]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Expression/IRMemoryMap.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Expression / IRMemoryMap.cpp
1 //===-- IRMemoryMap.cpp -----------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "lldb/Expression/IRMemoryMap.h"
11 #include "lldb/Target/MemoryRegionInfo.h"
12 #include "lldb/Target/Process.h"
13 #include "lldb/Target/Target.h"
14 #include "lldb/Utility/DataBufferHeap.h"
15 #include "lldb/Utility/DataExtractor.h"
16 #include "lldb/Utility/LLDBAssert.h"
17 #include "lldb/Utility/Log.h"
18 #include "lldb/Utility/Scalar.h"
19 #include "lldb/Utility/Status.h"
20
21 using namespace lldb_private;
22
23 IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) {
24   if (target_sp)
25     m_process_wp = target_sp->GetProcessSP();
26 }
27
28 IRMemoryMap::~IRMemoryMap() {
29   lldb::ProcessSP process_sp = m_process_wp.lock();
30
31   if (process_sp) {
32     AllocationMap::iterator iter;
33
34     Status err;
35
36     while ((iter = m_allocations.begin()) != m_allocations.end()) {
37       err.Clear();
38       if (iter->second.m_leak)
39         m_allocations.erase(iter);
40       else
41         Free(iter->first, err);
42     }
43   }
44 }
45
46 lldb::addr_t IRMemoryMap::FindSpace(size_t size) {
47   // The FindSpace algorithm's job is to find a region of memory that the
48   // underlying process is unlikely to be using.
49   //
50   // The memory returned by this function will never be written to.  The only
51   // point is that it should not shadow process memory if possible, so that
52   // expressions processing real values from the process do not use the wrong
53   // data.
54   //
55   // If the process can in fact allocate memory (CanJIT() lets us know this)
56   // then this can be accomplished just be allocating memory in the inferior.
57   // Then no guessing is required.
58
59   lldb::TargetSP target_sp = m_target_wp.lock();
60   lldb::ProcessSP process_sp = m_process_wp.lock();
61
62   const bool process_is_alive = process_sp && process_sp->IsAlive();
63
64   lldb::addr_t ret = LLDB_INVALID_ADDRESS;
65   if (size == 0)
66     return ret;
67
68   if (process_is_alive && process_sp->CanJIT()) {
69     Status alloc_error;
70
71     ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable |
72                                                lldb::ePermissionsWritable,
73                                      alloc_error);
74
75     if (!alloc_error.Success())
76       return LLDB_INVALID_ADDRESS;
77     else
78       return ret;
79   }
80
81   // At this point we know that we need to hunt.
82   //
83   // First, go to the end of the existing allocations we've made if there are
84   // any allocations.  Otherwise start at the beginning of memory.
85
86   if (m_allocations.empty()) {
87     ret = 0x0;
88   } else {
89     auto back = m_allocations.rbegin();
90     lldb::addr_t addr = back->first;
91     size_t alloc_size = back->second.m_size;
92     ret = llvm::alignTo(addr + alloc_size, 4096);
93   }
94
95   // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped
96   // regions, walk forward through memory until a region is found that has
97   // adequate space for our allocation.
98   if (process_is_alive) {
99     const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8
100                                        ? 0xffffffffffffffffull
101                                        : 0xffffffffull;
102
103     lldbassert(process_sp->GetAddressByteSize() == 4 ||
104                end_of_memory != 0xffffffffull);
105
106     MemoryRegionInfo region_info;
107     Status err = process_sp->GetMemoryRegionInfo(ret, region_info);
108     if (err.Success()) {
109       while (true) {
110         if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo ||
111             region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo ||
112             region_info.GetExecutable() !=
113                 MemoryRegionInfo::OptionalBool::eNo) {
114           if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) {
115             ret = LLDB_INVALID_ADDRESS;
116             break;
117           } else {
118             ret = region_info.GetRange().GetRangeEnd();
119           }
120         } else if (ret + size < region_info.GetRange().GetRangeEnd()) {
121           return ret;
122         } else {
123           // ret stays the same.  We just need to walk a bit further.
124         }
125
126         err = process_sp->GetMemoryRegionInfo(
127             region_info.GetRange().GetRangeEnd(), region_info);
128         if (err.Fail()) {
129           lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed");
130           ret = LLDB_INVALID_ADDRESS;
131           break;
132         }
133       }
134     }
135   }
136
137   // We've tried our algorithm, and it didn't work.  Now we have to reset back
138   // to the end of the allocations we've already reported, or use a 'sensible'
139   // default if this is our first allocation.
140
141   if (m_allocations.empty()) {
142     uint32_t address_byte_size = GetAddressByteSize();
143     if (address_byte_size != UINT32_MAX) {
144       switch (address_byte_size) {
145       case 8:
146         ret = 0xffffffff00000000ull;
147         break;
148       case 4:
149         ret = 0xee000000ull;
150         break;
151       default:
152         break;
153       }
154     }
155   } else {
156     auto back = m_allocations.rbegin();
157     lldb::addr_t addr = back->first;
158     size_t alloc_size = back->second.m_size;
159     ret = llvm::alignTo(addr + alloc_size, 4096);
160   }
161
162   return ret;
163 }
164
165 IRMemoryMap::AllocationMap::iterator
166 IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) {
167   if (addr == LLDB_INVALID_ADDRESS)
168     return m_allocations.end();
169
170   AllocationMap::iterator iter = m_allocations.lower_bound(addr);
171
172   if (iter == m_allocations.end() || iter->first > addr) {
173     if (iter == m_allocations.begin())
174       return m_allocations.end();
175     iter--;
176   }
177
178   if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size)
179     return iter;
180
181   return m_allocations.end();
182 }
183
184 bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const {
185   if (addr == LLDB_INVALID_ADDRESS)
186     return false;
187
188   AllocationMap::const_iterator iter = m_allocations.lower_bound(addr);
189
190   // Since we only know that the returned interval begins at a location greater
191   // than or equal to where the given interval begins, it's possible that the
192   // given interval intersects either the returned interval or the previous
193   // interval.  Thus, we need to check both. Note that we only need to check
194   // these two intervals.  Since all intervals are disjoint it is not possible
195   // that an adjacent interval does not intersect, but a non-adjacent interval
196   // does intersect.
197   if (iter != m_allocations.end()) {
198     if (AllocationsIntersect(addr, size, iter->second.m_process_start,
199                              iter->second.m_size))
200       return true;
201   }
202
203   if (iter != m_allocations.begin()) {
204     --iter;
205     if (AllocationsIntersect(addr, size, iter->second.m_process_start,
206                              iter->second.m_size))
207       return true;
208   }
209
210   return false;
211 }
212
213 bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1,
214                                        lldb::addr_t addr2, size_t size2) {
215   // Given two half open intervals [A, B) and [X, Y), the only 6 permutations
216   // that satisfy A<B and X<Y are the following:
217   // A B X Y
218   // A X B Y  (intersects)
219   // A X Y B  (intersects)
220   // X A B Y  (intersects)
221   // X A Y B  (intersects)
222   // X Y A B
223   // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X
224   // || Y <= A)), or (X < B && A < Y)
225   return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2));
226 }
227
228 lldb::ByteOrder IRMemoryMap::GetByteOrder() {
229   lldb::ProcessSP process_sp = m_process_wp.lock();
230
231   if (process_sp)
232     return process_sp->GetByteOrder();
233
234   lldb::TargetSP target_sp = m_target_wp.lock();
235
236   if (target_sp)
237     return target_sp->GetArchitecture().GetByteOrder();
238
239   return lldb::eByteOrderInvalid;
240 }
241
242 uint32_t IRMemoryMap::GetAddressByteSize() {
243   lldb::ProcessSP process_sp = m_process_wp.lock();
244
245   if (process_sp)
246     return process_sp->GetAddressByteSize();
247
248   lldb::TargetSP target_sp = m_target_wp.lock();
249
250   if (target_sp)
251     return target_sp->GetArchitecture().GetAddressByteSize();
252
253   return UINT32_MAX;
254 }
255
256 ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const {
257   lldb::ProcessSP process_sp = m_process_wp.lock();
258
259   if (process_sp)
260     return process_sp.get();
261
262   lldb::TargetSP target_sp = m_target_wp.lock();
263
264   if (target_sp)
265     return target_sp.get();
266
267   return NULL;
268 }
269
270 IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc,
271                                     lldb::addr_t process_start, size_t size,
272                                     uint32_t permissions, uint8_t alignment,
273                                     AllocationPolicy policy)
274     : m_process_alloc(process_alloc), m_process_start(process_start),
275       m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions),
276       m_alignment(alignment) {
277   switch (policy) {
278   default:
279     assert(0 && "We cannot reach this!");
280   case eAllocationPolicyHostOnly:
281   case eAllocationPolicyMirror:
282     m_data.SetByteSize(size);
283     break;
284   case eAllocationPolicyProcessOnly:
285     break;
286   }
287 }
288
289 lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment,
290                                  uint32_t permissions, AllocationPolicy policy,
291                                  bool zero_memory, Status &error) {
292   lldb_private::Log *log(
293       lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
294   error.Clear();
295
296   lldb::ProcessSP process_sp;
297   lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS;
298   lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS;
299
300   size_t allocation_size;
301
302   if (size == 0) {
303     // FIXME: Malloc(0) should either return an invalid address or assert, in
304     // order to cut down on unnecessary allocations.
305     allocation_size = alignment;
306   } else {
307     // Round up the requested size to an aligned value.
308     allocation_size = llvm::alignTo(size, alignment);
309
310     // The process page cache does not see the requested alignment. We can't
311     // assume its result will be any more than 1-byte aligned. To work around
312     // this, request `alignment - 1` additional bytes.
313     allocation_size += alignment - 1;
314   }
315
316   switch (policy) {
317   default:
318     error.SetErrorToGenericError();
319     error.SetErrorString("Couldn't malloc: invalid allocation policy");
320     return LLDB_INVALID_ADDRESS;
321   case eAllocationPolicyHostOnly:
322     allocation_address = FindSpace(allocation_size);
323     if (allocation_address == LLDB_INVALID_ADDRESS) {
324       error.SetErrorToGenericError();
325       error.SetErrorString("Couldn't malloc: address space is full");
326       return LLDB_INVALID_ADDRESS;
327     }
328     break;
329   case eAllocationPolicyMirror:
330     process_sp = m_process_wp.lock();
331     if (log)
332       log->Printf("IRMemoryMap::%s process_sp=0x%" PRIx64
333                   ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s",
334                   __FUNCTION__, (lldb::addr_t)process_sp.get(),
335                   process_sp && process_sp->CanJIT() ? "true" : "false",
336                   process_sp && process_sp->IsAlive() ? "true" : "false");
337     if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) {
338       if (!zero_memory)
339         allocation_address =
340             process_sp->AllocateMemory(allocation_size, permissions, error);
341       else
342         allocation_address =
343             process_sp->CallocateMemory(allocation_size, permissions, error);
344
345       if (!error.Success())
346         return LLDB_INVALID_ADDRESS;
347     } else {
348       if (log)
349         log->Printf("IRMemoryMap::%s switching to eAllocationPolicyHostOnly "
350                     "due to failed condition (see previous expr log message)",
351                     __FUNCTION__);
352       policy = eAllocationPolicyHostOnly;
353       allocation_address = FindSpace(allocation_size);
354       if (allocation_address == LLDB_INVALID_ADDRESS) {
355         error.SetErrorToGenericError();
356         error.SetErrorString("Couldn't malloc: address space is full");
357         return LLDB_INVALID_ADDRESS;
358       }
359     }
360     break;
361   case eAllocationPolicyProcessOnly:
362     process_sp = m_process_wp.lock();
363     if (process_sp) {
364       if (process_sp->CanJIT() && process_sp->IsAlive()) {
365         if (!zero_memory)
366           allocation_address =
367               process_sp->AllocateMemory(allocation_size, permissions, error);
368         else
369           allocation_address =
370               process_sp->CallocateMemory(allocation_size, permissions, error);
371
372         if (!error.Success())
373           return LLDB_INVALID_ADDRESS;
374       } else {
375         error.SetErrorToGenericError();
376         error.SetErrorString(
377             "Couldn't malloc: process doesn't support allocating memory");
378         return LLDB_INVALID_ADDRESS;
379       }
380     } else {
381       error.SetErrorToGenericError();
382       error.SetErrorString("Couldn't malloc: process doesn't exist, and this "
383                            "memory must be in the process");
384       return LLDB_INVALID_ADDRESS;
385     }
386     break;
387   }
388
389   lldb::addr_t mask = alignment - 1;
390   aligned_address = (allocation_address + mask) & (~mask);
391
392   m_allocations.emplace(
393       std::piecewise_construct, std::forward_as_tuple(aligned_address),
394       std::forward_as_tuple(allocation_address, aligned_address,
395                             allocation_size, permissions, alignment, policy));
396
397   if (zero_memory) {
398     Status write_error;
399     std::vector<uint8_t> zero_buf(size, 0);
400     WriteMemory(aligned_address, zero_buf.data(), size, write_error);
401   }
402
403   if (log) {
404     const char *policy_string;
405
406     switch (policy) {
407     default:
408       policy_string = "<invalid policy>";
409       break;
410     case eAllocationPolicyHostOnly:
411       policy_string = "eAllocationPolicyHostOnly";
412       break;
413     case eAllocationPolicyProcessOnly:
414       policy_string = "eAllocationPolicyProcessOnly";
415       break;
416     case eAllocationPolicyMirror:
417       policy_string = "eAllocationPolicyMirror";
418       break;
419     }
420
421     log->Printf("IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64
422                 ", %s) -> 0x%" PRIx64,
423                 (uint64_t)allocation_size, (uint64_t)alignment,
424                 (uint64_t)permissions, policy_string, aligned_address);
425   }
426
427   return aligned_address;
428 }
429
430 void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) {
431   error.Clear();
432
433   AllocationMap::iterator iter = m_allocations.find(process_address);
434
435   if (iter == m_allocations.end()) {
436     error.SetErrorToGenericError();
437     error.SetErrorString("Couldn't leak: allocation doesn't exist");
438     return;
439   }
440
441   Allocation &allocation = iter->second;
442
443   allocation.m_leak = true;
444 }
445
446 void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) {
447   error.Clear();
448
449   AllocationMap::iterator iter = m_allocations.find(process_address);
450
451   if (iter == m_allocations.end()) {
452     error.SetErrorToGenericError();
453     error.SetErrorString("Couldn't free: allocation doesn't exist");
454     return;
455   }
456
457   Allocation &allocation = iter->second;
458
459   switch (allocation.m_policy) {
460   default:
461   case eAllocationPolicyHostOnly: {
462     lldb::ProcessSP process_sp = m_process_wp.lock();
463     if (process_sp) {
464       if (process_sp->CanJIT() && process_sp->IsAlive())
465         process_sp->DeallocateMemory(
466             allocation.m_process_alloc); // FindSpace allocated this for real
467     }
468
469     break;
470   }
471   case eAllocationPolicyMirror:
472   case eAllocationPolicyProcessOnly: {
473     lldb::ProcessSP process_sp = m_process_wp.lock();
474     if (process_sp)
475       process_sp->DeallocateMemory(allocation.m_process_alloc);
476   }
477   }
478
479   if (lldb_private::Log *log =
480           lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
481     log->Printf("IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64
482                 "..0x%" PRIx64 ")",
483                 (uint64_t)process_address, iter->second.m_process_start,
484                 iter->second.m_process_start + iter->second.m_size);
485   }
486
487   m_allocations.erase(iter);
488 }
489
490 bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) {
491   AllocationMap::iterator iter = FindAllocation(address, size);
492   if (iter == m_allocations.end())
493     return false;
494
495   Allocation &al = iter->second;
496
497   if (address > (al.m_process_start + al.m_size)) {
498     size = 0;
499     return false;
500   }
501
502   if (address > al.m_process_start) {
503     int dif = address - al.m_process_start;
504     size = al.m_size - dif;
505     return true;
506   }
507
508   size = al.m_size;
509   return true;
510 }
511
512 void IRMemoryMap::WriteMemory(lldb::addr_t process_address,
513                               const uint8_t *bytes, size_t size,
514                               Status &error) {
515   error.Clear();
516
517   AllocationMap::iterator iter = FindAllocation(process_address, size);
518
519   if (iter == m_allocations.end()) {
520     lldb::ProcessSP process_sp = m_process_wp.lock();
521
522     if (process_sp) {
523       process_sp->WriteMemory(process_address, bytes, size, error);
524       return;
525     }
526
527     error.SetErrorToGenericError();
528     error.SetErrorString("Couldn't write: no allocation contains the target "
529                          "range and the process doesn't exist");
530     return;
531   }
532
533   Allocation &allocation = iter->second;
534
535   uint64_t offset = process_address - allocation.m_process_start;
536
537   lldb::ProcessSP process_sp;
538
539   switch (allocation.m_policy) {
540   default:
541     error.SetErrorToGenericError();
542     error.SetErrorString("Couldn't write: invalid allocation policy");
543     return;
544   case eAllocationPolicyHostOnly:
545     if (!allocation.m_data.GetByteSize()) {
546       error.SetErrorToGenericError();
547       error.SetErrorString("Couldn't write: data buffer is empty");
548       return;
549     }
550     ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
551     break;
552   case eAllocationPolicyMirror:
553     if (!allocation.m_data.GetByteSize()) {
554       error.SetErrorToGenericError();
555       error.SetErrorString("Couldn't write: data buffer is empty");
556       return;
557     }
558     ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
559     process_sp = m_process_wp.lock();
560     if (process_sp) {
561       process_sp->WriteMemory(process_address, bytes, size, error);
562       if (!error.Success())
563         return;
564     }
565     break;
566   case eAllocationPolicyProcessOnly:
567     process_sp = m_process_wp.lock();
568     if (process_sp) {
569       process_sp->WriteMemory(process_address, bytes, size, error);
570       if (!error.Success())
571         return;
572     }
573     break;
574   }
575
576   if (lldb_private::Log *log =
577           lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
578     log->Printf("IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIx64
579                 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")",
580                 (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size,
581                 (uint64_t)allocation.m_process_start,
582                 (uint64_t)allocation.m_process_start +
583                     (uint64_t)allocation.m_size);
584   }
585 }
586
587 void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address,
588                                       Scalar &scalar, size_t size,
589                                       Status &error) {
590   error.Clear();
591
592   if (size == UINT32_MAX)
593     size = scalar.GetByteSize();
594
595   if (size > 0) {
596     uint8_t buf[32];
597     const size_t mem_size =
598         scalar.GetAsMemoryData(buf, size, GetByteOrder(), error);
599     if (mem_size > 0) {
600       return WriteMemory(process_address, buf, mem_size, error);
601     } else {
602       error.SetErrorToGenericError();
603       error.SetErrorString(
604           "Couldn't write scalar: failed to get scalar as memory data");
605     }
606   } else {
607     error.SetErrorToGenericError();
608     error.SetErrorString("Couldn't write scalar: its size was zero");
609   }
610   return;
611 }
612
613 void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address,
614                                        lldb::addr_t address, Status &error) {
615   error.Clear();
616
617   Scalar scalar(address);
618
619   WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error);
620 }
621
622 void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address,
623                              size_t size, Status &error) {
624   error.Clear();
625
626   AllocationMap::iterator iter = FindAllocation(process_address, size);
627
628   if (iter == m_allocations.end()) {
629     lldb::ProcessSP process_sp = m_process_wp.lock();
630
631     if (process_sp) {
632       process_sp->ReadMemory(process_address, bytes, size, error);
633       return;
634     }
635
636     lldb::TargetSP target_sp = m_target_wp.lock();
637
638     if (target_sp) {
639       Address absolute_address(process_address);
640       target_sp->ReadMemory(absolute_address, false, bytes, size, error);
641       return;
642     }
643
644     error.SetErrorToGenericError();
645     error.SetErrorString("Couldn't read: no allocation contains the target "
646                          "range, and neither the process nor the target exist");
647     return;
648   }
649
650   Allocation &allocation = iter->second;
651
652   uint64_t offset = process_address - allocation.m_process_start;
653
654   if (offset > allocation.m_size) {
655     error.SetErrorToGenericError();
656     error.SetErrorString("Couldn't read: data is not in the allocation");
657     return;
658   }
659
660   lldb::ProcessSP process_sp;
661
662   switch (allocation.m_policy) {
663   default:
664     error.SetErrorToGenericError();
665     error.SetErrorString("Couldn't read: invalid allocation policy");
666     return;
667   case eAllocationPolicyHostOnly:
668     if (!allocation.m_data.GetByteSize()) {
669       error.SetErrorToGenericError();
670       error.SetErrorString("Couldn't read: data buffer is empty");
671       return;
672     }
673     if (allocation.m_data.GetByteSize() < offset + size) {
674       error.SetErrorToGenericError();
675       error.SetErrorString("Couldn't read: not enough underlying data");
676       return;
677     }
678
679     ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
680     break;
681   case eAllocationPolicyMirror:
682     process_sp = m_process_wp.lock();
683     if (process_sp) {
684       process_sp->ReadMemory(process_address, bytes, size, error);
685       if (!error.Success())
686         return;
687     } else {
688       if (!allocation.m_data.GetByteSize()) {
689         error.SetErrorToGenericError();
690         error.SetErrorString("Couldn't read: data buffer is empty");
691         return;
692       }
693       ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
694     }
695     break;
696   case eAllocationPolicyProcessOnly:
697     process_sp = m_process_wp.lock();
698     if (process_sp) {
699       process_sp->ReadMemory(process_address, bytes, size, error);
700       if (!error.Success())
701         return;
702     }
703     break;
704   }
705
706   if (lldb_private::Log *log =
707           lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) {
708     log->Printf("IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIx64
709                 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")",
710                 (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size,
711                 (uint64_t)allocation.m_process_start,
712                 (uint64_t)allocation.m_process_start +
713                     (uint64_t)allocation.m_size);
714   }
715 }
716
717 void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar,
718                                        lldb::addr_t process_address,
719                                        size_t size, Status &error) {
720   error.Clear();
721
722   if (size > 0) {
723     DataBufferHeap buf(size, 0);
724     ReadMemory(buf.GetBytes(), process_address, size, error);
725
726     if (!error.Success())
727       return;
728
729     DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(),
730                             GetAddressByteSize());
731
732     lldb::offset_t offset = 0;
733
734     switch (size) {
735     default:
736       error.SetErrorToGenericError();
737       error.SetErrorStringWithFormat(
738           "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size);
739       return;
740     case 1:
741       scalar = extractor.GetU8(&offset);
742       break;
743     case 2:
744       scalar = extractor.GetU16(&offset);
745       break;
746     case 4:
747       scalar = extractor.GetU32(&offset);
748       break;
749     case 8:
750       scalar = extractor.GetU64(&offset);
751       break;
752     }
753   } else {
754     error.SetErrorToGenericError();
755     error.SetErrorString("Couldn't read scalar: its size was zero");
756   }
757   return;
758 }
759
760 void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address,
761                                         lldb::addr_t process_address,
762                                         Status &error) {
763   error.Clear();
764
765   Scalar pointer_scalar;
766   ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(),
767                        error);
768
769   if (!error.Success())
770     return;
771
772   *address = pointer_scalar.ULongLong();
773
774   return;
775 }
776
777 void IRMemoryMap::GetMemoryData(DataExtractor &extractor,
778                                 lldb::addr_t process_address, size_t size,
779                                 Status &error) {
780   error.Clear();
781
782   if (size > 0) {
783     AllocationMap::iterator iter = FindAllocation(process_address, size);
784
785     if (iter == m_allocations.end()) {
786       error.SetErrorToGenericError();
787       error.SetErrorStringWithFormat(
788           "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64
789           ")",
790           process_address, process_address + size);
791       return;
792     }
793
794     Allocation &allocation = iter->second;
795
796     switch (allocation.m_policy) {
797     default:
798       error.SetErrorToGenericError();
799       error.SetErrorString(
800           "Couldn't get memory data: invalid allocation policy");
801       return;
802     case eAllocationPolicyProcessOnly:
803       error.SetErrorToGenericError();
804       error.SetErrorString(
805           "Couldn't get memory data: memory is only in the target");
806       return;
807     case eAllocationPolicyMirror: {
808       lldb::ProcessSP process_sp = m_process_wp.lock();
809
810       if (!allocation.m_data.GetByteSize()) {
811         error.SetErrorToGenericError();
812         error.SetErrorString("Couldn't get memory data: data buffer is empty");
813         return;
814       }
815       if (process_sp) {
816         process_sp->ReadMemory(allocation.m_process_start,
817                                allocation.m_data.GetBytes(),
818                                allocation.m_data.GetByteSize(), error);
819         if (!error.Success())
820           return;
821         uint64_t offset = process_address - allocation.m_process_start;
822         extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
823                                   GetByteOrder(), GetAddressByteSize());
824         return;
825       }
826     } break;
827     case eAllocationPolicyHostOnly:
828       if (!allocation.m_data.GetByteSize()) {
829         error.SetErrorToGenericError();
830         error.SetErrorString("Couldn't get memory data: data buffer is empty");
831         return;
832       }
833       uint64_t offset = process_address - allocation.m_process_start;
834       extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
835                                 GetByteOrder(), GetAddressByteSize());
836       return;
837     }
838   } else {
839     error.SetErrorToGenericError();
840     error.SetErrorString("Couldn't get memory data: its size was zero");
841     return;
842   }
843 }