]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Plugins/ABI/SysV-ppc/ABISysV_ppc.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Plugins / ABI / SysV-ppc / ABISysV_ppc.cpp
1 //===-- ABISysV_ppc.cpp -----------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "ABISysV_ppc.h"
11
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Triple.h"
17
18 // Project includes
19 #include "lldb/Core/Module.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/RegisterValue.h"
22 #include "lldb/Core/Value.h"
23 #include "lldb/Core/ValueObjectConstResult.h"
24 #include "lldb/Core/ValueObjectMemory.h"
25 #include "lldb/Core/ValueObjectRegister.h"
26 #include "lldb/Symbol/UnwindPlan.h"
27 #include "lldb/Target/Process.h"
28 #include "lldb/Target/RegisterContext.h"
29 #include "lldb/Target/StackFrame.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Utility/ConstString.h"
33 #include "lldb/Utility/DataExtractor.h"
34 #include "lldb/Utility/Log.h"
35 #include "lldb/Utility/Status.h"
36
37 using namespace lldb;
38 using namespace lldb_private;
39
40 enum dwarf_regnums {
41   dwarf_r0 = 0,
42   dwarf_r1,
43   dwarf_r2,
44   dwarf_r3,
45   dwarf_r4,
46   dwarf_r5,
47   dwarf_r6,
48   dwarf_r7,
49   dwarf_r8,
50   dwarf_r9,
51   dwarf_r10,
52   dwarf_r11,
53   dwarf_r12,
54   dwarf_r13,
55   dwarf_r14,
56   dwarf_r15,
57   dwarf_r16,
58   dwarf_r17,
59   dwarf_r18,
60   dwarf_r19,
61   dwarf_r20,
62   dwarf_r21,
63   dwarf_r22,
64   dwarf_r23,
65   dwarf_r24,
66   dwarf_r25,
67   dwarf_r26,
68   dwarf_r27,
69   dwarf_r28,
70   dwarf_r29,
71   dwarf_r30,
72   dwarf_r31,
73   dwarf_f0,
74   dwarf_f1,
75   dwarf_f2,
76   dwarf_f3,
77   dwarf_f4,
78   dwarf_f5,
79   dwarf_f6,
80   dwarf_f7,
81   dwarf_f8,
82   dwarf_f9,
83   dwarf_f10,
84   dwarf_f11,
85   dwarf_f12,
86   dwarf_f13,
87   dwarf_f14,
88   dwarf_f15,
89   dwarf_f16,
90   dwarf_f17,
91   dwarf_f18,
92   dwarf_f19,
93   dwarf_f20,
94   dwarf_f21,
95   dwarf_f22,
96   dwarf_f23,
97   dwarf_f24,
98   dwarf_f25,
99   dwarf_f26,
100   dwarf_f27,
101   dwarf_f28,
102   dwarf_f29,
103   dwarf_f30,
104   dwarf_f31,
105   dwarf_cr,
106   dwarf_fpscr,
107   dwarf_xer = 101,
108   dwarf_lr = 108,
109   dwarf_ctr,
110   dwarf_pc,
111   dwarf_cfa,
112 };
113
114 // Note that the size and offset will be updated by platform-specific classes.
115 #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4)                       \
116   {                                                                            \
117     #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
118                                                  nullptr, nullptr, nullptr, 0  \
119   }
120
121 static const RegisterInfo g_register_infos[] = {
122     // General purpose registers.             eh_frame,                 DWARF,
123     // Generic,    Process Plugin
124     DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM,
125                LLDB_INVALID_REGNUM),
126     DEFINE_GPR(r1, "sp", dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP,
127                LLDB_INVALID_REGNUM),
128     DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM,
129                LLDB_INVALID_REGNUM),
130     DEFINE_GPR(r3, "arg1", dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1,
131                LLDB_INVALID_REGNUM),
132     DEFINE_GPR(r4, "arg2", dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2,
133                LLDB_INVALID_REGNUM),
134     DEFINE_GPR(r5, "arg3", dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3,
135                LLDB_INVALID_REGNUM),
136     DEFINE_GPR(r6, "arg4", dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4,
137                LLDB_INVALID_REGNUM),
138     DEFINE_GPR(r7, "arg5", dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5,
139                LLDB_INVALID_REGNUM),
140     DEFINE_GPR(r8, "arg6", dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6,
141                LLDB_INVALID_REGNUM),
142     DEFINE_GPR(r9, "arg7", dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7,
143                LLDB_INVALID_REGNUM),
144     DEFINE_GPR(r10, "arg8", dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8,
145                LLDB_INVALID_REGNUM),
146     DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM,
147                LLDB_INVALID_REGNUM),
148     DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM,
149                LLDB_INVALID_REGNUM),
150     DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM,
151                LLDB_INVALID_REGNUM),
152     DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM,
153                LLDB_INVALID_REGNUM),
154     DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM,
155                LLDB_INVALID_REGNUM),
156     DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM,
157                LLDB_INVALID_REGNUM),
158     DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM,
159                LLDB_INVALID_REGNUM),
160     DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM,
161                LLDB_INVALID_REGNUM),
162     DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM,
163                LLDB_INVALID_REGNUM),
164     DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM,
165                LLDB_INVALID_REGNUM),
166     DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM,
167                LLDB_INVALID_REGNUM),
168     DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM,
169                LLDB_INVALID_REGNUM),
170     DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM,
171                LLDB_INVALID_REGNUM),
172     DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM,
173                LLDB_INVALID_REGNUM),
174     DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM,
175                LLDB_INVALID_REGNUM),
176     DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM,
177                LLDB_INVALID_REGNUM),
178     DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM,
179                LLDB_INVALID_REGNUM),
180     DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM,
181                LLDB_INVALID_REGNUM),
182     DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM,
183                LLDB_INVALID_REGNUM),
184     DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM,
185                LLDB_INVALID_REGNUM),
186     DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM,
187                LLDB_INVALID_REGNUM),
188     DEFINE_GPR(lr, "lr", dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA,
189                LLDB_INVALID_REGNUM),
190     DEFINE_GPR(cr, "cr", dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS,
191                LLDB_INVALID_REGNUM),
192     DEFINE_GPR(xer, "xer", dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM,
193                LLDB_INVALID_REGNUM),
194     DEFINE_GPR(ctr, "ctr", dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM,
195                LLDB_INVALID_REGNUM),
196     DEFINE_GPR(pc, "pc", dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC,
197                LLDB_INVALID_REGNUM),
198     {nullptr,
199      nullptr,
200      8,
201      0,
202      eEncodingUint,
203      eFormatHex,
204      {dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
205      nullptr,
206      nullptr,
207      nullptr,
208      0}};
209
210 static const uint32_t k_num_register_infos =
211     llvm::array_lengthof(g_register_infos);
212
213 const lldb_private::RegisterInfo *
214 ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) {
215   count = k_num_register_infos;
216   return g_register_infos;
217 }
218
219 size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
220
221 //------------------------------------------------------------------
222 // Static Functions
223 //------------------------------------------------------------------
224
225 ABISP
226 ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
227   static ABISP g_abi_sp;
228   if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
229     if (!g_abi_sp)
230       g_abi_sp.reset(new ABISysV_ppc(process_sp));
231     return g_abi_sp;
232   }
233   return ABISP();
234 }
235
236 bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp,
237                                      addr_t func_addr, addr_t return_addr,
238                                      llvm::ArrayRef<addr_t> args) const {
239   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
240
241   if (log) {
242     StreamString s;
243     s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
244              ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
245              ", return_addr = 0x%" PRIx64,
246              thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
247              (uint64_t)return_addr);
248
249     for (size_t i = 0; i < args.size(); ++i)
250       s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
251                args[i]);
252     s.PutCString(")");
253     log->PutString(s.GetString());
254   }
255
256   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
257   if (!reg_ctx)
258     return false;
259
260   const RegisterInfo *reg_info = nullptr;
261
262   if (args.size() > 8) // TODO handle more than 8 arguments
263     return false;
264
265   for (size_t i = 0; i < args.size(); ++i) {
266     reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
267                                         LLDB_REGNUM_GENERIC_ARG1 + i);
268     if (log)
269       log->Printf("About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
270                   static_cast<uint64_t>(i + 1), args[i], reg_info->name);
271     if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
272       return false;
273   }
274
275   // First, align the SP
276
277   if (log)
278     log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
279                 (uint64_t)sp, (uint64_t)(sp & ~0xfull));
280
281   sp &= ~(0xfull); // 16-byte alignment
282
283   sp -= 8;
284
285   Status error;
286   const RegisterInfo *pc_reg_info =
287       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
288   const RegisterInfo *sp_reg_info =
289       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
290   ProcessSP process_sp(thread.GetProcess());
291
292   RegisterValue reg_value;
293
294   if (log)
295     log->Printf("Pushing the return address onto the stack: 0x%" PRIx64
296                 ": 0x%" PRIx64,
297                 (uint64_t)sp, (uint64_t)return_addr);
298
299   // Save return address onto the stack
300   if (!process_sp->WritePointerToMemory(sp, return_addr, error))
301     return false;
302
303   // %r1 is set to the actual stack value.
304
305   if (log)
306     log->Printf("Writing SP: 0x%" PRIx64, (uint64_t)sp);
307
308   if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
309     return false;
310
311   // %pc is set to the address of the called function.
312
313   if (log)
314     log->Printf("Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
315
316   if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
317     return false;
318
319   return true;
320 }
321
322 static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
323                                 bool is_signed, Thread &thread,
324                                 uint32_t *argument_register_ids,
325                                 unsigned int &current_argument_register,
326                                 addr_t &current_stack_argument) {
327   if (bit_width > 64)
328     return false; // Scalar can't hold large integer arguments
329
330   if (current_argument_register < 6) {
331     scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
332         argument_register_ids[current_argument_register], 0);
333     current_argument_register++;
334     if (is_signed)
335       scalar.SignExtend(bit_width);
336   } else {
337     uint32_t byte_size = (bit_width + (8 - 1)) / 8;
338     Status error;
339     if (thread.GetProcess()->ReadScalarIntegerFromMemory(
340             current_stack_argument, byte_size, is_signed, scalar, error)) {
341       current_stack_argument += byte_size;
342       return true;
343     }
344     return false;
345   }
346   return true;
347 }
348
349 bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
350   unsigned int num_values = values.GetSize();
351   unsigned int value_index;
352
353   // Extract the register context so we can read arguments from registers
354
355   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
356
357   if (!reg_ctx)
358     return false;
359
360   // Get the pointer to the first stack argument so we have a place to start
361   // when reading data
362
363   addr_t sp = reg_ctx->GetSP(0);
364
365   if (!sp)
366     return false;
367
368   addr_t current_stack_argument = sp + 48; // jump over return address
369
370   uint32_t argument_register_ids[8];
371
372   argument_register_ids[0] =
373       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
374           ->kinds[eRegisterKindLLDB];
375   argument_register_ids[1] =
376       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
377           ->kinds[eRegisterKindLLDB];
378   argument_register_ids[2] =
379       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
380           ->kinds[eRegisterKindLLDB];
381   argument_register_ids[3] =
382       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
383           ->kinds[eRegisterKindLLDB];
384   argument_register_ids[4] =
385       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
386           ->kinds[eRegisterKindLLDB];
387   argument_register_ids[5] =
388       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
389           ->kinds[eRegisterKindLLDB];
390   argument_register_ids[6] =
391       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)
392           ->kinds[eRegisterKindLLDB];
393   argument_register_ids[7] =
394       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)
395           ->kinds[eRegisterKindLLDB];
396
397   unsigned int current_argument_register = 0;
398
399   for (value_index = 0; value_index < num_values; ++value_index) {
400     Value *value = values.GetValueAtIndex(value_index);
401
402     if (!value)
403       return false;
404
405     // We currently only support extracting values with Clang QualTypes. Do we
406     // care about others?
407     CompilerType compiler_type = value->GetCompilerType();
408     if (!compiler_type)
409       return false;
410     bool is_signed;
411
412     if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
413       ReadIntegerArgument(value->GetScalar(), compiler_type.GetBitSize(&thread),
414                           is_signed, thread, argument_register_ids,
415                           current_argument_register, current_stack_argument);
416     } else if (compiler_type.IsPointerType()) {
417       ReadIntegerArgument(value->GetScalar(), compiler_type.GetBitSize(&thread),
418                           false, thread, argument_register_ids,
419                           current_argument_register, current_stack_argument);
420     }
421   }
422
423   return true;
424 }
425
426 Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
427                                          lldb::ValueObjectSP &new_value_sp) {
428   Status error;
429   if (!new_value_sp) {
430     error.SetErrorString("Empty value object for return value.");
431     return error;
432   }
433
434   CompilerType compiler_type = new_value_sp->GetCompilerType();
435   if (!compiler_type) {
436     error.SetErrorString("Null clang type for return value.");
437     return error;
438   }
439
440   Thread *thread = frame_sp->GetThread().get();
441
442   bool is_signed;
443   uint32_t count;
444   bool is_complex;
445
446   RegisterContext *reg_ctx = thread->GetRegisterContext().get();
447
448   bool set_it_simple = false;
449   if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
450       compiler_type.IsPointerType()) {
451     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
452
453     DataExtractor data;
454     Status data_error;
455     size_t num_bytes = new_value_sp->GetData(data, data_error);
456     if (data_error.Fail()) {
457       error.SetErrorStringWithFormat(
458           "Couldn't convert return value to raw data: %s",
459           data_error.AsCString());
460       return error;
461     }
462     lldb::offset_t offset = 0;
463     if (num_bytes <= 8) {
464       uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
465
466       if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
467         set_it_simple = true;
468     } else {
469       error.SetErrorString("We don't support returning longer than 64 bit "
470                            "integer values at present.");
471     }
472   } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
473     if (is_complex)
474       error.SetErrorString(
475           "We don't support returning complex values at present");
476     else {
477       size_t bit_width = compiler_type.GetBitSize(frame_sp.get());
478       if (bit_width <= 64) {
479         DataExtractor data;
480         Status data_error;
481         size_t num_bytes = new_value_sp->GetData(data, data_error);
482         if (data_error.Fail()) {
483           error.SetErrorStringWithFormat(
484               "Couldn't convert return value to raw data: %s",
485               data_error.AsCString());
486           return error;
487         }
488
489         unsigned char buffer[16];
490         ByteOrder byte_order = data.GetByteOrder();
491
492         data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
493         set_it_simple = true;
494       } else {
495         // FIXME - don't know how to do 80 bit long doubles yet.
496         error.SetErrorString(
497             "We don't support returning float values > 64 bits at present");
498       }
499     }
500   }
501
502   if (!set_it_simple) {
503     // Okay we've got a structure or something that doesn't fit in a simple
504     // register. We should figure out where it really goes, but we don't
505     // support this yet.
506     error.SetErrorString("We only support setting simple integer and float "
507                          "return types at present.");
508   }
509
510   return error;
511 }
512
513 ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple(
514     Thread &thread, CompilerType &return_compiler_type) const {
515   ValueObjectSP return_valobj_sp;
516   Value value;
517
518   if (!return_compiler_type)
519     return return_valobj_sp;
520
521   // value.SetContext (Value::eContextTypeClangType, return_value_type);
522   value.SetCompilerType(return_compiler_type);
523
524   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
525   if (!reg_ctx)
526     return return_valobj_sp;
527
528   const uint32_t type_flags = return_compiler_type.GetTypeInfo();
529   if (type_flags & eTypeIsScalar) {
530     value.SetValueType(Value::eValueTypeScalar);
531
532     bool success = false;
533     if (type_flags & eTypeIsInteger) {
534       // Extract the register context so we can read arguments from registers
535
536       const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
537       uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
538           reg_ctx->GetRegisterInfoByName("r3", 0), 0);
539       const bool is_signed = (type_flags & eTypeIsSigned) != 0;
540       switch (byte_size) {
541       default:
542         break;
543
544       case sizeof(uint64_t):
545         if (is_signed)
546           value.GetScalar() = (int64_t)(raw_value);
547         else
548           value.GetScalar() = (uint64_t)(raw_value);
549         success = true;
550         break;
551
552       case sizeof(uint32_t):
553         if (is_signed)
554           value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
555         else
556           value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
557         success = true;
558         break;
559
560       case sizeof(uint16_t):
561         if (is_signed)
562           value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
563         else
564           value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
565         success = true;
566         break;
567
568       case sizeof(uint8_t):
569         if (is_signed)
570           value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
571         else
572           value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
573         success = true;
574         break;
575       }
576     } else if (type_flags & eTypeIsFloat) {
577       if (type_flags & eTypeIsComplex) {
578         // Don't handle complex yet.
579       } else {
580         const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
581         if (byte_size <= sizeof(long double)) {
582           const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
583           RegisterValue f1_value;
584           if (reg_ctx->ReadRegister(f1_info, f1_value)) {
585             DataExtractor data;
586             if (f1_value.GetData(data)) {
587               lldb::offset_t offset = 0;
588               if (byte_size == sizeof(float)) {
589                 value.GetScalar() = (float)data.GetFloat(&offset);
590                 success = true;
591               } else if (byte_size == sizeof(double)) {
592                 value.GetScalar() = (double)data.GetDouble(&offset);
593                 success = true;
594               }
595             }
596           }
597         }
598       }
599     }
600
601     if (success)
602       return_valobj_sp = ValueObjectConstResult::Create(
603           thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
604   } else if (type_flags & eTypeIsPointer) {
605     unsigned r3_id =
606         reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
607     value.GetScalar() =
608         (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
609     value.SetValueType(Value::eValueTypeScalar);
610     return_valobj_sp = ValueObjectConstResult::Create(
611         thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
612   } else if (type_flags & eTypeIsVector) {
613     const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
614     if (byte_size > 0) {
615       const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
616       if (altivec_reg) {
617         if (byte_size <= altivec_reg->byte_size) {
618           ProcessSP process_sp(thread.GetProcess());
619           if (process_sp) {
620             std::unique_ptr<DataBufferHeap> heap_data_ap(
621                 new DataBufferHeap(byte_size, 0));
622             const ByteOrder byte_order = process_sp->GetByteOrder();
623             RegisterValue reg_value;
624             if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
625               Status error;
626               if (reg_value.GetAsMemoryData(
627                       altivec_reg, heap_data_ap->GetBytes(),
628                       heap_data_ap->GetByteSize(), byte_order, error)) {
629                 DataExtractor data(DataBufferSP(heap_data_ap.release()),
630                                    byte_order, process_sp->GetTarget()
631                                                    .GetArchitecture()
632                                                    .GetAddressByteSize());
633                 return_valobj_sp = ValueObjectConstResult::Create(
634                     &thread, return_compiler_type, ConstString(""), data);
635               }
636             }
637           }
638         }
639       }
640     }
641   }
642
643   return return_valobj_sp;
644 }
645
646 ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl(
647     Thread &thread, CompilerType &return_compiler_type) const {
648   ValueObjectSP return_valobj_sp;
649
650   if (!return_compiler_type)
651     return return_valobj_sp;
652
653   ExecutionContext exe_ctx(thread.shared_from_this());
654   return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
655   if (return_valobj_sp)
656     return return_valobj_sp;
657
658   RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
659   if (!reg_ctx_sp)
660     return return_valobj_sp;
661
662   const size_t bit_width = return_compiler_type.GetBitSize(&thread);
663   if (return_compiler_type.IsAggregateType()) {
664     Target *target = exe_ctx.GetTargetPtr();
665     bool is_memory = true;
666     if (bit_width <= 128) {
667       ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
668       DataBufferSP data_sp(new DataBufferHeap(16, 0));
669       DataExtractor return_ext(data_sp, target_byte_order,
670                                target->GetArchitecture().GetAddressByteSize());
671
672       const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
673       const RegisterInfo *rdx_info =
674           reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
675
676       RegisterValue r3_value, rdx_value;
677       reg_ctx_sp->ReadRegister(r3_info, r3_value);
678       reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
679
680       DataExtractor r3_data, rdx_data;
681
682       r3_value.GetData(r3_data);
683       rdx_value.GetData(rdx_data);
684
685       uint32_t fp_bytes =
686           0; // Tracks how much of the xmm registers we've consumed so far
687       uint32_t integer_bytes =
688           0; // Tracks how much of the r3/rds registers we've consumed so far
689
690       const uint32_t num_children = return_compiler_type.GetNumFields();
691
692       // Since we are in the small struct regime, assume we are not in memory.
693       is_memory = false;
694
695       for (uint32_t idx = 0; idx < num_children; idx++) {
696         std::string name;
697         uint64_t field_bit_offset = 0;
698         bool is_signed;
699         bool is_complex;
700         uint32_t count;
701
702         CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
703             idx, name, &field_bit_offset, nullptr, nullptr);
704         const size_t field_bit_width = field_compiler_type.GetBitSize(&thread);
705
706         // If there are any unaligned fields, this is stored in memory.
707         if (field_bit_offset % field_bit_width != 0) {
708           is_memory = true;
709           break;
710         }
711
712         uint32_t field_byte_width = field_bit_width / 8;
713         uint32_t field_byte_offset = field_bit_offset / 8;
714
715         DataExtractor *copy_from_extractor = nullptr;
716         uint32_t copy_from_offset = 0;
717
718         if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
719             field_compiler_type.IsPointerType()) {
720           if (integer_bytes < 8) {
721             if (integer_bytes + field_byte_width <= 8) {
722               // This is in RAX, copy from register to our result structure:
723               copy_from_extractor = &r3_data;
724               copy_from_offset = integer_bytes;
725               integer_bytes += field_byte_width;
726             } else {
727               // The next field wouldn't fit in the remaining space, so we
728               // pushed it to rdx.
729               copy_from_extractor = &rdx_data;
730               copy_from_offset = 0;
731               integer_bytes = 8 + field_byte_width;
732             }
733           } else if (integer_bytes + field_byte_width <= 16) {
734             copy_from_extractor = &rdx_data;
735             copy_from_offset = integer_bytes - 8;
736             integer_bytes += field_byte_width;
737           } else {
738             // The last field didn't fit.  I can't see how that would happen
739             // w/o the overall size being greater than 16 bytes.  For now,
740             // return a nullptr return value object.
741             return return_valobj_sp;
742           }
743         } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
744           // Structs with long doubles are always passed in memory.
745           if (field_bit_width == 128) {
746             is_memory = true;
747             break;
748           } else if (field_bit_width == 64) {
749             copy_from_offset = 0;
750             fp_bytes += field_byte_width;
751           } else if (field_bit_width == 32) {
752             // This one is kind of complicated.  If we are in an "eightbyte"
753             // with another float, we'll be stuffed into an xmm register with
754             // it.  If we are in an "eightbyte" with one or more ints, then we
755             // will be stuffed into the appropriate GPR with them.
756             bool in_gpr;
757             if (field_byte_offset % 8 == 0) {
758               // We are at the beginning of one of the eightbytes, so check the
759               // next element (if any)
760               if (idx == num_children - 1)
761                 in_gpr = false;
762               else {
763                 uint64_t next_field_bit_offset = 0;
764                 CompilerType next_field_compiler_type =
765                     return_compiler_type.GetFieldAtIndex(idx + 1, name,
766                                                          &next_field_bit_offset,
767                                                          nullptr, nullptr);
768                 if (next_field_compiler_type.IsIntegerOrEnumerationType(
769                         is_signed))
770                   in_gpr = true;
771                 else {
772                   copy_from_offset = 0;
773                   in_gpr = false;
774                 }
775               }
776             } else if (field_byte_offset % 4 == 0) {
777               // We are inside of an eightbyte, so see if the field before us
778               // is floating point: This could happen if somebody put padding
779               // in the structure.
780               if (idx == 0)
781                 in_gpr = false;
782               else {
783                 uint64_t prev_field_bit_offset = 0;
784                 CompilerType prev_field_compiler_type =
785                     return_compiler_type.GetFieldAtIndex(idx - 1, name,
786                                                          &prev_field_bit_offset,
787                                                          nullptr, nullptr);
788                 if (prev_field_compiler_type.IsIntegerOrEnumerationType(
789                         is_signed))
790                   in_gpr = true;
791                 else {
792                   copy_from_offset = 4;
793                   in_gpr = false;
794                 }
795               }
796             } else {
797               is_memory = true;
798               continue;
799             }
800
801             // Okay, we've figured out whether we are in GPR or XMM, now figure
802             // out which one.
803             if (in_gpr) {
804               if (integer_bytes < 8) {
805                 // This is in RAX, copy from register to our result structure:
806                 copy_from_extractor = &r3_data;
807                 copy_from_offset = integer_bytes;
808                 integer_bytes += field_byte_width;
809               } else {
810                 copy_from_extractor = &rdx_data;
811                 copy_from_offset = integer_bytes - 8;
812                 integer_bytes += field_byte_width;
813               }
814             } else {
815               fp_bytes += field_byte_width;
816             }
817           }
818         }
819
820         // These two tests are just sanity checks.  If I somehow get the type
821         // calculation wrong above it is better to just return nothing than to
822         // assert or crash.
823         if (!copy_from_extractor)
824           return return_valobj_sp;
825         if (copy_from_offset + field_byte_width >
826             copy_from_extractor->GetByteSize())
827           return return_valobj_sp;
828
829         copy_from_extractor->CopyByteOrderedData(
830             copy_from_offset, field_byte_width,
831             data_sp->GetBytes() + field_byte_offset, field_byte_width,
832             target_byte_order);
833       }
834
835       if (!is_memory) {
836         // The result is in our data buffer.  Let's make a variable object out
837         // of it:
838         return_valobj_sp = ValueObjectConstResult::Create(
839             &thread, return_compiler_type, ConstString(""), return_ext);
840       }
841     }
842
843     // FIXME: This is just taking a guess, r3 may very well no longer hold the
844     // return storage location.
845     // If we are going to do this right, when we make a new frame we should
846     // check to see if it uses a memory return, and if we are at the first
847     // instruction and if so stash away the return location.  Then we would
848     // only return the memory return value if we know it is valid.
849
850     if (is_memory) {
851       unsigned r3_id =
852           reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
853       lldb::addr_t storage_addr =
854           (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
855                                                                         0);
856       return_valobj_sp = ValueObjectMemory::Create(
857           &thread, "", Address(storage_addr, nullptr), return_compiler_type);
858     }
859   }
860
861   return return_valobj_sp;
862 }
863
864 bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
865   unwind_plan.Clear();
866   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
867
868   uint32_t lr_reg_num = dwarf_lr;
869   uint32_t sp_reg_num = dwarf_r1;
870   uint32_t pc_reg_num = dwarf_pc;
871
872   UnwindPlan::RowSP row(new UnwindPlan::Row);
873
874   // Our Call Frame Address is the stack pointer value
875   row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
876
877   // The previous PC is in the LR
878   row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
879   unwind_plan.AppendRow(row);
880
881   // All other registers are the same.
882
883   unwind_plan.SetSourceName("ppc at-func-entry default");
884   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
885
886   return true;
887 }
888
889 bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
890   unwind_plan.Clear();
891   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
892
893   uint32_t sp_reg_num = dwarf_r1;
894   uint32_t pc_reg_num = dwarf_lr;
895
896   UnwindPlan::RowSP row(new UnwindPlan::Row);
897
898   const int32_t ptr_size = 4;
899   row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
900
901   row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
902   row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
903
904   unwind_plan.AppendRow(row);
905   unwind_plan.SetSourceName("ppc default unwind plan");
906   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
907   unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
908   unwind_plan.SetReturnAddressRegister(dwarf_lr);
909   return true;
910 }
911
912 bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
913   return !RegisterIsCalleeSaved(reg_info);
914 }
915
916 // See "Register Usage" in the
917 // "System V Application Binary Interface"
918 // "64-bit PowerPC ELF Application Binary Interface Supplement" current version
919 // is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
920 // elf64abi-1.9.pdf
921
922 bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
923   if (reg_info) {
924     // Preserved registers are :
925     //    r1,r2,r13-r31
926     //    f14-f31 (not yet)
927     //    v20-v31 (not yet)
928     //    vrsave (not yet)
929
930     const char *name = reg_info->name;
931     if (name[0] == 'r') {
932       if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
933         return true;
934       if (name[1] == '1' && name[2] > '2')
935         return true;
936       if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
937         return true;
938     }
939
940     if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
941       if (name[3] == '1' && name[4] >= '4')
942         return true;
943       if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
944         return true;
945     }
946
947     if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
948       return true;
949     if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
950       return true;
951     if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
952       return true;
953   }
954   return false;
955 }
956
957 void ABISysV_ppc::Initialize() {
958   PluginManager::RegisterPlugin(GetPluginNameStatic(),
959                                 "System V ABI for ppc targets", CreateInstance);
960 }
961
962 void ABISysV_ppc::Terminate() {
963   PluginManager::UnregisterPlugin(CreateInstance);
964 }
965
966 lldb_private::ConstString ABISysV_ppc::GetPluginNameStatic() {
967   static ConstString g_name("sysv-ppc");
968   return g_name;
969 }
970
971 //------------------------------------------------------------------
972 // PluginInterface protocol
973 //------------------------------------------------------------------
974
975 lldb_private::ConstString ABISysV_ppc::GetPluginName() {
976   return GetPluginNameStatic();
977 }
978
979 uint32_t ABISysV_ppc::GetPluginVersion() { return 1; }