #include "MapFile.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include <climits>
29
30 using namespace llvm;
31 using namespace llvm::ELF;
32 using namespace llvm::object;
33 using namespace llvm::support;
34 using namespace llvm::support::endian;
35
36 using namespace lld;
37 using namespace lld::elf;
38
39 namespace {
40 // The writer writes a SymbolTable result to a file.
41 template <class ELFT> class Writer {
42 public:
43   Writer() : Buffer(errorHandler().OutputBuffer) {}
44   typedef typename ELFT::Shdr Elf_Shdr;
45   typedef typename ELFT::Ehdr Elf_Ehdr;
46   typedef typename ELFT::Phdr Elf_Phdr;
47
48   void run();
49
50 private:
51   void copyLocalSymbols();
52   void addSectionSymbols();
53   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn);
54   void sortSections();
55   void resolveShfLinkOrder();
56   void maybeAddThunks();
57   void sortInputSections();
58   void finalizeSections();
59   void checkExecuteOnly();
60   void setReservedSymbolSections();
61
62   std::vector<PhdrEntry *> createPhdrs();
63   void removeEmptyPTLoad();
64   void addPtArmExid(std::vector<PhdrEntry *> &Phdrs);
65   void assignFileOffsets();
66   void assignFileOffsetsBinary();
67   void setPhdrs();
68   void checkSections();
69   void fixSectionAlignments();
70   void openFile();
71   void writeTrapInstr();
72   void writeHeader();
73   void writeSections();
74   void writeSectionsBinary();
75   void writeBuildId();
76
77   std::unique_ptr<FileOutputBuffer> &Buffer;
78
79   void addRelIpltSymbols();
80   void addStartEndSymbols();
81   void addStartStopSymbols(OutputSection *Sec);
82
83   std::vector<PhdrEntry *> Phdrs;
84
85   uint64_t FileSize;
86   uint64_t SectionHeaderOff;
87 };
88 } // anonymous namespace
89
90 static bool isSectionPrefix(StringRef Prefix, StringRef Name) {
91   return Name.startswith(Prefix) || Name == Prefix.drop_back();
92 }
93
94 StringRef elf::getOutputSectionName(const InputSectionBase *S) {
95   if (Config->Relocatable)
96     return S->Name;
97
98   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
99   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
100   // technically required, but not doing it is odd). This code guarantees that.
101   if (auto *IS = dyn_cast<InputSection>(S)) {
102     if (InputSectionBase *Rel = IS->getRelocatedSection()) {
103       OutputSection *Out = Rel->getOutputSection();
104       if (S->Type == SHT_RELA)
105         return Saver.save(".rela" + Out->Name);
106       return Saver.save(".rel" + Out->Name);
107     }
108   }
109
110   // This check is for -z keep-text-section-prefix.  This option separates text
111   // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
112   // ".text.exit".
113   // When enabled, this allows identifying the hot code region (.text.hot) in
114   // the final binary which can be selectively mapped to huge pages or mlocked,
115   // for instance.
116   if (Config->ZKeepTextSectionPrefix)
117     for (StringRef V :
118          {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
119       if (isSectionPrefix(V, S->Name))
120         return V.drop_back();
121
122   for (StringRef V :
123        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
124         ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
125         ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
126     if (isSectionPrefix(V, S->Name))
127       return V.drop_back();
128
129   // CommonSection is identified as "COMMON" in linker scripts.
130   // By default, it should go to .bss section.
131   if (S->Name == "COMMON")
132     return ".bss";
133
134   return S->Name;
135 }
136
137 static bool needsInterpSection() {
138   return !SharedFiles.empty() && !Config->DynamicLinker.empty() &&
139          Script->needsInterpSection();
140 }
141
142 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }
143
144 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() {
145   llvm::erase_if(Phdrs, [&](const PhdrEntry *P) {
146     if (P->p_type != PT_LOAD)
147       return false;
148     if (!P->FirstSec)
149       return true;
150     uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr;
151     return Size == 0;
152   });
153 }
154
155 template <class ELFT> static void combineEhFrameSections() {
156   for (InputSectionBase *&S : InputSections) {
157     EhInputSection *ES = dyn_cast<EhInputSection>(S);
158     if (!ES || !ES->Live)
159       continue;
160
161     In.EhFrame->addSection<ELFT>(ES);
162     S = nullptr;
163   }
164
165   std::vector<InputSectionBase *> &V = InputSections;
166   V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
167 }
168
169 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec,
170                                    uint64_t Val, uint8_t StOther = STV_HIDDEN,
171                                    uint8_t Binding = STB_GLOBAL) {
172   Symbol *S = Symtab->find(Name);
173   if (!S || S->isDefined())
174     return nullptr;
175   return Symtab->addDefined(Name, StOther, STT_NOTYPE, Val,
176                             /*Size=*/0, Binding, Sec,
177                             /*File=*/nullptr);
178 }
179
180 static Defined *addAbsolute(StringRef Name) {
181   return Symtab->addDefined(Name, STV_HIDDEN, STT_NOTYPE, 0, 0, STB_GLOBAL,
182                             nullptr, nullptr);
183 }
184
185 // The linker is expected to define some symbols depending on
186 // the linking result. This function defines such symbols.
187 void elf::addReservedSymbols() {
188   if (Config->EMachine == EM_MIPS) {
189     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
190     // so that it points to an absolute address which by default is relative
191     // to GOT. Default offset is 0x7ff0.
192     // See "Global Data Symbols" in Chapter 6 in the following document:
193     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
194     ElfSym::MipsGp = addAbsolute("_gp");
195
196     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
197     // start of function and 'gp' pointer into GOT.
198     if (Symtab->find("_gp_disp"))
199       ElfSym::MipsGpDisp = addAbsolute("_gp_disp");
200
201     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
202     // pointer. This symbol is used in the code generated by .cpload pseudo-op
203     // in case of using -mno-shared option.
204     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
205     if (Symtab->find("__gnu_local_gp"))
206       ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp");
207   }
208
209   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
210   // combines the typical ELF GOT with the small data sections. It commonly
211   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
212   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
213   // represent the TOC base which is offset by 0x8000 bytes from the start of
214   // the .got section.
215   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
216   // correctness of some relocations depends on its value.
217   StringRef GotTableSymName =
218       (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
219   if (Symbol *S = Symtab->find(GotTableSymName)) {
220     if (S->isDefined())
221       error(toString(S->File) + " cannot redefine linker defined symbol '" +
222             GotTableSymName + "'");
223     else
224       ElfSym::GlobalOffsetTable = Symtab->addDefined(
225           GotTableSymName, STV_HIDDEN, STT_NOTYPE, Target->GotBaseSymOff,
226           /*Size=*/0, STB_GLOBAL, Out::ElfHeader,
227           /*File=*/nullptr);
228   }
229
230   // __ehdr_start is the location of ELF file headers. Note that we define
231   // this symbol unconditionally even when using a linker script, which
232   // differs from the behavior implemented by GNU linker which only define
233   // this symbol if ELF headers are in the memory mapped segment.
234   addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN);
235
236   // __executable_start is not documented, but the expectation of at
237   // least the Android libc is that it points to the ELF header.
238   addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN);
239
240   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
241   // each DSO. The address of the symbol doesn't matter as long as they are
242   // different in different DSOs, so we chose the start address of the DSO.
243   addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN);
244
245   // If linker script do layout we do not need to create any standart symbols.
246   if (Script->HasSectionsCommand)
247     return;
248
249   auto Add = [](StringRef S, int64_t Pos) {
250     return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT);
251   };
252
253   ElfSym::Bss = Add("__bss_start", 0);
254   ElfSym::End1 = Add("end", -1);
255   ElfSym::End2 = Add("_end", -1);
256   ElfSym::Etext1 = Add("etext", -1);
257   ElfSym::Etext2 = Add("_etext", -1);
258   ElfSym::Edata1 = Add("edata", -1);
259   ElfSym::Edata2 = Add("_edata", -1);
260 }
261
262 static OutputSection *findSection(StringRef Name) {
263   for (BaseCommand *Base : Script->SectionCommands)
264     if (auto *Sec = dyn_cast<OutputSection>(Base))
265       if (Sec->Name == Name)
266         return Sec;
267   return nullptr;
268 }
269
270 // Initialize Out members.
271 template <class ELFT> static void createSyntheticSections() {
272   // Initialize all pointers with NULL. This is needed because
273   // you can call lld::elf::main more than once as a library.
274   memset(&Out::First, 0, sizeof(Out));
275
276   auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); };
277
278   In.DynStrTab = make<StringTableSection>(".dynstr", true);
279   In.Dynamic = make<DynamicSection<ELFT>>();
280   if (Config->AndroidPackDynRelocs) {
281     In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>(
282         Config->IsRela ? ".rela.dyn" : ".rel.dyn");
283   } else {
284     In.RelaDyn = make<RelocationSection<ELFT>>(
285         Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc);
286   }
287   In.ShStrTab = make<StringTableSection>(".shstrtab", false);
288
289   Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC);
290   Out::ProgramHeaders->Alignment = Config->Wordsize;
291
292   if (needsInterpSection()) {
293     In.Interp = createInterpSection();
294     Add(In.Interp);
295   }
296
297   if (Config->Strip != StripPolicy::All) {
298     In.StrTab = make<StringTableSection>(".strtab", false);
299     In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab);
300     In.SymTabShndx = make<SymtabShndxSection>();
301   }
302
303   if (Config->BuildId != BuildIdKind::None) {
304     In.BuildId = make<BuildIdSection>();
305     Add(In.BuildId);
306   }
307
308   In.Bss = make<BssSection>(".bss", 0, 1);
309   Add(In.Bss);
310
311   // If there is a SECTIONS command and a .data.rel.ro section name use name
312   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
313   // This makes sure our relro is contiguous.
314   bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro");
315   In.BssRelRo =
316       make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
317   Add(In.BssRelRo);
318
319   // Add MIPS-specific sections.
320   if (Config->EMachine == EM_MIPS) {
321     if (!Config->Shared && Config->HasDynSymTab) {
322       In.MipsRldMap = make<MipsRldMapSection>();
323       Add(In.MipsRldMap);
324     }
325     if (auto *Sec = MipsAbiFlagsSection<ELFT>::create())
326       Add(Sec);
327     if (auto *Sec = MipsOptionsSection<ELFT>::create())
328       Add(Sec);
329     if (auto *Sec = MipsReginfoSection<ELFT>::create())
330       Add(Sec);
331   }
332
333   if (Config->HasDynSymTab) {
334     In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab);
335     Add(In.DynSymTab);
336
337     InX<ELFT>::VerSym = make<VersionTableSection<ELFT>>();
338     Add(InX<ELFT>::VerSym);
339
340     if (!Config->VersionDefinitions.empty()) {
341       In.VerDef = make<VersionDefinitionSection>();
342       Add(In.VerDef);
343     }
344
345     InX<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>();
346     Add(InX<ELFT>::VerNeed);
347
348     if (Config->GnuHash) {
349       In.GnuHashTab = make<GnuHashTableSection>();
350       Add(In.GnuHashTab);
351     }
352
353     if (Config->SysvHash) {
354       In.HashTab = make<HashTableSection>();
355       Add(In.HashTab);
356     }
357
358     Add(In.Dynamic);
359     Add(In.DynStrTab);
360     Add(In.RelaDyn);
361   }
362
363   if (Config->RelrPackDynRelocs) {
364     In.RelrDyn = make<RelrSection<ELFT>>();
365     Add(In.RelrDyn);
366   }
367
368   // Add .got. MIPS' .got is so different from the other archs,
369   // it has its own class.
370   if (Config->EMachine == EM_MIPS) {
371     In.MipsGot = make<MipsGotSection>();
372     Add(In.MipsGot);
373   } else {
374     In.Got = make<GotSection>();
375     Add(In.Got);
376   }
377
378   if (Config->EMachine == EM_PPC64) {
379     In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>();
380     Add(In.PPC64LongBranchTarget);
381   }
382
383   In.GotPlt = make<GotPltSection>();
384   Add(In.GotPlt);
385   In.IgotPlt = make<IgotPltSection>();
386   Add(In.IgotPlt);
387
388   if (Config->GdbIndex) {
389     In.GdbIndex = GdbIndexSection::create<ELFT>();
390     Add(In.GdbIndex);
391   }
392
393   // We always need to add rel[a].plt to output if it has entries.
394   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
395   In.RelaPlt = make<RelocationSection<ELFT>>(
396       Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/);
397   Add(In.RelaPlt);
398
399   // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
400   // that the IRelative relocations are processed last by the dynamic loader.
401   // We cannot place the iplt section in .rel.dyn when Android relocation
402   // packing is enabled because that would cause a section type mismatch.
403   // However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
404   // we can get the desired behaviour by placing the iplt section in .rel.plt.
405   In.RelaIplt = make<RelocationSection<ELFT>>(
406       (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs)
407           ? ".rel.dyn"
408           : In.RelaPlt->Name,
409       false /*Sort*/);
410   Add(In.RelaIplt);
411
412   In.Plt = make<PltSection>(false);
413   Add(In.Plt);
414   In.Iplt = make<PltSection>(true);
415   Add(In.Iplt);
416
417   // .note.GNU-stack is always added when we are creating a re-linkable
418   // object file. Other linkers are using the presence of this marker
419   // section to control the executable-ness of the stack area, but that
420   // is irrelevant these days. Stack area should always be non-executable
421   // by default. So we emit this section unconditionally.
422   if (Config->Relocatable)
423     Add(make<GnuStackSection>());
424
425   if (!Config->Relocatable) {
426     if (Config->EhFrameHdr) {
427       In.EhFrameHdr = make<EhFrameHeader>();
428       Add(In.EhFrameHdr);
429     }
430     In.EhFrame = make<EhFrameSection>();
431     Add(In.EhFrame);
432   }
433
434   if (In.SymTab)
435     Add(In.SymTab);
436   if (In.SymTabShndx)
437     Add(In.SymTabShndx);
438   Add(In.ShStrTab);
439   if (In.StrTab)
440     Add(In.StrTab);
441
442   if (Config->EMachine == EM_ARM && !Config->Relocatable)
443     // Add a sentinel to terminate .ARM.exidx. It helps an unwinder
444     // to find the exact address range of the last entry.
445     Add(make<ARMExidxSentinelSection>());
446 }
447
448 // The main function of the writer.
449 template <class ELFT> void Writer<ELFT>::run() {
450   // Create linker-synthesized sections such as .got or .plt.
451   // Such sections are of type input section.
452   createSyntheticSections<ELFT>();
453
454   if (!Config->Relocatable)
455     combineEhFrameSections<ELFT>();
456
457   // We want to process linker script commands. When SECTIONS command
458   // is given we let it create sections.
459   Script->processSectionCommands();
460
461   // Linker scripts controls how input sections are assigned to output sections.
462   // Input sections that were not handled by scripts are called "orphans", and
463   // they are assigned to output sections by the default rule. Process that.
464   Script->addOrphanSections();
465
466   if (Config->Discard != DiscardPolicy::All)
467     copyLocalSymbols();
468
469   if (Config->CopyRelocs)
470     addSectionSymbols();
471
472   // Now that we have a complete set of output sections. This function
473   // completes section contents. For example, we need to add strings
474   // to the string table, and add entries to .got and .plt.
475   // finalizeSections does that.
476   finalizeSections();
477   checkExecuteOnly();
478   if (errorCount())
479     return;
480
481   Script->assignAddresses();
482
483   // If -compressed-debug-sections is specified, we need to compress
484   // .debug_* sections. Do it right now because it changes the size of
485   // output sections.
486   for (OutputSection *Sec : OutputSections)
487     Sec->maybeCompress<ELFT>();
488
489   Script->allocateHeaders(Phdrs);
490
491   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
492   // 0 sized region. This has to be done late since only after assignAddresses
493   // we know the size of the sections.
494   removeEmptyPTLoad();
495
496   if (!Config->OFormatBinary)
497     assignFileOffsets();
498   else
499     assignFileOffsetsBinary();
500
501   setPhdrs();
502
503   if (Config->Relocatable)
504     for (OutputSection *Sec : OutputSections)
505       Sec->Addr = 0;
506
507   if (Config->CheckSections)
508     checkSections();
509
510   // It does not make sense try to open the file if we have error already.
511   if (errorCount())
512     return;
513   // Write the result down to a file.
514   openFile();
515   if (errorCount())
516     return;
517
518   if (!Config->OFormatBinary) {
519     writeTrapInstr();
520     writeHeader();
521     writeSections();
522   } else {
523     writeSectionsBinary();
524   }
525
526   // Backfill .note.gnu.build-id section content. This is done at last
527   // because the content is usually a hash value of the entire output file.
528   writeBuildId();
529   if (errorCount())
530     return;
531
532   // Handle -Map and -cref options.
533   writeMapFile();
534   writeCrossReferenceTable();
535   if (errorCount())
536     return;
537
538   if (auto E = Buffer->commit())
539     error("failed to write to the output file: " + toString(std::move(E)));
540 }
541
542 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName,
543                                const Symbol &B) {
544   if (B.isSection())
545     return false;
546
547   if (Config->Discard == DiscardPolicy::None)
548     return true;
549
550   // If -emit-reloc is given, all symbols including local ones need to be
551   // copied because they may be referenced by relocations.
552   if (Config->EmitRelocs)
553     return true;
554
555   // In ELF assembly .L symbols are normally discarded by the assembler.
556   // If the assembler fails to do so, the linker discards them if
557   // * --discard-locals is used.
558   // * The symbol is in a SHF_MERGE section, which is normally the reason for
559   //   the assembler keeping the .L symbol.
560   if (!SymName.startswith(".L") && !SymName.empty())
561     return true;
562
563   if (Config->Discard == DiscardPolicy::Locals)
564     return false;
565
566   return !Sec || !(Sec->Flags & SHF_MERGE);
567 }
568
569 static bool includeInSymtab(const Symbol &B) {
570   if (!B.isLocal() && !B.IsUsedInRegularObj)
571     return false;
572
573   if (auto *D = dyn_cast<Defined>(&B)) {
574     // Always include absolute symbols.
575     SectionBase *Sec = D->Section;
576     if (!Sec)
577       return true;
578     Sec = Sec->Repl;
579
580     // Exclude symbols pointing to garbage-collected sections.
581     if (isa<InputSectionBase>(Sec) && !Sec->Live)
582       return false;
583
584     if (auto *S = dyn_cast<MergeInputSection>(Sec))
585       if (!S->getSectionPiece(D->Value)->Live)
586         return false;
587     return true;
588   }
589   return B.Used;
590 }
591
592 // Local symbols are not in the linker's symbol table. This function scans
593 // each object file's symbol table to copy local symbols to the output.
594 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
595   if (!In.SymTab)
596     return;
597   for (InputFile *File : ObjectFiles) {
598     ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File);
599     for (Symbol *B : F->getLocalSymbols()) {
600       if (!B->isLocal())
601         fatal(toString(F) +
602               ": broken object: getLocalSymbols returns a non-local symbol");
603       auto *DR = dyn_cast<Defined>(B);
604
605       // No reason to keep local undefined symbol in symtab.
606       if (!DR)
607         continue;
608       if (!includeInSymtab(*B))
609         continue;
610
611       SectionBase *Sec = DR->Section;
612       if (!shouldKeepInSymtab(Sec, B->getName(), *B))
613         continue;
614       In.SymTab->addSymbol(B);
615     }
616   }
617 }
618
619 // Create a section symbol for each output section so that we can represent
620 // relocations that point to the section. If we know that no relocation is
621 // referring to a section (that happens if the section is a synthetic one), we
622 // don't create a section symbol for that section.
623 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
624   for (BaseCommand *Base : Script->SectionCommands) {
625     auto *Sec = dyn_cast<OutputSection>(Base);
626     if (!Sec)
627       continue;
628     auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) {
629       if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
630         return !ISD->Sections.empty();
631       return false;
632     });
633     if (I == Sec->SectionCommands.end())
634       continue;
635     InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0];
636
637     // Relocations are not using REL[A] section symbols.
638     if (IS->Type == SHT_REL || IS->Type == SHT_RELA)
639       continue;
640
641     // Unlike other synthetic sections, mergeable output sections contain data
642     // copied from input sections, and there may be a relocation pointing to its
643     // contents if -r or -emit-reloc are given.
644     if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE))
645       continue;
646
647     auto *Sym =
648         make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION,
649                       /*Value=*/0, /*Size=*/0, IS);
650     In.SymTab->addSymbol(Sym);
651   }
652 }
653
654 // Today's loaders have a feature to make segments read-only after
655 // processing dynamic relocations to enhance security. PT_GNU_RELRO
656 // is defined for that.
657 //
658 // This function returns true if a section needs to be put into a
659 // PT_GNU_RELRO segment.
660 static bool isRelroSection(const OutputSection *Sec) {
661   if (!Config->ZRelro)
662     return false;
663
664   uint64_t Flags = Sec->Flags;
665
666   // Non-allocatable or non-writable sections don't need RELRO because
667   // they are not writable or not even mapped to memory in the first place.
668   // RELRO is for sections that are essentially read-only but need to
669   // be writable only at process startup to allow dynamic linker to
670   // apply relocations.
671   if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
672     return false;
673
674   // Once initialized, TLS data segments are used as data templates
675   // for a thread-local storage. For each new thread, runtime
676   // allocates memory for a TLS and copy templates there. No thread
677   // are supposed to use templates directly. Thus, it can be in RELRO.
678   if (Flags & SHF_TLS)
679     return true;
680
681   // .init_array, .preinit_array and .fini_array contain pointers to
682   // functions that are executed on process startup or exit. These
683   // pointers are set by the static linker, and they are not expected
684   // to change at runtime. But if you are an attacker, you could do
685   // interesting things by manipulating pointers in .fini_array, for
686   // example. So they are put into RELRO.
687   uint32_t Type = Sec->Type;
688   if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
689       Type == SHT_PREINIT_ARRAY)
690     return true;
691
692   // .got contains pointers to external symbols. They are resolved by
693   // the dynamic linker when a module is loaded into memory, and after
694   // that they are not expected to change. So, it can be in RELRO.
695   if (In.Got && Sec == In.Got->getParent())
696     return true;
697
698   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
699   // through r2 register, which is reserved for that purpose. Since r2 is used
700   // for accessing .got as well, .got and .toc need to be close enough in the
701   // virtual address space. Usually, .toc comes just after .got. Since we place
702   // .got into RELRO, .toc needs to be placed into RELRO too.
703   if (Sec->Name.equals(".toc"))
704     return true;
705
706   // .got.plt contains pointers to external function symbols. They are
707   // by default resolved lazily, so we usually cannot put it into RELRO.
708   // However, if "-z now" is given, the lazy symbol resolution is
709   // disabled, which enables us to put it into RELRO.
710   if (Sec == In.GotPlt->getParent())
711     return Config->ZNow;
712
713   // .dynamic section contains data for the dynamic linker, and
714   // there's no need to write to it at runtime, so it's better to put
715   // it into RELRO.
716   if (Sec == In.Dynamic->getParent())
717     return true;
718
719   // Sections with some special names are put into RELRO. This is a
720   // bit unfortunate because section names shouldn't be significant in
721   // ELF in spirit. But in reality many linker features depend on
722   // magic section names.
723   StringRef S = Sec->Name;
724   return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" ||
725          S == ".dtors" || S == ".jcr" || S == ".eh_frame" ||
726          S == ".openbsd.randomdata";
727 }
728
729 // We compute a rank for each section. The rank indicates where the
730 // section should be placed in the file.  Instead of using simple
731 // numbers (0,1,2...), we use a series of flags. One for each decision
732 // point when placing the section.
733 // Using flags has two key properties:
734 // * It is easy to check if a give branch was taken.
735 // * It is easy two see how similar two ranks are (see getRankProximity).
736 enum RankFlags {
737   RF_NOT_ADDR_SET = 1 << 18,
738   RF_NOT_ALLOC = 1 << 17,
739   RF_NOT_INTERP = 1 << 16,
740   RF_NOT_NOTE = 1 << 15,
741   RF_WRITE = 1 << 14,
742   RF_EXEC_WRITE = 1 << 13,
743   RF_EXEC = 1 << 12,
744   RF_RODATA = 1 << 11,
745   RF_NON_TLS_BSS = 1 << 10,
746   RF_NON_TLS_BSS_RO = 1 << 9,
747   RF_NOT_TLS = 1 << 8,
748   RF_BSS = 1 << 7,
749   RF_PPC_NOT_TOCBSS = 1 << 6,
750   RF_PPC_TOCL = 1 << 5,
751   RF_PPC_TOC = 1 << 4,
752   RF_PPC_GOT = 1 << 3,
753   RF_PPC_BRANCH_LT = 1 << 2,
754   RF_MIPS_GPREL = 1 << 1,
755   RF_MIPS_NOT_GOT = 1 << 0
756 };
757
758 static unsigned getSectionRank(const OutputSection *Sec) {
759   unsigned Rank = 0;
760
761   // We want to put section specified by -T option first, so we
762   // can start assigning VA starting from them later.
763   if (Config->SectionStartMap.count(Sec->Name))
764     return Rank;
765   Rank |= RF_NOT_ADDR_SET;
766
767   // Allocatable sections go first to reduce the total PT_LOAD size and
768   // so debug info doesn't change addresses in actual code.
769   if (!(Sec->Flags & SHF_ALLOC))
770     return Rank | RF_NOT_ALLOC;
771
772   // Put .interp first because some loaders want to see that section
773   // on the first page of the executable file when loaded into memory.
774   if (Sec->Name == ".interp")
775     return Rank;
776   Rank |= RF_NOT_INTERP;
777
778   // Put .note sections (which make up one PT_NOTE) at the beginning so that
779   // they are likely to be included in a core file even if core file size is
780   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
781   // included in a core to match core files with executables.
782   if (Sec->Type == SHT_NOTE)
783     return Rank;
784   Rank |= RF_NOT_NOTE;
785
786   // Sort sections based on their access permission in the following
787   // order: R, RX, RWX, RW.  This order is based on the following
788   // considerations:
789   // * Read-only sections come first such that they go in the
790   //   PT_LOAD covering the program headers at the start of the file.
791   // * Read-only, executable sections come next.
792   // * Writable, executable sections follow such that .plt on
793   //   architectures where it needs to be writable will be placed
794   //   between .text and .data.
795   // * Writable sections come last, such that .bss lands at the very
796   //   end of the last PT_LOAD.
797   bool IsExec = Sec->Flags & SHF_EXECINSTR;
798   bool IsWrite = Sec->Flags & SHF_WRITE;
799
800   if (IsExec) {
801     if (IsWrite)
802       Rank |= RF_EXEC_WRITE;
803     else
804       Rank |= RF_EXEC;
805   } else if (IsWrite) {
806     Rank |= RF_WRITE;
807   } else if (Sec->Type == SHT_PROGBITS) {
808     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
809     // .eh_frame) closer to .text. They likely contain PC or GOT relative
810     // relocations and there could be relocation overflow if other huge sections
811     // (.dynstr .dynsym) were placed in between.
812     Rank |= RF_RODATA;
813   }
814
815   // If we got here we know that both A and B are in the same PT_LOAD.
816
817   bool IsTls = Sec->Flags & SHF_TLS;
818   bool IsNoBits = Sec->Type == SHT_NOBITS;
819
820   // The first requirement we have is to put (non-TLS) nobits sections last. The
821   // reason is that the only thing the dynamic linker will see about them is a
822   // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the
823   // PT_LOAD, so that has to correspond to the nobits sections.
824   bool IsNonTlsNoBits = IsNoBits && !IsTls;
825   if (IsNonTlsNoBits)
826     Rank |= RF_NON_TLS_BSS;
827
828   // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo
829   // sections after r/w ones, so that the RelRo sections are contiguous.
830   bool IsRelRo = isRelroSection(Sec);
831   if (IsNonTlsNoBits && !IsRelRo)
832     Rank |= RF_NON_TLS_BSS_RO;
833   if (!IsNonTlsNoBits && IsRelRo)
834     Rank |= RF_NON_TLS_BSS_RO;
835
836   // The TLS initialization block needs to be a single contiguous block in a R/W
837   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
838   // sections. The TLS NOBITS sections are placed here as they don't take up
839   // virtual address space in the PT_LOAD.
840   if (!IsTls)
841     Rank |= RF_NOT_TLS;
842
843   // Within the TLS initialization block, the non-nobits sections need to appear
844   // first.
845   if (IsNoBits)
846     Rank |= RF_BSS;
847
848   // Some architectures have additional ordering restrictions for sections
849   // within the same PT_LOAD.
850   if (Config->EMachine == EM_PPC64) {
851     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
852     // that we would like to make sure appear is a specific order to maximize
853     // their coverage by a single signed 16-bit offset from the TOC base
854     // pointer. Conversely, the special .tocbss section should be first among
855     // all SHT_NOBITS sections. This will put it next to the loaded special
856     // PPC64 sections (and, thus, within reach of the TOC base pointer).
857     StringRef Name = Sec->Name;
858     if (Name != ".tocbss")
859       Rank |= RF_PPC_NOT_TOCBSS;
860
861     if (Name == ".toc1")
862       Rank |= RF_PPC_TOCL;
863
864     if (Name == ".toc")
865       Rank |= RF_PPC_TOC;
866
867     if (Name == ".got")
868       Rank |= RF_PPC_GOT;
869
870     if (Name == ".branch_lt")
871       Rank |= RF_PPC_BRANCH_LT;
872   }
873
874   if (Config->EMachine == EM_MIPS) {
875     // All sections with SHF_MIPS_GPREL flag should be grouped together
876     // because data in these sections is addressable with a gp relative address.
877     if (Sec->Flags & SHF_MIPS_GPREL)
878       Rank |= RF_MIPS_GPREL;
879
880     if (Sec->Name != ".got")
881       Rank |= RF_MIPS_NOT_GOT;
882   }
883
884   return Rank;
885 }
886
887 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) {
888   const OutputSection *A = cast<OutputSection>(ACmd);
889   const OutputSection *B = cast<OutputSection>(BCmd);
890
891   if (A->SortRank != B->SortRank)
892     return A->SortRank < B->SortRank;
893
894   if (!(A->SortRank & RF_NOT_ADDR_SET))
895     return Config->SectionStartMap.lookup(A->Name) <
896            Config->SectionStartMap.lookup(B->Name);
897   return false;
898 }
899
900 void PhdrEntry::add(OutputSection *Sec) {
901   LastSec = Sec;
902   if (!FirstSec)
903     FirstSec = Sec;
904   p_align = std::max(p_align, Sec->Alignment);
905   if (p_type == PT_LOAD)
906     Sec->PtLoad = this;
907 }
908
909 // The beginning and the ending of .rel[a].plt section are marked
910 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
911 // executable. The runtime needs these symbols in order to resolve
912 // all IRELATIVE relocs on startup. For dynamic executables, we don't
913 // need these symbols, since IRELATIVE relocs are resolved through GOT
914 // and PLT. For details, see http://www.airs.com/blog/archives/403.
915 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
916   if (Config->Relocatable || needsInterpSection())
917     return;
918
919   // By default, __rela_iplt_{start,end} belong to a dummy section 0
920   // because .rela.plt might be empty and thus removed from output.
921   // We'll override Out::ElfHeader with In.RelaIplt later when we are
922   // sure that .rela.plt exists in output.
923   ElfSym::RelaIpltStart = addOptionalRegular(
924       Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start",
925       Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);
926
927   ElfSym::RelaIpltEnd = addOptionalRegular(
928       Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end",
929       Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);
930 }
931
932 template <class ELFT>
933 void Writer<ELFT>::forEachRelSec(
934     llvm::function_ref<void(InputSectionBase &)> Fn) {
935   // Scan all relocations. Each relocation goes through a series
936   // of tests to determine if it needs special treatment, such as
937   // creating GOT, PLT, copy relocations, etc.
938   // Note that relocations for non-alloc sections are directly
939   // processed by InputSection::relocateNonAlloc.
940   for (InputSectionBase *IS : InputSections)
941     if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC))
942       Fn(*IS);
943   for (EhInputSection *ES : In.EhFrame->Sections)
944     Fn(*ES);
945 }
946
947 // This function generates assignments for predefined symbols (e.g. _end or
948 // _etext) and inserts them into the commands sequence to be processed at the
949 // appropriate time. This ensures that the value is going to be correct by the
950 // time any references to these symbols are processed and is equivalent to
951 // defining these symbols explicitly in the linker script.
952 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
953   if (ElfSym::GlobalOffsetTable) {
954     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
955     // to the start of the .got or .got.plt section.
956     InputSection *GotSection = In.GotPlt;
957     if (!Target->GotBaseSymInGotPlt)
958       GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot)
959                               : cast<InputSection>(In.Got);
960     ElfSym::GlobalOffsetTable->Section = GotSection;
961   }
962
963   // .rela_iplt_{start,end} mark the start and the end of .rela.plt section.
964   if (ElfSym::RelaIpltStart && !In.RelaIplt->empty()) {
965     ElfSym::RelaIpltStart->Section = In.RelaIplt;
966     ElfSym::RelaIpltEnd->Section = In.RelaIplt;
967     ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize();
968   }
969
970   PhdrEntry *Last = nullptr;
971   PhdrEntry *LastRO = nullptr;
972
973   for (PhdrEntry *P : Phdrs) {
974     if (P->p_type != PT_LOAD)
975       continue;
976     Last = P;
977     if (!(P->p_flags & PF_W))
978       LastRO = P;
979   }
980
981   if (LastRO) {
982     // _etext is the first location after the last read-only loadable segment.
983     if (ElfSym::Etext1)
984       ElfSym::Etext1->Section = LastRO->LastSec;
985     if (ElfSym::Etext2)
986       ElfSym::Etext2->Section = LastRO->LastSec;
987   }
988
989   if (Last) {
990     // _edata points to the end of the last mapped initialized section.
991     OutputSection *Edata = nullptr;
992     for (OutputSection *OS : OutputSections) {
993       if (OS->Type != SHT_NOBITS)
994         Edata = OS;
995       if (OS == Last->LastSec)
996         break;
997     }
998
999     if (ElfSym::Edata1)
1000       ElfSym::Edata1->Section = Edata;
1001     if (ElfSym::Edata2)
1002       ElfSym::Edata2->Section = Edata;
1003
1004     // _end is the first location after the uninitialized data region.
1005     if (ElfSym::End1)
1006       ElfSym::End1->Section = Last->LastSec;
1007     if (ElfSym::End2)
1008       ElfSym::End2->Section = Last->LastSec;
1009   }
1010
1011   if (ElfSym::Bss)
1012     ElfSym::Bss->Section = findSection(".bss");
1013
1014   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1015   // be equal to the _gp symbol's value.
1016   if (ElfSym::MipsGp) {
1017     // Find GP-relative section with the lowest address
1018     // and use this address to calculate default _gp value.
1019     for (OutputSection *OS : OutputSections) {
1020       if (OS->Flags & SHF_MIPS_GPREL) {
1021         ElfSym::MipsGp->Section = OS;
1022         ElfSym::MipsGp->Value = 0x7ff0;
1023         break;
1024       }
1025     }
1026   }
1027 }
1028
1029 // We want to find how similar two ranks are.
1030 // The more branches in getSectionRank that match, the more similar they are.
1031 // Since each branch corresponds to a bit flag, we can just use
1032 // countLeadingZeros.
1033 static int getRankProximityAux(OutputSection *A, OutputSection *B) {
1034   return countLeadingZeros(A->SortRank ^ B->SortRank);
1035 }
1036
1037 static int getRankProximity(OutputSection *A, BaseCommand *B) {
1038   if (auto *Sec = dyn_cast<OutputSection>(B))
1039     return getRankProximityAux(A, Sec);
1040   return -1;
1041 }
1042
1043 // When placing orphan sections, we want to place them after symbol assignments
1044 // so that an orphan after
1045 //   begin_foo = .;
1046 //   foo : { *(foo) }
1047 //   end_foo = .;
1048 // doesn't break the intended meaning of the begin/end symbols.
1049 // We don't want to go over sections since findOrphanPos is the
1050 // one in charge of deciding the order of the sections.
1051 // We don't want to go over changes to '.', since doing so in
1052 //  rx_sec : { *(rx_sec) }
1053 //  . = ALIGN(0x1000);
1054 //  /* The RW PT_LOAD starts here*/
1055 //  rw_sec : { *(rw_sec) }
1056 // would mean that the RW PT_LOAD would become unaligned.
1057 static bool shouldSkip(BaseCommand *Cmd) {
1058   if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
1059     return Assign->Name != ".";
1060   return false;
1061 }
1062
1063 // We want to place orphan sections so that they share as much
1064 // characteristics with their neighbors as possible. For example, if
1065 // both are rw, or both are tls.
1066 template <typename ELFT>
1067 static std::vector<BaseCommand *>::iterator
1068 findOrphanPos(std::vector<BaseCommand *>::iterator B,
1069               std::vector<BaseCommand *>::iterator E) {
1070   OutputSection *Sec = cast<OutputSection>(*E);
1071
1072   // Find the first element that has as close a rank as possible.
1073   auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) {
1074     return getRankProximity(Sec, A) < getRankProximity(Sec, B);
1075   });
1076   if (I == E)
1077     return E;
1078
1079   // Consider all existing sections with the same proximity.
1080   int Proximity = getRankProximity(Sec, *I);
1081   for (; I != E; ++I) {
1082     auto *CurSec = dyn_cast<OutputSection>(*I);
1083     if (!CurSec)
1084       continue;
1085     if (getRankProximity(Sec, CurSec) != Proximity ||
1086         Sec->SortRank < CurSec->SortRank)
1087       break;
1088   }
1089
1090   auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); };
1091   auto J = std::find_if(llvm::make_reverse_iterator(I),
1092                         llvm::make_reverse_iterator(B), IsOutputSec);
1093   I = J.base();
1094
1095   // As a special case, if the orphan section is the last section, put
1096   // it at the very end, past any other commands.
1097   // This matches bfd's behavior and is convenient when the linker script fully
1098   // specifies the start of the file, but doesn't care about the end (the non
1099   // alloc sections for example).
1100   auto NextSec = std::find_if(I, E, IsOutputSec);
1101   if (NextSec == E)
1102     return E;
1103
1104   while (I != E && shouldSkip(*I))
1105     ++I;
1106   return I;
1107 }
1108
1109 // Builds section order for handling --symbol-ordering-file.
1110 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1111   DenseMap<const InputSectionBase *, int> SectionOrder;
1112   // Use the rarely used option -call-graph-ordering-file to sort sections.
1113   if (!Config->CallGraphProfile.empty())
1114     return computeCallGraphProfileOrder();
1115
1116   if (Config->SymbolOrderingFile.empty())
1117     return SectionOrder;
1118
1119   struct SymbolOrderEntry {
1120     int Priority;
1121     bool Present;
1122   };
1123
1124   // Build a map from symbols to their priorities. Symbols that didn't
1125   // appear in the symbol ordering file have the lowest priority 0.
1126   // All explicitly mentioned symbols have negative (higher) priorities.
1127   DenseMap<StringRef, SymbolOrderEntry> SymbolOrder;
1128   int Priority = -Config->SymbolOrderingFile.size();
1129   for (StringRef S : Config->SymbolOrderingFile)
1130     SymbolOrder.insert({S, {Priority++, false}});
1131
1132   // Build a map from sections to their priorities.
1133   auto AddSym = [&](Symbol &Sym) {
1134     auto It = SymbolOrder.find(Sym.getName());
1135     if (It == SymbolOrder.end())
1136       return;
1137     SymbolOrderEntry &Ent = It->second;
1138     Ent.Present = true;
1139
1140     maybeWarnUnorderableSymbol(&Sym);
1141
1142     if (auto *D = dyn_cast<Defined>(&Sym)) {
1143       if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) {
1144         int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)];
1145         Priority = std::min(Priority, Ent.Priority);
1146       }
1147     }
1148   };
1149
1150   // We want both global and local symbols. We get the global ones from the
1151   // symbol table and iterate the object files for the local ones.
1152   for (Symbol *Sym : Symtab->getSymbols())
1153     if (!Sym->isLazy())
1154       AddSym(*Sym);
1155   for (InputFile *File : ObjectFiles)
1156     for (Symbol *Sym : File->getSymbols())
1157       if (Sym->isLocal())
1158         AddSym(*Sym);
1159
1160   if (Config->WarnSymbolOrdering)
1161     for (auto OrderEntry : SymbolOrder)
1162       if (!OrderEntry.second.Present)
1163         warn("symbol ordering file: no such symbol: " + OrderEntry.first);
1164
1165   return SectionOrder;
1166 }
1167
1168 // Sorts the sections in ISD according to the provided section order.
1169 static void
1170 sortISDBySectionOrder(InputSectionDescription *ISD,
1171                       const DenseMap<const InputSectionBase *, int> &Order) {
1172   std::vector<InputSection *> UnorderedSections;
1173   std::vector<std::pair<InputSection *, int>> OrderedSections;
1174   uint64_t UnorderedSize = 0;
1175
1176   for (InputSection *IS : ISD->Sections) {
1177     auto I = Order.find(IS);
1178     if (I == Order.end()) {
1179       UnorderedSections.push_back(IS);
1180       UnorderedSize += IS->getSize();
1181       continue;
1182     }
1183     OrderedSections.push_back({IS, I->second});
1184   }
1185   llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A,
1186                                   std::pair<InputSection *, int> B) {
1187     return A.second < B.second;
1188   });
1189
1190   // Find an insertion point for the ordered section list in the unordered
1191   // section list. On targets with limited-range branches, this is the mid-point
1192   // of the unordered section list. This decreases the likelihood that a range
1193   // extension thunk will be needed to enter or exit the ordered region. If the
1194   // ordered section list is a list of hot functions, we can generally expect
1195   // the ordered functions to be called more often than the unordered functions,
1196   // making it more likely that any particular call will be within range, and
1197   // therefore reducing the number of thunks required.
1198   //
1199   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1200   // If the layout is:
1201   //
1202   // 8MB hot
1203   // 32MB cold
1204   //
1205   // only the first 8-16MB of the cold code (depending on which hot function it
1206   // is actually calling) can call the hot code without a range extension thunk.
1207   // However, if we use this layout:
1208   //
1209   // 16MB cold
1210   // 8MB hot
1211   // 16MB cold
1212   //
1213   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1214   // of the second block of cold code can call the hot code without a thunk. So
1215   // we effectively double the amount of code that could potentially call into
1216   // the hot code without a thunk.
1217   size_t InsPt = 0;
1218   if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) {
1219     uint64_t UnorderedPos = 0;
1220     for (; InsPt != UnorderedSections.size(); ++InsPt) {
1221       UnorderedPos += UnorderedSections[InsPt]->getSize();
1222       if (UnorderedPos > UnorderedSize / 2)
1223         break;
1224     }
1225   }
1226
1227   ISD->Sections.clear();
1228   for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt))
1229     ISD->Sections.push_back(IS);
1230   for (std::pair<InputSection *, int> P : OrderedSections)
1231     ISD->Sections.push_back(P.first);
1232   for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt))
1233     ISD->Sections.push_back(IS);
1234 }
1235
1236 static void sortSection(OutputSection *Sec,
1237                         const DenseMap<const InputSectionBase *, int> &Order) {
1238   StringRef Name = Sec->Name;
1239
1240   // Sort input sections by section name suffixes for
1241   // __attribute__((init_priority(N))).
1242   if (Name == ".init_array" || Name == ".fini_array") {
1243     if (!Script->HasSectionsCommand)
1244       Sec->sortInitFini();
1245     return;
1246   }
1247
1248   // Sort input sections by the special rule for .ctors and .dtors.
1249   if (Name == ".ctors" || Name == ".dtors") {
1250     if (!Script->HasSectionsCommand)
1251       Sec->sortCtorsDtors();
1252     return;
1253   }
1254
1255   // Never sort these.
1256   if (Name == ".init" || Name == ".fini")
1257     return;
1258
1259   // Sort input sections by priority using the list provided
1260   // by --symbol-ordering-file.
1261   if (!Order.empty())
1262     for (BaseCommand *B : Sec->SectionCommands)
1263       if (auto *ISD = dyn_cast<InputSectionDescription>(B))
1264         sortISDBySectionOrder(ISD, Order);
1265 }
1266
1267 // If no layout was provided by linker script, we want to apply default
1268 // sorting for special input sections. This also handles --symbol-ordering-file.
1269 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1270   // Build the order once since it is expensive.
1271   DenseMap<const InputSectionBase *, int> Order = buildSectionOrder();
1272   for (BaseCommand *Base : Script->SectionCommands)
1273     if (auto *Sec = dyn_cast<OutputSection>(Base))
1274       sortSection(Sec, Order);
1275 }
1276
1277 template <class ELFT> void Writer<ELFT>::sortSections() {
1278   Script->adjustSectionsBeforeSorting();
1279
1280   // Don't sort if using -r. It is not necessary and we want to preserve the
1281   // relative order for SHF_LINK_ORDER sections.
1282   if (Config->Relocatable)
1283     return;
1284
1285   sortInputSections();
1286
1287   for (BaseCommand *Base : Script->SectionCommands) {
1288     auto *OS = dyn_cast<OutputSection>(Base);
1289     if (!OS)
1290       continue;
1291     OS->SortRank = getSectionRank(OS);
1292
1293     // We want to assign rude approximation values to OutSecOff fields
1294     // to know the relative order of the input sections. We use it for
1295     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1296     uint64_t I = 0;
1297     for (InputSection *Sec : getInputSections(OS))
1298       Sec->OutSecOff = I++;
1299   }
1300
1301   if (!Script->HasSectionsCommand) {
1302     // We know that all the OutputSections are contiguous in this case.
1303     auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); };
1304     std::stable_sort(
1305         llvm::find_if(Script->SectionCommands, IsSection),
1306         llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(),
1307         compareSections);
1308     return;
1309   }
1310
1311   // Orphan sections are sections present in the input files which are
1312   // not explicitly placed into the output file by the linker script.
1313   //
1314   // The sections in the linker script are already in the correct
1315   // order. We have to figuere out where to insert the orphan
1316   // sections.
1317   //
1318   // The order of the sections in the script is arbitrary and may not agree with
1319   // compareSections. This means that we cannot easily define a strict weak
1320   // ordering. To see why, consider a comparison of a section in the script and
1321   // one not in the script. We have a two simple options:
1322   // * Make them equivalent (a is not less than b, and b is not less than a).
1323   //   The problem is then that equivalence has to be transitive and we can
1324   //   have sections a, b and c with only b in a script and a less than c
1325   //   which breaks this property.
1326   // * Use compareSectionsNonScript. Given that the script order doesn't have
1327   //   to match, we can end up with sections a, b, c, d where b and c are in the
1328   //   script and c is compareSectionsNonScript less than b. In which case d
1329   //   can be equivalent to c, a to b and d < a. As a concrete example:
1330   //   .a (rx) # not in script
1331   //   .b (rx) # in script
1332   //   .c (ro) # in script
1333   //   .d (ro) # not in script
1334   //
1335   // The way we define an order then is:
1336   // *  Sort only the orphan sections. They are in the end right now.
1337   // *  Move each orphan section to its preferred position. We try
1338   //    to put each section in the last position where it can share
1339   //    a PT_LOAD.
1340   //
1341   // There is some ambiguity as to where exactly a new entry should be
1342   // inserted, because Commands contains not only output section
1343   // commands but also other types of commands such as symbol assignment
1344   // expressions. There's no correct answer here due to the lack of the
1345   // formal specification of the linker script. We use heuristics to
1346   // determine whether a new output command should be added before or
1347   // after another commands. For the details, look at shouldSkip
1348   // function.
1349
1350   auto I = Script->SectionCommands.begin();
1351   auto E = Script->SectionCommands.end();
1352   auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) {
1353     if (auto *Sec = dyn_cast<OutputSection>(Base))
1354       return Sec->SectionIndex == UINT32_MAX;
1355     return false;
1356   });
1357
1358   // Sort the orphan sections.
1359   std::stable_sort(NonScriptI, E, compareSections);
1360
1361   // As a horrible special case, skip the first . assignment if it is before any
1362   // section. We do this because it is common to set a load address by starting
1363   // the script with ". = 0xabcd" and the expectation is that every section is
1364   // after that.
1365   auto FirstSectionOrDotAssignment =
1366       std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
1367   if (FirstSectionOrDotAssignment != E &&
1368       isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
1369     ++FirstSectionOrDotAssignment;
1370   I = FirstSectionOrDotAssignment;
1371
1372   while (NonScriptI != E) {
1373     auto Pos = findOrphanPos<ELFT>(I, NonScriptI);
1374     OutputSection *Orphan = cast<OutputSection>(*NonScriptI);
1375
1376     // As an optimization, find all sections with the same sort rank
1377     // and insert them with one rotate.
1378     unsigned Rank = Orphan->SortRank;
1379     auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) {
1380       return cast<OutputSection>(Cmd)->SortRank != Rank;
1381     });
1382     std::rotate(Pos, NonScriptI, End);
1383     NonScriptI = End;
1384   }
1385
1386   Script->adjustSectionsAfterSorting();
1387 }
1388
1389 static bool compareByFilePosition(InputSection *A, InputSection *B) {
1390   // Synthetic, i. e. a sentinel section, should go last.
1391   if (A->kind() == InputSectionBase::Synthetic ||
1392       B->kind() == InputSectionBase::Synthetic)
1393     return A->kind() != InputSectionBase::Synthetic;
1394
1395   InputSection *LA = A->getLinkOrderDep();
1396   InputSection *LB = B->getLinkOrderDep();
1397   OutputSection *AOut = LA->getParent();
1398   OutputSection *BOut = LB->getParent();
1399
1400   if (AOut != BOut)
1401     return AOut->SectionIndex < BOut->SectionIndex;
1402   return LA->OutSecOff < LB->OutSecOff;
1403 }
1404
1405 // This function is used by the --merge-exidx-entries to detect duplicate
1406 // .ARM.exidx sections. It is Arm only.
1407 //
1408 // The .ARM.exidx section is of the form:
1409 // | PREL31 offset to function | Unwind instructions for function |
1410 // where the unwind instructions are either a small number of unwind
1411 // instructions inlined into the table entry, the special CANT_UNWIND value of
1412 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind
1413 // instructions.
1414 //
1415 // We return true if all the unwind instructions in the .ARM.exidx entries of
1416 // Cur can be merged into the last entry of Prev.
1417 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) {
1418
1419   // References to .ARM.Extab Sections have bit 31 clear and are not the
1420   // special EXIDX_CANTUNWIND bit-pattern.
1421   auto IsExtabRef = [](uint32_t Unwind) {
1422     return (Unwind & 0x80000000) == 0 && Unwind != 0x1;
1423   };
1424
1425   struct ExidxEntry {
1426     ulittle32_t Fn;
1427     ulittle32_t Unwind;
1428   };
1429
1430   // Get the last table Entry from the previous .ARM.exidx section.
1431   const ExidxEntry &PrevEntry = Prev->getDataAs<ExidxEntry>().back();
1432   if (IsExtabRef(PrevEntry.Unwind))
1433     return false;
1434
1435   // We consider the unwind instructions of an .ARM.exidx table entry
1436   // a duplicate if the previous unwind instructions if:
1437   // - Both are the special EXIDX_CANTUNWIND.
1438   // - Both are the same inline unwind instructions.
1439   // We do not attempt to follow and check links into .ARM.extab tables as
1440   // consecutive identical entries are rare and the effort to check that they
1441   // are identical is high.
1442
1443   for (const ExidxEntry Entry : Cur->getDataAs<ExidxEntry>())
1444     if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind)
1445       return false;
1446
1447   // All table entries in this .ARM.exidx Section can be merged into the
1448   // previous Section.
1449   return true;
1450 }
1451
1452 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1453   for (OutputSection *Sec : OutputSections) {
1454     if (!(Sec->Flags & SHF_LINK_ORDER))
1455       continue;
1456
1457     // Link order may be distributed across several InputSectionDescriptions
1458     // but sort must consider them all at once.
1459     std::vector<InputSection **> ScriptSections;
1460     std::vector<InputSection *> Sections;
1461     for (BaseCommand *Base : Sec->SectionCommands) {
1462       if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) {
1463         for (InputSection *&IS : ISD->Sections) {
1464           ScriptSections.push_back(&IS);
1465           Sections.push_back(IS);
1466         }
1467       }
1468     }
1469     std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition);
1470
1471     if (!Config->Relocatable && Config->EMachine == EM_ARM &&
1472         Sec->Type == SHT_ARM_EXIDX) {
1473
1474       if (auto *Sentinel = dyn_cast<ARMExidxSentinelSection>(Sections.back())) {
1475         assert(Sections.size() >= 2 &&
1476                "We should create a sentinel section only if there are "
1477                "alive regular exidx sections.");
1478
1479         // The last executable section is required to fill the sentinel.
1480         // Remember it here so that we don't have to find it again.
1481         Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep();
1482       }
1483
1484       // The EHABI for the Arm Architecture permits consecutive identical
1485       // table entries to be merged. We use a simple implementation that
1486       // removes a .ARM.exidx Input Section if it can be merged into the
1487       // previous one. This does not require any rewriting of InputSection
1488       // contents but misses opportunities for fine grained deduplication
1489       // where only a subset of the InputSection contents can be merged.
1490       if (Config->MergeArmExidx) {
1491         size_t Prev = 0;
1492         // The last one is a sentinel entry which should not be removed.
1493         for (size_t I = 1; I < Sections.size() - 1; ++I) {
1494           if (isDuplicateArmExidxSec(Sections[Prev], Sections[I]))
1495             Sections[I] = nullptr;
1496           else
1497             Prev = I;
1498         }
1499       }
1500     }
1501
1502     for (int I = 0, N = Sections.size(); I < N; ++I)
1503       *ScriptSections[I] = Sections[I];
1504
1505     // Remove the Sections we marked as duplicate earlier.
1506     for (BaseCommand *Base : Sec->SectionCommands)
1507       if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
1508         llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; });
1509   }
1510 }
1511
1512 // For most RISC ISAs, we need to generate content that depends on the address
1513 // of InputSections. For example some architectures such as AArch64 use small
1514 // displacements for jump instructions that is the linker's responsibility for
1515 // creating range extension thunks for. As the generation of the content may
1516 // also alter InputSection addresses we must converge to a fixed point.
1517 template <class ELFT> void Writer<ELFT>::maybeAddThunks() {
1518   if (!Target->NeedsThunks && !Config->AndroidPackDynRelocs &&
1519       !Config->RelrPackDynRelocs)
1520     return;
1521
1522   ThunkCreator TC;
1523   AArch64Err843419Patcher A64P;
1524
1525   for (;;) {
1526     bool Changed = false;
1527
1528     Script->assignAddresses();
1529
1530     if (Target->NeedsThunks)
1531       Changed |= TC.createThunks(OutputSections);
1532
1533     if (Config->FixCortexA53Errata843419) {
1534       if (Changed)
1535         Script->assignAddresses();
1536       Changed |= A64P.createFixes();
1537     }
1538
1539     if (In.MipsGot)
1540       In.MipsGot->updateAllocSize();
1541
1542     Changed |= In.RelaDyn->updateAllocSize();
1543
1544     if (In.RelrDyn)
1545       Changed |= In.RelrDyn->updateAllocSize();
1546
1547     if (!Changed)
1548       return;
1549   }
1550 }
1551
1552 static void finalizeSynthetic(SyntheticSection *Sec) {
1553   if (Sec && !Sec->empty() && Sec->getParent())
1554     Sec->finalizeContents();
1555 }
1556
1557 // In order to allow users to manipulate linker-synthesized sections,
1558 // we had to add synthetic sections to the input section list early,
1559 // even before we make decisions whether they are needed. This allows
1560 // users to write scripts like this: ".mygot : { .got }".
1561 //
1562 // Doing it has an unintended side effects. If it turns out that we
1563 // don't need a .got (for example) at all because there's no
1564 // relocation that needs a .got, we don't want to emit .got.
1565 //
1566 // To deal with the above problem, this function is called after
1567 // scanRelocations is called to remove synthetic sections that turn
1568 // out to be empty.
1569 static void removeUnusedSyntheticSections() {
1570   // All input synthetic sections that can be empty are placed after
1571   // all regular ones. We iterate over them all and exit at first
1572   // non-synthetic.
1573   for (InputSectionBase *S : llvm::reverse(InputSections)) {
1574     SyntheticSection *SS = dyn_cast<SyntheticSection>(S);
1575     if (!SS)
1576       return;
1577     OutputSection *OS = SS->getParent();
1578     if (!OS || !SS->empty())
1579       continue;
1580
1581     // If we reach here, then SS is an unused synthetic section and we want to
1582     // remove it from corresponding input section description of output section.
1583     for (BaseCommand *B : OS->SectionCommands)
1584       if (auto *ISD = dyn_cast<InputSectionDescription>(B))
1585         llvm::erase_if(ISD->Sections,
1586                        [=](InputSection *IS) { return IS == SS; });
1587   }
1588 }
1589
1590 // Returns true if a symbol can be replaced at load-time by a symbol
1591 // with the same name defined in other ELF executable or DSO.
1592 static bool computeIsPreemptible(const Symbol &B) {
1593   assert(!B.isLocal());
1594
1595   // Only symbols that appear in dynsym can be preempted.
1596   if (!B.includeInDynsym())
1597     return false;
1598
1599   // Only default visibility symbols can be preempted.
1600   if (B.Visibility != STV_DEFAULT)
1601     return false;
1602
1603   // At this point copy relocations have not been created yet, so any
1604   // symbol that is not defined locally is preemptible.
1605   if (!B.isDefined())
1606     return true;
1607
1608   // If we have a dynamic list it specifies which local symbols are preemptible.
1609   if (Config->HasDynamicList)
1610     return false;
1611
1612   if (!Config->Shared)
1613     return false;
1614
1615   // -Bsymbolic means that definitions are not preempted.
1616   if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc()))
1617     return false;
1618   return true;
1619 }
1620
1621 // Create output section objects and add them to OutputSections.
1622 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1623   Out::PreinitArray = findSection(".preinit_array");
1624   Out::InitArray = findSection(".init_array");
1625   Out::FiniArray = findSection(".fini_array");
1626
1627   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1628   // symbols for sections, so that the runtime can get the start and end
1629   // addresses of each section by section name. Add such symbols.
1630   if (!Config->Relocatable) {
1631     addStartEndSymbols();
1632     for (BaseCommand *Base : Script->SectionCommands)
1633       if (auto *Sec = dyn_cast<OutputSection>(Base))
1634         addStartStopSymbols(Sec);
1635   }
1636
1637   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1638   // It should be okay as no one seems to care about the type.
1639   // Even the author of gold doesn't remember why gold behaves that way.
1640   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1641   if (In.Dynamic->Parent)
1642     Symtab->addDefined("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/,
1643                        /*Size=*/0, STB_WEAK, In.Dynamic,
1644                        /*File=*/nullptr);
1645
1646   // Define __rel[a]_iplt_{start,end} symbols if needed.
1647   addRelIpltSymbols();
1648
1649   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined.
1650   if (Config->EMachine == EM_RISCV)
1651     if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$")))
1652       addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800);
1653
1654   // This responsible for splitting up .eh_frame section into
1655   // pieces. The relocation scan uses those pieces, so this has to be
1656   // earlier.
1657   finalizeSynthetic(In.EhFrame);
1658
1659   for (Symbol *S : Symtab->getSymbols()) {
1660     if (!S->IsPreemptible)
1661       S->IsPreemptible = computeIsPreemptible(*S);
1662     if (S->isGnuIFunc() && Config->ZIfuncnoplt)
1663       S->ExportDynamic = true;
1664   }
1665
1666   // Scan relocations. This must be done after every symbol is declared so that
1667   // we can correctly decide if a dynamic relocation is needed.
1668   if (!Config->Relocatable)
1669     forEachRelSec(scanRelocations<ELFT>);
1670
1671   if (In.Plt && !In.Plt->empty())
1672     In.Plt->addSymbols();
1673   if (In.Iplt && !In.Iplt->empty())
1674     In.Iplt->addSymbols();
1675
1676   if (!Config->AllowShlibUndefined) {
1677     // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1678     // entires are seen. These cases would otherwise lead to runtime errors
1679     // reported by the dynamic linker.
1680     //
1681     // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1682     // catch more cases. That is too much for us. Our approach resembles the one
1683     // used in ld.gold, achieves a good balance to be useful but not too smart.
1684     for (InputFile *File : SharedFiles) {
1685       SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File);
1686       F->AllNeededIsKnown = llvm::all_of(F->DtNeeded, [&](StringRef Needed) {
1687         return Symtab->SoNames.count(Needed);
1688       });
1689     }
1690     for (Symbol *Sym : Symtab->getSymbols())
1691       if (Sym->isUndefined() && !Sym->isWeak())
1692         if (auto *F = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File))
1693           if (F->AllNeededIsKnown)
1694             error(toString(F) + ": undefined reference to " + toString(*Sym));
1695   }
1696
1697   // Now that we have defined all possible global symbols including linker-
1698   // synthesized ones. Visit all symbols to give the finishing touches.
1699   for (Symbol *Sym : Symtab->getSymbols()) {
1700     if (!includeInSymtab(*Sym))
1701       continue;
1702     if (In.SymTab)
1703       In.SymTab->addSymbol(Sym);
1704
1705     if (Sym->includeInDynsym()) {
1706       In.DynSymTab->addSymbol(Sym);
1707       if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File))
1708         if (File->IsNeeded && !Sym->isUndefined())
1709           InX<ELFT>::VerNeed->addSymbol(Sym);
1710     }
1711   }
1712
1713   // Do not proceed if there was an undefined symbol.
1714   if (errorCount())
1715     return;
1716
1717   if (In.MipsGot)
1718     In.MipsGot->build<ELFT>();
1719
1720   removeUnusedSyntheticSections();
1721
1722   sortSections();
1723
1724   // Now that we have the final list, create a list of all the
1725   // OutputSections for convenience.
1726   for (BaseCommand *Base : Script->SectionCommands)
1727     if (auto *Sec = dyn_cast<OutputSection>(Base))
1728       OutputSections.push_back(Sec);
1729
1730   // Prefer command line supplied address over other constraints.
1731   for (OutputSection *Sec : OutputSections) {
1732     auto I = Config->SectionStartMap.find(Sec->Name);
1733     if (I != Config->SectionStartMap.end())
1734       Sec->AddrExpr = [=] { return I->second; };
1735   }
1736
1737   // This is a bit of a hack. A value of 0 means undef, so we set it
1738   // to 1 to make __ehdr_start defined. The section number is not
1739   // particularly relevant.
1740   Out::ElfHeader->SectionIndex = 1;
1741
1742   for (size_t I = 0, E = OutputSections.size(); I != E; ++I) {
1743     OutputSection *Sec = OutputSections[I];
1744     Sec->SectionIndex = I + 1;
1745     Sec->ShName = In.ShStrTab->addString(Sec->Name);
1746   }
1747
1748   // Binary and relocatable output does not have PHDRS.
1749   // The headers have to be created before finalize as that can influence the
1750   // image base and the dynamic section on mips includes the image base.
1751   if (!Config->Relocatable && !Config->OFormatBinary) {
1752     Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs();
1753     addPtArmExid(Phdrs);
1754     Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size();
1755
1756     // Find the TLS segment. This happens before the section layout loop so that
1757     // Android relocation packing can look up TLS symbol addresses.
1758     for (PhdrEntry *P : Phdrs)
1759       if (P->p_type == PT_TLS)
1760         Out::TlsPhdr = P;
1761   }
1762
1763   // Some symbols are defined in term of program headers. Now that we
1764   // have the headers, we can find out which sections they point to.
1765   setReservedSymbolSections();
1766
1767   // Dynamic section must be the last one in this list and dynamic
1768   // symbol table section (DynSymTab) must be the first one.
1769   finalizeSynthetic(In.DynSymTab);
1770   finalizeSynthetic(In.Bss);
1771   finalizeSynthetic(In.BssRelRo);
1772   finalizeSynthetic(In.GnuHashTab);
1773   finalizeSynthetic(In.HashTab);
1774   finalizeSynthetic(In.SymTabShndx);
1775   finalizeSynthetic(In.ShStrTab);
1776   finalizeSynthetic(In.StrTab);
1777   finalizeSynthetic(In.VerDef);
1778   finalizeSynthetic(In.DynStrTab);
1779   finalizeSynthetic(In.Got);
1780   finalizeSynthetic(In.MipsGot);
1781   finalizeSynthetic(In.IgotPlt);
1782   finalizeSynthetic(In.GotPlt);
1783   finalizeSynthetic(In.RelaDyn);
1784   finalizeSynthetic(In.RelrDyn);
1785   finalizeSynthetic(In.RelaIplt);
1786   finalizeSynthetic(In.RelaPlt);
1787   finalizeSynthetic(In.Plt);
1788   finalizeSynthetic(In.Iplt);
1789   finalizeSynthetic(In.EhFrameHdr);
1790   finalizeSynthetic(InX<ELFT>::VerSym);
1791   finalizeSynthetic(InX<ELFT>::VerNeed);
1792   finalizeSynthetic(In.Dynamic);
1793
1794   if (!Script->HasSectionsCommand && !Config->Relocatable)
1795     fixSectionAlignments();
1796
1797   // After link order processing .ARM.exidx sections can be deduplicated, which
1798   // needs to be resolved before any other address dependent operation.
1799   resolveShfLinkOrder();
1800
1801   // Jump instructions in many ISAs have small displacements, and therefore they
1802   // cannot jump to arbitrary addresses in memory. For example, RISC-V JAL
1803   // instruction can target only +-1 MiB from PC. It is a linker's
1804   // responsibility to create and insert small pieces of code between sections
1805   // to extend the ranges if jump targets are out of range. Such code pieces are
1806   // called "thunks".
1807   //
1808   // We add thunks at this stage. We couldn't do this before this point because
1809   // this is the earliest point where we know sizes of sections and their
1810   // layouts (that are needed to determine if jump targets are in range).
1811   maybeAddThunks();
1812
1813   // maybeAddThunks may have added local symbols to the static symbol table.
1814   finalizeSynthetic(In.SymTab);
1815   finalizeSynthetic(In.PPC64LongBranchTarget);
1816
1817   // Fill other section headers. The dynamic table is finalized
1818   // at the end because some tags like RELSZ depend on result
1819   // of finalizing other sections.
1820   for (OutputSection *Sec : OutputSections)
1821     Sec->finalize<ELFT>();
1822 }
1823
1824 // Ensure data sections are not mixed with executable sections when
1825 // -execute-only is used. -execute-only is a feature to make pages executable
1826 // but not readable, and the feature is currently supported only on AArch64.
1827 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
1828   if (!Config->ExecuteOnly)
1829     return;
1830
1831   for (OutputSection *OS : OutputSections)
1832     if (OS->Flags & SHF_EXECINSTR)
1833       for (InputSection *IS : getInputSections(OS))
1834         if (!(IS->Flags & SHF_EXECINSTR))
1835           error("cannot place " + toString(IS) + " into " + toString(OS->Name) +
1836                 ": -execute-only does not support intermingling data and code");
1837 }
1838
1839 // The linker is expected to define SECNAME_start and SECNAME_end
1840 // symbols for a few sections. This function defines them.
1841 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
1842   // If a section does not exist, there's ambiguity as to how we
1843   // define _start and _end symbols for an init/fini section. Since
1844   // the loader assume that the symbols are always defined, we need to
1845   // always define them. But what value? The loader iterates over all
1846   // pointers between _start and _end to run global ctors/dtors, so if
1847   // the section is empty, their symbol values don't actually matter
1848   // as long as _start and _end point to the same location.
1849   //
1850   // That said, we don't want to set the symbols to 0 (which is
1851   // probably the simplest value) because that could cause some
1852   // program to fail to link due to relocation overflow, if their
1853   // program text is above 2 GiB. We use the address of the .text
1854   // section instead to prevent that failure.
1855   //
1856   // In a rare sitaution, .text section may not exist. If that's the
1857   // case, use the image base address as a last resort.
1858   OutputSection *Default = findSection(".text");
1859   if (!Default)
1860     Default = Out::ElfHeader;
1861
1862   auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) {
1863     if (OS) {
1864       addOptionalRegular(Start, OS, 0);
1865       addOptionalRegular(End, OS, -1);
1866     } else {
1867       addOptionalRegular(Start, Default, 0);
1868       addOptionalRegular(End, Default, 0);
1869     }
1870   };
1871
1872   Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray);
1873   Define("__init_array_start", "__init_array_end", Out::InitArray);
1874   Define("__fini_array_start", "__fini_array_end", Out::FiniArray);
1875
1876   if (OutputSection *Sec = findSection(".ARM.exidx"))
1877     Define("__exidx_start", "__exidx_end", Sec);
1878 }
1879
1880 // If a section name is valid as a C identifier (which is rare because of
1881 // the leading '.'), linkers are expected to define __start_<secname> and
1882 // __stop_<secname> symbols. They are at beginning and end of the section,
1883 // respectively. This is not requested by the ELF standard, but GNU ld and
1884 // gold provide the feature, and used by many programs.
1885 template <class ELFT>
1886 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) {
1887   StringRef S = Sec->Name;
1888   if (!isValidCIdentifier(S))
1889     return;
1890   addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED);
1891   addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED);
1892 }
1893
1894 static bool needsPtLoad(OutputSection *Sec) {
1895   if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload)
1896     return false;
1897
1898   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
1899   // responsible for allocating space for them, not the PT_LOAD that
1900   // contains the TLS initialization image.
1901   if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS)
1902     return false;
1903   return true;
1904 }
1905
1906 // Linker scripts are responsible for aligning addresses. Unfortunately, most
1907 // linker scripts are designed for creating two PT_LOADs only, one RX and one
1908 // RW. This means that there is no alignment in the RO to RX transition and we
1909 // cannot create a PT_LOAD there.
1910 static uint64_t computeFlags(uint64_t Flags) {
1911   if (Config->Omagic)
1912     return PF_R | PF_W | PF_X;
1913   if (Config->ExecuteOnly && (Flags & PF_X))
1914     return Flags & ~PF_R;
1915   if (Config->SingleRoRx && !(Flags & PF_W))
1916     return Flags | PF_X;
1917   return Flags;
1918 }
1919
1920 // Decide which program headers to create and which sections to include in each
1921 // one.
1922 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() {
1923   std::vector<PhdrEntry *> Ret;
1924   auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * {
1925     Ret.push_back(make<PhdrEntry>(Type, Flags));
1926     return Ret.back();
1927   };
1928
1929   // The first phdr entry is PT_PHDR which describes the program header itself.
1930   AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders);
1931
1932   // PT_INTERP must be the second entry if exists.
1933   if (OutputSection *Cmd = findSection(".interp"))
1934     AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd);
1935
1936   // Add the first PT_LOAD segment for regular output sections.
1937   uint64_t Flags = computeFlags(PF_R);
1938   PhdrEntry *Load = AddHdr(PT_LOAD, Flags);
1939
1940   // Add the headers. We will remove them if they don't fit.
1941   Load->add(Out::ElfHeader);
1942   Load->add(Out::ProgramHeaders);
1943
1944   for (OutputSection *Sec : OutputSections) {
1945     if (!(Sec->Flags & SHF_ALLOC))
1946       break;
1947     if (!needsPtLoad(Sec))
1948       continue;
1949
1950     // Segments are contiguous memory regions that has the same attributes
1951     // (e.g. executable or writable). There is one phdr for each segment.
1952     // Therefore, we need to create a new phdr when the next section has
1953     // different flags or is loaded at a discontiguous address or memory
1954     // region using AT or AT> linker script command, respectively. At the same
1955     // time, we don't want to create a separate load segment for the headers,
1956     // even if the first output section has an AT or AT> attribute.
1957     uint64_t NewFlags = computeFlags(Sec->getPhdrFlags());
1958     if (((Sec->LMAExpr ||
1959           (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) &&
1960          Load->LastSec != Out::ProgramHeaders) ||
1961         Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) {
1962
1963       Load = AddHdr(PT_LOAD, NewFlags);
1964       Flags = NewFlags;
1965     }
1966
1967     Load->add(Sec);
1968   }
1969
1970   // Add a TLS segment if any.
1971   PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
1972   for (OutputSection *Sec : OutputSections)
1973     if (Sec->Flags & SHF_TLS)
1974       TlsHdr->add(Sec);
1975   if (TlsHdr->FirstSec)
1976     Ret.push_back(TlsHdr);
1977
1978   // Add an entry for .dynamic.
1979   if (OutputSection *Sec = In.Dynamic->getParent())
1980     AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec);
1981
1982   // PT_GNU_RELRO includes all sections that should be marked as
1983   // read-only by dynamic linker after proccessing relocations.
1984   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
1985   // an error message if more than one PT_GNU_RELRO PHDR is required.
1986   PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
1987   bool InRelroPhdr = false;
1988   bool IsRelroFinished = false;
1989   for (OutputSection *Sec : OutputSections) {
1990     if (!needsPtLoad(Sec))
1991       continue;
1992     if (isRelroSection(Sec)) {
1993       InRelroPhdr = true;
1994       if (!IsRelroFinished)
1995         RelRo->add(Sec);
1996       else
1997         error("section: " + Sec->Name + " is not contiguous with other relro" +
1998               " sections");
1999     } else if (InRelroPhdr) {
2000       InRelroPhdr = false;
2001       IsRelroFinished = true;
2002     }
2003   }
2004   if (RelRo->FirstSec)
2005     Ret.push_back(RelRo);
2006
2007   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2008   if (!In.EhFrame->empty() && In.EhFrameHdr && In.EhFrame->getParent() &&
2009       In.EhFrameHdr->getParent())
2010     AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags())
2011         ->add(In.EhFrameHdr->getParent());
2012
2013   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2014   // the dynamic linker fill the segment with random data.
2015   if (OutputSection *Cmd = findSection(".openbsd.randomdata"))
2016     AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd);
2017
2018   // PT_GNU_STACK is a special section to tell the loader to make the
2019   // pages for the stack non-executable. If you really want an executable
2020   // stack, you can pass -z execstack, but that's not recommended for
2021   // security reasons.
2022   unsigned Perm = PF_R | PF_W;
2023   if (Config->ZExecstack)
2024     Perm |= PF_X;
2025   AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize;
2026
2027   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2028   // is expected to perform W^X violations, such as calling mprotect(2) or
2029   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2030   // OpenBSD.
2031   if (Config->ZWxneeded)
2032     AddHdr(PT_OPENBSD_WXNEEDED, PF_X);
2033
2034   // Create one PT_NOTE per a group of contiguous .note sections.
2035   PhdrEntry *Note = nullptr;
2036   for (OutputSection *Sec : OutputSections) {
2037     if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) {
2038       if (!Note || Sec->LMAExpr)
2039         Note = AddHdr(PT_NOTE, PF_R);
2040       Note->add(Sec);
2041     } else {
2042       Note = nullptr;
2043     }
2044   }
2045   return Ret;
2046 }
2047
2048 template <class ELFT>
2049 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) {
2050   if (Config->EMachine != EM_ARM)
2051     return;
2052   auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) {
2053     return Cmd->Type == SHT_ARM_EXIDX;
2054   });
2055   if (I == OutputSections.end())
2056     return;
2057
2058   // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2059   PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R);
2060   ARMExidx->add(*I);
2061   Phdrs.push_back(ARMExidx);
2062 }
2063
2064 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
2065 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic
2066 // linker can set the permissions.
2067 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2068   auto PageAlign = [](OutputSection *Cmd) {
2069     if (Cmd && !Cmd->AddrExpr)
2070       Cmd->AddrExpr = [=] {
2071         return alignTo(Script->getDot(), Config->MaxPageSize);
2072       };
2073   };
2074
2075   for (const PhdrEntry *P : Phdrs)
2076     if (P->p_type == PT_LOAD && P->FirstSec)
2077       PageAlign(P->FirstSec);
2078
2079   for (const PhdrEntry *P : Phdrs) {
2080     if (P->p_type != PT_GNU_RELRO)
2081       continue;
2082
2083     if (P->FirstSec)
2084       PageAlign(P->FirstSec);
2085
2086     // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
2087     // have to align it to a page.
2088     auto End = OutputSections.end();
2089     auto I = std::find(OutputSections.begin(), End, P->LastSec);
2090     if (I == End || (I + 1) == End)
2091       continue;
2092
2093     OutputSection *Cmd = (*(I + 1));
2094     if (needsPtLoad(Cmd))
2095       PageAlign(Cmd);
2096   }
2097 }
2098
2099 // Compute an in-file position for a given section. The file offset must be the
2100 // same with its virtual address modulo the page size, so that the loader can
2101 // load executables without any address adjustment.
2102 static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) {
2103   // File offsets are not significant for .bss sections. By convention, we keep
2104   // section offsets monotonically increasing rather than setting to zero.
2105   if (OS->Type == SHT_NOBITS)
2106     return Off;
2107
2108   // If the section is not in a PT_LOAD, we just have to align it.
2109   if (!OS->PtLoad)
2110     return alignTo(Off, OS->Alignment);
2111
2112   // The first section in a PT_LOAD has to have congruent offset and address
2113   // module the page size.
2114   OutputSection *First = OS->PtLoad->FirstSec;
2115   if (OS == First) {
2116     uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize);
2117     return alignTo(Off, Alignment, OS->Addr);
2118   }
2119
2120   // If two sections share the same PT_LOAD the file offset is calculated
2121   // using this formula: Off2 = Off1 + (VA2 - VA1).
2122   return First->Offset + OS->Addr - First->Addr;
2123 }
2124
2125 // Set an in-file position to a given section and returns the end position of
2126 // the section.
2127 static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) {
2128   Off = computeFileOffset(OS, Off);
2129   OS->Offset = Off;
2130
2131   if (OS->Type == SHT_NOBITS)
2132     return Off;
2133   return Off + OS->Size;
2134 }
2135
2136 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2137   uint64_t Off = 0;
2138   for (OutputSection *Sec : OutputSections)
2139     if (Sec->Flags & SHF_ALLOC)
2140       Off = setFileOffset(Sec, Off);
2141   FileSize = alignTo(Off, Config->Wordsize);
2142 }
2143
2144 static std::string rangeToString(uint64_t Addr, uint64_t Len) {
2145   return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]";
2146 }
2147
2148 // Assign file offsets to output sections.
2149 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2150   uint64_t Off = 0;
2151   Off = setFileOffset(Out::ElfHeader, Off);
2152   Off = setFileOffset(Out::ProgramHeaders, Off);
2153
2154   PhdrEntry *LastRX = nullptr;
2155   for (PhdrEntry *P : Phdrs)
2156     if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
2157       LastRX = P;
2158
2159   for (OutputSection *Sec : OutputSections) {
2160     Off = setFileOffset(Sec, Off);
2161     if (Script->HasSectionsCommand)
2162       continue;
2163
2164     // If this is a last section of the last executable segment and that
2165     // segment is the last loadable segment, align the offset of the
2166     // following section to avoid loading non-segments parts of the file.
2167     if (LastRX && LastRX->LastSec == Sec)
2168       Off = alignTo(Off, Target->PageSize);
2169   }
2170
2171   SectionHeaderOff = alignTo(Off, Config->Wordsize);
2172   FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
2173
2174   // Our logic assumes that sections have rising VA within the same segment.
2175   // With use of linker scripts it is possible to violate this rule and get file
2176   // offset overlaps or overflows. That should never happen with a valid script
2177   // which does not move the location counter backwards and usually scripts do
2178   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2179   // kernel, which control segment distribution explicitly and move the counter
2180   // backwards, so we have to allow doing that to support linking them. We
2181   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2182   // we want to prevent file size overflows because it would crash the linker.
2183   for (OutputSection *Sec : OutputSections) {
2184     if (Sec->Type == SHT_NOBITS)
2185       continue;
2186     if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize))
2187       error("unable to place section " + Sec->Name + " at file offset " +
2188             rangeToString(Sec->Offset, Sec->Size) +
2189             "; check your linker script for overflows");
2190   }
2191 }
2192
2193 // Finalize the program headers. We call this function after we assign
2194 // file offsets and VAs to all sections.
2195 template <class ELFT> void Writer<ELFT>::setPhdrs() {
2196   for (PhdrEntry *P : Phdrs) {
2197     OutputSection *First = P->FirstSec;
2198     OutputSection *Last = P->LastSec;
2199
2200     if (First) {
2201       P->p_filesz = Last->Offset - First->Offset;
2202       if (Last->Type != SHT_NOBITS)
2203         P->p_filesz += Last->Size;
2204
2205       P->p_memsz = Last->Addr + Last->Size - First->Addr;
2206       P->p_offset = First->Offset;
2207       P->p_vaddr = First->Addr;
2208
2209       if (!P->HasLMA)
2210         P->p_paddr = First->getLMA();
2211     }
2212
2213     if (P->p_type == PT_LOAD) {
2214       P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize);
2215     } else if (P->p_type == PT_GNU_RELRO) {
2216       P->p_align = 1;
2217       // The glibc dynamic loader rounds the size down, so we need to round up
2218       // to protect the last page. This is a no-op on FreeBSD which always
2219       // rounds up.
2220       P->p_memsz = alignTo(P->p_memsz, Target->PageSize);
2221     }
2222
2223     if (P->p_type == PT_TLS && P->p_memsz) {
2224       // The TLS pointer goes after PT_TLS for variant 2 targets. At least glibc
2225       // will align it, so round up the size to make sure the offsets are
2226       // correct.
2227       P->p_memsz = alignTo(P->p_memsz, P->p_align);
2228     }
2229   }
2230 }
2231
2232 // A helper struct for checkSectionOverlap.
2233 namespace {
2234 struct SectionOffset {
2235   OutputSection *Sec;
2236   uint64_t Offset;
2237 };
2238 } // namespace
2239
2240 // Check whether sections overlap for a specific address range (file offsets,
2241 // load and virtual adresses).
2242 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections,
2243                          bool IsVirtualAddr) {
2244   llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) {
2245     return A.Offset < B.Offset;
2246   });
2247
2248   // Finding overlap is easy given a vector is sorted by start position.
2249   // If an element starts before the end of the previous element, they overlap.
2250   for (size_t I = 1, End = Sections.size(); I < End; ++I) {
2251     SectionOffset A = Sections[I - 1];
2252     SectionOffset B = Sections[I];
2253     if (B.Offset >= A.Offset + A.Sec->Size)
2254       continue;
2255
2256     // If both sections are in OVERLAY we allow the overlapping of virtual
2257     // addresses, because it is what OVERLAY was designed for.
2258     if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay)
2259       continue;
2260
2261     errorOrWarn("section " + A.Sec->Name + " " + Name +
2262                 " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name +
2263                 " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " +
2264                 B.Sec->Name + " range is " +
2265                 rangeToString(B.Offset, B.Sec->Size));
2266   }
2267 }
2268
2269 // Check for overlapping sections and address overflows.
2270 //
2271 // In this function we check that none of the output sections have overlapping
2272 // file offsets. For SHF_ALLOC sections we also check that the load address
2273 // ranges and the virtual address ranges don't overlap
2274 template <class ELFT> void Writer<ELFT>::checkSections() {
2275   // First, check that section's VAs fit in available address space for target.
2276   for (OutputSection *OS : OutputSections)
2277     if ((OS->Addr + OS->Size < OS->Addr) ||
2278         (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX))
2279       errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) +
2280                   " of size 0x" + utohexstr(OS->Size) +
2281                   " exceeds available address space");
2282
2283   // Check for overlapping file offsets. In this case we need to skip any
2284   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2285   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2286   // binary is specified only add SHF_ALLOC sections are added to the output
2287   // file so we skip any non-allocated sections in that case.
2288   std::vector<SectionOffset> FileOffs;
2289   for (OutputSection *Sec : OutputSections)
2290     if (Sec->Size > 0 && Sec->Type != SHT_NOBITS &&
2291         (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC)))
2292       FileOffs.push_back({Sec, Sec->Offset});
2293   checkOverlap("file", FileOffs, false);
2294
2295   // When linking with -r there is no need to check for overlapping virtual/load
2296   // addresses since those addresses will only be assigned when the final
2297   // executable/shared object is created.
2298   if (Config->Relocatable)
2299     return;
2300
2301   // Checking for overlapping virtual and load addresses only needs to take
2302   // into account SHF_ALLOC sections since others will not be loaded.
2303   // Furthermore, we also need to skip SHF_TLS sections since these will be
2304   // mapped to other addresses at runtime and can therefore have overlapping
2305   // ranges in the file.
2306   std::vector<SectionOffset> VMAs;
2307   for (OutputSection *Sec : OutputSections)
2308     if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
2309       VMAs.push_back({Sec, Sec->Addr});
2310   checkOverlap("virtual address", VMAs, true);
2311
2312   // Finally, check that the load addresses don't overlap. This will usually be
2313   // the same as the virtual addresses but can be different when using a linker
2314   // script with AT().
2315   std::vector<SectionOffset> LMAs;
2316   for (OutputSection *Sec : OutputSections)
2317     if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
2318       LMAs.push_back({Sec, Sec->getLMA()});
2319   checkOverlap("load address", LMAs, false);
2320 }
2321
2322 // The entry point address is chosen in the following ways.
2323 //
2324 // 1. the '-e' entry command-line option;
2325 // 2. the ENTRY(symbol) command in a linker control script;
2326 // 3. the value of the symbol _start, if present;
2327 // 4. the number represented by the entry symbol, if it is a number;
2328 // 5. the address of the first byte of the .text section, if present;
2329 // 6. the address 0.
2330 static uint64_t getEntryAddr() {
2331   // Case 1, 2 or 3
2332   if (Symbol *B = Symtab->find(Config->Entry))
2333     return B->getVA();
2334
2335   // Case 4
2336   uint64_t Addr;
2337   if (to_integer(Config->Entry, Addr))
2338     return Addr;
2339
2340   // Case 5
2341   if (OutputSection *Sec = findSection(".text")) {
2342     if (Config->WarnMissingEntry)
2343       warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" +
2344            utohexstr(Sec->Addr));
2345     return Sec->Addr;
2346   }
2347
2348   // Case 6
2349   if (Config->WarnMissingEntry)
2350     warn("cannot find entry symbol " + Config->Entry +
2351          "; not setting start address");
2352   return 0;
2353 }
2354
2355 static uint16_t getELFType() {
2356   if (Config->Pic)
2357     return ET_DYN;
2358   if (Config->Relocatable)
2359     return ET_REL;
2360   return ET_EXEC;
2361 }
2362
2363 static uint8_t getAbiVersion() {
2364   // MIPS non-PIC executable gets ABI version 1.
2365   if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC &&
2366       (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
2367     return 1;
2368   return 0;
2369 }
2370
2371 template <class ELFT> void Writer<ELFT>::writeHeader() {
2372   uint8_t *Buf = Buffer->getBufferStart();
2373
2374   // For executable segments, the trap instructions are written before writing
2375   // the header. Setting Elf header bytes to zero ensures that any unused bytes
2376   // in header are zero-cleared, instead of having trap instructions.
2377   memset(Buf, 0, sizeof(Elf_Ehdr));
2378   memcpy(Buf, "\177ELF", 4);
2379
2380   // Write the ELF header.
2381   auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
2382   EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32;
2383   EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB;
2384   EHdr->e_ident[EI_VERSION] = EV_CURRENT;
2385   EHdr->e_ident[EI_OSABI] = Config->OSABI;
2386   EHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
2387   EHdr->e_type = getELFType();
2388   EHdr->e_machine = Config->EMachine;
2389   EHdr->e_version = EV_CURRENT;
2390   EHdr->e_entry = getEntryAddr();
2391   EHdr->e_shoff = SectionHeaderOff;
2392   EHdr->e_flags = Config->EFlags;
2393   EHdr->e_ehsize = sizeof(Elf_Ehdr);
2394   EHdr->e_phnum = Phdrs.size();
2395   EHdr->e_shentsize = sizeof(Elf_Shdr);
2396
2397   if (!Config->Relocatable) {
2398     EHdr->e_phoff = sizeof(Elf_Ehdr);
2399     EHdr->e_phentsize = sizeof(Elf_Phdr);
2400   }
2401
2402   // Write the program header table.
2403   auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
2404   for (PhdrEntry *P : Phdrs) {
2405     HBuf->p_type = P->p_type;
2406     HBuf->p_flags = P->p_flags;
2407     HBuf->p_offset = P->p_offset;
2408     HBuf->p_vaddr = P->p_vaddr;
2409     HBuf->p_paddr = P->p_paddr;
2410     HBuf->p_filesz = P->p_filesz;
2411     HBuf->p_memsz = P->p_memsz;
2412     HBuf->p_align = P->p_align;
2413     ++HBuf;
2414   }
2415
2416   // Write the section header table.
2417   //
2418   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2419   // and e_shstrndx fields. When the value of one of these fields exceeds
2420   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2421   // use fields in the section header at index 0 to store
2422   // the value. The sentinel values and fields are:
2423   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2424   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2425   auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
2426   size_t Num = OutputSections.size() + 1;
2427   if (Num >= SHN_LORESERVE)
2428     SHdrs->sh_size = Num;
2429   else
2430     EHdr->e_shnum = Num;
2431
2432   uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex;
2433   if (StrTabIndex >= SHN_LORESERVE) {
2434     SHdrs->sh_link = StrTabIndex;
2435     EHdr->e_shstrndx = SHN_XINDEX;
2436   } else {
2437     EHdr->e_shstrndx = StrTabIndex;
2438   }
2439
2440   for (OutputSection *Sec : OutputSections)
2441     Sec->writeHeaderTo<ELFT>(++SHdrs);
2442 }
2443
2444 // Open a result file.
2445 template <class ELFT> void Writer<ELFT>::openFile() {
2446   uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX;
2447   if (MaxSize < FileSize) {
2448     error("output file too large: " + Twine(FileSize) + " bytes");
2449     return;
2450   }
2451
2452   unlinkAsync(Config->OutputFile);
2453   unsigned Flags = 0;
2454   if (!Config->Relocatable)
2455     Flags = FileOutputBuffer::F_executable;
2456   Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
2457       FileOutputBuffer::create(Config->OutputFile, FileSize, Flags);
2458
2459   if (!BufferOrErr)
2460     error("failed to open " + Config->OutputFile + ": " +
2461           llvm::toString(BufferOrErr.takeError()));
2462   else
2463     Buffer = std::move(*BufferOrErr);
2464 }
2465
2466 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2467   uint8_t *Buf = Buffer->getBufferStart();
2468   for (OutputSection *Sec : OutputSections)
2469     if (Sec->Flags & SHF_ALLOC)
2470       Sec->writeTo<ELFT>(Buf + Sec->Offset);
2471 }
2472
2473 static void fillTrap(uint8_t *I, uint8_t *End) {
2474   for (; I + 4 <= End; I += 4)
2475     memcpy(I, &Target->TrapInstr, 4);
2476 }
2477
2478 // Fill the last page of executable segments with trap instructions
2479 // instead of leaving them as zero. Even though it is not required by any
2480 // standard, it is in general a good thing to do for security reasons.
2481 //
2482 // We'll leave other pages in segments as-is because the rest will be
2483 // overwritten by output sections.
2484 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2485   if (Script->HasSectionsCommand)
2486     return;
2487
2488   // Fill the last page.
2489   uint8_t *Buf = Buffer->getBufferStart();
2490   for (PhdrEntry *P : Phdrs)
2491     if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
2492       fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize),
2493                Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize));
2494
2495   // Round up the file size of the last segment to the page boundary iff it is
2496   // an executable segment to ensure that other tools don't accidentally
2497   // trim the instruction padding (e.g. when stripping the file).
2498   PhdrEntry *Last = nullptr;
2499   for (PhdrEntry *P : Phdrs)
2500     if (P->p_type == PT_LOAD)
2501       Last = P;
2502
2503   if (Last && (Last->p_flags & PF_X))
2504     Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize);
2505 }
2506
2507 // Write section contents to a mmap'ed file.
2508 template <class ELFT> void Writer<ELFT>::writeSections() {
2509   uint8_t *Buf = Buffer->getBufferStart();
2510
2511   OutputSection *EhFrameHdr = nullptr;
2512   if (In.EhFrameHdr && !In.EhFrameHdr->empty())
2513     EhFrameHdr = In.EhFrameHdr->getParent();
2514
2515   // In -r or -emit-relocs mode, write the relocation sections first as in
2516   // ELf_Rel targets we might find out that we need to modify the relocated
2517   // section while doing it.
2518   for (OutputSection *Sec : OutputSections)
2519     if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
2520       Sec->writeTo<ELFT>(Buf + Sec->Offset);
2521
2522   for (OutputSection *Sec : OutputSections)
2523     if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA)
2524       Sec->writeTo<ELFT>(Buf + Sec->Offset);
2525
2526   // The .eh_frame_hdr depends on .eh_frame section contents, therefore
2527   // it should be written after .eh_frame is written.
2528   if (EhFrameHdr)
2529     EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset);
2530 }
2531
2532 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2533   if (!In.BuildId || !In.BuildId->getParent())
2534     return;
2535
2536   // Compute a hash of all sections of the output file.
2537   uint8_t *Start = Buffer->getBufferStart();
2538   uint8_t *End = Start + FileSize;
2539   In.BuildId->writeBuildId({Start, End});
2540 }
2541
2542 template void elf::writeResult<ELF32LE>();
2543 template void elf::writeResult<ELF32BE>();
2544 template void elf::writeResult<ELF64LE>();
2545 template void elf::writeResult<ELF64BE>();