]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
Merge llvm, clang, compiler-rt, libc++, lld and lldb release_40 branch
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Plugins / Process / gdb-remote / GDBRemoteRegisterContext.cpp
1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "GDBRemoteRegisterContext.h"
11
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #include "lldb/Target/ExecutionContext.h"
21 #include "lldb/Target/Target.h"
22 #include "lldb/Utility/Utils.h"
23 // Project includes
24 #include "ProcessGDBRemote.h"
25 #include "ProcessGDBRemoteLog.h"
26 #include "ThreadGDBRemote.h"
27 #include "Utility/ARM_DWARF_Registers.h"
28 #include "Utility/ARM_ehframe_Registers.h"
29 #include "Utility/StringExtractorGDBRemote.h"
30
31 using namespace lldb;
32 using namespace lldb_private;
33 using namespace lldb_private::process_gdb_remote;
34
35 //----------------------------------------------------------------------
36 // GDBRemoteRegisterContext constructor
37 //----------------------------------------------------------------------
38 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
39     ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
40     GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
41     : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
42       m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
43   // Resize our vector of bools to contain one bool for every register.
44   // We will use these boolean values to know when a register value
45   // is valid in m_reg_data.
46   m_reg_valid.resize(reg_info.GetNumRegisters());
47
48   // Make a heap based buffer that is big enough to store all registers
49   DataBufferSP reg_data_sp(
50       new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
51   m_reg_data.SetData(reg_data_sp);
52   m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
53 }
54
55 //----------------------------------------------------------------------
56 // Destructor
57 //----------------------------------------------------------------------
58 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
59
60 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
61   SetAllRegisterValid(false);
62 }
63
64 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
65   std::vector<bool>::iterator pos, end = m_reg_valid.end();
66   for (pos = m_reg_valid.begin(); pos != end; ++pos)
67     *pos = b;
68 }
69
70 size_t GDBRemoteRegisterContext::GetRegisterCount() {
71   return m_reg_info.GetNumRegisters();
72 }
73
74 const RegisterInfo *
75 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
76   RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
77
78   if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
79     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
80     uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
81     reg_info->byte_size = reg_size;
82   }
83   return reg_info;
84 }
85
86 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
87   return m_reg_info.GetNumRegisterSets();
88 }
89
90 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
91   return m_reg_info.GetRegisterSet(reg_set);
92 }
93
94 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
95                                             RegisterValue &value) {
96   // Read the register
97   if (ReadRegisterBytes(reg_info, m_reg_data)) {
98     const bool partial_data_ok = false;
99     Error error(value.SetValueFromData(reg_info, m_reg_data,
100                                        reg_info->byte_offset, partial_data_ok));
101     return error.Success();
102   }
103   return false;
104 }
105
106 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
107     uint32_t reg, llvm::ArrayRef<uint8_t> data) {
108   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
109   if (reg_info == NULL)
110     return false;
111
112   // Invalidate if needed
113   InvalidateIfNeeded(false);
114
115   const size_t reg_byte_size = reg_info->byte_size;
116   memcpy(const_cast<uint8_t *>(
117              m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
118          data.data(), std::min(data.size(), reg_byte_size));
119   bool success = data.size() >= reg_byte_size;
120   if (success) {
121     SetRegisterIsValid(reg, true);
122   } else if (data.size() > 0) {
123     // Only set register is valid to false if we copied some bytes, else
124     // leave it as it was.
125     SetRegisterIsValid(reg, false);
126   }
127   return success;
128 }
129
130 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
131                                                        uint64_t new_reg_val) {
132   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
133   if (reg_info == NULL)
134     return false;
135
136   // Early in process startup, we can get a thread that has an invalid byte
137   // order
138   // because the process hasn't been completely set up yet (see the ctor where
139   // the
140   // byte order is setfrom the process).  If that's the case, we can't set the
141   // value here.
142   if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
143     return false;
144   }
145
146   // Invalidate if needed
147   InvalidateIfNeeded(false);
148
149   DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
150   DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
151
152   // If our register context and our register info disagree, which should never
153   // happen, don't
154   // overwrite past the end of the buffer.
155   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
156     return false;
157
158   // Grab a pointer to where we are going to put this register
159   uint8_t *dst = const_cast<uint8_t *>(
160       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
161
162   if (dst == NULL)
163     return false;
164
165   if (data.CopyByteOrderedData(0,                          // src offset
166                                reg_info->byte_size,        // src length
167                                dst,                        // dst
168                                reg_info->byte_size,        // dst length
169                                m_reg_data.GetByteOrder())) // dst byte order
170   {
171     SetRegisterIsValid(reg, true);
172     return true;
173   }
174   return false;
175 }
176
177 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
178 bool GDBRemoteRegisterContext::GetPrimordialRegister(
179     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
180   const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
181   const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
182   StringExtractorGDBRemote response;
183   if (DataBufferSP buffer_sp =
184           gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
185     return PrivateSetRegisterValue(
186         lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
187                                           buffer_sp->GetByteSize()));
188   return false;
189 }
190
191 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
192                                                  DataExtractor &data) {
193   ExecutionContext exe_ctx(CalculateThread());
194
195   Process *process = exe_ctx.GetProcessPtr();
196   Thread *thread = exe_ctx.GetThreadPtr();
197   if (process == NULL || thread == NULL)
198     return false;
199
200   GDBRemoteCommunicationClient &gdb_comm(
201       ((ProcessGDBRemote *)process)->GetGDBRemote());
202
203   InvalidateIfNeeded(false);
204
205   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
206
207   if (!GetRegisterIsValid(reg)) {
208     if (m_read_all_at_once) {
209       if (DataBufferSP buffer_sp =
210               gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
211         memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
212                buffer_sp->GetBytes(),
213                std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
214         if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
215           SetAllRegisterValid(true);
216           return true;
217         }
218       }
219       return false;
220     }
221     if (reg_info->value_regs) {
222       // Process this composite register request by delegating to the
223       // constituent
224       // primordial registers.
225
226       // Index of the primordial register.
227       bool success = true;
228       for (uint32_t idx = 0; success; ++idx) {
229         const uint32_t prim_reg = reg_info->value_regs[idx];
230         if (prim_reg == LLDB_INVALID_REGNUM)
231           break;
232         // We have a valid primordial register as our constituent.
233         // Grab the corresponding register info.
234         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
235         if (prim_reg_info == NULL)
236           success = false;
237         else {
238           // Read the containing register if it hasn't already been read
239           if (!GetRegisterIsValid(prim_reg))
240             success = GetPrimordialRegister(prim_reg_info, gdb_comm);
241         }
242       }
243
244       if (success) {
245         // If we reach this point, all primordial register requests have
246         // succeeded.
247         // Validate this composite register.
248         SetRegisterIsValid(reg_info, true);
249       }
250     } else {
251       // Get each register individually
252       GetPrimordialRegister(reg_info, gdb_comm);
253     }
254
255     // Make sure we got a valid register value after reading it
256     if (!GetRegisterIsValid(reg))
257       return false;
258   }
259
260   if (&data != &m_reg_data) {
261 #if defined(LLDB_CONFIGURATION_DEBUG)
262     assert(m_reg_data.GetByteSize() >=
263            reg_info->byte_offset + reg_info->byte_size);
264 #endif
265     // If our register context and our register info disagree, which should
266     // never happen, don't
267     // read past the end of the buffer.
268     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
269       return false;
270
271     // If we aren't extracting into our own buffer (which
272     // only happens when this function is called from
273     // ReadRegisterValue(uint32_t, Scalar&)) then
274     // we transfer bytes from our buffer into the data
275     // buffer that was passed in
276
277     data.SetByteOrder(m_reg_data.GetByteOrder());
278     data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
279   }
280   return true;
281 }
282
283 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
284                                              const RegisterValue &value) {
285   DataExtractor data;
286   if (value.GetData(data))
287     return WriteRegisterBytes(reg_info, data, 0);
288   return false;
289 }
290
291 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
292 bool GDBRemoteRegisterContext::SetPrimordialRegister(
293     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
294   StreamString packet;
295   StringExtractorGDBRemote response;
296   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
297   // Invalidate just this register
298   SetRegisterIsValid(reg, false);
299
300   return gdb_comm.WriteRegister(
301       m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
302       {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
303        reg_info->byte_size});
304 }
305
306 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
307                                                   DataExtractor &data,
308                                                   uint32_t data_offset) {
309   ExecutionContext exe_ctx(CalculateThread());
310
311   Process *process = exe_ctx.GetProcessPtr();
312   Thread *thread = exe_ctx.GetThreadPtr();
313   if (process == NULL || thread == NULL)
314     return false;
315
316   GDBRemoteCommunicationClient &gdb_comm(
317       ((ProcessGDBRemote *)process)->GetGDBRemote());
318
319 #if defined(LLDB_CONFIGURATION_DEBUG)
320   assert(m_reg_data.GetByteSize() >=
321          reg_info->byte_offset + reg_info->byte_size);
322 #endif
323
324   // If our register context and our register info disagree, which should never
325   // happen, don't
326   // overwrite past the end of the buffer.
327   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
328     return false;
329
330   // Grab a pointer to where we are going to put this register
331   uint8_t *dst = const_cast<uint8_t *>(
332       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
333
334   if (dst == NULL)
335     return false;
336
337   if (data.CopyByteOrderedData(data_offset,                // src offset
338                                reg_info->byte_size,        // src length
339                                dst,                        // dst
340                                reg_info->byte_size,        // dst length
341                                m_reg_data.GetByteOrder())) // dst byte order
342   {
343     GDBRemoteClientBase::Lock lock(gdb_comm, false);
344     if (lock) {
345       if (m_read_all_at_once) {
346         // Invalidate all register values
347         InvalidateIfNeeded(true);
348
349         // Set all registers in one packet
350         if (gdb_comm.WriteAllRegisters(
351                 m_thread.GetProtocolID(),
352                 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
353
354         {
355           SetAllRegisterValid(false);
356           return true;
357         }
358       } else {
359         bool success = true;
360
361         if (reg_info->value_regs) {
362           // This register is part of another register. In this case we read the
363           // actual
364           // register data for any "value_regs", and once all that data is read,
365           // we will
366           // have enough data in our register context bytes for the value of
367           // this register
368
369           // Invalidate this composite register first.
370
371           for (uint32_t idx = 0; success; ++idx) {
372             const uint32_t reg = reg_info->value_regs[idx];
373             if (reg == LLDB_INVALID_REGNUM)
374               break;
375             // We have a valid primordial register as our constituent.
376             // Grab the corresponding register info.
377             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
378             if (value_reg_info == NULL)
379               success = false;
380             else
381               success = SetPrimordialRegister(value_reg_info, gdb_comm);
382           }
383         } else {
384           // This is an actual register, write it
385           success = SetPrimordialRegister(reg_info, gdb_comm);
386         }
387
388         // Check if writing this register will invalidate any other register
389         // values?
390         // If so, invalidate them
391         if (reg_info->invalidate_regs) {
392           for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
393                reg != LLDB_INVALID_REGNUM;
394                reg = reg_info->invalidate_regs[++idx]) {
395             SetRegisterIsValid(reg, false);
396           }
397         }
398
399         return success;
400       }
401     } else {
402       Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
403                                                              GDBR_LOG_PACKETS));
404       if (log) {
405         if (log->GetVerbose()) {
406           StreamString strm;
407           gdb_comm.DumpHistory(strm);
408           log->Printf("error: failed to get packet sequence mutex, not sending "
409                       "write register for \"%s\":\n%s",
410                       reg_info->name, strm.GetData());
411         } else
412           log->Printf("error: failed to get packet sequence mutex, not sending "
413                       "write register for \"%s\"",
414                       reg_info->name);
415       }
416     }
417   }
418   return false;
419 }
420
421 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
422     RegisterCheckpoint &reg_checkpoint) {
423   ExecutionContext exe_ctx(CalculateThread());
424
425   Process *process = exe_ctx.GetProcessPtr();
426   Thread *thread = exe_ctx.GetThreadPtr();
427   if (process == NULL || thread == NULL)
428     return false;
429
430   GDBRemoteCommunicationClient &gdb_comm(
431       ((ProcessGDBRemote *)process)->GetGDBRemote());
432
433   uint32_t save_id = 0;
434   if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
435     reg_checkpoint.SetID(save_id);
436     reg_checkpoint.GetData().reset();
437     return true;
438   } else {
439     reg_checkpoint.SetID(0); // Invalid save ID is zero
440     return ReadAllRegisterValues(reg_checkpoint.GetData());
441   }
442 }
443
444 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
445     const RegisterCheckpoint &reg_checkpoint) {
446   uint32_t save_id = reg_checkpoint.GetID();
447   if (save_id != 0) {
448     ExecutionContext exe_ctx(CalculateThread());
449
450     Process *process = exe_ctx.GetProcessPtr();
451     Thread *thread = exe_ctx.GetThreadPtr();
452     if (process == NULL || thread == NULL)
453       return false;
454
455     GDBRemoteCommunicationClient &gdb_comm(
456         ((ProcessGDBRemote *)process)->GetGDBRemote());
457
458     return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
459   } else {
460     return WriteAllRegisterValues(reg_checkpoint.GetData());
461   }
462 }
463
464 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
465     lldb::DataBufferSP &data_sp) {
466   ExecutionContext exe_ctx(CalculateThread());
467
468   Process *process = exe_ctx.GetProcessPtr();
469   Thread *thread = exe_ctx.GetThreadPtr();
470   if (process == NULL || thread == NULL)
471     return false;
472
473   GDBRemoteCommunicationClient &gdb_comm(
474       ((ProcessGDBRemote *)process)->GetGDBRemote());
475
476   const bool use_g_packet =
477       gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
478
479   GDBRemoteClientBase::Lock lock(gdb_comm, false);
480   if (lock) {
481     if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
482       InvalidateAllRegisters();
483
484     if (use_g_packet &&
485         (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
486       return true;
487
488     // We're going to read each register
489     // individually and store them as binary data in a buffer.
490     const RegisterInfo *reg_info;
491
492     for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) {
493       if (reg_info
494               ->value_regs) // skip registers that are slices of real registers
495         continue;
496       ReadRegisterBytes(reg_info, m_reg_data);
497       // ReadRegisterBytes saves the contents of the register in to the
498       // m_reg_data buffer
499     }
500     data_sp.reset(new DataBufferHeap(m_reg_data.GetDataStart(),
501                                      m_reg_info.GetRegisterDataByteSize()));
502     return true;
503   } else {
504
505     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
506                                                            GDBR_LOG_PACKETS));
507     if (log) {
508       if (log->GetVerbose()) {
509         StreamString strm;
510         gdb_comm.DumpHistory(strm);
511         log->Printf("error: failed to get packet sequence mutex, not sending "
512                     "read all registers:\n%s",
513                     strm.GetData());
514       } else
515         log->Printf("error: failed to get packet sequence mutex, not sending "
516                     "read all registers");
517     }
518   }
519
520   data_sp.reset();
521   return false;
522 }
523
524 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
525     const lldb::DataBufferSP &data_sp) {
526   if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
527     return false;
528
529   ExecutionContext exe_ctx(CalculateThread());
530
531   Process *process = exe_ctx.GetProcessPtr();
532   Thread *thread = exe_ctx.GetThreadPtr();
533   if (process == NULL || thread == NULL)
534     return false;
535
536   GDBRemoteCommunicationClient &gdb_comm(
537       ((ProcessGDBRemote *)process)->GetGDBRemote());
538
539   const bool use_g_packet =
540       gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
541
542   GDBRemoteClientBase::Lock lock(gdb_comm, false);
543   if (lock) {
544     // The data_sp contains the G response packet.
545     if (use_g_packet) {
546       if (gdb_comm.WriteAllRegisters(
547               m_thread.GetProtocolID(),
548               {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
549         return true;
550
551       uint32_t num_restored = 0;
552       // We need to manually go through all of the registers and
553       // restore them manually
554       DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
555                                  m_reg_data.GetAddressByteSize());
556
557       const RegisterInfo *reg_info;
558
559       // The g packet contents may either include the slice registers (registers
560       // defined in
561       // terms of other registers, e.g. eax is a subset of rax) or not.  The
562       // slice registers
563       // should NOT be in the g packet, but some implementations may incorrectly
564       // include them.
565       //
566       // If the slice registers are included in the packet, we must step over
567       // the slice registers
568       // when parsing the packet -- relying on the RegisterInfo byte_offset
569       // field would be incorrect.
570       // If the slice registers are not included, then using the byte_offset
571       // values into the
572       // data buffer is the best way to find individual register values.
573
574       uint64_t size_including_slice_registers = 0;
575       uint64_t size_not_including_slice_registers = 0;
576       uint64_t size_by_highest_offset = 0;
577
578       for (uint32_t reg_idx = 0;
579            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) {
580         size_including_slice_registers += reg_info->byte_size;
581         if (reg_info->value_regs == NULL)
582           size_not_including_slice_registers += reg_info->byte_size;
583         if (reg_info->byte_offset >= size_by_highest_offset)
584           size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
585       }
586
587       bool use_byte_offset_into_buffer;
588       if (size_by_highest_offset == restore_data.GetByteSize()) {
589         // The size of the packet agrees with the highest offset: + size in the
590         // register file
591         use_byte_offset_into_buffer = true;
592       } else if (size_not_including_slice_registers ==
593                  restore_data.GetByteSize()) {
594         // The size of the packet is the same as concatenating all of the
595         // registers sequentially,
596         // skipping the slice registers
597         use_byte_offset_into_buffer = true;
598       } else if (size_including_slice_registers == restore_data.GetByteSize()) {
599         // The slice registers are present in the packet (when they shouldn't
600         // be).
601         // Don't try to use the RegisterInfo byte_offset into the restore_data,
602         // it will
603         // point to the wrong place.
604         use_byte_offset_into_buffer = false;
605       } else {
606         // None of our expected sizes match the actual g packet data we're
607         // looking at.
608         // The most conservative approach here is to use the running total byte
609         // offset.
610         use_byte_offset_into_buffer = false;
611       }
612
613       // In case our register definitions don't include the correct offsets,
614       // keep track of the size of each reg & compute offset based on that.
615       uint32_t running_byte_offset = 0;
616       for (uint32_t reg_idx = 0;
617            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL;
618            ++reg_idx, running_byte_offset += reg_info->byte_size) {
619         // Skip composite aka slice registers (e.g. eax is a slice of rax).
620         if (reg_info->value_regs)
621           continue;
622
623         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
624
625         uint32_t register_offset;
626         if (use_byte_offset_into_buffer) {
627           register_offset = reg_info->byte_offset;
628         } else {
629           register_offset = running_byte_offset;
630         }
631
632         const uint32_t reg_byte_size = reg_info->byte_size;
633
634         const uint8_t *restore_src =
635             restore_data.PeekData(register_offset, reg_byte_size);
636         if (restore_src) {
637           SetRegisterIsValid(reg, false);
638           if (gdb_comm.WriteRegister(
639                   m_thread.GetProtocolID(),
640                   reg_info->kinds[eRegisterKindProcessPlugin],
641                   {restore_src, reg_byte_size}))
642             ++num_restored;
643         }
644       }
645       return num_restored > 0;
646     } else {
647       // For the use_g_packet == false case, we're going to write each register
648       // individually.  The data buffer is binary data in this case, instead of
649       // ascii characters.
650
651       bool arm64_debugserver = false;
652       if (m_thread.GetProcess().get()) {
653         const ArchSpec &arch =
654             m_thread.GetProcess()->GetTarget().GetArchitecture();
655         if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 &&
656             arch.GetTriple().getVendor() == llvm::Triple::Apple &&
657             arch.GetTriple().getOS() == llvm::Triple::IOS) {
658           arm64_debugserver = true;
659         }
660       }
661       uint32_t num_restored = 0;
662       const RegisterInfo *reg_info;
663       for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL;
664            i++) {
665         if (reg_info->value_regs) // skip registers that are slices of real
666                                   // registers
667           continue;
668         // Skip the fpsr and fpcr floating point status/control register writing
669         // to
670         // work around a bug in an older version of debugserver that would lead
671         // to
672         // register context corruption when writing fpsr/fpcr.
673         if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
674                                   strcmp(reg_info->name, "fpcr") == 0)) {
675           continue;
676         }
677
678         SetRegisterIsValid(reg_info, false);
679         if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
680                                    reg_info->kinds[eRegisterKindProcessPlugin],
681                                    {data_sp->GetBytes() + reg_info->byte_offset,
682                                     reg_info->byte_size}))
683           ++num_restored;
684       }
685       return num_restored > 0;
686     }
687   } else {
688     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
689                                                            GDBR_LOG_PACKETS));
690     if (log) {
691       if (log->GetVerbose()) {
692         StreamString strm;
693         gdb_comm.DumpHistory(strm);
694         log->Printf("error: failed to get packet sequence mutex, not sending "
695                     "write all registers:\n%s",
696                     strm.GetData());
697       } else
698         log->Printf("error: failed to get packet sequence mutex, not sending "
699                     "write all registers");
700     }
701   }
702   return false;
703 }
704
705 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
706     lldb::RegisterKind kind, uint32_t num) {
707   return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
708 }
709
710 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
711   // For Advanced SIMD and VFP register mapping.
712   static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
713   static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
714   static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
715   static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
716   static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
717   static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
718   static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
719   static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
720   static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
721   static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
722   static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
723   static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
724   static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
725   static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
726   static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
727   static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
728   static uint32_t g_q0_regs[] = {
729       26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
730   static uint32_t g_q1_regs[] = {
731       30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
732   static uint32_t g_q2_regs[] = {
733       34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
734   static uint32_t g_q3_regs[] = {
735       38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
736   static uint32_t g_q4_regs[] = {
737       42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
738   static uint32_t g_q5_regs[] = {
739       46, 47, 48, 49,
740       LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
741   static uint32_t g_q6_regs[] = {
742       50, 51, 52, 53,
743       LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
744   static uint32_t g_q7_regs[] = {
745       54, 55, 56, 57,
746       LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
747   static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
748   static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
749   static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
750   static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
751   static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
752   static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
753   static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
754   static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
755
756   // This is our array of composite registers, with each element coming from the
757   // above register mappings.
758   static uint32_t *g_composites[] = {
759       g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
760       g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
761       g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
762       g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
763       g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
764       g_q14_regs, g_q15_regs};
765
766   // clang-format off
767     static RegisterInfo g_register_infos[] = {
768 //   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
769 //   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
770     { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
771     { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
772     { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
773     { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
774     { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
775     { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
776     { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
777     { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
778     { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
779     { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
780     { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
781     { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
782     { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
783     { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
784     { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
785     { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
786     { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
787     { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
788     { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
789     { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
790     { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
791     { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
792     { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
793     { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
794     { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
795     { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
796     { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
797     { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
798     { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
799     { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
800     { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
801     { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
802     { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
803     { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
804     { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
805     { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
806     { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
807     { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
808     { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
809     { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
810     { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
811     { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
812     { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
813     { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
814     { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
815     { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
816     { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
817     { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
818     { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
819     { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
820     { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
821     { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
822     { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
823     { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
824     { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
825     { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
826     { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
827     { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
828     { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
829     { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
830     { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
831     { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
832     { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
833     { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
834     { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
835     { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
836     { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
837     { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
838     { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
839     { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
840     { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
841     { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
842     { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
843     { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
844     { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
845     { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
846     { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
847     { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
848     { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
849     { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
850     { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
851     { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
852     { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
853     { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
854     { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
855     { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
856     { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
857     { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
858     { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
859     { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
860     { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
861     { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
862     { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
863     { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
864     { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
865     { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
866     { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
867     { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
868     { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
869     { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
870     { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
871     { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
872     { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
873     { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
874     { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
875     { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
876     { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
877     };
878   // clang-format on
879
880   static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
881   static ConstString gpr_reg_set("General Purpose Registers");
882   static ConstString sfp_reg_set("Software Floating Point Registers");
883   static ConstString vfp_reg_set("Floating Point Registers");
884   size_t i;
885   if (from_scratch) {
886     // Calculate the offsets of the registers
887     // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
888     // which comes after the
889     // "primordial" registers is important.  This enables us to calculate the
890     // offset of the composite
891     // register by using the offset of its first primordial register.  For
892     // example, to calculate the
893     // offset of q0, use s0's offset.
894     if (g_register_infos[2].byte_offset == 0) {
895       uint32_t byte_offset = 0;
896       for (i = 0; i < num_registers; ++i) {
897         // For primordial registers, increment the byte_offset by the byte_size
898         // to arrive at the
899         // byte_offset for the next register.  Otherwise, we have a composite
900         // register whose
901         // offset can be calculated by consulting the offset of its first
902         // primordial register.
903         if (!g_register_infos[i].value_regs) {
904           g_register_infos[i].byte_offset = byte_offset;
905           byte_offset += g_register_infos[i].byte_size;
906         } else {
907           const uint32_t first_primordial_reg =
908               g_register_infos[i].value_regs[0];
909           g_register_infos[i].byte_offset =
910               g_register_infos[first_primordial_reg].byte_offset;
911         }
912       }
913     }
914     for (i = 0; i < num_registers; ++i) {
915       ConstString name;
916       ConstString alt_name;
917       if (g_register_infos[i].name && g_register_infos[i].name[0])
918         name.SetCString(g_register_infos[i].name);
919       if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
920         alt_name.SetCString(g_register_infos[i].alt_name);
921
922       if (i <= 15 || i == 25)
923         AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
924       else if (i <= 24)
925         AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
926       else
927         AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
928     }
929   } else {
930     // Add composite registers to our primordial registers, then.
931     const size_t num_composites = llvm::array_lengthof(g_composites);
932     const size_t num_dynamic_regs = GetNumRegisters();
933     const size_t num_common_regs = num_registers - num_composites;
934     RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
935
936     // First we need to validate that all registers that we already have match
937     // the non composite regs.
938     // If so, then we can add the registers, else we need to bail
939     bool match = true;
940     if (num_dynamic_regs == num_common_regs) {
941       for (i = 0; match && i < num_dynamic_regs; ++i) {
942         // Make sure all register names match
943         if (m_regs[i].name && g_register_infos[i].name) {
944           if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
945             match = false;
946             break;
947           }
948         }
949
950         // Make sure all register byte sizes match
951         if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
952           match = false;
953           break;
954         }
955       }
956     } else {
957       // Wrong number of registers.
958       match = false;
959     }
960     // If "match" is true, then we can add extra registers.
961     if (match) {
962       for (i = 0; i < num_composites; ++i) {
963         ConstString name;
964         ConstString alt_name;
965         const uint32_t first_primordial_reg =
966             g_comp_register_infos[i].value_regs[0];
967         const char *reg_name = g_register_infos[first_primordial_reg].name;
968         if (reg_name && reg_name[0]) {
969           for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
970             const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
971             // Find a matching primordial register info entry.
972             if (reg_info && reg_info->name &&
973                 ::strcasecmp(reg_info->name, reg_name) == 0) {
974               // The name matches the existing primordial entry.
975               // Find and assign the offset, and then add this composite
976               // register entry.
977               g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
978               name.SetCString(g_comp_register_infos[i].name);
979               AddRegister(g_comp_register_infos[i], name, alt_name,
980                           vfp_reg_set);
981             }
982           }
983         }
984       }
985     }
986   }
987 }